51 research outputs found

    Meta-heuristics in cellular manufacturing: A state-of-the-art review

    Get PDF
    Meta-heuristic approaches are general algorithmic framework, often nature-inspired and designed to solve NP-complete optimization problems in cellular manufacturing systems and has been a growing research area for the past two decades. This paper discusses various meta-heuristic techniques such as evolutionary approach, Ant colony optimization, simulated annealing, Tabu search and other recent approaches, and their applications to the vicinity of group technology/cell formation (GT/CF) problem in cellular manufacturing. The nobility of this paper is to incorporate various prevailing issues, open problems of meta-heuristic approaches, its usage, comparison, hybridization and its scope of future research in the aforesaid area

    Development of Manufacturing Cells Using an Artificial Ant-Based Algorithm with Different Similarity Coefficients

    Get PDF
    Although there exists several ways of solving the cellular manufacturing problem, including several ant-based algorithms, many of these algorithms focus on obtaining the best possible answer instead of efficiency. An existing artificial-ant based algorithm AntClass, was modified so that it is easier to manipulate. AntClass uses Euclidean vectors to measure the similarity between parts, because similarity is used to group parts together instead of distances, the modified version uses similarity coefficients. The concept of heaping clusters was also introduced to ant algorithms for cellular manufacturing. Instead of using Euclidean vectors to measure the distance to the center of a heap, as in the AntClass algorithm, an average similarity was introduced to measure the similarity between a part and a heap. The algorithm was tested on five common similarity coefficients to determine the similarity coefficient which gives the better quality solution and the most efficient process

    Evolution of clustering techniques in designing cellular manufacturing systems: A state-of-art review

    Get PDF
    This paper presents a review of clustering and mathematical programming methods and their impacts on cell forming (CF) and scheduling problems. In-depth analysis is carried out by reviewing 105 dominant research papers from 1972 to 2017 available in the literature. Advantages, limitations and drawbacks of 11 clustering methods in addition to 8 meta-heuristics are also discussed. The domains of studied methods include cell forming, material transferring, voids, exceptional elements, bottleneck machines and uncertain product demands. Since most of the studied models are NP-hard, in each section of this research, a deep research on heuristics and metaheuristics beside the exact methods are provided. Outcomes of this work could determine some existing gaps in the knowledge base and provide directives for objectives of this research as well as future research which would help in clarifying many related questions in cellular manufacturing systems (CMS)

    Virtual production system

    Get PDF
    To satisfy customer\u27s demands in today\u27s market, industry and academe have invested considerable effort to make production systems more efficient and competitive. The production systems that have been implemented and identified in industry have their own unique advantages under certain conditions. In practice, once a production system is adopted in a shop, the operation mode of the shop will remain the same over time. However, in a changing product mix environment, what a shop really needs is an adaptable production system to gain the best performance that is possible for the shop;The objective of this study is to develop a systematic procedure to construct a virtual production system that allows an existing shop to switch its operation from one mode to another without physical reconfiguration of the shop. The machines and the material handling system of the shop are logically reorganized into various patterns to obtain different versions of virtual production systems. Actually, a virtual production system exists as a set of information in a computer database. A reconfiguration of the data in the database leads to a corresponding logical reorganization of the physical system. Hence, on one hand, while the layout of a shop still remains the same, on the other hand, the operation mode of the shop is logically changeable over time;In this thesis, the performance of virtual production systems and other forms of production systems are examined and compared to one another using three different measures. The results obtained show that virtual production systems are superior to traditional production systems and are competitive with production systems that allow for the physical rearrangement of the machines as the product mix changes. However, when one considers the cost that can be incurred to physically reconfigure a shop and the fact that movable machines are not usually employed in most industries, virtual production system provides a feasible and reasonable solution to improve a shop\u27s performance in a dynamic changing product mix environment

    Lookahead policy and genetic algorithm for solving nurse rostering problems

    Get PDF
    Previous research has shown that value function approximation in dynamic programming does not perform too well when tackling difficult combinatorial optimisation problem such as multi-stage nurse rostering. This is because the large action space that need to be explored. This paper proposes to replace the value function approximation by a genetic algorithm in order to generate solutions to the stages before applying the lookahead policy to evaluate the future effect of decisions made in previous stages. Then, the paper proposes a hybrid approach that generates sets of weekly rosters through a genetic algorithm for consideration by the lookahead procedure that assembles a solution for the whole planning horizon of several weeks. Results indicate that this hybrid between an evolutionary algorithm and the lookahead policy mechanism from dynamic programming performs more competitive than the value function approximation dynamic programming investigated before. Results also show that the proposed algorithm is ranked well in respect of several other algorithms applied to the same set of problem instances. The intended contribution of this paper is towards a better understanding of how to successfully apply dynamic programming mechanisms to tackle difficult combinatorial optimisation problems

    Design Methodologies Towards a Sustainable Manufacturing Enterprise

    Get PDF
    Sustainability is increasingly becoming a crucial concern in many aspects of life. Even though, there is a relatively growing interest from both academic researchers and practitioners in various design aspects of sustainability, one can see that design issues of sustainable manufacturing systems have not received adequate attention. Through an extensive literature review on design for sustainability and sustainability issues, it is observed that, attaining sustainability in manufacturing needs a huge amount of effort and needs to take into consideration many aspects from different perspectives. These include considering the sustainability in both the closed loop supply chain (CLSC) and the manufacturing system levels simultaneously, considering Cellular Manufacturing Systems (CMSs), considering reconfigurability for the production systems, considering Hybrid Manufacturing-Remanufacturing Systems as well as considering the recovery options such as recycling and remanufacturing. This research presents a simultaneous investigation of Reconfigurable Cellular Manufacturing Systems and Hybrid Manufacturing-Remanufacturing Systems (HMRSs), and proposes an integrated approach in design optimization, analysis, and process planning aspects as an attempt to address to a large number of design issues for Sustainable Manufacturing Systems, while the options of remanufacturing, recycling, and disposing are introduced. Four mathematical model have been developed. Third part cellular remanufacturing systems design are considered within the first model, which is initially formulated as a mixed integer non-linear program that incorporates multi-period production planning, dynamic system reconfiguration, and workforce management with deterministic production requirements. It consists the costs of machines maintenance and overhead, relocation costs for machines installation and removal, part holding cost, workers’ costs of salary, hiring, and firing, part intercellular movement cost, machine procurement cost, internal production cost, machine operating cost, the cost of acquiring the returned products, setup cost for disassembly operations, disassembly cost, the inventory cost of the returned products, parts disposal cost. Linearization procedures are proposed to convert it into a linearized mixed integer programming formulation. This linearized mixed integer program is solved using an exact solution (ES) procedure through the simplex-based branch and cut procedure of CPLEX software. The second model considered the design of cellular hybrid manufacturing-remanufacturing system, where manufacturing new products using an outsourced parts and remanufacturing using returned products are performed in the same facility by using shared resources. The overall objective of the model is to minimize the total cost of the three main categories of costs; 1) Machine cost: maintenance and overhead costs, relocation costs of installation and removal of machines, machine procurement costs, and machine operating costs, 2) Costs associated with manufacturing and remanufacturing: production costs for both new and remanufactured components, holding cost for new components, holding cost for remanufactured components, setup cost for new components, setup cost for remanufactured components, 3) Costs associated with returned products for remanufacturing: cost of acquiring the returned products, setup cost for disassembly operations, disassembly cost, and inventory cost of the returned products. Computational results and sensitivity analysis for an important design features are also reported. The third model addresses the same attributes as the second one but an important extension is the introduction of recycling (for the end-of-life parts) and disposing of the parts with no further use. In addition, the new parts production in the third model are totally depends on the recycled parts coming from the recycling center, wherein the second model it depends on the raw material purchasing from outsourcing. As the third model is the most comprehensive one, which considers a closed loop supply chain starts from a cellular hybrid manufacturing-remanufacturing system and ends with the customer zone, through the introducing of different centers like, collection, disassembly, and recycling centers, and in order to have one more step toward the design of sustainable closed loop supply chain, the fourth model are formulated. The fourth model is designed to minimize the carbon foot prints and the total cost which contains the opening costs for different centers and the transportation costs between these centers Keywords: Sustainability, Sustainable manufacturing system, cellular manufacturing systems design, Reconfigurable manufacturing system, mixed integer programming, Hybrid manufacturing-remanufacturing system, Closed loop supply chain, Reverse logistics, Carbon footprints, Facility location

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    Computer-aided design of cellular manufacturing layout.

    Get PDF

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    corecore