48 research outputs found

    Performance Analysis of Flexible A.C. Transmission System Devices for Stability Improvement of Power System

    Get PDF
    When large power systems are interconnected by relatively weak tie line, low-frequency oscillations are observed. Recent developments in power electronics have led to the development of the Flexible AC Transmission Systems (FACTS) devices in power systems. FACTS devices are capable of controlling the network condition in a very fast manner and this feature of FACTS can be exploited to improve the stability of a power system. To damp electromechanical oscillations in the power system, the supplementary controller can be applied with FACTS devices to increase the system damping. The supplementary controller is called damping controller. The damping controllers are designed to produce an electrical torque in phase with the speed deviation. The objective of this thesis is to develop some novel control techniques for the FACTS based damping controller design to enhance power system stability. Proper selection of optimization techniques plays an important role in for the stability enhancement of power system. In the present thesis Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Gravitational search algorithm (GSA) along with their hybrid form have been applied and compared for a FACTS based damping controller design. Important conclusions have been drawn on the suitability of optimization technique. The areas of research achieved in this thesis have been divided into two parts: The aim of the first part is to develop the linearized model (Philip-Hefron model) of a single machine infinite bus power system installed with FACTS devices, such as Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC). Different Damping controller structures have been used and compared to mitigate the system damping by adding a component of additional damping torque proportional to speed change through the excitation system. The various soft-computing techniques have been applied in order to find the controller parameters. The recently developed Gravitational Search Algorithm (GSA) based SSSC damping controller, and a new hybrid Genetic Algorithm and Gravitational Search Algorithm (hGA-GSA) based UPFC damping controller seems to the most effective damping controller to mitigate the system oscillation. The aim of second part is to develop the Simulink based model (to over-come the problem associated with the linearized model) for an SMIB as well as the multi-machine power system. Coordinated design of PSS with various FACTS devices based damping controllers are carried out considering appropriate time delays due to sensor time constant and signal transmission delays in the design process. A hybrid Particle Swarm Optimization and Gravitational Search Algorithm (hPSO-GSA) technique is employed to optimally and coordinately tune the PSS and SSSC based controller parameters and has emerged as the most superior method of coordinated controller design considered for both single machine infinite bus power system as well as a multi-machine power system. Finally, the damping capabilities of SSSC based damping controllers are thoroughly investigated by considering a new derived modified signal known as Modified Local Input Signal which comprises both the local signal (speed deviation) and remote signal (line active power). Appropriate time delays due to sensor time constant and signal transmission delays are considered in the design process. The hybrid Particle Swarm Optimization and Gravitational Search Algorithm (hPSO-GSA) technique is used to tune the damping controller parameters. It is observed that the new modified local input signal based SSSC controller provides the best system performance compared to other alternatives considered for a single machine infinite bus power system and multi-machine power system

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Frequency deviations stabilizations in restructured power systems using coordinative controllers

    Get PDF
    Modern restructured power system faces excessive frequency aberrations due to the intermittent renewable generations and persistently changing load demands. An efficient and robust control strategy is obligatory to minimise deviations in the system frequency and tie-line to avoid any possible blackout. Hence, in this research, to achieve this target, automatic generation control (AGC) is utilized as a secondary controller to alleviate the changes in interconnected restructured systems at uncertainties. The objective of AGC is to quickly stabilize the deviations in frequency and tie-line power following load fluctuations. This thesis addresses the performance of AGC in two-area restructured power systems with many sophisticated control strategies in the presence of renewable and traditional power plants. As per literature of research work, there are quite a few research studies on AGC of a restructured system using optimized coordinative controllers. Besides, investigations on advanced optimized-based coordinative controller approaches are also rare to find in the literature. So, various combinations of two degrees of freedom (2DOF) controllers are utilized as supplementary controllers to diminish the frequency deviations. Nevertheless, the interconnected tie-lines are typically congested in areas with huge penetration of renewable sources, which may reduce the tie -line capability. Therefore, distinct FACTS controllers and ultra-capacitor (UC) are integrated into two-area restructured systems for strengthening the tie-line power and frequency. Further, new optimization techniques such as cuckoo search (CS), bat algorithm (BA), moth-flame optimization (MFO) are utilized in this work for investigating the suggested 2DOF controllers and compared their performance in all contracts of restructured systems. As per the simulation outcomes, the amalgamation of DPFC and UC with MFObased 2DOF PID-FOPDN shows low fluctuation rate in frequency and tie-line power. Besides, the settling times (ST) of two areas are 9.5 S for ΔF1, 8.2 S for ΔF2, and 10.15 S for ΔPtie. The robustness of the suggested controller has been verified by ±25% variations in system parameters and loading conditions

    Enhancing the performance of flexible AC transmission systems (FACTS) by computational intelligence

    Get PDF
    The thesis studies and analyzes UPFC technology concerns the management of active and reactive power in the power networks to improve the performance aiming to reach the best operation criteria. The contributions of the thesis start with formatting, deriving, coding and programming the network equations required to link UPFC steady-state and dynamic models to the power systems. The thesis derives GA applications on UPFC to achieve real criteria on a real world sub-transmission network. An enhanced GA technique is proposed by enhancing and updating the working phases of the GA including the objective function formulation and computing the fitness using the diversity in the population and selection probability. The simulations and results show the advantages of using the proposed technique. Integrating the results by linking the case studies of the steady-state and the dynamic analysis is achieved. In the dynamic analysis section, a new idea for integrating the GA with ANFIS to be applied on the control action procedure is presented. The main subject of the thesis deals with enhancing the steady-state and dynamics performance of the power grids by Flexible AC Transmission System (FACTS) based on computational intelligence. Control of the electric power system can be achieved by designing the FACTS controller, where the new trends as Artificial Intelligence can be applied to this subject to enhance the characteristics of controller performance. The proposed technique will be applied to solve real problems in a Finnish power grid. The thesis seeks to deal, solve, and enhance performances until the year 2020, where the data used is until the conditions of year 2020. The FACTS device, which will be used in the thesis, is the most promising one, which known as the Unified Power Flow Controller (UPFC). The thesis achieves the optimization of the type, the location and the size of the power and control elements for UPFC to optimize the system performance. The thesis derives the criteria to install the UPFC in an optimal location with optimal parameters and then designs an AI based damping controller for enhancing power system dynamic performance. In this thesis, for every operating point GA is used to search for controllers' parameters, parameters found at certain operating point are different from those found at others. ANFISs are required in this case to recognize the appropriate parameters for each operating point

    Enhancement of Power System Dynamic Performance by Coordinated Design of PSS and FACTS Damping Controllers

    Get PDF
    Due to environmental and economical constraints, it is difficult to build new power lines and to reinforce the existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence of this is reduction of power system damping, leading to a risk of poorly damped power oscillations between generators. To suppress these oscillations and maintain power system dynamic performance, one of the conventional, economical and effective solutions is to install a power system stabilizer (PSS). However, in some cases PSS may not provide sufficient damping for the inter-area oscillations in a multi-machine power system. In this context, other possible solutions are needed to be exposed. With the evolution of power electronics, flexible AC transmission systems (FACTS) controllers turn out to be possible solution to alleviate such critical situations by controlling the power flow over the AC transmission line and improving power oscillations damping. However, coordination of conventional PSS with FACTS controllers in aiding of power system oscillations damping is still an open problem. Therefore, it is essential to study the coordinated design of PSS with FACTS controllers in a multi-machine power system. This thesis gives an overview of the modelling and operation of power system with conventional PSS. It gives the introduction to emerging FACTS controllers with emphasis on the TCSC, SVC and STATCOM controllers. The basic modelling and operating principles of the controllers are explained in this thesis, along with the power oscillations damping (POD) stabilizers. The coordination design of PSS and FACTS damping controllers over a wide range of operating conditions is formulated as an optimization problem. The objective function of this optimization problem is framed using system eigen values and it is solved using AAPSO and IWO algorithms. The optimal control parameters of coordinated controllers are obtained at the end of these optimization algorithms. A comprehensive approach to the hybrid coordinated design of PSS with series and shunt FACTS damping controllers is proposed to enhance the overall system dynamic performance. The robustness and effectiveness of proposed hybrid coordinated designs are demonstrated through the eigen value analysis and time-domain simulations. The proposed hybrid designs provide robust dynamic performance under wide range in load condition and providing significant improvement in damping power system oscillations under severe disturbance. The developed hybrid coordinated designs are tested in different multimachine power systems using AAPSO and IWO algorithms. The IWO based hybrid designs and AAPSO based hybrid designs are more effective than other control designs. In addition to this, the proposed designs are implemented and validated in real-time using Opal-RT hardware simulator. The real-time simulations of different test power systems with different proposed designs are carried out for a severe fault disturbance. Finally, the proposed controller simulation results are validated with real-time results

    Improvement of voltage and power flow control in the GCC power grid by using coordinated FACTS devices

    Get PDF
    This work presents HVDC/FACTS control device implementation framework in the Gulf cooperative council’s countries. It comprises of five layers of FACTS control devices (STATCOM, SSSC, UPFC, HVDC and centralized/De-centralized Control). This five-layer architecture is designed in order to configure and produce the desired results; based on these outcomes, GCC power system network control and operational problems can be identified and addressed within the control architecture on the GCC power grid. In the context of power FACTS-FRAME, this work is to identify and determine a number of power systems operational and control problems which are persistent on the GCC power grid e.g. poor voltage quality (SAG-Swell), poor load flow control, and limited power transfer capacity issues. The FACTS-FRAME is configured and synthesized by integrating multiple FACTS control devices (STATCOM, SSSC, UPFC) in parallel at different locations on the GCC power grid in order to meet stringent power system control and operational requirements with improved power transfer capacity, controllability and reliability. The mathematical models are derived to indentify and determine operational constraints on the GCC power grid by incorporating real-time and estimated data and the acquired desired results. Herein, FACTS-FRAME is designed to handle distributed computation for intensive power system calculation by integrating multiple FACTS devices on multiple networks within the GCC power network. Distributed power flow algorithms are also derived in order to understand and implement centralized and decentralized control topologies as appropriate. The simulation results indicate the feasibility of FACTS devices implementation and their potential benefits under current operating conditions on the GCC power grid.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Improvement of Voltage and Power Flow Control in the GCC Power Grid by using Coordinated FACTS Devices

    Get PDF
    This work presents HVDC/FACTS control device implementation framework in the Gulf cooperative council’s countries. It comprises of five layers of FACTS control devices (STATCOM, SSSC, UPFC, HVDC and centralized/De-centralized Control). This five-layer architecture is designed in order to configure and produce the desired results; based on these outcomes, GCC power system network control and operational problems can be identified and addressed within the control architecture on the GCC power grid. In the context of power FACTS-FRAME, this work is to identify and determine a number of power systems operational and control problems which are persistent on the GCC power grid e.g. poor voltage quality (SAG-Swell), poor load flow control, and limited power transfer capacity issues. The FACTS-FRAME is configured and synthesized by integrating multiple FACTS control devices (STATCOM, SSSC, UPFC) in parallel at different locations on the GCC power grid in order to meet stringent power system control and operational requirements with improved power transfer capacity, controllability and reliability. The mathematical models are derived to indentify and determine operational constraints on the GCC power grid by incorporating real-time and estimated data and the acquired desired results. Herein, FACTS-FRAME is designed to handle distributed computation for intensive power system calculation by integrating multiple FACTS devices on multiple networks within the GCC power network. Distributed power flow algorithms are also derived in order to understand and implement centralized and decentralized control topologies as appropriate. The simulation results indicate the feasibility of FACTS devices implementation and their potential benefits under current operating conditions on the GCC power grid.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimal placement of statcom controllers with metaheuristic algorithms for network power loss reduction and voltage profile deviation minimization.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Transmission system is a series of interconnected lines that enable the bulk movement of electrical power from a generating station to an electrical substation. This system suffers from unavoidable power losses and consequently voltage profile deviation which affects the overall efficiency of the system; hence the need to reduce these losses and voltage magnitude deviations. The existing methods of incorporation of static synchronous compensator (STATCOM) controllers to solve these problems suffer from incorrect location and sizing, which could bring about insignificant reduction in transmission network losses and voltage magnitude deviations. Hence, this research aims to reduce transmission network losses and voltage magnitude deviation in transmission network by suitable allocation of STATCOM controller using firefly algorithm (FA) and particle swarm optimization (PSO). A mathematical steady-state STATCOM power injection model was formulated from one voltage source representation to generate new set of equations, which was incorporated into the Newton-Raphson (NR) load flow solution algorithm and then optimized using PSO and FA. The approach was applied to IEEE 14-bus network and simulations were performed using MATLAB program. The results showed that the best STATCOM controller locations in the system after optimization were at bus 11 and 9 with the injection of shunt reactive power of 8.96 MVAr, and 9.54 MVAr with PSO and FA, respectively. The total active power loss for the network under consideration at steady state, with STATCOM only and STATCOM controller optimized using PSO and FA, were 6.251 MW, 6.075 MW, 5.819 MW and 5.581 MW, respectively. The corresponding reactive power were 14.256 MVAr, 13.857 MVAr, 12.954 MVAr and 12.156 MVAr, respectively. In addition, bus voltage profile improvement indicates the effectiveness of metaheuristic methods of STATCOM optimization. However, FA gave a better power loss and voltage magnitude deviations minimizations over PSO. The study concluded that FA is more effective as an optimization technique for suitably locating and sizing of STATCOM controller on a power transmission system.Publications listed on page iii

    Enhancement of deregulated and restructured power network performance with flexible alternating current transmission systems devices.

    Get PDF
    Doctoral degree. University of KwaZulu- Natal, Durban.The increase in power transactions, consequent open access created by deregulation and restructuring has resulted into network operation challenges including determination as well as enhancement of available transfer capability (ATC), and congestion management among others. In this study, repeated alternating current power flow (RACPF) approach was implemented for determination of ATC. ATCs for inter-area line outage and generator outage contingency conditions were obtained and analyzed. Analyses of most severe line outage contingencies resulting from evaluation of different performance index (PI) ranking methods were carried out for severe line outage contingency identification. A comprehensive review of FACTS controllers with their various background, topological structures, deployment techniques and cutting-edge applications was carried out for network performance enhancement. In addition, different placement methods were investigated for optimal performance evaluation of FACTS devices. Following this, comparative performance of static var compensator (SVC) and thyristor-controlled series compensator (TCSC) models for enhancement of ATC, bus voltage profile improvement and real power loss minimization was investigated. In addition, particle swarm optimization (PSO) and brain-storm optimization algorithms (BSOA) were engaged for optimum setting of FACTS devices through multi-objective problem formulation and allocation purposes. Thereafter, sensitivity-based technique involving incorporation of proposed FACTS device loss with the general loss equation for the determination of optimum location with same objectives was developed and TCSC location was established based on this sensitivity factors analyses, obtained from partial derivatives of the resultant loss equations with respect to control parameters. Subsequently, investigation and analyses of capability of an optimized VSC-HVDC transmission system in enhancing power network performance were conducted. Furthermore, this optimized VSC-HVDC transmission system was applied for mitigation of bus voltage and line thermal limit violation as a result of n-1-line outage contingency. All these investigations and analyses were implemented for bilateral, simultaneous and multilateral transactions as characterized by network liberalization and IEEE 5 and 30 bus networks were used for implementation in MATLAB environment. RACPF method found to be more accurate especially when compared with other methods with 11.574 MW above and 29.014 MW below recorded ATC values. Voltage and real power PI have also been proven to be distinctly dissimilar in severe contingency identification. In placement method comparison however, disparities in ATC enhancement ranges between 2% and 85% were achieved while real power loss minimization of up to 25% was obtained for different methods. Real power loss minimization of up to 0.06 MW and voltage improvement of bus 21 to 30 were achieved with SVC, while ATC enhancement of up to 14% were recorded for both devices. However, BSO behaved much like PSO throughout the achievements of other set objectives but performed better in ATC enhancement with 27.12 MW and 5.24 MW increase above enhanced ATC values achieved by the latter. The comparison of set objectives values relative to that obtained with PSO methods depict suitability and advantages of BSOA technique. Sensitivity based placement technique resulted into ATC enhancement of more than 60% well above the values obtained when TCSC was placed with thermal limit method. In addition, a substantial bus voltage improvement and active power loss reduction were recorded with this placement method. With incorporation of a VSC-HVDC based transmission system into ac network however, there was an improvement in power flow up to 15.66% corresponding to 46 MW for various transactions, transmission line power loss minimization up to 0.38 MW and bus voltage profile deviation minimization. Besides, automatic alleviation of violated thermal and voltage limits during contingency present VSC-HVDC system as a solution for network performance optimization especially during various transactions occasioned by unbundling power processes. Therefore, ATCs were properly enhanced, bus voltage profile improved, and system real power loss minimized. Likewise, HVDC system enhanced network performance and automatically alleviated violated thermal and voltage limits during contingency

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area
    corecore