
Application Specific Asynchronous Microengines
for Efficient High-level Control

Hans Jacobson, Ganesh Gopalakrishnan

Technical Report: UUCS-97-007
Department of Computer Science

University of Utah, Salt Lake City, U.S.A.

E-mail: hans@cs.utah.edu, ganesh@cs.utah.edu

Abstract— Despite the growing interest in asynchronous
circuits, programmable asynchronous controllers based on the
idea of microprogramming have not been actively pursued.
Since programmable control is widely used in many com
mercial ASICs to allow late correction of design errors, to
easily upgrade product families, to meet the time to market,
and even effect run-time modifications to control in adaptive
systems, we consider it crucial that self-timed techniques
support efficient programmable control. This is especially
true given that asynchronous (self-timed) circuits are well
suited for realizing reactive and control-intensive designs.

We offer a practical solution to programmable asyn
chronous control in the form of application-specific micro
programmed asynchronous controllers (or microengines). The
features of our solution include a modular and easily extensi
ble datapath structure, support for two main styles of hand
shaking (namely two-phase and four-phase), and many ef
ficiency measures based on exploiting concurrency between
operations and employing efficient circuit structures. Our
results demonstrate that the proposed microengine can yield
high performance— in fact performance close to that offered
by automated high-level synthesis tools targeting custom
hard-wired burstmode machines.

I . I n t r o d u c t io n

Sequencing of activities in most VLSI digital circuits is
achieved by means of a global clock. Supporting global
clocking often comes at very high engineering costs, es
pecially given the trend towards deep submicron VLSI. A
well-designed clocking system must, among other things,
ensure th a t the clock cycle time not wasted by the sub
modules. Ensuring this situation involves considerable en
gineering effort, given the ever-increasing wire-to-transistor
delay ratios. This becomes more of a problem in circuits
th a t are reactive and control-intensive in nature. Such cir
cuits receive data values from the external world at unpre
dictable moments and have to perform efficiently a piece of
computation for each data value received, where the com
putations and control decisions may take a data dependent
amount of time. Clocking power is also an increasingly
im portant issue, given the packaging and cooling issues
th a t highly dissipative circuits involve. Though advanced
clocking techniques in this area such as distributed clocking
methods [1], [2] and /o r gated clocking [3] offer a solution
to these problems, these techniques are not ready yet for
widespread incorporation into general application specific

Supported in part by NSF MIP-9622587

integrated circuit (ASIC) design in a manner th a t is cost-
effective and meets the time to market.

Asynchronous (self-timed) circuits are quite natural for
realizing circuits of a reactive and control-intensive na
ture. Encouraging results are being obtained by many
groups in designing self-timed circuits in this domain, for
example in communications components used in multipro
cessors [4], hardware to network portable electronic de
vices [5], and digital signal processing algorithms used in
audio-electronics hardware [6]. Despite the growing inter
est in asynchronous circuits, programmable asynchronous
controllers based on the idea of microprogramming have
not been actively pursued. Since programmable control
is widely used in many commercial ASICs to allow late
correction of design errors, to easily upgrade product fam
ilies, to meet the time to market, and even effect run-time
modifications to control in adaptive systems, we consider
it crucial th a t self-timed techniques support efficient pro
grammable control. This is especially true given th a t asyn
chronous (self-timed) circuits are well suited for realizing
reactive and control-intensive designs. For example, sup
porting families of component types, such as bus adap
tor chips, is greatly facilitated by programmability. Other
examples of systems realized using programmable control
(but not using asynchronous control) are the S.'S MI’ proces
sor [7] which uses a microprogram engine, and the FLASH
processor [8] which uses a processor-core. Programmable
asynchronous circuits have also recently shown advantages
in embedded and DSP applications [9], [10].

Many of these programmable approaches are very gen
eral purpose in their organization to accommodate both
pre- and post-fabrication changes of a broad nature. For
example, processor cores can be easily re-programmed, and
general-purpose microprogram sequencers can be easily-
equipped with modified microcode. We demonstrate in this
work th a t application specific microprogrammed structures
can be easily designed for many classes of circuits, perform
at least an order of magnitude better than general-purpose
solutions based on processor cores, and even approach the
performance of hard-wired control in many cases. The
method proposed in this report combines the advantages of
programmability and self-timing in an application-specific
manner. More specifically, the main contribution of this re
port is the design and experimental evaluation of a general

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hans@cs.utah.edu
mailto:ganesh@cs.utah.edu

and structured approach to a fully asynchronous micropro
grammed control organization [11], a microengine, th a t ta r
gets application specific implementations. The architecture
emphasizes simplicity, modularity, and high performance.
We will also demonstrate th a t asynchronous design meth
ods can be used advantageously in the design of micropro
grammed control and datapath structures th a t carry out
sequencing on the basis of completion sensing, instead of
a fixed clock schedule. This makes our solution especially
attractive for reactive and control-intensive designs.

This report is organized as follows. After surveying re
lated work and motivating our approach of targeting asyn
chronous microengines for efficient high level control, we
describe our proposed asynchronous microengine architec
ture in detail, using the simple example of a Differential
Equation solver in Section III. Section IV gives a more
detailed discussion of the structure and operation of the
microengine. Optimizations to enhance the microengines
performance are then presented in Section V. Section VI
presents system timing constraints th a t must be met to
ensure correct operation. In Section VII, a detailed pre
sentation of performance comparisons between the micro
engine and state-of-the-art asynchronous hard-wired con
trollers are presented.

A . Related work

Our approach to programmable control targets imple
mentations where both program store and datapath units
are fully customized in capacity and functionality, respec
tively, while still offering a high degree of programmabil
ity. In contrast to microprocessor cores the implemen
tation in our approach is adapted to and optimized for
the given design specification, rather than the other way
around, for maximum performance and flexibility. While
possibly having higher control overhead than hard-wired
control, our approach nevertheless allows a higher degree
of freedom in how to schedule and sequence actions at a
fine-grained level. More specifically, our microengine al
lows per-m icroinstruction programmability o f its datapath
topology by arranging its datapath units into series-parallel
clusters, for each microinstruction. This feature allows the
parallel clusters to run concurrently, while allowing the se
rial units within a cluster to chain [12], as will be elabo
rated later. Chaining reduces the number of microinstruc
tions needed to carry out a control task. For example, for
the differential equation solver example illustrated in Sec
tion III, four microinstructions of 24 bits width realize the
entire control algorithm. Chaining also reduces the overall
overhead of fetching microinstructions, because there are
fewer microinstructions to fetch. Chaining, in effect, ‘rolls’
many microinstructions into one large-grained instruction,
thus reducing control overhead since several operations can
be performed before a new microinstruction needs to be
fetched. Chaining also reduces the relative overhead of
completion sensing, because completion is now sensed for
larger grains of computation. Chaining in this manner is
next to impossible to efficiently support in synchronous mi
croprogrammed controllers because of the difficulty of mak

2

ing sure th a t all desired chain lengths are integral multiples
of the clock period.

Programmable asynchronous structures were investi
gated around the 1980’s [13] in the context of a data-flow
computer. However, their organizational style did not sup
port many of the features of microengines, including se
rial/parallel organization and chaining. It was also not an
application-specific customization technique for micropro
grammed structures.

Asynchronous microprocessors [14], [15], [16] have lately-
been a popular target for showing advantages in power con
sumption and speed. They are not applicable in all em
bedded control systems however, due to their high fabri
cation cost, large size, relatively high power consumption,
and fixed general purpose instruction set. As an exam
ple we implemented a CD player error decoder [17] in our
microengine architecture (presented later in this report)
and also accurately estimated the best-case performance of
the control algorithm of the same error decoder using the
MIPS-R3000 instruction set as realized by the 280 MIPS
asynchronous microprocessor presented in [15]. The per
formance difference using the same implementation tech
nology, a 0.6 micron fabrication process, was a factor of 26
times in favor of our microengine. This example serves to
illustrate the performance advantage obtainable by special
purpose hardware such as our microengine compared to the
general purpose hardware of microprocessors.

Other programmable control approaches have recently-
been investigated [9], [10], [18]. These are best character
ized as programmable microprocessor cores. For example,
[9] allows a dedicated datapath unit to be added to a mi
croprocessor core to speed up computation. However, this
organization has a large area due to its on-chip caches (16k
instructions, 64k data) to support general purpose micro
programs. Since these types of programmable microproces
sor cores have fixed control structures and bus widths, they
are also not easily adaptable to specific design requirements
efficiently.

Another method to obtain programmable control in a
self-timed design context is by using FPGAs such as Trip
tych [19]. However, these and other similar FPGA struc
tures are configuration-time reprogrammable, but not (eas
ily) run-time configurable. In addition, microengines are
superior both in terms of area and speed compared to Trip
tych based structures [19].

II. A r c h i t e c t u r e o v e r v i e w

A conventional (synchronously clocked) micropro
grammed control structure consists of a microprogram
store, next address logic, and a datapath. Microinstruc
tions form commands applied on the datapath and control
flow is handled by the next address logic that, with the
help of status signals fed back from the datapath, gener
ates the address of the next microinstruction to be exe
cuted. In a synchronous realization the execution rate is
set by the global clock which must take the worst case de
lay- of all units into account. When the next clock edge
arrives it is thus assumed th a t the datapath has finished

3

computing and the next address has boon resolved. and
tho noxt microinstruction can bo propagated to tho dat
apath. Our asynchronous microengines havo an organiza
tion similar to those of conventional synchronous micropro
grammed controllers. However, as illustrated in Figure 1.
major differences between these approaches stem from the
use of handshaking to orchestrate both datapath- as well
as microprogram-store related activities.

Fig. 1. High Level S tructure

In conventional synchronous microprogrammed con
trollers. the computation is started by an arriving clock
edge and the datapath is assumed to have completed by
the following clock edge. In the asynchronous case we
have no clock to govern the start and end of an instruc
tion execution. Instead a request is generated to trigger
tho datapath units to start executing. Each datapath unit
then signals its completion by generating an acknowledge.
While the current microinstruction is being carried out.
the next microinstruction is concurrently fetched predict
ing branches suitably, as elaborated later. The datapath
units must then be explicitly synchronized to ensure they
havo all completed before the next microinstruction can be
propagated to the datapath. This function is performed
by the execution control unit (ECU in Figure 1). The ECU
collects acknowledge signals from all datapath units before
generating a request that propagates the already waiting
next microinstruction to the datapath, thus starting a new
execution cycle of the microengine.

Mi c i ve ng i n e h ighligh ts

The microengine achieves its efficiency in a number of
ways. Its control and datapath structures are fully cus
tomized to the control problem, thus minizing overhead.
Its designer has complete control as to the degree to which
the design should be programmable. A modular datapath
also allows easy replacement of datapath functional units,
thus facilitating upgrading as well as late-binding of design
decisions. Similar changes can. in a synchronous design,
obviate the clock schedule, thus requiring total re-designs.
The most crucial optimization exploited in the microengine
is that of per-microinstruction programmability of its dat
apath topology, as explained earlier.

The overhead inherent to programmable control struc
tures is further reduced by parallelizing microinstruction
prefetch with datapath evaluation, as well as by setting

up multiplexors for the next microinstruction concurrently
with acknowledge synchronization for the current microin
struction. as will be elaborated later.

III. M i c r o e n g i n e o p e r a t i o n

The differential equation solver [20] in Figure 2 is a pop
ular benchmark that will be used throughout this section
to illustrate the general operation of the microengine. The
algorithm illustrated in Figure 2(a) implements the forward
Euler method and is used to numerically obtain the values
of y satisfying the differential equation y" + 3xy ' + 3y = 0
where x ranges from x(0) to a with step size dx. To avoid
unnecessary detail in the example it is assumed that the
input port values are stable throughout the algorithm ex
ecution. and that the constant 3 * dx is available on an
input port. Three threads calculating y, y' (u in figure),
and incrementing x are needed per iteration. Computing
y' requires two multiplications, an addition, and a subtrac
tion operation. Computing y requires one multiplication
and one addition, x requires only an addition, and evalu
ating the while loop condition requires a comparator.

We decide to allocate one multiplier and one arithmetic
unit for the calculation of a multiplier and an adder for
y and x, and a comparator for the loop condition. The
three threads of the algorithm can then be scheduled as
illustrated in Figure 2(b). Dataflow is identified by wide
shaded arrows while control sequencing, the propagation of
the request signal through the datapath units, is illustrated
by thin black arrows.

Only four microinstructions are needed to formulate the
algorithm. The first instruction loads the X ,Y , and U
registers with their initial values and then tests the initial
loop condition. The second calculates y and the first half
of y' while the third calculates x, the loop condition, and
the second half of y '. The second and third instructions
are then repeated until the loop condition x < a becomes
false at which time the fourth instruction makes an uncon
ditional jump back to the beginning of the program and
signals the completion of the computation. The complete
microengine implementation with associated microprogram
is illustrated in Figure 2(c).

A. Microprogram structure

The following bit fields of the microprogram are used
to control the local operation mode of each datapath unit
(DPU). The set-execute. se, bits in the memory are used to
specify when a datapath unit is supposed to execute while
the set-sequence. hh, bits specifies if it is setup to execute
in sequential (chained) or parallel mode. Note that if a
datapath unit is setup to always operate in chained mode
the se bit may also be used to incorporates the functionality
of an ss bit. The set-mux. sm. and op-code. op. bits are
used to specify which operands and operation the datapath
unit should use. The enable, en. bits are used to enable
which registers, when there are multiple registers in the
same datapath unit, should latch data.

The following bit fields of the microprogram are used
to control the global microprogram flow. The current ad-

4

diffeq {
read(x, y , u, dx, a);
w hile (x < a) {

x l := x + dx;
u l := u - 3 * dx(u * x + y);
y1 := y + u * dx;
x := x1; y := y1; u := u1; }

write(y);
}

a) General algorithm

b) Data and Control
Flowgraph

Youtport ^

DXport

ext
req

ext
ack

c) Microengine Implementation

Fig. 2. Design Exam ple: D ifferential E quation Solver

dress, curr-addr, specifies which microinstruction that is
currently being fetched by the memory (but is not part of
the instruction). The next address, next-addr, is only used
when the microinstruction contains a branch operation and
specifies the address of the instruction being branched to.
The set-branch-detect-unit, bdu, bits specifies which con
ditional expression result the branch detect unit (BDU)
should test on a branch operation. The branch prediction.
bra-pred, bit is used to specify if the branch test evaluation
was predicted to be true or false. The select address, sel-
addr, specifies which microinstruction, the next sequential
one or the one specified by next-addr, to prefetch. The
done bit indicates to the execution control unit when the
microprogram has completed its computation and eventual
data is available on output ports. The logic blocks that dif
ferent microinstruction bits operate on are indicated by the
thin shaded lines connecting each logic block with its cor
responding microinstruction bits in the memory block in
Figure 2(c).

B. Load datapath control

To keep the datapath units modular and support a stan
dardized way to implement sequential and parallel schedul
ing. a local control block associated with every datapath
unit is introduced. These control blocks are represented
by the RAS components as illustrated in Figure 2(c) and
are responsible for handling request, acknowledge, and se
quencing for their respective datapath unit. Since the RAS

blocks handles the control aspect of the datapath units, the
microengine datapath forms a regular and modular struc
ture where datapath units can be implemented in arbitrary
styles, all using a simple request-acknowledge handshake
protocol. In our example the datapath units, identified by
the shaded boxes in the figure, are implemented in a stan
dard gate library and use bundled data [21] delays for ac
knowledge generation. The datapath units will be referred
to by their internal components names. Thus X Y refers to
the unit containing registers X and Y while MJJL1 refers to
the unit containing the MJJL1 labeled function block etc.

Cl Microprogram execution

The following section will step through the execution of
the differential equation solver microprogram illustrated in
Figure 2(c).

Instruction 1. The microengine starts its execution at a
specified entry point in the microprogram, address 1 in our
example, upon receiving a request from the environment
(ext-req). Bundled data is assumed in the communication
between microengine and its environment, meaning the val
ues on data buses are valid by the time the request arrives.
The Execution Control Unit (ECU) receives the external
request and in turn issues an event on the global request
wire, req, fanning out to the memory and all datapath
units. The microinstruction currently addressed, instruc
tion 1. is then latched to a register array internal to the

5

memory by the global request. The request fanouts to the
datapath are sufficiently delayed to allow the instruction
to propagate to the RAS blocks and datapath units first.

Datapath execution. When the global request arrives at
the RAS blocks, those setup for parallel execution prop
agates the request to their corresponding datapath unit
while those setup for sequential execution awaits the com
pletion of previous datapath units in the chain. When the
datapath units have completed their computation they gen
erate an acknowledge to their respective RAS blocks. In
our example, microinstruction 1 has setup datapath units
X Y and T U to latch the values on input ports Xport, Yport,
and Uport in parallel. D atapath unit CM P is setup to await
the completion of unit X Y before starting its own compu
tation. Instruction 1 thus execute two parallel threads, one
thread containing units X Y and CM P which are setup to
execute in a chained fashion, and one thread executing unit
TU. We represent this as (X Y C MP) \ \ (T U) .

As the X Y and T U units complete their computation
they generate acknowledges to their respective RAS blocks
th a t in turn propagate the acknowledges back to the ECU.
The RAS block acknowledges are also propagated as se
quential request signals to other RAS blocks whose datap
ath units are setup for chained execution. The RAS block
of datapath unit CMP, which is setup for chained execu
tion, therefore waits until it gets a sequential request from
the RAS block of unit X Y , indicating th a t unit X Y has
completed its execution and th a t the values of registers X
and Y are now available on its outputs. The sequential re
quest is then propagated by the RAS to its datapath unit
CM P which computes the conditional branch expression
X < A port whereafter its acknowledge is sent back to the
ECU. While the BDU tests the result of the branch expres
sion the ECU synchronizes the completion of the datapath
units.

M icroinstruction prefetch. While the datapath is execut
ing, the microinstruction predicted to be executed next is
prefetched. If the current microinstruction does not con
tain a branch, the next address unit propagates the incre
mented value of the current address as the next microin
struction to be fetched from memory. If the microinstruc
tion contains a branch, the prediction strategy is controlled
by the sel-addr and bra-pred bits. If the sel-addr bit is set
to a 1 the next-addr value is propagated, otherwise the
current address incremented by one is propagated to the
memory. In our example microinstruction 1 has the bra-
pred and sel-addr set to 1 and 0 respectively, since it is
likely th a t X < A port when entering the while loop, and
address 2 is propagated to memory as the next microin
struction. After the memory has fetched the instruction it
generates an acknowledge to the ECU and then waits for
the next global request before propagating the instruction
to the datapath.

If X < A port is false however, the prediction was wrong
so microinstruction 2 must not be executed and microin
struction 4 be fetched instead. This is achieved by toggling
the value of sel-addr if the bra-pred value is different from
the evaluated branch result from the BDU the next time

a global request arrives. An extra cycle is thus needed to
fetch the correct microinstruction when a branch prediction
is wrong.

Instruction 2. Assuming the while loop condition was true,
instruction 2 is propagated to the datapath at the next
arriving global request. As illustrated in Figure 2(b), in
struction 2 contains two parallel threads. One computes
the first half of y ’ : (M U L I —̂ A LU 1 —̂ T U) and the other
computes y : (M U f , 2 A L U 2 X Y) . The chained re
quest propagation in each thread commence as described
previously for instruction 1. One difference however is the
latching of Y. Since Y is an operand to ALU 1 we must
a t least make sure th a t ALU 1 has completed before latch
ing the new value for Y (we assume T has time to latch
its new value before the changes in Y propagates to its
inputs). We therefore introduce a cross-thread synchro
nization point by requiring X Y to wait for the completion
of both A L U 2 and ALU 1 before latching the new value of
Y. This is illustrated in the microinstruction by both set-
sequence signals, s s l and ss2, for X Y being set. Note tha t
in the other thread T U still only has to wait for ALU 1 to
complete. The T U thread can thus complete before the
X Y thread but never the other way around. It is worth
observing the generality in which the microengine struc
ture allows threads to be formed and synchronized. By
letting several RAS blocks wait for the same sequential re
quest (s), multiple threads can be spawned from a single
thread. These threads can then be freely split into sub
threads or joined with other threads to form any combina
tion of series/parallel clusters of executing datapath units.
It is left to the designer as a perform ance/area/generality
tradeoff to specify to which extent such formations should
be supported. In our example, also note th a t since MUL1,
ALU 1, MUL2, and A L U 2 according to our scheduling can
never be last in a chain, their RAS blocks are not required
to generate acknowledges thus reducing the complexity of
the ECU. Therefore only the RAS blocks for X Y , and TU
need to generate acknowledges this cycle. Since instruc
tion 2 does not contain a branch, instruction 3 has been
guaranteed correctly prefetched by the memory while the
datapath was executing.

Instruction 3. Once the ECU has synchronized the ac
knowledges from the datapath instruction 3 is propa
gated to the datapath. This instruction also has two
parallel threads. One computes the second half of
y ’ : (M U L 1 —¥ A LU 1 —¥ T U) and the other computes x
and the while loop condition : (A L U 2 —¥ X Y C M P) .
This time no cross-thread synchronization is necessary and
therefore only ss l for X Y is set, i.e. this time the RAS
block only waits for A L U 2 to complete before generating
a request to the X Y datapath unit. This instruction also
contains a branch. Since the sel-addr bit is set the value
of next-addr, which is 2, is specified to be propagated to
memory as the address of the instruction to prefetch.

Instruction 4. While the loop condition holds true, instruc
tions 2 and 3 are executed as described above. Once the
condition becomes false, the sel-addr value is toggled and

6

eval - evaluate brapred - predicted branch
cond - conditional result clear - instruction clear

branch - branch test result

Fig. 3. B ranch D etection Unit

address 4 is propagated to memory. Instruction 4 contains
an unconditional jump to instruction 1 and also indicates
to the ECU that the computation requested by the en
vironment has been completed and the y output value is
available on port Youtport. The ECU then generates an ac
knowledge (ext-ack in figure) to the environment and then
remains quiescent until the next request from the environ
ment arrives.

IV. A r c h i t e c t u r e d e t a i l s

The following section provides a more in-depth discus
sion regarding the next address generation, global and lo
cal execution control, datapath unit structure, and archi
tecture optimizations.

A. Next address generation

To reduce control related overhead of the microengine.
it is desirable to fetch the next microinstruction in par
allel with the execution of the current microinstruction.
We solve this problem of branch prediction in our micro
engine by fetching the next microinstruction most likely
to be executed, but not committing it before the address
selection has been resolved. We provide a flexible solu
tion which allows each branch instruction to be individu
ally programmed to employ a taken or not taken branch
prediction strategy. In order to keep the next address logic
simple, the next address in case of a branch instruction is
stored as part of the microinstruction.

To detect if a branch was correctly predicted, the Branch
Detection Unit (BDU) communicates the state of the data
path back to the next address logic at the end of the cycle.
The structure of the BDU is shown in Figure 3 and can be
functionally divided into two parts.

The first part evaluates if the branch condition is true
or false. A set of eval signals from memory are used to
select which conditional results from the datapath, cond,
to test. This functionality is achieved by a simple AND-OR
structure. Note that this branch test structure also allows
ORing tests of several conditional results.

The second part compares the branch result with the
predicted branch and asserts a clear signal if they differ,
i.e. if the prediction was wrong. This clear signal has three
different functions. Its first function is to toggle the sel-
addr bit from memory so that the correct address is prop
agated to memory at the next global request. The toggle
circuit, which is part of the microinstruction register array,
for sel-addr is illustrated in Figure 4(a). Second, since the

from memory from from
BDU ECU

sel-addr next-addr

(a) Toggle circuit for sel-addr (b) Next address logic

Fig. 4. Next A ddress Unit

propagation of the global request to the datapath is never
disabled, the se and ss signals of the previously executed
instruction must be cleared in order to stop the R AS blocks
from propagating the request to the datapath units which
would otherwise repeat the execution of that instruction.
This is achieved by synchronously clearing these bits on the
next arriving global request. Other registers are simply dis
abled from latching new data. The eval and bra-pred bits
are also cleared so as to not toggle the sel-addr bit again
after fetching the correct microinstruction. Third, the clear
signal is also used to disable the next address block, illus
trated in Figure 4(b). from changing the internal values of
the addresses so that the old incremented address is prop
agated to the memory correctly.

Note that unconditional branches are supported by spec
ifying all eval and the bra-pred signals to be 0. thus guar
anteeing that whatever microinstruction specified by the
sel-addr bit will be fetched and executed.

Thus if a branch is mispredicted, the sel-addr bit value is
toggled to propagate the correct address to memory, all se,
ss, eval and bra-pred bits are cleared, and the next address
block is disabled from latching a new incremented address
when the next global request arrives. A correctly predicted
branch thus has zero overhead while a misprediction re
quires an extra cycle to fetch the correct microinstruction.

B. Microengine execution control

There are many ways of realizing a structure for roquost-
acknowlodgo handshaking between the microengine and the
datapath units. Since all datapath units must synchronize
with the memory before a new microinstruction can be
latched, there is little to gain by generating separate re
quest signals to individual datapath units. An approach of
having only one global request signal that decides when to
fetch a new microinstruction from memory as well as cause
the datapath units to start executing is therefore used.
This approach reduces the complexity of the request con
trol logic necessary, as well as simplifies parallel datapath
unit operation and timing analysis. Our design problem
then reduces to one of designing request generation logic
that offers low overhead and good scalability with regard
to the number of datapath units. For implementation of
the request generation logic, burstmode [4], [22], [23] type

7

acknowledge
global request

er - external request signal
nd - not done with ext.req.

6 nd -e |

er -4

a H

]*>- nd’
]*>- er’

er

a i

a n

nd

a i

a n

er

Event based FSM

reset

. ^ r

. j set
an -1
er er’
nd’ nd

3DgC implementation

Fig. 5. Execution Control Unit

of asynchronous state machines are used. The operation of
a burstmode state machine allows the acknowledge signals
from the datapath units th a t are generated in response to
the global request to arrive at the state machine inputs in
arbitrary order at arbitrary times.

For efficiency reasons we impose the requirement tha t
all RAS blocks should always respond with an acknowl
edge even when their datapath units are not setup to exe
cute. This will keep all acknowledges in phase and results
in greatly reduced logic complexity for the request gener
ation logic. By using this strategy the number of transis
tors of the request generation logic grows only linearly with
number of acknowledge inputs. If the acknowledges were
allowed to get out of phase the logic would become much
more complex. When using this approach of always ac
knowledging the RAS blocks must generate a bypass path
for acknowledge generation when their datapath units are
not scheduled for execution. The cost for this however is
very small compared to the extra ECU complexity for the
out of phase acknowledge approach. In addition, the same
request generation logic can be used for both two and four
phase protocols.

An abstract event based FSM for the global request gen
eration and resulting complex gate implementation using
the 3D synthesis tool [23] is illustrated in Figure 5. The
respective n and p transistor networks can be decomposed
into balanced tree structures of gates to simplify timing
analysis, or unbalanced ones to improve performance. This
request generation logic then forms part of what is called
the Execution Control Unit (ECU) used to generate a new
event on the global request signal.

In our ECU realization, it is assumed th a t the same pro
tocol is used for communication internal to the microengine
as well as with the environment. The ECU is initially qui
escent. After receiving a request from the environment an
event on the global request signal is generated causing the
microengine to start executing. This global request latches
the next address and the new microinstruction from mem
ory and triggers the datapath units to execute. For both

the two and four phase case, the not done signal in Figure 5
is generated by a SELECT-element (not shown) connected
to the done level signal from memory and the global request
signal. While done is false, the SELECT-element generates
events on the not done signal. When done is true, an event
is instead sent to the environment as an acknowledge tha t
the microengine has completed the requested computation.
The ECU then remains quiescent until a new request ar
rives from the environment.

C. Local datapath execution control

A powerful feature of the proposed architecture is its
ability to dynamically form clusters of datapath units for
independent series/parallel execution during run-time. To
support this fine grained control over execution, a lim
ited form of control structure, the RAS block, is associ
ated with each datapath unit as previously shown in Figure
2(c). The RAS block provides control over local request-
acknowledge generation and sequencing of actions. Given
the set-execute and set-sequence bits from the current mi
croinstruction, the RAS block controls if its correspond
ing datapath unit is supposed to execute during this cycle
and in what mode, sequential or parallel, with respect to
other datapath units. In parallel mode, the global request
is propagated directly to the datapath unit. In sequential
mode, the sequential request (acknowledge) of the previ
ous RAS block in the execution chain is propagated. If
the datapath unit is not set to execute during the current
cycle, a special bypass path is provided to generate a quick
acknowledge.

Sequence control. The sequence control function of the RAS
can in its simplest form be performed by a MUX, controlled
by the set-sequence bit, th a t propagates either the global
request or a sequential request to its datapath unit. The
output of the sequence control MUX is hazard free since
both the global and sequence request signals will reach sta
ble values before the next microinstruction may alter the
MUX control signal (signal ss in Figure 6).

Carrying the above idea further along, in general it will
be necessary for a RAS block to wait for the completion of
an arbitrary set of concurrently executing datapath units
before generating the request signal to its attached data
path unit. An efficient way to realize such high flexibility
is illustrated by the complex gate structure on the left-
hand sides of Figures 6(a,b). Given a set of set-sequence
signals from the microinstruction and sequence request sig
nals from other RAS blocks, this structure can synchronize
with all possible combinations of these datapath units. The
set-sequence signals provide a bypass path around the se
quence request signals in the transistor stack th a t are not
currently of interest. This forces the sequence logic to wait
for an event on all sequence request signals in the current
subset of interest before a path in the transistor network
will conduct.

In general, sequencing actions between datapath units
will always be faster than starting a new cycle, because the
latter entails detecting completion of all datapath units and
fetching a new microinstruction. To gain a significant per-

r

8

req - global request
sreq - sequence request
ack - acknowledge

req —

sreq 1 -I

s ^ n H ^ j l - s s ’n

ss - set sequence
se - set execute

sreq
I- ss '

(a) RAS block for 4 phase protocol

s r e q ^ ^ y s s n

s r e q ^ ^|a- s s1

req

s r e q ^ q ^ l - ss\

sreq ^ ^ ^ j l - s s ’n

I ss

sreq

se

1 r11̂ ^ 1

sreq

req

ack

| Select |

<i£

DPU

sreq

(b) RAS block for 2 phase protocol

Fig. 6. RAS block struc tu res

formance edge however, the number of sequential request
signals to a RAS should be restricted, as practical realiza
tions seldom call for the “infinite flexibility” of all possible
combinations.

Request-acknowledge control. Besides sequencing control,
the RAS must also provide means to correctly perform an
internal request-acknowledge handshake with its datapath
unit if it is scheduled to execute during the current cycle,
and also provide a bypass path for acknowledge generation
if it is not.

A request signal should only be received by the datapath
unit if it is supposed to execute during the current cycle. A
blocker gate is therefore needed to block the request from
propagating to the datapath unit if it is not setup to ex
ecute. Correct propagation of the internal request signal
to the datapath unit can in the case of four phase proto
col be implemented by a simple AND-gate. The AND-gate
is then enabled if the datapath unit is scheduled for ex
ecution. and disabled otherwise, respectively propagating
or blocking the request generated by the sequence control.
The request generation is more complicated for the two
phase protocol, since the control must keep track of the
value of the request signal last propagated through to the
datapath unit. An logic block that can generate events to
either the datapath unit, if it is scheduled for execution, or
to the bypass path if not is therefore needed. The corre
sponding functionality is satisfied by a SELECT-element.
which takes a level signal and an event signal, and gener
ates an event on either of two outputs depending on the
value of the level signal set-execute.

The bypass path, illustrated by the shaded components

in Figures 6(a.b). can in the case of four phase protocol be
implemented by a MUX that directly propagates the global
request signal as the acknowledge if the datapath unit is
not scheduled for execution. In the case of two phase a
MUX cannot be used since the state (value) of the input
signals are not known. An logic block that generates an
event on its output whenever receiving an event on either
of its inputs is therefore needed. An XOR-gate satisfies
this behavior, and is then used to generate the acknowledge
signal.

D. Datapath unit structure

Each datapath unit is assumed to be a self-timed ele
ment using single rail bundled data in communication with
its environment. The request-acknowledge handshaking,
completion detection, and data representation internal to
a datapath unit however, can be implemented in an arbi
trary fashion. For example, some datapath units can be
implemented using simple standard gates with matching
delays while others can use sophisticated completion sens
ing such as complex gate domino-logic. A datapath unit
may also form complex structures such as a selftimed loop
or even a hierarchy of microengines. Assumptions about
safe data latching in the face of eventual datapath depen
dencies. e.g. should cross-thread synchronization be used
or not. while performing scheduling is left to the designer
to decide based on knowledge about datapath timings. If
the designer choose to apply timing assumptions regard
ing concurrent propagation of data signals through input
MUXes while the ECU performs completion synchroniza
tion and the request propagates through the RAS block it
is also left to the designer to verify these assumptions.

V. A r c h i t e c t u r e o p t i m i z a t i o n s

The structure presented for the microengine control so
far brings forth the high level concepts of the microengine
architecture in a clear fashion. However, it is not very
optimal seen from a performance point of view. Since the
microinstruction is latched only once the ECU has synchro
nized the datapath completion and also must be allowed
sufficient time to propagate to the datapath and setup the
RAS blocks and datapath units, significant control related
overhead is introduced. Also, since the microengine is re
quired to synchronize with all datapath units before fetch
ing the next microinstruction, significant computational
overhead can be introduced in the datapath since the rni-
croengine has to wait for the longest thread to complete be
fore starting the next cycle. The following sections will dis
cuss operational and architectural optimizations that can
reduce the control and data computation overhead consid
erably

A. Reducing control overhead

Control related overhead can be reduced considerably by
fetching the next microinstruction concurrently with the
ECU performing completion synchronization. This can be
achieved by. in the two phase case, letting each RAS block

9

(a) Microengine Structure

greq .

sreq .

br ds ss se

1 1 1 1
Branch Clear Logic

Sequence
Logic

req_int SELECT

- a

bypass |

dpe_ack

dpe_req

DPE

(b) RAS Block Structure

sreq ^ | ̂ | (3- ssc

greq 4 ^ —
l—| r req_int

sreq H □ I - ssc

(c) Sequence Logic

sreq req_bypass j

(d) SELECT

Fig. 7. O ptim ized Two Phase S truc tu re and RAS Block

ss se

ack

bo responsible for latching its own portion of the microin
struction directly after its datapath unit has completed its
execution, and. in the four phase case, latching the new mi
croinstruction during the return to zero phase. These ap
proaches also allow setup and propagation of data through
input rnuxes of the datapath units while the ECU performs
synchronization and the global request propagates through
the RAS blocks. In most cases the microinstruction propa
gation to the datapath and data propagation through input
rnuxes can be completely hidden in the ECU and RAS com
putations. The RAS blocks can also be optimized to yield
lower latency. For example, the propagation of the global
request through a four phase RAS block can be reduced to
the propagation delay through a single pass-gate.

Our goal with the optimized control approach then is to
reduce the control overhead by allowing the microinstruc
tion to propagate to the datapath and allow data propaga
tion through MUXes. concurrently with the ECU perform
ing completion synchronization. The following sections will
present optimized approaches for the two phase and four
phase protocol implementations respectively. For the two
phase case, a solution where each datapath element latches
its own part of the new microinstruction upon completion
of its current task is presented. For the four phase case, a
simpler solution where the new microinstruction is latched
during the passive phase of the handshake is presented.

A .l Optimization for two phase

In this section we will present a solution for the two phase
protocol where each datapath element latches its own part
of the new microinstruction upon completion of its current
task. Necessary changes in the RAS to ensure a hazard-
free behavior under the new signal arrival order will also
be discussed. An overview of this optimized architecture is
illustrated in Figure 7(a).

Latching the next microinstruction. Using an approach
where each datapath element latches its own part of the
new microinstruction upon completion of its current task
allows propagation of new control and data signals to take

place concurrently with the evaluation of the execution con
trol unit. The acknowledge signal local to each RAS could
then be used as a request signal to latch the corresponding
part of the next instruction. Since datapath elements may
execute in sequence however, data dependencies may exist
between such stages. Early latching of the new instruction
must therefore be restricted to control signals that do not
alter the data output values of a datapath element. Other
control signals such as set-mux signals for output MUXes
must not be latched until all datapath elements have com
pleted their scheduled actions. These signals can then be
latched using the global request signal since they in general
have sufficient time to propagate to their respective com
ponents inside the datapath units before new data arrives.

Since this approach may cause a datapath element to
request latching of a new instruction before the fetch from
memory has completed, synchronization logic for the RAS
and memory acknowledges must be provided. Since the
method of always generating an acknowledge keeps these
signals in phase, it is possible to realize this synchronization
with a simple C-element.

R A S Mock optimizations. Allowing new control signals to
arrive before all acknowledge signals have reached the same
phase again requires somewhat different logic implementa
tions of the RAS to avoid hazards. If a simple MUX was
used as the sequence logic part of the RAS it could ex
hibit glitches if the set sequence signal of the next microin
struction was allowed to arrive before the sequence request
signals had attained the same state (phase) as the global
request. The RAS logic therefore must be made insensitive
to such early changes of the set sequence control signal.
The implementation of such a circuit is illustrated in Fig
ure 7(c). In this realization, the set sequence and sequence
request signals, ss and sreq, are allowed to arrive in arbi
trary order. These signals may only cause the branches of
the currently conducting transistor network (say P transis
tors) to go on or off. The opposite transistor network (N
transistors) however, will remain non-conducting until the
next event on the global request arrives. The output is thus

10

hazard free and kept at its current logic level by a sustainer
in the form of cross-coupled inverters. The output of the
programmable sequence combination logic in Figure 6(d) is
then connected to the sreq inputs of the sequence logic in
Figure 7(c). Note th a t due to their similar structure, these
two logic blocks can be merged into a single complex gate.

The original approach of latching the new instruction
word relied on a synchronous clearing of the microinstruc
tion register array. Subsequently it also required the branch
to be resolved before latching a new microinstruction.
Since the new approach means the new microinstruction
might be latched before the branch has been resolved, other
means of clearing the instruction before the next request
arrives to the datapath must be provided. This function
is implemented by introducing asynchronous branch clear
logic local to each DPE. The structure of the RAS block
under the assumption of early instruction propagation is
illustrated in Figure 7.

A.2 Optimization for four phase

In this section we will present a solution for the four
phase protocol where the new microinstruction is latched
during the passive phase of the handshake. While the
method presented for two phase could be used, using this
alternate approach enables further optimizations of the
RAS block for fast request propagation and also removes
the restriction on latching control signals th a t may alter
the data outputs separately. While precharging and data
propagation through transparent latches can be done, we
assume th a t no computations dependent on data inputs to
a datapath unit are performed during the passive phase.
An overview of this optimized architecture is illustrated in
Figure 8(a).

Latching the next m icroinstruction. Latching the new mi
croinstruction during the passive phase of the handshake
allow propagation of new control and data signals to take
place concurrently with eventual precharge of datapath
units and the return to zero evaluation of the execution
control unit. Since no data dependent computations are
performed during the passive phase, the whole microin
struction, including control signals th a t may change data
outputs, can be latched at once using the falling edge of the
global request signal. Using this approach a synchronous
clear signal derived from the branch result and predicted
branch signals, as in the original solution, can still be used.

R A S block optim izations. When using the four phase pro
tocol, further optimizations can be made to the RAS logic
if the falling edge of the request signal is used to latch
the new microinstruction during the passive phase of the
handshake. The solution illustrated in Figure 8 reduces
the propagation delay of the global request through the
RAS to th a t of a single transmission gate, while still pro
viding a lower delay for sequence requests than th a t of the
original approach. As with two phase, the output of the
programmable sequence combination logic in Figure 6(b)
is connected to the sreq inputs of the SEQ/REQ logic in
Figure 8(c).

In this solution, the global request is always used as the
signal to be propagated. Since the microinstruction signals
controlling execution and sequencing, se and ss are latched
during the passive phase, the transmission gate will already
be setup to its current mode of operation by the time the
rising edge of the global request arrives. If set to execute
in parallel mode, the global request is thus directly propa
gated to the datapath element, yielding only the delay of
passing through an already conducting transmission gate.
If set to execute in sequential mode the transmission gate
will be closed, disabling the global request from propagat
ing, until the arriving sequence request causes it to open.

An im portant feature when using the four phase proto
col, is the ability to generate a parallel return to zero, re
gardless of the actual mode of operation of the individual
datapath elements. This is possible since no useful compu
tation is performed, and hence no data-dependencies exist,
during the passive phase of the handshake. Since the trans
mission gate is guaranteed to remain open at least until the
next microinstruction has been fetched, the falling edge of
the global request will always pass through the transmis
sion gate (if setup to execute). This generates a fast parallel
return to zero of all datapath elements even for datapath
elements setup to execute in sequence. Since the propaga
tion of the global request is concurrent with the latching
of the new microinstruction, one restriction is placed on
signal arrival order to this RAS realization. The global re
quest must always arrive to the RAS block before any new
control signals of the next microinstruction. Otherwise a
change in the se and ss control signals might cause a glitch
on the propagated request signal. This restriction is triv
ially satisfied since the number of datapath elements will
always be less than or equal to the number of registers in
the register array, requiring less buffering, and also since
the instruction signals must propagate through registers
before arriving to the datapath.

B. Reducing datapath overhead

Although control overhead can be reduced considerably
as mentioned above, there may still be significant computa
tional overhead in the datapath since the microengine still
has to wait for the longest thread to complete before s ta rt
ing the next cycle. This is not always desirable since long
latency operations may block other, concurrent, operations
th a t finish quickly and need to fetch a new microinstruction
in order to continue their execution. We therefore intro
duce the concept of decoupling clusters of datapath units
from the microengine operation during run-time. This al
lows the microengine to fetch new microinstructions and
continue execution of non-decoupled datapath units with
out having to wait for the completion of the decoupled clus
ters. When the microengine needs the result of a decoupled
cluster, it initiates the resynchronization with the cluster.
As with the formation of series/parallel clusters, this de
coupling of clusters and resynchronization with the same
can be done on a per cycle basis. This section presents
how ECU and RAS blocks must be altered to support de
coupling of arbitrary clusters of datapath units for the four

11

(a) Microengine Structure

dpe_req

(b) RAS Block Structure

dpe req

0 t -_ q

ss’ <ir
sreq -c|r 1 (9- se

sreq - | L “| |— ss
se H p

(c) SEQ/REQ Logic

ack’ ■

’ < >
pf- d

greq
dpe_ack

dpe_ack

(d) ACK Logic

Fig. 8. Optimized Four Phase Structure and RAS Block

greq

phase protocol.

ECU alterations. In order to allow a datapath unit to de
couple itself from the microengine execution, that is mak
ing itself independent of the execution of other parts of
the microengine. the always acknowledge scheme must be
abandoned. The reason for this is that the decoupled data
path units are setup to execute and therefore cannot gener
ate an acknowledge until they have completed their respec
tive computations. W ith an always acknowledge scheme
this would lock up the execution of the rest of the rni-
croengine until all acknowledges, including those from the
decoupled units, have been generated.

We must devise a method that makes the ECU insen
sitive to the acknowledge generations of decoupled datap
ath units until it wants to resynchronize with them again.
While this behavior cannot be realized efficiently by burst
mode FSMs. a hand made complex gate ECU circuit can
be made quite efficient. One approach to realize the de
sired behavior of making the ECU insensitive to acknowl
edges from certain datapath units is to provide a bypass
transistor that conducts, much in the style of the sequence
RAS logic presented earlier in Figure 6(b). whenever the
corresponding datapath unit is not setup to execute. By
providing such a bypass transistor path controlled by the
set-execute signals of the datapath units the ECU can be
programmed to ignore acknowledges from datapath units
not setup to execute. Note that this approach also allevi
ates the problem of having the RAS block provide a bypass
path for the acknowledge, reducing its complexity and de
lay. Each datapath unit that can be used in decoupled
mode also has an extra bypass transistor in both transistor
stacks.

Figure 9(a) illustrates the new structure of the ECU that
supports both “out of phase” acknowledges and decoupled
execution. When a datapath unit is setup to execute, the
n-stack transistor connected to the set-execute signal from
memory is not conducting and the ECU is forced to wait for
the corresponding datapath units acknowledge. If a datap
ath unit is not setup to execute, the transistor instead pro
vides a bypass path, enabling the ECU to continue without

receiving an acknowledge from the corresponding datapath
unit. Only the n-stack needs the set-execute bypass tran
sistors since the acknowledge of a datapath unit not setup
to execute will remain low. automatically providing a by
pass path for the p-stack. The observant reader might have
noticed that if no datapath unit is setup to execute, the n
and p-stacks in the ECU would short-circuit. This can
never happen however, since the memory is always setup
to fetch new instructions and thus does not have a bypass
transistor on its acknowledge path through the ECU.

If a datapath unit is setup to execute in decoupled mode,
the transistors connected to the set-decoupled, sd, signal
provide a bypass path effectively allowing the ECU to ig
nore the acknowledge from the decoupled datapath unit un
til it wishes to resynchronize with the decoupled datapath
unit by setting sd low. If the decoupled datapath unit fin
ishes and generates an acknowledge before the microengine
wants to resynchronize with it. the acknowledge is simply-
ignored until the microengine is ready to resynchronize and
sets the sd bit low. If the datapath unit has not finished
its computation by the time sd is set low. the ECU will
simply wait until the computation has finished and the cor
responding acknowledge generated. This rcsynchonization
takes place between two completely asynchronous entities,
the microengine and the datapath unit. However, since the
ECU always initiates the resynchronization and then waits
for the datapath units acknowledge to arrive, there is never
any race present between the sd and acknowledge signals,
and metastability or glitches cannot occur.

While all se and ss signals from memory are latched on
the negative global request edge, sd must be latched on the
positive edge. Otherwise the sd signal could be set low. i.e.
telling the ECU to wait for a rising edge on the acknowledge
from the decoupled datapath unit, while the ECU in fact
is waiting for falling edges on the other acknowledges. The
p-stack will thus never conduct if the decoupled datapath
units acknowledge has aldready gone high, and the ECU
will deadlock waiting for a falling acknowledge that will
never occur.

ss - set chained execution
sd - set decoupled execution

se - set execution of DPU
ack - acknowledge

req - global request
sreq - sequence request

start’ - ° l

ack n - ° l

ack 1 - ° l

ack 1 — 1

ack n — 1

|0 - sd’n

I— se’1

|- se’J h~ sdn

req

(a) Execution Control Unit

sd —o|

r°l
req

H
sreq

se

ack

|— sd

|— ss’
dpu_req

DPU

dpu_ack

(b) RAS block

Fig. 9. ECU and RAS supporting decoupled execution

R A S block modifications. As mentioned, with the ECU sup
porting “out of phase” acknowledging, any datapath unit
not executing during a cycle should not generate an ac
knowledge. The extra logic previously required for bypass
acknowledge generation by the RAS is therefore no longer
needed as illustrated in Figure 9(b).

Since the computation of a decoupled datapath unit may
span over several microengine cycles the RAS block must
be made insensitive to further events on the global and se
quential request signals. This is achieved by using the set-
decoupled. sd, signal to block further events from propa
gating through to the datapath unit. This means that once
the rising edge of the request has been propagated through
the RAS block, the following falling edge must not be prop
agated (until the ECU initiates the resynchronization that
is). This is achieved by a transistor connected to the sd
bit that cuts off the p-stack of the RAS logic illustrated
in Figure 9(b) throughout the decoupled computation. To
support decoupling of an entire chain of datapath units an
extra bypass transistor connected to the sd bit in the n-
stack is needed to allow sequential requests to propagate
regardless of the state of the global request. This bypass is
necessary since the microengine might be in the middle of
executing another microinstruction and the global request
be in an unknown state at the time the sequence request
from one decoupled datapath unit propagates to another.
The transistors connected to the sc, ss, and sreq fullfill their
usual functionality.

Since the sd bit must be latched on the positive edge of
the global request, as discussed earlier, a timing restriction
must be imposed on the arrival order of the global request
and sd signals. The global request must always arrive at
the RAS block before any change in the sd bit. Otherwise
a request may be generated to the datapath unit before the
global request arrives to the RAS if the se and sd bits are
set and the ss bit is not set. If a decoupled chain is exe

cuted we may also run into the problem of the microengine
initiating the resynchronization with the chain before the
chain has completed. That is. the sequence request has not
propagated to. for example, the last datapath unit in the
chain. Setting sd low at such a time would mean cutting off
the transistor allowing the sequence request to propagate
through the RAS regardless of the status of the global re
quests. However, since we imposed the restriction that the
global request must arrive before any change in the sd bit.
the n-transistor connected to the global request will con
duct and allow the sequence request to propagate through
the RAS block. Since the ECU is then blocked waiting for
the resynchronized chains acknowledges no further events
will be generated on the global request until all sequence
requests, and their subsequent acknowledges, of the chain
have finished propagating. The imposed arrival order of
the global request and sd signals is trivially satisfied since
the global request buffer tree to latch the microinstruction
is longer than the buffer tree to the datapath, and since
the sd bit must also propagate through a register before
arriving to its RAS block.

VI. S y s t e m T i m i n g

The following sections will discuss the most im portant
timing constraints that must be satisfied for correct opera
tion of the microengine. Timing inequalities that illustrates
these timing constraints will also be presented. Inequali
ties for hiding e.g. input MUX delays in the concurrent
evaluation of the ECU and propagation of the global or
sequential requests through RAS blocks are not presented
but can easily be derived from the given inequalities. Un
less wire delays are explicitly mentioned, they are assumed
to be negligent.

The following conventions and abbreviations are used in
the timing inequalities. If no subscript indicates otherwise,
the signal propagation through the component in question

13

is referred to. The term buf stands for delay through buffer
ing of a multiple fanout signal, BD U stands for branch
detection unit, ECU for execution control unit, R A S for
request/acknowledge/sequence block, DPU for datapath
unit, clr for clear, SL for the sequence logic and BCL for
the branch clear part of the RAS in case of two phase, C
for C-element, SEL for select element, dear for the branch
clear signal, req and sreq for global and sequence request
signals, rtz for return to zero, DP, ADR, and M I for data
path, next address, and microinstruction respectively, and
REG for register.

A. Two phase

Branch prediction. Since no execution should take place if
the branch prediction was incorrect, the branch clear signal
must arrive in time to set the select element to propagate
the event to the right output. Because the select element
requires no setup time, this timing property is satisfied if
the following inequality holds.

(1) EC U + DPjreqbuf + SL > B D U + dea rhuf + B C L
Where the delays of S L and B C L , and also D P jr e q b u f and
clear^uf are comparable, reducing the constraint in all prac
tical aspects to only require the delay through the E C U to
be greater than through the B D U . This timing constraint
is trivially satisfied in most designs since the number of ac
knowledges to the ECU tends to be larger than the number
of conditional inputs to the BDU. If the timing constraint
is not met, a delay must be inserted on the global request.
The following inequality ensures latching of correct next
address value, i.e. th a t BDU propagation delay and next
address register setup times are met before the global re
quest arrives at the next address register.

(2) E C U + ADRjreqbuf > B D U + A D R M E G enaUe
This timing inequality is also trivially satisfied in most de
signs since the delay of the ECU tends to be larger than the
BDU, and the next address request buffer delay, which is
the same as the buffer delay to the microinstruction regis
ter array, is larger than the enabling/disabling time of the
next address registers.
Data latching. Inequality 3 ensures th a t the new microin
struction has time to propagate to the datapath before the
next global request arrives to the datapath. This inequality
is trivially satisfied for most designs. If not, a delay needs
to be inserted on the global request.

(3) ECU + DPjreqbuf > C + M I M E G
If an assumption th a t data values are latched correctly by
datapath units operating in parallel mode when data de
pendencies are present is made, it is left to the designer
to verify the correctness of the assumption. The designer
would then have to make sure the following timings are
satisfied.

(4) D P-reqskeWi. + D P U M E G hoid. < D P U -R E G j + M U X {
Inequality 4 ensures, assuming delay internal to a datapath
unit is unknown (zero), no new values can propagate from
the outputs to the inputs of registers latching data in par
allel. dp-reqskeu> accounts for skew related to difference in
request arrival time at each RAS as well as to each DPU ’s
input registers due to wire delay and signal buffering.

The assumption th a t data values arrive to a datapath unit
operating in sequential mode before the sequential request
is trivially satisfied since it only means th a t the data wire
delays are smaller than the propagation delay of the se
quence request.

(5) X O R i + sreqwiTedelay + RAS „ eqj -> DQ:tQlwire(lelay

B. Four phase

Branch prediction. The following inequality ensures tha t
the synchronous branch clear signal arrives before the next
request to the microinstruction register array.

(6) ECU + M I-reqbuf > B D U + clearbuf + M IM E G cW
This constraint is usually satisfied depending on the dif
ference in number of acknowledges to the ECU and condi
tional signals to the BDU. If the timing constraint is not
satisfied, a delay must be inserted on the global request.
As in the two phase case, the following inequality ensures
latching of correct next address value, i.e. th a t BDU prop
agation delay and next address register enable times are
met before the global request arrives at the next address
register.

(7) EC U + A D R jreqbuf > B D U + A D R M E G enaUe
As in the two phase case this timing inequality is also triv
ially satisfied in most designs.

Data latching. Inequality 8 ensures th a t the new microin
struction has time to propagate to the datapath before the
next global request arrives to the datapath. This inequal
ity is trivially satisfied for most designs. If not, a delay
need to be inserted on the global request. Note th a t the
microinstruction is latched on the falling edge of the global
request.

(8) 2 * D P-reqbuf + R A Srtz + DP'Urtz + ECU + R A S.req >
M I-reqbuf + M I M E G

As in the two phase case, if an assumption th a t data values
are latched correctly by datapath units operating in parallel
mode when data dependencies are present is made, it is left
to the designer to verify the correctness of the assumption.
The designer would then have to make sure inequality (4)
is satisfied.
As in two phase, the assumption th a t data values arrive
to a datapath unit operating in sequential mode before the
sequential request is trivially satisfied since it only means
th a t the data wire delays are smaller than the propagation
delay of the sequence request.

(9) srzqwiredeldy RA.Ss r e q ^ D (l t c iw i r e d e la y

There are no extra inequalities needed to describe the op
eration of decoupled execution of datapath units, as their
operation is the same as for non-decoupled datapath units,
the only difference being th a t the ECU does not wait for
their acknowledges.

V II. D esign E xam p le : C D -p la y e r E r r o r D e c o d e r

To estimate the efficiency of the presented microengine
implementation style compared to a custom control imple
mentation using the same datapath structure, a CD-Player
error decoder [17] was built as a design example. In addi
tion to the microengine style, the decoder was therefore

1 4

Fig. 10. C D -Player error decoder s truc tu re

also implemented using our high level synthesis framework
for asynchronous circuits. ACK [24]. This framework takes
a high level description in either the HOP language [24] (il
lustrated in figure 11) or Verilog—b, a synthesizable sub
set of Verilog extended to handle channels, as input and
targets customized interacting burstmode FSMs as control
structure. The datapath being created by ACK was used
in both implementations. The HOP design specification of
the error decoder is a faithful translation of the Tangram
program presented in [17] which also enables comparisons
to the respective results obtained therein. Although the
microengine design was implemented by hand, careful a t
tention was given to ensure that the implementation cor
respond to what would easily be achievable using an auto
m ated synthesis tool.

The error decoder circuit implements error-detection on
the audio information recorded on Compact Discs using a
syndrome computation algorithm. Figure 10 illustrates the
structure of the microengine implementation and Figure 11
the behavioral HOP language specification. The decoder
processes a sequence of either 32 or 27 input words indi
cated by the value on the t channel. The words are read in,
processed, and checked for errors in two sequential loops.
The status of the decoding is then reported to the environ
ment via the ,s\ e, and I channels. Further details of the
decoder can be found in [17].

To reduce the control overhead thus improving the per
formance of the design, several sequential chains are in
troduced. This significantly reduces the number of times
the DPU’s must be synchronized in order to fetch a new
microinstruction, also reducing the number of instructions
necessary. Since no DPU contains any precharged logic,
only those DPU’s that can actually end an execution cycle,
i.e. any DPU accessed last in a chain, need to acknowledge
their completion to the ECU. As can be seen in the fig
ure, many RAS acknowledges can therefore be removed (7

Module CD_PLAYER_ERROR_DECODER

Event start?? : bit;
Channel T?, S! : bit;
Channel C?, E!, L! : array [7:0] of bit;
Variable syn : array [31:0] of bit;
Variable e, s : array [7:0] of bit;
Variable n : array [5:0] of bit;
Variable t, stat : bit;

Function Horner (
InPort si : array [7:0] of bit;
InPort syni : array [31:0] of bit;
OutPort syno : array [31:0] of bit;)
{ syno[7:0] := GFadd(si, syni[7:0]),

syno[l5:8] := GFadd(si, Alpha(syni[7:0])),
syno[23:16] := GFadd(si, Alpha(Alpha(syni[7:0]))),
syno[31:24] := GFadd(si, Alpha(Alpha(Alpha(syni[7:0])))) }

Function GFadd (
InPort si, syni : array [7:0] of bit;
OutPort syno : array [7:0] of bit;)
{ syno := si XOR syni }

Function Alpha (
InPort syni : array [7:0] of bit;
OutPort syno : array [7:0] of bit;)
{ syno[7:5] := syni[6:4],

syno[4:2] := syni[3:1] XOR syni[7],
syno[1,0] := syni[0,7] }

Function Shuffle (
InPort syni : array [31:0] of bit;
OutPort syno : array [31:0] of bit;)
{ (syno[7:0],syno[15:8],syno[23:16],syno[31:24]) :=

(syno[15:8],syno[31:24],syno[7:0],syno[23:16]) }

Behavior

<START> : start?? -> <INPUT>

<INPUT> : fork <F0> : T?t -> if (t == 0) -> n := 27 -> <join>
else -> n := 32 -> <join>

II <F1> : syn := 0 -> <join>
join -> <SYNDROME>;

<SYNDROME> : if (NOT(n[5] == 1)) ->
fork <F0> : n := n - 1 -> <join>
II <F1> : C?s -> syn := Horner(s,syn) -> <join>
join -> <SYNDROME>

else -> <SHUFFLE> ;

<SHUFFLE> : fork <F0> : if (t == 0) -> n := 27 -> <join>
else -> n := 32 -> <join>

II <F1> : e := syn[7:0] -> <join>
join -> <SYNDROME> ;
syn := Shuffle(syn) ;
syn := Shuffle(syn) -> <ERR_CHECK> ;

<ERR_CHECK> : if (NOT((n[5] == 1) OR (syn[7:0] == syn[15:8]))) ->
fork <F0> : n := n - 1 -> <join>
II <F1> : syn := Horner(0,syn) -> <join>
join -> <ERR_CHECK>

else -> <IS_ERR> ;

<IS_ERR> : stat := n[5] ;
syn := Shuffle(syn) ->
stat := (stat OR (syn[7:0] == syn[15:8])) ;
syn := Shuffle(syn) ->
stat := (stat OR (syn[7:0] == syn[15:8])) -> <RESULT>

<RESULT> : S!stat, E!e, L!n -> <INPUT> ;

EndBehavior

//* ’;’ or conditional test indicates ECU synchronization point
//* ’->’ indicates chaining of current and next statement

Fig. 11. C D -Player error decoder H O P specification

out of 13), reducing the complexity of the ECU. The pos
sible sequential chains are easily identified in the figure by
the horizontal arrows connecting the corresponding RAS
blocks.

The microengine execution proceeds as follows. A start
signal from the environment causes the microengine to start
by first loading a new microinstruction. This microinstruc
tion is propagated to the datapath which then reads in a
value from the t channel, initializes the n register accord
ingly, and resets the syn register.

The SYND RO M E loop, decoding the stream of n input
words is then entered. This loop executes two chains in

15

CD P L A Y E R E R R O R D E C O D E R

= V C O B R A _ P R E D __= Q--------------------
z V C O N _ R E G _ Q E _- Q--------------------
~ V C O N _ R E G _ S M _E -......
— V C 0 N _ R E G _ 9 £ 1- ^ ------------------
-E V C 0 N _ R E G _ S S 2

C O D E C N _ f l C K _

COH O R N E R _ f l C

CON _ R E G _ f l C K

C O S _ R E G _ Q C K

COS_YN__R_E_G_fi

C O T _ C H A N _ O C

Fig. 12. CD-Player error decoder SPICE waveforms

parallel, one th a t decrements the n-counter and one tha t
reads in a new word and processes it in the H o rn er pro
cedure. The actions carried out by these chains can be
viewed as follows where —¥ and || indicates sequential and
parallel execution respectively.

(D ec(n) —s* ri-reg) || (c-chan —»• S-reg —>• H orner —>• syn-reg)
The completion of the two chains are then synchronized by
the ECU concurrently with the BDU testing the branch
condition. The loop will continue to be iterated until the
branch condition is false, th a t is, when n becomes negative.
The syn register is then reshuffled to accommodate the in
put to the E R R - G H E G K loop. This loop detects eventual
errors in the decoded sequence. The action sequence in this
loop is as follows.

(D ec(n) —s* ri-reg) || (H orner —»• syn-reg —»• sta t-orsyneq)
The loop is iterated until n is negative or the two low end
bytes of sy n differ, in which case an error has been found.
The last computation action is then to set the status bit
according to the error calculation which is done by two in
vocations of the following chain.

S h u f f l e —»• syn-reg —»• stat-or s y n e q —»• stat-reg
The status information is then communicated to the envi
ronment via the s, e, and I channels, containing the status
of the computation, the starting word of the sequence, and
the position of the eventual error.

Figure 12 illustrates a post-layout SPICE simulation of
the initialization and first couple of cycles executed by the
microengine. The top panel shows the global request sig
nal, the middle panel shows the bits of the latched mi
croinstruction and the branch clear signal, and the bottom
panel shows the acknowledges of the datapath units. Note
th a t this implementation uses the optimization of latching
the microinstruction during the falling edge of the global re
quest as discussed earlier. On startup, the microinstruction
is initially cleared. On the first cycle after a request from
the environment the microengine therefore only fetches the
next microinstruction to be executed. Since all RAS blocks
are in acknowledge bypass mode no datapath unit will ex
ecute and the branch clear signal will be low. The first

microinstruction executes the fork-join statem ent in the
IN P U T state of the HOP code in Figure 11 and tests the
SY N D R O M E loop condition. The use of chained execution
can be observed by the sequentially occuring acknowledges
in Figure 12’s bottom panel. This nicely illustrates how
the execution propagates through the threads of chained
datapath units. Note the parallel return to zero of the ac
knowledge signals on the global requests falling edge. Since
the SY N D R O M E loop condition is initially true, the branch
clear signal goes low as illustrated by the single falling dot
ted line in the middle panel of Figure 12. The next mi
croinstruction implementing the S YN D R O M E state of the
HOP code is thus propagated to the datapath and executed
next. No more changes are visible in the microinstruction
bits since we continue to iterate over the SY N D R O M E loop
instruction until n becomes negative.

A . Results

The Tangram implementation described in [17], which
was targeted for low-power, used dual rail logic and a 1.2
micron technology and was reported to have an approxi
mate worst case cycle time of 20 microseconds, each cycle
decoding a sequence of 32 8-bit input words, and a core area
of 2.0 mm2. According to [6] a factor of 1.5 in performance
improvement and a 40% smaller area can be attributed to
single rail over double rail in an implementation of a sim
ilar, but more complex, error decoder for the DCC player.
A single rail Tangram implementation of the CD player de
coder could therefore be expected to have a cycle time of
about 13 microseconds and an area of 1.2 mm2.

Using our design tool ACK to automatically generate
a customized hard-wired implementation targeting a 1.2
micron CMOS technology, the corresponding worst case
cycle time was in the order of 3.8 microseconds using a four
phase handshake protocol and with an area of 1.3 mm2.
Using the same datapath, the microengine implementation
had a resulting cycle time of about 4.0 microseconds also
using a four phase protocol and an area of 1.7 mm2.

We also implemented the CD player error decoder in a
0.6 micron technology 1 and performed post-layout SPICE
simulation of the same. The cycle time under worst case
transistor models and tem perature was 1.46 microseconds.
Feature size scaling under constant field assumption [25],
except for voltage, would result in gate delays in a 1.2 mi
cron 5V technology being approximately 2.5 times th a t of a
0.6 micron 3V technology while wire delays stay the same.
The corresponding cycle time for the microengine imple
mentation of the decoder should therefore be in the order
of 3.7 microseconds in a 1.2 micron technology. The gate
level delay analysis would thus be inside a 10% error mar
gin of post-layout SPICE simulation. We assume th a t the
post-layout hard-wired implementation has similarly accu
rate cycle time. The timing assumptions inherent to the
microengine control structure such as th a t the branch clear
arrives to the microinstruction register array before the
global request, and th a t the microinstruction arrives at the

1Our updated VLSI tools no longer feature a 1.2 micron library

16

MEMORY9 C

ECU
RAS 1

NXT
ADR

RAS

DPU 7

Total area: Microengine - 1.7 mm2
Custom control - 1.3 mm2

BDU

DPU

CTL
V

6 CTL

DPU
— ^
AryK

DPU

(a) Microengine (b) Custom control

Fig. 13. CD-Plaver error decoder area breakdown. The large digits
add up to the to ta l area of the respective designs.

datapath before the global request were, as we expected,
trivially satisfied by the natural delays of the components
involved. No delays needed to be inserted to ensure correct
operation.

The area breakdown for the customized and microengine
implementations is illustrated in Figure 13. As illustrated,
the area for the microengine control units is very small,
and the major part of the area is spent on memory. The
ability of our microengine to chain actions is therefore im
portant not only for performance but also for saving area
since it reduces the number of microinstructions needed.
The CD player error decoder for example requires only 9
30-bit wide microinstructions. Techniques such as code
compression and bit-sharing may also be used to reduce
the size of the memory but may introduce delay overhead
or restrict reprogrammability. Chaining actions also gives
additional time for the microinstruction prefetch to com
plete. potentially allowing use of slower, more area efficient
memory. The area for the burstmode controllers is sur
prisingly large, and serves to illustrate how hard it is to
estimate the implementation complexity of finite state ma
chine controllers, even for moderately sized designs.

The designs were synthesized to a gate level representa
tion and performance measured via timing analysis using
worst case gate delay and wire load models in Synopsys™
Design Analyzer tool. Bundled data delays were obtained
via three-point best/typical/w orst case gate level timing
analysis using this tool and is to our experience very accu
rate allowing use of relatively small safety margins. Post
layout area numbers and SPICE models were obtained us
ing the C ascade™ Epoch layout tool. It should be noted
that both designs were implemented without using any ex
plicit timing based optimizations. B etter results are to
be expected for both designs when timing optimizations
are applied to hide control overhead. In the context of
what autom ated synthesis tools can achieve, also consider
ing the control structure was implemented with standard
gates, these results about the microengines performance
are encouraging. One of the reasons the microengine ap
proach is able to perform so well compared to the custom
control approach is due to the ability to naturally and effi
ciently chain the actions of an arbitrary number of datap
ath units while still being able to perform a parallel return

to zero. An initial performance concern about the micro
engine control structure was the presumed high capacitance
load on the global request wire. The resulting implementa
tions however, showed that while the global request in the
microengine had a capacitance of 1.3nF. some acknowledge
wires to the burstmode controllers in the customized con
trol implementation that were on the critical path actually-
had even higher loads, the worst being 2nF.

V III. C o n c l u s i o n s

An asynchronous microengine architecture for pro
grammable control has been presented. We believe that
for many types of designs, this structure can provide per
formance close to that of designs with customized con
trol while still offering the flexibility and ease of design
that programmable control and a modular datapath pro
vides. A powerful feature of the architecture is the per-
microinstruction programmability of its datapath into clus
ters of independently executing serial chains. The problem
of having to wait for the longest datapath chain to complete
is solved in an approach by allowing run-time formation of
decoupled clusters of datapath units. In this approach, the
microengine can thus continue to fetch and execute new
microinstructions without having to wait for the comple
tion of the decoupled clusters, reducing overhead related to
datapath computation. The ability to form decoupled se
ries/parallel clusters allows a richer set of schedulings and
thereby promises to increase the efficiency of a microengine
implementation significantly.

Timing assumptions that are considered safe have been
used to reduce various control overhead. These timing
assumptions could potentially be incorporated into auto
m ated microengine generator tools, thus avoiding case by
case validation. Examples of hiding control latency is to
let branch calculation, propagation of data signals through
input MUXes. and meeting register setup constraints be
performed concurrently with completion synchronization,
and also pipeline the datapath execution with branch pre
diction and fetching of the next instruction. Using an ap
proach where requests are always acknowledged even for
datapath units not executing, thus returning all control
signals to the same state at the end of each execution cy
cle. facilitates efficient logic control structures for both two
and four phase implementations.

We are currently working on generating more examples
to facilitate a comparison on a broader base of designs.
We intend to autom ate the microengine synthesis proce
dure. and incorporate it in the ACK synthesis framework
allowing descriptions entered in Verilog—b to be realized
as both hard-wired and microengine implementations.

R e f e r e n c e s

[1] Yale N. P a t t . Sanjay .1. Pa te l, M arius Evers. Daniel H. Friendly,
and Ja red S tark . “One billion transis to rs , one uniprocessor, one
ch ip /' IE E E C om puter . vol. 30. no. 9. pp. 51 58. Sept. 1997.

[2] Gill A. P ra t t and John Nguyen. “D istribu ted synchronous clock
ing." IE E E 'l^ans actions on Parallel and D istributed System s,
vol. 6. no. 3. pp. 314 328. M ar. 1995.

[3] Jam es M ontanaro e t.a l.. “A 160-mhz. 32-b, 0.5-w CM OS RISC

17

microprocessor,” Digital Technical Journal, vol. 9, no. 1, pp.
49-62, 1997.

[4] A. Davis, B. Coates, and K. Stevens, “The Post Office expe
rience: Designing a large asynchronous chip,” in Proc. Hawaii
International Conf. System Sciences. Jan. 1993, vol. I, pp. 409
418, IEEE Computer Societv Press.

[5] Alan Marshall, Bill Coates, and Polly Siegel, “Designing an
asynchronous communications chip,” IE E E Design & Test of
Computers, vol. 11, no. 2, pp. 8-21, 1994, Summer.

[6] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters,
Marly Roncken, Frits Schalij, and Rik van de Wiel, “A single
rail re-implementation of a DCC error detector using a generic
standard-cell library,” in Asynchronous Design Methodologies.
May 1995, pp. 72-79, IEEE Computer Society Press.

[7] Andreas Nowatzyk, Gunes Aybay, and Fong Pong, “Design of
the S3MP processor,” 1995.

[8] J. Kuskin and D. Ofelt et al., “The Stanford FLASH multipro
cessor,” in Proceedings of the 21st Annual International Sym
posium on Computer Architecture, Mav 1994, pp. 302-313.

[9] M. Renaudin, P. Vivet, and F. Robin, “ASPRO-216: A
standard-cell QDI 16-bit RISC asynchronous microprocessor,” in
FJroc. International Symposium on Advanced Research in A syn
chronous Circuits and Systems, 1998, pp. 22-31.

[10] N. C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien,
and J. Liu, “A low-power, low-noise configurable self-timed
DSP,” in FJroc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, 1998, pp. 32-42.

[11] Maurice Wilkes, “The best way to design an autom atic calcu
lating machine.,” July 1951.

[12] Daniel Gajski, Principles of Digital Design, Prentice Hall, 1997.
[13] Kenneth Stevens, “The soft controller: A self-timed microse

quencer for distributed parallel architectures,” Tech. Rep., De
partm ent of Computer Science, Universitv of Utah, Dec. 1984.

[14] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and
N.C. Paver, “AMULET2e: An asynchronous embedded con
troller,” in FJroc. International Symposium on Advanced Re
search in Asynchronous Circuits and Systems. Apr. 1997, pp.
290-299, IEEE Computer Society Press.

[15] Alain J. M artin, Andrew Lines, Rajit Manohar, Mika Nystroem,
Paul Penzes, Robert Southworth, and Uri Cummings, “The de
sign of an asynchronous MIPS R3000 microprocessor,” in Ad
vanced Research in VLSI, Sept. 1997, pp. 164-181.

[16] Akihiro Takamura, Masashi Kuwako, Masashi Ima, Taro Fujii,
Motokazu Ozawa, Izumi Fukasaku, Yoichiro Ueno, and Takashi
Nanya, “TITAC-2: An asynchronous 32-bit microprocessor
based on scalable-delay-insensitive model,” in FJroc. Interna
tional Conf. Computer Design (ICCD), Oct. 1997, pp. 288-294.

[17] Joep Kessels, Kees van Berkel, Ronan Burgess, Marly Roncken,
and Frits Schalij, “An error decoder for the compact disc player
as an example of VLSI programming,” in FJroc. European Con
ference on Design Autom ation (EDAC). Mar. 1992, pp. 69-75,
IEEE Computer Society Press.

[18] Takashi Nanva, Yoichiro Ueno, Hiroto Kagotani, Masashi
Kuwako, and Akihiro Takamura, “TITAC: Design of a quasi
delay-insensitive microprocessor,” IE E E Design & Test of Com
puters, vol. 11, no. 2, pp. 50-63, 1994.

[19] Scott Hauck, Gaetano Borriello, and Carl Ebeling, “T R IP
TYCH: An FPGA architecture with integrated logic and rout
ing,” in Advanced Research in VLSI, pp. 26-43. MIT Press,
1992.

[20] Kenneth Yun, Peter Beerel, Vida Vakilotojar, Ayoob Dooply,
and Julio Arceo, “The design and verification of a
high-performance low-control-overhead asynchronous differen
tial equation solver,” in FJroc. International Symposium on Ad
vanced Research in Asynchronous Circuits and Systems, Apr.
1997, pp. 140-153.

[21] Ivan Sutherland, “Micropipelines,” Communications of the
ACM, June 1989, The 1988 A C M Turing Award Lecture.

[22] S. M. Nowick, Automatic synthesis of burst-mode asynchronous
controllers, Ph.D. thesis, Computer Systems Laboratory, Stan
ford University, 1993.

[23] K. Y. Yun, Synthesis of asynchronous controllers fo r heteroge
neous systems, Ph.D. thesis, Stanford University, Aug. 1994.

[24] Prabhakar Kudva, Synthesis of Asynchronous Systems Target
ing Finite State Machines, Ph.D. thesis, Computer Science De
partm ent, University of Utah, 1995.

[25] Neil H. Weste and Kamran Eshraghian, Principles of CMOS
VLSI Design, Addison Wesley, 1992.

