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Abstract—  Despite the growing interest in asynchronous 
circuits, programmable asynchronous controllers based on the 
idea of microprogramming have not been actively pursued. 
Since programmable control is widely used in many com
mercial ASICs to allow late correction of design errors, to 
easily upgrade product families, to meet the time to market, 
and even effect run-time modifications to control in adaptive 
systems, we consider it crucial that self-timed techniques 
support efficient programmable control. This is especially 
true given that asynchronous (self-timed) circuits are well 
suited for realizing reactive and control-intensive designs.

We offer a practical solution to programmable asyn
chronous control in the form of application-specific micro
programmed asynchronous controllers (or microengines). The 
features of our solution include a modular and easily extensi
ble datapath structure, support for two main styles of hand
shaking (namely two-phase and four-phase), and many ef
ficiency measures based on exploiting concurrency between 
operations and employing efficient circuit structures. Our 
results demonstrate that the proposed microengine can yield 
high performance— in fact performance close to that offered 
by automated high-level synthesis tools targeting custom 
hard-wired burstmode machines.

I . I n t r o d u c t io n

Sequencing of activities in most VLSI digital circuits is 
achieved by means of a global clock. Supporting global 
clocking often comes at very high engineering costs, es
pecially given the trend towards deep submicron VLSI. A 
well-designed clocking system must, among other things, 
ensure th a t the clock cycle time not wasted by the sub
modules. Ensuring this situation involves considerable en
gineering effort, given the ever-increasing wire-to-transistor 
delay ratios. This becomes more of a problem in circuits 
th a t are reactive and control-intensive in nature. Such cir
cuits receive data  values from the external world at unpre
dictable moments and have to  perform efficiently a piece of 
computation for each data  value received, where the com
putations and control decisions may take a data  dependent 
amount of time. Clocking power is also an increasingly 
im portant issue, given the packaging and cooling issues 
th a t highly dissipative circuits involve. Though advanced 
clocking techniques in this area such as distributed clocking 
methods [1], [2] and /o r gated clocking [3] offer a solution 
to  these problems, these techniques are not ready yet for 
widespread incorporation into general application specific

Supported in part by NSF MIP-9622587

integrated circuit (ASIC) design in a manner th a t is cost- 
effective and meets the time to  market.

Asynchronous (self-timed) circuits are quite natural for 
realizing circuits of a reactive and control-intensive na
ture. Encouraging results are being obtained by many 
groups in designing self-timed circuits in this domain, for 
example in communications components used in multipro
cessors [4], hardware to  network portable electronic de
vices [5], and digital signal processing algorithms used in 
audio-electronics hardware [6]. Despite the growing inter
est in asynchronous circuits, programmable asynchronous 
controllers based on the idea of microprogramming have 
not been actively pursued. Since programmable control 
is widely used in many commercial ASICs to  allow late 
correction of design errors, to  easily upgrade product fam
ilies, to  meet the time to  market, and even effect run-time 
modifications to  control in adaptive systems, we consider 
it crucial th a t self-timed techniques support efficient pro
grammable control. This is especially true given th a t asyn
chronous (self-timed) circuits are well suited for realizing 
reactive and control-intensive designs. For example, sup
porting families of component types, such as bus adap
tor chips, is greatly facilitated by programmability. Other 
examples of systems realized using programmable control 
(but not using asynchronous control) are the S.'S MI’ proces
sor [7] which uses a microprogram engine, and the FLASH 
processor [8] which uses a processor-core. Programmable 
asynchronous circuits have also recently shown advantages 
in embedded and DSP applications [9], [10].

Many of these programmable approaches are very gen
eral purpose in their organization to  accommodate both 
pre- and post-fabrication changes of a broad nature. For 
example, processor cores can be easily re-programmed, and 
general-purpose microprogram sequencers can be easily- 
equipped with modified microcode. We demonstrate in this 
work th a t application specific microprogrammed structures 
can be easily designed for many classes of circuits, perform 
at least an order of magnitude better than general-purpose 
solutions based on processor cores, and even approach the 
performance of hard-wired control in many cases. The 
method proposed in this report combines the advantages of 
programmability and self-timing in an application-specific 
manner. More specifically, the main contribution of this re
port is the design and experimental evaluation of a general
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and structured approach to  a fully asynchronous micropro
grammed control organization [11], a microengine, th a t ta r
gets application specific implementations. The architecture 
emphasizes simplicity, modularity, and high performance. 
We will also demonstrate th a t asynchronous design meth
ods can be used advantageously in the design of micropro
grammed control and datapath  structures th a t carry out 
sequencing on the basis of completion sensing, instead of 
a fixed clock schedule. This makes our solution especially 
attractive for reactive and control-intensive designs.

This report is organized as follows. After surveying re
lated work and motivating our approach of targeting asyn
chronous microengines for efficient high level control, we 
describe our proposed asynchronous microengine architec
ture in detail, using the simple example of a Differential 
Equation solver in Section III. Section IV gives a more 
detailed discussion of the structure and operation of the 
microengine. Optimizations to  enhance the microengines 
performance are then presented in Section V. Section VI 
presents system timing constraints th a t must be met to 
ensure correct operation. In Section VII, a detailed pre
sentation of performance comparisons between the micro
engine and state-of-the-art asynchronous hard-wired con
trollers are presented.

A . Related work

Our approach to  programmable control targets imple
mentations where both program store and datapath  units 
are fully customized in capacity and functionality, respec
tively, while still offering a high degree of programmabil
ity. In contrast to  microprocessor cores the implemen
tation in our approach is adapted to  and optimized for 
the given design specification, rather than the other way 
around, for maximum performance and flexibility. While 
possibly having higher control overhead than hard-wired 
control, our approach nevertheless allows a higher degree 
of freedom in how to schedule and sequence actions at a 
fine-grained level. More specifically, our microengine al
lows per-m icroinstruction programmability o f its datapath 
topology by arranging its datapath  units into series-parallel 
clusters, for each microinstruction. This feature allows the 
parallel clusters to  run concurrently, while allowing the se
rial units within a cluster to  chain [12], as will be elabo
rated later. Chaining reduces the number of microinstruc
tions needed to  carry out a control task. For example, for 
the differential equation solver example illustrated in Sec
tion III, four  microinstructions of 24 bits width realize the 
entire control algorithm. Chaining also reduces the overall 
overhead of fetching microinstructions, because there are 
fewer microinstructions to  fetch. Chaining, in effect, ‘rolls’ 
many microinstructions into one large-grained instruction, 
thus reducing control overhead since several operations can 
be performed before a new microinstruction needs to  be 
fetched. Chaining also reduces the relative overhead of 
completion sensing, because completion is now sensed for 
larger grains of computation. Chaining in this manner is 
next to  impossible to  efficiently support in synchronous mi
croprogrammed controllers because of the difficulty of mak
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ing sure th a t all desired chain lengths are integral multiples 
of the clock period.

Programmable asynchronous structures were investi
gated around the 1980’s [13] in the context of a data-flow 
computer. However, their organizational style did not sup
port many of the features of microengines, including se
rial/parallel organization and chaining. It was also not an 
application-specific customization technique for micropro
grammed structures.

Asynchronous microprocessors [14], [15], [16] have lately- 
been a popular target for showing advantages in power con
sumption and speed. They are not applicable in all em
bedded control systems however, due to  their high fabri
cation cost, large size, relatively high power consumption, 
and fixed general purpose instruction set. As an exam
ple we implemented a CD player error decoder [17] in our 
microengine architecture (presented later in this report) 
and also accurately estimated the best-case performance of 
the control algorithm of the same error decoder using the 
MIPS-R3000 instruction set as realized by the 280 MIPS 
asynchronous microprocessor presented in [15]. The per
formance difference using the same implementation tech
nology, a 0.6 micron fabrication process, was a factor of 26 
times in favor of our microengine. This example serves to 
illustrate the performance advantage obtainable by special 
purpose hardware such as our microengine compared to  the 
general purpose hardware of microprocessors.

Other programmable control approaches have recently- 
been investigated [9], [10], [18]. These are best character
ized as programmable microprocessor cores. For example,
[9] allows a dedicated datapath  unit to  be added to  a mi
croprocessor core to  speed up computation. However, this 
organization has a large area due to  its on-chip caches (16k 
instructions, 64k data) to  support general purpose micro
programs. Since these types of programmable microproces
sor cores have fixed control structures and bus widths, they 
are also not easily adaptable to  specific design requirements 
efficiently.

Another method to  obtain programmable control in a 
self-timed design context is by using FPGAs such as Trip
tych [19]. However, these and other similar FPGA struc
tures are configuration-time reprogrammable, but not (eas
ily) run-time configurable. In addition, microengines are 
superior both in terms of area and speed compared to  Trip
tych based structures [19].

II. A r c h i t e c t u r e  o v e r v i e w

A conventional (synchronously clocked) micropro
grammed control structure consists of a microprogram 
store, next address logic, and a datapath. Microinstruc
tions form commands applied on the datapath  and control 
flow is handled by the next address logic that, with the 
help of status signals fed back from the datapath, gener
ates the address of the next microinstruction to  be exe
cuted. In a synchronous realization the execution rate is 
set by the global clock which must take the worst case de
lay- of all units into account. When the next clock edge 
arrives it is thus assumed th a t the datapath  has finished
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computing and the next address has boon resolved. and 
tho noxt microinstruction can bo propagated to tho dat
apath. Our asynchronous microengines havo an organiza
tion similar to those of conventional synchronous micropro
grammed controllers. However, as illustrated in Figure 1. 
major differences between these approaches stem from the 
use of handshaking to orchestrate both datapath- as well 
as microprogram-store related activities.

Fig. 1. High Level S tructure

In conventional synchronous microprogrammed con
trollers. the computation is started by an arriving clock 
edge and the datapath  is assumed to have completed by 
the following clock edge. In the asynchronous case we 
have no clock to govern the start and end of an instruc
tion execution. Instead a request is generated to trigger 
tho datapath  units to start executing. Each datapath  unit 
then signals its completion by generating an acknowledge. 
While the current microinstruction is being carried out. 
the next microinstruction is concurrently fetched predict
ing branches suitably, as elaborated later. The datapath 
units must then be explicitly synchronized to ensure they 
havo all completed before the next microinstruction can be 
propagated to the datapath. This function is performed 
by the execution control unit (ECU in Figure 1). The ECU 
collects acknowledge signals from all datapath  units before 
generating a request that propagates the already waiting 
next microinstruction to the datapath, thus starting a new 
execution cycle of the microengine.

Mi c i ve ng i n e h ighligh ts

The microengine achieves its efficiency in a number of 
ways. Its control and datapath  structures are fully cus
tomized to the control problem, thus minizing overhead. 
Its designer has complete control as to the degree to which 
the design should be programmable. A modular datapath 
also allows easy replacement of datapath  functional units, 
thus facilitating upgrading as well as late-binding of design 
decisions. Similar changes can. in a synchronous design, 
obviate the clock schedule, thus requiring total re-designs. 
The most crucial optimization exploited in the microengine 
is that of per-microinstruction programmability of its dat
apath topology, as explained earlier.

The overhead inherent to programmable control struc
tures is further reduced by parallelizing microinstruction 
prefetch with datapath  evaluation, as well as by setting

up multiplexors for the next microinstruction concurrently 
with acknowledge synchronization for the current microin
struction. as will be elaborated later.

III. M i c r o e n g i n e  o p e r a t i o n

The differential equation solver [20] in Figure 2 is a pop
ular benchmark that will be used throughout this section 
to illustrate the general operation of the microengine. The 
algorithm illustrated in Figure 2(a) implements the forward 
Euler method and is used to numerically obtain the values 
of y satisfying the differential equation y" + 3xy ' + 3y = 0 
where x  ranges from x(0) to a with step size dx. To avoid 
unnecessary detail in the example it is assumed that the 
input port values are stable throughout the algorithm ex
ecution. and that the constant 3 * dx  is available on an 
input port. Three threads calculating y, y' (u in figure), 
and incrementing x  are needed per iteration. Computing 
y' requires two multiplications, an addition, and a subtrac
tion operation. Computing y requires one multiplication 
and one addition, x  requires only an addition, and evalu
ating the while loop condition requires a comparator.

We decide to allocate one multiplier and one arithmetic 
unit for the calculation of a multiplier and an adder for 
y and x, and a comparator for the loop condition. The 
three threads of the algorithm can then be scheduled as 
illustrated in Figure 2(b). Dataflow is identified by wide 
shaded arrows while control sequencing, the propagation of 
the request signal through the datapath  units, is illustrated 
by thin black arrows.

Only four microinstructions are needed to formulate the 
algorithm. The first instruction loads the X ,Y ,  and U 
registers with their initial values and then tests the initial 
loop condition. The second calculates y and the first half 
of y' while the third calculates x, the loop condition, and 
the second half of y '. The second and third instructions 
are then repeated until the loop condition x  < a becomes 
false at which time the fourth instruction makes an uncon
ditional jump back to the beginning of the program and 
signals the completion of the computation. The complete 
microengine implementation with associated microprogram 
is illustrated in Figure 2(c).

A. Microprogram structure

The following bit fields of the microprogram are used 
to control the local operation mode of each datapath  unit 
(DPU). The set-execute. se, bits in the memory are used to 
specify when a datapath  unit is supposed to execute while 
the set-sequence. hh, bits specifies if it is setup to execute 
in sequential (chained) or parallel mode. Note that if a 
datapath  unit is setup to always operate in chained mode 
the se bit may also be used to incorporates the functionality 
of an ss bit. The set-mux. sm. and op-code. op. bits are 
used to specify which operands and operation the datapath 
unit should use. The enable, en. bits are used to enable 
which registers, when there are multiple registers in the 
same datapath  unit, should latch data.

The following bit fields of the microprogram are used 
to control the global microprogram flow. The current ad-
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diffeq {
read(x, y , u, dx, a); 
w hile (x  < a) { 

x l  := x +  dx;
u l  := u - 3 * dx(u * x + y); 
y1 := y  +  u * dx; 
x := x1; y  := y1; u := u1; } 

write(y);
}

a) General algorithm

b) Data and Control 
Flowgraph

Youtport ^  

DXport

ext
req

ext
ack

c) Microengine Implementation

Fig. 2. Design Exam ple: D ifferential E quation  Solver

dress, curr-addr, specifies which microinstruction that is 
currently being fetched by the memory (but is not part of 
the instruction). The next address, next-addr, is only used 
when the microinstruction contains a branch operation and 
specifies the address of the instruction being branched to. 
The set-branch-detect-unit, bdu, bits specifies which con
ditional expression result the branch detect unit (BDU) 
should test on a branch operation. The branch prediction. 
bra-pred, bit is used to specify if the branch test evaluation 
was predicted to be true or false. The select address, sel- 
addr, specifies which microinstruction, the next sequential 
one or the one specified by next-addr, to prefetch. The 
done bit indicates to the execution control unit when the 
microprogram has completed its computation and eventual 
data is available on output ports. The logic blocks that dif
ferent microinstruction bits operate on are indicated by the 
thin shaded lines connecting each logic block with its cor
responding microinstruction bits in the memory block in 
Figure 2(c).

B. Load datapath control

To keep the datapath  units modular and support a stan
dardized way to implement sequential and parallel schedul
ing. a local control block associated with every datapath 
unit is introduced. These control blocks are represented 
by the RAS components as illustrated in Figure 2(c) and 
are responsible for handling request, acknowledge, and se
quencing for their respective datapath  unit. Since the RAS

blocks handles the control aspect of the datapath  units, the 
microengine datapath  forms a regular and modular struc
ture where datapath  units can be implemented in arbitrary 
styles, all using a simple request-acknowledge handshake 
protocol. In our example the datapath  units, identified by 
the shaded boxes in the figure, are implemented in a stan
dard gate library and use bundled data [21] delays for ac
knowledge generation. The datapath  units will be referred 
to by their internal components names. Thus X Y refers to 
the unit containing registers X  and Y while MJJL1 refers to 
the unit containing the MJJL1 labeled function block etc.

Cl Microprogram execution

The following section will step through the execution of 
the differential equation solver microprogram illustrated in 
Figure 2(c).

Instruction 1. The microengine starts its execution at a 
specified entry point in the microprogram, address 1 in our 
example, upon receiving a request from the environment 
(ext-req). Bundled data is assumed in the communication 
between microengine and its environment, meaning the val
ues on data buses are valid by the time the request arrives. 
The Execution Control Unit (ECU) receives the external 
request and in turn  issues an event on the global request 
wire, req, fanning out to the memory and all datapath 
units. The microinstruction currently addressed, instruc
tion 1. is then latched to a register array internal to the
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memory by the global request. The request fanouts to  the 
datapath  are sufficiently delayed to  allow the instruction 
to  propagate to  the RAS blocks and datapath  units first.

Datapath execution. When the global request arrives at 
the RAS blocks, those setup for parallel execution prop
agates the request to  their corresponding datapath  unit 
while those setup for sequential execution awaits the com
pletion of previous datapath  units in the chain. When the 
datapath  units have completed their computation they gen
erate an acknowledge to  their respective RAS blocks. In 
our example, microinstruction 1 has setup datapath  units 
X Y  and T U to  latch the values on input ports Xport, Yport, 
and Uport in parallel. D atapath unit CM P  is setup to  await 
the completion of unit X  Y  before starting its own compu
tation. Instruction 1 thus execute two parallel threads, one 
thread containing units X  Y  and CM P  which are setup to 
execute in a chained fashion, and one thread executing unit 
TU. We represent this as ( X Y  C MP ) \ \ ( T U) .

As the X Y  and T U  units complete their computation 
they generate acknowledges to  their respective RAS blocks 
th a t in turn  propagate the acknowledges back to  the ECU. 
The RAS block acknowledges are also propagated as se
quential request signals to  other RAS blocks whose datap
ath units are setup for chained execution. The RAS block 
of datapath  unit CMP, which is setup for chained execu
tion, therefore waits until it gets a sequential request from 
the RAS block of unit X Y , indicating th a t unit X Y  has 
completed its execution and th a t the values of registers X  
and Y  are now available on its outputs. The sequential re
quest is then propagated by the RAS to its datapath  unit 
CM P  which computes the conditional branch expression 
X  < A port whereafter its acknowledge is sent back to  the 
ECU. While the BDU tests the result of the branch expres
sion the ECU synchronizes the completion of the datapath 
units.

M icroinstruction prefetch. While the datapath  is execut
ing, the microinstruction predicted to  be executed next is 
prefetched. If the current microinstruction does not con
tain a branch, the next address unit propagates the incre
mented value of the current address as the next microin
struction to  be fetched from memory. If the microinstruc
tion contains a branch, the prediction strategy is controlled 
by the sel-addr and bra-pred bits. If the sel-addr bit is set 
to  a 1 the next-addr value is propagated, otherwise the 
current address incremented by one is propagated to  the 
memory. In our example microinstruction 1 has the bra- 
pred and sel-addr set to  1 and 0 respectively, since it is 
likely th a t X  < A port when entering the while loop, and 
address 2 is propagated to  memory as the next microin
struction. After the memory has fetched the instruction it 
generates an acknowledge to  the ECU and then waits for 
the next global request before propagating the instruction 
to  the datapath.

If X  < A port is false however, the prediction was wrong 
so microinstruction 2 must not be executed and microin
struction 4 be fetched instead. This is achieved by toggling 
the value of sel-addr if the bra-pred value is different from 
the evaluated branch result from the BDU the next time

a global request arrives. An extra cycle is thus needed to 
fetch the correct microinstruction when a branch prediction 
is wrong.

Instruction 2. Assuming the while loop condition was true, 
instruction 2 is propagated to  the datapath  at the next 
arriving global request. As illustrated in Figure 2(b), in
struction 2 contains two parallel threads. One computes 
the first half of y ’ : ( M U L I  —̂ A LU 1  —̂ T U )  and the other 
computes y : ( M U f , 2 A L U 2  X Y ) .  The chained re
quest propagation in each thread commence as described 
previously for instruction 1. One difference however is the 
latching of Y. Since Y  is an operand to  ALU 1  we must 
a t least make sure th a t ALU 1  has completed before latch
ing the new value for Y  (we assume T  has time to  latch 
its new value before the changes in Y  propagates to  its 
inputs). We therefore introduce a cross-thread synchro
nization point by requiring X  Y  to  wait for the completion 
of both A L U 2  and ALU 1  before latching the new value of 
Y. This is illustrated in the microinstruction by both set- 
sequence signals, s s l and ss2, for X Y  being set. Note tha t 
in the other thread T U  still only has to  wait for ALU 1  to 
complete. The T U  thread can thus complete before the 
X Y  thread but never the other way around. It is worth 
observing the generality in which the microengine struc
ture allows threads to  be formed and synchronized. By
letting several RAS blocks wait for the same sequential re
quest (s), multiple threads can be spawned from a single 
thread. These threads can then be freely split into sub
threads or joined with other threads to  form any combina
tion of series/parallel clusters of executing datapath  units. 
It is left to  the designer as a perform ance/area/generality 
tradeoff to  specify to  which extent such formations should 
be supported. In our example, also note th a t since MUL1, 
ALU 1, MUL2, and A L U 2  according to  our scheduling can 
never be last in a chain, their RAS blocks are not required 
to  generate acknowledges thus reducing the complexity of 
the ECU. Therefore only the RAS blocks for X Y ,  and TU  
need to  generate acknowledges this cycle. Since instruc
tion 2 does not contain a branch, instruction 3 has been 
guaranteed correctly prefetched by the memory while the 
datapath  was executing.

Instruction 3. Once the ECU has synchronized the ac
knowledges from the datapath  instruction 3 is propa
gated to  the datapath. This instruction also has two 
parallel threads. One computes the second half of 
y ’ : ( M U L 1  —¥ A LU 1 —¥ T U )  and the other computes x  
and the while loop condition : ( A L U 2 —¥ X Y  C M P ) .  
This time no cross-thread synchronization is necessary and 
therefore only ss l for X Y  is set, i.e. this time the RAS 
block only waits for A L U 2  to  complete before generating 
a request to  the X Y  datapath  unit. This instruction also 
contains a branch. Since the sel-addr bit is set the value 
of next-addr, which is 2, is specified to  be propagated to 
memory as the address of the instruction to  prefetch.

Instruction 4. While the loop condition holds true, instruc
tions 2 and 3 are executed as described above. Once the 
condition becomes false, the sel-addr value is toggled and
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eval - evaluate brapred - predicted branch
cond - conditional result clear - instruction clear

branch - branch test result

Fig. 3. B ranch D etection Unit

address 4 is propagated to memory. Instruction 4 contains 
an unconditional jump to instruction 1 and also indicates 
to the ECU that the computation requested by the en
vironment has been completed and the y output value is 
available on port Youtport. The ECU then generates an ac
knowledge (ext-ack in figure) to the environment and then 
remains quiescent until the next request from the environ
ment arrives.

IV. A r c h i t e c t u r e  d e t a i l s

The following section provides a more in-depth discus
sion regarding the next address generation, global and lo
cal execution control, datapath  unit structure, and archi
tecture optimizations.

A. Next address generation

To reduce control related overhead of the microengine. 
it is desirable to fetch the next microinstruction in par
allel with the execution of the current microinstruction. 
We solve this problem of branch prediction in our micro
engine by fetching the next microinstruction most likely 
to be executed, but not committing it before the address 
selection has been resolved. We provide a flexible solu
tion which allows each branch instruction to be individu
ally programmed to employ a taken or not taken branch 
prediction strategy. In order to keep the next address logic 
simple, the next address in case of a branch instruction is 
stored as part of the microinstruction.

To detect if a branch was correctly predicted, the Branch 
Detection Unit (BDU) communicates the state of the data
path back to the next address logic at the end of the cycle. 
The structure of the BDU is shown in Figure 3 and can be 
functionally divided into two parts.

The first part evaluates if the branch condition is true 
or false. A set of eval signals from memory are used to 
select which conditional results from the datapath, cond, 
to test. This functionality is achieved by a simple AND-OR 
structure. Note that this branch test structure also allows 
ORing tests of several conditional results.

The second part compares the branch result with the 
predicted branch and asserts a clear signal if they differ, 
i.e. if the prediction was wrong. This clear signal has three 
different functions. Its first function is to toggle the sel- 
addr bit from memory so that the correct address is prop
agated to memory at the next global request. The toggle 
circuit, which is part of the microinstruction register array, 
for sel-addr is illustrated in Figure 4(a). Second, since the

from memory from from
BDU ECU

sel-addr next-addr

(a) Toggle circuit for sel-addr (b) Next address logic

Fig. 4. Next A ddress Unit

propagation of the global request to the datapath  is never 
disabled, the se and ss signals of the previously executed 
instruction must be cleared in order to stop the R AS blocks 
from propagating the request to the datapath  units which 
would otherwise repeat the execution of that instruction. 
This is achieved by synchronously clearing these bits on the 
next arriving global request. Other registers are simply dis
abled from latching new data. The eval and bra-pred bits 
are also cleared so as to not toggle the sel-addr bit again 
after fetching the correct microinstruction. Third, the clear 
signal is also used to disable the next address block, illus
trated  in Figure 4(b). from changing the internal values of 
the addresses so that the old incremented address is prop
agated to the memory correctly.

Note that unconditional branches are supported by spec
ifying all eval and the bra-pred signals to be 0. thus guar
anteeing that whatever microinstruction specified by the 
sel-addr bit will be fetched and executed.

Thus if a branch is mispredicted, the sel-addr bit value is 
toggled to propagate the correct address to memory, all se, 
ss, eval and bra-pred bits are cleared, and the next address 
block is disabled from latching a new incremented address 
when the next global request arrives. A correctly predicted 
branch thus has zero overhead while a misprediction re
quires an extra cycle to fetch the correct microinstruction.

B. Microengine execution control

There are many ways of realizing a structure for roquost- 
acknowlodgo handshaking between the microengine and the 
datapath  units. Since all datapath  units must synchronize 
with the memory before a new microinstruction can be 
latched, there is little to gain by generating separate re
quest signals to individual datapath  units. An approach of 
having only one global request signal that decides when to 
fetch a new microinstruction from memory as well as cause 
the datapath  units to start executing is therefore used. 
This approach reduces the complexity of the request con
trol logic necessary, as well as simplifies parallel datapath 
unit operation and timing analysis. Our design problem 
then reduces to one of designing request generation logic 
that offers low overhead and good scalability with regard 
to the number of datapath  units. For implementation of 
the request generation logic, burstmode [4], [22], [23] type
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of asynchronous state machines are used. The operation of 
a burstmode state machine allows the acknowledge signals 
from the datapath  units th a t are generated in response to 
the global request to  arrive at the state machine inputs in 
arbitrary order at arbitrary times.

For efficiency reasons we impose the requirement tha t 
all RAS blocks should always respond with an acknowl
edge even when their datapath  units are not setup to  exe
cute. This will keep all acknowledges in phase and results 
in greatly reduced logic complexity for the request gener
ation logic. By using this strategy the number of transis
tors of the request generation logic grows only linearly with 
number of acknowledge inputs. If the acknowledges were 
allowed to  get out of phase the logic would become much 
more complex. When using this approach of always ac
knowledging the RAS blocks must generate a bypass path 
for acknowledge generation when their datapath  units are 
not scheduled for execution. The cost for this however is 
very small compared to  the extra ECU complexity for the 
out of phase acknowledge approach. In addition, the same 
request generation logic can be used for both two and four 
phase protocols.

An abstract event based FSM for the global request gen
eration and resulting complex gate implementation using 
the 3D synthesis tool [23] is illustrated in Figure 5. The 
respective n and p transistor networks can be decomposed 
into balanced tree structures of gates to  simplify timing 
analysis, or unbalanced ones to  improve performance. This 
request generation logic then forms part of what is called 
the Execution Control Unit (ECU) used to  generate a new 
event on the global request signal.

In our ECU realization, it is assumed th a t the same pro
tocol is used for communication internal to  the microengine 
as well as with the environment. The ECU is initially qui
escent. After receiving a request from the environment an 
event on the global request signal is generated causing the 
microengine to  start executing. This global request latches 
the next address and the new microinstruction from mem
ory and triggers the datapath  units to  execute. For both

the two and four phase case, the not done signal in Figure 5 
is generated by a SELECT-element (not shown) connected 
to  the done level signal from memory and the global request 
signal. While done is false, the SELECT-element generates 
events on the not done signal. When done is true, an event 
is instead sent to  the environment as an acknowledge tha t 
the microengine has completed the requested computation. 
The ECU then remains quiescent until a new request ar
rives from the environment.

C. Local datapath execution control

A powerful feature of the proposed architecture is its 
ability to  dynamically form clusters of datapath  units for 
independent series/parallel execution during run-time. To 
support this fine grained control over execution, a lim
ited form of control structure, the RAS block, is associ
ated with each datapath  unit as previously shown in Figure 
2(c). The RAS block provides control over local request- 
acknowledge generation and sequencing of actions. Given 
the set-execute and set-sequence bits from the current mi
croinstruction, the RAS block controls if its correspond
ing datapath  unit is supposed to  execute during this cycle 
and in what mode, sequential or parallel, with respect to 
other datapath  units. In parallel mode, the global request 
is propagated directly to  the datapath  unit. In sequential 
mode, the sequential request (acknowledge) of the previ
ous RAS block in the execution chain is propagated. If 
the datapath  unit is not set to  execute during the current 
cycle, a special bypass path is provided to  generate a quick 
acknowledge.

Sequence control. The sequence control function of the RAS 
can in its simplest form be performed by a MUX, controlled 
by the set-sequence bit, th a t propagates either the global 
request or a sequential request to  its datapath  unit. The 
output of the sequence control MUX is hazard free since 
both the global and sequence request signals will reach sta
ble values before the next microinstruction may alter the 
MUX control signal (signal ss in Figure 6).

Carrying the above idea further along, in general it will 
be necessary for a RAS block to  wait for the completion of 
an arbitrary set of concurrently executing datapath  units 
before generating the request signal to  its attached data
path unit. An efficient way to  realize such high flexibility 
is illustrated by the complex gate structure on the left- 
hand sides of Figures 6(a,b). Given a set of set-sequence 
signals from the microinstruction and sequence request sig
nals from other RAS blocks, this structure can synchronize 
with all possible combinations of these datapath  units. The 
set-sequence signals provide a bypass path around the se
quence request signals in the transistor stack th a t are not 
currently of interest. This forces the sequence logic to  wait 
for an event on all sequence request signals in the current 
subset of interest before a path in the transistor network 
will conduct.

In general, sequencing actions between datapath  units 
will always be faster than starting a new cycle, because the 
latter entails detecting completion of all datapath  units and 
fetching a new microinstruction. To gain a significant per-

r
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formance edge however, the number of sequential request 
signals to a RAS should be restricted, as practical realiza
tions seldom call for the “infinite flexibility” of all possible 
combinations.

Request-acknowledge control. Besides sequencing control, 
the RAS must also provide means to correctly perform an 
internal request-acknowledge handshake with its datapath 
unit if it is scheduled to execute during the current cycle, 
and also provide a bypass path for acknowledge generation 
if it is not.

A request signal should only be received by the datapath 
unit if it is supposed to execute during the current cycle. A 
blocker gate is therefore needed to block the request from 
propagating to the datapath  unit if it is not setup to ex
ecute. Correct propagation of the internal request signal 
to the datapath  unit can in the case of four phase proto
col be implemented by a simple AND-gate. The AND-gate 
is then enabled if the datapath  unit is scheduled for ex
ecution. and disabled otherwise, respectively propagating 
or blocking the request generated by the sequence control. 
The request generation is more complicated for the two 
phase protocol, since the control must keep track of the 
value of the request signal last propagated through to the 
datapath  unit. An logic block that can generate events to 
either the datapath  unit, if it is scheduled for execution, or 
to the bypass path if not is therefore needed. The corre
sponding functionality is satisfied by a SELECT-element. 
which takes a level signal and an event signal, and gener
ates an event on either of two outputs depending on the 
value of the level signal set-execute.

The bypass path, illustrated by the shaded components

in Figures 6(a.b). can in the case of four phase protocol be 
implemented by a MUX that directly propagates the global 
request signal as the acknowledge if the datapath  unit is 
not scheduled for execution. In the case of two phase a 
MUX cannot be used since the state (value) of the input 
signals are not known. An logic block that generates an 
event on its output whenever receiving an event on either 
of its inputs is therefore needed. An XOR-gate satisfies 
this behavior, and is then used to generate the acknowledge 
signal.

D. Datapath unit structure

Each datapath  unit is assumed to be a self-timed ele
ment using single rail bundled data in communication with 
its environment. The request-acknowledge handshaking, 
completion detection, and data representation internal to 
a datapath  unit however, can be implemented in an arbi
trary fashion. For example, some datapath  units can be 
implemented using simple standard gates with matching 
delays while others can use sophisticated completion sens
ing such as complex gate domino-logic. A datapath  unit 
may also form complex structures such as a selftimed loop 
or even a hierarchy of microengines. Assumptions about 
safe data latching in the face of eventual datapath  depen
dencies. e.g. should cross-thread synchronization be used 
or not. while performing scheduling is left to the designer 
to decide based on knowledge about datapath  timings. If 
the designer choose to apply timing assumptions regard
ing concurrent propagation of data signals through input 
MUXes while the ECU performs completion synchroniza
tion and the request propagates through the RAS block it 
is also left to the designer to verify these assumptions.

V. A r c h i t e c t u r e  o p t i m i z a t i o n s

The structure presented for the microengine control so 
far brings forth the high level concepts of the microengine 
architecture in a clear fashion. However, it is not very 
optimal seen from a performance point of view. Since the 
microinstruction is latched only once the ECU has synchro
nized the datapath  completion and also must be allowed 
sufficient time to propagate to the datapath  and setup the 
RAS blocks and datapath  units, significant control related 
overhead is introduced. Also, since the microengine is re
quired to synchronize with all datapath  units before fetch
ing the next microinstruction, significant computational 
overhead can be introduced in the datapath  since the rni- 
croengine has to wait for the longest thread to complete be
fore starting the next cycle. The following sections will dis
cuss operational and architectural optimizations that can 
reduce the control and data computation overhead consid
erably

A. Reducing control overhead

Control related overhead can be reduced considerably by 
fetching the next microinstruction concurrently with the 
ECU performing completion synchronization. This can be 
achieved by. in the two phase case, letting each RAS block
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bo responsible for latching its own portion of the microin
struction directly after its datapath  unit has completed its 
execution, and. in the four phase case, latching the new mi
croinstruction during the return to zero phase. These ap
proaches also allow setup and propagation of data through 
input rnuxes of the datapath  units while the ECU performs 
synchronization and the global request propagates through 
the RAS blocks. In most cases the microinstruction propa
gation to the datapath  and data propagation through input 
rnuxes can be completely hidden in the ECU and RAS com
putations. The RAS blocks can also be optimized to yield 
lower latency. For example, the propagation of the global 
request through a four phase RAS block can be reduced to 
the propagation delay through a single pass-gate.

Our goal with the optimized control approach then is to 
reduce the control overhead by allowing the microinstruc
tion to propagate to the datapath  and allow data propaga
tion through MUXes. concurrently with the ECU perform
ing completion synchronization. The following sections will 
present optimized approaches for the two phase and four 
phase protocol implementations respectively. For the two 
phase case, a solution where each datapath  element latches 
its own part of the new microinstruction upon completion 
of its current task is presented. For the four phase case, a 
simpler solution where the new microinstruction is latched 
during the passive phase of the handshake is presented.

A .l Optimization for two phase

In this section we will present a solution for the two phase 
protocol where each datapath  element latches its own part 
of the new microinstruction upon completion of its current 
task. Necessary changes in the RAS to ensure a hazard- 
free behavior under the new signal arrival order will also 
be discussed. An overview of this optimized architecture is 
illustrated in Figure 7(a).

Latching the next microinstruction. Using an approach 
where each datapath  element latches its own part of the 
new microinstruction upon completion of its current task 
allows propagation of new control and data signals to take

place concurrently with the evaluation of the execution con
trol unit. The acknowledge signal local to each RAS could 
then be used as a request signal to latch the corresponding 
part of the next instruction. Since datapath  elements may 
execute in sequence however, data dependencies may exist 
between such stages. Early latching of the new instruction 
must therefore be restricted to control signals that do not 
alter the data output values of a datapath  element. Other 
control signals such as set-mux signals for output MUXes 
must not be latched until all datapath  elements have com
pleted their scheduled actions. These signals can then be 
latched using the global request signal since they in general 
have sufficient time to propagate to their respective com
ponents inside the datapath  units before new data arrives.

Since this approach may cause a datapath  element to 
request latching of a new instruction before the fetch from 
memory has completed, synchronization logic for the RAS 
and memory acknowledges must be provided. Since the 
method of always generating an acknowledge keeps these 
signals in phase, it is possible to realize this synchronization 
with a simple C-element.

R A S  Mock optimizations. Allowing new control signals to 
arrive before all acknowledge signals have reached the same 
phase again requires somewhat different logic implementa
tions of the RAS to avoid hazards. If a simple MUX was 
used as the sequence logic part of the RAS it could ex
hibit glitches if the set sequence signal of the next microin
struction was allowed to arrive before the sequence request 
signals had attained the same state (phase) as the global 
request. The RAS logic therefore must be made insensitive 
to such early changes of the set sequence control signal. 
The implementation of such a circuit is illustrated in Fig
ure 7(c). In this realization, the set sequence and sequence 
request signals, ss and sreq, are allowed to arrive in arbi
trary order. These signals may only cause the branches of 
the currently conducting transistor network (say P transis
tors) to go on or off. The opposite transistor network (N 
transistors) however, will remain non-conducting until the 
next event on the global request arrives. The output is thus
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hazard free and kept at its current logic level by a sustainer 
in the form of cross-coupled inverters. The output of the 
programmable sequence combination logic in Figure 6(d) is 
then connected to  the sreq inputs of the sequence logic in 
Figure 7(c). Note th a t due to  their similar structure, these 
two logic blocks can be merged into a single complex gate.

The original approach of latching the new instruction 
word relied on a synchronous clearing of the microinstruc
tion register array. Subsequently it also required the branch 
to  be resolved before latching a new microinstruction. 
Since the new approach means the new microinstruction 
might be latched before the branch has been resolved, other 
means of clearing the instruction before the next request 
arrives to  the datapath  must be provided. This function 
is implemented by introducing asynchronous branch clear 
logic local to  each DPE. The structure of the RAS block 
under the assumption of early instruction propagation is 
illustrated in Figure 7.

A.2 Optimization for four phase

In this section we will present a solution for the four 
phase protocol where the new microinstruction is latched 
during the passive phase of the handshake. While the 
method presented for two phase could be used, using this 
alternate approach enables further optimizations of the 
RAS block for fast request propagation and also removes 
the restriction on latching control signals th a t may alter 
the data  outputs separately. While precharging and data 
propagation through transparent latches can be done, we 
assume th a t no computations dependent on data  inputs to 
a datapath  unit are performed during the passive phase. 
An overview of this optimized architecture is illustrated in 
Figure 8(a).

Latching the next m icroinstruction. Latching the new mi
croinstruction during the passive phase of the handshake 
allow propagation of new control and data  signals to  take 
place concurrently with eventual precharge of datapath 
units and the return to  zero evaluation of the execution 
control unit. Since no data  dependent computations are 
performed during the passive phase, the whole microin
struction, including control signals th a t may change data 
outputs, can be latched at once using the falling edge of the 
global request signal. Using this approach a synchronous 
clear signal derived from the branch result and predicted 
branch signals, as in the original solution, can still be used.

R A S  block optim izations. When using the four phase pro
tocol, further optimizations can be made to  the RAS logic 
if the falling edge of the request signal is used to  latch 
the new microinstruction during the passive phase of the 
handshake. The solution illustrated in Figure 8 reduces 
the propagation delay of the global request through the 
RAS to th a t of a single transmission gate, while still pro
viding a lower delay for sequence requests than th a t of the 
original approach. As with two phase, the output of the 
programmable sequence combination logic in Figure 6(b) 
is connected to  the sreq inputs of the SEQ/REQ logic in 
Figure 8(c).

In this solution, the global request is always used as the 
signal to  be propagated. Since the microinstruction signals 
controlling execution and sequencing, se and ss are latched 
during the passive phase, the transmission gate will already 
be setup to  its current mode of operation by the time the 
rising edge of the global request arrives. If set to  execute 
in parallel mode, the global request is thus directly propa
gated to  the datapath  element, yielding only the delay of 
passing through an already conducting transmission gate. 
If set to  execute in sequential mode the transmission gate 
will be closed, disabling the global request from propagat
ing, until the arriving sequence request causes it to  open.

An im portant feature when using the four phase proto
col, is the ability to  generate a parallel return to  zero, re
gardless of the actual mode of operation of the individual 
datapath  elements. This is possible since no useful compu
tation is performed, and hence no data-dependencies exist, 
during the passive phase of the handshake. Since the trans
mission gate is guaranteed to  remain open at least until the 
next microinstruction has been fetched, the falling edge of 
the global request will always pass through the transmis
sion gate (if setup to  execute). This generates a fast parallel 
return to  zero of all datapath  elements even for datapath 
elements setup to  execute in sequence. Since the propaga
tion of the global request is concurrent with the latching 
of the new microinstruction, one restriction is placed on 
signal arrival order to  this RAS realization. The global re
quest must always arrive to  the RAS block before any new 
control signals of the next microinstruction. Otherwise a 
change in the se and ss control signals might cause a glitch 
on the propagated request signal. This restriction is triv
ially satisfied since the number of datapath  elements will 
always be less than or equal to  the number of registers in 
the register array, requiring less buffering, and also since 
the instruction signals must propagate through registers 
before arriving to  the datapath.

B. Reducing datapath overhead

Although control overhead can be reduced considerably 
as mentioned above, there may still be significant computa
tional overhead in the datapath  since the microengine still 
has to  wait for the longest thread to  complete before s ta rt
ing the next cycle. This is not always desirable since long 
latency operations may block other, concurrent, operations 
th a t finish quickly and need to  fetch a new microinstruction 
in order to  continue their execution. We therefore intro
duce the concept of decoupling clusters of datapath  units 
from the microengine operation during run-time. This al
lows the microengine to  fetch new microinstructions and 
continue execution of non-decoupled datapath  units with
out having to  wait for the completion of the decoupled clus
ters. When the microengine needs the result of a decoupled 
cluster, it initiates the resynchronization with the cluster. 
As with the formation of series/parallel clusters, this de
coupling of clusters and resynchronization with the same 
can be done on a per cycle basis. This section presents 
how ECU and RAS blocks must be altered to  support de
coupling of arbitrary clusters of datapath  units for the four
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phase protocol.

ECU alterations. In order to allow a datapath  unit to de
couple itself from the microengine execution, that is mak
ing itself independent of the execution of other parts of 
the microengine. the always acknowledge scheme must be 
abandoned. The reason for this is that the decoupled data
path units are setup to execute and therefore cannot gener
ate an acknowledge until they have completed their respec
tive computations. W ith an always acknowledge scheme 
this would lock up the execution of the rest of the rni- 
croengine until all acknowledges, including those from the 
decoupled units, have been generated.

We must devise a method that makes the ECU insen
sitive to the acknowledge generations of decoupled datap
ath units until it wants to resynchronize with them again. 
While this behavior cannot be realized efficiently by burst
mode FSMs. a hand made complex gate ECU circuit can 
be made quite efficient. One approach to realize the de
sired behavior of making the ECU insensitive to acknowl
edges from certain datapath  units is to provide a bypass 
transistor that conducts, much in the style of the sequence 
RAS logic presented earlier in Figure 6(b). whenever the 
corresponding datapath  unit is not setup to execute. By
providing such a bypass transistor path controlled by the 
set-execute signals of the datapath  units the ECU can be 
programmed to ignore acknowledges from datapath  units 
not setup to execute. Note that this approach also allevi
ates the problem of having the RAS block provide a bypass 
path for the acknowledge, reducing its complexity and de
lay. Each datapath  unit that can be used in decoupled 
mode also has an extra bypass transistor in both transistor 
stacks.

Figure 9(a) illustrates the new structure of the ECU that 
supports both “out of phase” acknowledges and decoupled 
execution. When a datapath  unit is setup to execute, the 
n-stack transistor connected to the set-execute signal from 
memory is not conducting and the ECU is forced to wait for 
the corresponding datapath  units acknowledge. If a datap
ath unit is not setup to execute, the transistor instead pro
vides a bypass path, enabling the ECU to continue without

receiving an acknowledge from the corresponding datapath 
unit. Only the n-stack needs the set-execute bypass tran
sistors since the acknowledge of a datapath  unit not setup 
to execute will remain low. automatically providing a by
pass path for the p-stack. The observant reader might have 
noticed that if no datapath  unit is setup to execute, the n 
and p-stacks in the ECU would short-circuit. This can 
never happen however, since the memory is always setup 
to fetch new instructions and thus does not have a bypass 
transistor on its acknowledge path through the ECU.

If a datapath  unit is setup to execute in decoupled mode, 
the transistors connected to the set-decoupled, sd, signal 
provide a bypass path effectively allowing the ECU to ig
nore the acknowledge from the decoupled datapath  unit un
til it wishes to resynchronize with the decoupled datapath 
unit by setting sd low. If the decoupled datapath  unit fin
ishes and generates an acknowledge before the microengine 
wants to resynchronize with it. the acknowledge is simply- 
ignored until the microengine is ready to resynchronize and 
sets the sd bit low. If the datapath  unit has not finished 
its computation by the time sd is set low. the ECU will 
simply wait until the computation has finished and the cor
responding acknowledge generated. This rcsynchonization 
takes place between two completely asynchronous entities, 
the microengine and the datapath  unit. However, since the 
ECU always initiates the resynchronization and then waits 
for the datapath  units acknowledge to arrive, there is never 
any race present between the sd and acknowledge signals, 
and metastability or glitches cannot occur.

While all se and ss signals from memory are latched on 
the negative global request edge, sd must be latched on the 
positive edge. Otherwise the sd signal could be set low. i.e. 
telling the ECU to wait for a rising edge on the acknowledge 
from the decoupled datapath  unit, while the ECU in fact 
is waiting for falling edges on the other acknowledges. The 
p-stack will thus never conduct if the decoupled datapath 
units acknowledge has aldready gone high, and the ECU 
will deadlock waiting for a falling acknowledge that will 
never occur.
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R A S  block modifications. As mentioned, with the ECU sup
porting “out of phase” acknowledging, any datapath  unit 
not executing during a cycle should not generate an ac
knowledge. The extra logic previously required for bypass 
acknowledge generation by the RAS is therefore no longer 
needed as illustrated in Figure 9(b).

Since the computation of a decoupled datapath  unit may 
span over several microengine cycles the RAS block must 
be made insensitive to further events on the global and se
quential request signals. This is achieved by using the set- 
decoupled. sd, signal to block further events from propa
gating through to the datapath  unit. This means that once 
the rising edge of the request has been propagated through 
the RAS block, the following falling edge must not be prop
agated (until the ECU initiates the resynchronization that 
is). This is achieved by a transistor connected to the sd 
bit that cuts off the p-stack of the RAS logic illustrated 
in Figure 9(b) throughout the decoupled computation. To 
support decoupling of an entire chain of datapath  units an 
extra bypass transistor connected to the sd bit in the n- 
stack is needed to allow sequential requests to propagate 
regardless of the state of the global request. This bypass is 
necessary since the microengine might be in the middle of 
executing another microinstruction and the global request 
be in an unknown state at the time the sequence request 
from one decoupled datapath  unit propagates to another. 
The transistors connected to the sc, ss, and sreq fullfill their 
usual functionality.

Since the sd bit must be latched on the positive edge of 
the global request, as discussed earlier, a timing restriction 
must be imposed on the arrival order of the global request 
and sd signals. The global request must always arrive at 
the RAS block before any change in the sd bit. Otherwise 
a request may be generated to the datapath  unit before the 
global request arrives to the RAS if the se and sd bits are 
set and the ss bit is not set. If a decoupled chain is exe

cuted we may also run into the problem of the microengine 
initiating the resynchronization with the chain before the 
chain has completed. That is. the sequence request has not 
propagated to. for example, the last datapath  unit in the 
chain. Setting sd low at such a time would mean cutting off 
the transistor allowing the sequence request to propagate 
through the RAS regardless of the status of the global re
quests. However, since we imposed the restriction that the 
global request must arrive before any change in the sd bit. 
the n-transistor connected to the global request will con
duct and allow the sequence request to propagate through 
the RAS block. Since the ECU is then blocked waiting for 
the resynchronized chains acknowledges no further events 
will be generated on the global request until all sequence 
requests, and their subsequent acknowledges, of the chain 
have finished propagating. The imposed arrival order of 
the global request and sd signals is trivially satisfied since 
the global request buffer tree to latch the microinstruction 
is longer than the buffer tree to the datapath, and since 
the sd bit must also propagate through a register before 
arriving to its RAS block.

VI. S y s t e m  T i m i n g

The following sections will discuss the most im portant 
timing constraints that must be satisfied for correct opera
tion of the microengine. Timing inequalities that illustrates 
these timing constraints will also be presented. Inequali
ties for hiding e.g. input MUX delays in the concurrent 
evaluation of the ECU and propagation of the global or 
sequential requests through RAS blocks are not presented 
but can easily be derived from the given inequalities. Un
less wire delays are explicitly mentioned, they are assumed 
to be negligent.

The following conventions and abbreviations are used in 
the timing inequalities. If no subscript indicates otherwise, 
the signal propagation through the component in question
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is referred to. The term  buf stands for delay through buffer
ing of a multiple fanout signal, BD U  stands for branch 
detection unit, ECU  for execution control unit, R A S  for 
request/acknowledge/sequence block, DPU  for datapath 
unit, clr for clear, SL for the sequence logic and BCL  for 
the branch clear part of the RAS in case of two phase, C 
for C-element, SEL  for select element, dear for the branch 
clear signal, req and sreq for global and sequence request 
signals, rtz for return to  zero, DP, ADR, and M I for data
path, next address, and microinstruction respectively, and 
REG  for register.

A. Two phase

Branch prediction. Since no execution should take place if 
the branch prediction was incorrect, the branch clear signal 
must arrive in time to  set the select element to  propagate 
the event to  the right output. Because the select element 
requires no setup time, this timing property is satisfied if 
the following inequality holds.

(1) EC U  +  DPjreqbuf  +  SL  > B D U  +  dea rhuf +  B C L  
Where the delays of S L  and B C L ,  and also D P jr e q b u f  and 
clear^uf are comparable, reducing the constraint in all prac
tical aspects to  only require the delay through the E C U  to 
be greater than through the B D U .  This timing constraint 
is trivially satisfied in most designs since the number of ac
knowledges to  the ECU tends to  be larger than the number 
of conditional inputs to  the BDU. If the timing constraint 
is not met, a delay must be inserted on the global request. 
The following inequality ensures latching of correct next 
address value, i.e. th a t BDU propagation delay and next 
address register setup times are met before the global re
quest arrives at the next address register.

(2) E C U  +  ADRjreqbuf  > B D U  +  A D R M E G enaUe
This timing inequality is also trivially satisfied in most de
signs since the delay of the ECU tends to  be larger than the 
BDU, and the next address request buffer delay, which is 
the same as the buffer delay to  the microinstruction regis
ter array, is larger than the enabling/disabling time of the 
next address registers.
Data latching. Inequality 3 ensures th a t the new microin
struction has time to  propagate to  the datapath  before the 
next global request arrives to  the datapath. This inequality 
is trivially satisfied for most designs. If not, a delay needs 
to  be inserted on the global request.

(3) ECU  +  DPjreqbuf  > C  + M I M E G
If an assumption th a t data  values are latched correctly by
datapath  units operating in parallel mode when data  de
pendencies are present is made, it is left to  the designer 
to  verify the correctness of the assumption. The designer 
would then have to  make sure the following timings are 
satisfied.

(4) D P-reqskeWi. +  D P U M E G hoid. < D P U -R E G j +  M U X { 
Inequality 4 ensures, assuming delay internal to  a datapath 
unit is unknown (zero), no new values can propagate from 
the outputs to  the inputs of registers latching data  in par
allel. dp-reqskeu> accounts for skew related to  difference in 
request arrival time at each RAS as well as to  each DPU ’s 
input registers due to  wire delay and signal buffering.

The assumption th a t data  values arrive to  a datapath  unit 
operating in sequential mode before the sequential request 
is trivially satisfied since it only means th a t the data  wire 
delays are smaller than the propagation delay of the se
quence request.

(5) X O R i +  sreqwiTedelay +  RAS „ eqj -> DQ:tQlwire(lelay

B. Four phase

Branch prediction. The following inequality ensures tha t 
the synchronous branch clear signal arrives before the next 
request to  the microinstruction register array.

(6) ECU  +  M I-reqbuf > B D U  +  clearbuf +  M IM E G cW 
This constraint is usually satisfied depending on the dif
ference in number of acknowledges to  the ECU and condi
tional signals to  the BDU. If the timing constraint is not 
satisfied, a delay must be inserted on the global request. 
As in the two phase case, the following inequality ensures 
latching of correct next address value, i.e. th a t BDU prop
agation delay and next address register enable times are 
met before the global request arrives at the next address 
register.

(7) EC U  +  A D R jreqbuf  > B D U  +  A D R M E G enaUe
As in the two phase case this timing inequality is also triv
ially satisfied in most designs.

Data latching. Inequality 8 ensures th a t the new microin
struction has time to  propagate to  the datapath  before the 
next global request arrives to  the datapath. This inequal
ity is trivially satisfied for most designs. If not, a delay 
need to  be inserted on the global request. Note th a t the 
microinstruction is latched on the falling edge of the global 
request.

(8) 2 * D P-reqbuf +  R A Srtz +  DP'Urtz +  ECU  +  R A S.req  > 
M I-reqbuf +  M I  M E G

As in the two phase case, if an assumption th a t data  values 
are latched correctly by datapath  units operating in parallel 
mode when data  dependencies are present is made, it is left 
to  the designer to  verify the correctness of the assumption. 
The designer would then have to  make sure inequality (4) 
is satisfied.
As in two phase, the assumption th a t data  values arrive 
to  a datapath  unit operating in sequential mode before the 
sequential request is trivially satisfied since it only means 
th a t the data  wire delays are smaller than the propagation 
delay of the sequence request.

(9) srzqwiredeldy RA.Ss r e q  ^ D ( l t c iw i r e d e la y

There are no extra inequalities needed to  describe the op
eration of decoupled execution of datapath  units, as their 
operation is the same as for non-decoupled datapath  units, 
the only difference being th a t the ECU does not wait for 
their acknowledges.

V II. D esign  E xam p le : C D -p la y e r  E r r o r  D e c o d e r

To estimate the efficiency of the presented microengine 
implementation style compared to  a custom control imple
mentation using the same datapath  structure, a CD-Player 
error decoder [17] was built as a design example. In addi
tion to  the microengine style, the decoder was therefore
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Fig. 10. C D -Player error decoder s truc tu re

also implemented using our high level synthesis framework 
for asynchronous circuits. ACK [24]. This framework takes 
a high level description in either the HOP language [24] (il
lustrated in figure 11) or Verilog—b, a synthesizable sub
set of Verilog extended to handle channels, as input and 
targets customized interacting burstmode FSMs as control 
structure. The datapath  being created by ACK was used 
in both implementations. The HOP design specification of 
the error decoder is a faithful translation of the Tangram 
program presented in [17] which also enables comparisons 
to the respective results obtained therein. Although the 
microengine design was implemented by hand, careful a t
tention was given to ensure that the implementation cor
respond to what would easily be achievable using an auto
m ated synthesis tool.

The error decoder circuit implements error-detection on 
the audio information recorded on Compact Discs using a 
syndrome computation algorithm. Figure 10 illustrates the 
structure of the microengine implementation and Figure 11 
the behavioral HOP language specification. The decoder 
processes a sequence of either 32 or 27 input words indi
cated by the value on the t channel. The words are read in, 
processed, and checked for errors in two sequential loops. 
The status of the decoding is then reported to the environ
ment via the ,s\ e, and I channels. Further details of the 
decoder can be found in [17].

To reduce the control overhead thus improving the per
formance of the design, several sequential chains are in
troduced. This significantly reduces the number of times 
the DPU’s must be synchronized in order to fetch a new 
microinstruction, also reducing the number of instructions 
necessary. Since no DPU contains any precharged logic, 
only those DPU’s that can actually end an execution cycle, 
i.e. any DPU accessed last in a chain, need to acknowledge 
their completion to the ECU. As can be seen in the fig
ure, many RAS acknowledges can therefore be removed (7

Module CD_PLAYER_ERROR_DECODER

Event start?? : bit;
Channel T?, S! : bit;
Channel C?, E!, L! : array [7:0] of bit;
Variable syn : array [31:0] of bit;
Variable e, s : array [7:0] of bit;
Variable n : array [5:0] of bit;
Variable t, stat : bit;

Function Horner (
InPort si : array [7:0] of bit;
InPort syni : array [31:0] of bit;
OutPort syno : array [31:0] of bit; )
{ syno[7:0] := GFadd(si, syni[7:0]), 

syno[l5:8] := GFadd(si, Alpha(syni[7:0])), 
syno[23:16] := GFadd(si, Alpha(Alpha(syni[7:0]))), 
syno[31:24] := GFadd(si, Alpha(Alpha(Alpha(syni[7:0])))) }

Function GFadd (
InPort si, syni : array [7:0] of bit;
OutPort syno : array [7:0] of bit; )
{ syno := si XOR syni }

Function Alpha (
InPort syni : array [7:0] of bit;
OutPort syno : array [7:0] of bit; )
{ syno[7:5] := syni[6:4], 

syno[4:2] := syni[3:1] XOR syni[7], 
syno[1,0] := syni[0,7] }

Function Shuffle (
InPort syni : array [31:0] of bit;
OutPort syno : array [31:0] of bit; )
{ (syno[7:0],syno[15:8],syno[23:16],syno[31:24]) := 

(syno[15:8],syno[31:24],syno[7:0],syno[23:16]) }

Behavior

<START> : start?? -> <INPUT>

<INPUT> : fork <F0> : T?t -> if (t == 0) -> n := 27 -> <join> 
else -> n := 32 -> <join>

II <F1> : syn := 0 -> <join> 
join -> <SYNDROME>;

<SYNDROME> : if (NOT(n[5] == 1)) ->
fork <F0> : n := n - 1 -> <join>
II <F1> : C?s -> syn := Horner(s,syn) -> <join> 
join -> <SYNDROME> 

else -> <SHUFFLE> ;

<SHUFFLE> : fork <F0> : if (t == 0) -> n := 27 -> <join> 
else -> n := 32 -> <join>

II <F1> : e := syn[7:0] -> <join> 
join -> <SYNDROME> ; 
syn := Shuffle(syn) ;
syn := Shuffle(syn) -> <ERR_CHECK> ;

<ERR_CHECK> : if  (NOT((n[5] == 1) OR (syn[7:0] == syn[15:8]))) -> 
fork <F0> : n := n - 1 -> <join>
II <F1> : syn := Horner(0,syn) -> <join> 
join -> <ERR_CHECK> 

else -> <IS_ERR> ;

<IS_ERR> : stat := n[5] ;
syn := Shuffle(syn) ->
stat := (stat OR (syn[7:0] == syn[15:8])) ;
syn := Shuffle(syn) ->
stat := (stat OR (syn[7:0] == syn[15:8])) -> <RESULT>

<RESULT> : S!stat, E!e, L!n -> <INPUT> ;

EndBehavior

//* ’;’ or conditional test indicates ECU synchronization point 
//* ’->’ indicates chaining of current and next statement

Fig. 11. C D -Player error decoder H O P specification

out of 13), reducing the complexity of the ECU. The pos
sible sequential chains are easily identified in the figure by 
the horizontal arrows connecting the corresponding RAS 
blocks.

The microengine execution proceeds as follows. A start 
signal from the environment causes the microengine to start 
by first loading a new microinstruction. This microinstruc
tion is propagated to the datapath  which then reads in a 
value from the t  channel, initializes the n  register accord
ingly, and resets the syn  register.

The SYND RO M E loop, decoding the stream of n  input 
words is then entered. This loop executes two chains in



15

CD P L A Y E R  E R R O R  D E C O D E R

= V C O B R A _ P R E D __= Q--------------------
z V C O N _ R E G _ Q E _-  Q--------------------
~  V C O N _ R E G _ S M _E .... -......
— V C 0 N _ R E G _ 9 £ 1-  ^ ------------------
-E V C 0 N _ R E G _ S S 2

C O D E C N _ f l C K _

COH O R N E R _ f l C

CON _ R E G _ f l C K

C O S _ R E G _ Q C K

COS_YN__R_E_G_fi

C O T _ C H A N _ O C

Fig. 12. CD-Player error decoder SPICE waveforms

parallel, one th a t decrements the n-counter and one tha t 
reads in a new word and processes it in the H o rn er  pro
cedure. The actions carried out by these chains can be 
viewed as follows where —¥ and || indicates sequential and 
parallel execution respectively.

(D ec(n ) —s* ri-reg) || (c-chan —»• S-reg —>• H orner  —>• syn-reg)
The completion of the two chains are then synchronized by 
the ECU concurrently with the BDU testing the branch 
condition. The loop will continue to  be iterated until the 
branch condition is false, th a t is, when n  becomes negative. 
The syn  register is then reshuffled to  accommodate the in
put to  the E R R - G H E G K  loop. This loop detects eventual 
errors in the decoded sequence. The action sequence in this 
loop is as follows.

(D ec(n ) —s* ri-reg) || (H orner  —»• syn-reg  —»• sta t-orsyneq)
The loop is iterated until n  is negative or the two low end 
bytes of sy n  differ, in which case an error has been found. 
The last computation action is then to  set the status bit 
according to  the error calculation which is done by two in
vocations of the following chain.

S h u f f l e  —»• syn-reg  —»• stat-or s y n e q  —»• stat-reg 
The status information is then communicated to  the envi
ronment via the s, e, and I channels, containing the status 
of the computation, the starting word of the sequence, and 
the position of the eventual error.

Figure 12 illustrates a post-layout SPICE simulation of 
the initialization and first couple of cycles executed by the 
microengine. The top panel shows the global request sig
nal, the middle panel shows the bits of the latched mi
croinstruction and the branch clear signal, and the bottom 
panel shows the acknowledges of the datapath  units. Note 
th a t this implementation uses the optimization of latching 
the microinstruction during the falling edge of the global re
quest as discussed earlier. On startup, the microinstruction 
is initially cleared. On the first cycle after a request from 
the environment the microengine therefore only fetches the 
next microinstruction to  be executed. Since all RAS blocks 
are in acknowledge bypass mode no datapath  unit will ex
ecute and the branch clear signal will be low. The first

microinstruction executes the fork-join statem ent in the 
IN P U T  state of the HOP code in Figure 11 and tests the 
SY N D R O M E  loop condition. The use of chained execution 
can be observed by the sequentially occuring acknowledges 
in Figure 12’s bottom  panel. This nicely illustrates how 
the execution propagates through the threads of chained 
datapath  units. Note the parallel return to  zero of the ac
knowledge signals on the global requests falling edge. Since 
the SY N D R O M E  loop condition is initially true, the branch 
clear signal goes low as illustrated by the single falling dot
ted line in the middle panel of Figure 12. The next mi
croinstruction implementing the S  YN D R O M E  state of the 
HOP code is thus propagated to  the datapath  and executed 
next. No more changes are visible in the microinstruction 
bits since we continue to  iterate over the SY N D R O M E  loop 
instruction until n  becomes negative.

A . Results

The Tangram implementation described in [17], which 
was targeted for low-power, used dual rail logic and a 1.2 
micron technology and was reported to  have an approxi
mate worst case cycle time of 20 microseconds, each cycle 
decoding a sequence of 32 8-bit input words, and a core area 
of 2.0 mm2. According to  [6] a factor of 1.5 in performance 
improvement and a 40% smaller area can be attributed to 
single rail over double rail in an implementation of a sim
ilar, but more complex, error decoder for the DCC player. 
A single rail Tangram implementation of the CD player de
coder could therefore be expected to  have a cycle time of 
about 13 microseconds and an area of 1.2 mm2.

Using our design tool ACK to automatically generate 
a customized hard-wired implementation targeting a 1.2 
micron CMOS technology, the corresponding worst case 
cycle time was in the order of 3.8 microseconds using a four 
phase handshake protocol and with an area of 1.3 mm2. 
Using the same datapath, the microengine implementation 
had a resulting cycle time of about 4.0 microseconds also 
using a four phase protocol and an area of 1.7 mm2.

We also implemented the CD player error decoder in a 
0.6 micron technology 1 and performed post-layout SPICE 
simulation of the same. The cycle time under worst case 
transistor models and tem perature was 1.46 microseconds. 
Feature size scaling under constant field assumption [25], 
except for voltage, would result in gate delays in a 1.2 mi
cron 5V technology being approximately 2.5 times th a t of a
0.6 micron 3V technology while wire delays stay the same. 
The corresponding cycle time for the microengine imple
mentation of the decoder should therefore be in the order 
of 3.7 microseconds in a 1.2 micron technology. The gate 
level delay analysis would thus be inside a 10% error mar
gin of post-layout SPICE simulation. We assume th a t the 
post-layout hard-wired implementation has similarly accu
rate cycle time. The timing assumptions inherent to  the 
microengine control structure such as th a t the branch clear 
arrives to  the microinstruction register array before the 
global request, and th a t the microinstruction arrives at the

1Our updated VLSI tools no longer feature a 1.2 micron library
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Fig. 13. CD-Plaver error decoder area breakdown. The large digits 
add up to  the to ta l area of the respective designs.

datapath  before the global request were, as we expected, 
trivially satisfied by the natural delays of the components 
involved. No delays needed to be inserted to ensure correct 
operation.

The area breakdown for the customized and microengine 
implementations is illustrated in Figure 13. As illustrated, 
the area for the microengine control units is very small, 
and the major part of the area is spent on memory. The 
ability of our microengine to chain actions is therefore im
portant not only for performance but also for saving area 
since it reduces the number of microinstructions needed. 
The CD player error decoder for example requires only 9 
30-bit wide microinstructions. Techniques such as code 
compression and bit-sharing may also be used to reduce 
the size of the memory but may introduce delay overhead 
or restrict reprogrammability. Chaining actions also gives 
additional time for the microinstruction prefetch to com
plete. potentially allowing use of slower, more area efficient 
memory. The area for the burstmode controllers is sur
prisingly large, and serves to illustrate how hard it is to 
estimate the implementation complexity of finite state ma
chine controllers, even for moderately sized designs.

The designs were synthesized to a gate level representa
tion and performance measured via timing analysis using 
worst case gate delay and wire load models in Synopsys™  
Design Analyzer tool. Bundled data delays were obtained 
via three-point best/typical/w orst case gate level timing 
analysis using this tool and is to our experience very accu
rate allowing use of relatively small safety margins. Post
layout area numbers and SPICE models were obtained us
ing the C ascade™  Epoch layout tool. It should be noted 
that both designs were implemented without using any ex
plicit timing based optimizations. B etter results are to 
be expected for both designs when timing optimizations 
are applied to hide control overhead. In the context of 
what autom ated synthesis tools can achieve, also consider
ing the control structure was implemented with standard 
gates, these results about the microengines performance 
are encouraging. One of the reasons the microengine ap
proach is able to perform so well compared to the custom 
control approach is due to the ability to naturally and effi
ciently chain the actions of an arbitrary number of datap
ath units while still being able to perform a parallel return

to zero. An initial performance concern about the micro
engine control structure was the presumed high capacitance 
load on the global request wire. The resulting implementa
tions however, showed that while the global request in the 
microengine had a capacitance of 1.3nF. some acknowledge 
wires to the burstmode controllers in the customized con
trol implementation that were on the critical path actually- 
had even higher loads, the worst being 2nF.

V III. C o n c l u s i o n s

An asynchronous microengine architecture for pro
grammable control has been presented. We believe that 
for many types of designs, this structure can provide per
formance close to that of designs with customized con
trol while still offering the flexibility and ease of design 
that programmable control and a modular datapath  pro
vides. A powerful feature of the architecture is the per- 
microinstruction programmability of its datapath  into clus
ters of independently executing serial chains. The problem 
of having to wait for the longest datapath  chain to complete 
is solved in an approach by allowing run-time formation of 
decoupled clusters of datapath  units. In this approach, the 
microengine can thus continue to fetch and execute new 
microinstructions without having to wait for the comple
tion of the decoupled clusters, reducing overhead related to 
datapath  computation. The ability to form decoupled se
ries/parallel clusters allows a richer set of schedulings and 
thereby promises to increase the efficiency of a microengine 
implementation significantly.

Timing assumptions that are considered safe have been 
used to reduce various control overhead. These timing 
assumptions could potentially be incorporated into auto
m ated microengine generator tools, thus avoiding case by
case validation. Examples of hiding control latency is to 
let branch calculation, propagation of data signals through 
input MUXes. and meeting register setup constraints be 
performed concurrently with completion synchronization, 
and also pipeline the datapath  execution with branch pre
diction and fetching of the next instruction. Using an ap
proach where requests are always acknowledged even for 
datapath  units not executing, thus returning all control 
signals to the same state at the end of each execution cy
cle. facilitates efficient logic control structures for both two 
and four phase implementations.

We are currently working on generating more examples 
to facilitate a comparison on a broader base of designs. 
We intend to autom ate the microengine synthesis proce
dure. and incorporate it in the ACK synthesis framework 
allowing descriptions entered in Verilog—b to be realized 
as both hard-wired and microengine implementations.
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