3,645 research outputs found

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)

    An empirical study on the various stock market prediction methods

    Get PDF
    Investment in the stock market is one of the much-admired investment actions. However, prediction of the stock market has remained a hard task because of the non-linearity exhibited. The non-linearity is due to multiple affecting factors such as global economy, political situations, sector performance, economic numbers, foreign institution investment, domestic institution investment, and so on. A proper set of such representative factors must be analyzed to make an efficient prediction model. Marginal improvement of prediction accuracy can be gainful for investors. This review provides a detailed analysis of research papers presenting stock market prediction techniques. These techniques are assessed in the time series analysis and sentiment analysis section. A detailed discussion on research gaps and issues is presented. The reviewed articles are analyzed based on the use of prediction techniques, optimization algorithms, feature selection methods, datasets, toolset, evaluation matrices, and input parameters. The techniques are further investigated to analyze relations of prediction methods with feature selection algorithm, datasets, feature selection methods, and input parameters. In addition, major problems raised in the present techniques are also discussed. This survey will provide researchers with deeper insight into various aspects of current stock market prediction methods

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Non Linear Modelling of Financial Data Using Topologically Evolved Neural Network Committees

    No full text
    Most of artificial neural network modelling methods are difficult to use as maximising or minimising an objective function in a non-linear context involves complex optimisation algorithms. Problems related to the efficiency of these algorithms are often mixed with the difficulty of the a priori estimation of a network's fixed topology for a specific problem making it even harder to appreciate the real power of neural networks. In this thesis, we propose a method that overcomes these issues by using genetic algorithms to optimise a network's weights and topology, simultaneously. The proposed method searches for virtually any kind of network whether it is a simple feed forward, recurrent, or even an adaptive network. When the data is high dimensional, modelling its often sophisticated behaviour is a very complex task that requires the optimisation of thousands of parameters. To enable optimisation techniques to overpass their limitations or failure, practitioners use methods to reduce the dimensionality of the data space. However, some of these methods are forced to make unrealistic assumptions when applied to non-linear data while others are very complex and require a priori knowledge of the intrinsic dimension of the system which is usually unknown and very difficult to estimate. The proposed method is non-linear and reduces the dimensionality of the input space without any information on the system's intrinsic dimension. This is achieved by first searching in a low dimensional space of simple networks, and gradually making them more complex as the search progresses by elaborating on existing solutions. The high dimensional space of the final solution is only encountered at the very end of the search. This increases the system's efficiency by guaranteeing that the network becomes no more complex than necessary. The modelling performance of the system is further improved by searching not only for one network as the ideal solution to a specific problem, but a combination of networks. These committces of networks are formed by combining a diverse selection of network species from a population of networks derived by the proposed method. This approach automatically exploits the strengths and weaknesses of each member of the committee while avoiding having all members giving the same bad judgements at the same time. In this thesis, the proposed method is used in the context of non-linear modelling of high-dimensional financial data. Experimental results are'encouraging as both robustness and complexity are concerned.Imperial Users onl

    Applied Data Science Approaches in FinTech: Innovative Models for Bitcoin Price Dynamics

    Get PDF
    Living in a data-intensive environment is a natural consequence to the continuous innovations and technological advancements, that created countless opportunities for addressing domain-specific challenges following the Data Science approach. The main objective of this thesis is to present applied Data Science approaches in FinTech, focusing on proposing innovative descriptive and predictive models for studying and exploring Bitcoin Price Dynamics and Bitcoin Price Prediction. With reference to the research area of Bitcoin Price Dynamics, two models are proposed. The first model is a Network Vector Autoregressive model that explains the dynamics of Bitcoin prices, based on a correlation network Vector Autoregressive process that models interconnections between Bitcoin prices from different exchange markets and classical assets prices. The empirical findings show that Bitcoin prices from different markets are highly interrelated, as in an efficiently integrated market, with prices from larger and/or more connected exchange markets driving other prices. The results confirm that Bitcoin prices are unrelated with classical market prices, thus, supporting the diversification benefit property of Bitcoin. The proposed model can predict Bitcoin prices with an error rate of about 11% of the average price. The second proposed model is a Hidden Markov Model that explains the observed time dynamics of Bitcoin prices from different exchange markets, by means of the latent time dynamics of a predefined number of hidden states, to model regime switches between different price vectors, going from "bear'' to "stable'' and "bear'' times. Structured with three hidden states and a diagonal variance-covariance matrix, the model proves that the first hidden state is concentrated in the initial time period where Bitcoin was relatively new and its prices were barely increasing, the second hidden state is mostly concentrated in a period where Bitcoin prices were steadily increasing, while the third hidden state is mostly concentrated in the last period where Bitcoin prices witnessed a high rate of volatility. Moreover, the model shows a good predictive performance when implemented on an out of sample dataset, compared to the same model structured with a full variance-covariance matrix. The third and final proposed model, falls within the area of Bitcoin Price Prediction. A Hybrid Hidden Markov Model and Genetic Algorithm Optimized Long Short Term Memory Network is proposed, aiming at predicting Bitcoin prices accurately, by introducing new features that are not usually considered in the literature. Moreover, to compare the performance of the proposed model to other models, a more traditional ARIMA model has been implemented, as well as a conventional Genetic Algorithm-optimized Long Short Term Memory Network. With a mean squared error of 33.888, a root mean squared error of 5.821 and a mean absolute error of 2.510, the proposed model achieves the lowest errors among all the implemented models, which proves its effectiveness in predicting Bitcoin prices

    A multiobjective credibilistic portfolio selection model. Empirical study in the Latin American Integrated Market

    Full text link
    [EN] This paper extends the stochastic mean-semivariance model to a fuzzy multiobjective model, where apart from return and risk, also liquidity is considered to measure the performance of a portfolio. Uncertainty of future return and liquidity of each asset are modeled using L-R type fuzzy numbers that belong to the power reference function family. The decision process of this novel approach takes into account not only the multidimensional nature of the portfolio selection problem but also realistic constraints by investors. Particularly, it optimizes the expected return, the semivariance and the expected liquidity of a given portfolio, considering cardinality constraint and upper and lower bound constraints. The constrained portfolio optimization problem resulting is solved using the algorithm NSGA-II. As a novelty, in order to select the optimal portfolio, this study defines the credibilistic Sortino ratio as the ratio between the credibilistic risk premium and the credibilistic semivariance. An empirical study is included to show the effectiveness and efficiency of the model in practical applications using a data set of assets from the Latin American Integrated Market.GarcĂ­a GarcĂ­a, F.; Gonzalez-Bueno, J.; Guijarro, F.; Oliver-Muncharaz, J. (2020). A multiobjective credibilistic portfolio selection model. Empirical study in the Latin American Integrated Market. Enterpreneurship and Sustainability Issues. 8(2):1027-1046. https://doi.org/10.9770/jesi.2020.8.2(62)S102710468
    • …
    corecore