1,591 research outputs found

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Electronic and photonic switching in the atm era

    Get PDF
    Broadband networks require high-capacity switches in order to properly manage large amounts of traffic fluxes. Electronic and photonic technologies are being used to achieve this objective both allowing different multiplexing and switching techniques. Focusing on the asynchronous transfer mode (ATM), the inherent different characteristics of electronics and photonics makes different architectures feasible. In this paper, different switching structures are described, several ATM switching architectures which have been recently implemented are presented and the implementation characteristics discussed. Three diverse points of view are given from the electronic research, the photonic research and the commercial switches. Although all the architectures where successfully tested, they should also follow different market requirements in order to be commercialised. The characteristics are presented and the architectures projected over them to evaluate their commercial capabilities.Peer ReviewedPostprint (published version

    Lower-Bound on Blocking Probability of A Class of Crosstalkfree Optical Cross-connects(OXCs)

    Get PDF

    A systematic approach to reliable multistage interconnection network design

    Get PDF
    Bibliography: p. 34-35.Army Research Office grant no. DAAG29-84-K-0005 Advanced Research Projects Agency monitored by ONR, contract N00014-81-K-0742C.-C. Jay Kuo

    Modeling of Topologies of Interconnection Networks based on Multidimensional Multiplicity

    Get PDF
    Modern SoCs are becoming more complex with the integration of heterogeneous components (IPs). For this purpose, a high performance interconnection medium is required to handle the complexity. Hence NoCs come into play enabling the integration of more IPs into the SoC with increased performance. These NoCs are based on the concept of Interconnection networks used to connect parallel machines. In response to the MARTE RFP of the OMG, a notation of multidimensional multiplicity has been proposed which permits to model repetitive structures and topologies. This report presents a modeling methodology based on this notation that can be used to model a family of Interconnection Networks called Delta Networks which in turn can be used for the construction of NoCs

    Reconfiguration for Fault Tolerance and Performance Analysis

    Get PDF
    Architecture reconfiguration, the ability of a system to alter the active interconnection among modules, has a history of different purposes and strategies. Its purposes develop from the relatively simple desire to formalize procedures that all processes have in common to reconfiguration for the improvement of fault-tolerance, to reconfiguration for performance enhancement, either through the simple maximizing of system use or by sophisticated notions of wedding topology to the specific needs of a given process. Strategies range from straightforward redundancy by means of an identical backup system to intricate structures employing multistage interconnection networks. The present discussion surveys the more important contributions to developments in reconfigurable architecture. The strategy here is in a sense to approach the field from an historical perspective, with the goal of developing a more coherent theory of reconfiguration. First, the Turing and von Neumann machines are discussed from the perspective of system reconfiguration, and it is seen that this early important theoretical work contains little that anticipates reconfiguration. Then some early developments in reconfiguration are analyzed, including the work of Estrin and associates on the fixed plus variable restructurable computer system, the attempt to theorize about configurable computers by Miller and Cocke, and the work of Reddi and Feustel on their restructable computer system. The discussion then focuses on the most sustained systems for fault tolerance and performance enhancement that have been proposed. An attempt will be made to define fault tolerance and to investigate some of the strategies used to achieve it. By investigating four different systems, the Tandern computer, the C.vmp system, the Extra Stage Cube, and the Gamma network, the move from dynamic redundancy to reconfiguration is observed. Then reconfiguration for performance enhancement is discussed. A survey of some proposals is attempted, then the discussion focuses on the most sustained systems that have been proposed: PASM, the DC architecture, the Star local network, and the NYU Ultracomputer. The discussion is organized around a comparison of control, scheduling, communication, and network topology. Finally, comparisons are drawn between fault tolerance and performance enhancement, in order to clarify the notion of reconfiguration and to reveal the common ground of fault tolerance and performance enhancement as well as the areas in which they diverge. An attempt is made in the conclusion to derive from this survey and analysis some observations on the nature of reconfiguration, as well as some remarks on necessary further areas of research

    Removal of Cross Talk in Omega Switch Network by Using Improve Windowing Technique

    Get PDF
    An optical computer network is a network that relies primarily on the computing power and bandwidth of the participants in the network rather than concentrating it in a relatively low number of servers. Such networks are useful for many purposes. Sharing content files (see file sharing) containing audio, video, data or anything in digital format is very common, and real time data, such as telephony traffic, is also passed using Optical technology. The proposed work is about to handle the network fault in case of cross talk in a switched network. In this work we are presenting the complete work with Omega Network. The work includes the analysis of existing methodologies to detect the confliction in cross talk. As the confliction is detected the next work is perform the talk with a smaller delay such that it will avoid the cross talk over the networ

    Toward an optimal foundation architecture for optoelectronic computing .1. Regularly interconnected device planes

    Get PDF
    Cataloged from PDF version of article.By systematically examining the tree of possibilities for optoelectronic computing architectures and offering arguments that allow one to prune suboptimal branches of this tree, I come to the conclusion that electronic circuit planes interconnected optically according to regular connection patterns represent an alternative that is reasonably close to the best possible, as defined by physical limitations. Thus I propose that this foundation architecture should provide a basis for future research and development in this area. © 1997 Optical Society of Americ

    Reduce the Cross Talk in Omega Network by Using Windowing Techniques

    Get PDF
    When we work on a distributed network with n number of systems attached with m number of resources. In such case there are number of approaches to connect the system and the resources. One of such approach is Multistage networks. Where some middle level interface systems or the switches are attached between the systems and the resources. But such kind of networks having the problem of confliction when more than one transmission is taken place at one time. In such case there is the possibility that any one line can share more than one transmissions. As the conflictions occur there are much chances of data loss over the network. We are providing the solution for the above defined problem in case of Omega Networks. In this paper we proposed solution the system will first detect the confliction using windowing method. Once the confliction detected the next step is to vary the time of transmission between these two transmissions. As the communication is performed at different time lines it will resolve the problem of confliction in omega networks
    • 

    corecore