955 research outputs found

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Design, Control and Motion Planning for a Novel Modular Extendable Robotic Manipulator

    Get PDF
    This dissertation discusses an implementation of a design, control and motion planning for a novel extendable modular redundant robotic manipulator in space constraints, which robots may encounter for completing required tasks in small and constrained environment. The design intent is to facilitate the movement of the proposed robotic manipulator in constrained environments, such as rubble piles. The proposed robotic manipulator with multi Degree of Freedom (m-DOF) links is capable of elongating by 25% of its nominal length. In this context, a design optimization problem with multiple objectives is also considered. In order to identify the benefits of the proposed design strategy, the reachable workspace of the proposed manipulator is compared with that of the Jet Propulsion Laboratory (JPL) serpentine robot. The simulation results show that the proposed manipulator has a relatively efficient reachable workspace, needed in constrained environments. The singularity and manipulability of the designed manipulator are investigated. In this study, we investigate the number of links that produces the optimal design architecture of the proposed robotic manipulator. The total number of links decided by a design optimization can be useful distinction in practice. Also, we have considered a novel robust bio-inspired Sliding Mode Control (SMC) to achieve favorable tracking performance for a class of robotic manipulators with uncertainties. To eliminate the chattering problem of the conventional sliding mode control, we apply the Brain Emotional Learning Based Intelligent Control (BELBIC) to adaptively adjust the control input law in sliding mode control. The on-line computed parameters achieve favorable system robustness in process of parameter uncertainties and external disturbances. The simulation results demonstrate that our control strategy is effective in tracking high speed trajectories with less chattering, as compared to the conventional sliding mode control. The learning process of BLS is shown to enhance the performance of a new robust controller. Lastly, we consider the potential field methodology to generate a desired trajectory in small and constrained environments. Also, Obstacle Collision Avoidance (OCA) is applied to obtain an inverse kinematic solution of a redundant robotic manipulator

    A Mechatronic Perspective on Robotic Arms and End-Effectors

    Get PDF

    Investigation of cyclicity of kinematic resolution methods for serial and parallel planar manipulators

    Get PDF
    Kinematic redundancy of manipulators is a well-understood topic, and various methods were developed for the redundancy resolution in order to solve the inverse kinematics problem, at least for serial manipulators. An important question, with high practical relevance, is whether the inverse kinematics solution is cyclic, i.e., whether the redundancy solution leads to a closed path in joint space as a solution of a closed path in task space. This paper investigates the cyclicity property of two widely used redundancy resolution methods, namely the projected gradient method (PGM) and the augmented Jacobian method (AJM), by means of examples. Both methods determine solutions that minimize an objective function, and from an application point of view, the sensitivity of the methods on the initial configuration is crucial. Numerical results are reported for redundant serial robotic arms and for redundant parallel kinematic manipulators. While the AJM is known to be cyclic, it turns out that also the PGM exhibits cyclicity. However, only the PGM converges to the local optimum of the objective function when starting from an initial configuration of the cyclic trajector

    Self-motion control of kinematically redundant robot manipulators

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 88-92)Text in English; Abstract: Turkish and Englishxvi,92 leavesRedundancy in general provides space for optimization in robotics. Redundancy can be defined as sensor/actuator redundancy or kinematic redundancy. The redundancy considered in this thesis is the kinematic redundancy where the total degrees-of-freedom of the robot is more than the total degrees-of-freedom required for the task to be executed. This provides infinite number of solutions to perform the same task, thus, various subtasks can be carried out during the main-task execution. This work utilizes the property of self-motion for kinematically redundant robot manipulators by designing the general subtask controller that controls the joint motion in the null-space of the Jacobian matrix. The general subtask controller is implemented for various subtasks in this thesis. Minimizing the total joint motion, singularity avoidance, posture optimization for static impact force objectives, which include maximizing/minimizing the static impact force magnitude, and static and moving obstacle (point to point) collision avoidance are the subtasks considered in this thesis. New control architecture is developed to accomplish both the main-task and the previously mentioned subtasks. In this architecture, objective function for each subtask is formed. Then, the gradient of the objective function is used in the subtask controller to execute subtask objective while tracking a given end-effector trajectory. The tracking of the end-effector is called main-task. The SCHUNK LWA4-Arm robot arm with seven degrees-of-freedom is developed first in SolidWorks® as a computer-aided-design (CAD) model. Then, the CAD model is converted to MATLAB® Simulink model using SimMechanics CAD translator to be used in the simulation tests of the controller. Kinematics and dynamics equations of the robot are derived to be used in the controllers. Simulation test results are presented for the kinematically redundant robot manipulator operating in 3D space carrying out the main-task and the selected subtasks for this study. The simulation test results indicate that the developed controller’s performance is successful for all the main-task and subtask objectives

    Control of Nonlinear Mechatronic Systems

    Get PDF
    This dissertation is divided into four self-contained chapters. In Chapter 1, an adaptive nonlinear tracking controller for kinematically redundant robot manipulators is presented. Past research efforts have focused on the end-effector tracking control of redundant robots because of their increased dexterity over their non-redundant counterparts. This work utilizes an adaptive full-state feedback quaternion based controller developed in [1] and focuses on the design of a general sub-task controller. This sub-task controller does not affect the position and orientation tracking control objectives, but instead projects a preference on the configuration of the manipulator based on sub-task objectives such as the following: singularity avoidance, joint limit avoidance, bounding the impact forces, and bounding the potential energy. In Chapter 2, two controllers are developed for nonlinear haptic and teleoperator systems for coordination of the master and slave systems. The first controller is proven to yield a semi-global asymptotic result in the presence of parametric uncertainty in the master and the slave dynamic models provided the user and the environmental input forces are measurable. The second controller yields a global asymptotic result despite unmeasurable user and environmental input forces provided the dynamic models of the master and slave systems are known. These controllers rely on a transformation and a flexible target system to allow the master system\u27s impedance to be easily adjusted so that it matches a desired target system. This work also offers a structure to encode a velocity field assist mechanism to provide the user help in controlling the slave system in completing a pre-defined contour following task. For each controller, Lyapunov-based techniques are used to prove that both controllers provide passive coordination of the haptic/teleoperator system when the velocity field assist mechanism is disabled. When the velocity field assist mechanism is enabled, the analysis proves the coordination of the haptic/teleoperator system. Simulation results are presented for both controllers. In Chapter 3, two controllers are developed for flat multi-input/multi-output nonlinear systems. First, a robust adaptive controller is proposed and proven to yield semi-global asymptotic tracking in the presence of additive disturbances and parametric uncertainty. In addition to guaranteeing an asymptotic output tracking result, it is also proven that the parameter estimate vector is driven to a constant vector. In the second part of the chapter, a learning controller is designed and proven to yield a semi-global asymptotic tracking result in the presence of additive disturbances where the desired trajectory is periodic. A continuous nonlinear integral feedback component is utilized in the design of both controllers and Lyapunov-based techniques are used to guarantee that the tracking error is asymptotically driven to zero. Numerical simulation results are presented for both controllers. In Chapter 4, a new dynamic model for continuum robot manipulators is derived. The dynamic model is developed based on the geometric model of extensible continuum robot manipulators with no torsional effects. The development presented in this chapter is an extension of the dynamic model proposed in [2] (by Mochiyama and Suzuki) to include a class of extensible continuum robot manipulators. First, the kinetic energy of a slice of the continuum robot is evaluated. Next, the total kinetic energy of the manipulator is obtained by utilizing a limit operation (i.e., sum of the kinetic energy of all the slices). Then, the gravitational potential energy of the manipulator is derived. Next, the elastic potential energy of the manipulator is derived for both bending and extension. Finally, the dynamic model of a planar 3-section extensible continuum robot manipulator is derived by utilizing the Lagrange representation. Numerical simulation results are presented for a planar 3-section extensible continuum robot manipulator

    Learning-Based Control Strategies for Soft Robots: Theory, Achievements, and Future Challenges

    Get PDF
    In the last few decades, soft robotics technologies have challenged conventional approaches by introducing new, compliant bodies to the world of rigid robots. These technologies and systems may enable a wide range of applications, including human-robot interaction and dealing with complex environments. Soft bodies can adapt their shape to contact surfaces, distribute stress over a larger area, and increase the contact surface area, thus reducing impact forces

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page
    • …
    corecore