1,257 research outputs found

    An Energy-Efficient MAC Protocol Using Dynamic Queue Management for Delay-Tolerant Mobile Sensor Networks

    Get PDF
    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay

    A mobile code bundle extension for application-defined routing in delay and disruption tolerant networking

    Get PDF
    Grup de recerca SENDA (Security of Network and Distributed Applications)In this paper, we introduce software code to improve Delay and Disruption Tolerant Networking (DTN) performance. DTN is extremely useful when source and destination nodes are intermittently connected. DTN implementations use application-specific routing algorithms to overcome those limitations. However, current implementations do not support the concurrent execution of several routing algorithms. In this paper, we contribute to this issue providing a solution that consists on extending the messages being communicated by incorporating software code for forwarding, lifetime control and prioritisation purposes. Our proposal stems from the idea of moving the routing algorithms from the host to the message. This solution is compatible with Bundle Protocol (BP) and facilitates the deployment of applications with new routing needs. A real case study based on an emergency scenario is presented to provide details of a real implementation. Several simulations are presented to prove the feasibility and usability of the system and to analyse its performance in comparison to state-of-the-art approaches

    Performance Assessment of Aggregation and Deaggregation Algorithms in Vehicular Delay-Tolerant Networks

    Get PDF
    Vehicular Delay-Tolerant Networks (VDTNs) are a new approach for vehicular communications where vehicles cooperate with each other, acting as the communication infrastructure, to provide low-cost asynchronous opportunistic communications. These communication technologies assume variable delays and bandwidth constraints characterized by a non-transmission control protocol/ internet protocol architecture but interacting with it at the edge of the network. VDTNs are based on the principle of asynchronous communications, bundleoriented communication from the DTN architecture, employing a store-carryand- forward routing paradigm. In this sense, VDTNs should use the tight network resources optimizing each opportunistic contact among nodes. At the ingress edge nodes, incoming IP Packets (datagrams) are assembled into large data packets, called bundles. The bundle aggregation process plays an important role on the performance of VDTN applications. Then, this paper presents three aggregation algorithms based on time, bundle size, and a hybrid solution with combination of both. Furthermore, the following four aggregation schemes with quality of service (QoS) support are proposed: 1) single-class bundle with N = M, 2) composite-class bundle with N = M, 3) single-class bundle with N > M, and 4) composite-class bundle with N > M, where N is the number of classes of incoming packets and M is the number of priorities supported by the VDTN core network. The proposed mechanisms were evaluated through a laboratory testbed, called VDTN@Lab. The adaptive hybrid approach and the composite-class schemes present the best performance for different types of traffic load and best priorities distribution, respectively

    PFPS: Priority-First Packet Scheduler for IEEE 802.15.4 Heterogeneous Wireless Sensor Networks

    Get PDF
    This paper presents priority-first packet scheduling approach for heterogeneous traffic flows in low data rate heterogeneous wireless sensor networks (HWSNs). A delay sensitive or emergency event occurrence demands the data delivery on the priority basis over regular monitoring sensing applications. In addition, handling sudden multi-event data and achieving their reliability requirements distinctly becomes the challenge and necessity in the critical situations. To address this problem, this paper presents distributed approach of managing data transmission for simultaneous traffic flows over multi-hop topology, which reduces the load of a sink node; and helps to make a life of the network prolong. For this reason, heterogeneous traffic flows algorithm (CHTF) algorithm classifies the each incoming packets either from source nodes or downstream hop node based on the packet priority and stores them into the respective queues. The PFPS-EDF and PFPS-FCFS algorithms present scheduling for each data packets using priority weight. Furthermore, reporting rate is timely updated based on the queue level considering their fairness index and processing rate. The reported work in this paper is validated in ns2 (ns2.32 allinone) simulator by putting the network into each distinct cases for validation of presented work and real time TestBed. The protocol evaluation presents that the distributed queue-based PFPS scheduling mechanism works efficiently using CSMA/CA MAC protocol of the IEEE 802.15.4 sensor networks

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Statistical priority-based uplink scheduling for M2M communications

    Get PDF
    Currently, the worldwide network is witnessing major efforts to transform it from being the Internet of humans only to becoming the Internet of Things (IoT). It is expected that Machine Type Communication Devices (MTCDs) will overwhelm the cellular networks with huge traffic of data that they collect from their environments to be sent to other remote MTCDs for processing thus forming what is known as Machine-to-Machine (M2M) communications. Long Term Evolution (LTE) and LTE-Advanced (LTE-A) appear as the best technology to support M2M communications due to their native IP support. LTE can provide high capacity, flexible radio resource allocation and scalability, which are the required pillars for supporting the expected large numbers of deployed MTCDs. Supporting M2M communications over LTE faces many challenges. These challenges include medium access control and the allocation of radio resources among MTCDs. The problem of radio resources allocation, or scheduling, originates from the nature of M2M traffic. This traffic consists of a large number of small data packets, with specific deadlines, generated by a potentially massive number of MTCDs. M2M traffic is therefore mostly in the uplink direction, i.e. from MTCDs to the base station (known as eNB in LTE terminology). These characteristics impose some design requirements on M2M scheduling techniques such as the need to use insufficient radio resources to transmit a huge amount of traffic within certain deadlines. This presents the main motivation behind this thesis work. In this thesis, we introduce a novel M2M scheduling scheme that utilizes what we term the “statistical priority” in determining the importance of information carried by data packets. Statistical priority is calculated based on the statistical features of the data such as value similarity, trend similarity and auto-correlation. These calculations are made and then reported by the MTCDs to the serving eNBs along with other reports such as channel state. Statistical priority is then used to assign priorities to data packets so that the scarce radio resources are allocated to the MTCDs that are sending statistically important information. This would help avoid exploiting limited radio resources to carry redundant or repetitive data which is a common situation in M2M communications. In order to validate our technique, we perform a simulation-based comparison among the main scheduling techniques and our proposed statistical priority-based scheduling technique. This comparison was conducted in a network that includes different types of MTCDs, such as environmental monitoring sensors, surveillance cameras and alarms. The results show that our proposed statistical priority-based scheduler outperforms the other schedulers in terms of having the least losses of alarm data packets and the highest rate in sending critical data packets that carry non-redundant information for both environmental monitoring and video traffic. This indicates that the proposed technique is the most efficient in the utilization of limited radio resources as compared to the other techniques

    Secure Communication in Disaster Scenarios

    Get PDF
    WĂ€hrend Naturkatastrophen oder terroristischer AnschlĂ€ge ist die bestehende Kommunikationsinfrastruktur hĂ€ufig ĂŒberlastet oder fĂ€llt komplett aus. In diesen Situationen können mobile GerĂ€te mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem fĂŒr Zivilisten und Rettungsdienste einzurichten. Falls verfĂŒgbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefĂ€lschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzufĂŒhren. Diese Dissertation schlĂ€gt neue AnsĂ€tze zur Kommunikation in Notfallnetzen von mobilen GerĂ€ten vor, die von der Kommunikation zwischen MobilfunkgerĂ€ten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser AnsĂ€tze werden die Sicherheit der GerĂ€te-zu-GerĂ€te-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen GerĂ€ten und die Sicherheit von Server-Systemen fĂŒr Cloud-Dienste verbessert

    Prioritization of Traffic for Resource Constrained Delay Tolerant Networks

    Get PDF
    In networks with common shared wireless medium, the available bandwidth is always valuable and often scarce resource. In addition to it, memory available at nodes (eg., sensor nodes) might be limited relative to the amount of information that needs to be stored locally. As Delay Tolerant Networks (DTNs) rely on node mobility for data dissemination, the high node mobility limits the duration of contact. Besides the issue of contact opportunities between nodes, the bandwidth, available storage at peering nodes and contact duration also affect data forwarding. These factors also influence the mechanisms such as buffer replacement and scheduling policies. So there are secondary problems that routing strategies may need to take care of such as to deal with limited resources like buffer, bandwidth and power. Furthermore, despite inherent delay tolerance of most DTN driving applications, there can be situations where some messages may be more important than the others and expected to get delivered earlier. So considering the network limitations and application requirements, the problem of choosing the messages to be transmitted when a contact opportunity arises and the messages to be dropped when buffer full is formulated. A buffer management policy to address these issues is proposed and analysed in this paper. Additionally the buffer utilization of various DTN routing protocols and the impact of buffer size on the performance of DTN are studied
    • 

    corecore