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ABSTRACT

This dissertation is divided into four self-contained chapters. In Chapter 1, an

adaptive nonlinear tracking controller for kinematically redundant robot manipulators

is presented. Past research efforts have focused on the end-effector tracking control

of redundant robots because of their increased dexterity over their non-redundant

counterparts. This work utilizes an adaptive full-state feedback quaternion based

controller developed in [1] and focuses on the design of a general sub-task controller.

This sub-task controller does not affect the position and orientation tracking control

objectives, but instead projects a preference on the configuration of the manipulator

based on sub-task objectives such as the following: singularity avoidance, joint limit

avoidance, bounding the impact forces, and bounding the potential energy.

In Chapter 2, two controllers are developed for nonlinear haptic and teleoperator

systems for coordination of the master and slave systems. The first controller is proven

to yield a semi-global asymptotic result in the presence of parametric uncertainty in

the master and the slave dynamic models provided the user and the environmental

input forces are measurable. The second controller yields a global asymptotic re-

sult despite unmeasurable user and environmental input forces provided the dynamic

models of the master and slave sytems are known. These controllers rely on a trans-

formation and a flexible target system to allow the master system’s impedance to

be easily adjusted so that it matches a desired target system. This work also offers

a structure to encode a velocity field assist mechanism to provide the user help in

controlling the slave system in completing a pre-defined contour following task. For

each controller, Lyapunov-based techniques are used to prove that both controllers

provide passive coordination of the haptic/teleoperator system when the velocity field

assist mechanism is disabled. When the velocity field assist mechanism is enabled,

the analysis proves the coordination of the haptic/teleoperator system. Simulation

results are presented for both controllers.
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In Chapter 3, two controllers are developed for flat multi-input/multi-output non-

linear systems. First, a robust adaptive controller is proposed and proven to yield

semi-global asymptotic tracking in the presence of additive disturbances and para-

metric uncertainty. In addition to guaranteeing an asymptotic output tracking result,

it is also proven that the parameter estimate vector is driven to a constant vector. In

the second part of the chapter, a learning controller is designed and proven to yield a

semi-global asymptotic tracking result in the presence of additive disturbances where

the desired trajectory is periodic. A continuous nonlinear integral feedback compo-

nent is utilized in the design of both controllers and Lyapunov-based techniques are

used to guarantee that the tracking error is asymptotically driven to zero. Numerical

simulation results are presented for both controllers.

In Chapter 4, a new dynamic model for continuum robot manipulators is derived.

The dynamic model is developed based on the geometric model of extensible con-

tinuum robot manipulators with no torsional effects. The development presented in

this chapter is an extension of the dynamic model proposed in [2] (by Mochiyama

and Suzuki) to include a class of extensible continuum robot manipulators. First, the

kinetic energy of a slice of the continuum robot is evaluated. Next, the total kinetic

energy of the manipulator is obtained by utilizing a limit operation (i.e., sum of the

kinetic energy of all the slices). Then, the gravitational potential energy of the ma-

nipulator is derived. Next, the elastic potential energy of the manipulator is derived

for both bending and extension. Finally, the dynamic model of a planar 3-section

extensible continuum robot manipulator is derived by utilizing the Lagrange repre-

sentation. Numerical simulation results are presented for a planar 3-section extensible

continuum robot manipulator.
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CHAPTER 1

ADAPTIVE NONLINEAR TRACKING CONTROL

OF KINEMATICALLY REDUNDANT ROBOT

MANIPULATORS WITH SUB-TASK EXTENSIONS

Introduction

In many robotic applications, the desired task is naturally defined in terms of end-

effector motion. As a result, the desired robot trajectory is described by the desired

position and orientation of a Cartesian coordinate frame attached to the robot manip-

ulator’s end-effector with respect to the base frame, also referred to as the task-space.

Control of robot motion is then performed using feedback of either the joint variables

(relative position of each robot joint pair) or the task-space variables. Unfortunately,

joint-based control has the undesirable feature of requiring the solution of the inverse

kinematics to convert the desired task-space trajectory into the desired joint space

trajectory. In contrast, task-space control does not require the inverse kinematics;

however, the precise tracking control of the end-effector orientation complicates the

problem. For example, several parameterizations exist to describe the orientation

angles, including minimum three-parameter representations (e.g., Euler angles, Ro-

drigues parameters, etc.) and the non-minimum four-parameter representation given

by the unit quaternion. Whereas the three-parameter representations always exhibit

singular orientations (i.e., the orientation Jacobian matrix in the kinematic equa-

tion is singular for some orientations), the unit quaternion-based approach can be

used to represent the end-effector orientation without singularities. Thus, despite

significantly complicating the control design, the unit quaternion seems to be the

preferred method of formulating the end-effector orientation tracking control prob-

lem. Some past work that deals with task-space control formulation can be found

in [3], [4], and [5]. Specifically, an experimental assessment of different end-effector

orientation parameterization for task-space robot control was provided in [3]. One
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of the first results in task-space control of robot manipulators was presented in [4].

Resolved-rate and resolved-acceleration task-space controllers using the quaternion

parameterization were proposed in [5].

In addition, the control problem is further complicated in the presence of kinematic

redundancy. That is, to provide the end user with increased flexibility for executing

sophisticated tasks, the next generation of robot manipulators will have more degrees

of freedom than are required to perform an operation in the task-space. Since the

number of joints in a redundant robot is greater than the dimension of the task-

space, one can show that joint motion in the null-space of the Jacobian matrix exists

that does not affect task-space motion (this phenomenon is commonly referred to as

self-motion). As noted in [6], [7], and [8], there are generally an infinite number of

solutions for the inverse kinematics of redundant robots. As a result, given a desired

task-space trajectory, it is difficult to select a reasonable desired joint trajectory

that satisfies the control requirements (e.g., closed-loop stability and boundedness

of all signals) and the sub-tasks (e.g., singularity avoidance, joint limit avoidance,

bounding the impact forces and bounding the potential energy). Thus, there is strong

motivation for control of redundant robots to be done in the task-space. For work

related to controllers for redundant robots, the reader is referred to [4], [9], [10], [11],

[12], [13], [14] and the references therein.

This work utilizes the adaptive full-state feedback quaternion based controller

developed in [1] and focuses on the design of a general sub-task controller. The

novelty of this work is the systematic integration of the sub-task controller while

simultaneously achieving end-effector tracking. Other efforts have been proposed

in [1], [10] and [14], but in these approaches, the sub-task objective is an add-on to

the tracking objective without integration into the stability analysis. In [1], a sub-

task control signal was introduced and can be seen in equation (2.211) as h(t). In

the stability analysis of [1], this sub-task signal is inconsequential to the tracking

control objective as long as h(t) and ḣ(t) remain bounded. This work will exploit the
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property of self-motion for redundant robot manipulators by designing a general sub-

task controller that meets the above conditions while controlling the joint motion in

the null-space of the Jacobian matrix to alleviate potential problems in the physical

system or select configurations that are better suited for a particular application.

Specific sub-task controllers will be designed for singularity avoidance, joint limit

avoidance, bounding the impact forces and bounding the potential energy.

Dynamic and Kinematic Models

The dynamic model for an n-joint (n ≥ 6), revolute, direct drive robot manipulator

is described by the following expression

M(θ)θ̈ + Vm(θ, θ̇)θ̇ +G(θ) + Fdθ̇ = τ (1.1)

where θ(t), θ̇(t), θ̈(t) ∈ R
n denote the joint position, velocity, and acceleration in

the joint-space, respectively. In (1.1), M(θ) ∈ R
n×n represents the inertia effects,

Vm(θ, θ̇) ∈ R
n×n represents centripetal-Coriolis effects, G(θ) ∈ R

n represents the

gravity effects, Fd ∈ R
n×n represents the constant positive definite diagonal dynamic

frictional effects, τ(t) ∈ R
n represents the control input torque vector. The subsequent

development is based on the following properties [15].

Property 1 The inertia matrix M(θ) is symmetric and positive-definite, and satis-

fies the following inequalities

m1 ‖ξ‖2 ≤ ξTM(θ)ξ ≤ m2 ‖ξ‖2 ∀ξ ∈ R
n (1.2)

where m1, m2 ∈ R are positive constants, and ‖·‖ denotes the standard Euclidean

norm.

Property 2 The inertia and centripetal-Coriolis matrices satisfy the following skew

symmetric relationship

ξT

(

1

2

·

M (θ, θ̇) − Vm(θ, θ̇)

)

ξ = 0 ∀ξ ∈ R
n (1.3)

where Ṁ(θ, θ̇) denotes the time derivative of the inertia matrix.
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Property 3 The left-hand side of (1.1) can be linearly parameterized as shown below

M(θ)θ̈ + Vm(θ, θ̇)θ̇ +G(θ) + Fdθ̇ = Yg

(

θ, θ̇, θ̈
)

φ (1.4)

where φ ∈ R
p contains the constant system parameters, and the regression matrix

Yg (·) ∈ R
n×p contains known functions dependent on the signals θ(t), θ̇(t), and θ̈(t).

Let E and B be orthogonal coordinate frames attached to the end-effector of a

redundant robot manipulator and its inertial frame, respectively. The position and

orientation of E relative to B are commonly represented by a homogeneous transfor-

mation matrix, T (θ) ∈ R
4×4 which is defined as [15]

T (θ) ,

[

R(θ) p(θ)
01×3 1

]

(1.5)

where 01×3 ,
[

0 0 0
]

, the vector p(θ) ∈ R
3 and the rotation matrix R(θ) ∈ R

3×3

represent the position and orientation of the end-effector coordinate frame, respec-

tively. From this homogeneous transformation matrix, the constrained four-parameter

unit quaternion representation can be used to develop the kinematic model. From

(1.5), a relationship between the position and orientation of E relative to B can be

developed as follows [16]
[

p

q

]

,

[

fp (θ)
fq (θ)

]

(1.6)

where fp (θ) ∈ R
3 and fq (θ) ∈ R

4 are kinematic functions, q(t) ,
[

qo(t) qT
v (t)

]T ∈
R

4 with qo(t) ∈ R and qv(t) ∈ R
3. The variable q(t), as given in (1.6), denotes the unit

quaternion [17]. The unit quaternion represents a global nonsingular parameterization

of the end-effector orientation, and is subject to the constraint qT q = 1. Note that,

while fp(θ) is directly obtained from (1.5), several algorithms exist to determine

fq(θ) from R(θ) ( [17] and [18]). Conversely, R(q) can be determined given the unit

quaternion parameterization [17]

R(q) ,
(

q2
o − qT

v qv
)

I3 + 2qvq
T
v + 2qoq

×
v (1.7)
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where I3 ∈ R
3×3 is the standard identity matrix, and the notation a× ∈ R

3×3 ∀a =

[a1 a2 a3]
T , denotes the following skew-symmetric matrix

a× ,





0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (1.8)

Velocity relationships can be formulated by differentiating (1.6) which can be

written as
[

ṗ

q̇

]

=

[

Jp (θ)
Jq (θ)

]

θ̇ (1.9)

where θ̇ (t) ∈ R
n denotes the velocity of E in a generalized coordinate system, and

Jp (θ) ∈ R
3×n, Jq (θ) ∈ R

4×n denotes the position and orientation Jacobian matrices,

respectively. To facilitate the subsequent control development and stability analysis,

the fact that q(t) is related to the angular velocity of E relative to B, denoted by

ω(t) ∈ R
3 with coordinates expressed in B, via the following differential equation

( [16] and [19])

q̇ , B(q)ω (1.10)

where the Jacobian-type matrix B(q) ∈ R
4×3 is defined as follows

B(q) ,
1

2

[

−qT
v

qoI3 − q×v

]

(1.11)

where B(q) satisfies the following useful property

BT (q)B(q) = I3. (1.12)

The final kinematic expression that relates the generalized Cartesian velocity to the

generalized coordinate system is developed as follows

[

ṗ

ω

]

= J (θ) θ̇ (1.13)

where (1.9), (1.10) and (1.12) were utilized, and J (θ) ∈ R
6×n is defined as follows

J (θ) ,

[

Jp (θ)
BT (q)Jq (θ)

]

. (1.14)
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To facilitate the control development, the pseudo-inverse of J(θ) is denoted by

J+(θ) ∈ R
n×6, which is defined as follows

J+ , JT
(

JJT
)−1

(1.15)

where J+(θ) satisfies the following equality

JJ+ = I6 (1.16)

where I6 ∈ R
6×6 is the standard identity matrix. As shown in [6], the pseudo-inverse

defined by (1.15) satisfies the Moore-Penrose Conditions given below

JJ+J = J J+J J+ = J+

(J+J)
T

= J+J (JJ+)
T

= JJ+.
(1.17)

In addition to the above properties, the matrix (In − J+J) satisfies the following

useful properties

(In − J+J) (In − J+J) = In − J+J

(In − J+J)
T

= (In − J+J)
J (In − J+J) = 0
(In − J+J) J+ = 0

(1.18)

where In ∈ R
n×n is the standard identity matrix.

Remark 1 During the control development, the assumption that the minimum sin-

gular value of the manipulator Jacobian, denoted by σm is greater than a known small

positive constant δ > 0, such that max {‖J+(θ)‖} is known a priori and all kinematic

singularities are always avoided.

Remark 2 The dynamic and kinematic terms for a general revolute robot manipu-

lator, denoted by M(θ), Vm(θ, θ̇), G(θ), J(θ), and J+(θ), are assumed to depend on

θ(t) only as arguments of trigonometric functions, and hence, remain bounded for all

possible θ(t). During the control development, the assumption will be made that if

p(t) ∈ L∞ then θ(t) ∈ L∞ (Note that q(t) is always bounded since q(t)Tq(t) = 1).
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Task-Space Tracking

The objective for the redundant robotic system is to design a control input that

ensures the position and orientation of E tracks the position and orientation of a

desired orthogonal coordinate frame Ed where pd(t) ∈ R
3 denotes the position of the

origin of Ed, relative to the origin of B and the rotation matrix from Ed to B is denoted

by Rd (·) ∈ R
3×3. The standard assumption that pd(t), ṗd(t), p̈d(t), Rd (·) , Ṙd (·) , and

R̈d (·) ∈ L∞ will be utilized in the subsequent stability analysis. The position tracking

error ep(t) ∈ R
3 can be defined as follows

ep , pd − p (1.19)

where p(t) was defined in (1.5). If the orientation of Ed relative to B is described by

the desired unit quaternion, qd(t) ,
[

qod(t) qT
vd(t)

]T ∈ R
4, then similar to (1.7),

the desired rotation matrix can be described as follows

Rd(qd) =
(

q2
od − qT

vdqvd

)

I3 + 2qvdq
T
vd + 2qodq

×
vd. (1.20)

As in (1.10), qd(t) is related to the desired angular velocity of Ed relative to B, denoted

by ωd(t) ∈ R
3, through the kinematic equation

q̇d , B (qd)ωd. (1.21)

To quantify the difference between the actual and desired end-effector orientations, a

rotation matrix R̃(·) ∈ R
3×3 of E with respect to Ed is defined as follows

R̃ , RT
dR =

(

e2o − eT
v ev

)

I3 + 2eve
T
v + 2eoe

×
v (1.22)

where the unit quaternion tracking error, eq(t) ,
[

eo(t) eT
v (t)

]T ∈ R
4 can be

derived as follows (see [5] and Theorem 5.3 of [20])

eq ,

[

eo

ev

]

=

[

qoqod + qT
v qvd

qodqv − qoqvd + q×v qvd

]

(1.23)

where eq(t) satisfies the constraint

eT
q eq = e20 + eT

v ev = 1, (1.24)
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which indicates that

0 ≤ ‖ev(t)‖ ≤ 1 0 ≤ |e0(t)| ≤ 1 (1.25)

for all time.

Based on the above definitions, the end-effector position and orientation tracking

objectives can be stated as follows

‖ep(t)‖ → 0 and R̃(eq) → I3 as t→ ∞, (1.26)

respectively. The orientation tracking objective given in (1.26) can also be stated in

terms of the unit quaternion error of (1.23). Specifically, it is easy to see from (1.24)

that

if ‖ev(t)‖ → 0 as t→ ∞, then |e0(t)| → 1 as t→ ∞; (1.27)

hence, it can be stated from (1.22) and (1.27) that

if ‖ev(t)‖ → 0 as t→ ∞, then R̃(eq) → I3 as t→ ∞. (1.28)

Task-Space Control Development

Based on the open-loop kinematic tracking error system given in [1] and the sub-

sequent stability analysis, the control input is designed as follows

τ , Y φ̂+Krr + (ΛJ)T

[

ep

ev

]

(1.29)

where Kr ∈ R
n×n is a positive-definite, diagonal, control gain matrix, and φ̂(t) ∈ R

p

denotes the parameter estimate vector which is updated according to

.

φ̂, ΓY T r (1.30)

with Γ ∈ R
p×p being a positive-definite, diagonal, adaptation gain matrix. The

auxiliary signal r(t) ∈ R
n can be defined as follows

r , ud − θ̇ (1.31)
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where ud(t) ∈ R
n is an auxiliary control input defined as follows

ud , J+Λ−1

[

ṗd +K1ep

−RT
d ωd +K2ev

]

+
(

In − J+J
)

h (1.32)

where K1, K2 ∈ R
3×3 are positive-definite, diagonal, control gain matrices, the matrix

Λ(t) ∈ R
6×6 is defined as follows

Λ ,

[

−I3 03×3

03×3 RT
d

]

(1.33)

where 03×3 ∈ R
3×3 denotes a matrix of zeros, and h(θ) ∈ R

n is the subsequently

designed sub-task controller signal. The linear parameterization introduced in (1.29)

is defined as follows

Y φ , Mu̇d + Vmud +G(θ) + Fdθ̇ (1.34)

where Y (pd, ṗd, p̈d, eq, θ, θ̇, h, ḣ) ∈ R
n×p denotes the measurable regression matrix,

and φ ∈ R
p represents the constant parameter vector (e.g., mass, inertia, and friction

coefficients). To obtain the closed-loop dynamics for r(t), the time derivative of (1.31)

is taken, pre-multiply the resulting equation by M(θ), and substitute (1.1) to obtain

the following

Mṙ = −Vmr + Y φ̃−Krr − (ΛJ)T

[

ep

ev

]

(1.35)

where the parameter estimation error signal φ̃(t) ∈ R
p is defined as follows

φ̃ , φ− φ̂. (1.36)

Remark 3 A benchmark adaptive controller was utilized to compensate for the para-

metric uncertainties present in the dynamic model (e.g., mass, inertia, and friction

coefficients). Alternatively, a robust or sliding mode controller could also be used to

compensate for modeling uncertainties not restricted to parametric uncertainties (e.g.

see [21]).

The following theorem can be stated regarding the stability of the closed loop

system.
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Theorem 1 The control law described by (1.29) guarantees global asymptotic end-

effector position and orientation tracking in the sense that

‖ep(t)‖ → 0 as t→ ∞ (1.37)

and

R̃(eq(t)) → I3 as t→ ∞, (1.38)

as well as that all signals are bounded provided h(θ) ∈ L∞ and ∂h(θ)
∂θ

∈ L∞. (Note the

assumption given in Remark 2 has been utilized.)

Proof. See [1] for proof.

Sub-Task Control Objective

In addition to the tracking control objective, there can be sub-task objectives

that are required for a particular redundant robot application. To this end, the

auxiliary control signal h(θ), as introduced in (1.32), allows for sub-task objectives to

be integrated into the controller. This sub-task integration is completed by designing

a framework that places preferences on desirable configurations where an infinite

number of choices are available when dealing with the self-motion of the redundant

robot. These sub-tasks are integrated through the joint motion in the null-space

of the standard Jacobian matrix by designing h(θ). Theorem 1 requires that h(θ),

∂h(θ)
∂θ

∈ L∞, provided θ(t) ∈ L∞. Based on Remark 2, and the proof of Theorem 1 it

is clear that θ(t) ∈ L∞. In the subsequent section, h(θ) will be designed to meet these

conditions. In the event that a subsequently defined Jacobian-related matrix loses

rank, the sub-task objective is not guaranteed. More specifically, if the Jacobian-

related matrix maintains full rank, then the sub-task objective is met as proven in

the subsequent stability analysis.
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Sub-Task Closed-Loop Error System

In this section, a general sub-task closed-loop error system is developed. To this

end, an auxiliary signal ya(t) ∈ R
+ is defined as follows

ya , exp (−αβ(θ)) (1.39)

where α ∈ R
+ is a constant, β(θ) ∈ R

+ is selected for each sub-task, and exp (·) is

the standard logarithmic exponential function. To determine the dynamics of ya(t),

the time derivative of (1.39) is taken and can be written as follows

ẏa = Jsθ̇ (1.40)

where a Jacobian-type vector Js(t) ∈ R
1×n is defined as follows

Js =
∂ya

∂θ
. (1.41)

From (1.40), a substitution can be made for θ̇(t) and the following expression for ẏa(t)

can be written as follows

ẏa = JsJ
+Λ−1

[

ṗd +K1ep

−RT
d ωd +K2ev

]

+ Js

(

In − J+J
)

h− Jsr (1.42)

where (1.31) and (1.32) were both utilized. Based on the dynamics of (1.42) and the

subsequent stability analysis, the sub-task control input can be designed as follows

h , −ks1

[

Js

(

In − J+J
)]T

ya (1.43)

where ks1 ∈ R
+ is a constant gain. After substituting (1.43) into (1.42), the following

expression can be obtained

ẏa = JsJ
+Λ−1

[

ṗd +K1ep

−RT
d ωd +K2ev

]

− Jsr − ks1

∥

∥Js

(

In − J+J
)∥

∥

2
ya. (1.44)

Remark 4 The auxiliary signal ya(t) in (1.39) was selected because of the useful

properties of the logarithmic exponential function. From (1.39) it is clear that 0 <

ya(t) ≤ 1, and that as β(θ) increases, ya(t) decreases. This definition of ya(t) is

arbitrary and many different positive functions could also be utilized.
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The following theorem can now be stated regarding the performance of the sub-

task closed-loop error system.

Theorem 2 The control law described by (1.43) guarantees that ya(t) is practically

regulated (i.e., ultimately bounded) in the following sense

|ya(t)| ≤
√

|y2
a(t0)| exp (−2γt) +

ε

γ
(1.45)

provided the following sufficient conditions hold

∥

∥Js

(

In − J+J
)∥

∥

2
> δ̄ (1.46)

and

ks1 >
1

δ̄δ2

(1.47)

where ε, γ, δ̄, δ2 ∈ R
+ are constants.

Proof. See Appendix A.

Remark 5 In the subsequent sub-sections, specific β (θ) functions will be designed

for different sub-task objectives. Each β (θ) is designed specifically to only depend on

θ (t) . For most of the sub-task objectives, the problem is set up to require that β (θ) > 0

which is achieved by keeping ya(t) < 1. From (1.45), it is clear that ya(t) < 1 if the

following inequality holds
√

|y2
a(t0)| +

ε

γ
< 1 (1.48)

which can be achieved through the selection of the robot manipulator’s initial con-

dition, control gains ks1, α, and bounding constants. For other sub-task objectives,

the problem is to maximize β (θ) as t → ∞ (minimize ya(t) as t → ∞). From the

result of Theorem 2 as seen in (1.45), a true maximization of β (θ) (minimization of

ya(t)) is not achieved. However, an increasing lower bound for β (θ) (an exponentially

decreasing upper bound for ya(t)) is achieved from (1.45).
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Remark 6 The four sub-task objectives as described in the subsequent sub-sections

are met only if the sufficient conditions as described by (1.46) and (1.47) are met.

These sub-task objectives are secondary to the tracking objective which is always guar-

anteed by Theorem 1. In the event that the sub-task controller attempts to force the

robot manipulator’s end-effector to take a path not allowed by the tracking controller,

the condition in (1.46) will not be met; hence, the result of Theorem 2 will not hold.

With this fact in mind, the formulation of the desired task-space trajectory and the

sub-task objectives require careful consideration to meet both the tracking and sub-task

objectives simultaneously.

Sub-Task 1: Singularity Avoidance

The objective for this sub-task is to keep the robot manipulator away from con-

figurations that result in singularities, and hence, decrease the manipulability of the

robot manipulator. For this sub-task, let β (θ) be defined as the manipulability mea-

sure of a robot manipulator given by the following definition [22]

β =
√

det [JJT ] (1.49)

where det [·] is the determinant of the 6 × 6 matrix J (θ) JT (θ) and β (θ) = 0 when

the robot is in a singular configuration. From (1.39), (1.45), (1.48), and (1.49), it is

clear that β (θ) > 0 ∀t, provided the sufficient conditions are met, hence meeting this

sub-task objective.

Sub-Task 2: Joint Limits

Joint limits are a mechanical constraint for almost all robot manipulators. In

(1.1), the joint angles represented by θi(t) ∈ R
+ ∀i = 1..n operate in the range of

θi ∈
[

θmin
i θmax

i

]

, where θmin
i , θmax

i ∈ R
+ are the minimum and maximum joint

limits for each joint, respectively. The objective for this sub-task is to keep each
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joint angle away from its respective joint limits, while executing the tracking control

objective. For this sub-task, the auxiliary signal β (θ) is defined as follows

β ,
n
∏

i=1

[(

1 − θi

θmax
i

)(

θi

θmin
i

− 1

)]

. (1.50)

From (1.50), it is clear that β (θ) > 0 as long as all joints are not at the joint limits.

From (1.39), (1.45), (1.48), and (1.50), it is clear that β (θ) > 0 ∀t, provided the

sufficient conditions are met, hence meeting this sub-task objective.

Sub-Task 3: Impact Force Configurations

For collision applications of robotic manipulators, the user often requires the abil-

ity to specify the impact force the end-effector makes with the environment. For

hammering, or chiseling applications, the user may want to maximize the impact

force, while in a medical application, the desire to have reduced collision force may be

necessary. To study these concepts, an impact force measure is defined as, F (t) ∈ R,

which can be written as follows [23]

F ,
− (1 + κ)ϑTη

ηTJM−1JTη
(1.51)

where κ ∈ R denotes the type of collision (κ is either zero or one), ϑ(t) ∈ R
3 is the

velocity vector for the two colliding bodies, and η(t) ∈ R
3 is a vector normal to the

plane of contact for the two colliding bodies, M (θ) ∈ R
n×n is the inertia matrix as

found in (1.1). Utilizing (1.51), impact force sub-task objectives can be defined to

either upper or lower bound the impact force with the environment.

Upper Bounding the Impact Force

The objective for this sub-task is to keep the robot manipulator away from pos-

tures that are “best” suited for impact with the environment for a given end-effector

velocity and point of contact, hence ϑ(t) and η(t) are predetermined and fixed. To this

end, β (θ) , is defined as the denominator of (1.51), and can be written as follows [23]

β = ηTJM−1JTη. (1.52)
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Large values of β (θ) indicate postures with small impact forces at the end-effector [23];

therefore, the goal of this sub-task is to force the manipulator into postures that

results in larger values of β (θ). From (1.39), (1.45), (1.48), and (1.52), it is clear that

β (θ(t)) > 0 ∀t, provided the sufficient conditions are met.

Withstanding Impacts

An alternate impact sub-task is to push the robot manipulator into postures that

are “best” suited to withstand impacts with the environment. For this case, let β (θ)

be defined as the dynamic impact measure given by the following definition [23]

β ,

√

det
[

(J+)T
M2J+

]

. (1.53)

Large values of β (θ) indicate postures with high impact forces at the end-effector [23];

therefore, the goal of this sub-task is to force the manipulator into postures that

results in larger values of β (θ) . From (1.39), (1.45), (1.48), and (1.53), it is clear that

β (θ(t)) > 0 ∀t, provided the sufficient conditions are met.

Remark 7 For the adaptive control paradigm, the constant parameters for the inertia

matrix M (θ) are not precisely known; therefore, estimates of these parameters must

be utilized in (1.52) and (1.53) in lieu of the actual values. The matrix inverse of the

estimate of M (θ) (i.e., M̂ (θ)) can be guaranteed through the use of a projection as

described in [24].

Sub-Task 4: Upper Bounding the Potential Energy

The objective for this sub-task is to keep the robot manipulator away from pos-

tures that result in an unnecessarily high level of potential energy. With the flexibility

inherent to redundant robots, a posture with less potential energy is more desirable,

thus providing an increase in system efficiency. The potential energy, µ(t) ∈ R, stored

in the manipulator can be defined as follows [22]

µ , −
n
∑

i=1

[

mlig
T
o Pli +mmig

T
o Pmi

]

(1.54)
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where mli, mmi ∀i = 1..n are the joint and rotor masses, respectively, Pmi (θ) ∈ R
3

is a vector from the origin of the base frame B to the center position of the rotor,

go ,
[

0 0 −g
]T

is the gravitational acceleration vector in the base frame where

g is the gravitational constant, and Pli (θ) ∈ R
3 is a vector described as follows [22]

Pli ,
1

mli

∫

Vli

P ∗
i ρdV (1.55)

where ρ ∈ R is the density of the elementary particle of volume dV, P ∗
i (θ) ∈ R

3 is

a vector from the origin of B to the center joint position. From (1.54) and (1.55), it

is clear that µ(t) is a function of θ(t) and by convention is always positive. For this

sub-task, the auxiliary signal ya(t) ∈ R is defined as follows

ya , µ (θ) . (1.56)

The goal is to force the manipulator to take postures with less potential energy.

From (1.45), (1.48), and (1.56), provided the sufficient conditions are met, it is clear

that by making the control gain ks1 large, γ is made large (See Appendix A), and

by examining (1.45), it is clear that the potential energy will have an exponentially

decreasing upper bounded.

Remark 8 For the adaptive control paradigm, the constant parameters for the rotor

and joint masses are not precisely known; therefore, estimates of these parameters

must be utilized in (1.54) and (1.55) in lieu of the actual values as discussed in

Remark 7.

Simulation Results

To illustrate the performance of the tracking and sub-task controller presented

above, a simplified kinematic simulation was completed for a planar 3-joint revolute

robot. This robot is redundant because there are 3 joints in a 2 dimensional task-

space. For the simulation, a feedback linearization controller was utilized, and hence
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the adaptation mechanism was not required1. Specifically, the following dynamic

model was utilized

M (θ) θ̈ +N
(

θ, θ̇
)

= τ (1.57)

where θ̈(t), τ(t) ∈ R
3, the inertia matrix M (θ) ∈ R

3×3 is defined as follows

M (θ) =





M11 M12 M13

M12 M22 M23

M13 M23 M33





where
M11 = p1 + 2p4c2 + 2p5c23 + 2p6c3 M22 = p2 + 2p6c3
M12 = p2 + p4c2 + p5c23 + 2p6c3 M23 = p2 + p6c3
M13 = p2 + p5c23 + p6c3 M33 = p3

where p1 = 1.2746 [kg·m2], p2 = 0.3946 [kg·m2], p3 = 0.0512 [kg·m2], p4 = 0.4752

[kg·m2], p5 = 0.128 [kg·m2], p6 = 0.1152 [kg·m2] and c2 , cos(θ2), c3 , cos(θ3), and

c23 , cos (θ2 + θ3) , N
(

θ, θ̇
)

∈ R
3 represents the centripetal-Coriolis, gravitational

and frictional effects. For the potential energy simulations given below, the gravi-

tational effects G(θ) =
[

G1(θ) G2(θ) G3(θ)
]T

where G1(θ), G2(θ), G3(θ) ∈ R are

defined as follows

G1(θ) =
1

2
ml1gl1c1 +ml2g(l1c1 +

1

2
l2c12) +ml3g(l1c1 + l2c12 +

1

2
l3c123)

G2(θ) =
1

2
ml2gl2c12 +ml3g(l2c12 +

1

2
l3c123)

G3(θ) =
1

2
ml3gl3c123

where the center of mass is at the midpoint of each joint, and was selected as follows:

ml1 = 3.6 [kg], ml2 = 2.6 [kg], and ml3 = 2 [kg], the joint lengths were selected as

follows: ℓ1 = 0.40 [m], ℓ2 = 0.36 [m], and ℓ3 = 0.32 [m], the gravitational constant

1A feedback linearization controller was utilized, as opposed to an adaptive controller, to more
clearly illustrate the performance of the sub-task objective.
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was selected as follows: g = 9.8 [ m
sec2 ], and c1 , cos(θ1), c12 , cos(θ1 + θ2), c123 ,

cos (θ1 + θ2 + θ3) , s1 , sin(θ1), s12 , sin(θ1 + θ2), and s123 , sin (θ1 + θ2 + θ3) .

Feedback linearization can be used to linearize (1.57) as follows

M (θ)Uc +N
(

θ, θ̇
)

= τ (1.58)

where Uc(t) ∈ R
3 is the inner loop control input. After substituting (1.58) into (1.57),

we have

θ̈ = Uc. (1.59)

The task-space is defined by x(t) ∈ R
2, where x(t) ,

[

x1(t) x2(t)
]T
, and x1(t),

x2(t) ∈ R are scalar euclidean coordinates. The planar 3-joint robot has the following

forward kinematics for the end-effector
[

x1

x2

]

,

[

ℓ1c1 + ℓ2c12 + ℓ3c123
ℓ1s1 + ℓ2s12 + ℓ3s123

]

(1.60)

and the manipulator Jacobian

J(q) ,

[

−ℓ1s1 − ℓ2s12 − ℓ3s123 −ℓ2s12 − ℓ3s123 −ℓ3s123
ℓ1c1 + ℓ2c12 + ℓ3c123 ℓ2c12 + ℓ3c123 ℓ3c123

]

(1.61)

The elimination of the dynamics and rotational tracking requirement simplifies

the control problem, therefore it is necessary to redefine some key terms to establish

a simplified closed-loop error system. The position tracking error signal e(t) ∈ R
2

can now be defined as follows

e , xd − x (1.62)

where the desired trajectory xd(t) ∈ R
2 is generated by the following bounded dy-

namic system
[

ẋd1

ẋd2

]

,

[

−0.05 sin (0.1t)

0.004 (cos (0.1t))2 − 0.004 (sin (0.1t))2

]

(1.63)

and can be seen in Figure 1.1.

The auxiliary control input ud(t) as defined in (1.32) can be simplified as follows

ud , J+ (Kse+ ẋd) +
(

I3 − J+J
)

h ∈ R
3 (1.64)
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where Ks ∈ R
2×2 is a positive-definite, diagonal, control gain matrix. The inner loop

control input is defined as follows

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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X
d1
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X
d
2
(t

) 
[m

]

Figure 1.1 Desired task-space trajectory.

Uc , kor + u̇d + JT e (1.65)

where ko ∈ R
+is a positive control gain. The simplified closed-loop error system can

now be written as follows

ṙ = −kor − JT e. (1.66)

To demonstrate the performance of all the sub-task controllers, a different simulation

was completed for each sub-task. The initial conditions for the robot manipulator

in each sub-task were intentionally selected to make β (θ(t0)) ≈ 0 (i.e. maximize

ya(t0)) to demonstrate that (1.45) holds for each simulation run. In the case of the

potential energy sub-task, the initial conditions for the robot manipulator was selected

to maximize µ(t0).

Singularity Avoidance

To demonstrate the sub-task controller’s performance for singularity avoidance as

described by (1.39), (1.43) and (1.49), the robot manipulator was initially at rest at
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the following joint positions (i.e. β (θ(t0)) ≈ 0):

θ(t0) =
[

0.45[rad] 0.0[rad] 3.1[rad]
]T

with the gains selected as follows

Ks = diag{2, 2}, k0 = 2, ks1 = 1 and α = 4

where diag{·} denotes a diagonal matrix with arguments along the diagonal. Both the

tracking and singularity avoidance sub-task were successfully demonstrated, and can

be seen by the following figures: the manipulability measure β (θ) and the tracking

error can be seen in Figures 1.2 and 1.3, respectively.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

Time [sec]

β
(θ

)

Figure 1.2 Manipulability Measure

Joint Limits

To demonstrate the sub-task controller’s performance for joint limit avoidance as

described by (1.39), (1.43), and (1.50), the robot manipulator was initially at rest at

the following joint positions (i.e. β (θ(t0)) = 0):

θ(t0) =
[

0.5[rad] 1.5[rad] 3.5[rad]
]T
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Figure 1.3 Tracking Error (Manipulability sub-task)

with the gains selected as follows

Ks = diag{1, 4}, k0 = 8, ks1 = 1 and α = 1.

The joint limits were set to the following values

θmin
1 = θmin

2 = 0.5[rad] and θmin
3 = 0.1[rad]

θmax
1 = θmax

2 = 2[rad] and θmax
3 = 6[rad].

Both the tracking and joint limits sub-task were successfully demonstrated and can

be seen by the following figures: the auxiliary signal β (θ) and the tracking error can

be seen in Figures 1.4 and 1.5, respectively.

Impact Force Configurations

Upper Bounding the Impact Force

To demonstrate the sub-task controller’s performance for upper bounding the

impact force as described by (1.39), (1.43) and (1.52), the robot manipulator was

initially at rest at the following joint positions:

θ(t0) =
[

0.45[rad] 0.0[rad] 2.9[rad]
]T

(1.67)
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Figure 1.4 β (θ) for Joint Limits Avoidance Sub-Task

with the gains selected as follows

Ks = diag{4, 4}, k0 = 3, ks1 = 1 and α = 8.

The initial conditions as described in (1.67) places the robot in a configuration re-

sulting in β (θ(t0)) ≈ 0, (i.e. a configuration with a high impact force potential). For

this simulation, a plane of contact that is always perpendicular to x1axis is assumed,

so η(t) =
[

1 0
]T

and is fixed. Although contact is never made, the sub-task con-

troller works to place the robot in a configuration with less impact force potential

(i.e. β (θ(t)) > β (θ(t0))). Both the tracking and upper bounding the impact force

sub-task were successfully demonstrated and can be seen by the following figures: the

denominator of (1.51) which was defined as β (θ) and the tracking error can be seen

in Figures 1.6 and 1.7, respectively.

Withstanding Impacts

To demonstrate the sub-task controller’s performance for withstanding impacts as

described by (1.39), (1.43) and (1.53), the robot manipulator was initially at rest at
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Figure 1.5 Tracking Error (Joint Limits Avoidance Sub-Task)

the following joint positions:

θ(t0) =
[

0.1[rad] 1.7[rad] 4.5[rad]
]T

(1.68)

with the gains selected as follows

Ks = diag{1, 1}, k0 = 4, ks1 = 1 and α = 1.

The initial conditions as described in (1.68) places the robot in a configuration with

a high impact force potential. For this simulation, a plane of contact that is always

perpendicular to desired trajectory is assumed. Although contact is never made, the

sub-task controller works to place the robot in a configuration with greater impact

force potential (i.e. β (θ(t)) > β (θ(t0))). Both the tracking and withstanding impacts

sub-task were successfully demonstrated and can be seen by the following figures: the

withstanding impacts measure β (θ) and the tracking error can be seen in Figures 1.8

and 1.9, respectively.

Upper Bounding the Potential Energy

To demonstrate the sub-task controller’s performance for upper bounding the

potential energy as described by (1.43) and (1.56), the robot manipulator was initially
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Figure 1.6 β (θ) for Upper Bounding the Impact Force Sub-Task

at rest at the following joint positions:

θ(t0) =
[

1.57[rad] 0.1[rad] 0.48[rad]
]T

with the gains selected as follows

Ks = diag{1, 1}, k0 = 2 and ks1 = 1.

Both the tracking and upper bounding the potential energy sub-task were successfully

demonstrated and can be seen by the following figures: the potential energy measure

µ (θ) and the tracking error can be seen in Figures 1.10 and 1.11, respectively.

Conclusion

This work utilized an adaptive full-state feedback quaternion based controller de-

veloped in [1] and focused on the design of a general sub-task controller. This general

sub-task controller was developed as to not affect the tracking control objective, and

allows for the design of specific sub-task objectives. Four specific sub-tasks were

designed as follows: singularity avoidance, joint-limit avoidance, bounding the im-

pact forces, and bounding the potential energy. Simulation results are presented that

demonstrates both the tracking and sub-task objectives were met simultaneously.
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Figure 1.7 Tracking Error (Upper Bounding the Impact Force Sub-Task)
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Figure 1.8 β (θ) for Withstanding Impacts Sub-Task
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Figure 1.9 Tracking Error (Withstanding Impacts Sub-Task)
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Figure 1.10 µ (θ) for Upper Bounding the Potential Energy Sub-Task
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Figure 1.11 Tracking Error (Upper Bounding the Potential Energy Sub-Task)
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CHAPTER 2

COORDINATION CONTROL

FOR HAPTIC AND TELEOPERATOR SYSTEMS

Introduction

For the purposes of this research, the following definitions are made. A teleoper-

ator system enables a user to execute a remote task with an output system (i.e., a

slave system) operating in a physical environment by manipulating an input system

(i.e., a joystick or a master system) while providing feedback on the input system. A

haptic system is similar to a teleoperator system with the exception that the slave

system operates in a virtual environment. Some common application areas for teleop-

erator and haptic systems include handling hazardous materials, maneuvering mobile

robots, underwater vehicles, and microsurgery in either a physical or a virtual envi-

ronment. The operator’s ability to accurately complete these tasks is affected by the

transparency of the teleoperator or haptic system. Tactile and force feedback from

the system controller along with assistive mechanisms greatly increase the user’s per-

formance in completing the desired task [25]. Tactile and force feedback provides the

user of the system with a sense of feel or sense of telepresence [26] of what the slave

system is experiencing in either a physical or a virtual environment. Assistive mech-

anisms can be integrated into the system controller in various ways. One example,

which will be discussed further in subsequent sections of this chapter, is the encoding

of a tracking objective in the master system that assists the user in completing a pre-

defined task (i.e., consider a teleoperator grinding application where the remote user

controls the slave system to track a repeated circular path to complete the desired

task).

Both the teleoperator and/or haptic problem are theoretically challenging due

to issues that impact the user’s ability to impart a desired motion on the remote

environment while maintaining a sense of feel through the system controller. This

28



problem is further complicated due to the fact that master system apparent inertia is

normally very different than that of the slave system that is operating in the remote

environment, be it physical or virtual. If the apparent inertia of the master system

could be adjusted by the system controller to appear like that of the slave systems, the

operator’s sense of telepresence would be achieved, hence, increasing the user’s ability

to operate the slave system. To address the above control objective, commercially

available haptic systems come in two distinct classes: impedance controlled devices,

and admittance controlled devices [27]. Both classes have advantages/disadvantages

depending on the application, see [25] and [27] for more details.

The focus of some of the previous teleoperator system research has been to achieve

ideal transparency between the environment and the user. In [28], Hannaford modeled

the teleoperator system as a two-port network where an estimate of the impedance

of the slave system is required to achieve transparency. In [29], a priori knowledge of

the environmental inputs to the slave system is required to achieve the transparency

control objective. Controllers aiming at low-frequency transparency were suggested

in [30], [31], and [32]. Frequency-based control designs given in [28], [29], [30], [31], and

[32] are for linear teleoperator systems. The concept of the four-channel architecture,

which assumes knowledge of system impedances was introduced by the authors of [31]

and [33]. To overcome parametric uncertainties, common in teleoperator systems,

adaptive controllers were developed in [34], [35], [36], [37], [38], and [39].

Other research has focused on maintaining safe and stable operation of the teleop-

erator system through passivity concepts. In [40], Anderson and Spong transformed

the time delay problem of the teleoperator system into a transmission line problem

and presented a controller for the communication circuit that guarantees passivity

of the teleoperator system independent of time delay present in the communication

block. In [41], Niemeyer and Slotine extended the results in [40], and introduced

wave-variables formulation to represent transmission delays, which results in a new

configuration for force-reflecting teleoperation. These results were then extended to
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solve the position tracking problem where [42] and [43] provided a solution when

the time delay is constant and [44] provided a solution when the time delay is time-

varying. In [45], a passive decomposition for linear dynamically similar systems is

introduced. In [46], Lee and Li extended these results to define a nonlinear decom-

position which achieves passivity of the master and the slave robots by decomposing

the closed-loop teleoperator system into two sub-systems. The reader is referred

to [47], [48], and [49] for improvements of passive decomposition. In [50] and [51],

Lee suggested a controller for a master and multiple cooperative slave robots over a

communication network in the presence of a time delay. In [52], Hannaford and Ryu

proposed a passivity based model-insensitive approach that measures the total energy

of the system and damps excess energy by injecting a variable damping, which was

then extended in [53].

In this chapter, the work in [54] is extended so that it is applicable for the control

of both teleoperator and haptic systems. Two controllers are developed for nonlinear

haptic and teleoperator systems that target coordination of the master and slave.

The first controller is proven to yield a semi-global asymptotic result in the presence

of parametric uncertainty in the master and slave dynamic models provided the user

and environmental input forces are measurable; henceforth, referred to as the MIF,

(measurable input force) controller. The second controller yields a global asymptotic

result despite unmeasurable user and environmental input forces (UMIF) provided the

dynamic models of the master and slave systems are known. This development differs

from [54], in that the transformation and target system development are both modified

to allow the master system’s impedance, felt by the user, to be adjusted so that it

closely matches that of a desired target system operating in a remote environment.

This work also provides the encoding of a velocity field assist mechanism to provide the

user help in controlling the slave system in completing a pre-defined contour following

task. To achieve these control objectives, a continuous nonlinear integral feedback

controller/observer (see [55] and [56]) is exploited to compensate for the lack of master
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and slave dynamics information or user and environmental force measurements. For

each controller, Lyapunov-based techniques are used to prove that the controller

development implements a stable coordinated haptic/teleoperator system with the

optional assist mechanism enabled. When this mechanism is disabled, the subsequent

analysis proves the controller development implements a stable passively coordinated

haptic/teleoperator system. The passivity objective is motivated to ensure the safety

of the user and the environment when in contact with the haptic/teleoperator system.

Simulation results are presented for proof of concept for both controllers.

System Model

The mathematical model for a 2n-DOF nonlinear haptic/teleoperator system con-

sisting of a revolute n-DOF master and a revolute n-DOF slave system are assumed

to have the following forms

M1 (xm) ẍm +N1 (xm, ẋm) = T1 + FH (2.1)

M2 (xs) ẍs +N2 (xs, ẋs) = T2 + FE . (2.2)

In (2.1) and (2.2), xm (t), ẋm (t), ẍm (t) ∈ R
n denote the task-space position, velocity,

and acceleration for the master system and xs (t), ẋs (t), ẍs (t) denote the task-space

position, velocity, and acceleration for the slave system, M1 (xm), M2 (xs) ∈ R
n×n

represent the inertia effects, N1 (xm, ẋm), N2 (xs, ẋs) ∈ R
n represent other dynamic

effects, T1 (t), T2 (t) ∈ R
n represent the control input vectors, FH (t) ∈ R

n represents

the user input force, and FE (t) ∈ R
n represents the input force from the physical or

virtual environment. End-effector positions xm (t) and xs (t) can be decomposed as

follows

xm ,
[

xT
mp xT

mr

]T
xs ,

[

xT
sp xT

sr

]T

where xmp (t) , xsp (t) ∈ R
p represent position vectors and xmr (t) , xsr (t) ∈ R

r rep-

resent orientation angle vectors, where the integers p and r satisfy p + r = n. The
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subsequent development utilizes the property that the master and slave inertia ma-

trices are positive definite, symmetric and satisfies the following inequalities [15]

m1i ‖ξ‖2 ≤ ξTMi (·) ξ ≤ m2i ‖ξ‖2 (2.3)

∀ξ ∈ R
n and i = 1, 2 where m1i, m2i ∈ R are positive constants, and ‖·‖ denotes

the Euclidean norm. To achieve the control objectives, the subsequent development

is derived based on the assumption that xm (t), xs (t), ẋm (t), ẋs (t) are measurable,

and Mi (·), Ni (·) are second order differentiable for i = 1, 2.

Assumption 1 The user input force and the environmental force along with their

first and second time derivatives, FH (t), ḞH (t), F̈H (t), FE (t), ḞE (t), and F̈E (t) are

bounded (see [45] and [46] for the precedence of this type of assumption).

Measurable Input Forces (MIF) Control Development

For the MIF controller development, the following analysis will prove a semi-global

asymptotic result despite parametric uncertainty in the master and slave system dy-

namic models provided the user and the physical or virtual environmental input forces

are measurable. It should be noted that for many types of virtual slave systems, the

dynamic model of the virtual slave is known a priori ; however; unstructured uncer-

tainties in the dynamic model are common for teleoperator slave systems.

Control Objective and Model Transformation

A control objective for haptic and teleoperator systems is to ensure the coordina-

tion between the master and the slave systems and to meet the tracking objective in

the following sense

xs (t) → xm (t) as t→ ∞ (2.4)

xm (t) → ξd (t) as t→ ∞ (2.5)
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where ξd (t) ∈ R
n is a subsequently designed desired trajectory. Another sub-control

objective is to guarantee that the closed-loop system remains passive with respect to

the user and the physical/virtual environmental power in the following sense [46]

∫ t

t0

(

ẋT
m (τ)FH (τ) + ẋT

s (τ )FE (τ)
)

dτ ≥ −c21 (2.6)

where c1 ∈ R is a bounding constant. The passivity objective is motivated to ensure

the safety of the user and the physical environment [46]. The final objective is that

all signals are required to remain bounded within the closed-loop system. It should

be noted that, the passivity objective is not met when the subsequently presented

user assist mechanism is enabled.

To facilitate the subsequent development, an invertible transformation is defined

that encodes the control objectives as follows

x , S
[

xT
m xT

s

]T
(2.7)

where x (t) ∈ R
2n and S ∈ R

2n×2n is defined as follows

S ,

[

In 0nxn

In −In

]

(2.8)

where In ∈ R
n×n denotes the identity matrix, 0nxn ∈ R

n×n denotes a matrix of zeros,

and it is noted that S−1 = S. After utilizing the transformation defined in (2.7), the

dynamic models of the haptic/teleoperator systems given in (2.1) and (2.2) can be

combined as follows

M̄ẍ+ N̄ = T̄ + F̄ (2.9)

where N̄ (x, ẋ), T̄ (t), F̄ (t) ∈ R
2n and M̄ (x) ∈ R

2n×2n are defined as follows

M̄ , S−T

[

M1 0nxn

0nxn M2

]

S−1 (2.10)

N̄ , S−T
[

NT
1 NT

2

]T
(2.11)

T̄ , S−T
[

T T
1 T T

2

]T
(2.12)

F̄ , S−T
[

F T
H F T

E

]T
. (2.13)
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The subsequent development utilizes the property that M̄ (x) is positive definite,

symmetric and satisfies the following inequalities [15]

m̄1 ‖ξ‖2 ≤ ξTM̄ (x) ξ ≤ m̄2 ‖ξ‖2 (2.14)

∀ξ ∈ R
2n where m̄1, m̄2 ∈ R are positive constants. By utilizing the assumption that

Mi (·), Ni (·) are second order differentiable for i = 1, 2, it is clear that M̄ (·) and

N̄ (·) are also second order differentiable.

To facilitate the development of the error system, the filtered tracking error signal,

denoted by r (t) ∈ R
2n, is defined as follows

r , ė2 + α1e2 (2.15)

where e2 (t) ∈ R
2n is defined as follows

e2 , ė1 + α2e1 (2.16)

where α1, α2 ∈ R are positive control gains, and e1 (t) ∈ R
2n is defined as follows

e1 , xd − x. (2.17)

The error signal e1 (t) can be decomposed as follows

e1 ,
[

eT
11 eT

12

]T
(2.18)

where e11 (t) ∈ R
n represents the master system tracking error, and e12 (t) ∈ R

n

represents the coordination error. In (2.17), xd (t) ∈ R
2n is defined as follows

xd ,
[

ξT
d 0T

n

]T
(2.19)

where 0n ∈ R
n denotes a vector of zeros. Based on the definition of x (t) in (2.7) and

e1 (t) in (2.17), it is clear that if ‖e1 (t)‖ → 0 then xs (t) → xm (t) and xm (t) → ξd (t) .

The desired trajectory ξd (t) introduced in (2.5) is generated by the following

second-order coupled dynamic target system

ξ̇d = γ
[

ϕT
(

ξp

)

0T
r

]T
+ ηd (2.20)
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MT η̇d +BT ηd +KTλd = F (2.21)

where ηd (t) ∈ R
n is an auxiliary filter signal, MT , BT , KT ∈ R

n×n are constant

positive definite, diagonal matrices, ϕ (·) ∈ R
p is a velocity field function [57] that

encodes the user assist mechanism, 0r ∈ R
r denotes a vector of zeros, γ is a constant

gain that is either 0 or 1. It should be noted that, when γ = 0, the user assist

mechanism is disabled, and when γ = 1, then the user assist mechanism is enabled.

In (2.21), F (t) ∈ R
n is defined as follows

F , FH + FE . (2.22)

Also, in (2.21) the term λd (t) ∈ R
n is defined as follows

λd , ξd − γ

[

t
∫

t0

ϕT
(

ξp (τ )
)

dτ 0T
r

]T

(2.23)

where ξd (t) is generated by the differential equation of (2.20), and can be decomposed

as follows

ξd ,
[

ξT
p ξT

r

]T
(2.24)

where ξp (t) ∈ R
p represents a position vector, and ξr (t) ∈ R

r represents an orienta-

tion angle vector.

Remark 1 Velocity fields have been utilized in previous control literature, see [57]

and [58] for their definition and application. The velocity field function in (2.20)

is integrated to assist the user in executing a remote task (i.e., tracking a circular

contour). It is assumed that the velocity field function is designed such that ϕ (·),
ϕ̇ (·), ϕ̈ (·) and

...
ϕ (·) are bounded provided that their arguments are bounded.

Remark 2 The velocity field function ϕ (·) is assumed to be designed such that, from

(2.20), if ηd (t) ∈ L∞ then ξd (t), ξ̇d (t) ∈ L∞. Based on this assumption and the

analysis in Appendix B, it is easy to show that all signals in dynamic target system

given in (2.20) and (2.21) are bounded, and that the higher order derivatives are also

bounded.
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Remark 3 It should be noted that, when the user assist mechanism is disabled, (i.e.,

γ = 0) the target system defined by (2.20) and (2.21), becomes a standard impedance

model as follows

MT ξ̈d +BT ξ̇d +KT ξd = F. (2.25)

Closed-Loop Error System

Based on the assumption that the user forces FH (t) , and the physical/virtual en-

vironmental forces FE (t) , are measurable, the control input T̄ (t) of (2.9) is designed

as follows

T̄ , ū− F̄ (2.26)

where ū (t) ∈ R
2n is a subsequently designed auxiliary control input. Substituting

(2.26) into (2.9) results in the following simplified dynamic system

M̄ẍ+ N̄ = ū. (2.27)

After taking the time derivative of (2.15) and premultiplying by M̄ (x), the following

expression can be derived

M̄ṙ = M̄
...
xd +

.

M̄
..
x +

.

N̄ −
.
ū +α2M̄ ë1 + α1M̄ ė2 (2.28)

where (2.16), (2.17), and the time derivative of (2.27) were utilized. To facilitate the

subsequent analysis, the expression in (2.28) can be arranged as follows

M̄ ṙ = Ñ +Nd − e2−
.
ū −1

2

.

M̄ r (2.29)

where Ñ (x, ẋ, ẍ, t) ∈ R
2n is defined as follows

Ñ , N −Nd (2.30)

where N (x, ẋ, ẍ, t) ∈ R
2n is defined as follows

N , M̄
...
xd +

.

M̄ ẍ+ α2M̄ë1 + α1M̄ ė2 + e2+
.

N̄ +
1

2

.

M̄ r (2.31)
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and Nd (t) ∈ R
2n is defined as follows

Nd , N |x=xd, ẋ=ẋd, ẍ=ẍd
(2.32)

= M̄ (xd)
...
xd +

.

M̄ (xd) ẍd+
.

N̄ (xd, ẋd) .

Remark 4 After utilizing (2.19), (2.32) and the fact that we show in Appendix B,

then ‖Nd (t)‖ and
∥

∥

∥
Ṅd (t)

∥

∥

∥
can be upper bounded as follows

‖Nd (t)‖ ≤ ς1

∥

∥

∥
Ṅd (t)

∥

∥

∥
≤ ς2 (2.33)

where ς1, ς2 ∈ R are known positive constants.

To achieve the stated control objectives, the auxiliary control input ū (t) intro-

duced in (2.26) is designed as follows

ū , (ks + 1)

[

e2 (t) − e2 (t0) + α1

∫ t

t0

e2 (τ ) dτ

]

+ (β1 + β2)

∫ t

t0

sgn (e2 (τ )) dτ (2.34)

where ks, β1, β2 ∈ R are positive control gains, and sgn (·) denotes the vector signum

function. The term e2 (t0) in (2.34) is used to ensure that ū (t0) = 02n where 02n ∈ R
2n

denotes a vector of zeros. The time derivative of (2.34) is obtained as follows

.
ū= (ks + 1) r + (β1 + β2) sgn (e2) (2.35)

where (2.15) was utilized. Substituting (2.35) into (2.29) results in the following

closed-loop error system

M̄ ṙ = − (ks + 1) r − (β1 + β2) sgn (e2) + Ñ +Nd − e2 −
1

2

.

M̄ r. (2.36)
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Stability Analysis

Theorem 3 The controller given in (2.26) and (2.34) guarantees that all the system

signals are bounded under the closed-loop operation and that coordination between the

master and the slave systems, and the tracking objective are met in the sense that

xs (t) → xm (t) as t→ ∞ (2.37)

xm (t) → ξd (t) as t→ ∞ (2.38)

provided the control gain β1 introduced in (2.34) is selected to satisfy the following

sufficient condition

β1 > ς1 +
1

α1
ς2 (2.39)

where ς1 and ς2 were introduced in (2.33), the control gains α1 and α2 are selected

greater than 2, and ks is selected sufficiently large relative to the system’s initial

conditions.

Proof. See Appendix C.

Theorem 4 The controller given in (2.26) and (2.34) guarantees the closed-loop sys-

tem is passive with respect to the user and the physical/virtual environmental power

when the user assist mechanism is disabled (i.e., γ = 0).

Proof. See Appendix D.

MIF Controller Simulation Results

A numerical simulation was performed to demonstrate the performance of the

MIF controller given in (2.26) and (2.34). A 2-link, revolute robot dynamic model

was utilized for both the master and slave systems [59] where Mi (·) and Ni (·) are

defined as follows

Mi =

[

3.12 + 2 sin (qi2) 0.75 + sin (qi2)
0.75 + sin (qi2) 0.75

]

(2.40)

Ni =

[

sin (qi2) q̇i2 sin (qi2) (q̇i1 + q̇i2)
− sin (qi2) q̇i1 0

] [

q̇i1
q̇i2

]
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where i = 1 denotes the master system and i = 2 denotes the slave system. By

utilizing the forward kinematics [59], the task-space dynamic model is used in the

simulation. The task-space user and environmental input forces were set equal to the

following time-varying signals

FH =

[

− sin(t)
− cos(t)

]

FE =

[

−0.18ẋs1 − 0.3xs1

−0.18ẋs2 − 0.3xs2

]

. (2.41)

The target system, described by (2.20) and (2.21), is defined as follows

ξ̇p = γϕ
(

ξp

)

+ ηd (2.42)

MT

[

η̇dx

η̇dy

]

= FH + FE (2.43)

where MT = I2 where I2 ∈ R
2×2 denotes the identity matrix and the terms BT ,

and KT are selected to be zero. The following planar task-space velocity field was

utilized [58]

ϕ
(

ξp

)

, −2K
(

ξp

)

f
(

ξp

)

ξp + 2c
(

ξp

)

[

−ξpy

ξpx

]

(2.44)

where ξp =
[

ξpx ξpy

]T
is the desired end-effector position, and f (·) , K (·) , c (·) ∈ R

are defined as follows

f
(

ξp

)

, ξ2
px + ξ2

py − r2
o (2.45)

K
(

ξp

)

, ko

(

√

f 2
(

ξp

)

∥

∥

∥

∥

∥

∂f
(

ξp

)

∂ξp

∥

∥

∥

∥

∥

+ ǫ

)−1

c
(

ξp

)

,
co exp

(

−µ
√

f 2
(

ξp

)

)

∥

∥

∥

∥

∂f(ξp)
∂ξp

∥

∥

∥

∥

.

In (2.45), ro = 1 [m] denotes the circle radius, ko = 3 [ms−1] , ǫ = 0.005 [m3] , co = 0.25

[ms−1] , and µ = 20 [m−1] were selected for the simulation. For the simulation, the

user assist mechanism is enabled, hence, γ = 1. The controller gains are selected as

ks = 100, β1 + β2 = 100, and α1 = α2 = 2.

In Figure 2.1, the desired end-effector position ξp (t) is presented when the user

assist mechanism is disabled (i.e., γ = 0) where the environmental force vector FE (t)
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is assumed to be zero. From Figure 2.1, it is clear that the user can create a circular

desired trajectory. For the remaining simulation runs, environmental force vector

FE (t) is set to be a spring-like input force vector, as defined in (2.41). The desired

end-effector position ξp (t) , when the user assist mechanism is disabled (i.e., γ = 0)

and when the user assist mechanism is enabled (i.e., γ = 1) are presented Figure 2.2.

From Figure 2.2, it is clear that the user can not create a circular desired trajectory

in the presence of the environmental input force. When the user assist mechanism is

enabled (i.e., γ = 1), then the user can create a circular desired trajectory even in

the presence of environmental force. The end-effector positions for the master and

the slave systems are given in Figures 2.3 and 2.4, respectively. The master system

tracking error e11 (t) and coordination error e12 (t) are presented in Figures 2.5 and

2.6, respectively. From Figures 2.5 and 2.6, it is clear that tracking and coordination

control objectives defined in (2.4) and (2.5), are met. The control inputs for the

master system T1 (t) and the slave system T2 (t) are provided in Figures 2.7 and 2.8,

respectively.
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Figure 2.1 The desired end-effector position ξp (t) when the user assist mechanism is
disabled (i.e., γ = 0) and the environmental input force FE (t) is assumed to be zero

Un-measurable Input Forces (UMIF) Control Development

For the UMIF controller development, the following analysis will prove a global

asymptotic result despite unmeasurable user and environmental input forces provided
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Figure 2.2 Desired End-Effector Position ξp (t)
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Figure 2.3 Master System End-Effector Position xm (t) when the user assist
mechanism is enabled (i.e., γ = 1)

the dynamic models of the master and slave systems are known. Assumption 1 is also

utilized for the subsequent development. It should be noted that, for many types of

virtual slave systems, the virtual environmental forces are measurable; however, the

user input force may not be measurable.

Control Objective and Model Transformation

A control objective for haptic and teleoperator systems is to guarantee coordina-

tion between the master and the slave systems and to meet the tracking objective in
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Figure 2.4 Slave System End-Effector Position xs (t) when the user assist
mechanism is enabled (i.e., γ = 1)

the following sense

xs (t) → xm (t) as t→ ∞ (2.46)

xm (t) → ξ1 (t) as t→ ∞ (2.47)

where ξ1 (t) ∈ R
n is a subsequently designed desired trajectory. Another sub-control

objective is to guarantee that the system remains passive with respect to the user and

the environmental power as in (2.6). It should be noted that the passivity objective

is not met when the user assist mechanism is enabled. The final objective is that all

signals are required to remain bounded within the closed-loop system.

To facilitate the subsequent development, an invertible transformation is defined

that encodes the control objectives as follows

x , S

[

xm

xs

]

+

[

0n

ξ2

]

(2.48)

where x (t) ∈ R
2n and ξ2 (t) ∈ R

n is a subsequently defined desired trajectory, and

S ∈ R
2n×2n was defined in (2.8). After utilizing the transformation defined in (2.48),

the dynamic models of the haptic/teleoperator system given in (2.1) and (2.2) can be
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Figure 2.5 Master System Tracking Error e11 (t) when the user assist mechanism is
enabled (i.e., γ = 1)

combined as follows

M̄ẍ− M̄

[

0n

ξ̈2

]

+ N̄ = T̄ + F̄ (2.49)

where M̄ (x), N̄(x, ẋ), T̄ (t), and F̄ (t) were defined in (2.10)-(2.13).

The filtered tracking error signal denoted by r (t) ∈ R
2n is defined as follows

r , ė2 + e2 (2.50)

where e2 (t) ∈ R
2n is defined as follows

e2 , M̄ (ė1 + αe1) (2.51)

where α ∈ R is a positive control gain, and e1 (t) ∈ R
2n is defined as follows

e1 , ξd − x (2.52)

where ξd (t) is a subsequently defined desired trajectory. The error signal e1 (t) can

be decomposed as follows

e1 ,
[

eT
11 eT

12

]T
(2.53)

where e11 (t) ∈ R
n represents the master system tracking error, and e12 (t) ∈ R

n

represents the coordination error.

43



0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

[m
]

Link 1

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5
[m

]

Time [sec]

Link 2

Figure 2.6 Coordination Error e12 (t) when the user assist mechanism is enabled
(i.e., γ = 1)

To compensate for the unmeasurable user and physical/virtual environmental

forces, a nonlinear force observer is designed subsequently. This nonlinear observer is

utilized in driving the target system, thus requiring a 2n-dimensional system. As a

result of this fact, the desired trajectory, defined as ξd (t) ∈ R
2n, is generated by the

following second order coupled dynamic target system2

ξ̇d = γ
[

ϕT
(

ξ1p

)

0T
s

]T
+ ηd (2.54)

MT η̇d +BT ηd +KTλd =
(

M̄M−1
T

)−1
F̂ (2.55)

where ηd (t) ∈ R
2n is an auxiliary filter signal, M̄ (x) was defined in (2.10), MT , BT

and KT ∈ R
2n×2n represent constant, positive definite, diagonal matrices, F̂ (t) ∈ R

2n

is a subsequently designed nonlinear observer, ϕ (·) ∈ R
p was introduced (2.20),

0s ∈ R
s denotes a vector of zeros where s + p = 2n, and γ is a constant gain that

is either 0 or 1. It should be noted that, when γ = 0, the user assist mechanism is

disabled, and when γ = 1, then the user assist mechanism is enabled. In (2.55), the

2For the existence of
(

M̄M−1
T

)

−1
see Appendix H.

44



0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

[N
m

]

Link 1

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20
[N

m
]

Time [sec]

Link 2

Figure 2.7 Control Input for Master System T1 (t) when the user assist mechanism is
enabled (i.e., γ = 1)

term λd (t) ∈ R
2n is defined as follows

λd , ξd − γ

[

t
∫

t0

ϕT
(

ξ1p (τ)
)

dτ 0T
s

]T

(2.56)

where ξd (t) ,
[

ξT
1 ξT

2

]T
is generated by the differential equation given in (2.54)

where ξ1 (t) , ξ2 (t) ∈ R
n. The desired trajectory for the master system denoted by

ξ1 (t), can be decomposed as follows

ξ1 ,
[

ξT
1p ξT

1r

]T
(2.57)

where ξ1p (t) ∈ R
p represents a position vector, and ξ1r (t) ∈ R

r represents an orien-

tation angle vector.

Remark 5 The velocity field function ϕ (·) is assumed to be designed such that, from

(2.54), if ηd (t) ∈ L∞ then ξd (t), ξ̇d (t) ∈ L∞. Subsequent analysis will prove that

F̂ (t) ∈ L∞. After utilizing these facts along with (2.14), the analysis in Appendix G

proves that all signals in the dynamic target system given in (2.54) and (2.55) are

bounded.
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Figure 2.8 Control Input for Slave System T2 (t) when the user assist mechanism is
enabled (i.e., γ = 1)

Remark 6 Although the desired trajectory dynamics defined in (2.54) and (2.55)

generated a 2n-dimensional signal, it should be noted that the master system tracks

an n-dimensional signal, denoted as ξ1 (t). The use of a 2n-dimensional desired tra-

jectory generator is a consequence of the fact that both the user input force and the

physical/virtual environmental force are unmeasurable, and hence, a 2n-dimensional

nonlinear force observer must be utilized to drive the target system as defined in (2.55).

From the definition of the transformation and the error signal e1 (t) (see (2.48) and

(2.52)), it is clear that additional set of desired trajectory dynamics, denoted by ξ2 (t),

are eliminated in the error system development.

Remark 7 It should be noted that, when the user assist mechanism is disabled (i.e.,

γ = 0), then the target system defined by (2.54) and (2.55), becomes an impedance

model described as follows

MT ξ̈d +BT ξ̇d +KT ξd =
(

M̄M−1
T

)−1
F̂ . (2.58)

Closed-Loop Error System

To develop the closed-loop error system for r (t) , error system dynamics for e1 (t)

and e2 (t) are derived first. After taking the second time derivative of (2.52) and
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premultiplying by M̄ (x), the following expression can be derived

M̄ ë1 = F̂ −
(

M̄M−1
T

)

(BTηd +KTλd) − M̄

[

0n

ξ̈2

]

+ N̄

−T̄ − F̄ + γM̄
d

dt

(

[

ϕT
(

ξ1p

)

0T
s

]T
)

(2.59)

where (2.49), (2.54) and (2.55) were utilized. Based on the assumption of exact model

knowledge, the control input T̄ (t) is designed as follows

T̄ , T̄1 −
(

M̄M−1
T

)

(BTηd +KTλd) − M̄

[

0n

ξ̈2

]

+N̄ + γM̄
d

dt

(

[

ϕT
(

ξ1p

)

0T
s

]T
)

(2.60)

where T̄1(t) ∈ R
2n is a subsequently designed auxiliary control input. Substituting

(2.60) into (2.59) results in the following simplified expression

M̄ ë1 = F̂ − F̄ − T̄1. (2.61)

The time derivative of e2(t) in (2.51) can be obtained as follows

ė2 =
.

M̄ ė1 + α
.

M̄ e1 + αM̄ė1 + F̂ − F̄ − T̄1 (2.62)

where (2.61) was utilized. Based on (2.62), the auxiliary control input T̄1(t) is designed

as follows

T̄1 ,
.

M̄ ė1 + α
.

M̄ e1 + αM̄ė1. (2.63)

After substituting (2.63) into (2.62), the following simplified expression is obtained

ė2 = F̂ − F̄ . (2.64)

Taking the time derivative of (2.64) results in the following expression

ë2 =
.

F̂ −
.

F̄ . (2.65)

The error system dynamics for r (t) can be derived by taking the time derivative of

(2.50)

ṙ = r − e2+
.

F̂ −
.

F̄ (2.66)
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where (2.50) and (2.65) were both utilized. To achieve the stated control objectives,

the proportional-integral like nonlinear observer F̂ (t) introduced in (2.55) is designed

as follows

F̂ , − (ks + 1)

[

e2 (t) − e2 (t0) +

∫ t

t0

e2 (τ) dτ

]

− (β1 + β2)

∫ t

t0

sgn (e2 (τ)) dτ (2.67)

where ks, β1, and β2 ∈ R are positive control gains. The term e2 (t0) is used to ensure

that F̂ (t0) = 02n. The time derivative of (2.67) is obtained as follows

.

F̂= − (ks + 1) r − (β1 + β2) sgn (e2) (2.68)

where (2.50) was utilized. Substituting (2.68) into (2.66) results in the following

closed-loop error system

ṙ = −e2−
.

F̄ −ksr − (β1 + β2) sgn (e2) . (2.69)

Remark 8 After utilizing (2.13) and Assumption 1, then
∥

∥

∥

.

F̄ (t)
∥

∥

∥
and

∥

∥

∥

..

F̄ (t)
∥

∥

∥
can

be upper bounded as follows

∥

∥

∥

.

F̄ (t)
∥

∥

∥
≤ ς3

∥

∥

∥

..

F̄ (t)
∥

∥

∥
≤ ς4 (2.70)

where ς3, ς4 ∈ R denote positive bounding constants.

Stability Analysis

Theorem 5 The controller given in (2.60) and (2.63) guarantees that all signals are

bounded under closed-loop operation and that coordination between the master and the

slave systems, and the tracking objective are met in the sense that

xs (t) → xm (t) as t→ ∞ (2.71)

xm (t) → ξ1 (t) as t→ ∞ (2.72)
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provided the control gain β1, introduced in (2.67) is selected to satisfy the sufficient

condition

β1 > ς3 + ς4, (2.73)

where ς3 and ς4 were introduced in (2.70).

Proof. See Appendix E.

Theorem 6 The controller given in (2.60) and (2.63) guarantees that the haptic/tele-

operator system is passive with respect to the user and the physical/virtual environ-

mental power when the user assist mechanism is disabled (i.e., γ = 0).

Proof. See Appendix F.

UMIF Controller Simulation Results

A numerical simulation was performed for the UMIF controller given in (2.60) and

(2.63). The 2-link, revolute robot dynamic model introduced in (2.40) was utilized

for both the master and slave systems. By utilizing the exact model knowledge of the

simulated system, F̄ (t) introduced in (2.13) is defined as follows

F̄ = M̄M−1
T

[

FH + FE

−FE

]

(2.74)

where FH (t) and FE (t) were defined in (2.41). The planar task-space velocity field

defined in (2.44) was utilized with the same parameters. The constants for the target

system, described by (2.55), are set to MT = I4, where I4 ∈ R
4×4 denotes the identity

matrix and the terms BT and KT are selected to be zero. The controller gains are

selected as ks = 100, β1 + β2 = 100, and α = 1.

The desired end-effector position ξ1p (t) , when the user assist mechanism is dis-

abled (i.e., γ = 0) and when the user assist mechanism is enabled (i.e., γ = 1)

are presented Figure 2.9. From Figure 2.9, it is clear that the proposed user assist

mechanism provides a major improvement to the desired end-effector position. The

end-effector positions for the master and the slave systems are given in Figures 2.10
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and 2.11, respectively. The master system tracking error e11 (t) and the coordination

error e12 (t) are presented in Figures 2.12 and 2.13, respectively. From Figures 2.12

and 2.13, it is clear that tracking and coordination control objectives defined in (2.46)

and (2.47), are met. The control inputs for the master system T1 (t) and the slave

system T2 (t) are provided in Figures 2.14 and 2.15, respectively. The output of the

nonlinear force observer F̂ (t) is presented in Figure 2.16.
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Figure 2.9 Desired End-Effector Position ξd1p (t)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

[m
]

[m]

Initial Position

Final Position

Figure 2.10 Master System End-Effector Position xm (t) when the user assist
mechanism is enabled (i.e., γ = 1)
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Conclusion

Two controllers were developed for nonlinear haptic and teleoperator systems that

target coordination of the master and slave. The first controller was proven to yield a

semi-global asymptotic result in the presence of parametric uncertainty in the master

and slave dynamic models provided the user and environmental input forces are mea-

surable. The second controller was proven to yield a global asymptotic result despite

unmeasurable user and environmental input forces provided the dynamic models of

the master and slave are known. A transformation along with an adjustable target

system were utilized that allows the master system’s impedance to be adjusted so

that matches a desired target system operating in a remote physical/virtual environ-

ment. This work also presented an optional strategy to encode a velocity field assist

mechanism that provides the user of the system help in controlling the slave system

in completing a pre-defined contour following task. For each controller, Lyapunov-

based techniques were used to prove the control development implements a stable

coordinated teleoperator/haptic system with a user assist mechanism. When the

optional velocity field assist mechanism is disabled, the analysis proved the control

development implements a stable passively coordinated teleoperator/haptic system.
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enabled (i.e., γ = 1)
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Figure 2.13 Coordination Error e12 (t) when the user assist mechanism is enabled
(i.e., γ = 1)
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is enabled (i.e., γ = 1)
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Figure 2.15 Torque Input for Slave System T2 (t) when the user assist mechanism is
enabled (i.e., γ = 1)
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CHAPTER 3

ADAPTIVE CONTROL OF FLAT MULTI-INPUT

MULTI-OUTPUT NONLINEAR SYSTEMS WITH

ADDITIVE DISTURBANCE

Introduction

Arguably, an interesting control problem is one that is both challenging from a

theoretical perspective and applicable to real systems – the family of “flat” nonlinear

systems appears to embody both of these properties. A flat system is characterized

by a dynamic model where there exists a set of special outputs (equal to the number

of inputs) such that the states and the inputs can be expressed in terms of outputs

and a finite number of its derivatives [60]. A surprising number of practical machines

match this form including mobile robots and cars, cars with multiple trailers, un-

derwater vehicles, crane systems, induction motors, and planar satellite/manipulator

systems [61], [62]. The reader is referred to [61] and [62] for a more detailed explana-

tion of flatness and its applications to physical systems. It is the case of multi-input

multi-output (MIMO) flat systems with parametric uncertainty and bounded distur-

bances that is considered here. Review of the basic control problem suggests and

disqualifies certain solutions. It is probably wise at the outset to discard an exact

model-based control approach for this problem given that any parameter estimation

error and disturbances are not directly addressed, and hence, the system performance

and stability cannot be predicted a priori. Given the parametric uncertainty in the

proposed class of systems to be studied, an adaptive control solution may be war-

ranted. However, an adaptive controller designed for a disturbance free system model

may not compensate for the disturbances and may even go unstable under certain

conditions. Enhancing the adaptive control approach with a robust component to

form a robust adaptive controller can generally guarantee closed-loop signal bound-

edness in the presence of the additive disturbances. Unfortunately, while a robust
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adaptive controller can potentially guarantee the convergence of the tracking error to

a bounded set (i.e., the tracking error can’t necessarily be driven to zero) the asymp-

totic tracking result (where the tracking error is driven to zero) that would be shown

for an adaptive controller applied to the disturbance free model will be lost. These

trade-offs in performance and robustness have framed the last ten years of research

in robust adaptive control.

Review of relevant work highlights some of the different tacks used to approach

this problem. An adaptive backstepping controller was shown by Zhang and Ioan-

nou in [63] for a class of single-input/single-output (SISO) linear systems with both

input and output disturbances. The proposed controller demonstrates the use of a

projection algorithm to bound the parameter estimates and guarantees an ultimately

bounded tracking error. In an alternate approach, the work of Polycarpou and Ioan-

nou [64] demonstrate a leakage-based adaptation law to compensate for parametric

uncertainties. The proposed robust adaptive backstepping controller is applicable

to a class of higher-order SISO systems with unknown nonlinearities. The suggested

control law guarantees global uniform ultimate boundedness of the system state (with

some restrictions on the bounding functions of the nonlinearities). Robust adaptive

control laws were developed in [65], utilizing the modular design introduced in [66]

and a tuning function design, for a class of systems similar to that studied in [64].

These authors show estimates on the effect of the bounded uncertainties and external

disturbances on the tracking error. In [67], an adaptive backstepping controller for

linear systems in the presence of output and multiplicative disturbances is designed.

Ikhouane and Krstic, added a switching σ-modification to the tuning functions to

obtain a tracking error proportional to the size of the perturbations. Marino and

Tomei [68] proposed a robust adaptive tracking controller that achieves bounded-

ness of all signals. The result is based on a class of SISO nonlinear systems that

have additive disturbances but also unknown time-varying bounded parameters. It

is significant that the result shows arbitrary disturbance attenuation. In [69], Pan
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and Basar proposed a robust adaptive controller for a similar class of systems in [68],

where the tracking error is proven to be L2−bounded. In [70], Ge and Wang proposed

a robust adaptive controller for SISO nonlinear systems with unknown parameters

in the presence of disturbances, which ensure the global uniform boundedness of the

tracking error.

Most of the research in adaptive control discussed above has focused on the con-

vergence of the error signals and boundedness of the closed-loop system signals. As

the sophistication in adaptive control techniques has evolved, additional questions

about system performance have arisen. Notably, the final disposition of the param-

eters estimates in the closed-loop system has been examined. It is well established

that without persistent excitation at the input, it is not typically possible to show

the convergence of the parameter estimates to the corresponding system values (with

an exception being a least-squares algorithm). In fact, for gradient and Lyapunov-

type algorithms, convergence to a constant value, is typically not even guaranteed.

Krstic summarizes this question well in [71] and also begins to provide some answers.

In [71], it is shown that for the proposed adaptive controller; the parameter estimates

will reach constant values after a sufficient amount of time. It is shown that the

adaptation mechanism can be “turned off” after sufficient time and that the learned

parameters can be used in a non-adaptive controller of the same structure to stabilize

a restart of the system from new initial conditions. An important goal of the present

work is to include a statement on parameter estimate limits for a controller proposed

for the flat systems.

A recent paper by Cai et al. [72] presented a robust adaptive controller for MIMO

nonlinear systems with parametric uncertainty and additive disturbances. With some

restrictions placed on the disturbances, it was assumed that the disturbance is twice

continuously differentiable and has bounded time derivatives up to second order, the

proposed controller was proven to yield an asymptotic output tracking result. How-

ever, no mention of the convergence of the parameter estimates was made. Thinking
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out loud for a moment, it might stand to reason that if the robust part of the controller

is compensating for the disturbances and an asymptotic tracking result is obtained

then perhaps something special is happening to the parameter estimates. Exploring

this vague notion with mathematical rigor, we will show that with a minor modifi-

cation to the control in [72] and with some additional analysis of the stability result,

we are able to formulate a new conclusion about the parameter estimates. What is

shown is that this robust adaptive controller will yield constant parameter estimates

even in the presence of the disturbance. The stability analysis parallels that presented

in [72] but with the extended analysis the convergence of the parameter estimates is

demonstrated. The main contribution of this research is to add to the small number

of results where parameter convergence has been shown. In the second part of the

chapter, a learning controller for the same class of flat systems is designed under the

assumption that the reference trajectory is periodic (for past research related to the

design of learning controllers, reader is referred to [73], [74], [75] and the references

therein). This controller is proven to yield a semi-global asymptotic result in the

presence of additive disturbances. In the design of both controllers, a continuous

nonlinear integral feedback controller (see [76]) is utilized and Lyapunov-based tech-

niques are used to guarantee that the tracking error is asymptotically driven to zero.

Numerical simulation results are presented for both controllers to demonstrate their

viability.

Adaptive Control Development

Problem Statement

A system model for the flat nonlinear systems is considered to be of the following

form

x(n) = f +G (u+ d1) + d2 (3.1)

where x(i) (t) ∈ R
m, i = 0, ..., (n− 1), are the system states, f

(

x, ẋ, ..., x(n−1), θ
)

∈ R
m

and G
(

x, ẋ, ..., x(n−1), θ
)

∈ R
m×m are nonlinear functions, θ ∈ R

p is an unknown
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constant parameter vector, d1 (t) , d2 (t) ∈ R
m are unknown additive nonlinear distur-

bances, and u (t) ∈ R
m is the control input. The system model is assumed to satisfy

the following assumptions.

Assumption 1 The nonlinear function G (·) is symmetric, positive definite and sat-

isfies the following inequalities

m ‖ξ‖2 ≤ ξTM (·) ξ ≤ m̄ (·) ‖ξ‖2 ∀ξ ∈ R
m (3.2)

where M
(

x, ẋ, ..., x(n−1), θ
)

∈ R
m×m is defined as

M , G−1 (3.3)

and m ∈ R is a positive bounding constant, m̄
(

x, ẋ, ..., x(n−1)
)

∈ R is a positive, glob-

ally invertible, nondecreasing function of each variable, and ‖·‖ denotes the Euclidean

norm.

Assumption 2 The nonlinear functions, f (·) and G (·), are continuously differen-

tiable up to their second derivatives (i.e., f (·) , G (·) ∈ C2).

Assumption 3 The nonlinear functions, f (·) and M (·), are affine in θ.

Assumption 4 The additive disturbances, d1 (t) and d2 (t), are assumed to be con-

tinuously differentiable and bounded up to their second derivatives (i.e., di (t) ∈ C2

and di (t) , ḋi (t) , d̈i (t) ∈ L∞, i = 1, 2).

The output tracking error e1 (t) ∈ R
m is defined as follows

e1 , xr − x (3.4)

where xr (t) ∈ R
m is the reference trajectory satisfying the following property

xr (t) ∈ Cn , x(i)
r (t) ∈ L∞ , i = 0, 1, ..., (n+ 2) . (3.5)
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The control design objective is to develop an adaptive control law that ensures
∥

∥

∥
e
(i)
1 (t)

∥

∥

∥
→ 0 as t → ∞, i = 1, ..., n, and that all signals remain bounded within the

closed-loop system. To achieve the control objectives, the subsequent development is

derived based on the assumption that the system states x(i) (t), i = 0, ..., (n− 1) are

measurable.

Development of Robust Adaptive Control Law

The filtered tracking error signals, ei (t) ∈ R
m, i = 2, 3, ..., n are defined as follows

e2 , ė1 + e1 (3.6a)

e3 , ė2 + e2 + e1 (3.6b)

...

en , ėn−1 + en−1 + en−2. (3.6c)

A general expression for ei, i = 2, 3, ..., n in terms of e1 and its time derivatives is

given as follows [76]

ei =

i−1
∑

j=0

ai,je
(j)
1 (3.7)

where the constants ai,j are defined as follows

ai,0 = B (i) =
1√
5





(

1 +
√

5

2

)i

−
(

1 −
√

5

2

)i




i = 2, 3, ..., n (3.8)

ai,j =
i−1
∑

k=1

B (i− k − j + 1) ak+j−1,j−1 (3.9)

i = 3, 4, ..., n , j = 1, 2, ..., (i− 2)

ai,i−1 = 1 , i = 1, 2, ..., n. (3.10)

After utilizing (3.3), the system model can be rewritten as follows

Mx(n) = h+ u+ d1 +Md2 (3.11)
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where h (t) ∈ R
m is defined as follows

h , Mf. (3.12)

To facilitate the control development, the filtered tracking error signal, denoted by

r (t) ∈ R
m, is defined as follows

r , ėn + Λen (3.13)

where Λ ∈ R
m×m is a constant, diagonal, positive definite, gain matrix. After differ-

entiating (3.13) and premultiplying by M (·), the following expression can be derived

Mṙ = M

(

x(n+1)
r +

n−2
∑

j=0

anje
(j+2)
1 + Λėn

)

+Ṁx(n) − ḣ− u̇− ḋ1 −Mḋ2 − Ṁd2 (3.14)

where (3.4), (3.7) and the first time derivative of (3.11) were utilized. The dynamics

of ṙ (t) in (3.14) can be arranged as follows

Mṙ = −1

2
Ṁr − en − u̇+N − ḋ1 −Mḋ2 − Ṁd2 (3.15)

where the auxiliary function N
(

x, ẋ, ..., x(n), t
)

∈ R
m is defined as follows

N , M

(

x(n+1)
r +

n−2
∑

j=0

anje
(j+2)
1 + Λėn

)

+ Ṁ

(

x(n) +
1

2
r

)

+ en − ḣ. (3.16)

To facilitate the subsequent analysis, (3.15) can be rearranged as follows

Mṙ = −1

2
Ṁr − en − u̇+ Ñ +Nr + ψ (3.17)

where Ñ
(

x, ẋ, ..., x(n), t
)

, Nr (t) , ψ (t) ∈ R
m are defined as follows

Ñ ,
(

N −Mḋ2 − Ṁd2

)

−
(

Nr −Mrḋ2 − Ṁrd2

)

(3.18)

Nr , N |
x=xr, ẋ=ẋr ,..., x(n)=x

(n)
r

(3.19)

ψ , −ḋ1 −Mrḋ2 − Ṁrd2 (3.20)

and Mr (t) ∈ R
m×m is defined as follows

Mr , M |
x=xr, ẋ=ẋr ,..., x(n−1)=x

(n−1)
r

. (3.21)
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Remark 1 By utilizing the Mean Value Theorem along with Assumptions 2 and 4,

the following upper bound can be developed

∥

∥

∥
Ñ (·)

∥

∥

∥
≤ ρ (‖z‖) ‖z‖ (3.22)

where z (t) ∈ R
(n+1)m×1 is defined as follows

z ,
[

eT
1 eT

2 ... eT
n rT

]T
(3.23)

and ρ (·) ∈ R≥0 is some globally invertible, nondecreasing function.

Remark 2 After utilizing (3.5) and Assumption 4 along with (3.20) and its time

derivative, then it is clear that ψ (t) , ψ̇ (t) ∈ L∞.

Remark 3 After utilizing (3.5) and (3.16) along with (3.19) and its time derivative,

then it is clear that Nr (t) , Ṅr (t) ∈ L∞.

Remark 4 In view of Assumption 3, Nr (·) defined in (3.19), can be linearly param-

eterized in the sense that

Nr , Wrθ (3.24)

where Wr (t) ∈ R
m×p is the known regressor matrix and is a function of only xr (t)

and its time derivatives.

Based on (3.17) and (3.24), the control input is designed as follows

u , (K + Im)

[

en (t) − en (t0) + Λ

∫ t

t0

en (τ) dτ

]

+

∫ t

t0

[

Wr (τ) θ̂ (τ) + (C1 + C2) Sgn (en (τ))
]

dτ (3.25)

where θ̂ (t) ∈ R
p is generated via

θ̂ , Γ

∫ t

t0

W T
r (τ ) Λen (τ) dτ − Γ

∫ t

t0

Ẇ T
r (τ ) en (τ) dτ

+ΓW T
r (t) en (t) − ΓW T

r (t0) en (t0) (3.26)
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with K,C1, C2 ∈ R
m×m and Γ ∈ R

p×p being constant, diagonal, positive definite, gain

matrices, Im ∈ R
m×m being the standard identity matrix, and Sgn(·) being the vector

signum function defined as follows

Sgn (ξ) ,
[

sgn (ξ1) sgn (ξ2) ... sgn (ξm)
]T

∀ξ =
[

ξ1 ξ2 ... ξm

]T
. (3.27)

It should be noted that θ̂ (t0) = 0p×1 and u (t0) = 0m×1 where 0p×1 ∈ R
p and 0m×1 ∈

R
m are vectors of zeros. Based on the structure of (3.25) and (3.26), the following

are obtained

u̇ , (K + Im) r + (C1 + C2) Sgn (en) +Wrθ̂ (3.28)
·

θ̂ , ΓW T
r r. (3.29)

Finally, after substituting (3.28) into (3.17), the following closed-loop error system

for r (t) is obtained

Mṙ = −1

2
Ṁr − en − (K + Im) r +Wrθ̃ − (C1 + C2) Sgn (en) + Ñ + ψ (3.30)

where the parameter estimation error signal θ̃ (t) ∈ R
p is defined as follows

θ̃ , θ − θ̂. (3.31)

Stability Analysis

Theorem 7 The control law (3.25) and the update law (3.26) ensure the boundedness

of all closed-loop system signals and
∥

∥

∥
e
(i)
1 (t)

∥

∥

∥
→ 0 as t→ ∞, i = 0, ..., n, provided

λmin (Λ) >
1

2
, (3.32)

C1i > ‖ψi (t)‖L∞

+
1

Λi

∥

∥

∥
ψ̇i (t)

∥

∥

∥

L∞

(3.33)

where the subscript i = 1, ..., m denotes the ith element of the vector or diagonal

matrix and the elements of K are selected sufficiently large relative to the system

initial conditions.
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Proof. See Appendix J.

Theorem 8 There exists a constant vector θ̂∞ ∈ R
p such that

lim
t→∞

θ̂ (t) = θ̂∞. (3.34)

Proof. See Appendix K.

Numerical Simulation Results

A numerical simulation was performed to demonstrate the performance of the

adaptive controller given in (3.25) and (3.26). A first-order flat system with following

modelling functions is utilized [72]

f =

[

x1x2

x2
2

]

, G =







2 + cosx1

θ1

0

0
3 + sin x2

θ2






,

θ =

[

θ1

θ2

]

=

[

2
1

]

, (3.35)

d1 =

[

cos (2t) + exp (−0.5t)
sin (3t) + exp (−0.5t)

]

, d2 =

[

sin (2t) + exp (−0.5t)
cos (3t) + exp (−0.5t)

]

(3.36)

where x =
[

x1 x2

]T
. The nonlinear disturbances defined in (3.36), are chosen

to show the validity of the proposed controller for nonrepeating disturbances. The

reference trajectory was selected as

xr =

[

xr1

xr2

]

=









sin t

(

1 − exp

(

−t
3

5

))

2 sin t

(

1 − exp

(

−t
3

2

))









. (3.37)

The initial conditions of the system were set to x (t0) =
[

0.1 0.2
]T

and θ̂ (t0) =
[

0 0
]T

, while the controller parameters were chosen as Λ = I2, K = 20I2, C1 =

10I2, C2 = 5I2, and Γ = 20I2 where I2 ∈ R
2×2 is the standard identity matrix. In

Figures 3.1 and 3.2, the reference trajectory xr (t) and the tracking error e1 (t) are

presented, respectively. From Figure 3.2, it is clear that the tracking objective is
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satisfied. In Figures 3.3 and 3.4, the parameter estimate θ̂ (t) and the control input

u (t) are presented, respectively. From Figure 3.3, it is clear that the parameter

estimate vector is driven to a constant vector. In Figures 3.5 and 3.6, the additive

disturbances d1 (t) and d2 (t) are presented, respectively.
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Figure 3.2 Tracking Error e1 (t) (Adaptive Controller)
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Figure 3.3 Parameter Estimate θ̂ (t) (Adaptive Controller)

Learning Control Development

Problem Statement

A system model for the flat nonlinear systems is considered to be of the following

form

x(n) = f +G (u+ d1) + d2 (3.38)

where x(i) (t) ∈ R
m, i = 0, ..., (n− 1) are the system states, f(x, ẋ, ..., x(n−1)) ∈

R
m and G(x, ẋ, ..., x(n−1)) ∈ R

m×m are nonlinear functions, d1 (t) , d2 (t) ∈ R
m are

unknown additive disturbances, and u (t) ∈ R
m is the control input. The system

model is assumed to satisfy Assumptions 1, 2, and 4.

The output tracking error e1 (t) is defined in (3.4) and in this case the reference

trajectory satisfies the following property

x(i)
r (t+ T ) = x(i)

r (t) , x(i)
r (t) ∈ L∞ i = 0, 1, ..., (n + 2) (3.39)

where T ∈ R
+ is the period of the reference trajectory.

The control objective is to develop a nonlinear control that ensures ‖e1 (t)‖ → 0 as

t→ ∞. To achieve the control objective, the subsequent development is derived based

on the assumption that the system states x(i) (t), i = 0, ..., (n− 1) are measurable.
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Figure 3.4 Control Input u (t) (Adaptive Controller)

Development of Learning Control Law

The open-loop error system development for the learning control law is exactly

the same as the open-loop error system development for the adaptive control law.

The control design is assumed to continue after Remark 1 of Adaptive Control De-

velopment.

Remark 5 After utilizing (3.39) and Assumption 4 along with (3.20) and its time

derivative, then it is clear that ψ (t) , ψ̇ (t) ∈ L∞.

Remark 6 After utilizing (3.16) and (3.39) along with (3.19) and its time derivative,

then it is clear that Nr (t) , Ṅr (t) ∈ L∞.

Remark 7 After utilizing (3.39), it is clear that Nr (t) satisfies the following equation

Nr (t+ T ) = Nr (t) . (3.40)

Based on (3.17), the control input is designed as follows

u (t) , (K + Im)

[

en (t) − en (t0) + Λ

∫ t

t0

en (τ ) dτ

]

+C1

∫ t

t0

Sgn (en (τ )) dτ + Ŵr (t) (3.41)
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Figure 3.5 Additive Disturbance d1 (t)

where K,C1,Λ ∈ R
m×m are constant, diagonal, positive definite, gain matrices, Sgn(·)

is defined in (3.27), and Ŵr (t) ∈ R
m is defined as follows

Ŵr (t) , Ŵr (t− T ) + kLΛ

∫ t

t0

en (τ) dτ + kLen (t) − kLen (t0) (3.42)

where kL ∈ R is a positive gain. It should be noted that since Ŵr (t0) = 0m×1 it

follows that u (t0) = 0m×1. The auxiliary function N̂r (t) ∈ R
m is defined as

N̂r ,
·

Ŵr . (3.43)

By utilizing (3.43) along with (3.42), the following can be obtained

N̂r (t) = N̂r (t− T ) + kLr (t) . (3.44)

Taking the time derivative of (3.41) along (3.42) and (3.43) generates

u̇ = (K + Im) r + C1Sgn (en) + N̂r (t) . (3.45)

Finally, after substituting (3.45) into (3.17), the closed-loop error system for r (t) is

obtained as follows

Mṙ = −1

2
Ṁr − en − (K + Im) r − C1Sgn (en) + Ñ + Ñr + ψ (3.46)
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Figure 3.6 Additive Disturbance d2 (t)

where Ñr (t) ∈ R
m is defined as follows

Ñr , Nr − N̂r. (3.47)

By utilizing (3.40) and (3.44), Ñr (t) can be rewritten as follows

Ñr (t) = Ñr (t− T ) − kLr. (3.48)

Stability Analysis

Theorem 9 The control law (3.41) and (3.42) ensures that ‖e1 (t)‖ → 0 as t →
∞, provided that (3.32) and (3.33) are satisfied and the elements of K are selected

sufficiently large relative to the system initial conditions.

Proof. See Appendix L.

Numerical Simulation Results

A numerical simulation was performed to demonstrate the performance of the

learning controller given in (3.41) and (3.42). The flat system model in (3.35), (3.36)

with the following reference trajectory is utilized

xr =

[

xr1

xr2

]

=

[

sin (πt)
cos (πt)

]

. (3.49)
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The initial conditions of the system were set to x (t0) =
[

0.1 0.2
]T

, while the

controller parameters were chosen as Λ = 20I2, K = 20I2, C1 = 10I2, and kL = 1.

In Figures 3.7 and 3.8, the reference trajectory and the tracking error are presented,

respectively. From Figure 3.8, it is clear that the tracking objective is satisfied. In

Figures 3.9 and 3.10, the control input u (t)and Ŵr (t) are presented, respectively.
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Figure 3.7 Reference Trajectory xr (t) (Learning Controller)
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Figure 3.8 Tracking Error e1(t) (Learning Controller)
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Conclusion

Two controllers were developed for flat MIMO nonlinear systems in the presence

of additive disturbances. The robust adaptive controller was proven to yield a semi-

global asymptotic tracking result in the presence of parametric uncertainty along with

additive disturbances. The adaptive controller and the adaptation law were designed

such that, the parameter estimate vector is proven to go to a constant vector. In

the second part of the chapter, the learning controller was proven to yield a semi-

global asymptotic result in the presence of additive disturbances and when the desired

trajectory is periodic. In the development of both controllers, the bounded additive

disturbances were assumed to be twice continuously differentiable and have bounded

time derivatives up to second order. Since no assumptions were made regarding the

periodicity of the disturbances, it is clear that the suggested controllers compensated

for both repeating and nonrepeating disturbances. For each controller, Lyapunov-

based techniques were used to guarantee that the tracking error is asymptotically

driven to zero. Numerical simulation results were presented for both controllers where

nonrepeating disturbances were utilized.
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CHAPTER 4

NEW DYNAMIC MODELS FOR PLANAR EXTENSIBLE

CONTINUUM ROBOT MANIPULATORS

Introduction

In most engineered systems, the behaviour of the system is required to be accu-

rately modelled to improve the performance of the system. In many applications,

design simulation and proposed control algorithms require more than just a simple

kinematic or dynamic model [77]. Not only an accurate model but a real-time calcu-

lation of the dynamic model is also needed for control algorithms or simulations.

The desire to enhance the performance of robot manipulators resulted in a renewed

interest in continuum robots [78]. To our best knowledge, the concept of continuum

robot was first introduced in the 1960’s [79]. Numerous designs of continuum robots

were presented in [80], [81], [82], [83], and [84]. Recently, there has been an increasing

interest in designing ‘biologically inspired’ continuum robots. Some of these designs

are mimicking trunks [85], [86], tentacles [87], [88], [89] and snakes [82]. Several

commercial implementations have appeared (i.e., [90] and [91]).

The results in this chapter are motivated by and are applicable to the OCTARM

continuum manipulator. The OCTARM manipulator is a biologically inspired soft

robot manipulator resembling an elephant trunk or an octopus arm [92]. The OC-

TARM, shown in Figure 4.1, is a three-section robot with nine degrees of freedom.

Aside from two axis bending with constant curvature, each section is also capable

of extension. The bending and extension capabilities of OCTARM makes it suitable

for a wide variety of physical applications ranging from whole arm grasping of vari-

ous shapes of payloads to navigation of unstructured environments [87] and provides

an increased workspace compared to its inextensible counterparts [93]. In a recent

work, Jones and Walker [94] discussed the limiting-case analysis for a general class of

continuum manipulators. In [95], Jones and Walker presented a kinematic model for
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a general class of continuum robots which has been applied to OCTARM. However,

kinematic control of continuum robot hardware remains the state of the art due to

the current lack of appropriate dynamic models.

There has been previous research in dynamic modelling of biologically inspired

robot manipulators. In two recent papers [96] and [97], the authors presented dynamic

models for snake-like robots. However, in both cases, hyper-redundant serial rigid-

link systems are considered. This does not model the continuous nature of continuum

robots. In [98], researchers presented a 2-D dynamic model for the octopus arm. How-

ever, while allowing extensibility, the model is based on an approximation (by a finite

number of linear models) to the true continuum case. In [81], Chirikjian and Burdick

considered extensibility of hyper-redundant manipulators and a kinematic model was

presented based on the modal approach introduced in [99]. The papers presented

by Chirikjian [100], Ivanescu [101], [102], and Mochiyama [2], [103], [104] considered

dynamic modeling of continuum robot manipulators. However, the dynamic model

proposed in [100] for 3-D case remains in integral differential form, which makes it

problematic for real-time control, and the dynamic model in [102] was derived based

on the restrictive assumption that the manipulator does not bend past a small-strain

region. In [2], [103], and [104], Mochiyama and Suzuki presented a three-dimensional

dynamic model for an inextensible (constant length) continuum manipulator, con-

sidering the continuum robot as a combination of slices where each slice is a rigid

link. To derive the dynamic model, limit of a serial rigid chain model is obtained

as the kinematic degrees of freedom goes to infinity. However, the dynamic model

was for inextensible robot manipulators and did not include elastic potential energy

terms due to bending effects. In [101], Ivanescu et al. considered both gravitational

and elastic potential energy effects when deriving their model. However, the elastic

potential energy due to bending was calculated as a summation of all the elements of

the manipulator and while deriving the elastic potential energy due to bending and

extension the spring constants were considered to be the same along the backbone
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curve of the manipulator. This approach results in an approximation of the elastic

potential energy and does not reflect the characteristics of different sections of the

physical manipulators.

In this chapter, first, the work in [2] is modified and extended in order to include

the important class of extensible continuum robot manipulators. A geometric model

of a 3-section extensible continuum robot manipulator with a circular cross-section is

considered (see Figure 4.2). For simplicity, the geometric model is assumed to have

no torsional effects. After presenting the system model and properties, the kinetic

energy of a slice of the continuum robot is evaluated. The total kinetic energy of the

manipulator is obtained by utilizing a limit operation (i.e., sum of the kinetic energy

of the slices). Then, the potential energy terms are considered. For this, first, based

on the definition presented in [2], the gravitational potential energy of one backbone

slice is derived. After integrating the gravitational potential energy of one slice along

the backbone curve the total gravitational potential energy of the robot manipulator

is calculated. Then, the elastic potential energy of the manipulator is considered.

First, the elastic potential energy due to the effects of bending is derived for one slice

of the manipulator. After integrating the elastic potential energy of one slice along the

backbone curve the total elastic potential energy due to bending is calculated. Next,

elastic potential energy reflecting the extensibility of the robot is considered. The

elastic potential energy caused by extension is calculated by modeling each section of

the manipulator as a spring. The total elastic potential energy of the manipulator due

to extension effects is found by adding the corresponding energy terms of each section.

While deriving the elastic potential energy, separate spring constants are assigned for

each section of the robot manipulator to reflect the different characteristics of different

sections of the physical manipulator. This approach provides an improvement over

a similar definition introduced in [101] where the spring constant was assumed to

be the same along the backbone curve. By utilizing the Lagrangian representation,

the dynamic model of a planar 3-section extensible continuum robot manipulator
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is obtained. It is also proved that the skew-symmetry property is satisfied for the

presented dynamic model (i.e., (Ṁ (q) − 2V (q, q̇)) is skew-symmetric). Numerical

simulation results are presented for a planar 3-section extensible continuum robot

manipulator.

System Model and Definitions

In this section, system model, properties, and definitions are presented. The

geometric model of a 3-section extensible continuum robot manipulator utilized in

this chapter is presented in Figure 4.2. This geometric model is a good approximation

of the OCTARM which is shown in Figure 4.1.

The following convention, which is adopted from [2], will be adhered throughout

the following development3. The matrix, 0Φ (0) ∈ SO (3) represents the orientation

matrix of the base frame, and 0p (0) ∈ R
3 represents the position vector of the origin.

The matrices, 0Φ (σ, t) , ξΦ (σ, t) ∈ SO (3) represent the orientation matrices of the

extended Frenet frame at σ relative to the base frame and ξΦ (ξ, t) ∈ SO (3), respec-

tively. The vectors, 0p (σ, t) , ξp (σ, t) ∈ R
3 represent the position vectors of the point

σ relative to the origin as viewed from the base frame and ξΦ (ξ, t), respectively. For

simplicity, the notation of Φ (σ, t) and p (σ, t) will be preferred instead of σΦ (σ, t) and

σp (σ, t) throughout the rest of the chapter. The section lengths of the manipulator

are denoted as di (t) ∈ R+, i = 1, 2, 3, and κ (σ, t) ∈ R represents the curvature of the

point σ. The total length of the robot manipulator, denoted as d (t) ∈ R+, is equal

to the following

d (t) , d1 (t) + d2 (t) + d3 (t) . (4.1)

The system model is assumed to satisfy the following properties.

Property 4 The curvature κ at each point σ of the manipulator is a function of both

time and σ. In the following analysis, consistent with the OCTARM, it is assumed

3To set a basis for our future work three-dimensional space is preferred for representing the
orientation and velocity instead of their two-dimensional counterparts.
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that the curvature of a section is only function of time (i.e., κ (σ, t) = κi (t) if σ

is a point on Section i, i = 1, 2, 3). In the subsequent analysis, it is assumed that

the curvature is always non-zero (i.e., κ (σ, t) 6= 0 ∀ (σ, t)). The reader is referred

to [94] for a detailed limiting-case analysis for a general class of continuum robot

manipulators.

Property 5 In Figure 4.2, p (ξ, t) ∈ R
3 is the position vector of point ξ of the back-

bone curve and pc (ξ, t) ∈ R
3 is the position vector of the center of mass of the slice

at ξ. In the analysis, again consistent with the OCTARM, it is assumed that p (ξ, t)

and pc (ξ, t) coincide (i.e., ∆p (ξ) =
[

0 0 0
]T

).

Property 6 The robot manipulator is assumed to have uniform mass density. The

line mass density of the slice, denoted as m (σ, t) ∈ R, is defined as follows

m (σ, t) =
m

d (t)
(4.2)

where m ∈ R is the total mass of the manipulator.

Figure 4.1 OCTARM (ver. 5.2)

The orientation matrix of the extended Frenet frame at σ with respect to the base

frame, denoted as 0Φ (σ, t), is given as follows

0Φ (σ, t) =





cos (σκ (σ, t)) 0 − sin (σκ (σ, t))
0 1 0

sin (σκ (σ, t)) 0 cos (σκ (σ, t))



 (4.3)

The orientation matrix given in (4.3) is equal to the orientation matrix provided in

Equation (8) of [95] with the angle of curvature is equal to zero (i.e., φ (σ, t) = 0).
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The change of the orientation matrix along the manipulator is characterized by the

following equation
∂ 0Φ (σ, t)

∂σ
= 0Φ (σ, t) a× (σ, t) (4.4)

where a× (σ, t) ∈ R
3×3 is the skew-symmetric matrix of the frame rate vector a (σ, t) ∈

R
3. After utilizing (4.3) and (4.4), a (σ, t) and a× (σ, t) can be defined as follows

a (σ, t) =





0
−κ (σ, t)

0



 , a× (σ, t) =





0 0 −κ (σ, t)
0 0 0

κ (σ, t) 0 0



 . (4.5)

The position vector of the point σ from the origin p (0) with respect to the base frame,

denoted as 0p (σ, t), is evaluated as follows

0p (σ, t) =

∫ σ

0

0Φ (η, t) e×dη (4.6)

where e× ,
[

1 0 0
]T

. The orientation matrix of the extended Frenet frame at σ

relative to Φ (ξ, t), denoted as ξΦ (σ, t), is calculated as follows

ξΦ (σ, t) , 0ΦT (ξ, t) 0Φ (σ, t) . (4.7)

The position vector of the point σ relative to the origin as viewed from Φ (ξ, t),

denoted as ξp (σ, t), is evaluated as follows

ξp (σ, t) , 0ΦT (ξ, t) 0p (σ, t) . (4.8)

The internal variable vector at σ which is denoted as θ (σ, t) ∈ R
2 is defined as follows

θ (σ, t) ,

[

l (σ, t)
κ (σ, t)

]

(4.9)

where l (σ, t) and κ (σ, t) reflect the extension and curvature of the model. The

extended axis matrix A (θ (σ, t)) ∈ R
6×2 is defined as follows

A (θ (σ, t)) ,

[

1 0 0 0 0 0
0 0 0 0 −1 0

]T

. (4.10)

So far, the main extension of this development over [2] is the definition of the internal

variable vector. The extensibility of our model is reflected by designing θ (σ, t) to
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include l (σ, t). This design allows the model to extend in each section, which results

in a variable total length, while the geometric model presented in [2] had a constant

total length. As a consequence of this new design for the internal variable vector, the

extended axis matrix is modified accordingly. The adjoint matrix Adg(σ,η,t) ∈ R
6×6 in

terms of the rigid body transformation g (σ, η, t) ∈ SE (3) is defined as follows

Adg(σ,η,t) ,

[

σΦ (η, t) (σp× (η, t) − σp× (σ, t)) σΦ (η, t)
03×3

σΦ (η, t)

]

(4.11)

where 03×3 ∈ R
3×3 is a matrix of zeros.

Kinetic Energy

The kinetic energy of the slice at σ (see Figure 4.2) is given as follows [2]

K (σ, t) ,
1

2

σ
∫

0

σ
∫

0

∂θT (η, t)

∂t
A

T
(η, t)AdT

g(σ,η,t) (4.12)

M (σ, t)Adg(σ,ξ,t)A (ξ, t)
∂θ (ξ, t)

∂t
dηdξ

where M (σ, t) ∈ R
6×6 is the inertia matrix of the slice at σ which is defined as follows

M (σ, t) ,

[

m (σ, t) I3 −m (σ, t) ∆p× (σ)
m (σ, t)∆p× (σ) I (σ)

]

(4.13)

where m (σ, t) ∆p (σ) ∈ R
3 is the first moment of inertia of the slice, I (σ) ∈ R

3×3 is

the inertia tensor of the slice, and I3 ∈ R
3×3 is the standard identity matrix. The

inertia tensor of the slice is assumed to be of the following form

I (σ) ,
mr2

2d





1 0 0
0 0 0
0 0 0



 (4.14)

where r is the radius of the circular cross-section of the robot manipulator. After

utilizing Properties 1 and 2, the inertia matrix of the slice at σ can be evaluated as

follows

M (σ, t) = diag

{

m

d
,
m

d
,
m

d
,
mr2

2d
, 0, 0

}

. (4.15)
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Due to the piecewise definition of the curvature (see Property 1), the kinetic energy of

the slice at σ which is formulated by (4.12) will not be evaluated explicitly. However,

by sliding the slice at σ over every section of the manipulator, the kinetic energy of

every slice at σ can be calculated. The expression in (4.12) can be rewritten as follows

K (σ, t) =

σ
∫

0

σ
∫

0

I (σ, η, ξ, t) dηdξ (4.16)

where I (σ, η, ξ, t) is the integrand defined as follows

I ,
m

2d

{

l̇ (ξ, t) l̇ (η, t) cos (ξκ (ξ, t) − ηκ (η, t)) (4.17)

+l̇ (ξ, t) κ̇ (η, t)

[(

1

κ (η, t)
− 1

κ (σ, t)

)

cos (ξκ (ξ, t))

+
1

κ (σ, t)
cos (ξκ (ξ, t) − σκ (σ, t))

− 1

κ (η, t)
cos (ξκ (ξ, t) − ηκ (η, t))

]

+κ̇ (ξ, t) l̇ (η, t)

[(

1

κ (ξ, t)
− 1

κ (σ, t)

)

cos (ηκ (η, t))

+
1

κ (σ, t)
cos (σκ (σ, t) − ηκ (η, t)) − 1

κ (ξ, t)
cos (ξκ (ξ, t) − ηκ (η, t))

]

+κ̇ (ξ, t) κ̇ (η, t)

[

1

κ (σ, t)

(

1

κ (ξ, t)
+

1

κ (η, t)
− 2

κ (σ, t)

)

cos (σκ (σ, t))

+
1

κ (ξ, t)

(

1

κ (σ, t)
− 1

κ (η, t)

)

cos (ξκ (ξ, t))

− 1

κ (ξ, t)

1

κ (σ, t)
(1 + cos (ξκ (ξ, t) − σκ (σ, t)))

− 1

κ (η, t)

1

κ (σ, t)
(1 + cos (σκ (σ, t) − ηκ (η, t)))

+
1

κ (η, t)

(

1

κ (σ, t)
− 1

κ (ξ, t)

)

cos (ηκ (η, t))
2

κ2 (σ, t)

]}

.

The total kinetic energy of the system is defined as follows

K (t) ,

d(t)
∫

0

K (σ, t) dσ (4.18)

where K (σ, t) is the kinetic energy of the slice at σ. The upper limit of the integral

in (4.18) is the total length of the manipulator, which is a function of time as a result
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of the extensible nature of our geometric model. However, the total length of the

manipulator in [2] was constant. To facilitate the subsequent development, the total

kinetic energy of the system will be rewritten as follows4

K (t) =

d1
∫

0

K1 (σ, t) dσ +

d1+d2
∫

d1

K2 (σ, t) dσ +

d1+d2+d3
∫

d1+d2

K3 (σ, t) dσ (4.19)

where Ki (σ, t) is the kinetic energy of slice σ when σ is a point on Section i, i = 1, 2, 3.

To facilitate the subsequent development Iijk (σ, η, ξ, t) is defined as follows

Iijk (σ, η, ξ, t) , I (σ, η, ξ, t)|σ ∈ Section i,η ∈ Section j,ξ ∈ Section k (4.20)

where for any s ∈ Section i means l̇ (s) = ḋi (t) and κ (s) = κi (t). After utilizing

(4.16), (4.19), (4.20) along with Property 1, Ki (σ, t), i = 1, 2, 3 can be evaluated as

follows5

K1 =

σ
∫

0

σ
∫

0

I111dηdξ (4.21)

K2 =

d1(t)
∫

0

d1(t)
∫

0

I211dηdξ +

d1(t)
∫

0

σ
∫

d1(t)

I221dηdξ

+

σ
∫

d1(t)

d1(t)
∫

0

I212dηdξ +

σ
∫

d1(t)

σ
∫

d1(t)

I222dηdξ (4.22)

K3 =

d1(t)
∫

0

d1(t)
∫

0

I311dηdξ +

d1(t)
∫

0

d2(t)
∫

d1(t)

I321dηdξ +

d1(t)
∫

0

σ
∫

d2(t)

I331dηdξ (4.23)

+

d2(t)
∫

d1(t)

d1(t)
∫

0

I312dηdξ +

d2(t)
∫

d1(t)

d2(t)
∫

d1(t)

I322dηdξ +

d2(t)
∫

d1(t)

σ
∫

d2(t)

I332dηdξ

+

σ
∫

d2(t)

d1(t)
∫

0

I313dηdξ +

σ
∫

d2(t)

d2(t)
∫

d1(t)

I323dηdξ +

σ
∫

d2(t)

σ
∫

d2(t)

I333dηdξ.

4For simplicity, the time dependency of the section lengths in (4.19) is dropped.
5For simplicity, Iijk is preferred instead of Iijk (σ, η, ξ, t), in (4.21), (4.22), and (4.23).
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To facilitate the subsequent development the joint position vector q (t) ∈ R
6 is defined

as follows

q ,
[

d1 d2 d3 κ1 κ2 κ3

]T
. (4.24)

After utilizing (4.17), (4.19)-(4.23), the total energy of the system can be evaluated

as follows

K (t) = Kḋ1ḋ1

(

ḋ1

)2

+Kḋ1ḋ2
ḋ1ḋ2 +Kḋ1ḋ3

ḋ1ḋ3 +Kḋ1κ̇1
ḋ1κ̇1 +Kḋ1κ̇2

ḋ1κ̇2

+Kḋ1κ̇3
ḋ1κ̇3 +Kḋ2ḋ2

(

ḋ2

)2

+Kḋ2ḋ3
ḋ2ḋ3 +Kḋ2κ̇1

ḋ2κ̇1

+Kḋ2κ̇2
ḋ2κ̇2 +Kḋ2κ̇3

ḋ2κ̇3 +Kḋ3ḋ3

(

ḋ3

)2

+Kḋ3κ̇1
ḋ3κ̇1

+Kḋ3κ̇2
ḋ3κ̇2 +Kḋ3κ̇3

ḋ3κ̇3 +Kκ̇1κ̇1 (κ̇1)
2 +Kκ̇1κ̇2κ̇1κ̇2

+Kκ̇1κ̇3 κ̇1κ̇3 +Kκ̇2κ̇2 (κ̇2)
2 +Kκ̇2κ̇3 κ̇2κ̇3 +Kκ̇3κ̇3 (κ̇3)

2
. (4.25)

In (4.25), the terms Kq̇iq̇j
with qi and qj being entries of q (t), are presented in Ap-

pendix M.

Potential Energy

In this section, three different energy definitions will be introduced for our model.

First, gravitational potential energy will be defined and then the elastic potential

energy due to both bending and extension will be presented.

Gravitational Potential Energy

The gravitational potential energy of a slice at σ is given as follows [2]

Pg (σ, t) , −m (σ, t) σgT (σ, t) p (σ, t) (4.26)

where σgT (σ, t) ∈ R
3 is defined as follows

σgT (σ, t) , σΦT (0, t)
[

0 0 −g
]T

(4.27)

where g ∈ R is the gravity acceleration constant. After utilizing (4.2), (4.6), (4.27)

gravitational potential energy can be calculated as follows

Pg (σ, t) =
mg

d (t)κ (σ, t)
[cos (σκ (σ, t)) − cos (2σκ (σ, t))] . (4.28)
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Total gravitational potential energy of the system can be found as a sum of the

gravitational energies for every slice

Pg (t) ,

d(t)
∫

0

Pg (σ, t) dσ (4.29)

where Pg (σ, t) is the gravitational potential energy of the slice at σ defined in (4.26)

and (4.28). It should be noted that, the upper limit of the integral in (4.29) is the

total length of the manipulator, which is a function of time as a result of the extensible

nature of our geometric model, while the total length of the manipulator in [2] was

constant. To facilitate the subsequent development, the total gravitational potential

energy of the system will be rewritten as follows6

Pg (t) =

d1
∫

0

Pg1 (σ, t) dσ +

d1+d2
∫

d1

Pg2 (σ, t) dσ +

d1+d2+d3
∫

d1+d2

Pg3 (σ, t) dσ (4.30)

where Pgi (σ, t) is the gravitational potential energy of slice σ when σ is a point on

Section i, i = 1, 2, 3 which is defined as follows

Pgi (σ, t) =
mg

dκi

[cos (σκi) − cos (2σκi)] . (4.31)

From (4.30) Pg (t) can be calculated as follows

Pg =
mg

d

{

1

κ2
1

[

sin (d1κ1) −
1

2
sin (2d1κ1)

]

+
1

κ2
2

[

sin ((d1 + d2)κ2) −
1

2
sin (2 (d1 + d2) κ2)

− sin (d1κ2) +
1

2
sin (2d1κ2)

]

+
1

κ2
3

[

sin ((d1 + d2 + d3) κ3) −
1

2
sin (2 (d1 + d2 + d3)κ3)

− sin ((d1 + d2) κ3) +
1

2
sin (2 (d1 + d2)κ3)

]}

(4.32)

where (4.31) was utilized.

6For simplicity, the time dependency of the section lengths in (4.30) is dropped.
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Elastic Potential Energy

In this section, potential energy due to extension and bending is discussed.

Elastic Potential Energy due to Bending

The elastic potential energy of the manipulator due to bending is given as follows

Pb (t) ,
1

2

d(t)
∫

0

kb (σ) β2 (σ, t) dσ. (4.33)

In (4.33), β (σ, t) is defined as follows

β (σ, t) , π − 1

2
α (σ, t) (4.34)

where α (σ, t) is defined as follows

α (σ, t) , σκ (σ, t) (4.35)

and kb (σ) is the spring constant defined as follows

kb (σ) , kbi if σ is a point on Section i, i=1,2,3. (4.36)

This definition of the spring constants allows us to define different spring constants for

each section. This definition of the elastic potential energy due to bending provides

an improvement over a similar definition introduced in [101]. In [101], the potential

energy is in the form of a summation as opposed to the integral form presented in

this chapter, and also the spring constant utilized in that derivation is constant for

the manipulator. The total elastic potential energy due to bending can be written as

follows

Pb (t) =
1

2
kb1

d1
∫

0

β2
1 (σ, t) dσ +

1

2
kb2

d1+d2
∫

d1

β2
2 (σ, t) dσ

+
1

2
kb3

d1+d2+d3
∫

d1+d2

β2
3 (σ, t) dσ (4.37)
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where (4.36) was utilized, and from (4.34) and (4.35), βi (σ, t) , i = 1, 2, 3 can be

defined as follows

βi (σ, t) , π − 1

2
σκi. (4.38)

The total elastic potential energy due to bending evaluated in closed-form is presented

as follows

Pb =
1

2
kb1

{

π2d1 −
1

2
πd2

1κ1 +
1

12
πd3

1κ
2
1

}

+
1

2
kb2

{[

π2 (d1 + d2) −
1

2
π (d1 + d2)

2
κ2 +

1

12
π (d1 + d2)

3
κ2

2

]

−
[

π2d1 −
1

2
πd2

1κ2 +
1

12
πd3

1κ
2
2

]}

+
1

2
kb3

{[

π2 (d1 + d2 + d3) −
1

2
π (d1 + d2 + d3)

2
κ3

+
1

12
π (d1 + d2 + d3)

3
κ2

3

]

−
[

π2 (d1 + d2) −
1

2
π (d1 + d2)

2
κ3 +

1

12
π (d1 + d2)

3
κ2

3

]}

. (4.39)

Elastic Potential Energy due to Extension

The elastic potential energy of the manipulator due to extension is given as follows

Pe ,
1

2
ke1 [d1 (t) − d∗1]

2 +
1

2
ke2 [d2 (t) − d∗2]

2 +
1

2
ke3 [d3 (t) − d∗3]

2 (4.40)

where d∗i is the constant relaxed length of the ith section and kei are spring constants

for each section of the manipulator. This definition of the spring constants provides

an improvement on the model in [101] which utilized the same spring constant for

that definition.

Lagrangian Representation

The Lagrangian of the system is defined as follows

L (t) , K (t) − P (t) (4.41)
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where K (t) is the total kinetic energy defined in (4.25) and P (t) represents the total

potential energy of the system defined as follows

P (t) , Pg (t) + Pb (t) + Pe (t) (4.42)

where Pg (t) is the gravitational potential energy, and Pb (t) and Pe (t) represent elastic

potential energy due to extension and bending, respectively. It should be noted

that, the potential energy terms Pg (t), Pb (t) and Pe (t), defined in (4.32), (4.39),

(4.40) respectively, are functions of only joint position vector q (t) (i.e., they are not

functions of the joint velocities or accelerations). Euler-Lagrange equations of motion

are defined as follows [59]

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τ i , i = 1, 2, ..., 6. (4.43)

The equations of motion can be rewritten as follows

d

dt

∂K

∂q̇i
− ∂K

∂qi
− d

dt

∂P

∂q̇i
+
∂P

∂qi
= τ i , i = 1, 2, ..., 6. (4.44)

where (4.41) was utilized. Since the total potential energy of the system is not a

function of the joint velocities, then it is clear that the third term on the left-hand-

side of (4.44) is equal to zero for ∀i. The final term on the left-hand-side of (4.44)

can be written as follows

∂P

∂qi
=
∂Pg

∂qi
+
∂Pb

∂qi
+
∂Pe

∂qi
, i = 1, 2, ..., 6. (4.45)

In view of the above mentioned facts, the dynamic model of the system is developed

as follows

M (q) q̈ + V (q, q̇) q̇ +G (q) +B (q) + E (q) = τ (t) (4.46)

where M (q), V (q, q̇) ∈ R
6×6 are inertia matrix and centripetal-coriolis terms, re-

spectively, τ (t) ∈ R
6 is the control input, and G (q), B (q), E (q) ∈ R

6 represent the

effects of Pg (t), Pb (t), and Pe (t) respectively.
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Remark 1 The inertia matrix M (q) and the centripetal coriolis terms V (q, q̇) satisfy

the following property:

ξT
(

Ṁ − 2V
)

ξ = 0, ∀ξ ∈ R
6. (4.47)

When, the matrix (Ṁ − 2V ) is skew-symmetric, then (4.47) is satisfied. The proof of

(Ṁ − 2V ) being skew-symmetric is provided in Appendix P.

The terms in (4.46) are of the following form:

M ,

















2Kḋ1ḋ1
Kḋ1ḋ2

Kḋ1ḋ3
Kḋ1κ̇1

Kḋ1κ̇2
Kḋ1κ̇3

Kḋ1ḋ2
2Kḋ2ḋ2

Kḋ2ḋ3
Kḋ2κ̇1

Kḋ2κ̇2
Kḋ2κ̇3

Kḋ1ḋ3
Kḋ2ḋ3

2Kḋ3ḋ3
Kḋ3κ̇1

Kḋ3κ̇2
Kḋ3κ̇3

Kḋ1κ̇1
Kḋ2κ̇1

Kḋ3κ̇1
2Kκ̇1κ̇1 Kκ̇1κ̇2 Kκ̇1κ̇3

Kḋ1κ̇2
Kḋ2κ̇2

Kḋ3κ̇2
Kκ̇1κ̇2 2Kκ̇2κ̇2 Kκ̇2κ̇3

Kḋ1κ̇3
Kḋ2κ̇3

Kḋ3κ̇3
Kκ̇1κ̇3 Kκ̇2κ̇3 2Kκ̇3κ̇3

















(4.48)

V ,

















V11 V12 V13 V14 V15 V16

V21 V22 V23 V24 V25 V26

V31 V32 V33 V34 V35 V36

V41 V42 V43 V44 V45 V46

V51 V52 V53 V54 V55 V56

V61 V62 V63 V64 V65 V66

















(4.49)

G =
[

G1 G2 G3 G4 G5 G6

]T
, (4.50)

B =
[

B1 B2 B3 B4 B5 B6

]T
, (4.51)

E =
[

E1 E2 E3 E4 E5 E6

]T
. (4.52)

where their individual entries are provided in Appendices M, N, and O.

Numerical Results

To underline the validity of the proposed dynamic model, two numerical simula-

tions are performed. The model is implemented in Matlab 7.0.

First Simulation Run

In the first simulation run, to illustrate the similarities to the physical system,

the system is fed with τ 6 (t) being a sinusoid with an amplitude of 10−4 [Nm] and a
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period of 10 [sec] where the other entries of the control input τ (t) set to zero. The

spring constants are chosen as

kbi = 0.001, kei = 10, ∀i = 1, 2, 3. (4.53)

The section lengths and the curvatures are presented in Figures 4.3 and 4.4 respec-

tively. While the changes in the section lengths are negligible (i.e., less than 5mm for

each section), the effects observed on the curvatures are decreasing from κ3, κ2, κ1 as

expected from a real physical system.

Second Simulation Run

In the second simulation run, a straightforward control scheme for robot manip-

ulators, namely a computed-torque controller is implemented. The tracking error

signal e (t) ∈ R
6 is defined as follows

e , qd − q (4.54)

where qd (t) ∈ R
6 is the desired joint positions. The dynamic model presented in

(4.46) is rewritten as follows

M (q) q̈ +N (q, q̇) = τ (t) (4.55)

where N (q, q̇) ∈ R
6 represents the other dynamic effects on the left-hand-side of

(4.46). The control input τ (t) is designed as follows [15]

τ , M (q̈d +Kvė+Kpe) +N (4.56)

where Kv, Kp ∈ R
6×6 are constant control gain matrices. Since it is not in the scope

of this chapter, the stability analysis for the suggested controller is omitted and the

reader is referred to Section 4.4 of [15] for a more detailed analysis.
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To show the tracking performance of the proposed dynamic model qd (t) is selected

as follows

qd =

















0.35 + 0.01 sin(2πt)
0.35
0.40 + 0.01 sin(2πt)
1 + 0.2 sin(2πt)
2 + 0.2 sin(2πt)
3

















. (4.57)

The control gains are chosen as follows

Kv = I6, Kp = 100I6 (4.58)

where I6 ∈ R
6×6 is the standard identity matrix. The spring constants defined in

(4.53) are utilized. In Figures 4.5 and 4.6, the section lengths and the curvatures are

presented. In Figures 4.7 and 4.8, the tracking error signals for the section lengths

and the curvatures are presented, respectively. From Figures 4.7 and 4.8, it is clear

that the tracking error signals are driven to zero. The control inputs are presented

in Figures 4.9 and 4.10.

Conclusions

A novel dynamic model for planar extensible continuum robot manipulators was

derived. First, the kinetic energy of a slice of the continuum robot was evaluated.

Then, the total kinetic energy of the manipulator was obtained by utilizing a limit

operation (i.e., sum of the kinetic energy of all the slices). Next, the total potential

energy of the robot manipulator was considered. First, the gravitational potential

energy was calculated. Then, the elastic potential energy terms due to bending and

extension effects were derived. Finally, by utilizing the Lagrangian representation, the

effects of the total kinetic and potential energy were utilized to derive the dynamic

model. Numerical simulation results were presented for a planar 3-section extensible

continuum robot manipulator. The results show good consistency with the behavior

of continuum robot hardware, and good potential for use in controller implementation.
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Figure 4.2 Geometry of a 3-Section Extensible Robot Manipulator
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Figure 4.3 The section lengths (first simulation)
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Figure 4.4 The curvatures (first simulation)
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Figure 4.5 The section lengths (second simulation)
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Figure 4.6 The curvatures (second simulation)
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Figure 4.7 The tracking error for the section lengths (second simulation)
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Figure 4.8 The tracking error for the curvatures (second simulation)
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Figure 4.9 The control inputs for section lengths (i.e., τ 1 (t), τ 2 (t), and τ 3 (t)
(second simulation))
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Figure 4.10 The control inputs for curvatures (i.e., τ 4 (t), τ 5 (t), and τ 6 (t) (second
simulation))

94



CHAPTER 5

CONCLUSIONS

This dissertation presents contributions to two research areas: Control of nonlinear

systems with applications in robotics and Dynamic modeling for extensible continuum

robot manipulators.

In Chapter 1, an adaptive task-space controller for kinematically redundant robot

manipulators was designed to encode optional sub-task objectives to make use of the

redundancy resolution. This work utilized the adaptive full-state feedback quaternion

based controller developed in [1] and focused on the design of a general sub-task con-

troller. This general sub-task controller was developed as to not affect the tracking

control objective, and allows for the design of specific sub-task objectives. Four spe-

cific sub-tasks were designed as follows: singularity avoidance, joint-limit avoidance,

bounding the impact forces, and bounding the potential energy.

In Chapter 2, the human-robot interaction problem was addressed. Two con-

trollers were developed for nonlinear haptic and teleoperator systems that target

coordination of the master and slave. The first controller was proven to yield a semi-

global asymptotic result in the presence of parametric uncertainty in the master and

slave dynamic models provided the user and environmental input forces are measur-

able. The second controller was proven to yield a global asymptotic result despite

unmeasurable user and environmental input forces provided the dynamic models of

the master and slave are known. A transformation along with an adjustable target

system were utilized that allows the master system’s impedance to be adjusted so

that matches a desired target system operating in a remote physical/virtual environ-

ment. This work also presented an optional strategy to encode a velocity field assist

mechanism that provides the user of the system help in controlling the slave system

in completing a pre-defined contour following task. For each controller, Lyapunov-

based techniques were used to prove the control development implements a stable

coordinated teleoperator/haptic system with a user assist mechanism. When the
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optional velocity field assist mechanism is disabled, the analysis proved the control

development implements a stable passively coordinated teleoperator/haptic system.

As an extension of the developments in Chapters 1 and 2, future work will focus on

teleoperation with kinematically redundant robot manipulators.

In Chapter 3, the control problem of a class of multi-input multi-output nonlin-

ear systems was addressed. Two controllers were developed for flat MIMO nonlinear

systems in the presence of additive disturbances. The robust adaptive controller was

proven to yield a semi-global asymptotic tracking result in the presence of parametric

uncertainty along with additive disturbances. The adaptive controller and the adap-

tation law were designed such that, the parameter estimate vector is proven to go to a

constant vector. In the second part of the chapter, the learning controller was proven

to yield a semi-global asymptotic result in the presence of additive disturbances and

when the desired trajectory is periodic. In the development of both controllers, the

bounded additive disturbances were assumed to be twice continuously differentiable

and have bounded time derivatives up to second order. Since no assumptions were

made regarding the periodicity of the disturbances, it is clear that the suggested

controllers compensated for both repeating and nonrepeating disturbances. For each

controller, Lyapunov-based techniques were used to guarantee that the tracking error

is asymptotically driven to zero.

In Chapter 4, a novel dynamic model for planar extensible continuum robot ma-

nipulators was derived. First, the kinetic energy of a slice of the continuum robot

was evaluated. Then, the total kinetic energy of the manipulator was obtained by

utilizing a limit operation (i.e., sum of the kinetic energy of all the slices). Next,

the total potential energy of the robot manipulator is considered. First, the gravi-

tational potential energy is calculated. Then, the elastic potential energy terms due

to bending and extension effects were derived. Finally, by utilizing the Lagrangian

representation, the effects of the total kinetic and potential energy were utilized to

derive the dynamic model. Numerical simulation results are presented for a planar
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3-section extensible continuum robot manipulator. The results show good consis-

tency with the behavior of continuum robot hardware, and good potential for use in

controller implementation. Future work will focus on deriving a three-dimensional

dynamic model for extensible continuum robot manipulators.
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Appendix A

Proof of Theorem 2

Let V3(t) ∈ R denotes the following non-negative function

V3 ,
1

2
y2

a. (A.1)

After taking the time derivative of (A.1), the following simplified expression can be

obtained

V̇3 = −ks1

∥

∥Js

(

In − J+J
)∥

∥

2
y2

a (A.2)

+ya

[

JsJ
+Λ−1

[

ṗd +K1ep

−RT
d ωd +K2ev

]

− Jsr

]

where (1.44) was utilized. From (1.39), (1.41), (1.56), and the fact that p(t) ∈ L∞

from Theorem 1, Remark 2 can be used to show that θ(t) ∈ L∞; hence, it is clear that

Js(θ) ∈ L∞ for all sub-tasks. From Remark 1, it is clear that J (θ) and J+ (θ) ∈ L∞

and has full rank. Utilizing these properties we have

∥

∥Js

(

In − J+J
)∥

∥

2
> δ̄ (A.3)

where δ̄ ∈ R is a positive constant. From the above boundedness statements, and

the boundedness assumptions placed on the desired trajectory, the following upper

bound can be made

∥

∥

∥

∥

JsJ
+Λ−1

[

ṗd +K1ep

−RT
d ωd +K2ev

]

− Jsr

∥

∥

∥

∥

≤ δ1 (A.4)

where δ1 ∈ R is a positive constant. After applying the bounds defined in (A.3) and

(A.4), the expression in (A.2) can be written as follows

V̇3 ≤ −ks1δ̄y
2
a + δ1ya. (A.5)

The expression in (A.5) can be written as follows

V̇3 ≤ −
(

ks1δ̄ −
1

δ2

)

y2
a + δ2

1δ2 (A.6)
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where the following inequality was utilized

|δ1ya| ≤
1

δ2
y2

a + δ2
1δ2 (A.7)

where δ2 ∈ R is a positive constant. Provided ks1, δ̄, and δ2 are selected according

the following condition

(

ks1δ̄ −
1

δ2

)

> 0 then ks1 >
1

δ̄δ2

, (A.8)

the expression in (A.6) can be written as follows

V̇3 ≤ −γy2
a + ε (A.9)

where γ, ε ∈ R
+ are bounding constants. After substituting (A.1) into (A.9), the

following expression can be written

V̇3 ≤ −2γV3 + ε. (A.10)

After integrating each side of (A.10), the following solution can be written

V3(t) ≤ V3(t0) exp(−2γt) +
ε

2γ
(1 − exp(−2γt)) . (A.11)

From (A.11), it is clear that the following upper bound for ya(t) can be written

|ya(t)| ≤
√

|y2
a(t0)| exp(−2γt) +

ε

γ
(A.12)

thus proving that ya(t) ∈ L∞. From (1.43), it is clear that h(θ) ∈ L∞. Utilizing the

previous bounding statements with (1.44) it is clear that ẏa(t) ∈ L∞. After taking

the time derivative of (1.43), it is clear that ∂h(θ)
∂θ

∈ L∞.
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Appendix B

MIF Desired Trajectory Stability Analysis

To prove that ξd(t), λd(t), ηd (t), η̇d (t) ∈ L∞, let V (t) ∈ R denote the following

function

V , V1 + V2 (B.1)

where V1(t) ∈ R denotes the following non-negative function

V1 ,
1

2
ηT

dMT ηd +
1

2
λT

dKTλd (B.2)

where λd(t), ηd (t) , MT and KT were introduced in (2.21). The expression given in

(B.2) can be lower bounded by the auxiliary function, V2(x̄) ∈ R, which is defined as

follows

V2 , 2εηT
dMTλd ≤ V1 (B.3)

where x̄(t) ∈ R
2n is defined as follows

x̄ , [ λT
d ηT

d ]T (B.4)

and ε ∈ R is a positive bounding constant selected according to the following inequal-

ity

ε <
min {λmin{MT}, λmin{KT}}

4λmax{MT}
(B.5)

where λmin{·} and λmax{·} denote the minimum and maximum eigenvalue of a matrix,

respectively. From (B.3) it is clear that V (t) is a non-negative function and bounded

by the following inequalities

λ̄1 ‖x̄‖2 ≤ V (x̄) ≤ λ̄2 ‖x̄‖2 (B.6)

where λ̄1, λ̄2 ∈ R are positive bounding constants defined as follows, provided that ε

is selected according to (B.5)

λ̄1 ,
1

2
min {λmin{MT}, λmin{KT}} − 2ελmax{MT}

λ̄2 ,
1

2
max {λmax{MT}, λmax{KT}} + 2ελmax{MT}. (B.7)
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To facilitate the subsequent analysis, the time derivative of (B.1) can be determined

as follows

V̇ = ηT
dMT η̇d + λT

dKT λ̇d + 2εη̇T
dMTλd + 2εηT

dMT λ̇d. (B.8)

After utilizing (2.21) and the fact that ηd (t) = λ̇d (t), the expression in (B.8) can be

written as

V̇ = ηT
dF − ηT

dBTηd + 2ελT
d F − 2ελT

dBT ηd − 2ελT
dKTλd + 2εηT

dMTηd. (B.9)

The right-hand side of (B.9) can be upper bounded as follows

V̇ ≤ 1

δ1
‖ηd‖2 + δ1 ‖F‖2 − λmin {BT} ‖ηd‖2 + 2ε

[

δ2 ‖λd‖2 +
1

δ2
‖F‖2

]

+2ελmax {BT}
[

δ3 ‖λd‖2 +
1

δ3

‖ηd‖2

]

−2ελmin {KT} ‖λd‖2 + 2ελmax {MT} ‖ηd‖2 (B.10)

where the following properties were utilized

ηT
dF ≤ 1

δ1
‖ηd‖2 + δ1 ‖F‖2

−ηT
dBT ηd ≤ −λmin {BT} ‖ηd‖2

λT
dF ≤ δ2 ‖λd‖2 +

1

δ2
‖F‖2

−λT
dBT ηd ≤ λmax {BT}

[

δ3 ‖λd‖2 +
1

δ3
‖ηd‖2

]

−λT
dKTλd ≤ −λmin {KT} ‖λd‖2

ηT
dMT ηd ≤ λmax {MT} ‖ηd‖2

where δ1, δ2, δ3 ∈ R are positive bounding constants.

The expression in (B.10) can be rearranged as follows

V̇ ≤ − (λmin {BT} −
1

δ1
− 2ελmax {BT}

δ3
−2ελmax {MT}) ‖ηd‖2 (B.11)

−2ε (λmin {KT} − δ3λmax {BT} − δ2) ‖λd‖2 +

(

δ1 +
2ε

δ2

)

‖F‖2
.
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Provided that ε is selected to satisfy (B.5) and δ1, δ2, δ3, MT , BT , KT are selected

to satisfy the following sufficient conditions

λmin{BT} >
1

δ1
+

2ελmax {BT}
δ3

+ 2ελmax {MT} (B.12)

λmin{KT} > δ3λmax {BT} + δ2 (B.13)

along with the Assumption 1, then the right-hand side of (B.11) can be upper bounded

as follows

V̇ ≤ −min {γa, γb}
λ̄2

V + ǫ (B.14)

where (B.4) and (B.6) were utilized, and γa, γb, ǫ ∈ R denote positive bounding

constants.

From (B.1) - (B.3), and (B.6), and the fact that F(t) ∈ L∞, the expression in

(B.14) can be used with the result from [105] to prove that x̄ (t), λd (t), ηd (t) ∈ L∞.

By utilizing the fact that ηd (t) ∈ L∞ along with (2.20) and Remark 2, it is clear that

ξd (t), ξ̇d (t), ϕ
(

ξp (t)
)

∈ L∞. Based on (2.21), and the fact that F (t) ∈ L∞ then

η̇d (t) ∈ L∞. After utilizing the above boundedness statements along with Remark 2

and the first time derivative of (2.20), it is clear that ξ̈d (t) ∈ L∞. The time derivative

of (2.21) can be written as follows

MT η̈d +BT η̇d +KTηd = Ḟ (B.15)

where the fact ηd (t) = λ̇d (t) was utilized. After utilizing the fact that ηd (t), η̇d (t) ∈
L∞, and the assumption that ḞH (t), ḞE (t) ∈ L∞ along with (B.15), it is clear that

η̈d (t) ∈ L∞. The second time derivative of (2.20) can be written as follows

...
ξ d , γ

d2

dt2

(

[

ϕT
(

ξp

)

0T
r

]T
)

+ η̈d. (B.16)

After utilizing the above boundedness statements and Remark 2 along with (B.16),

then
...
ξ d (t) ∈ L∞. The time derivative of (B.15) can be written as follows

MT
...
η d +BT η̈d +KT η̇d = F̈ (B.17)
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After utilizing the fact that η̇d (t), η̈d (t) ∈ L∞ and the assumption that F̈H (t),

F̈E (t) ∈ L∞, from (B.17) it can be showed that
...
η d(t) ∈ L∞. After taking time

derivative of (B.16) and utilizing the facts that ξd (t), ξ̇d (t) , ξ̈d (t) ,
...
ξ d (t) ,

...
η d(t) ∈

L∞, then it is clear that
....
ξ d (t) ∈ L∞. By utilizing the above boundedness statements

along with (2.19), it is clear that xd (t), ẋd (t), ẍd (t),
...
x d (t), and

....
x d (t) ∈ L∞.
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Appendix C

Proof of Theorem 3

Lemma 1 Let the auxiliary functions L1 (t), L2 (t) ∈ R be defined as follows

L1 , rT (Nd − β1sgn (e2)) , L2 , −β2ė
T
2 sgn (e2) (C.1)

where β1 and β2 were introduced in (2.34). Provided that β1 is selected to satisfy the

following sufficient condition

β1 > ς1 +
1

α1

ς2 (C.2)

where ς1 and ς2 were introduced in (2.33), and α1 was introduced in (2.15), then

∫ t

t0
L1 (τ ) dτ ≤ ξb1 ,

∫ t

t0
L2 (τ) dτ ≤ ξb2 (C.3)

where ξb1, ξb2 ∈ R are positive constants defined as

ξb1 , β1

2n
∑

i=1

|e2i (t0)| − eT
2 (t0)Nd (t0) , ξb2 , β2

2n
∑

i=1

|e2i (t0)| . (C.4)

Proof. After substituting (2.15) into L1 (t) defined in (C.1) and then integrating in

time, results in the following expression

∫ t

t0

L1 (τ) dτ = α1

∫ t

t0

eT
2 (τ ) [Nd (τ ) − β1sgn (e2 (τ))] dτ (C.5)

+

∫ t

t0

deT
2 (τ )

dτ
Nd (τ) dτ − β1

∫ t

t0

deT
2 (τ)

dτ
sgn (e2 (τ )) dτ .

After integrating the second integral on the right side of (C.5) by parts and evaluating

the last integral, the following expression is obtained

∫ t

t0

L1 (τ ) dτ = α1

∫ t

t0

eT
2

(

Nd −
1

α1

dNd

dτ
− β1sgn (e2)

)

dτ

+eT
2 (t)Nd (t) − β1

2n
∑

i=1

|e2i (t)| + ξb1. (C.6)

105



The right-hand side of (C.6) can be upper bounded as follows

∫ t

t0

L1 (τ ) dτ 6 α1

∫ t

t0

2n
∑

i=1

|e2i (τ )|
(

|Ndi
(τ )| + 1

α1

∣

∣

∣

∣

dNdi
(τ )

dτ

∣

∣

∣

∣

− β1

)

dτ

+
2n
∑

i=1

|e2i (t)| (|Ndi
(t)| − β1) + ξb1. (C.7)

If β1 is chosen according to (2.39), then the first inequality in (C.3) can be proven from

(C.7). The second inequality in (C.3) can be obtained by integrating the expression

for L2(t) defined in (C.1) as follows

∫ t

t0

L2 (τ) dσ = −β2

∫ t

t0

ėT
2 (τ ) sgn (e2 (τ )) dτ (C.8)

= ξb2 − β2

2n
∑

i=1

|e2i (t)| ≤ ξb2.

The following is the proof of Theorem 3.

Proof. Let the auxiliary functions P1 (t), P2 (t) ∈ R be defined as follows

P1 , ξb1 −
∫ t

t0

L1 (τ ) dτ ≥ 0 (C.9)

P2 , ξb2 −
∫ t

t0

L2 (τ ) dτ ≥ 0 (C.10)

where L1 (t), L2 (t) , ξb1 and ξb2 were defined in Lemma 1. The proof of Lemma 1

ensures that P1 (t) and P2 (t) are non-negative. Let V (y, t) ∈ R denote the following

non-negative function

V ,
1

2
eT
1 e1 +

1

2
eT
2 e2 +

1

2
rTM̄r + P1 + P2 (C.11)

where y (t) ∈ R
6n+2 is defined as follows

y ,
[

zT
√
P1

√
P2

]T
(C.12)

where z (t) ∈ R
6n is defined as follows

z ,
[

eT
1 eT

2 rT
]T
. (C.13)
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Because M̄ (x) is assumed to be bounded as defined in (2.14), (C.11) is bounded as

follows

W1(y) ≤ V (y, t) ≤W2(y) (C.14)

where W1 (y), W2 (y) ∈ R are defined as

W1(y) , λ1 ‖y(t)‖2
W2(y) , λ2 ‖y(t)‖2 (C.15)

where λ1 , 1
2
min {1, m̄1} and λ2 , max

{

1, 1
2
m̄2

}

.

After differentiating (C.11) in time, the following expression can be obtained

V̇ = −α2e
T
1 e1 − α1e

T
2 e2 − rT (ks + 1) r (C.16)

+eT
1 e2 + rT Ñ − rTβ2sgn (e2) + β2ė

T
2 sgn (e2)

where (2.15), (2.16), (2.36), (C.9), and (C.10) were utilized. To facilitate the sub-

sequent analysis, the following inequality can be developed from (2.30) - (2.32) (see

Appendix I)
∥

∥

∥
Ñ (·)

∥

∥

∥
≤ ρ (‖z‖) ‖z‖ (C.17)

where ρ (·) is a positive, invertible bounding function that is non-decreasing in ‖z‖.
By utilizing (2.15), (C.17), and the triangle inequality, V̇ (t) can be upper bounded

as follows

V̇ ≤ −α2e
T
1 e1 − α1e

T
2 e2 − rT (ks + 1) r (C.18)

+eT
1 e1 + eT

2 e2 + ρ (‖z‖) ‖r‖ ‖z‖ − α1e
T
2 β2sgn (e2) .

After utilizing (C.13), the right-hand side of (C.18) can be rearranged as follows

V̇ ≤ −λ3 ‖z‖2 +
[

ρ (‖z‖) ‖r‖ ‖z‖ − ks ‖r‖2]− α1β2

2n
∑

i=1

|e2i| (C.19)

where λ3, min {α1 − 1, α2 − 1, 1}. Completing the squares on the bracketed term in

(C.19), yields the following expression

V̇ ≤ −
(

λ3 −
ρ2 (‖z‖)

4ks

)

‖z‖2 − α1β2

2n
∑

i=1

|e2i| . (C.20)
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Provided α1 and α2 are selected to be greater than 2 and ks is selected according to

the following sufficient condition

ks ≥
ρ2 (‖z‖)

4λ3

or ‖z‖ ≤ ρ−1
(

2
√

ksλ3

)

(C.21)

then based on (C.20) the following inequality can be developed

V̇ ≤ W (y) − α1β2

2n
∑

i=1

|e2i| (C.22)

where W (y) ∈ R denotes the following non-positive function

W (y) , −β0 ‖z‖2 (C.23)

where β0 ∈ R is a positive constant. From (C.11)-(C.15) and (C.20)-(C.23) the

regions D and S can be defined as follows

D ,
{

y ∈ R
6n+2 | ‖y‖ < ρ−1

(

2
√

ksλ3

)}

(C.24)

S ,

{

y ∈ D |W2 (y) < λ1

(

ρ−1
(

2
√

ksλ3

))2
}

. (C.25)

Note that the region of attraction in (C.25) can be made arbitrarily large to

include any initial conditions by increasing the control gain ks (i.e., a semi-global

stability result). Specifically, (C.15) and (C.25) can be used to calculate the region

of attraction as follows

W2 (y (t0)) < λ1

(

ρ−1
(

2
√

ksλ3

))2

(C.26)

=⇒ ‖y (t0)‖ <
√

λ1

λ2
ρ−1

(

2
√

ksλ3

)

,

which can be rearranged as

ks ≥
1

4λ3

ρ2

(

√

λ2

λ1

‖y (t0)‖
)

. (C.27)

By utilizing (C.4), (C.12) and (C.13) the following explicit expression for ‖y (t0)‖ can

be derived as follows

‖y (t0)‖2 = ‖e1 (t0)‖2 + ‖e2 (t0)‖2 + ‖r (t0)‖2 + ξb1 + ξb2. (C.28)
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From (C.11), (C.22), (C.25)-(C.27), it is clear that V (y, t) ∈ L∞ ∀y (t0) ∈ S;

hence e1 (t), e2 (t), r (t), z (t), y (t) ∈ L∞ ∀y (t0) ∈ S. From (C.22), it is easy to show

that e2 (t) ∈ L1 ∀y (t0) ∈ S. The fact that e2 (t) ∈ L1 ∀y (t0) ∈ S can be used along

with (2.16) to determine that e1 (t) , ė1 (t) ∈ L1 ∀y (t0) ∈ S. From (2.7), (2.17) and the

fact that xd (t) ∈ L∞, it is clear that x (t), xm (t), xs (t) ∈ L∞ ∀y (t0) ∈ S. From (2.15)

and (2.16) it is also clear that ė2 (t), ė1 (t) ∈ L∞ ∀y (t0) ∈ S. Using these boundedness

statements, from (2.35) it is clear that
.
ū (t) ∈ L∞ ∀y (t0) ∈ S. Since ë1 (t) ∈ L∞, from

the second time derivative of (2.17), and the fact that ẍd (t) ∈ L∞ along with (2.27),

it is clear that ū (t) ∈ L∞ ∀y (t0) ∈ S. The previous boundedness statements can be

used along with (2.36), (C.17), and Remark 4 to prove that ṙ (t) ∈ L∞ ∀y (t0) ∈ S.
These bounding statements can be used along with the time derivative of (C.23) to

prove that Ẇ (y (t)) ∈ L∞ ∀y (t0) ∈ S; hence, W (y (t)) is uniformly continuous.

Standard signal chasing arguments can be used to prove that all remaining signals

are bounded. A direct application of Theorem 8.4 in [106] can be used to prove that

‖z (t)‖ → 0 as t → ∞ ∀y (t0) ∈ S. From (C.13), it is clear that ‖r (t)‖ → 0 as

t → ∞ ∀y (t0) ∈ S. Based on the definitions given in (2.15) and (2.16), standard

linear analysis tools can be used to prove that if ‖r (t)‖ → 0 then ‖ė2 (t)‖ , ‖e2 (t)‖ ,
‖ė1 (t)‖, ‖e1 (t)‖ → 0 as t → ∞ ∀y (t0) ∈ S. Based on the definition of x (t) in (2.7)

and e1 (t) in (2.17), it is clear that if ‖e1 (t)‖ → 0 then xs (t) → xm (t) and xm (t)

→ ξd (t).
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Appendix D

Proof of Theorem 4

Proof. Since the user assist mechanism is disabled (i.e., γ = 0), the target system

defined in (2.20) and (2.21) can be simplified to (2.25). Let Vp (t) ∈ R denote the

following non-negative function

Vp ,
1

2
ξ̇

T

dMT ξ̇d +
1

2
ξT

dKT ξd. (D.1)

After differentiating (D.1) in time, the following simplified expression can be obtained

V̇p = ξ̇
T

dF − ξ̇
T

dBT ξ̇d (D.2)

where (2.25) was utilized. Based on the fact that BT is a constant positive definite,

diagonal matrix, the following inequality can be obtained

V̇p ≤ ξ̇
T

dF. (D.3)

Integrating both sides of (D.3), results in the following inequality

−c2 ≤ Vp (t) − Vp (t0) ≤
∫ t

t0

ξ̇
T

d (σ)F (σ) dσ (D.4)

where c2 ∈ R is a positive bounded constant (since Vp (t) is bounded from the trajec-

tory generation system in (2.25)).

By using the transformation in (2.7), the left-hand side of (2.6) can be expressed

as
∫ t

t0

[

ẋT
m (τ ) ẋT

s (τ )
]

[

FH (τ)
FE (τ)

]

dτ =

∫ t

t0

ẋT F̄ dτ . (D.5)

By substituting the time derivative of (2.17) into (D.5), the following expression can

be obtained

∫ t

t0

ẋT (τ) F̄ (τ ) dτ =

∫ t

t0

ξ̇
T

d (τ)F (τ) dτ −
∫ t

t0

ėT
1 (τ ) F̄ (τ) dτ (D.6)

where (2.13),(2.19) and (2.22) were utilized. Based on (D.4), it is easy to see that
∫ t

t0
ξ̇

T

d (τ)F (τ ) dτ is lower bounded by −c2. The fact that ė1 (t) ∈ L1 (see the proof
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for Theorem 3) and the assumption that F̄ (t) ∈ L∞ can be used to show that the

second integral of (D.6) is bounded. Hence, these facts can be applied to (D.5) and

(D.6) to prove that

∫ t

t0

[

ẋT
m (τ) ẋT

s (τ )
]

[

FH (τ )
FE (τ)

]

dτ ≥ −c23 (D.7)

where c3∈ R is a bounded constant.
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Appendix E

Proof of Theorem 5

Lemma 2 Let the auxiliary functions L1 (t), L2 (t) ∈ R be defined as follows

L1 , −rT
( .

F̄ +β1sgn (e2)
)

, L2 , −β2ė
T
2 sgn (e2) (E.1)

where β1 and β2 were introduced in (2.67). Provided that β1 is selected to satisfy the

following sufficient condition

β1 > ς3 + ς4, (E.2)

where ς3 and ς4 were introduced in (2.70), then

∫ t

t0
L1 (τ ) dτ ≤ ξb1 ,

∫ t

t0
L2 (τ) dτ ≤ ξb2 (E.3)

where ξb1, ξb2 ∈ R are positive constants defined as

ξb1 , β1

2n
∑

i=1

|e2i (t0)| − eT
2 (t0)

(

−
.

F̄ (t0)
)

, ξb2 , β2

2n
∑

i=1

|e2i (t0)| . (E.4)

Proof. After substituting (2.50) into L1 (t) defined in (E.1) and then integrating in

time, results in the following expression

∫ t

t0

L1 (τ) dτ =

∫ t

t0

eT
2 (τ )

[

−
.

F̄ (τ) − β1sgn (e2 (τ ))
]

dτ (E.5)

+

∫ t

t0

deT
2 (τ )

dτ

(

−
.

F̄ (τ )
)

dτ − β1

∫ t

t0

deT
2 (τ)

dτ
sgn (e2 (τ )) dτ .

After integrating the second integral on the right-hand side of (E.5) by parts and

evaluating the last integral, the following expression is obtained

∫ t

t0

L1 (τ) dτ =

∫ t

t0

eT
2 (τ)

(

−
.

F̄ (τ) +
..

F̄ (τ ) − β1sgn (e2 (τ))
)

dτ

−eT
2 (t)

.

F̄ (t) − β1

2n
∑

i=1

|e2i (t)| + ξb1. (E.6)
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The right-hand side of (E.6) can be upper bounded as follows

∫ t

t0

L1 (τ) dτ 6

∫ t

t0

2n
∑

i=1

|e2i (τ)|
(∣

∣

∣

.

F̄ i (τ )
∣

∣

∣
+
∣

∣

∣

..

F̄ i (τ)
∣

∣

∣
− β1

)

dτ

+

2n
∑

i=1

|e2i (t)|
(∣

∣

∣

.

F̄ i (t)
∣

∣

∣
− β1

)

+ ξb1. (E.7)

If β1 is chosen to satisfy (E.2), then the first inequality in (E.3) can be proven from

(E.7). The second inequality in (E.3) can be obtained by integrating L2(t), defined

in (E.1) as follows

∫ t

t0

L2 (τ) dσ = −β2

∫ t

t0

ėT
2 (τ ) sgn (e2 (τ )) dτ

= ξb2 − β2

2n
∑

i=1

|e2i (t)| ≤ ξb2. (E.8)

The following is the proof of Theorem 5.

Proof. Let the auxiliary functions P1 (t), P2 (t) ∈ R be defined as follows

P1 , ξb1 −
∫ t

t0

L1 (τ ) dτ ≥ 0 (E.9)

P2 , ξb2 −
∫ t

t0

L2 (τ ) dτ ≥ 0 (E.10)

where L1 (t), L2 (t) , ξb1 and ξb2 were defined in Lemma 2. The proof of Lemma 2

ensures that P1 (t) and P2 (t) are non-negative. Let V1 (y, t) ∈ R denote the following

non-negative function

V1 ,
1

2
eT
2 e2 +

1

2
rT r + P1 + P2 (E.11)

where y (t) ∈ R
4n+2 is defined as

y ,
[

eT
2 rT

√
P1

√
P2

]T
. (E.12)

Note that (E.11) is bounded by the following inequalities

W3 (y) ≤ V1 (y, t) ≤W4 (y) (E.13)
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where W3 (y), W4 (y) ∈ R are defined as

W3 (y) = λ4 ‖y (t)‖2
W4 (y) = λ5 ‖y (t)‖2 (E.14)

where λ4, λ5 ∈ R are positive bounding constants.

After differentiating (E.11) in time, results in the following expression

V̇1 = −eT
2 e2 − ksr

Tr − β2e
T
2 sgn (e2) (E.15)

where (2.50), (2.69), (E.9), and (E.10) were utilized. The expression in (E.15) can be

rewritten as

V̇1 = −‖e2‖2 − ks ‖r‖2 − β2

2n
∑

i=1

|e2i| . (E.16)

From (E.11) and (E.16), it is clear that V1 (y, t) ∈ L∞; hence, e2 (t) ∈ L∞∩L2∩L1,

r (t) ∈ L∞ ∩ L2, and y (t) ∈ L∞ . Since e2 (t), r (t) ∈ L∞, then (2.50) and (2.68) can

be used to prove that ė2 (t),
.

F̂ (t) ∈ L∞. Given that e2 (t) , r(t),
.

F̂ (t) ∈ L∞ and the

assumption that
.

F̄ (t) ∈ L∞, (2.66) can be used to prove that ṙ(t) ∈ L∞. Barbalat’s

Lemma can be utilized to prove

‖e2(t)‖ , ‖r(t)‖ → 0 as t→ ∞. (E.17)

From (2.50), (2.51), (E.17) and the fact that M̄(x) ∈ L∞, standard linear analysis

arguments can be used to prove that e1(t), ė1 (t), ė2(t) ∈ L∞ and e1(t), ė1(t) ∈ L1,

and that

‖e1(t)‖ , ‖ė1(t)‖ , ‖ė2(t)‖ → 0 as t→ ∞. (E.18)

By using the assumption that F̄ (t) ∈ L∞ and the fact that ė2 (t) ∈ L∞from (2.64)

it is clear that F̂ (t) ∈ L∞. Since F̂ (t) ∈ L∞, (2.55) and the proof in Appendix

G can be used to prove that λd (t), ηd (t) , η̇d (t) , ξd (t) , ξ̇d (t) , ξ̈d (t) ∈ L∞. Using

these facts along with (2.48), (2.52) and their first time derivatives, it is clear that

x (t), ẋ (t), xm (t), ẋm(t), xs (t) , ẋs(t) ∈ L∞. Since e1 (t) , ė1 (t) , M̄ (x) ,
.

M̄ (x) ∈
L∞, it is clear from (2.63) that T̄1 (t) ∈ L∞, and using previously stated bounding
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properties, T̄ (t) ∈ L∞. It is also possible to state that T̄1 (t) ∈ L1, where (2.63) was

utilized. Based on the definition of x (t) in (2.48) and the previously stated bounding

properties, it is clear that xs (t) → xm (t) and xm (t) → ξ1 (t) . From these bounding

statements and standard signal chasing arguments, all signals can be shown to be

bounded.
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Appendix F

Proof of Theorem 6

Proof. Since the user assist mechanism is disabled (i.e., γ = 0), the target system

defined in (2.54) and (2.55) can be simplified to (2.58). To assist in the subsequent

analysis, the following expression can be developed from integration by parts
∫ t

t0

M̄ ë1 (τ) dτ = M̄ ė1(t) − M̄ė1 (t0) −
∫ t

t0

.

M̄ ė1 (τ) dτ. (F.1)

Since M̄ (x) ,
.

M̄ (x) , ė1(t) ∈ L∞, and ė1(t) ∈ L1, then
∫ t

t0
M̄ë1 (τ) dτ ∈ L∞. After

integrating (2.61) as follows
∫ t

t0

F̃ (τ ) dτ = −
∫ t

t0

M̄ë1 (τ) dτ −
∫ t

t0

T̄1 (τ) dτ (F.2)

and using the facts that T̄1(t) ∈ L1 (see proof of Theorem 5) and that
∫ t

t0
M̄ ë1 (τ) dτ ∈

L∞, it is clear that F̃ (t) ∈ L1, where F̃ (t) ∈ R
2n is defined as follows

F̃ , F̄ − F̂ . (F.3)

The expression in (F.3) can be decomposed as F̃ (t) =
[

F̃ T
1 F̃ T

2

]T
, where F̃1 (t) ,

F̃2 (t) ∈ R
n. After utilizing the fact that F̂ (t0) = 02n, the following can be derived

F̂ (t) =

∫ t

t0

.

F̂ (τ) dτ. (F.4)

From the proof of Theorem 5 (see Appendix E), it is clear that F̂ (t) ∈ L∞, then from

(F.4) it is also clear that
.

F̂ (t) ∈ L1.

By using the transformation in (2.48), the passivity objective in (2.6) can be

rewritten as follows
∫ t

t0

[

ẋT
m (τ) ẋT

s (τ )
]

[

FH (τ )
FE (τ )

]

dτ =

∫ t

t0

ẋT F̄ dτ −
∫ t

t0

[

0T
n ξ̇

T

2

]

F̄ dτ . (F.5)

By utilizing (F.3) and the time derivative of (2.52), (F.5) can be rewritten as follows
∫ t

t0

ẋT F̄ dτ −
∫ t

t0

[

0T
n ξ̇

T

2

]

F̄ dτ =

∫ t

t0

ξ̇
T

1 (τ) F̃1 (τ ) dτ +

∫ t

t0

ξ̇
T

1 (τ ) F̂1 (τ ) dτ

−
∫ t

t0

ėT
1 (τ) F̄ (τ ) dτ. (F.6)
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Following expression can be developed from integration by parts of the second integral

at the right-hand side of (F.6)

∫ t

t0

ẋT F̄ dτ −
∫ t

t0

[

0T
n ξ̇

T

2

]

F̄ dτ =

∫ t

t0

ξ̇
T

1 (τ) F̃1 (τ ) dτ −
∫ t

t0

ξT
1 (τ)

.

F̂1 (τ ) dτ

+ξT
1 (t) F̂1 (t) −

∫ t

t0

ėT
1 (τ ) F̄ (τ) dτ (F.7)

where F̂ (t0) = 02n is both utilized. Since ξ̇1(t) ∈ L∞ and F̃ (t) ∈ L1, it is clear that

the first integral expression in (F.7) is bounded and a lower negative bound exists.

Since ξ1(t)∈ L∞ and
.

F̂ (t) ∈ L1 it is clear that the second integral expression in

(F.7) is bounded and a lower negative bound exists, and since ξ1 (t), F̂ (t) ∈ L∞ then

third expression is also bounded and a lower negative bound exists. Finally, because

ė1(t) ∈ L1 and F̄ (t) ∈ L∞, it is possible to show that the last integral in (F.7) is

also bounded and a lower negative bound exists. Hence, these facts can be applied

to (F.5) to prove that

∫ t

t0

[

ẋT
m (τ) ẋT

s (τ )
]

[

FH (τ )
FE (τ)

]

dτ ≥ −c24 (F.8)

where c4∈ R is a bounded constant.
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Appendix G

UMIF Desired Trajectory Stability Analysis

In the proof of Theorem 5 (see Appendix E), it is proven that e1 (t) , e2(t), r(t), F̂ (t),
.

F̂ (t) ∈ L∞ as well as that ‖e1(t)‖ , ‖e2 (t)‖, and ‖r(t)‖ → 0 as t → ∞ regardless

of whether or not x (t) , ξd (t) , λd(t), ηd (t), η̇d (t) ∈ L∞. Therefore the fact that

F̂ (t) ∈ L∞ can be used in the subsequent analysis. To prove that λd(t), ηd (t) ∈ L∞,

let V (t) ∈ R denote the following function

V , V1 + V2 (G.1)

where V1(t) ∈ R denotes the following non-negative function

V1 ,
1

2
ηT

dMT ηd +
1

2
λT

dKTλd (G.2)

where λd(t), ηd (t) , MT and KT were introduced in (2.55). The expression given in

(G.2) can be lower bounded by the auxiliary function, V2 (x̄) ∈ R, defined as follows

V2 , 2εηT
dMTλd ≤ V1 (G.3)

where x̄(t) ∈ R
4n is defined as

x̄ , [ λT
d ηT

d ]T (G.4)

and ε ∈ R is a positive bounding constant selected according to the following inequal-

ity

ε <
min {λmin{MT}, λmin{KT}}

4λmax{MT}
(G.5)

where λmin{·} and λmax{·} denote the minimum and maximum eigenvalue of a matrix,

respectively. From (G.3) it is clear that V (t) is a non-negative function and bounded

by the following inequalities

λ̄1 ‖x̄‖2 ≤ V (x̄) ≤ λ̄2 ‖x̄‖2 (G.6)
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where λ̄1, λ̄2 ∈ R are positive constants defined as follows, provided that ε is selected

according to (G.5)

λ̄1 ,
1

2
min {λmin{MT}, λmin{KT}} − 2ελmax{MT} (G.7)

λ̄2 ,
1

2
max {λmax{MT}, λmax{KT}} + 2ελmax{MT}.

To facilitate the subsequent analysis, the time derivative of (G.1) can be determined

as follows

V̇ = ηT
dMT η̇d + λT

dKT λ̇d (G.8)

+2εη̇T
dMTλd + 2εηT

dMT λ̇d.

After utilizing (2.55) and the fact that ηd (t) = λ̇d (t), the expression in (G.8) can be

written as

V̇ = ηT
d

(

MT M̄
−1
)

F̂ − ηT
dBTηd + 2ελT

dMTM̄
−1F̂

−2ελT
dBTηd − 2ελT

dKTλd + 2εηT
dMT ηd. (G.9)

The right-hand side of (G.9) can be upper bounded as follows

V̇ ≤ ξm̄λmax {MT}
[

δ1 ‖ηd‖2 +
1

δ1

∥

∥

∥
F̂
∥

∥

∥

2
]

− λmin {BT} ‖ηd‖2

+2εξm̄λmax {MT}
[

δ3 ‖λd‖2 +
1

δ3

∥

∥

∥
F̂
∥

∥

∥

2
]

− 2ελmin {KT} ‖λd‖2

+2ελmax {BT}
[

δ2 ‖λd‖2 +
1

δ2

‖ηd‖2

]

+ 2ελmax {MT} ‖ηd‖2 (G.10)

where the following properties were utilized

ηT
dMTM̄

−1F̂ ≤ ξm̄λmax {MT}
[

δ1 ‖ηd‖2 +
1

δ1

∥

∥

∥
F̂
∥

∥

∥

2
]

(G.11)

−ηT
dBTηd ≤ −λmin {BT} ‖ηd‖2 (G.12)

2ελT
dMTM̄

−1F̂ ≤ 2εξm̄λmax {MT}
[

δ3 ‖λd‖2 +
1

δ3

∥

∥

∥
F̂
∥

∥

∥

2
]

(G.13)

−2ελT
dBTηd ≤ 2ελmax {BT}

[

δ2 ‖λd‖2 +
1

δ2

‖ηd‖2

]

(G.14)

−2ελT
dKTλd ≤ −2ελmin {KT} ‖λd‖2 (G.15)

2εηT
dMT ηd ≤ 2ελmax {MT} ‖ηd‖2 (G.16)
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where δ1, δ2, δ3 ∈ R denote positive bounding constants and ξm̄∈ R denotes positive

bounding constant defined as
∥

∥M̄−1
∥

∥

∞
≤ ξm̄ (G.17)

where
∥

∥M̄−1
∥

∥

∞
denotes the induced infinity norm of the bounded matrix M̄−1 (x) .

The expression in (G.10) can be rearranged as follows

V̇ ≤ − (λmin {BT} − ξm̄δ1λmax {MT}

−2ελmax {BT}
δ2

− 2ελmax {MT}
)

‖ηd‖2

−2ε (λmin {KT} − δ2λmax {BT} − ξm̄δ3λmax {MT}) ‖λd‖2

+ξm̄λmax {MT}
(

1

δ1
+

2ε

δ3

)

∥

∥

∥
F̂
∥

∥

∥

2

. (G.18)

Provided δ1, δ2, δ3, MT , BT , KT and ε are selected to satisfy (G.5) and the following

sufficient conditions

λmin{BT} > ξm̄δ1λmax {MT} +
2ελmax {BT}

δ2
+ 2ελmax {MT}

λmin{KT} > ξm̄δ3λmax {MT} + δ2λmax {BT}

right-hand side of (G.18) can be upper bounded as follows

V̇ ≤ −min {γa, γb}
λ̄2

V + ǫ (G.19)

where (G.4) and (G.6) were utilized, and γa, γb, ǫ ∈ R denote positive bounding

constants.

From (G.1) - (G.3), and (G.6), and that F̂ (t) ∈ L∞ (see Appendix E), the

expression in (G.19) can be used with the result from [105] to prove that x̄ (t), λd (t),

ηd (t) ∈ L∞. Based on (2.55), and the fact that M̄−1 (x), F̂ (t) ∈ L∞ then η̇d (t) ∈ L∞.

After utilizing the fact that ηd (t) , η̇d (t) ∈ L∞ along with the Remark 2, then it is

clear that ξd (t), ξ̇d (t) , ξ̈d (t) ∈ L∞.
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Appendix H

Existence of the Inverse of M̄M−1
T

To show that
(

M̄M−1
T

)−1
term introduced at the right-hand side of (2.55) exists, from

(2.10) and the fact that MT is a positive definite, diagonal matrix, then it is clear

that

M̄M−1
T = S−T

[

M1 0nxn

0nxn M2

]

S−1M−1
T (H.1)

where S, M1 (·) and M2 (·) were introduced in (2.8), (2.1) and (2.2), respectively.

From (H.1), it is clear that,

(

M̄M−1
T

)−1
= MTS

[

M−1
1 0nxn

0nxn M−1
2

]

ST . (H.2)
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Appendix I

Upper Bound Development for MIF Analysis

To simplify the following derivations, (2.31) can be rewritten as follows

N , N (x, ẋ, ẍ, e1, e2, r,
...
x d) (I.1)

= M̄
...
x d+

.

M̄ ẍ+
.

N̄ +e2 + M̄ (α1 + α2) r

−M̄
(

α2
1 + α1α2 + α2

2

)

e2 + M̄α3
2e1 +

1

2

.

M̄ r

where (2.15) and (2.16) were both utilized. To facilitate the subsequent analy-

sis, the terms N (x, ẋd, ẍd, 0, 0, 0,
...
x d), N (x, ẋ, ẍd, 0, 0, 0,

...
x d), N (x, ẋ, ẍ, 0, 0, 0,

...
x d),

N (x, ẋ, ẍ, e1, 0, 0,
...
x d), and N (x, ẋ, ẍ, e1, e2, 0,

...
x d) are added and subtracted to the

right-hand side of (2.30) as follows

Ñ = [N (x, ẋd, ẍd, 0, 0, 0,
...
x d) −Nd (xd, ẋd, ẍd, 0, 0, 0,

...
x d)]

+ [N (x, ẋ, ẍd, 0, 0, 0,
...
x d) −N (x, ẋd, ẍd, 0, 0, 0,

...
x d)]

+ [N (x, ẋ, ẍ, 0, 0, 0,
...
x d) −N (x, ẋ, ẍd, 0, 0, 0,

...
x d)]

+ [N (x, ẋ, ẍ, e1, 0, 0,
...
x d) −N (x, ẋ, ẍ, 0, 0, 0,

...
x d)]

+ [N (x, ẋ, ẍ, e1, e2, 0,
...
x d) −N (x, ẋ, ẍ, e1, 0, 0,

...
x d)]

+ [N (x, ẋ, ẍ, e1, e2, r,
...
x d) −N (x, ẋ, ẍ, e1, e2, 0,

...
x d)] . (I.2)

After applying the Mean Value Theorem to each bracketed term of (I.2), the following
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expression can be obtained

Ñ =
∂N (σ1, ẋd, ẍd, 0, 0, 0,

...
x d)

∂σ1

∣

∣

∣

∣

σ1=v1

(x− xd)

+
∂N (x, σ2, ẍd, 0, 0, 0,

...
x d)

∂σ2

∣

∣

∣

∣

σ2=v2

(ẋ− ẋd)

+
∂N (x, ẋ, σ3, 0, 0, 0,

...
x d)

∂σ3

∣

∣

∣

∣

σ3=v3

(ẍ− ẍd)

+
∂N (x, ẋ, ẍ, σ4, 0, 0,

...
x d)

∂σ4

∣

∣

∣

∣

σ4=v4

(e1 − 0)

+
∂N (x, ẋ, ẍ, e1, σ5, 0,

...
x d)

∂σ5

∣

∣

∣

∣

σ5=v5

(e2 − 0)

+
∂N (x, ẋ, ẍ, e1, e2, σ6,

...
x d)

∂σ6

∣

∣

∣

∣

σ6=v6

(r − 0) (I.3)

where v1 ∈ (xd, x), v2 ∈ (ẋd, ẋ), v3 ∈ (ẍd, ẍ), v4 ∈ (0, e1), v5 ∈ (0, e2), and v6 ∈ (0, r).

The right-hand side of (I.3) can be upper bounded as follows

∥

∥

∥
Ñ
∥

∥

∥
≤

∥

∥

∥

∥

∥

∂N (σ1, ẋd, ẍd, 0, 0, 0,
...
x d)

∂σ1

∣

∣

∣

∣

σ1=v1

∥

∥

∥

∥

∥

‖e1‖

+

∥

∥

∥

∥

∥

∂N (x, σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2

∣

∣

∣

∣

σ2=v2

∥

∥

∥

∥

∥

‖ė1‖

+

∥

∥

∥

∥

∥

∂N (x, ẋ, σ3, 0, 0, 0,
...
x d)

∂σ3

∣

∣

∣

∣

σ3=v3

∥

∥

∥

∥

∥

‖ë1‖

+

∥

∥

∥

∥

∥

∂N (x, ẋ, ẍ, σ4, 0, 0,
...
x d)

∂σ4

∣

∣

∣

∣

σ4=v4

∥

∥

∥

∥

∥

‖e1‖

+

∥

∥

∥

∥

∥

∂N (x, ẋ, ẍ, e1, σ5, 0,
...
x d)

∂σ5

∣

∣

∣

∣

σ5=v5

∥

∥

∥

∥

∥

‖e2‖

+

∥

∥

∥

∥

∥

∂N (x, ẋ, ẍ, e1, e2, σ6,
...
x d)

∂σ6

∣

∣

∣

∣

σ6=v6

∥

∥

∥

∥

∥

‖r‖ . (I.4)
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The partial derivatives in (I.3) can be calculated by using (I.1) as follows

∂N (σ1, ẋd, ẍd, 0, 0, 0,
...
x d)

∂σ1

=
∂M̄ (σ1)

∂σ1

...
x d +

∂
.

M̄ (σ1, ẋd)

∂σ1

ẍd (I.5)

+
∂

.

N̄ (σ1, ẋd, ẍd)

∂σ1

∂N (x, σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2

=
∂

.

M̄ (x, σ2)

∂σ2

ẍd +
∂

.

N̄ (x, σ2, ẍd)

∂σ2

(I.6)

∂N (x, ẋ, σ3, 0, 0, 0,
...
x d)

∂σ3
=

.

M̄ (x, ẋ) +
∂

.

N̄ (x, ẋ, σ3)

∂σ3
(I.7)

∂N (x, ẋ, ẍ, σ4, 0, 0,
...
x d)

∂σ4
= α3

2M̄ (x) (I.8)

∂N (x, ẋ, ẍ, e1, σ5, 0,
...
x d)

∂σ5

= I2n −
(

α2
1 + α1α2 + α2

2

)

M̄ (x) (I.9)

∂N (x, ẋ, ẍ, e1, e2, σ6,
...
x d)

∂σ6
= (α1 + α2) M̄ (x) +

1

2

.

M̄ (x, ẋ) (I.10)

where I2n ∈ R
2n×2n denotes the identity matrix. By defining

v1 , x− τ 1 (x− xd) v2 , ẋ− τ 2 (ẋ− ẋd)

v3 , ẍ− τ 3 (ẍ− ẍd) v4 , e1 − τ 4 (e1 − 0)

v5 , e2 − τ 5 (e2 − 0) v6 , r − τ 6 (r − 0)

where τ i ∈ (0, 1) ∀i = 1, 2, ..., 6, and if the assumptions stated for the system model

and the desired trajectory are met, then upper bounds for the right-hand sides of

(I.5)-(I.10) can be rewritten as follows
∥

∥

∥

∥

∥

∂N (σ1, ẋd, ẍd, 0, 0, 0,
...
x d)

∂σ1

∣

∣

∣

∣

σ1=v1

∥

∥

∥

∥

∥

6 ρ1 (x, ẋ, ẍ) (I.11)

∥

∥

∥

∥

∥

∂N (x, σ2, ẍd, 0, 0, 0,
...
x d)

∂σ2

∣

∣

∣

∣

σ2=v2

∥

∥

∥

∥

∥

6 ρ2 (x, ẋ, ẍ) (I.12)

∥

∥

∥

∥

∥

∂N (x, ẋ, σ3, 0, 0, 0,
...
x d)

∂σ3

∣

∣

∣

∣

σ3=v3

∥

∥

∥

∥

∥

6 ρ3 (x, ẋ) (I.13)

∥

∥

∥

∥

∥

∂N (x, ẋ, ẍ, σ4, 0, 0,
...
x d)

∂σ4

∣

∣

∣

∣

σ4=v4

∥

∥

∥

∥

∥

6 ρ4 (x) (I.14)

∥

∥

∥

∥

∥

∂N (x, ẋ, ẍ, e1, σ5, 0,
...
x d)

∂σ5

∣

∣

∣

∣

σ5=v5

∥

∥

∥

∥

∥

6 ρ5 (x) (I.15)
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∥

∥

∥

∥

∥

∂N (x, ẋ, ẍ, e1, e2, σ6,
...
x d)

∂σ6

∣

∣

∣

∣

σ6=v6

∥

∥

∥

∥

∥

6 ρ6 (x, ẋ) (I.16)

where ρi (·) ∀i = 1, 2, ..., 6, are positive nondecreasing functions of x (t), ẋ (t) , and

ẍ (t). After substituting (I.11)-(I.16) into (I.4), Ñ (·) can be rewritten as

Ñ ≤ [ρ1 (‖e1‖ , ‖e2‖ , ‖r‖) + ρ4 (‖e1‖)] ‖e1‖ + ρ2 (‖e1‖ , ‖e2‖ , ‖r‖) ‖ė1‖

+ρ3 (‖e1‖ , ‖e2‖) ‖ë1‖ + ρ5 (‖e1‖) ‖e2‖ + ρ6 (‖e1‖ , ‖e2‖) ‖r‖ (I.17)

where (2.15) and (2.16) were utilized. The expressions in (2.15), (2.16) and (C.13)

can be used to rewrite the upper bound for the right-hand side of (I.17) as in (C.17).
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Appendix J

Proof of Theorem 7

Lemma 3 Let the auxiliary functions L1 (t), L2 (t) ∈ R be defined as follows

L1 , rT (ψ − C1Sgn (en)) , L2 , −ėT
nC2Sgn (en) . (J.1)

If C1 is selected to satisfy the sufficient condition (3.33), then

∫ t

t0
L1 (τ) dτ ≤ ζb1 ,

∫ t

t0
L2 (τ) dτ ≤ ζb2 (J.2)

where ζb1, ζb2 ∈ R are positive constants defined as

ζb1 ,

m
∑

i=1

C1i |eni (t0)| − eT
n (t0)ψ (t0) ,ζb2 ,

m
∑

i=1

C2i |eni (t0)| . (J.3)

Proof. After substituting (3.13) into (J.1) and then integrating L1 (t) in time, results

in the following expression
∫ t

t0

L1 (τ) dτ =

∫ t

t0

eT
n (τ) ΛT [ψ (τ) − C1Sgn (en (τ))] dτ (J.4)

+

∫ t

t0

deT
n (τ)

dτ
ψ (τ) dτ −

∫ t

t0

deT
n (τ )

dτ
C1Sgn (en (τ )) dτ.

After integrating the second integral on the right-hand side of (J.4) by parts, the

following expression is obtained
∫ t

t0

L1 (τ) dτ =

∫ t

t0

eT
n (τ) ΛT [ψ (τ) − C1Sgn (en (τ ))] dτ + eT

n (τ)ψ (τ )
∣

∣

t

t0

−
∫ t

t0

eT
n (τ)

dψ (τ)

dτ
dτ −

m
∑

i=1

C1i |eni (τ)||tt0 (J.5)

=

∫ t

t0

eT
n (τ) ΛT

[

ψ (τ ) − Λ−1dψ (τ)

dτ
− C1Sgn (en (τ ))

]

dτ

+eT
n (t)ψ (t) − eT

n (t0)ψ (t0) −
m
∑

i=1

C1i (|eni (t)| − |eni (t0)|) .

The right-hand side of (J.5) can be upper-bounded as follows
∫ t

t0

L1 (τ) dτ ≤
∫ t

t0

m
∑

i=1

|eni (τ )|Λi

[

|ψi (τ )| +
1

Λi

∣

∣

∣

∣

dψi (τ)

dτ

∣

∣

∣

∣

− C1i

]

dτ

+

m
∑

i=1

|eni (t)| (|ψi (t)| − C1i) + ζb1. (J.6)
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If C1 is chosen according to satisfy (3.33), then the first inequality in (J.2) can be

proven from (J.6). The second inequality in (J.2) can be obtained by integrating

L2(t) defined in (J.1) as follows

∫ t

t0

L2 (τ) dτ = −
∫ t

t0

ėT
n (τ)C2Sgn (en (τ )) dτ (J.7)

= ζb2 −
m
∑

i=1

C2i |eni (t)| ≤ ζb2.

The following is the proof of Theorem 7.

Proof. Let the auxiliary functions P1 (t), P2 (t) ∈ R be defined as follows

P1 , ζb1 −
∫ t

t0

L1 (τ ) dτ (J.8)

P2 , ζb2 −
∫ t

t0

L2 (τ ) dτ (J.9)

where L1 (t), L2 (t) , ζb1 and ζb2 were defined in Lemma 3. The proof of Lemma 3 en-

sures that P1 (t) and P2 (t) are non-negative. The non-negative function V (s (t) , t) ∈
R is defined as follows

V ,
1

2

n
∑

i=1

eT
i ei +

1

2
rTMr + P1 + P2 +

1

2
θ̃

T
Γ−1θ̃ (J.10)

where s (t) ∈ R
[(n+1)m+2+p]×1 is defined as follows

s =
[

zT
√
P1

√
P2 θ̃

T
]T

. (J.11)

After utilizing (3.2), (J.10) can be bounded as follows

W1 (s) ≤ V (s, t) ≤W2 (s) (J.12)

where W1 (s), W2 (s) ∈ R are defined as follows

W1 (s) , λ1 ‖s‖2
, W2 (s) , λ2 (‖s‖) ‖s‖2 (J.13)
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and7 λ1, λ2 (·) ∈ R are defined as follows

λ1 =
1

2
min

{

1, m, λmin

(

Γ−1
)}

,

λ2 = max

{

1,
1

2
m̄ (‖s‖) , 1

2
λmax

(

Γ−1
)

}

. (J.14)

By differentiating (J.10), the following expression can be obtained

V̇ = −
n−1
∑

i=1

eT
i ei − eT

nΛen + eT
n−1en − rT r + rT Ñ − rTKr − eT

nΛC2Sgn (en) (J.15)

where (3.6a)-(3.6c), (3.13), (3.29), (3.30) and (J.1) were utilized. By using (3.22),

(3.32), and the triangle inequality, an upper-bound on (J.15) can be obtained as

follows

V̇ ≤ −λ3 ‖z‖2 + ‖r‖ ρ (‖z‖) ‖z‖ − λmin (K) ‖r‖2 −
m
∑

i=1

ΛiC2i |eni (t)|

≤ −
(

λ3 −
ρ2 (‖z‖)

4λmin (K)

)

‖z‖2 −
m
∑

i=1

ΛiC2i |eni (t)| (J.16)

where λ3 , min
{

1
2
, λmin (Λ) − 1

2

}

. The following inequality can be developed

V̇ ≤W (s) −
m
∑

i=1

ΛiC2i |eni (t)| (J.17)

where W (s) ∈ R denotes the following non-positive function

W (s) , −β0 ‖z‖2 (J.18)

with β0 ∈ R being a positive constant, and provided that λmin (K) is selected accord-

ing to the following sufficient condition

λmin (K) ≥ ρ2 (‖z‖)
4λ3

or ‖z‖ ≤ ρ−1
(

2
√

λ3λmin (K)
)

. (J.19)

7Using (3.4) and (3.6a)-(3.6c) it can be shown that
∥

∥(x, ẋ, ..., x(n−1))
∥

∥ ≤ ϑ(‖s‖) where ϑ(·) is

some positive function. Thus, m̄(x, ẋ, ..., x(n−1)) ≤ m̄(‖s‖).
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Based on (J.10)-(J.14) and (J.16)-(J.18) the regions D and S can be defined as follows

D =
{

s : ‖s‖ < ρ−1
(

2
√

λ3λmin (K)
)}

(J.20)

S =

{

s ∈ D : W2 (s) < λ1

(

ρ−1
(

2
√

λ3λmin (K)
))2

}

(J.21)

Note that the region of attraction in (J.21) can be made arbitrarily large to in-

clude any initial conditions by increasing λmin (K) (i.e., a semi-global stability re-

sult). Specifically, (J.13) and (J.21) can be used to calculate the region of attraction

as follows

W2 (s (t0)) < λ1

(

ρ−1
(

2
√

λ3λmin (K)
))2

(J.22)

=⇒ ‖s (t0)‖ <
√

λ1

λ2 (‖s (t0)‖)
ρ−1

(

2
√

λ3λmin (K)
)

which can be rearranged as

λmin (K) ≥ 1

4λ3
ρ2





√

λ2 (‖s (t0)‖)
λ1

‖s (t0)‖



 . (J.23)

By utilizing (3.23), (J.3) and (J.11) the following explicit expression for ‖s (t0)‖ can

be derived as follows

‖s (t0)‖2 =

n
∑

i=1

‖ei (t0)‖2 + ‖r (t0)‖2 + ζb1 + ζb2 + ‖θ‖2
. (J.24)

From (J.10), (J.17), (J.21)-(J.23), it is clear that V (s, t) ∈ L∞ ∀s (t0) ∈ S; hence

s (t) , z (t) , θ̃ (t) ∈ L∞ ∀s (t0) ∈ S. From (J.17) it is easy to prove that en (t) ∈ L1

∀s (t0) ∈ S. From (3.13), it is clear that ėn (t) ∈ L∞ ∀s (t0) ∈ S. By using (3.4),

(3.5) and (3.7), it can be proved that x(i) (t) ∈ L∞, i = 0, 1, ..., n, ∀s (t0) ∈ S. Then,

it is clear that M (t) , Ṁ (t) , f (t) ∈ L∞ ∀s (t0) ∈ S. The facts that r (t) , θ̃ (t) ∈ L∞

∀s (t0) ∈ S can be used along with (3.31) and (3.29) to prove that θ̂ (t) ,
·

θ̂ (t) ∈ L∞

∀s (t0) ∈ S. After using these boundedness statements along with (3.11) and (3.28), it

is clear that u (t) , u̇ (t) ∈ L∞ ∀s (t0) ∈ S. The previous boundedness statements and

Remarks 1, 2, 3 can be used along with (3.17), to prove that ṙ (t) ∈ L∞ ∀s (t0) ∈ S.
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These boundedness statements can be used along with the time derivative of (J.18)

to prove that Ẇ (s (t)) ∈ L∞ ∀s (t0) ∈ S; hence W (s (t)) is uniformly continuous.

Standard signal chasing algorithms can be used to prove that all remaining signals

are bounded. A direct application of Theorem 8.4 in [106] can be used to prove that

‖z (t)‖ → 0 as t → ∞ ∀s (t0) ∈ S. Based on the definition of z (t), it is easy to show

that ‖ei (t)‖ , ‖r (t)‖ → 0 as t → ∞ ∀s (t0) ∈ S, i = 1, 2, ..., n. From (3.13), it is

clear that ‖ėn (t)‖ → 0 as t→ ∞ ∀s (t0) ∈ S. By utilizing (3.7) recursively it can be

proven that
∥

∥

∥
e
(i)
1 (t)

∥

∥

∥
→ 0 as t→ ∞, i = 1, 2, ..., n ∀s (t0) ∈ S.
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Appendix K

Proof of Theorem 8

Proof. The fact that Wr (t) is a function of only xr (t) and its time derivatives, can be

used along with the boundedness expression in (3.5), to show that Wr (t) , Ẇr (t) ∈
L∞. After considering the fact that en (t) ∈ L1 (see the proof of Theorem 7), it

is clear that W T
r (t) Λen (t) , Ẇ T

r (t) en (t) ∈ L1. This assures the existence of the

limits for the first and second terms in (3.26), i.e., limt→∞

∫ t

t0
W T

r (τ ) Λen (τ) dτ and

limt→∞

∫ t

t0
Ẇ T

r (τ) en (τ) dτ exist (see Theorem 3.1 of [71]). Based on the fact that

en (t) → 0 as t → ∞ ∀s (t0) ∈ S (see the proof of Theorem 7) then it is clear

that limt→∞W T
r (t) en (t) = 0. Utilizing the above facts along with the fact that

W T
r (t0) en (t0) is constant, it follows that limt→∞ θ̂ (t) = θ̂∞.
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Appendix L

Proof of Theorem 9

Proof. Let V (s, t) ∈ R denotes the following non-negative function

V ,
1

2

n
∑

i=1

eT
i ei +

1

2
rTMr + P1 + Vg (L.1)

where P1 (t) was defined in Lemma 3 and Vg (t) ∈ R is a non-negative function defined

as follows

Vg ,
1

2kL

∫ t

t−T

ÑT
r (τ ) Ñr (τ) dτ (L.2)

where s (t) is defined as follows

s ,
[

zT
√
P1

√

Vg

]T
. (L.3)

After utilizing (3.2), (L.1) can be bounded as follows

W1 (s) ≤ V (s, t) ≤W2 (s) (L.4)

where W1 (s), W2 (s) ∈ R are defined as follows

W1 (s) , λ1 ‖s‖2
, W2 (s) , λ2 (‖s‖) ‖s‖2 (L.5)

and λ1, λ2 (·) ∈ R are defined as follows

λ1 ,
1

2
min {1, m} , λ2 , max

{

1,
1

2
m̄ (‖s‖)

}

. (L.6)

After taking the time derivative of (L.1), the following expression can be obtained

V̇ = −
n−1
∑

i=1

eT
i ei − eT

nΛen + eT
n−1en − rT r + rT Ñ − rTKr − kL

2
rT r (L.7)

where (3.6a)-(3.6c), (3.13), (3.46), (3.48) and (J.1) were utilized. By (3.22), (3.32)

and the triangle inequality, an upper-bound on (L.7) can be obtained as follows

V̇ ≤ −λ3 ‖z‖2 + ‖r‖ ρ (‖z‖) ‖z‖ −
(

λmin (K) +
kL

2

)

‖r‖2

≤ −
(

λ4 −
ρ2 (‖z‖)

4λmin (K)

)

‖z‖2 (L.8)
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where λ3 , min
{

1
2
, λmin (Λ) − 1

2

}

and λ4 , min
{

λ3,
kL

2

}

. The following inequality

can be developed

V̇ ≤W (s) ≤ W̄ (s) (L.9)

where W (s) , W̄ (s) ∈ R denote the following non-positive functions

W (s) , −β0 ‖z‖2
, W̄ (s) , −β0 ‖e1‖2 (L.10)

with β0 ∈ R being a positive constant, and provided that λmin (K) is selected accord-

ing to the following sufficient condition

λmin (K) ≥ ρ2 (‖z‖)
4λ4

or ‖z‖ ≤ ρ−1
(

2
√

λ4λmin (K)
)

. (L.11)

Based on (L.1)-(L.6) and (L.8)-(L.10), the regions D and S can be defined as follows

D =
{

s : ‖s‖ < ρ−1
(

2
√

λ4λmin (K)
)}

(L.12)

S =

{

s ∈ D : W2(s) < λ1

(

ρ−1
(

2
√

λ4λmin (K)
))2

}

(L.13)

Note that the region of attraction in (L.13) can be made arbitrarily large to in-

clude any initial conditions by increasing λmin (K) (i.e., a semi-global stability re-

sult). Specifically, (L.5) and (L.13) can be used to calculate the region of attraction

as follows

W2 (s (t0)) < λ1

(

ρ−1
(

2
√

λ4λmin (K)
))2

(L.14)

=⇒ ‖s (t0)‖ <
√

λ1

λ2 (‖s (t0)‖)
ρ−1

(

2
√

λ4λmin (K)
)

,

which can be rearranged as

λmin (K) ≥ 1

4λ4
ρ2





√

λ2 (‖s (t0)‖)
λ1

‖s (t0)‖



 . (L.15)

By utilizing (3.23), (J.3) and (L.3) the following explicit expression for ‖s (t0)‖ can

be derived as follows

‖s (t0)‖2 =

n
∑

i=1

‖ei (t0)‖2 + ‖r (t0)‖2 + ζb1. (L.16)
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From (L.1), (L.9), (L.13)-(L.15), it is clear that V (s, t) ∈ L∞ ∀s (t0) ∈ S; hence

s (t) , z (t) ∈ L∞ ∀s (t0) ∈ S. From (3.13), it is clear that ėn (t) ∈ L∞ ∀s (t0) ∈ S.

Using (3.4) and (3.39), it can be proved that x(i) (t) ∈ L∞, i = 0, 1, ..., n, ∀s (t0) ∈
S. Then, it is clear that M (t) , Ṁ (t) , f (t) ∈ L∞ ∀s (t0) ∈ S. By using these

boundedness statements along with (3.11) it is clear that u (t) ∈ L∞ ∀s (t0) ∈ S.

These boundedness statements can be used along with the time derivative of (L.10)

to prove that
.

W̄ (s (t)) ∈ L∞ ∀s (t0) ∈ S; hence W̄ (s (t)) is uniformly continuous. A

direct application of Theorem 8.4 in [106] can be used to prove that ‖e1 (t)‖ → 0 as

t → ∞ ∀s (t0) ∈ S. It should be noted that for finite time the subsequent analysis

can be easily extended to prove that N̂r (t), u̇ (t), ṙ (t), Ñr (t) are bounded.

Remark 1 It should be noted that when Ŵr (t) is designed as follows

Ŵr (t) ,

∫ t

t0

[

Satβ

(

N̂r (τ − T )
)

+ kLΛen (τ)
]

dτ + kLen (t) − kLen (t0) (L.17)

where N̂r (t) was introduced in (3.43) and Satβ (·) ∈ R
m is a saturation function

vector, then the previous analysis can be modified to prove that N̂r (t), u̇ (t), ṙ (t),

Ñr (t) are bounded for all time and thus
∥

∥

∥
e
(i)
1 (t)

∥

∥

∥
converge to zero for i = 1, ..., n.
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Appendix M

Entries of the Inertia Matrix

The entries of the inertia matrix are defined as follows8

Kḋ1ḋ1
=

m

dκ2
1

r20 (M.1)

Kḋ1ḋ2
=
m

d
{r8 + r9 − r23 − r24} (M.2)

Kḋ1ḋ3
=
m

d
{r16 + r10 − r25} (M.3)

Kḋ1κ̇1
=

m

d

{

− 1

κ3
1

r1 −
d1

κ2d3
r23 −

d1

κ2 (d2 + d3)
r24 −

2

κ3
1

r20 (M.4)

− d1

κ3d3
r25 − d1r4 +

d1

κ1

[

d3 + d2

κ1
− d2

κ2
− d3

κ3

]

sin (d1κ1)

}

Kḋ1κ̇2
=

m

d

{

− 2

κ2
r8 −

2

κ2
r9 −

d2

κ3d3
r25 − d2r4 +

1

κ2
r24

+
d3 − d2

κ2d3

r23 −
1

κ1

d2d3

(

1

κ3

− 1

κ2

)

sin (d1κ1)

}

(M.5)

Kḋ1κ̇3
=
m

d

{

− 2

κ3

r16 −
2

κ3

r10 +
1

κ3

r25 − d3r4

}

(M.6)

Kḋ2ḋ2
=

m

dκ2
2

r21 (M.7)

Kḋ2ḋ3
=
m

d
{r26 − r11} (M.8)

Kḋ2κ̇1
=

m

d

{

1

κ1

r24 +
d1

κ3
2

r5 +
d1

κ3d3

r26 −
d1

κ2

r13 +
1

κ1

r23 +
d1

κ1

r13 (M.9)

−κ1κ2

(

d1 (d1 + d2 + d3)

κ1
+

1

κ2
1κ2

− d1d3

κ3

)

r8 −
1

κ1
r9 +

d1

κ2
3

r6

+
d1

κ2

(

d1

κ1
+
d2

κ2

)

sin (d1κ2) −
d1 (d1 + d2)

κ2κ1
sin ((d1 + d2)κ2)

}

Kḋ2κ̇2
=

m

d

{

d2

κ3d3
r26 +

d2

κ2
3

r6 −
1

κ3
2

r2 −
2

κ3
2

r21

+d2d3κ1κ2

(

1

κ3

− 1

κ2

)

r8

}

(M.10)

8The calculation of the these terms was done by MAPLE 9.5.

135



Kḋ2κ̇3
=

m

dκ3

{

d3

κ3

r6 − r26 + 2r11

}

(M.11)

Kḋ3ḋ3
=

m

dκ2
3

r22 (M.12)

Kḋ3κ̇1
=

m

d

{

d1

κ3
3

r7 −
1

κ1
r10 −

1

κ1
r16 +

1

κ1
r25

+ d1

(

1

κ1
− 1

κ3

)[

r14 −
d3

κ3
sin ((d1 + d2) κ3)

]}

(M.13)

Kḋ3κ̇2
=

m

d

{

d2

κ3
3

r7 −
1

κ2

r26 +
1

κ2

r11

+ d2

(

1

κ2
− 1

κ3

)[

r14 −
d3

κ3
sin ((d1 + d2) κ3)

]}

(M.14)

Kḋ3κ̇3
=

m

dκ3
3

{−r3 − 2r22} (M.15)

Kκ̇1κ̇1 =
m

d

{

d1

κ1κ2d3

r23 +
d1

κ1κ2 (d2 + d3)
r24 +

d1

κ1κ3d3

r25 +
d1

κ1

r4

+d2
1κ1

(

1

κ2
− 1

κ1

)

r8 + d2
1κ1

(

1

κ3
− 1

κ1

)

r16 +
1

κ4
1

r1

+
1

κ4
1

r20 +
d1

κ2
1

(

d2

κ2
+
d3

κ3
− d2 + d3

κ1

)

sin (d1κ1)

+ d2
1

[

d2

κ2
2

− d2

κ1κ2

− d3

κ1κ3

+
d3

κ2
3

+
d3 + d2

2κ2
1

+
d1

6κ2
1

]}

(M.16)

Kκ̇1κ̇2
=

m

d

{[

d2 + d3

κ2
1

+
2d1

κ2

(

1

κ2

− 1

κ1

)]

r13 +
d2

κ1

r4 +
d2

κ1κ3d3

r25

+
2d2

κ1κ2d3
r23 + (d2 + d3) r17 + d1d2κ1

(

2

κ3
− 1

κ2
− 1

κ1

)

r16

+
2

κ1κ2
r9 + κ1

[

−d1d2

κ2
+
d1 (d3 + d2)

κ1
− d1d3

κ3
+

2

κ2
1κ2

]

r8

− d1

κ2κ3d3
r26 −

d1

κ2κ
2
3

r6 +
d1

κ4
2

cos (d2κ2)

−2d1d2

κ2
2

(

1

κ2
− 1

κ1

)

sin ((d1 + d2) κ2) −
d2d3

κ2
1

(

1

κ2
− 1

κ3

)

sin (d1κ1)

− d1

κ4
2

+
d1d

2
2

2κ2
2

− d1d2d3

(

1

κ1κ3

+
1

κ2κ3

− 1

κ1κ2

− 2

κ2
3

)}

(M.17)
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Kκ̇1κ̇3
=

m

d

{

2

κ1κ3

r10 + d3r18 − d3r15 +
2

κ1κ3

r16 −
d1

κ4
3

r7 (M.18)

+ d1d3

(

1

κ1
− 1

κ3

)

r19 +
2d1

κ3

(

1

κ3
− 1

κ1

)

r14 +
d1d

2
3

2κ2
3

}

Kκ̇2κ̇2 =
m

d

{

− d2

κ2κ3d3

r26 −
d2

κ2κ
2
3

r6 − d2
2κ1

(

1

κ2

− 1

κ3

)

r16

+
1

κ4
2

r21 +
1

κ4
2

r2 + d2d3κ1

(

1

κ2
− 1

κ3

)

r8

+
d2

2 (d2 + 3d3)

6κ2
2

+
d3d

2
2

κ3

(

1

κ3
− 1

κ2

)}

(M.19)

Kκ̇2κ̇3 =
m

d

{

−d2

κ4
3

r7 −
2d2

κ3

(

1

κ2
− 1

κ3

)

r14 −
d3

κ2κ
2
3

r6 (M.20)

+
1

κ2κ3
r26 −

2

κ2κ3
r11 − d2d3

(

1

κ3
− 1

κ2

)

r19 +
d2d

2
3

2κ2
3

}

Kκ̇3κ̇3 =
m

dκ2
3

{

1

κ2
3

r3 +
d3

3

6
+

1

κ2
3

r22

}

. (M.21)

The time-varying functions ri (t) , i = 1, ..., 26, in (M.1)-(M.21) are introduced to

simplify the calculations. They are defined as follows

r1 = d1 cos (d1κ1) −
1

κ1

sin (d1κ1) (M.22)

r2 = d2 cos (d2κ2) −
1

κ2
sin (d2κ2) (M.23)

r3 = d3 cos (d3κ3) −
1

κ3
sin (d3κ3) (M.24)

r4 =
1

κ1κ
2
3

[cos (dκ3) − cos (d1κ1 − dκ3)] (M.25)

r5 = 1 − cos (d2κ2) (M.26)

r6 =
1

κ2
[cos ((d1 + d2)κ2 − dκ3) − cos (d1κ2 − dκ3)] (M.27)

r7 = 1 − cos (d3κ3) (M.28)

r8 =
1

κ1κ
2
2

[sin (d1κ2) − sin ((d1 + d2) κ2)] (M.29)
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r9 =
1

κ1κ
2
2

[sin (d1 (κ1 − κ2)) − sin (d1κ1 − (d1 + d2) κ2)] (M.30)

r10 =
1

κ1κ
2
3

[sin (d1κ1 − (d1 + d2)κ3) − sin (d1κ1 − dκ3)] (M.31)

r11 =
1

κ2κ
2
3

[sin (d1κ2 − (d1 + d2) κ3) − sin (d1κ2 − dκ3)

+ sin ((d1 + d2) κ2 − dκ3) − sin (d1 + d2) (κ2 − κ3)] (M.32)

r12 =
1

κ2
3

[sin ((d1 + d2) κ3) − sin (dκ3)] (M.33)

r13 =
1

κ2
2

[cos (d1κ2) − cos ((d1 + d2) κ2)] (M.34)

r14 =
1

κ2
3

[cos ((d1 + d2) κ3) − cos (dκ3)] (M.35)

r15 =
1

κ2
1κ

2
3

[cos (d1κ1 − (d1 + d2)κ3) + cos (d1κ1 − dκ3)] (M.36)

r16 =
1

κ1κ
2
3

[sin ((d1 + d2)κ3) − sin (dκ3)] (M.37)

r17 =
1

κ2
1κ

2
2

[cos ((d1 + d2)κ2 − d1κ1) − cos (d1 (κ2 − κ1))] (M.38)

r18 =
1

κ2
1κ

2
3

[cos (dκ3) + cos ((d1 + d2) κ3)] (M.39)

r19 =
1

κ2
3

[sin (dκ3) + sin ((d1 + d2)κ3)] (M.40)

r20 = − (d2 + d3) cos (d1κ1) + d1 + d2 + d3 −
1

κ1
sin (d1κ1) (M.41)

r21 = −d3 cos (d2κ2) + d2 + d3 −
1

κ2
sin (d2κ2) (M.42)

r22 = d3 −
1

κ3
sin (d3κ3) (M.43)

r23 =
d3

κ1κ2

[cos ((d1 + d2) κ2) − cos (d1κ1 − (d1 + d2)κ2)] (M.44)

r24 =
d2 + d3

κ1κ2
[cos (d1 (κ1 − κ2)) − cos (d1κ2)] (M.45)

r25 =
d3

κ1κ3
[cos (d1κ1 − (d1 + d2)κ3) − cos ((d1 + d2)κ3)] (M.46)

r26 =
d3

κ2κ3
[cos (d1κ2 − (d1 + d2) κ3) − cos (d1 + d2) (κ2 − κ3)] . (M.47)
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Appendix N

Entries of the Centripetal-Coriolis Matrix

The elements of the centripetal-coriolis matrix V (q, q̇) are defined as follows

V11 ,
∂Kḋ1 ḋ1

∂d1
ḋ1 +

∂Kḋ1 ḋ1

∂d2
ḋ2 +

∂Kḋ1ḋ1

∂d3
ḋ3 +

∂Kḋ1ḋ1

∂κ1
κ̇1 (N.1)

V12 ,
∂Kḋ1ḋ2

∂d2
ḋ2 −

∂Kḋ2 ḋ2

∂d1
ḋ2 +

∂Kḋ1 ḋ1

∂d2
ḋ1 +

∂Kḋ1 ḋ2

∂d3
ḋ3 (N.2)

+
∂Kḋ1ḋ2

∂κ1
κ̇1 +

∂Kḋ1 ḋ2

∂κ2
κ̇2 −

∂Kḋ2κ̇1

∂d1
κ̇1 −

∂Kḋ2κ̇2

∂d1
κ̇2

V13 ,
∂Kḋ1 ḋ3

∂d3
ḋ3 −

∂Kḋ3 ḋ3

∂d1
ḋ3 +

∂Kḋ1ḋ1

∂d3
ḋ1 +

∂Kḋ1ḋ3

∂d2
ḋ2 (N.3)

−
∂Kḋ2 ḋ3

∂d1

ḋ2 +
∂Kḋ1 ḋ3

∂κ1

κ̇1 +
∂Kḋ1 ḋ3

∂κ3

κ̇3 −
∂Kḋ3κ̇1

∂d1

κ̇1 −
∂Kḋ3κ̇2

∂d1

κ̇2

V14 ,
∂Kḋ1κ̇1

∂κ1

κ̇1 −
∂Kκ̇1κ̇1

∂d1

κ̇1 +
∂Kḋ1 ḋ1

∂κ1

ḋ1 +
∂Kḋ1κ̇1

∂d2

ḋ2 (N.4)

+
∂Kḋ1κ̇1

∂d3
ḋ3 +

∂Kḋ1κ̇1

∂κ2
κ̇2 +

∂Kḋ1κ̇1

∂κ3
κ̇3 −

∂Kκ̇1κ̇3

∂d1
κ̇3

V15 ,
∂Kḋ1κ̇2

∂κ2
κ̇2 −

∂Kκ̇2κ̇2

∂d1
κ̇2 +

∂Kḋ1κ̇2

∂d2
ḋ2 +

∂Kḋ1κ̇2

∂d3
ḋ3 (N.5)

+
∂Kḋ1κ̇2

∂κ1

κ̇1 +
∂Kḋ1κ̇2

∂κ3

κ̇3 −
∂Kκ̇1κ̇2

∂d1

κ̇1 −
∂Kκ̇2κ̇3

∂d1

κ̇3

V16 ,
∂Kḋ1κ̇3

∂κ3
κ̇3 −

∂Kκ̇3κ̇3

∂d1
κ̇3 +

∂Kḋ1κ̇3

∂d2
ḋ2 +

∂Kḋ1κ̇3

∂d3
ḋ3

+
∂Kḋ1κ̇3

∂κ1
κ̇1 −

∂Kḋ2κ̇3

∂d1
ḋ2 −

∂Kḋ3κ̇3

∂d1
ḋ3 (N.6)

V21 ,
∂Kḋ1 ḋ2

∂d1
ḋ1 −

∂Kḋ1 ḋ1

∂d2
ḋ1 +

∂Kḋ2 ḋ2

∂d1
ḋ2 +

∂Kḋ2κ̇1

∂d1
κ̇1 +

∂Kḋ2κ̇2

∂d1
κ̇2 (N.7)

V22 ,
∂Kḋ2 ḋ2

∂d1

ḋ1 +
∂Kḋ2 ḋ2

∂d2

ḋ2 +
∂Kḋ2ḋ2

∂d3

ḋ3 +
∂Kḋ2ḋ2

∂κ2

κ̇2 (N.8)
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V23 ,
∂Kḋ2 ḋ3

∂d3
ḋ3 −

∂Kḋ3 ḋ3

∂d2
ḋ3 +

∂Kḋ2 ḋ2

∂d3
ḋ2 +

∂Kḋ1 ḋ2

∂d3
ḋ1

+
∂Kḋ2 ḋ3

∂d1
ḋ1 −

∂Kḋ1 ḋ3

∂d2
ḋ1 +

∂Kḋ2 ḋ3

∂κ2
κ̇2 +

∂Kḋ2 ḋ3

∂κ3
κ̇3

−
∂Kḋ3 κ̇1

∂d2
κ̇1 −

∂Kḋ3κ̇2

∂d2
κ̇2 −

∂Kḋ3κ̇3

∂d2
κ̇3 (N.9)

V24 ,
∂Kḋ2κ̇1

∂κ1
κ̇1 −

∂Kκ̇1κ̇1

∂d2
κ̇1 +

∂Kḋ2κ̇1

∂d3
ḋ3 +

∂Kḋ2κ̇1

∂κ2
κ̇2 (N.10)

+
∂Kḋ2κ̇1

∂κ3
κ̇3 +

∂Kḋ1 ḋ2

∂κ1
ḋ1 −

∂Kḋ1κ̇1

∂d2
ḋ1 −

∂Kκ̇1κ̇2

∂d2
κ̇2

V25 ,
∂Kḋ2κ̇2

∂κ2
κ̇2 −

∂Kκ̇2κ̇2

∂d2
κ̇2 +

∂Kḋ2 ḋ2

∂κ2
ḋ2 +

∂Kḋ2κ̇2

∂d3
ḋ3

+
∂Kḋ2κ̇2

∂κ3

κ̇3 +
∂Kḋ1 ḋ2

∂κ2

ḋ1 −
∂Kḋ1κ̇2

∂d2

ḋ1 (N.11)

V26 ,
∂Kḋ2κ̇3

∂κ3
κ̇3 −

∂Kκ̇3κ̇3

∂d2
κ̇3 +

∂Kḋ2κ̇3

∂d1
ḋ1 +

∂Kḋ2κ̇3

∂d3
ḋ3 (N.12)

+
∂Kḋ2κ̇3

∂κ2

κ̇2 −
∂Kḋ1κ̇3

∂d2

ḋ1 −
∂Kκ̇1κ̇3

∂d2

κ̇1 −
∂Kκ̇2κ̇3

∂d2

κ̇2

V31 ,
∂Kḋ1 ḋ3

∂d1
ḋ1 −

∂Kḋ1 ḋ1

∂d3
ḋ1 +

∂Kḋ3 ḋ3

∂d1
ḋ3

+
∂Kḋ2ḋ3

∂d1

ḋ2 +
∂Kḋ3κ̇1

∂d1

κ̇1 +
∂Kḋ3κ̇2

∂d1

κ̇2 (N.13)

V32 ,
∂Kḋ2 ḋ3

∂d2
ḋ2 −

∂Kḋ2ḋ2

∂d3
ḋ2 +

∂Kḋ3 ḋ3

∂d2
ḋ3 +

∂Kḋ1 ḋ3

∂d2
ḋ1 (N.14)

−
∂Kḋ1 ḋ2

∂d3
ḋ1 +

∂Kḋ3κ̇1

∂d2
κ̇1 +

∂Kḋ3κ̇2

∂d2
κ̇2 +

∂Kḋ3κ̇3

∂d2
κ̇3

V33 ,
∂Kḋ3 ḋ3

∂d1
ḋ1 +

∂Kḋ3 ḋ3

∂d2
ḋ2 +

∂Kḋ3ḋ3

∂d3
ḋ3 +

∂Kḋ3ḋ3

∂κ3
κ̇3 (N.15)

V34 ,
∂Kḋ3κ̇1

∂κ1
κ̇1 −

∂Kκ̇1κ̇1

∂d3
κ̇1 +

∂Kḋ3κ̇1

∂κ3
κ̇3 +

∂Kḋ1 ḋ3

∂κ1
ḋ1

−
∂Kḋ1κ̇1

∂d3
ḋ1 −

∂Kḋ2κ̇1

∂d3
ḋ2 −

∂Kκ̇1κ̇2

∂d3
κ̇2 (N.16)
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V35 ,
∂Kḋ3κ̇2

∂κ2
κ̇2 −

∂Kκ̇2κ̇2

∂d3
κ̇2 +

∂Kḋ3κ̇2

∂κ3
κ̇3 −

∂Kḋ1κ̇2

∂d3
ḋ1

+
∂Kḋ2ḋ3

∂κ2
ḋ2 −

∂Kḋ2κ̇2

∂d3
ḋ2 −

∂Kκ̇2κ̇3

∂d3
κ̇3 (N.17)

V36 ,
∂Kḋ3κ̇3

∂κ3
κ̇3 −

∂Kκ̇3κ̇3

∂d3
κ̇3 +

∂Kḋ3 ḋ3

∂κ3
ḋ3 +

∂Kḋ3κ̇3

∂d1
ḋ1 (N.18)

+
∂Kḋ1ḋ3

∂κ3

ḋ1 −
∂Kḋ1κ̇3

∂d3

ḋ1 +
∂Kḋ2ḋ3

∂κ3

ḋ2 −
∂Kḋ2κ̇3

∂d3

ḋ2 −
∂Kκ̇1κ̇3

∂d3

κ̇1

V41 ,
∂Kḋ1κ̇1

∂d1
ḋ1 −

∂Kḋ1 ḋ1

∂κ1
ḋ1 +

∂Kκ̇1κ̇1

∂d1
κ̇1 +

∂Kκ̇1κ̇3

∂d1
κ̇3 (N.19)

V42 ,
∂Kḋ2κ̇1

∂d2
ḋ2 +

∂Kκ̇1κ̇1

∂d2
κ̇1 −

∂Kḋ1 ḋ2

∂κ1
ḋ1

+
∂Kḋ1κ̇1

∂d2
ḋ1 +

∂Kḋ2κ̇1

∂d1
ḋ1 +

∂Kκ̇1κ̇2

∂d2
κ̇2 (N.20)

V43 ,
∂Kḋ3κ̇1

∂d3
ḋ3 +

∂Kκ̇1κ̇1

∂d3
κ̇1 −

∂Kḋ1 ḋ3

∂κ1
ḋ1 +

∂Kḋ1κ̇1

∂d3
ḋ1 (N.21)

+
∂Kḋ2κ̇1

∂d3
ḋ2 +

∂Kḋ3κ̇1

∂d1
ḋ1 +

∂Kḋ3κ̇1

∂d2
ḋ2 +

∂Kκ̇1κ̇2

∂d3
κ̇2

V44 ,
∂Kκ̇1κ̇1

∂d1
ḋ1 +

∂Kκ̇1κ̇1

∂d2
ḋ2 +

∂Kκ̇1κ̇1

∂d3
ḋ3

+
∂Kκ̇1κ̇1

∂κ1
κ̇1 +

∂Kκ̇1κ̇1

∂κ2
κ̇2 +

∂Kκ̇1κ̇1

∂κ3
κ̇3 (N.22)

V45 ,
∂Kκ̇1κ̇2

∂κ2
κ̇2 +

∂Kκ̇1κ̇1

∂κ2
κ̇1 +

∂Kκ̇1κ̇2

∂κ3
κ̇3 +

∂Kκ̇1κ̇2

∂d1
ḋ1

+
∂Kḋ1κ̇1

∂κ2
ḋ1 −

∂Kḋ1κ̇2

∂κ1
ḋ1 +

∂Kḋ2κ̇1

∂κ2
ḋ2 (N.23)

V46 ,
∂Kκ̇1κ̇3

∂κ3
κ̇3 +

∂Kκ̇1κ̇1

∂κ3
κ̇1 +

∂Kκ̇1κ̇3

∂d2
ḋ2 +

∂Kκ̇1κ̇3

∂d3
ḋ3 (N.24)

+
∂Kḋ1κ̇1

∂κ3
ḋ1 −

∂Kḋ1κ̇3

∂κ1
ḋ1 +

∂Kḋ2κ̇1

∂κ3
ḋ2 +

∂Kḋ3κ̇1

∂κ3
ḋ3

V51 ,
∂Kḋ1κ̇2

∂d1
ḋ1 +

∂Kκ̇2κ̇2

∂d1
κ̇2 +

∂Kκ̇1κ̇2

∂d1
κ̇1 +

∂Kκ̇2κ̇3

∂d1
κ̇3 (N.25)
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V52 ,
∂Kḋ2κ̇2

∂d2
ḋ2 −

∂Kḋ2 ḋ2

∂κ2
ḋ2 +

∂Kκ̇2κ̇2

∂d2
κ̇2

−
∂Kḋ1 ḋ2

∂κ2
ḋ1 +

∂Kḋ1κ̇2

∂d2
ḋ1 +

∂Kḋ2κ̇2

∂d1
ḋ1 (N.26)

V53 ,
∂Kḋ3κ̇2

∂d3

ḋ3 +
∂Kκ̇2κ̇2

∂d3

κ̇2 +
∂Kḋ1κ̇2

∂d3

ḋ1 −
∂Kḋ2ḋ3

∂κ2

ḋ2 (N.27)

+
∂Kḋ2κ̇2

∂d3
ḋ2 +

∂Kḋ3κ̇2

∂d1
ḋ1 +

∂Kḋ3κ̇2

∂d2
ḋ2 +

∂Kκ̇2κ̇3

∂d3
κ̇3

V54 ,
∂Kκ̇1κ̇2

∂κ1

κ̇1 −
∂Kκ̇1κ̇1

∂κ2

κ̇1 −
∂Kḋ1κ̇1

∂κ2

ḋ1 +
∂Kḋ1κ̇2

∂κ1

ḋ1

−
∂Kḋ2 κ̇1

∂κ2
ḋ2 +

∂Kκ̇1κ̇2

∂d2
ḋ2 +

∂Kκ̇1κ̇2

∂d3
ḋ3 (N.28)

V55 ,
∂Kκ̇2κ̇2

∂d1
ḋ1 +

∂Kκ̇2κ̇2

∂d2
ḋ2 +

∂Kκ̇2κ̇2

∂d3
ḋ3 +

∂Kκ̇2κ̇2

∂κ2
κ̇2 +

∂Kκ̇2κ̇2

∂κ3
κ̇3 (N.29)

V56 ,
∂Kκ̇2κ̇3

∂κ3
κ̇3 +

∂Kκ̇2κ̇2

∂κ3
κ̇2 +

∂Kκ̇1κ̇2

∂κ3
κ̇1 +

∂Kκ̇2κ̇3

∂d2
ḋ2 (N.30)

+
∂Kḋ1κ̇2

∂κ3

ḋ1 +
∂Kḋ2κ̇2

∂κ3

ḋ2 −
∂Kḋ2κ̇3

∂κ2

ḋ2 +
∂Kḋ3κ̇2

∂κ3

ḋ3

V61 ,
∂Kḋ1κ̇3

∂d1

ḋ1 +
∂Kκ̇3κ̇3

∂d1

κ̇3 +
∂Kḋ2κ̇3

∂d1

ḋ2 +
∂Kḋ3κ̇3

∂d1

ḋ3 (N.31)

V62 ,
∂Kḋ2κ̇3

∂d2

ḋ2 +
∂Kκ̇3κ̇3

∂d2

κ̇3 +
∂Kḋ1κ̇3

∂d2

ḋ1 +
∂Kκ̇1κ̇3

∂d2

κ̇1 +
∂Kκ̇2κ̇3

∂d2

κ̇2 (N.32)

V63 ,
∂Kḋ3κ̇3

∂d3
ḋ3 −

∂Kḋ3 ḋ3

∂κ3
ḋ3 +

∂Kκ̇3κ̇3

∂d3
κ̇3 −

∂Kḋ1 ḋ3

∂κ3
ḋ1 (N.33)

+
∂Kḋ1κ̇3

∂d3

ḋ1 −
∂Kḋ2 ḋ3

∂κ3

ḋ2 +
∂Kḋ2κ̇3

∂d3

ḋ2 +
∂Kḋ3κ̇3

∂d2

ḋ2 +
∂Kκ̇1κ̇3

∂d3

κ̇1

V64 ,
∂Kκ̇1κ̇3

∂κ1
κ̇1 −

∂Kκ̇1κ̇1

∂κ3
κ̇1 −

∂Kḋ1κ̇1

∂κ3
ḋ1 +

∂Kḋ1κ̇3

∂κ1
ḋ1

−
∂Kḋ2 κ̇1

∂κ3

ḋ2 −
∂Kḋ3κ̇1

∂κ3

ḋ3 +
∂Kκ̇1κ̇3

∂d1

ḋ1 (N.34)

V65 ,
∂Kκ̇2κ̇3

∂κ2
κ̇2 −

∂Kκ̇2κ̇2

∂κ3
κ̇2 −

∂Kκ̇1κ̇2

∂κ3
κ̇1 −

∂Kḋ1κ̇2

∂κ3
ḋ1 (N.35)

−
∂Kḋ2κ̇2

∂κ3
ḋ2 +

∂Kḋ2κ̇3

∂κ2
ḋ2 −

∂Kḋ3κ̇2

∂κ3
ḋ3 +

∂Kκ̇2κ̇3

∂d1
ḋ1 +

∂Kκ̇2κ̇3

∂d3
ḋ3

V66 ,
∂Kκ̇3κ̇3

∂d1

ḋ1 +
∂Kκ̇3κ̇3

∂d2

ḋ2 +
∂Kκ̇3κ̇3

∂d3

ḋ3 +
∂Kκ̇3κ̇3

∂κ3

κ̇3. (N.36)
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Appendix O

Entries of G (q), B (q), and E (q)

Gravitational Terms

The entries of G (q) are given as follows

G1 ,
mg

d

{

1

κ1

[cos (d1κ1) − cos (2d1κ1)]

+
1

κ2
[cos ((d1 + d2)κ2) − cos (2 (d1 + d2)κ2) − cos (d1κ2) + cos (2d1κ2)]

+
1

κ3
[cos ((d1 + d2 + d3) κ3) − cos (2 (d1 + d2 + d3) κ3)

− cos ((d1 + d2)κ3) + cos (2 (d1 + d2)κ3)]}

−mg
d2

{

1

κ2
1

[

sin (d1κ1) −
1

2
sin (2d1κ1)

]

+
1

κ2
2

[

sin ((d1 + d2)κ2) −
1

2
sin (2 (d1 + d2)κ2) − sin (d1κ2)

+
1

2
sin (2d1κ2)

]

+
1

κ2
3

[sin ((d1 + d2 + d3) κ3)

−1

2
sin (2 (d1 + d2 + d3) κ3)

− sin ((d1 + d2)κ3) +
1

2
sin (2 (d1 + d2)κ3)

]}

G2 ,
mg

d

{

1

κ2
[cos ((d1 + d2)κ2) − cos (2 (d1 + d2) κ2)]

+
1

κ3

[cos ((d1 + d2 + d3) κ3) − cos (2 (d1 + d2 + d3) κ3)

− cos ((d1 + d2)κ3) + cos (2 (d1 + d2)κ3)]}

−mg
d2

{

1

κ2
1

[

sin (d1κ1) −
1

2
sin (2d1κ1)

]

+
1

κ2
2

[

sin ((d1 + d2) κ2) −
1

2
sin (2 (d1 + d2)κ2) − sin (d1κ2) +

1

2
sin (2d1κ2)

]

+
1

κ2
3

[

sin ((d1 + d2 + d3)κ3) −
1

2
sin (2 (d1 + d2 + d3) κ3)

− sin ((d1 + d2)κ3) +
1

2
sin (2 (d1 + d2) κ3)

]}
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G3 ,
mg

d

1

κ3
[cos ((d1 + d2 + d3)κ3) − cos (2 (d1 + d2 + d3)κ3)]

−mg
d2

{

1

κ2
1

[

sin (d1κ1) −
1

2
sin (2d1κ1)

]

+
1

κ2
2

[

sin ((d1 + d2) κ2) −
1

2
sin (2 (d1 + d2)κ2) − sin (d1κ2) +

1

2
sin (2d1κ2)

]

+
1

κ2
3

[

sin ((d1 + d2 + d3)κ3) −
1

2
sin (2 (d1 + d2 + d3) κ3)

− sin ((d1 + d2)κ3) +
1

2
sin (2 (d1 + d2) κ3)

]}

G4 , −2mg

dκ3
1

[

sin (d1κ1) −
1

2
sin (2d1κ1)

]

+
mgd1

κ2
1

[cos (d1κ1) − sin (2d1κ1)]

G5 , −2mg

dκ3
2

[

sin ((d1 + d2) κ2) −
1

2
sin (2 (d1 + d2)κ2)

− sin (d1κ2) +
1

2
sin (2d1κ2)

]

+
mg

dκ2
2

{(d1 + d2) [cos ((d1 + d2)κ2) − cos (2 (d1 + d2) κ2)]

−d1 [cos (d1κ2) − cos (2d1κ2)]}

G6 , −2mg

dκ3
3

[

sin ((d1 + d2 + d3) κ3) −
1

2
sin (2 (d1 + d2 + d3)κ3)

− sin ((d1 + d2) κ3) +
1

2
sin (2 (d1 + d2)κ3)

]

+
mg

dκ2
3

{(d1 + d2 + d3) [cos ((d1 + d2 + d3)κ3) − cos (2 (d1 + d2 + d3)κ3)]

− (d1 + d2) [cos ((d1 + d2)κ3) − cos (2 (d1 + d2)κ3)]}

Bending Terms

The entries of B (q) are given as follows

B1 =
1

2
kb1

(

π − 1

2
d1κ1

)2

+
1

2
kb2

{

(

π − 1

2
(d1 + d2)κ2

)2

−
(

π − 1

2
d1κ2

)2
}

+
1

2
kb3

{

(

π − 1

2
(d1 + d2 + d3)κ3

)2

−
(

π − 1

2
(d1 + d2) κ3

)2
}
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B2 =
1

2
kb2

(

π − 1

2
(d1 + d2) κ2

)2

+
1

2
kb3

{

(

π − 1

2
(d1 + d2 + d3)κ3

)2

−
(

π − 1

2
(d1 + d2) κ3

)2
}

B3 =
1

2
kb3

(

π − 1

2
(d1 + d2 + d3)κ3

)2

B4 (t) =
1

2
kb1

[

−1

2
πd2

1 +
1

6
πd3

1κ1

]

B5 (t) =
1

2
kb2

{[

−1

2
π (d1 + d2)

2 +
1

6
π (d1 + d2)

3
κ2

]

−
[

−1

2
πd2

1 +
1

6
πd3

1κ2

]}

B6 (t) =
1

2
kb3

{[

−1

2
π (d1 + d2 + d3)

2 +
1

6
π (d1 + d2 + d3)

3
κ3

]

−
[

−1

2
π (d1 + d2)

2 +
1

6
π (d1 + d2)

3
κ3

]}

Extension Terms

The entries of E (q) are given as follows

E1 = ke1 (d1 (t) − d∗1)

E2 = ke2 (d2 (t) − d∗2)

E3 = ke3 (d3 (t) − d∗3)

E4 = 0, E5 = 0, E6 = 0
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Appendix P

Skew-Symmetry Property

For
(

Ṁ − 2V
)

to be skew-symmetric, the following should be satisfied

(

Ṁ − 2V
)

+
(

Ṁ − 2V
)T

= 06×6 (P.1)

where 06×6 ∈ R
6×6 is a matrix of zeros. Since the inertia matrix is symmetric, the

following can be obtained

Ṁ = V + V T (P.2)

where (P.1) is utilized. From (P.2), for
(

Ṁ − 2V
)

to be skew-symmetric the following

conditions for diagonal and off-diagonal elements should be satisfied

Ṁii = 2Vii , i = 1, ..., 6 (P.3)

Ṁji = Vij + Vji , j = 1, ..., (i− 1) . (P.4)

The time derivatives of the diagonal entries of the inertia matrix are given as follows

Ṁ11 = 2

(

∂Kḋ1 ḋ1

∂d1
ḋ1 +

∂Kḋ1 ḋ1

∂d2
ḋ2 +

∂Kḋ1 ḋ1

∂d3
ḋ3 +

∂Kḋ1 ḋ1

∂κ1
κ̇1

)

(P.5)

Ṁ22 = 2

(

∂Kḋ2 ḋ2

∂d1
ḋ1 +

∂Kḋ2 ḋ2

∂d2
ḋ2 +

∂Kḋ2 ḋ2

∂d3
ḋ3 +

∂Kḋ2 ḋ2

∂κ2
κ̇2

)

(P.6)

Ṁ33 = 2

(

∂Kḋ3 ḋ3

∂d1
ḋ1 +

∂Kḋ3ḋ3

∂d2
ḋ2 +

∂Kḋ3ḋ3

∂d3
ḋ3 +

∂Kḋ3

∂κ3
κ̇3

)

(P.7)

Ṁ44 = 2

(

∂Kκ̇1κ̇1

∂d1
ḋ1 +

∂Kκ̇1κ̇1

∂d2
ḋ2 +

∂Kκ̇1κ̇1

∂d3
ḋ3

+
∂Kκ̇1κ̇1

∂κ1
κ̇1 +

∂Kκ̇1κ̇1

∂κ2
κ̇2 +

∂Kκ̇1κ̇1

∂κ3
κ̇3

)

(P.8)

Ṁ55 = 2

(

∂Kκ̇2κ̇2

∂d1
ḋ1 +

∂Kκ̇2κ̇2

∂d2
ḋ2 +

∂Kκ̇2κ̇2

∂d3
ḋ3

+
∂Kκ̇2κ̇2

∂κ2
κ̇2 +

∂Kκ̇2κ̇2

∂κ3
κ̇3

)

(P.9)
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Ṁ66 = 2

(

∂Kκ̇3κ̇3

∂d1

ḋ1 +
∂Kκ̇3κ̇3

∂d2

ḋ2 +
∂Kκ̇3κ̇3

∂d3

ḋ3 +
∂Kκ̇3κ̇3

∂κ3

κ̇3

)

. (P.10)

After comparing (P.5)-(P.10) with (N.1), (N.8), (N.15), (N.22), (N.29), and (N.36), it

is clear that (P.3) is satisfied. The time derivatives of the off-diagonal entries of the

inertia matrix are given as follows

Ṁ12 =
∂Kḋ1 ḋ2

∂d1

ḋ1 +
∂Kḋ1 ḋ2

∂d2

ḋ2 +
∂Kḋ1 ḋ2

∂d3

ḋ3 +
∂Kḋ1 ḋ2

∂κ1

κ̇1 +
∂Kḋ1 ḋ2

∂κ2

κ̇2 (P.11)

Ṁ13 =
∂Kḋ1 ḋ3

∂d1

ḋ1 +
∂Kḋ1 ḋ3

∂d2

ḋ2 +
∂Kḋ1 ḋ3

∂d3

ḋ3 +
∂Kḋ1 ḋ3

∂κ1

κ̇1 +
∂Kḋ1 ḋ3

∂κ3

κ̇3 (P.12)

Ṁ14 =
∂Kḋ1κ̇1

∂d1
ḋ1 +

∂Kḋ1κ̇1

∂d2
ḋ2 +

∂Kḋ1κ̇1

∂d3
ḋ3

+
∂Kḋ1κ̇1

∂κ1
κ̇1 +

∂Kḋ1κ̇1

∂κ2
κ̇2 +

∂Kḋ1κ̇1

∂κ3
κ̇3 (P.13)

Ṁ15 =
∂Kḋ1κ̇2

∂d1

ḋ1 +
∂Kḋ1κ̇2

∂d2

ḋ2 +
∂Kḋ1κ̇2

∂d3

ḋ3

+
∂Kḋ1κ̇2

∂κ1
κ̇1 +

∂Kḋ1κ̇2

∂κ2
κ̇2 +

∂Kḋ1κ̇2

∂κ3
κ̇3 (P.14)

Ṁ16 =
∂Kḋ1κ̇3

∂d1
ḋ1 +

∂Kḋ1κ̇3

∂d2
ḋ2 +

∂Kḋ1κ̇3

∂d3
ḋ3 +

∂Kḋ1κ̇3

∂κ1
κ̇1 +

∂Kḋ1κ̇3

∂κ3
κ̇3 (P.15)

Ṁ23 =
∂Kḋ2 ḋ3

∂d1
ḋ1 +

∂Kḋ2 ḋ3

∂d2
ḋ2 +

∂Kḋ2 ḋ3

∂d3
ḋ3 +

∂Kḋ2 ḋ3

∂κ2
κ̇2 +

∂Kḋ2 ḋ3

∂κ3
κ̇3 (P.16)

Ṁ24 =
∂Kḋ2κ̇1

∂d1
ḋ1 +

∂Kḋ2κ̇1

∂d2
ḋ2 +

∂Kḋ2κ̇1

∂d3
ḋ3

+
∂Kḋ2κ̇1

∂κ1

κ̇1 +
∂Kḋ2κ̇1

∂κ2

κ̇2 +
∂Kḋ2κ̇1

∂κ3

κ̇3 (P.17)

Ṁ25 =
∂Kḋ2κ̇2

∂d1

ḋ1 +
∂Kḋ2κ̇2

∂d2

ḋ2 +
∂Kḋ2κ̇2

∂d3

ḋ3 +
∂Kḋ2κ̇2

∂κ2

κ̇2 +
∂Kḋ2κ̇2

∂κ3

κ̇3 (P.18)

Ṁ26 =
∂Kḋ2κ̇3

∂d1
ḋ1 +

∂Kḋ2κ̇3

∂d2
ḋ2 +

∂Kḋ2κ̇3

∂d3
ḋ3 +

∂Kḋ2κ̇3

∂κ2
κ̇2 +

∂Kḋ2κ̇3

∂κ3
κ̇3 (P.19)

Ṁ34 =
∂Kḋ3κ̇1

∂d1

ḋ1 +
∂Kḋ3κ̇1

∂d2

ḋ2 +
∂Kḋ3κ̇1

∂d3

ḋ3 +
∂Kḋ3κ̇1

∂κ1

κ̇1 +
∂Kḋ3κ̇1

∂κ3

κ̇3 (P.20)

Ṁ35 =
∂Kḋ3κ̇2

∂d1
ḋ1 +

∂Kḋ3κ̇2

∂d2
ḋ2 +

∂Kḋ3κ̇2

∂d3
ḋ3 +

∂Kḋ3κ̇2

∂κ2
κ̇2 +

∂Kḋ3κ̇2

∂κ3
κ̇3 (P.21)
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Ṁ36 =
∂Kḋ3κ̇3

∂d1
ḋ1 +

∂Kḋ3κ̇3

∂d2
ḋ2 +

∂Kḋ3κ̇3

∂d3
ḋ3 +

∂Kḋ3κ̇3

∂κ3
κ̇3 (P.22)

Ṁ45 =
∂Kκ̇1κ̇2

∂d1
ḋ1 +

∂Kκ̇1κ̇2

∂d2
ḋ2 +

∂Kκ̇1κ̇2

∂d3
ḋ3

+
∂Kκ̇1κ̇2

∂κ1
κ̇1 +

∂Kκ̇1κ̇2

∂κ2
κ̇2 +

∂Kκ̇1κ̇2

∂κ3
κ̇3 (P.23)

Ṁ46 =
∂Kκ̇1κ̇3

∂d1
ḋ1 +

∂Kκ̇1κ̇3

∂d2
ḋ2 +

∂Kκ̇1κ̇3

∂d3
ḋ3 +

∂Kκ̇1κ̇3

∂κ1
κ̇1 +

∂Kκ̇1κ̇3

∂κ3
κ̇3 (P.24)

Ṁ56 =
∂Kκ̇2κ̇3

∂d1
ḋ1 +

∂Kκ̇2κ̇3

∂d2
ḋ2 +

∂Kκ̇2κ̇3

∂d3
ḋ3 +

∂Kκ̇2κ̇3

∂κ2
κ̇2 +

∂Kκ̇2κ̇3

∂κ3
κ̇3. (P.25)

After comparing (P.11)-(P.25) with the corresponding entries of V (q, q̇), then it is

clear that (P.4) is satisfied.
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