2,214 research outputs found

    Automotive sensor fusion systems for traffic aware adaptive cruise control

    Get PDF
    The autonomous driving (AD) industry is advancing at a rapid pace. New sensing technology for tracking vehicles, controlling vehicle behavior, and communicating with infrastructure are being added to commercial vehicles. These new automotive technologies reduce on road fatalities, improve ride quality, and improve vehicle fuel economy. This research explores two types of automotive sensor fusion systems: a novel radar/camera sensor fusion system using a long shortterm memory (LSTM) neural network (NN) to perform data fusion improving tracking capabilities in a simulated environment and a traditional radar/camera sensor fusion system that is deployed in Mississippi State’s entry in the EcoCAR Mobility Challenge (2019 Chevrolet Blazer) for an adaptive cruise control system (ACC) which functions in on-road applications. Along with vehicles, pedestrians, and cyclists, the sensor fusion system deployed in the 2019 Chevrolet Blazer uses vehicle-to-everything (V2X) communication to communicate with infrastructure such as traffic lights to optimize and autonomously control vehicle acceleration through a connected corrido

    ANN based short-term traffic flow forecasting in undivided two lane highway

    Get PDF
    Abstract Short term traffic forecasting is one of the important fields of study in the transportation domain. Short term traffic forecasting is very useful to develop a more advanced transportation system to control traffic signals and avoid congestions. Several studies have made efforts for short term traffic flow forecasting for divided and undivided highways across the world. However, all these studies relied on the dataset which are greatly varied between countries due to the technology used for transportation data collection. India is a developing country in which efforts are being done to improve the transportation system to avoid congestion and travel time. Two-lane undivided highways with mixed traffic constitute a large portion of Indian road network. This study is an attempt to develop a short term traffic forecasting model using back propagation artificial neural network for two lane undivided highway with mixed traffic conditions in India. The results were compared with random forest, support vector machine, k-nearest neighbor classifier, regression tree and multiple regression models. It was found that back-propagation neural network performs better than other approaches and achieved an R2 value 0.9962, which is a good score

    Long-Term Traffic Prediction Based on Stacked GCN Model

    Get PDF
    With the recent surge in road traffic within major cities, the need for both short and long-term traffic flow forecasting has become paramount for city authorities. Previous research efforts have predominantly focused on short-term traffic flow estimations for specific road segments and paths. However, applications of paramount importance, such as traffic management and schedule routing planning, demand a deep understanding of long-term traffic flow predictions. However, due to the intricate interplay of underlying factors, there exists a scarcity of studies dedicated to long-term traffic prediction. Previous research has also highlighted the challenge of lower accuracy in long-term predictions owing to error propagation within the model. This model effectively combines Graph Convolutional Network (GCN) capacity to extract spatial characteristics from the road network with the stacked GCN aptitude for capturing temporal context. Our developed model is subsequently employed for traffic flow forecasting within urban road networks. We rigorously compare our method against baseline techniques using two real-world datasets. Our approach significantly reduces prediction errors by 40% to 60% compared to other methods. The experimental results underscore our model's ability to uncover spatiotemporal dependencies within traffic data and its superior predictive performance over baseline models using real-world traffic datasets

    Model Predictive Control for Mitigating Sensor Attacks on Multilevel Inverters

    Get PDF
    Nowadays, multilevel power inverters have become a hot research topic which are being widely used in smart grids. They are also driving devices for conveyors, compressors, motors, and can enable uninterruptible power supply for critical loads such as database centers or telecommunications base stations. In the future, smart grids will play an important role to achieve higher efficiency, smarter control and better performance. Such an ambitious goal can only be achieved by inverters with higher voltage and power levels. The smart grids are the typical cyber-physical systems that is composed of physical processes and computation units combined by sensors, actuators, and communication devices. The smart grids are apt to errors and vicious attacks on their physical construction leading to considerable damage, such as false data injection (FDI), denial of service (DOS). The vicious data injection can effectively bypass the detection of system and cause serious effects on the grid. In recent years, some advanced control approaches have been proposed to perform inverter current control. Among them, model predictive control (MPC) is a promising one that makes use of explicit system models to predict its future response and optimize system performance. It has unique advantages that can accurately forecast the future response of the system and have fast response. However, the effectiveness and the accuracy of the conventional MPC rely on whether the system model is accurate. Uncertainty and false data injection in the system model sometimes lead to unresponsive or even unstable control systems. Conventional MPC is hard to keep the system stable when the uncertainty and malicious attack happen. In existing studies, although various attacks have been investigated, the undetectable false data injection aiming at the inverter system was rarely studied. In the thesis, the model of the cascaded H-bridge inverter is established and conventional MPC to achieve load current control is applied. It shows great performance to achieve load current control and has fast dynamic control. Then considering various attack signals such as step attack signals, pulse attack signals to the sensors in the system, the conventional MPC loses the ability to achieve a stable and effective current control. According to simulation results, Kalman Filter model is built which can filter some Gaussian noises from the sensors in the system. Then from the perspective of attacker, a special FDI attack is designed that can effectively bypass the Kalman Filter. For the system that targeted by the FDI and DOS attack, a new controller is designed based on the K-Nearest Neighbor (KNN) algorithm and MPC strategy which can achieve the load current control with high output quality. Finally, the new control method based on KNN and MPC is compared with conventional MPC. The simulation results are analyzed and conclusion have been made. A modified MPC combined with KNN algorithm proposed in this thesis can detect bad data that can enter the system without triggering alarms. The case studies show the modified MPC based on KNN algorithm can achieve current control accurately when the system is injected by various attack signals showing better performance of current control with low total harmonic distortion (THD)

    Model Predictive Control for Mitigating Sensor Attacks on Multilevel Inverters

    Get PDF
    Nowadays, multilevel power inverters have become a hot research topic which are being widely used in smart grids. They are also driving devices for conveyors, compressors, motors, and can enable uninterruptible power supply for critical loads such as database centers or telecommunications base stations. In the future, smart grids will play an important role to achieve higher efficiency, smarter control and better performance. Such an ambitious goal can only be achieved by inverters with higher voltage and power levels. The smart grids are the typical cyber-physical systems that is composed of physical processes and computation units combined by sensors, actuators, and communication devices. The smart grids are apt to errors and vicious attacks on their physical construction leading to considerable damage, such as false data injection (FDI), denial of service (DOS). The vicious data injection can effectively bypass the detection of system and cause serious effects on the grid. In recent years, some advanced control approaches have been proposed to perform inverter current control. Among them, model predictive control (MPC) is a promising one that makes use of explicit system models to predict its future response and optimize system performance. It has unique advantages that can accurately forecast the future response of the system and have fast response. However, the effectiveness and the accuracy of the conventional MPC rely on whether the system model is accurate. Uncertainty and false data injection in the system model sometimes lead to unresponsive or even unstable control systems. Conventional MPC is hard to keep the system stable when the uncertainty and malicious attack happen. In existing studies, although various attacks have been investigated, the undetectable false data injection aiming at the inverter system was rarely studied. In the thesis, the model of the cascaded H-bridge inverter is established and conventional MPC to achieve load current control is applied. It shows great performance to achieve load current control and has fast dynamic control. Then considering various attack signals such as step attack signals, pulse attack signals to the sensors in the system, the conventional MPC loses the ability to achieve a stable and effective current control. According to simulation results, Kalman Filter model is built which can filter some Gaussian noises from the sensors in the system. Then from the perspective of attacker, a special FDI attack is designed that can effectively bypass the Kalman Filter. For the system that targeted by the FDI and DOS attack, a new controller is designed based on the K-Nearest Neighbor (KNN) algorithm and MPC strategy which can achieve the load current control with high output quality. Finally, the new control method based on KNN and MPC is compared with conventional MPC. The simulation results are analyzed and conclusion have been made. A modified MPC combined with KNN algorithm proposed in this thesis can detect bad data that can enter the system without triggering alarms. The case studies show the modified MPC based on KNN algorithm can achieve current control accurately when the system is injected by various attack signals showing better performance of current control with low total harmonic distortion (THD)

    Lateral dynamics vehicle model: an analysis on different approaches with increasing level of model complexity

    Get PDF
    This thesis presents an analysis on different approaches with increasing level of model complexity with respect to lateral vehicle dynamics. In recent years, there has been an increasing interest in developing accurate and reliable models for lateral vehicle dynamics, in order to improve vehicle stability and control. The analysis begins with a review of the existing literature on lateral vehicle dynamics, and the differ- ent mathematical and physical modeling approaches that have been proposed. These include linear and nonlinear models, as well as more complex models that take into account factors such as tire dynamics and suspension dynamics, among others, that are not detailed in this study. Next, the thesis presents a comparative analysis of the different approaches based on machine learn- ing, using both simulation and experimental data from scientific literature. The analysis focuses on the accuracy and predictive power of the different deep learning models, as well as their computa- tional efficiency and ease of implementation. The results of the analysis indicate that while more complex models can provide more accurate pre- dictions of lateral vehicle dynamics, they also require significantly more computational resources and can be more difficult to implement. Therefore, the results of several publications indicate that deep learning models can provide highly accurate predictions for lateral vehicle dynamics, and can be trained with relatively small datasets. Overall, this study provides a comprehensive analysis on the use of machine learning techniques to develop competitive and high performance controllers for lateral vehicle dynamics and state estima- tion, highlighting the potential contribution in autonomous driving and vehicle stability and control that these methods will allow to achieve in the next decade

    Functional sets with typed symbols: Framework and mixed Polynotopes for hybrid nonlinear reachability and filtering

    Full text link
    Verification and synthesis of Cyber-Physical Systems (CPS) are challenging and still raise numerous issues so far. In this paper, an original framework with mixed sets defined as function images of symbol type domains is first proposed. Syntax and semantics are explicitly distinguished. Then, both continuous (interval) and discrete (signed, boolean) symbol types are used to model dependencies through linear and polynomial functions, so leading to mixed zonotopic and polynotopic sets. Polynotopes extend sparse polynomial zonotopes with typed symbols. Polynotopes can both propagate a mixed encoding of intervals and describe the behavior of logic gates. A functional completeness result is given, as well as an inclusion method for elementary nonlinear and switching functions. A Polynotopic Kalman Filter (PKF) is then proposed as a hybrid nonlinear extension of Zonotopic Kalman Filters (ZKF). Bridges with a stochastic uncertainty paradigm are outlined. Finally, several discrete, continuous and hybrid numerical examples including comparisons illustrate the effectiveness of the theoretical results.Comment: 21 pages, 8 figure

    Predicting Short-Term Traffic Congestion on Urban Motorway Networks

    Get PDF
    Traffic congestion is a widely occurring phenomenon caused by increased use of vehicles on roads resulting in slower speeds, longer delays, and increased vehicular queueing in traffic. Every year, over a thousand hours are spent in traffic congestion leading to great cost and time losses. In this thesis, we propose a multimodal data fusion framework for predicting traffic congestion on urban motorway networks. It comprises of three main approaches. The first approach predicts traffic congestion on urban motorway networks using data mining techniques. Two categories of models are considered namely neural networks, and random forest classifiers. The neural network models include the back propagation neural network and deep belief network. The second approach predicts traffic congestion using social media data. Twitter traffic delay tweets are analyzed using sentiment analysis and cluster classification for traffic flow prediction. Lastly, we propose a data fusion framework as the third approach. It comprises of two main techniques. The homogeneous data fusion technique fuses data of same types (quantitative or numeric) estimated using machine learning algorithms. The heterogeneous data fusion technique fuses the quantitative data obtained from the homogeneous data fusion model and the qualitative or categorical data (i.e. traffic tweet information) from twitter data source using Mamdani fuzzy rule inferencing systems. The proposed work has strong practical applicability and can be used by traffic planners and decision makers in traffic congestion monitoring, prediction and route generation under disruption
    • …
    corecore