157,600 research outputs found

    A conceptual framework for crop-based agri-food supply chain characterization under uncertainty

    Get PDF
    [EN] Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015Alemany Díaz, MDM.; Esteso, A.; Ortiz Bas, Á.; Hernández Hormazabal, JE.; Fernández, A.; Garrido, A.; Martin, J.... (2021). A conceptual framework for crop-based agri-food supply chain characterization under uncertainty. Studies in Systems, Decision and Control. 280:19-33. https://doi.org/10.1007/978-3-030-51047-3_2S1933280Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manage. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manage. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Iakovou, E., Vlachos, D., Achillas, C., Anastasiadis, F.: A methodological framework for the design of green supply chains for the agrifood sector. Paper presented at the 2nd international conference on supply chains, Katerini, 5–7 Oct 2012Manzini, R., Accorsi, R.: The new conceptual framework for food supply chain assessment. J. Food Eng. 115, 251–263 (2013)Shukla, M., Jharkharia, S.: Agri-fresh produce supply chain management: a state-of-the-art literature review. Int. J. Oper. Prod. Manage. 33, 114–158 (2013)Lemma, Y., Kitaw, D., Gatew, G.: Loss in perishable food supply chain: an optimization approach literature review. Int. J. Sci. Eng. Res. 5, 302–311 (2014)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)Van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial Supply Chain Management: Concepts and Applications. FAO (2007)Hernandez, J., Mortimer, M., Patelli, E., Liu, S., Drummond, C., Kehr, E., Calabrese, N., Iannacone, R., Kacprzyk, J., Alemany, M.M.E., Gardner, D.: RUC-APS: enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: 11th International Conference on Industrial Engineering and Industrial Management, Valencia, Spain (2017)Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, Thousand Oaks (1994)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62, 519–540 (2011)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Zhang, W., Wilhelm, W.E.: OR/MS decision support models for the specialty crops industry: a literature review. Ann. Oper. Res. 190, 131–148 (2011)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of mathematical models for supporting the order promising process under lack of homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Blanco, A.M., Masini, G., Petracci, N., Bandoni, J.A.: Operations management of a packaging plant in the fruit industry. J. Food Eng. 70, 299–307 (2005)Grillo, H., Alemany, M.M.E., Ortiz, A., Fuertes-Miquel, V.S.: Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Appl. Math. Model. 49, 255–278 (2017)Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Wolferta, J.: Process modelling in demand-driven supply chains: a reference model for the fruit industry. Comput. Electron. Agric. 73, 174–187 (2010)Amorim, P., Günther, H., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Nahmias, S.: Perishable inventory theory: a review. Oper. Res. 30, 680–708 (1982)Mowat, A., Collins, R.: Consumer behavior and fruit quality: supply chain management in an emerging industry. Supply Chain Manage. 5, 45–54 (2000)Kazaz, B., Webster, S.: The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. M&SOM Manuf. Serv. Oper. Manage. 13, 404–417 (2011)Van der Vorst, J.G.: Effective food supply chains: generating, modelling and evaluating supply chain scenarios (2000)Fuertes-Miquel, V.S., Cuenca, L., Boza, A., Guyon, C., Alemany, M.M.E.: Conceptual framework for the characterization of vegetable breton supply chain sustainability in an uncertain context. In: 12th International Conference on Industrial Engineering and Industrial Management, XXII Congreso de Ingeniería de Organización, Girona, Spain, 12–13 July 2018Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012)Hoekstra, S., Romme, J.: Integral Logistic Structures: Developing Customer-Oriented Goods Flow. Industrial Press Inc., New York (1992)Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)Handayati, Y., Simatupang, T.M., Perdana, T.: Agri-food supply chain coordination: the state-of-the-art and recent developments. Logist. Res. 8, 1–15 (2015)Mintzberg, H.: The Structuring of Organisations. Prentice-Hall, Upper Saddle River (1979)Keuning, D.: Grondslagen Van Het Management. Stenfert Kroese, Houten (1995) (in Dutch)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int. J. Prod. Res. (2018)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agr. Sci. 45, 307–328 (1997)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for managing uncertainty in a collaborative agri-food supply chain context. In: IFIP Advances in Information and Communication Technology, vol. 506, pp. 715–724 (2017)Mundi, I., Alemany, M.M.E., Poler, R., Fuertes-Miquel, V.S.: Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. Int. J. Prod. Res. (2019)Grillo, H., Alemany, M.M.E., Ortiz, A., De Baets, B.: Possibilistic compositions and state functions: application to the order promising process for perishables. Int. J. Prod. Res. (2019)Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C., Pla-Aragones, L.M.: Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 345–355 (2016)Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45, 92–118 (2014)Banasik, A., Bloemhof-Ruwaard, J.M., Kanellopoulos, A., Claassen, G.D.H., van der Vorst, J.G.: Multi-criteria decision making approaches for green supply chains: a review. Flex. Serv. Manuf. J. 1–31 (2016)Paam, P., Berretta, R., Heydar, M., Middleton, R.H., García-Flores, R., Juliano, P.: Planning models to optimize the agri-fresh food supply chain for loss minimization: a review. In: Reference Module in Food Science (2016)Soysal, M., Bloemhof-Ruwaard, J.M., Meuwissen, M.P., van der Vorst, J.G.: A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 3, 136–155 (2012

    An integrated approach to supply chain risk analysis

    Get PDF
    Despite the increasing attention that supply chain risk management is receiving by both researchers and practitioners, companies still lack a risk culture. Moreover, risk management approaches are either too general or require pieces of information not regularly recorded by organisations. This work develops a risk identification and analysis methodology that integrates widely adopted supply chain and risk management tools. In particular, process analysis is performed by means of the standard framework provided by the Supply Chain Operations Reference Model, the risk identification and analysis tasks are accomplished by applying the Risk Breakdown Structure and the Risk Breakdown Matrix, and the effects of risk occurrence on activities are assessed by indicators that are already measured by companies in order to monitor their performances. In such a way, the framework contributes to increase companies' awareness and communication about risk, which are essential components of the management of modern supply chains. A base case has been developed by applying the proposed approach to a hypothetical manufacturing supply chain. An in-depth validation will be carried out to improve the methodology and further demonstrate its benefits and limitations. Future research will extend the framework to include the understanding of the multiple effects of risky events on different processe

    Risk analysis in manufacturing footprint decisions

    Get PDF
    A key aspect in the manufacturing footprint analysis is the risk and sensitivity analysis of critical parameters. In order to contribute to efficient industrial methods and tools for making well-founded strategic decisions regarding manufacturing footprint this paper aims to describe the main risks that need to be considered while locating manufacturing activities, and what risk mitigation techniques and strategies that are proper in order to deal with these risks. It is also proposed how the risk analysis should be included in the manufacturing location decision process

    Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context

    Full text link
    [EN] Agri-food supply chains are subjected to many sources of uncertainty. If these uncertainties are not managed properly, they can have a negative impact on the agri-food supply chain (AFSC) performance, its customers, and the environment. In this sense, collaboration is proposed as a possible solution to reduce it. For that, a conceptual framework (CF) for managing uncertainty in a collaborative context is proposed. In this context, this paper seeks to answer the following research questions: What are the existing uncertainty sources in the AFSCs? Can collaboration be used to reduce the uncertainty of AFSCs? Which elements can integrate a CF for managing uncertainty in a collaborative AFSC? The CF proposal is applied to the weather source of uncertainty in order to show its applicability.The first author acknowledges the partial support of the Program of Formation of University Professors of the Spanish Ministry of Education, Culture, and Sport (FPU15/03595). The other authors acknowledge the partial support of the Project 691249, RUC-APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems, funded by the EU under its funding scheme H2020-MSCA-RISE-2015.Esteso-Álvarez, A.; Alemany Díaz, MDM.; Ortiz Bas, Á. (2017). Conceptual Framework for Managing Uncertainty in a Collaborative Agri-Food Supply Chain Context. IFIP Advances in Information and Communication Technology. 506:715-724. https://doi.org/10.1007/978-3-319-65151-4_64S715724506Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manag. Int. J. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manag. Int. J. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial supply chain management: Concepts and applications. FAO (2007)Borodin, V., Bourtembourg, J., Hnaien, F., Kabadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)van der Vorst, J.G.A.J., Beulens, A.J.M.: Identifying sources of uncertainty to generate supply chain redesign strategies. Int. J. Phys. Distrib. Logist. Manag. 32, 409–430 (2000)Klosa, E.: A concept of models for supply chain speculative risk analysis and management. J. Econ. Manag. 12, 45–59 (2013)Samson, S., Reneke, J.A., Wiecek, M.M.: A review of different perspectices on uncertainty and risk and an alternative modeling paradigm. Reliab. Eng. Syst. Saf. 94, 558–567 (2009)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agric. Sci. 45, 307–328 (1997)van der Vorst, J.G.: Effective food supply chains; Generating, modelling and evaluating supply chain scenarios. (2000)Amorim, P., Günther, H.O., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B.: Managing perishability in production-distribution planning: a discussion and review. Flex. Serv. Manuf. 25, 389–413 (2013)Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarria, D., Menesatti, P.: A review on agri-food supply chain traceability by means of RFID technology. Food Bioprocess Technol. 6, 353–366 (2013)Pahl, J., Voss, S.: Integrating deterioration and lifetime constraints in production and supply chain planning: a survey. Eur. J. Oper. Res. 238, 654–674 (2014)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of Mathematical models for supporting the order promising process under Lack of Homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Zwietering, M.H., van’t Riet, K.: Modelling of the quality of food: optimization of a cooling chain. In: Management Studies and the Agri-business: Management of Agri-chains, Wageningen, The Netherlands, pp. 108–117 (1994)Akkerman, R., Farahani, P., Grunow, M.: Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. Spectrum 32, 863–904 (2010)Apaiah, R.K., Hendrix, E.M.T., Meerdink, G., Linnemann, A.R.: Qualitative methodology for efficient food chain design. Trends Food Sci. Technol. 16, 204–214 (2005)Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: State-of-the-art in literature and research. Comput. Electron. Agric. 89, 158–174 (2012)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Dreyer, H.C., Strandhagen, J.O., Hvolby, H.H., Romsdal, A., Alfnes, E.: Supply chain strategies for speciality foods: a Norwegian case study. Prod. Plan. Control 27, 878–893 (2016)Baghalian, A., Rezapour, S., Farahani, R.Z.: Robust supply chain network design with service level against disruptions and demand uncertainties: a real-life case. Eur. J. Oper. Res. 227, 199–215 (2013)Aggarwal, S., Srivastava, M.K.: Towards a grounded view of collaboration in Indian agri-food supply chains: a qualitative investigation. Br. Food J. 115, 1085–1106 (2016)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Opara, L.U.: Traceability in agriculture and food supply chain: a review of basic concepts, technological implications, and future prospects. J. Food Agric. Environ. 1, 101–106 (2003)Kruize, J.W., Wolfert, S., Goense, D., Scholten, H., Beulens, A., Veenstra, T.: Integrating ICT applications for farm business collaboration processes using Fl Space. In: 2014 Annual SRII Global Conference, pp. 232–240. IEEE (2014)Oriade, C.A., Dillon, C.R.: Developments in biophysical and bioeconomic simulation of agricultural systems: a review. Agric. Econ. 17, 45–58 (1997)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: value creation in a knowledge society. In: Wang, Kesheng, Kovacs, G.L., Wozny, Michael, Fang, Minglun (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 26–40. Springer, Boston, MA (2006). doi: 10.1007/0-387-34403-9_4Prima Dania, W.A., Xing, K., Amer, Y.: Collaboration and sustainable agri-food supply chain: a literature review. MATEC Web Conf. 58 (2016)Simatupang, T.M., Sridharan, R.: The collaborative index: a measure for supply chain collaboration. Int. J. Phys. Distrib. Logist. Manag. 35, 44–62 (2005)Fischer, C., Hartmann, M., Reynolds, N., Leat, P., Revoredo-Giha, C., Henchion, M., Albisu, L.M., Gracia, A.: Factors influencing contractual choice and sustainable relationships in European agri-food supply chains. Eur. Rev. Agric. Econ. 36, 541–569 (2009

    A Conceptual Framework of Reverse Logistics Impact on Firm Performance

    Get PDF
    This study aims to examine the reverse logistics factors that impact upon firm performance. We review reverse logistics factors under three research streams: (a) resource-based view of the firm, including: Firm strategy, Operations management, and Customer loyalty (b) relational theory, including: Supply chain efficiency, Supply chain collaboration, and institutional theory, including: Government support and Cultural alignment. We measured firm performance with 5 measures: profitability, cost, innovativeness, perceived competitive advantage, and perceived customer satisfaction. We discuss implications for research, policy and practice

    A value chain analysis of interventions to control production diseases in the intensive pig production sector

    Get PDF
    Value chain analysis (VCA) calculated the financial effects on food chain actors of interventions to improve animal health and welfare in the intensive pig sector. Two interventions to reduce production diseases were studied. A generic chain diagram of linkages between stakeholders and value-added dimensions was designed. Data on structure and financial performance were collected for the sector. The production parameters and financial effects of the interventions were then described to illustrate impact on the supply chain. The effects of the interventions were also assessed at market level using economic welfare analysis. The sectors in Finland and the UK are small in farm numbers and few companies produced much of the output in a largely vertically-integrated structure. The most beneficial intervention in financial terms to farmers was improved hygiene in pig fattening (around +50% in gross margin). It was calculated to reduce the consumer price for pig meat by up to 5% when applied at large, whereas for improved management measures, it would reduce consumer price by less than 0.5%. However, the latter added value also through food quality attributes. We show that good hygiene and animal care can add value. However, evaluation of the financial and social viability of the interventions is needed to decide what interventions are adopted. The structure of supply chains influences which policy measures could be applied. Of the two interventions, improved pig hygiene had the largest potential to improve efficiency and reduce costs. The studied interventions can also provide new business opportunities to farms, slaughterhouses and food sector companies. More evidence is needed to support public policies and business decision-making in the sector. For this, evidence on consumer attitudes to production diseases is needed. Nevertheless, the study makes an important contribution by showing how improvements in health and welfare benefit the whole chain

    Feasibility of Warehouse Drone Adoption and Implementation

    Get PDF
    While aerial delivery drones capture headlines, the pace of adoption of drones in warehouses has shown the greatest acceleration. Warehousing constitutes 30% of the cost of logistics in the US. The rise of e-commerce, greater customer service demands of retail stores, and a shortage of skilled labor have intensified competition for efficient warehouse operations. This takes place during an era of shortening technology life cycles. This paper integrates several theoretical perspectives on technology diffusion and adoption to propose a framework to inform supply chain decision-makers on when to invest in new robotics technology
    corecore