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ABSTRACT 

Although there exists several ways of solving the cellular manufacturing problem, 

including several ant-based algorithms, many of these algorithms focus on obtaining the 

best possible answer instead of efficiency and ease of programming.  These existing ant-

based algorithms which use similarity coefficients do not compare the efficiency of using 

different similarity coefficients within the algorithm either.  An existing artificial-ant 

based algorithm was modified so that it is easier to manipulate.  This modification was 

necessary to apply the algorithm to cellular manufacturing. The original algorithm, 

AntClass uses Euclidean vectors to measure the similarity between parts, because 

similarity is used to group parts together instead of distances, the modified version uses 

similarity coefficients.  The concept of heaping clusters was also introduced to ant 

algorithms for cellular manufacturing.  Instead of using Euclidean vectors to measure the 

distance to the center of a heap, as is such in the AntClass algorithm, an average 

similarity was introduced to measure the similarity between a part and a heap.  The 

algorithm was tested on five common similarity coefficients to determine the similarity 

coefficient which gives the better quality solution as well as the most efficient process. 
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CHAPTER I 

INTRODUCTION 

General Overview 

Globalization and the development of global markets and technology are 

progressively accelerated forcing companies in today’s competitive environment to 

change dramatically to satisfy the urgency and variability of consumer tastes and 

demands.   To cope with this trend, companies must develop/adopt novel approaches and 

practical strategies to deal with various production parameters such quantity (smaller 

batches), variety (larger diversity) and so on to optimize their production systems.  Batch 

production is one of the strategies that can be used to meet customer demand of lower 

volume and small batches; however, this strategy cannot be easily adopted in the efficient 

serial production lines.  

On the other hand, low volume/high-variety manufacturing parts can be produced 

in batches using the flexibility of functionally arranged machines with the additional 

expense of some inefficiency.  Batch production accounts for 50 – 75 % of world 

manufacturing systems (Zhao and Wu 2000).  The inefficiency stemming from the 

inherent functionally arranged production systems include high set-up/operation time 

ratios, excessive non-value added material handling activities, greater work in process, 

long lead times, waiting periods and throughput, which leads to lower manufacturing 

productivity.  To overcome productivity and inefficiency concerns, the concept of 

manufacturing cells has been considered as an acceptable solution that compromises 

between the efficiency of production lines and the flexibility of batch production systems.    
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Cellular Manufacturing Systems (CMS) is considered as an application of Group 

Technology (GT) concept to factory reconfiguration and shop floor layout design (Irani et 

al. 1999).  Although both terms CMS and GT are occasionally used interchangeably, GT 

is an area of study devoted to parts clustering and machine cells formation and considered 

as the starting point of cell design.  Furthermore, Da Silveira (1999) puts the grouping 

process of parts and machines in a central position of CMS implementation techniques.  

The grouping process of classifying similar parts facilitates both design and 

manufacturing; where part shape similarity is helpful in design but process similarity is 

important in the arrangement of machines and manufacturing g facilities. 

In most cases, parts with similar shapes share the same process requirements such 

as rotational parts and prismatic parts.  However, some parts with dissimilar shape may 

share the same set of machining requirements to produce them and vice versa.  Burbridge 

(1992) indicated that routing information alone is sufficient to design manufacturing cell.  

The relationship between parts and their process requirements in terms of machines are 

arranged in a 0/1 binary structured format of two-dimensional matrix, known as part-

machine incidence matrix.  Most of the grouping and clustering approaches use this data 

structure as a starting point to form part families and machine cells.  

During the past few decades many approaches have been proposed for solving 

part families and machine cells formation that can be classified into several techniques; 

(1) classification and coding techniques; (2) array-based techniques; (3) similarity 

coefficient techniques; (4) graph theoretic techniques; (5) mathematical programming 

techniques; and (6) artificial intelligence techniques.   
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Classification and coding techniques ranges from basic visual classification of 

part geometry to sophisticated computer coding techniques.  Array-based technique 

makes use of the binary information to form part families and machine cells 

simultaneously by sorting both the rows and columns of part-machine incident matrix 

alternatively to form cluster blocks around the matrix diagonal (King 1980).  Similarity 

coefficient techniques in GT is pioneered by Mc Auley (1972), which makes use of a 

similarity index to determine the similarity coefficients either between parts or machines 

then use this information in a clustering algorithm to form part families and machine 

cells. 

Graph theoretic technique makes use of the part-machine incident matrix to 

develop a graph whose vertices correspond to the machines and whose edges represents 

the relationship created machines and parts using them.  Rajagopalan and Batra used this 

technique to partition the machine-machine graph into a number of sub-graphs by 

removing edges with weak relationships to form machine cells and allocating parts to part 

families. 

In mathematical programming techniques a number of part families/machine cells 

formation models have been developed using integer programming, mixed integer 

programming and goal programming.  Kusiak (1987) formulated the machine cell 

formation problem into a 0/1 integer programming model with the objective of 

maximizing the sum of similarities while considering different system constraints.  

Although, different design objectives and system constraints can be incorporated into a 

mathematical program, grouping is a NP-complete problem, heuristic methods and 
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artificial intelligence (AI) techniques are widely used to solve this problem in a 

reasonable time.  

Finally, a number of artificial intelligence techniques have been used to solve part 

families and machine cells formation during the past two decades.  Some of these 

techniques include artificial neural networks, genetic algorithms and knowledge-base 

systems.  Chow and Hawaleshka (1993) used knowledge-based systems to form machine 

cells.  Moon (1990), Chu (1993), Kaparthi et al. (1993), and Venugopal and Narendran 

(1994) employed artificial neural net works to form part families and machine cells.  

Venugopal and Narendran (1992) and Islier (1998) used genetic algorithms to form part 

families and machine cells.  Recently, swarm intelligence techniques also known as Ant 

search algorithms have been used to form part families and machine cells.  Islier (2005), 

Kao and Fu (2006), Kao and Li (2008) and Zhao et al. (2008) used this techniques to 

form part families and machine cells. 

Since efficient and optimal grouping are the primary steps to a successful CMS 

implementation, research in this field will continue to develop novel grouping techniques.   

The proposed research topic is devoted to the development of an efficient algorithm ant 

based swarm intelligent technique.   Various similarity measures used to determine the 

association between parts and machines will be integrated into the ant clustering model.  

Also, the impact of the similarity measures on optimal grouping will be compared and 

evaluated.    
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Objectives of the Research 

The objectives of the research are as follows: 

To select and manipulate a multistage ant-based swarm intelligent 

algorithm that can be used to solve part families and machine cells formation 

problem. 

To evaluate the impact of different similarity measures on both the 

efficiency of the manipulated ant-based swarm intelligent algorithm and to 

evaluate the quality of the developed solutions 

Organization of the Research 

The research in this thesis proposal is organized as follows: 

Chapter 1: Introduction 

Chapter 2: Literature review on various aspects of part family and machine 

cell formation within the context of CMS and GT. 

Chapter 3: Development of the Ant-Based Swarm Intelligent Algorithmic 

Model. 

Chapter 4: Analysis of various similarity measures and the assessments of 

their impact on the model efficiency and optimal grouping 

solutions.  

Chapter 5:  Numerical examples to test the model and its application. 

Chapter 6: Conclusions and recommendations for future research. 
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CHAPTER II 

REVIEW OF LITERATURE 

Group technology is the first step stone for the design of manufacturing cells.  

During the past few decades several approaches have been proposed for solving part 

families and machine cells formation.  These approaches can be divided into the 

following: 

• Classification and coding techniques 

• Array-based techniques 

• Similarity coefficient techniques 

• Graph theoretic techniques 

• Mathematical programming techniques 

• Artificial intelligent techniques  

Review of literature based on the above classification is describes in the following 

sections. 

Classification and coding techniques 

Classification and coding (CC) systems can be used as tool for GT by providing a 

structure for the classification of parts into groups based on selected part attributes and by 

assigning specific code to each part (Groover and Zimmers 1984, Hyer and Wemmerlov 

1984, 1985).  Some of the earliest coding systems include “Optiz Sytem”, developed in 

the 1960’s in Germany and perhaps is the most widely known and used coding system at 

that time in Europe (Optiz 1970, and Optiz and Wiendahl 1971).  It has been used for 

both machined and non-machined parts.  

Another CC system developed during the 1960’s is known as the “Bisch Birn”.  

Basically, it is a coding shell customized to a particular firm’s needs (Gombinski 1969, 
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Hyde 1981, Hyer et al. 1989).  More recent commercial coding systems take advantage of 

advanced computing technology databases (Tatikonda and Wemmerlov 1992).  Examples 

of these systems include Decision and Classification System (DCLASS), Computer 

Aided Process Planning (CAPP) systems, Manufacturing Information Classification 

System (MICLASS) and several other commercial systems that integrate both design and 

manufacturing information in various databases.   

Array-Based Techniques 

In array based clustering techniques a machine part index matrix is constructed.  

This matrix consists of 0, 1 entries where an entry 1 in the (i, j) position means that 

machine i is used to process part j, and an entry 0 means that machine i is not used to 

process part j.  Algorithms are developed that transform the original matrix into a more 

structured form, and consequently, result in the formation of part families (Al-Sultan, 

1997).  Some examples of matrix formulation methods are similarity coefficient methods, 

the bond energy algorithm, the cluster identification algorithm and the extended cluster 

identification algorithm. 

El-Essawy and Torrance (1972) proposed a method called component flow 

analysis (CFA).  In some respects, the methodology of CFA differs from the of 

Burbridge’s PFA procedure in the sense that CFA first partitions the problem, where PFA 

does not. 

McCormick et al. (1972) developed a method called the Bond Energy Algorithm.  

This algorithm involves the evaluation of so called “bond energy” in the part machine 

matrix.  A bond is said to exist between a pair of adjacent row elements or column 

elements if the pair of elements both have non-zero values.  The value of the bond is 
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equal to the product of the two adjacent elements.  The total bond energy of the matrix is 

equal to summation of the product of any two adjacent elements.  The algorithm 

manipulates the columns and rows of the part-machine matrix and tries to find a matrix 

containing the highest total bond energy.  This algorithm can identify part families and 

machine cells simultaneously but still needs extensive manipulation of the final part-

machine matrix to form cells of the required size. 

King (1980) developed the Rank Order Clustering (ROC) algorithm which 

rearranges the rows and columns of the initial machine incidence matrix in decreasing 

binary values to obtain a block diagonal form.  However, the applicability of the 

algorithm was restricted by the strong dependence of the results on the initial order of the 

machine-part matrix and existence of storage problems created by the usage of binary 

value used for reallocation. 

Chan and Milner (1982) developed the Direct Clustering Algorithm (DCA) to 

solve the part family and machine grouping problems for cellular manufacturing systems.  

The Direct clustering Algorithm has four stages: 

1. Count the number of positive entries in each row and column of the part-machine 

matrix 

2. Starting from the first column, transfer the rows with positive entries in that 

column to the top portion of the matrix 

3. Starting from the first column, transfer the rows with positive entries in that 

column to the top portion of the matrix 

4. Iterate between steps (2) and (3) until no further transfer is required. 

This procedure allows user interaction to deal with the problems of the 

bottlenecks and exceptional elements when they occur.  
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Chandrasekharan and Rajagopalan (1986) proposed an ideal seed non-hierarchical 

clustering algorithm which involves three primary stages.  In the first stage, the problem 

is formulated as a bi-partite graph which consists of a machine sub-graph and a part sub-

graph.  The k-means algorithm is then used to construct k parts and k machines by 

grouping vectors which are close together.  In the second stage, a performance measure 

called group efficiency is used to compare different grouping alternatives.  In the third 

stage, parts and machines are rearranged to the closest ‘imaginary groups’ in an attempt 

to improve the initial assignment. 

Chow and Hawaleshka (1993) developed an algorithm to solve the machine 

grouping problem that minimizes the intercellular movements with allocating a new 

machine.  It is observed that the total number of exceptional parts generated by the (n+1) 

total number of machine cells is always greater than those generated by n total number of 

machine cells. 

Abdule-Wahab et al. (2006) presented a new hybrid algorithm for data clustering, 

based off of the scatter search algorithm.  Scatter search operates on a small set of 

solutions and makes only a limited use of randomization for diversification when 

searching for globally optimal solutions.  The method proposed automatically discovers 

cluster number and cluster centers without prior knowledge of a possible number of 

classes, and without any initial partition.  This algorithm was used by Rabbani et al. 

(2007) to solve the dynamic cell formation problem.   

Similarity Coefficient Methods 

Several researchers have developed techniques to form the part families and 

machine cells based on similarity coefficients.  The similarity measures are generally 
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based on sequence of operations, the processing requirements of parts, the tooling 

requirements of parts and availability of the tools on the machines etc.  The first 

similarity coefficient was developed by McAuley (1972) was the first to apply the 

Jaccard similarity coefficient (Jaccard, 1908) to the machine cell formation problem and 

is the most widely used in the literature (Yin & Yasuda, 2006).   Most of the 

similarity/dissimilarity coefficients based on binary data that can be found in literature 

(Baulieu, 1989).  However, only a handful of these measures has been suggested and 

investigated within the context of GT/CMS for the purpose of cell formation and machine 

groupings. 

De Witte (1980) proposed three similarity measures which can be used in 

production flow analysis.  Since two of these coefficients showing the absolute relations 

and mutual interdependence, they were considered mainly for cell formation.  Threshold 

values for these three similarity coefficients were arbitrary selected.  In addition, the 

approach requires classification of machines as primary, secondary and tertiary.  

Similarly, Waghhodekar and Sahu (1984) proposed the use of one of three similarity 

coefficients for Machine-components CeEll formation (MACE).  Similarity coefficient 

machine pairs can be either (i) additive type; (ii) product type or (iii) based on total flow 

of common components.   

Selvam and Balasubramanian (1985) developed a dissimilarity measure based on 

operation sequence of manufacturing components.  The dissimilarity matrix input 

considered the total number of components and processing sequence of each one as well 

as the production volume per period and handling cost per move between consecutive 

work centers.  Other research work that used dissimilarity measures in GT include; Dutta 
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et al. (1986) who suggested a dissimilarity coefficient using operation sequences and 

Kamrani and Parsaei (1993) who proposed a weighted dissimilarity index based on a 

disagreement measure of both design and manufacturing attributes between pairs of parts.   

Choobineh (1988) developed a similarity measure, which based on the most 

relevant attributes of manufacturing parts.  These attributes include manufacturing 

operations and their processing sequence that can be easily determined from their process 

plans.  Subsequently, the measure is used to form part families and machine cells.  

Information obtained from manufacturing process plans were also utilized by Guiasingh 

and Lashkari (1986) to develop a similarity measure that expressed the capability 

between two machines in processing a set of parts requiring both machines.  Machine 

capability is defined in terms of the tools available and tooling requirements to process 

the parts.  Similarly, Tam (1990) suggested another similarity measure based on the 

operation sequence of manufacturing parts to form part families and machine cell 

groupings. 

Gupta and Seifoddini (1990) proposed a new similarity index which took into 

consideration relevant production data that should be included in the early stages of the 

machine-component grouping process.  The important production parameters 

incorporated in the computation of similarity coefficient were pair-wise routing sequence, 

part-wise average production volume, and unit operation time for each operation 

performed.  It was indicated that by incorporating important production that the proposed 

measure has advantages and disadvantages.  Some of the advantages included higher 

coefficient values that were indirectly assigned to pairs of machines which process parts 

with larger workload and responds to large differences in demand among parts.  Gupta 
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(1993) suggested a new similarity coefficient which assigned pair-wise similarity among 

machines with usage factors of all alternative routings. 

Kusiak and Cho (1992) proposed two similarity measures, the first one is based 

on binary information where a block diagonal structure is impeded into the machine-part 

matrix and  took into consideration basic and alternative process plans.  Basically, it is a 

binary measure that indicated weather one’s part’s process plan is a subset of another 

part’s process plan.  The second one is a modified version that generalizes the first 

similarity measure.  The modified version can be used for parts or machines when the 

value of the first similarity measure would have been zero. 

Moussa and Kamel (1996) proposed a new similarity measure based on the 

information provided in process plans.  The information taken into consideration included 

manufacturing processing sequence of parts and their processing times during the 

assignment process.  Jeon et al. (1998) extended the use of manufacturing attributes to 

include machine failure.  Jeon and Leep (2006) proposed a new similarity measure, 

which took into consideration the number of available alternative process routes when 

available during machine failure.  It was indicated that the measure draws on the number 

of alternative routes during machine failure when alternative routes are available instead 

of drawings on other production attributes including; operations, sequence, machine 

capabilities, production volume, processing requirements or operational times.  

Islam and Sarker (2000) proposed a new similarity coefficient that is able to 

reflect the extent of true similarity of pairs of machines or parts in an incident matrix.    

The new measure of similarity is called relative matching coefficient.  Unlike other 

similarity measures, the proposed similarity coefficient has the capability of conforming 
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to commonly known similarity properties defined in literature such as (i) No mismatch, 

(ii) Minimum match, (iii) No match, (iv) Complete match, and (v) Maximum match.  The 

new similarity coefficient is used as an intermediate tool to form cohesive manufacturing 

cells.  

Comparative Studies of Similarity Coefficients 

One of the earliest studies conducted to compare the effectives of various 

similarity measures or coefficients was reported by Mosier (1989).  The study applied a 

mixture model experimental approach to compare seven similarity coefficients and four 

clustering algorithms.  The similarity coefficients that were examined are given in Table 

2.1. 

The four well-known algorithms used in this study are, (i) Single Linkage 

(SLINK); (ii) Complete Linkage (CLINK); (iii) Centroid (CENT); and Ward’s Method 

(WARD) by using Monte Carlo simulation to generate 30 problems with 100 parts and 

100 machines.  Four performance measures were used to evaluate the goodness of 

generated solutions including; 9i) Simple matching measure; (ii) Generalized matching 

measure; (iii) Product moment measure; and (iv) intercellular transfer measure. 

Table 2.1 List of Similarity Coefficients Examined (Mosier, 1989) 

Similarity Coefficient Name Reference 
McAuley’s (Jaquard format) McAuley (1972) 

Multiple Weighted Similarity Coefficient  Mosier and Tube 1985 
Additive Weighted Similarity Coefficient Mosier and Tube 1985 

Modified Multiplicative Weighted Similarity 
Coefficient 

Moiser (1985) 

Modified Yule Coefficient Bishop et al. (1975) 
Modified Humann Coefficient Holly and Guilford (1964) 

Modified Baroni-Urbani abd Buser Coefficient  Romesburg (1984) 
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The results of this study indicated that McAuley’s similarity coefficient and the 

modified multiplicative weighted similarity coefficient are preferable compared with 

other similarity coefficients.  However, Shafer and Rogers (1993) pointed out some of the 

limitations including that three of four performance measures are for measuring how 

closely the solution generated by the cell formation procedures matched the original 

machine-part matrix.   In addition, the original machine-part matrix may not necessarily 

be the best or even a good configuration.  Only the intercellular transfer measure of 

performance is considering specific objectives associated with machine cell formation 

problem.  Further research recommendations to examine clustering efficacy and other 

measures were also sighted.  

Shafer and Roger (1993) compared 16 similarity coefficients in conjunction with 

four clustering algorithms using 11 small example data based binary machine-part data 

sets mostly from the literature.  Part family and machine cell grouping results were 

evaluated using four performance measures.  The use of small well structured data set 

with some of the performance measures may not provide the discriminatory power 

needed to separate superior, from good and good from inferior techniques.  In addition, 

the use of well structured small data set may provide results with a little general 

reliability due to strong dependency on the original input data. (Anderberg, 1973; 

Milligan and Cooper 1987; Vakharia and Wemmerlöv, 1995). 

Seifoddinin and Hsu (1994) studied three different similarity coefficients 

(Jaccard’s similarity coefficient, weighted similarity coefficient, and commonality score) 

30 machine-component grouping problems.  Several performance measures were used to 

evaluate the clustering results including grouping efficiency, grouping efficacy and the 
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grouping capability index.  Results showed that the weighted similarity coefficient 

generates better solutions based on the number of exceptional parts.  On the hand, it was 

observed that grouping efficiency, grouping efficacy and the grouping capability index 

were not consistent performance measures.     

Vakharia and Wemmerlöv (1995) conducted a study to evaluate the impact of 

dissimilarity measures and clustering algorithm techniques on the quality of solution with 

respect to part family formation and machine cell groupings.  Eight dissimilarity 

measures were studied in conjunction with seven clustering algorithms using 24 binary 

data sets.  Results of this study revealed that high internal cell cohesiveness and low 

levels of machine duplication were shown to be conflicting goals.  The study also 

revealed that performance is sensitive to many factors, notably the underlying data and 

the stopping parameters.  It was indicated that more research work is needed to link data 

structures to choice of clustering technique and dissimilarity measure.  Also, more work 

is needed to find measures and methods under which cell system solutions can be 

compared at the aggregate level while considering individual cell properties. 

Yin and Yasuda (2005 & 2006) conducted a study to evaluate the performance of 

20 similarity coefficients shown in Table 2.  In addition, a total of 94 data sets obtained 

literature and another 120 generated deliberately were used in this study in conjunction 

with three clustering algorithms (Single linkage clustering, SLC; complete linkage 

clustering, CLC; and average linkage clustering, ALC) were used in this study.  Nine 

performance measures were used to evaluate the grouping solutions.  The performance 

measures are the following: 

• Number of exceptional elements (EE), 
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• Grouping efficiency, 

• Group efficacy, 

• Machine utilization index (grouping measure, GM), 

• Clustering measure (CM), 

• Grouping index (GI), 

• Bond energy measure (BEM), 

• Grouping capability index (GCI), and  

• Alternative routing grouping efficiency (ARG efficiency) 

Table 2.2 Similarity Coefficients Compared (Yin and Yasuda, 2006) 

Similarity Coefficient Range  Definition 
1 Jaccard 0 to 1 a/(a+b+c) 
2 Hamann -1 to 1 [(a+d)-(b+c)]/[(a+d)+(b+c)] 
3 Yule -1 to 1 (ad-bc)/(ad+bc) 
4 Simple Matching 0 to 1 (a+d)/(a+b+c+d) 
5 Sonenson 0 to 1 2a/(2a+b+c) 
6 Rogers and Tanimoto 0 to 1 (a+d)/[2(a+d)+b+c] 
7 Sokal and Sneath 0 to 1 2(a+d)/[2(a+d)+b+c] 
8 Russel and Rao 0 to 1 a/(a+b+c+d) 
9 Baroni-Urbani and Buser 0 to 1 [a+(ad)1/2]/[a+b+c+(ad)1/2] 
10 Phi -1 to 1 (ad-bc)/[(a+b)(a+c)(b+d)(c+d)1/2] 
11 Ochiai 0 to 1 a/[(a+b)(a+c)1/2] 
12 PSC 0 to 1 a2/[(b+a)(c+a)] 
13 Dot-Product 0 to 1 a/(2a+b+c) 
14 Kulezynski 0 to 1 1/2[a/(a+b) + a/(a+c)] 
15 Sokal and Sneath 2 0 to 1 a/[a+2(b+c)] 
16 Sokal and Sneath 4 0 to 1 1/4[a/(a+b) + a/(a+c) + d/(b+d) +d/(c+d)] 
17 Relative Matching 0 to 1 [a+ (ad)1/2 ]/[a+b+c+d+(ad)1/2] 
18 Chandrasekharan and Rajagopalan 0 to 1 a/Min[(a+b), (a+c)] 
19 MaxSc 0 to 1 Max[a/(a+b), a/(a+c)] 
20 Baker and Maropoulos 0 to 1 a/Max[(a+b),(a+c) 

 

 

Where: 

a is the number of machines which produce both components i and j 

b is the number of machines which produce only component i  

c is the number of machines which produce only component j 
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d is the number of machines which produce neither components i or j 

Study results revealed that three similarity coefficients are more efficient and four 

similarity coefficients are inefficient for solving the cell formation problem.  In addition, 

it was found that Jaccard similarity coefficient is the most stable similarity coefficient. It 

was indicated that further research is needed to consider some production factors such as 

production volume, sequences of parts and so on. 

Based on the above review of similarity measures, it can be revealed that most of 

these measures assume that the demand for each product during the planning period 

remains constant.  The demand and processing times are assumed to be known with 

certainty.  This may not be true in many production environments, hence there is a 

potential for discrepancy in the design solutions.  In addition, none of these measures 

takes into consideration production lot size for each product and production scheduling 

constraints. 

Graph Theoretic Techniques 

Graph theoretic methods convert a machine part index matrix into a hypothetical 

graph where the vertices represent machines and/or parts and the edges stand for the 

similarity coefficients between machines.  Matula (1969, 1970) was the first to 

demonstrate the applicability of high connectivity in similarity graphs to cluster analysis. 

Matula’s approach is based on the cohesiveness function.  This function is defined for 

every vertex and edge of a graph G to be the maximum edge-connectivity of any sub-

graph containing that element.  Hartuv and Shamir (2000) adopted the same technique to 

develop a clustering algorithm, where similarity data is used to form a similarity graph.  

Vertices are corresponding to elements with similarity values above the threshold and 
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clusters are highly connected sub-graphs whose edge connectivity exceeds half the 

numbers of vertices. 

Rajagopalan and Batra (1975) used graph partitioning approach to solve grouping 

problem of machine cells. Input data derived from the route cards of the components in 

analyzed and used to derive a graph whose vertices correspond to the machines and 

whose edges represents the relationship created between machines by the components 

using them.  Once machine cells are formed by using the graph partitioning approach, the 

parts are allocated to the machine cells and the number of machines of a particular type in 

each cell is determined.  One of the limitations of this technique is that machine cells and 

part families are not formed concurrently. 

Kumar et al. (1986) used the graph theoretic technique and solved a graph 

partitioning problem to determine machine cells and part families for a fixed number of 

groups with machine cell size boundaries.  Subsequently, Vannelli and Kumar (1986) 

extend the work and developed graph theoretic models to determine machines that need 

duplication in order to obtain a perfect block diagonal structure.  In addition, Kumar and 

Vanelli (1987) used similar techniques for determining parts to be subcontracted to obtain 

a perfect block diagonal structure.  Solutions obtained from these methods are found to 

depend on the choice of initial pivot elements.  

Askin and Chiu (1990) developed a heuristic graph partitioning procedure to 

solve machine assignment and cell formation problem.  First, a mathematical 

programming model is developed to incorporate costs of inventory, machine 

depreciation, machine setup, and material handling.  The formulation is then divided into 

two phase/sub-problems; first sub-problem assigned components to specific machines, 
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then the second sub-problem grouped machine into cells.  Then the sub-problems are 

solved using a heuristic graph partitioning procedure.  Finally, an approach to determine 

the economic batch size is also included. 

Vohra et al. (1990) proposed a network-based algorithm to minimize the amount 

of machining times performed outside the part primary cells.  A non-heuristic network 

approach is used to form manufacturing cells with minimum intercellular interactions.  

The machine-part matrix containing machining times is represented as a network which is 

subsequently partitioned by using a modified Gomory-Hu algorithm to find a minimum 

intercellular interaction. 

Sinh and Mohanty (1991) developed a method for selecting an efficient path in 

fuzzy multi-objective networks to solve the routing problem in the manufacturing cell.  

An application of the methodology was also illustrated as the process plan selection 

problem.  Askin et al. (1991) proposed a formulation for machine and part grouping 

problem, so called Hamiltonian Path approach.  The part-matrix incidence matrix was 

used to represent the problem.  The jaccard’s similarity measure was used to form a 

distance measure for each machine pair and part pair. 

Wu and Salvendy (1993) developed a network (an undirected graph) model to 

partition the machine graph into cells by considering operation sequences.  Two 

algorithms are used in this model.  The first algorithm partitions the network by finding 

the minimum cut sets in the network so that the resultant interaction between cells is 

minimal.  The second algorithm is a simplified version of the first algorithm by selecting 

seed nodes in partitioning the network to further reduce the amount of computation.  
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However, the solution from this method is not guaranteed optimal (minimum intercellular 

movements). 

Kandiller (1998) presented a cell formation technique using the hyper graph 

representation of the manufacturing systems.  The proposed method approximates the 

hypergraph model by graphs so that the cuts are less affected by the approximation.  A 

Gomory-Hu cut tree of the graph approximation then can be obtained.  The minimum 

cuts between all pairs of vertices are calculated easily by the means of means of this tree, 

and a partition tree is produced.  An algorithm is also presented to cut the partition tree.  

This algorithm is subjected to an experimentation of randomly generated manufacturing 

situations. 

Recently, Zhao et al. (2008) developed a mathematical model of part clustering of 

product family based on weighted directed graph technique.  The model is extended to 

incorporate swarm intelligent algorithm to develop e-manufacturing model, which can be 

used to solve the part family formations and machine cell groupings in e-manufacturing 

environment for mass customization.  It was indicated that the system can be used as a 

support technology for mass customization, which is very important to develop optimal 

formation of manufacturing cells and could be more efficient in e-manufacturing mode 

than in traditional manufacturing mode.  

Mathematical Programming Techniques 

In mathematical programming techniques a number of part families/machine cells 

formation models have been developed using integer programming, mixed integer 

programming and goal programming.  The objective functions of such models include, 

maximizing specific similarity measures.  Other functions may in the form of minimizing 



 

21 
 
 

the intercellular movements of parts, or machine workload deviations.  Most of these 

models incorporate some kind of system constraints such as available capacity and/or 

machine cell size 

Kusiak (1987) developed two different models that are based on p-median 

clustering techniques.  The problems are formulated as 0/1 integer program to form part 

families and machine cells with the objective of maximizing the sum of similarities while 

considering different system constraints.  In some cases, the models have difficulties in 

assigning the initial p-value.  Ben-Arieh and Chang (1994) modified the p-median model 

by introducing p, the number of machine cells into the objective function to overcome the 

difficulty of assigning an initial p value; thus improving the optimization process to form 

part families and machine cells.  Won (2000), and Won and Lee (2004) modified the p-

median models to include new measures of similarity between machine pairs to solve 

machine grouping problem and deal with disadvantages of previous models such as large 

number of binary variables and constraints.      

Co and Araar (1988) proposed a three-stage procedure to from machine cells to 

process specific sets of jobs.  A mathematical program is formulated in the first stage to 

assign operations to machines with the objective of minimizing the deviations between 

workload assigned to machines and the available capacity.  System constraints were 

based the available machining times.  A direct search algorithm is implemented to define 

the composition of manufacturing cells.  

Askin and Chiu (1990) proposed a mathematical model and solution procedure 

for the group technology configuration problem.  In this model, costs of inventory, 

machine depreciation, machine set up and material handling are first incorporated into a 
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mathematical programming formulation.  The formulation is then divided into two sub-

problems in order to find a solution. A heuristic graph partitioning procedure is then 

proposed for each sub-problem.  The first sub problem assigns components to specific 

machines.  The second sub-problem groups machines into cells.  

Rajamani et al. (1990) developed three mathematical programming models to 

simultaneously form part families and machine groupings to analyze the effects of 

alternative process plans on the utilization of resources.  The first model assigns 

machines to parts while minimizing the total investment cost subject to machine capacity 

and available budget.  The second model assumes that part families are known and 

selects a process plan for each part, required machine for each operation and the number 

of machines in different cells.  The objective in this case is to minimize the total 

investment cost subject to the same system constraints described in the first model.  The 

third model determines both part families and machine groupings simultaneously subject 

to the same set of limitations.  Comparisons of cost functions for the three models are 

also provided. 

Demodaran et al. (1992), Liang and Taboun (1992), Shafer et al. (1992) and 

Rajamani et al. (1992)  developed mathematical programming models that 

simultaneously form part families and machine groupings which minimizes the 

intercellular movement of parts and their associated costs.  System limitations such as 

machine capacities, exceptional elements and precedence relationships of parts are some 

of those constraints considered for different models.         

Dahel and smith (1993) proposed two mathematical programming models to 

group parts and machines into predefined number of cells simultaneously.  The first 
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model takes into consideration available machine capacity and cell size as system 

constraint while minimizing intercellular movements of parts.  The second model is 

formulated as a multi-objective mathematical program to from machine cells which are 

flexible and have minimum interactions.  Bothe models are analyzed and examined under 

the inter-cell routing flexibility criteria.   

Logendran (1993) proposed a 0/1 quadratic mathematical program to 

simultaneously form part-machine grouping and evaluate the effectiveness of this 

grouping techniques in CMS.  The objective function considered in this model consists of 

maximizing unified measure of effectiveness evaluated as the weighted sum of total 

moves and cell utilization subject to certain operational constraints.  The constraints in 

processing times, sequence of operations, available machining capacities and non-

consecutive operations scheduled on the same machine.  The model is extended to take 

into consideration multiple routings for each part. 

Adil et al. (1993) proposed a mathematical model which would take into 

consideration investment and operational costs during the cellular manufacturing design 

process.  The majority of the cell formation models in literature consider grouping of 

parts and machines, based on clustering techniques. The performance of manufacturing 

cells formed therefore indicates that the cellular systems perform more poorly in terms of 

work-in-process inventory, average job waiting time and job flow time than the improved 

job shops.  These cells, on the other hand, have superior performance in terms of average 

move times and setup.  The mixed integer model developed by Adil et al. (1993) 

illustrates the trade-off relationships between operational and investment costs. 
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Moon and Gen (1999) and Sofianopoulou (1999) formulated a 0-1 integer 

mathematical programming models which consider both machine duplication and 

alternative process plans to form machine cells.  Several manufacturing parameters 

including production volume levels, machining capacities, processing times, and the size 

of machine cells are taken into account as system constraints.  Different optimization 

techniques are used to solve each model including genetic and simulated annealing 

algorithms.   

Baykasoğlu et al. (2001) proposed an integer multi-objective non-linear model to 

solve part family and machine grouping problem simultaneously.  The model uses 

generic capability units which are termed as resource elements to define processing 

capabilities of machine tools.  Also, it takes into consideration important objectives such 

as minimization of part dissimilarity associated with production requirements and 

processing sequence of parts, minimization of machine cell workload imbalance and 

minimization of extra capacity requirements for cell formation.   

Slomp et al. (2005) considered a new type of virtual cellular manufacturing (CM) 

system is considered, and proposed a multi-objective design procedure for designing such 

cells in real time. Retaining the functional layout, virtual cells are addressed as temporary 

groupings of machines, jobs and workers to realize the benefits of CM. The virtual cells 

are created periodically, for instance every week or every month, depending on changes 

in demand volumes and mix, as new jobs accumulate during a planning period. The 

proposed procedure includes labor grouping considerations in addition to part-machine 

grouping and is based on interactive goal programming methods. Factors such as capacity 

constraints, cell size restrictions, minimization of load imbalances, minimization of inter-
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cell movements of parts and provision of flexibility are considered. In labor grouping, the 

functionally specialized labor pools are partitioned and regrouped into virtual cells. 

Factors such as ensuring balanced loads for workers, minimization of inter-cell 

movements of workers and providing adequate levels of labor flexibility are considered 

in a pragmatic manner. 

Dafersha and Chen (2006) proposed a comprehensive mathematical model for the 

design of CMS based on tooling requirements of the parts and tooling available on the 

machines.  The model incorporates dynamic cell configuration, alternative routings, lot 

splitting, and sequence of operations, multiple units of identical machines, machine 

capacity, and workload balancing among cells, operation cost, and cost of subcontracting 

part processing, tool consumption cost, setup cost, cell size limits, and machine adjacency 

constraints. Computational experience on small problems showed that a significant 

amount of cost savings can be achieved by considering system reconfigurations, lot 

splitting and system flexibility; and that there are significant differences on workload 

distribution among the cells, if workload balancing is not attempted. 

Satoglu and Suresh (2009) proposed a goal-programming model for the design of 

hybrid cellular manufacturing (HCM) systems, in a dual resource constrained 

environment, considering many real-world application issues. The procedure consists of 

three phases. The initial phase involves a Pareto analysis of demand volumes and 

volatility.  In the second phase, a machine-grouping phase is conducted to form 

manufacturing cells, and a residual functional layout. In this phase, over-assignment of 

parts to the cells, machine purchasing cost, and loss of functional synergies are attempted 

to be minimized. Following the formation of cells and the functional layout, a labor 
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allocation phase (the third phase) is carried out by considering worker capabilities and 

capacities. The total costs of cross-training, hiring, firing and over-assignment of workers 

to more than one cell are sought to be minimized. 

Arikan and Güngör (2009) proposed a new multi-objective fuzzy mathematical 

model for the cellular manufacturing system (CMS) design and its solution methodology. 

The goal of their m model is to handle two important problems of CMS design called cell 

formation and exceptional elements simultaneously in fuzzy environment. The objective 

functions of the model are minimization of the cost of exceptional element elimination, 

minimization of the number of outer cell operations and maximization of the utilized 

machine capacity. The fuzziness stems from model parameters which are part demand, 

machine capacity and the exceptional elements' elimination costs. To illustrate the model, 

an example problem with fuzzy extension is adopted from literature and computational 

results are obtained by using the two-phased solution procedure proposed in their study.  

The approach is performed to reach simultaneous optimal solutions for all objective 

functions. The model solutions are investigated by using well-known performance 

measures and also three problem-specific performance measures are proposed. The 

model is capable of expressing vagueness of all the system parameters and gives the 

decision-maker (DM) alternative decision plans for different grades of precision. 

Artificial Intelligence Techniques 

An artificial neural network is a mathematical model or computational model that 

tries to simulate the structure and/or functional aspects of the brain.  It consists of an 

interconnected group of artificial neurons and it processes information using a 

connectionist approach.  Artificial neural networks at adaptive forms of artificial 
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intelligence and are capable of learning.  Du (2010) has outlined several neural network 

clustering algorithms, including C-means clustering, competitive learning, and mountain 

and subtractive clustering..  

The most well-known data clustering technique is the statistical C-means, also 

known as the k-means (Du, 2010). The C-means algorithm approximates the maximum 

likelihood (ML) solution for determining the location of the means of a mixture density 

of component densities (Moody & Darken, 1989). The C-means can be implemented in 

either the batch mode (Linde, Buzo, & Gray, 1980; Moody & Darken, 1989) or the 

incremental mode (MacQueen, 1967). The batch C means (Linde et al. 1980), is applied 

when the whole training set is available. The incremental C-means is suitable for a 

training set that is obtained on-line. In the batch C-means, the initial partition is 

arbitrarily defined by placing each input pattern into a randomly selected cluster, and the 

prototypes are defined to be the average of the patterns in the individual clusters (Du, 

2010). When the C-means is performed, at each step the patterns keep changing from one 

cluster to the closest cluster ck according to the nearest-neighbor rule and the prototypes 

are then recalculated as the mean of the samples in the clusters (Du, 2010). 

Competitive learning can be implemented using a two-layer neural network.  The 

input and output layers are fully connected. The output layer is called the competition 

layer, wherein lateral connections are used to perform lateral inhibition.  Based on the 

mathematical statistics problem called cluster analysis, competitive learning is usually 

derived by minimizing the mean squared error function (Tsypkin, 1973). 

The mountain clustering is a simple and effective method for estimating the 

number of clusters and the initial locations of the cluster centers (Yager & Filev, 1994). 
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The method grids the data space and computes a potential value for each grid point based 

on its distance to the actual data points. Each grid point is a potential cluster center. The 

potential for each grid is calculated based on the density of the surrounding data points. 

The grid with the highest potential is selected as the first cluster center and then the 

potential values of all the other grids are reduced according to their distances to the first 

cluster center. The next cluster center is located at the grid point with the highest 

remaining potential. This process is repeated until the remaining potential values of all 

the grids fall below a threshold. However, the grid structure causes the complexity to 

grow exponentially with the dimension of the problem. The subtractive clustering (Chiu, 

1994a), as a modified mountain clustering, uses all the data points to replace all the grid 

points as potential cluster centers. This effectively reduces the number of grid points to N 

(Chiu, 1994a). 

Genetic Algorithms 

Genetic Algorithms (GA) have been developed by Holland (1975) at the 

University of Michigan.  Holland’s research had two primary goals.  The first was to 

abstract and rigorously explain the adaptive processes of natural systems.  The second 

was to design artificial system software that retains the important mechanisms of natural 

systems.  This approach has led to important discoveries in both natural and artificial 

systems science. Genetic algorithms start with an initial set of random solutions called the 

population.  Each individual in the population is called a chromosome, representing a 

solution to the problem at hand.  A chromosome is a string of symbols, and is usually a 

binary string.  There are two kinds of operations encountered in genetic algorithms.  The 

first is Genetic operations (crossover and mutations) and the second is evolution 
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operation (selection or reproduction).   Some of the GA applications include 

optimization, group technology and manufacturing cell formation.  The following 

literature describes some recent developments in GA within the context of GT and 

machine cell formation. 

Gonҫalves and Resende (2004) proposed a new approach for obtaining machine 

cells and product families.  This approach combines a local search heuristic with a 

genetic algorithm.  The genetic algorithm uses a random keys alphabet, an elitist 

selection strategy, and a parameterized uniform crossover.  Computational experiences 

performed on 34 different group technology problems, show that the algorithm performs 

remarkably well when compared other algoritms. 

Jeon and Leep (2006) developed a methodology which can be used to form 

manufacturing cells using both a new similarity coefficient based on t he number of 

alternative routes during machine failure and demand changes for multiple periods.  The 

methodology is divided into two phases.  The first phase suggests a new similarity 

coefficient, and the second phase uses a genetic algorithm for cell formation.  This GA 

considers the scheduling and operational aspects in cell design under demand changes.  

Finally, machines are assigned to part families using mixed integer programming. 

Tariq et al. (2008) developed a hybrid genetic algorithm for machine-part 

grouping.  This algorithm is an approach that combines a local search heuristic (LSH) 

with genetic algorithms (GA).  The GA uses integer type representation, multipoint 

crossover and roulette wheel selection procedure.  The computational experience done 

show that the algorithm converges to the best solution in the initial generations but also 

produces solutions that are as accurate as any result reported in literature.  They also 
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observed that the proposed algorithm was more consistent in terms of accuracy with 

respect to the problem size, when compared to other algorithms. 

Venugopal and Narendran (1992) proposed a genetic algorithm approach to the 

machine-component grouping problem with multiple objectives.  The algorithm is bi-

criteria mathematical model with a solution procedure based on the genetic algorithm.  

This study is a first of its kind in group technology literature, and a successful 

demonstration of the application of genetic algorithm to the machine-component 

grouping problem. The algorithm is found to be effective in offering a collection of 

satisfactory solutions, which is essential in a multi-objective environment, to enable the 

decision maker to choose the best alternative. It is independent of the nature of the 

objective functions. It is inherently parallel and is capable of super linear speed-up in 

multi-processor systems. With the availability of parallel computers, this algorithm will 

be particularly useful in solving part-family problems in complex, large scale FMS 

environments. 

Hsu and Su (1998) proposed a genetic algorithm based procedure to solve the 

cellular manufacturing grouping problem. More specifically, they aimed to minimize (i) 

total cost, which includes inter-cell and intra-cell part transportation costs and machines 

investment cots; (ii) intra-cell machine loading imbalance; and (iii) inter-cell machine 

loading imbalance under many realistic considerations. The procedure they proposed is 

extremely adaptive, flexible, and efficient; and can be used to solve real manufacturing 

grouping problem problems in factories by providing robust manufacturing cell formation 

in a short execution time. 
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Zhao and Wu (2000) proposed a genetic algorithm approach to the machine-

component grouping problem with multiple objectives.  These objectives were 

minimizing the costs due to intercell and intracell part movements; minimizing the total 

within cell load variation and minimizing exceptional elements.  They developed specific 

genetic operators in order to make problem solving easier.  During the cell formation 

process, the routing sequence of parts, production volume, workload balance and the 

constraints of cell number and cell-size are carefully considered.  They argue that 

although taking alternative routes does increase the time consumption of the genetic 

algorithm, the calculation time is still very limited.  The method developed by them is 

feasible for medium sized tasks. 

Caux et al. (2000) addressed the problem of manufacturing cell formation with 

alternative process plans and machine capacity constraints. Given routings, capacities of 

machines and quantities of parts to produce, the problem consisted of grouping machines 

into manufacturing cells and in selecting one process plan for each part. The objective of 

their research was to minimize the inter-cell traffic, respecting machine capacity 

constraints. A new approach combining the simulated annealing method for the cell 

formation and a branch-and-bound method for the routing selection was proposed.  This 

method permits the simultaneously solving of the cell formation problem and the part-

routing assignment problem whereas other methods are based on two heuristics or 

algorithms: one of the two problems is then solved from the solutions of the second one. 

Although exact methods, like the branch and branch and bound method often lead to 

large computational times, the method they proposed provides solutions very quickly. 

This feature makes the method more robust to variations of production. Although 
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acceleration processes have been introduced in the branch-and-bound, the method can be 

limited with large-sized problems or unconstrained problems due to calculation time. 

Onwubolu and Mutingi (2001) proposed a genetic algorithm (GA) meta-heuristic-

based cell formation procedure to solve the cell formation problem. The cell formation 

problem solved by them is to simultaneously group machines and part-families into cells, 

so that intercellular movements are minimized. Also included is an option for considering 

the minimization of cell load variation is included and another, which combines 

minimization of intercellular movements and cell load-variation, exists. The algorithm 

solves this problem through improving a cell configuration using the GA meta-heuristic. 

The number of cells required and lower and upper bounds on cell size are allowed to be 

specified. This makes the GA scheme flexible for solving the cell formation problems. 

The solution procedure was found to perform well on tested large-scale problems and 

published data sets.  

Uddin and Shanker (2002) addressed generalized grouping problem where each 

part has more than one process routes. The problem of simultaneously assigning 

machines and process routes (parts) to cells was formulated as an integer-programming 

problem. The objective of minimization of inter-cell movements is achieved by 

minimizing the number of visits to various cells required by a process route for 

processing the corresponding part. The proposed a procedure based on genetic algorithm 

which was quite effective in finding the global optimal solution to the grouping problem 

within a reasonable time, since the GAs are inherently parallel and is capable of super 

linear speed-up in multiprocessor systems. With the availability of parallel computers, 
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two sub-problems can be solved simultaneously and this algorithm is particularly useful 

in solving large size grouping problem. 

 

Simulated Annealing 

The simulated annealing methodology draws its analogy from the ‘annealing’ 

process used in the metallurgical industry.  The process of annealing is a way metals are 

slowly cooled to produce low energy-state crystals.  Simulated annealing is a heuristic 

search procedure for combinatorial optimization (Metropolis et al, 1953).   

Sofianopoulou (1997) addressed the cell formation problem by modeling it as a 

linear integer programming problem with the objective of minimizing the number of 

intercellular moves subject to cell-size constraints and taking into account the machine 

operation sequence of each part. An interesting feature of the proposed formulation is that 

there is no need of specifying (before hand) the number of cells to be used, which is 

automatically adjusted within the solution procedure. A very efficient random search 

heuristic algorithm, based on the simulated annealing method, was adopted for its 

solution. The heuristic is tested on a number of problems and its performance was 

evaluated. 

Saha and Bandyopadhyay (2009) proposed a multi-objective clustering technique 

which optimizes simultaneously two objectives, one reflecting the total “quality” present 

in the data set in terms of total compactness of the clusters, and the other reflecting the 

total symmetry present in the clusters of the data set. The algorithm uses a simulated 

annealing based multi-objective optimization method as the underlying optimization 

criterion and center based encoding is used. The multi-objective clustering technique is 
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able to suitably evolve Assignment of points to different clusters is done based on the 

newly developed point symmetry based these cluster centers in such a way so that the 

two objectives are optimized ‘simultaneously’ distance rather than the Euclidean 

distance. Results on eight artificial and six real-life data sets show that the proposed 

technique was well suited to detect true partitioning from data sets with clusters having 

either the hyper-spherical shape or point symmetric structure. Results were compared 

with those obtained by five existing clustering techniques, one multi-objective clustering 

technique, MOCK, average linkage clustering algorithm, expectation maximization 

clustering algorithm, well-known genetic algorithm based K-means clustering technique 

(GAK-means) and a newly developed genetic algorithm with point symmetry based 

clustering technique (GAPS). 

Lin et al. (2010) proposed a simulated annealing based meta-heuristic for solving 

the part-machine cell formation problem. The effectiveness of the proposed approach was 

compared to conventional algorithms across a set of part-machine cell formation problem 

s available in literature.  The experimental results obtained indicate that the proposed 

approach is a state-of-the-art algorithm for part-machine cell formation problems, as seen 

through a comparison of the obtained results with the best-known solutions of the 13 

conventional algorithms with respect to four types of performance measures. Given the 

difficulty in solving part-machine cell formation problems, the results obtained by the 

proposed simulated annealing based meta-heuristic may encourage practitioners to apply 

it to real world problems. 
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Swarm Intelligence 

Swarms consist of many simple agents that have local interactions, including 

interacting with the environment. The emergence of complex, or macroscopic, behaviors 

and the ability to achieve optimal solutions as a team result from combining simple, or 

microscopic, behaviors (Hinchey et al., 2007).  Beni and Wang (1989) introduced the 

term swarm intelligence. Swarm intelligence techniques are population based stochastic 

methods used in combinatorial optimization problems in which the collective behavior of 

relatively simple individuals arises from their local interactions with their environment to 

produce functional global patterns. Swarm intelligence represents a meta-heuristic 

approach to solve a variety of problems.  

Ant algorithms were first proposed by Dorigo et al. (1991) as a multi-agent 

approach to difficult combinatorial optimization problems such as the travelling salesman 

problem and the quadratic assignment problem (Dorigo, 1999).  Ant algorithms were 

inspired by the observation of real ant colonies.  Ants are social insects, they live in 

colonies and their behaviour is directed more to the survival of the whole colony as 

opposed to the survival of a single ant.  An important behaviour of the ant colonies is 

their foraging behaviour, specifically, how ants can find the shortest paths between food 

sources and their nest (Dorigo, 1999).  This behaviour has been a core foundation of 

recent research work and development of optimal cell formation.  

Labroche et al. (2003) proposed an ant clustering system called AntClust.  This 

algorithm is inspired from the chemical recognition system of ants.  In the system 

proposed by Labroche et al (2003), the continuous interactions between the nest mates 

generate a “Gestalt” colonial odour.  The Gestalt effect refers to the form-forming 
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capability of our senses, particularly with respect to the visual recognition of figures and 

whole forms instead of just a collection of simple lines and curves (Hothersall, 2004).  

Similarly, this clustering algorithm associates an object of the data set to the odour of an 

ant and then simulates meetings between ants.   Artificial ants that share a similar odour 

are grouped in the same nest, which provides the expected partition. 

Runkler (2005), simplified the original ant system to create a generalized ant 

colony optimization system, which could be used to solve a wide variety of discrete 

optimization problems.  This literature shows how objective function based clustering 

models such as hard and fuzzy c-means can be optimized using particular extensions of 

this simplified ant optimization algorithm. Experiments with artificial and real datasets 

show that ant clustering produces better results than alternating optimization because it is 

less sensitive to local extrema. 

Islier (2005) proposed a method for solving the cellular manufacturing problem, 

by using an ant system algorithm in the group technology formulation.  The method 

presented a technique where the grouping problem was first represented as an artificial 

ant system.  The ants rearrange constantly obtaining a better grouping every cycle.  These 

ants are semi-blind and use a communication-supported random search process.  The data 

structure used by this ant system is the pheromone matrix.  This matrix starts out empty, 

and is gradually formed by the experiences of the individual ants.  The ant system uses 

this matrix to determine if the new grouping is better than the previous state. 

Kao and Fu (2006) proposed a part clustering algorithm that used the concept of 

ant-based clustering in order to resolve machine cell formation problems. This three-

phase algorithm mainly utilizes distributed agents which mimic the way real ants collect 
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similar objects to form meaningful piles. In the first phase of this algorithm, an ant-based 

clustering model is adopted to form the initial part families. Kao and Fu part modified a 

part similarity coefficient and used it in the similarity density function of the model for 

the purpose of clustering. In the second phase, the K-means method is employed in order 

to achieve a better grouping result. In the third phase, artificial ants are used again to 

merge the small, refined part families into larger part families in a hierarchical manner. 

Kao and Fu (2006) argued that that this algorithm would increase the flexibility of 

determining the number of final part families for the factory layout designer.  

Peterson et al (2008) introduced two improvements that can be incorporated into 

any ant clustering algorithm.  These improvements kernel function similarity weights and 

a similarity memory model replacement scheme. A kernel function assigns a weight to 

each object within an ant’s neighborhood according to the object distance and provides 

an alternate interpretation of the similarity of objects in an ant’s neighborhood. In this ant 

clustering system, ants can hill-climb the kernel gradients as they look for a suitable place 

to drop a carried object. The similarity memory model equips ants with a small memory 

consisting of a sampling of the current clustering space. These improvements were 

compared to a basic ant clustering algorithm, and it was shown that kernel functions and 

the similarity memory model increase clustering speed and cluster quality, especially for 

datasets with an unbalanced class distribution, such as network intrusion. 

Kao and Li (2008) proposed an ant colony recognition system for part clustering 

problems.  This algorithm mimics the random meetings of real ants to build up the ability 

of object recognition and then to form many initial part clusters with high similarities.  

These initial part clusters are further merged into larger and larger clusters in a collective 
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way until the designated number of part families is reached.  The characteristics of 

artificial ants (such as randomization and collective behaviour) allow the algorithm to re-

cluster wrongly grouped parts into the proper clusters.  It is argued that this system can 

eliminate the chaining effects resulting from the interference of abnormal parts during the 

clustering process. 

Motivation of The Research 

In the literature, we have seen that there are several ways in which to solve the 

cellular manufacturing problem.  Many of these existing methods however, are not as 

flexible as the swarm intelligence methods.  Even though there are existing ant algorithm 

models, there has been limited comparison of the processes within the ant algorithm, with 

other replaceable processes.  For example, the efficiency ant algorithms which use 

similarity coefficients have only been measured using that one similarity coefficient.  

Therefore there exists a need to investigate the effects that different similarity coefficients 

have on ant-based algorithm optimization techniques. 

Most of the ant algorithm models in literature focus on developing part families to 

be as optimal as possible, rather than focusing on the efficiency of the algorithm itself.  

Many of the ant algorithm optimization techniques in literature are also developed into 

software, which are used by practitioners in the industry.  The operational requirements 

of these ant algorithm software are very demanding.  Thus, there exists a need for an 

efficient, easy to program ant algorithm that would create the optimal cellular 

manufacturing problem solution, and in doing so would use minimum resources.   

Therefore, it would be beneficial to this study to develop an ant algorithm that is efficient 
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as well as easy to program, in order to compare the effects of different similarity 

coefficients on it. 
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CHAPTER III 

DESIGN AND METHODOLOGY 

There are several ways in which to solve the cellular manufacturing problem, 

however recent research has shown that optimization with artificial intelligence methods 

are more efficient for optimization.  One of the advantages of swarm intelligence 

methods is that they are very flexible and efficient.  In order to compare the effect of 

similarity coefficients on an ant algorithm, a modified version of Monmarché’s AntClust 

has been created.  The algorithm starts by creating an artificial environment for the ants 

to operate in. 

The Environment: A Two Dimensional Chessboard 

In order to have the artificial ants interact with the environment, an artificial 

environment must be created.  The simplest way to do this is to create a grid on which the 

ants will move, pick up parts and drop parts.  As in Monmarché et al.’s (1999) AntClass 

Algorithm, this is a two dimensional matrix C with a size of m x m. 

The number of cells on this chessboard has to be greater than the number of ants 

added with the number of parts, in order for the artificial ants to move the parts and create 

families.  If the chessboard is too large, there will be a lot of time wasted when the ants 

travel and relocate parts.  Monmarché et al (1999) have determined that the size of the 

two dimensional chessboard has to be a function of the number of objects in order to 

scale automatically to the problem size, and have developed a formula to calculate the 

size of the two dimensional chessboard: 

Equation 1 Calculating the size of the 2 dimensional chessboard 

�� = �� × 4 	
 � = ��� × 4 
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Where m is the length and width of the two dimensional chessboard, and �� is the 

number of parts.  For example, a problem with four parts would need a chessboard of size 

3 x 3 (Kao and Fu, 2006). 

 

Figure 3. 1 Two Dimensional Chessboard 

Along with a number of cells on the two-dimensional chessboard, there are a 

number of ants to be randomly spread with the parts.  The number of parts has to be 

calculated so that there are not too many parts, along with enough parts to ensure that the 

algorithm will be completed quickly.  The number of ants can be calculated as: 

Equation 2 Calculating the number of artificial ants 

���� = ��10 

Collection of Parts into Heaps 

Unlike the algorithm proposed by Kao and Fu in 2006, the artificial ant in this 

algorithm will be able to collect parts into heaps, and also build or destroy these heaps.  A 

heap of parts (H) is a collection of two or more parts, and is located on a single cell on 
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the two dimensional chessboard. A major advantage of having the ants collect parts into 

heaps is that a heap type cluster can easily be identified, while non-heaped special 

patterns of parts, such as that used by Kao and Fu (2006), may touch each other on the 

two dimensional chessboard.  When spatial clusters touch each other, identification of 

clusters becomes difficult.  Another advantage of using heaps is that more accurate 

heuristics for dropping or removing parts from these heaps are able to be defined 

(Monmarché et al., 1999).  Ants will be able to remove the least similar part from a heap, 

or add a part to a heap if it is similar to the parts in the heap. 

 

Figure 3. 2 Non-Heaped Cluster(s) 

From the above image, it is difficult to tell whether this is one large cluster of five 

parts, or if it is a small cluster of three parts touching a small cluster of two parts. 

 

Figure 3. 3 Two clusters or distinct heaps 

The image above shows a heap of parts.  It is clearly identified as one large 

cluster of five parts. 



 

43 
 
 

Phase 1: Creating Part Families 

The colony of artificial ants, or the artificial ants across the two dimensional 

chessboard, consists of p amount of ants.  The artificial ants are labeled ant1 ant2...antp 

and each artificial ant, anti, is located on one cell of the board.  Initially, the artificial ants 

are spread out randomly.  Each ant then moves according to the process outlined in 

Figure 3.4.  The motion of each artificial ant is not completely random.  Initially each 

artificial ant moves, and could possibly pick up or drop a part depending on its status.  

Each ant has a probability Pdirection to further continue in its direction when moving next.  

Each ant also has a speed parameter which tells it how many steps it will move in the 

selected direction before stopping.  Once an ant has moved, it may pick up or drop a part, 

and this is repeated for a predefined number of steps.  The ants will perform this 

algorithm until they reached the predefined number of cycles which is the number of 

parts multiplied by 500.  After the ants have finished all of these steps, the algorithm then 

moves to Phase 2.   

Ant is unloaded: Picking up a Part 

When an ant is unloaded, it looks for a possible part to pick up by considering the 

eight (or six if it is on an edge) cells around its current position.  As soon as one part or a 

heap of parts is discovered then the artificial ant will react based on whether there is one 

part, a heap of two parts, or a heap larger than two parts.  If there is one part on the cell, 

the artificial ant will calculate the similarity density function f(Pk) and the pickup 

probability Ppick(Pk).  After this, the artificial ant will compare the pickup probability to a 

randomly produced probability Pr. If Ppick(Pk) > Pr, the artificial ant will pick up the 

encountered part and its status will become loaded.  If there is a heap consisting of two 
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parts in the cell, then the artificial ant will pick up a random part.  In this case, three 

random probabilities will be generated, Pr1, Pr2 and Pdestroy.  Pr1 will be associated with 

one part and Pr2 to the other.  Then the artificial ant will compare Pr1 and Pr2 to the 

random probability Pdestroy.  The part which has a random probability closer to Pdestroy will 

be treated as if it was the only part in the cell and possibly pick it up.  Finally, if there are 

more than two parts in the heap then the ant will choose the least similar part out of the 

heap (provided that the part is beyond a predefined threshold) to pick up.  It will then 

choose the least similar part from the heap and generate and random probablilty Pr.  If Pr 

is greater than the threshold value Pdestroy, the artificial ant will then treat the least similar 

part as if it is the only part in the cell. 

 

Equation 3: Similarity density function to measure the similarity of a part Pk with its surroundings 

����� = ∑ � ��� , ���
��� , �� ∈  �� 

 

Equation 4: Probability transfer function for an ar tificial ant to pick up a part 

���� �� � = !  �
 � + #�� �$

%
 

 

Where: 

f(Pk) similarity density function to measure the similarity of a part Pk with 

 its surroundings 

Pk is the part held or encountered by an artificial ant 

Pl is the part located in one of the 3-8 surrounding cells on the 2-

 dimensional chessboard 

S(Pk, Pl) is the similarity between parts Pk and Pl 
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n2 is the surrounding area that is recognizable to an artificial ant (3-8 

 cells) 

Ppick(Pk) is the probability transfer function for an artificial ant to pick up 

 the part Pk 

kp constant value with their range between 0 < kp<1 

 

Ant is Loaded: Dropping a Part 

When an ant is carrying a part, it will look at the eight surrounding cells.  Then 

will act based on three conditions.  The fist condition is encountered when the cell is 

empty.  If this is the case, the artificial ant will compute f(Pk) and Pdrop(Pk).  The artificial 

and will then compare Pdrop(Pk) to a randomly generated probability Pr.  If Pdrop(Pk) > Pr, 

then the artificial ant will drop the part.  Otherwise, the artificial ant will keep its status as 

loaded and continue.  If there is a part in the cell already, the artificial ant will check to 

see if the similarity coefficient of the two parts is beyond the similarity threshold.  If it is, 

the ant will drop the part and create a heap of parts.  In the third case, the ant will 

compare the parts similarity to the heap.  If the part is more similar to the heap than the 

least similar ant in the heap, then the ant will add the part to the heap. 

Equation 5: Probability transfer function for an ar tificial ant to drop a part 

 

�&'(����� = )2����� +� ����� < -&1              ./ℎ123+�1 4 
 

Where: 

f(Pk) similarity density function to measure the similarity of a part Pk with 

its surroundings 
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Pdrop(Pk) probability transfer function for an artificial ant to lay aside the 

 Part Pk 

kd is a constant value with a range of 0 < kd < 1 

Phase 2: Refining Part Families 

Because the method in phase 1 uses random distributions, it tends to create many 

small homogenous part families.  In order to improve the quality of the clustering, we use 

the K-means algorithm as done by Kao and Fu (2006) and by Monmarché et al. (1999).  

This is an important phase because the random clustering performed in phase 1 may have 

parts “inappropriately distributed to wrong part families” (Kao and Fu, 2006). 

To perform the K-means algorithm the following steps must be taken.  First, make 

the number of initial part families obtained in the first phase act as the number of K-

means group, and then calculate the center vector (or average similarity) of each part 

family.  If there are single parts (parts not in heaps), compute the average similarity to 

each of the closest heaps and add it to the most similar heap.  Once there are no single 

parts left, assign each of the heaps a number.  Start with the first heap, and find the least 

similar part in the heap (as was done in phase 1).  Compute its average similarity with 

each of the other heaps.  Select the heap with the highest similarity.  If the part is more 

similar to the heap than the least similar part in the heap, move the part to this heap.  

Calculate the new center vectors for each heap, and then repeat for the second heap.  Do 

this until no parts can be moved. 

 

Equation 6: Average similarity between a part and a heap 

�̅6��, 789 = : ���� , �;�
��< + 1

<

;=>
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Where: 

78 is the current heap 

��< is the number of parts in 78 

ℎ is the number of parts in the 78 

�̅6�� , 789  is the average similarity between a part and a heap 

���� , �;� is the similarity between part k and part i 

Phase 3: Combining Part Families 

In the first phase, many small homogenous part families are formed because of 

the random nature of the clustering.  This randomness generally creates more part 

families than sought out. For the third phase, all of the refined part families are treated as 

single objects and scattered randomly across the two dimensional chessboard.  Then, new 

artificial ants with part family merging “thought processes” are randomly dropped on the 

two dimensional chessboard.  These ants re-cluster the families until a predefined number 

of part groups are reached. 

When the objects (families) and ants are randomly scattered over the two 

dimensional chessboard, the family merging process begins.  When an artificial ant 

comes across a family on the chessboard, it will generate a random probability (Pr) and 

compare it to a predefined probability called the Family Pick up probability (Pfpu).  If the 

random probability is less than the family pick up probability, then the artificial ant will 

pick up the object and become loaded.  If the randomly generated probability is not less 

than the family pick up probability, than the ant will move randomly past the part. 

If a loaded ant comes across a part family, it will determine the distance between 

the two object centers (the total average similarity) and the maximum distance between 

the parts (the two least similar parts).  The maximum distance is then divided by the 
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average similarity and compared to a predefined similarity threshold.   If the ratio is 

smaller than the threshold value then the two part families will be merged into one, and 

the ant will not be loaded with the new family. 

These steps are repeated until the number of part families which were predefined 

by the facility designer are reached, or a predefined number of maximum steps have been 

reached.  The reason that there are a maximum number of steps is included in this phase 

is to avoid infinite looping. 

Performing the ant algorithm 

Performing the ant algorithm by hand can prove to be a long and tedious process, 

as it greatly depends on numbers stored in charts along with keeping track of many 

random numbers simultaneously.   Therefore, this algorithm was performed using a small 

program made in Borland C++.  An example of the source code for this program, using 

on similarity coefficient can be found in Appendix D. 
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Figure 3. 4 Core Artificial Ant-Based Algorithm 
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Figure 3. 5 Artificial Ant Thought Process Picking up a Part 
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Figure 3. 6 Artificial Ant Logic: Dropping a Part 
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Phase 4:  Comparing Different Similarity Coefficients 

In this phase, a number of similarity coefficients will be used in the algorithm to 

study the algorithm created, in order to determine which similarity coefficient works best 

with this method.  In order to determine the best similarity coefficients, the best similarity 

coefficients from literature were selected to be compared.  These similarity coefficients 

are the Jaccard coefficient, Russel and Rao’s Similarity Coefficient, the Simple Matching 

Similarity Coefficient, the Relative Matching Similarity Coefficient and the Baroni-

Urbani and Buser Similarity Coefficient.  These similarity coefficients are defined below. 

Equation 7: Jaccard Similarity Coefficient 

? = @
@ + A + B 

Equation 8: Russel and Rao’s Similarity Coefficient 

? = @
@ + A + B + C 

 

Equation 9: Simple Matching Coefficient 

? = @ + C
@ + A + B + C 

Equation 10: Relative Matching Coefficient 

? = @ + √@C
@ + A + B + C + √@C 

Equation 11: Baroni-Urbani and Buser Similarity Coefficient 

? = @ + √@C
@ + A + B + C + √@C 

Where: 

a is the number of machines which produce both components i and j 

b is the number of machines which produce only component i  
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c is the number of machines which produce only component j 

d is the number of machines which produce neither components i or j 

  

The similarity coefficients will be tested on three problems:  One of small size, a 

medium sized problem and a large sized problem.  The reason for testing problems of 

three different sizes is to determine how the similarity coefficient affects the behavior of 

the artificial ants in different sized environments.  The first problem is cellular 

manufacturing problem with 11 parts manufactured on 5 machines.  This small problem 

was presented by Chow and Howaleshka (1992).  The second problem is a cellular 

manufacturing problem with 20 parts being produced on 8 machines.  This medium sized 

problem was introduced by Chandrasekharan and Rajagopalan in 1986.  The third and 

last problem is a cellular manufacturing problem involving 40 parts being manufactured 

on 24 machines.  This problem was introduced by Chandrasekharan and Rajagopalan in 

1989.  These problems will be outlined in detail in the next chapter. 

The similarity coefficients will be tested using several performance measures.  

The first performance measure will be the number of exceptional elements (EE or ee).  

The number of exceptional elements is the source of inter-cellular movement between 

cells (Yin and Yasuda, 2006).  Since one of the objectives of cellular manufacturing is to 

reduce the material handling costs, a reduction in the number of exceptional elements is 

directly related to the cellular manufacturing problem. 

The second performance measure to be used to measure the quality of the solution 

is the grouping efficiency (η).  Grouping efficiency was developed by Chandrasekharan 
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and Rajagopalan (1986).  Grouping efficiency (η) is defined as the weighted average of 

two efficiencies η1 and η2.   

Equation 12: Grouping Efficiency for a Machine-Part Matrix 

E = 3E> + �1 − 3�E� 

η1 and η2 can be defined as: 

Equation 13: Left side partial grouping efficiency 

E> = 1G∑ H'I'�'=>
                

Equation 14: Right Side grouping efficiency 

E� = 1 − J 1(
�K�� − ∑ H'I'�'=>

L 
Where:  

k is the number of diagonal blocks on the machine-part matrix 

Nr is the number of components in the rth family 

Mr is the number of machines in the rth cell 

nm is the number of machines 

np is the number of parts 

o is the number of operations in the machine part matrix 

v is the number of voids in the solution 

ec is the number of non-exceptional elements 

ee is the number of exceptional elements 

w is a constant relating the importance of intercellular movement (equal to 

 0.5 in the study) 

The similarity coefficients will be compared according to several aspects.  The 

first comparison will be made to the number of steps taken to complete the algorithm.  

The second comparison will be made to as the number of part families made at the end of 

Phase one.  
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CHAPTER IV 

ANALYSIS OF SAMPLE PROBLEMS 

The differences in the similarity coefficients will be seen at the end of the first 

phase.  The differences will be corrected by the second phase, or the K- means refining.  

Therefore, in this section, the first phase will be done for each of the similarity 

coefficients.  The solution of the first phase will then be tested for grouping efficiency.  

After the first phase, the algorithm will be continued as it normally does and then tested 

for overall efficiency.   

Small Problem (Chow and Howaleshka, 1992) 

This example is a cellular manufacturing problem with 11 parts manufactured on 

5 machines.  For the small example, the artificial ants will perform initial clustering with 

500(11)(5) cycles.   

 

Table 4. 1 Initial Machine-Part Matrix for the Small Example 

Parts 

M
ac

h
in

es
 1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 1 
2 1 1 1 1 1 
3 1 1 1 1 
4 1 1 1 1 1 
5 1 1 1 1 

 

 

The number of cells on the two-dimensional chessboard can be defined as: 

 

� = √� × 4 = √11 × 4 = 6.6 = 7 

 



 

56 
 
 

 

 

The  number of artificial ants on the two dimensional chessboard can be defined as: 

 

���� = ���'��10 = 11
10 ≈ 1 

 

Therefore there is 1 artificial ant and 11 parts scattered randomly on the two dimensional 

chessboard, as can be seen in figure 4.1. 

 

 

Figure 4. 1 Initial Machine-Part Matrix for Small E xample 
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Small Problem: Jaccard Similarity Coefficient 

Solving the small example’s first phase with the Jaccard Similarity Coefficient the 

machine part matrix seen in Table 4.2, and the two-dimensional chessboards layout seen 

in Figure 4.2 are obtained. 

 

Table 4. 2 Machine Part Matrix for the first Phase of the Small Example using the Jaccard Similarity 

Coefficient 

Parts 

M
ac

hi
ne

s 

9 11 4 1 5 7 2 6 10 8 3 
2 1 1 1 1 1 
4 1 1 1 1 1 
1 1 1 1 1 1 1 1 
5 1 1 1 1 
3 1 1 1 1 

 
 

 
 

Figure 4. 2 Layout of the 2-Dimensional chessboard following the first phase for the small example, 

using the Jaccard Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 2 part families with 3 

exceptional elements.  Therefore, the variables can be set as: 

nm=5 

np=11 

M1=3 

M2=2 

N1=7 

N2=4 

ed=20 

eo=3 

k=2 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=     22

29  =  0.759       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 3
26 = 0.885 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.821 

Therefore, the Jaccard Similarity Coefficient gives a grouping efficiency of 87.3% 

at the end of phase 1. 
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Small Problem: Russel and Rao’s Similarity Coefficient 

Solving the small example’s first phase with the Russel and Rao’s  Similarity 

Coefficient, the machine part matrix seen in Table 4.3 is obtained. 

Table 4. 3 Machine-Part Matrix for Phase 1 of a small example using Russel and Rao’s Similarity 

Coefficient 

Parts 

M
ac

h
in

es
 9 11 4 7 2 1 5 6 8 10 3 

2 1 1 1 1 1 
4 1 1 1 1 1 
1 1 1 1 1 1 1 1 
3 1 1 1 1 
5 1 1 1 1 

 

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.3 is obtained from the first phase of clustering. 

 

Figure 4. 3 2-D Chessboard’s Layout for Phase 1 of the small example using R and R Similarity 

Coefficient 
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From the machine part matrix, it can be seen that there are 2 part families with 3 

exceptional elements.  Therefore, the variables can be set as: 

nm=5 

np=11 

M1=3 

M2=2 

N1=7 

N2=4 

ed=20 

eo=3 

k=2 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=   22

29  =  0.759       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 3
26 = 0.885 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.821 

Therefore, Russel and Rao’s Similarity Coefficient gives a grouping efficiency of 

82.1% at the end of phase 1. 
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Small Problem: Simple Matching Similarity Coefficient 

Solving the small example’s first phase with the Simple Matching Similarity 

Coefficient, the machine part matrix seen in Table 4.4 is obtained. 

Table 4. 4 Machine-Part matrix for Phase one of a Small problem solved using Simple Matching 

Similarity Coefficient 

Parts 

M
ac

h
in

es
 9 11 4 1 5 7 2 6 8 10 3 

4 1 1 1 1 1 
2 1 1 1 1 1 
1 1 1 1 1 1 1 1 
3 1 1 1 1 
5 1 1 1 1 

 

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.5 is obtained from the first phase of clustering with the Simple Matching 

Similarity Coefficient. 

 
Figure 4. 4 2-D Chessboard’s Layout for Phase one of a Small problem solved using Simple Matching 

Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 2 part families with 3 

exceptional elements.  Therefore, the variables can be set as: 

nm=5 

np=11 

M1=3 

M2=2 

N1=7 

N2=4 

ed=20 

eo=3 

k=2 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=     22

29  =  0.759       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 3
26 = 0.885 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.821 

Therefore, the simple matching Similarity Coefficient gives a grouping efficiency 

of 82.1% at the end of phase 1. 
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Small Problem: Relative Matching Similarity Coefficient 

Solving the small example’s first phase with the Relative Matching Similarity 

Coefficient, the machine part matrix seen in Table 4.5 is obtained. 

Table 4. 5 Machine-Part matrix for Phase one of a Small problem solved using Relative Matching 

Similarity Coefficient 

Parts 

M
ac

h
in

es
 9 11 4 1 5 2 7 6 10 8 3 

4 1 1 1 1 1 
2 1 1 1 1 1 
1 1 1 1 1 1 1 1 
3 1 1 1 1 
5 1 1 1 1 

 
 

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.5 is obtained from the first phase of clustering. 

 

 
Figure 4. 5 2-D Chessboard’s Layout for Phase one of a Small problem solved using Relative 

Matching Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 2 part families with 3 

exceptional elements.  Therefore, the variables can be set as: 

nm=5 

np=11 

M1=3 

M2=2 

N1=7 

N2=4 

ed=20 

eo=3 

k=2 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=    22

29  =  0.759       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 3
26 = 0.885 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.821 

Therefore, the Relative Matching Similarity Coefficient gives a grouping 

efficiency of 82.1% at the end of phase 1. 
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Small Problem: Baroni-Urbani and Buser Similarity Coefficient 

Solving the small example’s first phase with the Relative Matching Similarity 

Coefficient, the machine part matrix seen in Table 4.6 is obtained. 

Table 4. 6  Machine-Part matrix for Phase one of a Small problem solved using Baroni-Urbani and 

Buser Matching Similarity Coefficient 

Parts 

M
ac

h
in

es
 11 9 4 1 5 2 7 6 10 3 8 

2 1 1 1 1 1 
4 1 1 1 1 1 
1 1 1 1 1 1 1 1 
5 1 1 1 1 
3 1 1 1 1 

 

The two-dimensional chessboard’s layout for the small example can be seen in 

Figure 4.6 is obtained from the first phase of clustering. 

 

Figure 4. 6 2-D Chessboard’s Layout for Phase one of a Small problem solved using Relative 

Matching Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 2 part families with 3 

exceptional elements.  Therefore, the variables can be set as: 

nm=5 

np=11 

M1=3 

M2=2 

N1=7 

N2=4 

ed=20 

eo=3 

k=2 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=   22

29  =  0.759       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 3
26 = 0.885 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.821 

Therefore, the Baroni-Urbani and Buser Similarity Coefficient gives a grouping 

efficiency of 82.1% at the end of phase 1. 
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Refining the Part Families for a Small Example 

Refining the part families using K-means refining, the layout in Figure 4.7 is 

obtained: 

 

Figure 4. 7 2-D Chessboard for the solution to the small example (End of Phase 2) 

It should be noted that this is the same layout obtained at the end of phase 1.  

Therefore the machine-part matrix can be seen in Table 4.7 and the maximum grouping 

efficiency which can be obtained is 82.1% .  It is not necessary to perform the 3rd phase 

of the ant-based algorithm due to the size of the problem, and the nature of the testing. 

 

Table 4. 7 Machine-Part Matrix for the solution to the small example (End of Phase 2) 

Parts 

M
ac

h
in

es
 9 11 4 1 5 7 2 6 10 8 3 

2 1 1 1 1 1 
4 1 1 1 1 1 
1 1 1 1 1 1 1 1 
5 1 1 1 1 
3 1 1 1 1 
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Medium Problem 

This example is a cellular manufacturing problem with 20 parts manufactured on 

8 machines.  For the small example, the artificial ants will perform initial clustering with 

10, 000 cycles.  The machine-part matrix can be seen in table 4.8 

Table 4. 8 Initial Medium Machine Part Matrix 

 Parts 

M
ac

h
in

es
 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 
 

1 1 
    

1 1 
 

1 
 

1 1 
 

1 1 
 

1 
 2 

  
1 1 

 
1 1 

      
1 

   
1 

 
1 

3 
 

1 
     

1 1 
 

1 
 

1 1 
 

1 1 1 1 
 4 

  
1 1 

 
1 1 

  
1 

      
1 

   5 1 
   

1 1 
   

1 
 

1 
  

1 
 

1 
   6 1 

   
1 

   
1 1 

 
1 

  
1 

    
1 

7 
  

1 1 
 

1 1 
   

1 1 
  

1 
  

1 
 

1 

8 
  

1 1 
 

1 1 
          

1 
 

1 
 

The number of cells and artificial ants on the two dimensional chess board can be 

calculated as: 

� = √� × 4 � √20 � 4 P 9               ���� �
���'��

10
�

20

10
P 2 

Therefore there are 2 ants and 20 parts randomly distributed on a 2-dimensional  

Chessboard of 9 x 9 size. 

 

  

 Figure 4. 8 Initial Random Layout for the medium size problem 



 

69 
 
 

Medium Problem: Jaccard Similarity Coefficient 

Solving the medium example’s first phase with the Jaccard Similarity Coefficient, 

the machine part matrix seen in Table 4.9 is obtained. 

 

Table 4. 9Phase 1 of the medium example solved with the Jaccard Coefficient 

 Parts 

M
ac

h
in

es
 

 
2 8 13 12 16 19 11 17 4 7 18 20 10 14 9 3 6 1 15 5 

1 1 1 1 
 

1 1 1 1 
     

1 1 1 
    2 1 1 1 

 
1 1 1 1 

  
1 

  
1 1 

     3 
        

1 1 1 1 
 

1 
 

1 1 
   4 

       
1 1 1 

  
1 

  
1 1 

   5 
   

1 
   

1 
    

1 
   

1 1 1 1 

6 
   

1 
  

1 
 

1 1 1 1 
   

1 1 
 

1 
 7 

        
1 1 1 1 

   
1 1 

   8 
   

1 
       

1 1 
 

1 
  

1 1 1 
 

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.9 is obtained from the first phase of clustering with the Jaccard Similarity 

Coefficient. 

 

Figure 4. 9 Medium Layout for Phase 1 using the Jaccard Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 3 part families with 20 

exceptional elements.  Therefore, the variables can be set as: 

nm=8 

np=20 

M1=2 

M2=5 

M3=1 

N1=8 

N2=7 

N3=5 

ed=42 

eo=20 

k=3 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
= 44

62  =  0.7097      
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 18
98 = 0.8163 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.763 

Therefore, the Jaccard Similarity Coefficient gives a grouping efficiency of 76.3% 

at the end of phase 1. 
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Medium Problem: Russel and Rao’s Similarity Coefficient 

Solving the medium example’s first phase with Russel and Rao’s Similarity 

Coefficient, the machine part matrix seen in Table 4.10 is obtained. 

 
Table 4. 10 Phase 1 of the medium example solved with the R and R Similarity Coefficient 

 Parts 

M
ac

h
in

es
 

 
2 8 13 18 16 3 11 17 10 14 6 7 4 20 12 9 19 1 15 5 

1 1 1 1 
 

1 1 1 1 
 

1 
     

1 1 
   3 1 1 1 1 1 

 
1 1 

 
1 

     
1 1 

   2 
   

1 
 

1 
   

1 1 1 1 1 
      4 

     
1 

 
1 1 

 
1 1 1 

       5 
       

1 1 
 

1 
   

1 
  

1 1 1 

7 
   

1 
 

1 1 
   

1 1 1 1 1 
   

1 
 8 

   
1 

 
1 

    
1 1 1 1 

      6 
        

1 
    

1 1 1 
 

1 1 1 
 
 

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.10 is obtained from the first phase of clustering with Russel and Rao’s Similarity 

Coefficient. 

 

Figure 4. 10 Medium Layout for Phase 1 using the R and R Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 3 part families with 20 

exceptional elements.  Therefore, the variables can be set as: 

nm=8 

np=20 

M1=2 

M2=5 

M3=8 

N1=7 

N2=5 

N3=3 

ed=42 

eo=20 

k=3 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
= 42

56  =  0.0.75      
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 20
104 = 0.808 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.779 

Therefore, Russel and Rao’s Similarity Coefficient gives a grouping efficiency of 

77.9% at the end of phase 1. 
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Medium Problem: Simple Matching Similarity Coefficient 

Solving the medium example’s first phase with the Simple Matching Similarity 

Coefficient, the machine part matrix seen in Table 4.11 is obtained. 

 
Table 4. 11Phase 1 of the medium example solved with the Simple Matching Similarity Coefficient 

 Parts 

M
ac

h
in

es
 

 
8 13 18 17 10 14 6 5 20 2 12 9 19 3 16 1 15 11 4 7 

3 1 1 1 1 
 

1 
   

1 
 

1 1 
 

1 
  

1 
  1 1 1 

 
1 

 
1 

   
1 

 
1 1 1 1 

  
1 

  2 
  

1 
  

1 1 
 

1 
    

1 
    

1 1 

7 
  

1 
   

1 
 

1 
 

1 
  

1 
  

1 1 1 1 

8 
  

1 
   

1 
 

1 
    

1 
    

1 1 

4 
   

1 1 
 

1 
      

1 
    

1 1 

5 
   

1 1 
 

1 1 
  

1 
    

1 1 
   6 

    
1 

  
1 1 

 
1 1 

   
1 1 

    
 

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.11 is obtained from the first phase of clustering with the Simple Matching 

Similarity Coefficient. 

 

Figure 4. 11 Medium Layout for Phase 1 using the Simple Matching Similarity Coefficient 

 



 

74 
 
 

From the machine part matrix, it can be seen that there are 3 part families with 34 

exceptional elements.  Therefore, the variables can be set as: 

nm=8 

np=20 

M1=2 

M2=5 

M3=1 

N1=6 

N2=8 

N3=6 

ed=28 

eo=34 

k=3 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=  28

58  =  0.483      
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 34
102 = 0.667 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.575 

Therefore, the Simple Matching Coefficient gives a grouping efficiency of 57.5% 

at the end of phase 1. 
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Medium Problem: Relative Matching Similarity Coefficent 

Solving the medium example’s first phase with the Relative Matching Similarity 

Coefficient, the machine part matrix seen in Table 4.12 is obtained. 

Table 4. 12 Phase 1 of the medium example solved with the Relative Matching Similarity Coefficient 

 Parts 

M
ac

hi
ne

s 

 
12 15 8 9 20 16 11 17 6 5 7 3 18 4 13 19 1 10 2 14 

1 
  

1 1 
 

1 1 1 
   

1 
  

1 1 
  

1 1 

3 
  

1 1 
 

1 1 1 
    

1 
 

1 1 
  

1 1 

5 1 1 
     

1 1 1 
      

1 1 
  6 1 1 

 
1 1 

    
1 

      
1 1 

  7 1 1 
  

1 
 

1 
 

1 
 

1 1 1 1 
      2 

    
1 

   
1 

 
1 1 1 1 

     
1 

8 
    

1 
   

1 
 

1 1 1 1 
      4 

       
1 1 

 
1 1 

 
1 

   
1 

   

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.12 is obtained from the first phase of clustering with the Relative Matching 

Similarity Coefficient. 

 

Figure 4. 12 Layout for Phase 1 using the Relative Matching Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 3 part families with 29 

exceptional elements.  Therefore, the variables can be set as: 

nm=8 

np=20 

M1=2 

M2=2 

M3=4 

N1=8 

N2=6 

N3=6 

ed=33 

eo=29 

k=3 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=  33

52  =  0.635      
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 29
108 = 0.731 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.683 

Therefore, the Relative Matching Similarity Coefficient gives a grouping 

efficiency of 68.3% at the end of phase 1. 
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Medium Problem: Baroni-Urbani and Buser Similarity Coefficient 

Solving the medium example’s first phase with the Baroni-Urbani and Buser 

Similarity Coefficient, the machine part matrix seen in Table 4.13 is obtained. 

Table 4. 13 Phase 1 of the medium example solved with the Baroni-Urbani and Buser Similarity 

Coefficient 

 Parts 

M
ac

h
in

es
 

 
3 18 4 8 13 20 17 11 16 2 19 1 15 5 7 6 10 12 9 14 

2 1 1 1 
  

1 
        

1 1 
   

1 

4 1 
 

1 
   

1 
       

1 1 1 
   7 1 1 1 

  
1 

 
1 

    
1 

 
1 1 

 
1 

  8 1 1 1 
  

1 
        

1 1 
    1 1 

  
1 1 

 
1 1 1 1 1 

       
1 1 

3 
 

1 
 

1 1 
 

1 1 1 1 1 
       

1 1 

6 
     

1 
     

1 1 1 
  

1 1 1 
 5 

      
1 

    
1 1 1 

 
1 1 1 

   

The two-dimensional chessboard’s layout for the small example can be seen in 

figure 4.13 is obtained from the first phase of clustering with the Baroni-Urbani and 

Buser Similarity Coefficient. 

 

Figure 4. 13 Layout for Phase 1 using the Baroni-Urbani and Buser Similarity Coefficient 
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From the machine part matrix, it can be seen that there are 3 part families with 25 

exceptional elements.  Therefore, the variables can be set as: 

nm=8 

np=20 

M1=4 

M2=2 

M3=2 

N1=3 

N2=8 

N3=9 

ed=37 

eo=25 

k=3 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
= 37

46  =  0.804      
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 25
46 = 0.781 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.792 

Therefore, the the Baroni-Urbani and Buser Similarity Coefficient gives a 

grouping efficiency of 79.2% at the end of phase 1. 
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Refining Part Families for Phase 2 

Refining the part families using K-means refining, the machine part matrix in 

table 4.14 below is obtained. 

Table 4. 14 Medium Problems Result of K-Means Clustering: Machine-Part Matrix 

 Parts 

M
ac

hi
ne

s 

 
4 7 18 20 10 12 11 17 1 5 15 2 8 9 13 14 16 19 3 6 

2 1 1 1 1 
           

1 
  

1 1 

4 1 1 
  

1 
  

1 
          

1 1 

7 1 1 1 1 
 

1 1 
   

1 
       

1 1 

8 1 1 1 1 
              

1 1 

1 
      

1 1 
   

1 1 1 1 1 1 1 1 
 3 

  
1 

   
1 1 

   
1 1 1 1 1 1 1 

  5 
    

1 1 
 

1 1 1 1 
        

1 

6 
   

1 1 1 
  

1 1 1 
  

1 
       

Figure 4.14 below shows the layout of the two dimensional chessboard at the end of 

phase 2. 

 

Figure 4. 14 Medium Problems Result of K-Means Clustering: 2-D Chessboard 
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Combining heaps into Part Families 

 Since the first phase is based on random clustering, there is a possibility that the 

first phase will produce too many part families.  This excess in families will therefore 

result a high number of exceptional elements.  This phase is done at the discretion of the 

facility designer.  After performing the third phase of combining the heaps, the following 

machine part matrix is obtained: 

Table 4. 15 Final machine part matrix for the medium sized example 

 Parts 

M
ac

h
in

es
 

 

3 4 6 7 18 20 2 8 9 13 14 16 17 19 11 1 5 10 12 15 

2 1 1 1 1 1 1 

    

1 

         4 1 1 1 1 

        

1 

    

1 

  7 1 1 1 1 1 1 

        

1 

   

1 1 

8 1 1 1 1 1 1 

              1 1 

     

1 1 1 1 1 1 1 1 1 

     3 

    

1 

 

1 1 1 1 1 1 1 1 1 

     5 

  

1 

         

1 

  

1 1 1 1 1 

6 

     

1 

  

1 

      

1 1 1 1 1 

 

The layout of the two dimensional chessboard is shown below: 

 

Figure 4. 15 Final layout of the medium sized problem 
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From the machine part matrix shown in table 4.15, it can be seen that the last 

phase gives 3 distinct part families with 11 exceptional elements.  The total number of 

operations is 62 operations done by 8 machines to the 20 parts.  Therefore, the variables 

can be set as: 

nm=8 

np=20 

M1=4 

M2=2 

M3=2 

N1=6 

N2=9 

N3=5 

ed=51 

eo=11 

k=3 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=  51

52  =  0.981      
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 11
52 = 0.898 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E�0.940 

Therefore, after refining the part heaps using K-means refining, and combining 

the excess part families, the grouping efficiency is improved to 94.0%. 
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Large Problem 

This problem is a cellular manufacturing problem with 40 parts being 

manufactured on 24 machines.  For the initial machine – part matrix please refer to 

Appendix B.1. 

Large Problem: Jaccard Similarity Coefficient 

From the results generated by the ant based algorithm, the Jaccard similarity 

coefficient gives a solution which generated the following variables: 

nm=24 

np=40 

M1=4 

M2=4 

M3=2 

M4=4 

M5=4 

M6=2 

M7=2 

N1=7 

N2=5 

N3=3 

N4=7 

N5=5 

N6=3 

N7=3 

ed=112 

eo=19 

k=7 

 

The sum of machines multiplied by parts in a heap is: 

: H'I'
�

'=>
= 132 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=     = 112

132  = 0.848       
and 
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E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 19
828 = 0.977 

 

 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.913 

Therefore, the Jaccard Similarity Coefficient gives a grouping efficiency of 91.3% 

at the end of phase 1. 

Large Problem: Russel and Rao’s Similarity Coefficient 

From the results generated by the ant based algorithm, Russel and Rao’s 

similarity coefficient gives a solution which generated the following variables: 

nm=24 

np=40 

M1=4 

M2=2 

M3=3 

M4=2 

M5=8 

M6=2 

M7=3 

N1=4 

N2=2 

N3=5 

N4=11 

N5=3 

N6=8 

N7=7 

ed=66 

eo=65 

k=7 

 

The sum of machines multiplied by parts in a heap is: 

: H'I'
�

'=>
= 118 
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Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=     = 65

118  = 0.559       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 65
842 = 0.922 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.741 

Therefore, Russel and Rao’s Coefficient gives a grouping efficiency of 74.1% at 

the end of phase 1. 

Large Problem: Simple Matching Similarity Coefficient 

From the results generated by the ant based algorithm, the Simple Matching 

similarity coefficient gives a solution which generated the following variables: 

nm=24 

np=40 

M1=2 

M2=2 

M3=2 

M4=1 

M5=5 

M6=7 

M7=7 

N1=4 

N2=4 

N3=5 

N4=4 

N5=8 

N6=8 

N7=7 

ed=68 

eo=63 

k=7 

 

The sum of machines multiplied by parts in a heap is: 
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: H'I'
�

'=>
= 159 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=    68

159  = 0.428       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 63
801 = 0.921 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.675 

Therefore, the Simple Matching Similarity Coefficient gives a grouping efficiency 

of 67.5% at the end of phase 1. 

Large Problem: Relative Matching Similarity Coefficient 

From the results generated by the ant based algorithm, the Relative Matching 

similarity coefficient gives a solution which generated the following variables: 

nm=24 

np=40 

M1=2 

M2=2 

M3=3 

M4=2 

M5=2 

M6=5 

M7=8 

N1=3 

N2=3 

N3=3 

N4=6 

N5=3 

N6=3 

N7=13 

ed=77 

eo=54 

k=7

The sum of machines multiplied by parts in a heap is: 
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: H'I'
�

'=>
= 167 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=     = 77

167  = 0.461       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 54
793 = 0.932 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.696 

Therefore, the Relative Matching similarity coefficient gives a grouping 

efficiency of 69.6% at the end of phase 1. 

Large Problem: Baroni-Urbani and Buser Matching Similarity Coefficient 

From the results generated by the ant based algorithm, the Baroni-Urbani and 

Buser similarity coefficient gives a solution which generated the following variables: 

nm=24 

np=40 

M1=5 

M2=3 

M3=4 

M4=4 

M5=2 

M6=2 

M7=4 

N1=6 

N2=5 

N3=5 

N4=3 

N5=7 

N6=8 

N7=6 

ed=112 

eo=19 

k=7

The sum of machines multiplied by parts in a heap is: 
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: H'I'
�

'=>
= 131 

Both left and right side “partial-grouping” efficiencies can be obtained: 

E> = 1&∑ H'I'�'=>
=     = 112

131  = 0.855       
and 

E� = 1 − J 1(
�K�� −  ∑ H'I'�'=>

L = 1 − 19
829 = 0.977 

Having both η1 and η2, the grouping efficiency (η) can be calculated as: 

E = 3E> + �1 − 3�E� = 0.916 

Therefore, the Baroni-Urbani and Buser similarity coefficient gives a grouping efficiency 

of 91.6% at the end of phase 1. 

Refining the Part Families in the large example 

Performing the k means refining on the solutions generated in phase 1, the 

machine component matrix in Appendix B, Table B.2 is generated.  As there are no 

exceptional elements in this solution, the heaps do not need to be combined to form part 

families.  The lack of exceptional elements in the solution also yields a grouping 

efficiency of 100%.  Therefore the solution presented in table B.2 is the optimum solution 

for the problem presented in table B.1. 
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CHAPTER V 

COMPARING THE RESULTS OF THE TESTS 

Results of the solution qualities yielded from different similarity coefficients 

The results in the small example all yielded the same grouping efficiency.  This 

may have occurred due to the size of the problem and the low number of part families.  

The compared grouping efficiencies and exceptional elements for the small sized 

example can be seen in Figure 4.16 and figure 4.17 respectively. 

 

 

Figure 5. 1 Small Sized Example: Grouping Efficiency 
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Figure 5. 2 Small Sized Example: Exceptional Elements 

The compared grouping efficiencies and exceptional elements for the medium 

sized example can be seen in Figure 4.18 and figure 4.19 respectively. 

 

Figure 5. 3 Medium Problem: Grouping Efficiency 
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Figure 5. 4 Medium Problem: Exceptional Elements 

The compared grouping efficiencies and exceptional elements for the large sized 

example can be seen in Figure 4.20 and figure 4.21 respectively. 

 

Figure 5. 5 Large Example: Grouping Efficiency 
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Figure 5. 6 Large Example: Exceptional Elements 
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Comparison of algorithm efficiency between different similarity coefficients 

As previously mentioned there is a relationship between the grouping efficiency 

in the solution produced from the first phase of the artificial ant-based algorithm.  It is 

important to note that all processes in this investigation were conducted under identical 

conditions.  The computer that produced these solutions is a Hewlett-Packard company 

model p6152f desktop model, with an AMD Phenom™ 8450 Triple Core processor.  It is 

a 64-bit operating system with 4.00 GB of ram.  It should be noted that one of the 

processors on this system was dedicated to running the ant based algorithm, and all other 

windows idle processes with done on the remaining processors.  This was done so that 

the idle processes that the Windows Vista generates do not interfere with the process of 

timing the duration of the artificial ant-based algorithm. 

In Figures 4.22-4.26, on the following pages, the average length of the 3 examples 

for each similarity coefficient is shown.  Each example was run ten times per similarity 

coefficient under identical conditions. 

 

 

 

 

 

 

 

  



 

93 
 
 

 

Figure 5. 7 Jaccard Similarity Coefficient Running Time 

 

Figure 5. 8 Russel and Rao's Similarity Coefficient Running Time 
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Figure 5. 9 Simple Matching Similarity Coefficient Running Time 

 

Figure 5. 10 Relative Matching Similarity Coefficient Running Time 
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Figure 5. 11 Baroni-Urbani and Buser Similarity Coefficient Running Time 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Concluding Remarks 

Most of the ant algorithm models in literature focus on developing part families to 

be as optimal as possible, rather than focusing on the efficiency of the algorithm itself.  

Many of the ant algorithm optimization techniques in literature are also developed into 

software, which are used by practitioners in the industry.  The operational requirements 

of these ant algorithm software are very demanding.  Thus, there exists a need for an 

efficient, easy to program ant algorithm that would create the optimal cellular 

manufacturing problem solution, and in doing so would use minimum resources.   In 

order to satisfy the need for an artificial ant-based algorithm that is efficient as well as 

easy to program, an existing ant algorithm was modified so that it could be used to solve 

the cellular manufacturing problem.  The original algorithm, AntClass uses Euclidean 

vectors to measure the similarity between parts.  The modified version used in this 

research, due to the fact that similarity is used to group parts together instead of 

distances, the modified version uses similarity coefficients.  The concept of heaping 

clusters was also introduced to ant algorithms for cellular manufacturing.  Instead of 

using Euclidean vectors to measure the distance to the center of a heap, as is such in the 

AntClass algorithm, an average similarity was introduced to measure the similarity 

between a part and a heap, therefore allowing the easy rebuilding of clusters in order to 

compare the effects of different similarity coefficients on the ant-based algorithm. 

In the literature, we have seen that there are several ways in which to solve the 

cellular manufacturing problem.  Many of these existing methods however, are not as 
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flexible as the swarm intelligence methods.  Even though there are existing ant algorithm 

models, there has been limited comparison of the processes within the ant algorithm, with 

other replaceable processes.  In order to determine a similarity coefficient, 5 similarity 

coefficients were selected.  Of the five compared similarity coefficients, two of the 

similarity coefficients worked well with the algorithm.  The Jaccard similarity coefficient 

produces slightly lower quality results in a slightly shorter time than the Baroni-Urbani 

and Buser similarity coefficient.  The Simple Matching, Relative Matching and Russel 

and Rao’s Similarity coefficient are not recommended for this algorithm.  The simple 

matching similarity coefficient does not produce high quality solutions in phase 1, 

therefore leading to longer than necessary remaining phases.  The Relative Matching and 

Russel and Rao’s Similarity coefficients are not suggested because they seem to be 

unstable with this type of algorithm, therefore causing process lockups, and longer 

process run times.  Similarity/Dissimilarity Coefficients, which differ from similarity 

coefficients because they have a range of -1 to 1 instead of 0 to 1, will not work with this 

algorithm, because the artificial ant’s logic does not consider negative values. 

 

Recommendations for future research 

With the modifications and comparisons within this artificial ant-based clustering 

algorithm for cellular manufacturing, several windows of opportunity for new research 

open up.  The relationship between exceptional elements and grouping efficiency can 

now be formally investigated.  The algorithm can be additionally modified so that it 

considers negative values and therefore some similarity/dissimilarity coefficients can be 

used, or tested on this algorithm.  There are also additional factors that can now be 
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considered.  Product volume and demand can be taken into account in the artificial ant-

based algorithm.  Other factors, such as operator considerations and setup times, or idle 

time for machine repairs can also be taken into account. 
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APPENDICES 
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APPENDIX A 

Layout Presentation and Similarity Coefficient Calculations 

Output for two dimensional chessboards 

The algorithm does not output pictures; it outputs a set of coordinates for the parts 

and the ants.  If two or more parts have the same coordinates, they are considered heaped 

together.  An example of a layout for the medium sized problem is: 

Ants' initial positions: 

Ant[ 0]: ( 0 ,  0) 

Ant[ 1]: ( 2 ,  5) 

Parts' initial positions: 

Part[ 0]: ( 0 ,  0) 

Part[ 1]: ( 2 ,  5) 

Part[ 2]: ( 3 ,  7) 

Part[ 3]: ( 5 ,  8) 

Part[ 4]: ( 8 ,  6) 

Part[ 5]: ( 0 ,  2) 

Part[ 6]: ( 2 ,  2) 

Part[ 7]: ( 6 ,  4) 

Part[ 8]: ( 8 ,  3) 

Part[ 9]: ( 1 ,  1) 

Part[10]: ( 5 ,  3) 

Part[11]: ( 5 ,  0) 

Part[12]: ( 7 ,  5) 

Part[13]: ( 0 ,  4) 

Part[14]: ( 0 ,  3) 

Part[15]: ( 4 ,  0) 

Part[16]: ( 7 ,  4) 

Part[17]: ( 3 ,  2) 

Part[18]: ( 5 ,  7) 

Part[19]: ( 8 ,  5) 
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Similarity Coefficient Calculations 

The similarity coefficients are calculated according to their corresponding formulas and then stored in a table, such as the one 

for the Medium sized Problem using the Baroni-Urbani and Buser Similarity coefficient shown in table A.1. 

Table A. 1 Similarity Coefficient Calculation and Storage 

 Parts 

P
a

rt
s 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0.48 0.00 0.00 0.00 0.48 0.26 0.00 0.00 0.30 0.46 0.00 0.46 0.00 0.00 0.48 0.00 0.28 0.00 0.00 0.28 

2 0.00 0.48 0.26 0.00 0.00 0.00 0.00 0.48 0.46 0.00 0.46 0.00 0.48 0.46 0.00 0.48 0.45 0.28 0.48 0.00 

3 0.00 0.26 0.75 0.65 0.00 0.63 0.65 0.26 0.22 0.22 0.40 0.22 0.26 0.40 0.00 0.26 0.36 0.52 0.26 0.52 

4 0.00 0.00 0.46 0.67 0.00 0.65 0.67 0.00 0.00 0.26 0.26 0.26 0.00 0.26 0.00 0.00 0.22 0.55 0.00 0.55 

5 0.48 0.00 0.00 0.00 0.48 0.26 0.00 0.00 0.30 0.46 0.00 0.46 0.00 0.00 0.48 0.00 0.28 0.00 0.00 0.28 

6 0.26 0.00 0.63 0.65 0.26 0.75 0.65 0.00 0.00 0.40 0.22 0.40 0.00 0.22 0.26 0.00 0.36 0.52 0.00 0.52 

7 0.00 0.00 0.65 0.67 0.00 0.65 0.67 0.00 0.00 0.26 0.26 0.26 0.00 0.26 0.00 0.00 0.22 0.55 0.00 0.55 

8 0.00 0.48 0.26 0.00 0.00 0.00 0.00 0.48 0.46 0.00 0.46 0.00 0.48 0.46 0.00 0.48 0.45 0.28 0.48 0.00 

9 0.30 0.46 0.22 0.00 0.30 0.00 0.00 0.46 0.48 0.28 0.45 0.28 0.46 0.45 0.30 0.46 0.43 0.26 0.46 0.26 

10 0.46 0.00 0.22 0.26 0.46 0.40 0.26 0.00 0.28 0.58 0.00 0.45 0.00 0.00 0.46 0.00 0.43 0.00 0.00 0.26 

11 0.00 0.46 0.40 0.26 0.00 0.22 0.26 0.46 0.00 0.00 0.58 0.28 0.46 0.45 0.00 0.46 0.43 0.43 0.46 0.26 

12 0.46 0.00 0.22 0.26 0.46 0.40 0.26 0.00 0.45 0.45 0.28 0.58 0.00 0.00 0.46 0.00 0.26 0.26 0.00 0.43 

13 0.00 0.48 0.26 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.46 0.00 0.48 0.46 0.00 0.48 0.45 0.28 0.48 0.00 

14 0.00 0.46 0.40 0.26 0.00 0.22 0.26 0.46 0.00 0.00 0.45 0.00 0.46 0.58 0.00 0.46 0.43 0.43 0.46 0.26 

15 0.48 0.00 0.00 0.00 0.48 0.26 0.00 0.00 0.46 0.46 0.00 0.46 0.00 0.00 0.48 0.00 0.28 0.00 0.00 0.28 

16 0.00 0.48 0.26 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.46 0.00 0.48 0.46 0.00 0.48 0.45 0.28 0.48 0.00 

17 0.28 0.45 0.36 0.22 0.28 0.36 0.22 0.45 0.43 0.43 0.43 0.26 0.45 0.43 0.28 0.45 0.67 0.22 0.45 0.00 

18 0.00 0.28 0.52 0.55 0.00 0.52 0.55 0.28 0.00 0.00 0.43 0.26 0.28 0.43 0.00 0.28 0.22 0.67 0.28 0.55 

19 0.00 0.48 0.26 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.46 0.00 0.48 0.46 0.00 0.48 0.45 0.28 0.48 0.00 

20 0.28 0.00 0.52 0.55 0.28 0.52 0.55 0.00 0.26 0.26 0.26 0.43 0.00 0.26 0.28 0.00 0.00 0.55 0.00 0.67 
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APPENDIX B: Data from Large Example 

Table B. 1 Initial Machine-Part Matrix 

1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
5 

2
5 

2
6 

2
7 

2
8 

2
9 

3
0 

3
1 

3
2 

3
3 

3
4 

3
6 

3
7 

3
8 

3
9 

4
0 

6
5 

1 1 1 1 1 1 

2 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 

5 1 1 1 1 1 1 

6 1 1 1 1 1 1 

7 1 1 1 

8 1 1 1 1 1 1 

9 1 1 1 1 1 

10 1 1 1 1 1 

11 1 1 1 1 1 1 

12 1 1 1 1 1 1 

13 1 1 1 1 1 

14 1 1 1 

15 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 

17 1 1 1 1 1 

18 1 1 1 1 1 1 

19 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 

21 1 1 1 1 1 

22 1 1 1 1 1 

23 1 1 1 

24 1 1 1 
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Table B. 2 Machine Part Matrix For the Large Problem with a 100% grouping efficiency 

1 9 
1
6 

1
7 

3
3 

1
0 

1
3 

1
4 

2
2 

3
5 

3
6 2 

1
1 

1
2 

1
5 

2
3 

2
5 

3
1 

3
4 8 

1
9 

2
1 

2
8 

3
7 

3
8 

3
9 4 5 

1
8 

2
6 

2
7 

3
0 3 

2
5 

3
2 6 7 

2
0 

2
9 

4
0 

1 1 1 1 1 1 

13 1 1 1 1 1 

21 1 1 1 1 1 

22 1 1 1 1 1 

2 1 1 1 1 1 1 

5 1 1 1 1 1 1 

11 1 1 1 1 1 1 

19 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 

16 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 

8 1 1 1 1 1 1 

12 1 1 1 1 1 1 

15 1 1 1 1 1 1 

18 1 1 1 1 1 1 

7 1 1 1 

14 1 1 1 

23 1 1 1 

24 1 1 1 

9 1 1 1 1 1 

10 1 1 1 1 1 

17 1 1 1 1 1 
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APPENDIX C 

Equations and Variables 

List of Equations 

Equation 15: Calculating the size of the 2 dimensional chessboard 

�� = �� × 4 	
 � = ��� × 4 

Equation 16: Calculating the number of artificial ants 

���� = ��10 

Equation 17: Similarity density function to measure the similarity of a part Pk with its 

 surroundings 

����� = ∑ � ��� , ���
��� , �� ∈  �� 

Equation 18: Probability transfer function for an artificial ant to pick up a part 

��;G����� = ! -�-� + �����$
�
 

Equation 19: Probability transfer function for an artificial ant to drop a part 

 

�&'(����� = )2����� +� ����� < -&1              ./ℎ123+�1 4 
Equation 20: Average similarity between a part and a heap 

�̅6��, 789 = : ���� , �;�
��< + 1

<

;=>
 

Equation 21: Jaccard Similarity Coefficient 

? = @
@ + A + B 
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Equation 22: Russel and Rao’s Similarity Coefficient 

? = @
@ + A + B + C 

 

Equation 23: Simple Matching Coefficient 

? = @ + C
@ + A + B + C 

Equation 24: Relative Matching Coefficient 

? = @ + √@C
@ + A + B + C + √@C 

Equation 25: Baroni-Urbani and Buser Similarity Coefficient 

? = @ + √@C
@ + A + B + C + √@C 

 

Equation 26: Grouping Efficiency for a Machine-Part Matrix 

E = 3E> + �1 − 3�E� 

Equation 27: Left side partial grouping efficiency 

E> = 1G∑ H'I'�'=>
                

Equation 28: Right Side grouping efficiency 

E� = 1 − J 1(
�K�� − ∑ H'I'�'=>

L 
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List and definition of Variables 

1. �� is the number of parts 

2. 78 is the current heap 

3. ��< is the number of parts in 78 

4. �̅6�� , 789  is the average similarity between a part and a heap 

5. a is the number of machines which produce both components i and j 

6. b is the number of machines which produce only component i  

7. c is the number of machines which produce only component j 

8. d is the number of machines which produce neither components i or j 

9. ec is the number of non-exceptional elements 

10. ee is the number of exceptional elements 

11. f(Pk) similarity density function to measure the similarity of a part Pk with  its 

 surroundings 

12. ℎ is the number of parts in the 78 

13. k is the number of diagonal blocks on the machine-part matrix 

14. kd is a constant value with a range of 0 < kd < 1 

15. kp constant value with their range between 0 < kp<1 

16. m is the length and width of the two dimensional chessboard, 

17. Mr is the number of machines in the rth cell 

18. n2 is the surrounding area that is recognizable to an artificial ant (3-8  cells) 

19. nm is the number of machines 

20. np is the number of parts 

21. Nr is the number of components in the rth family 

22. is the number of operations in the machine part matrix 

23. Pdrop(Pk) probability transfer function for an artificial ant to lay aside the  Part Pk 

24. Pk is the part held or encountered by an artificial ant 

25. Pl is the part located in one of the 3-8 surrounding cells on the 2-

 dimensional  chessboard 

26. Ppick(Pk) is the probability transfer function for an artificial ant to pick up  the 

 part Pk 
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27. S(Pk, Pl) is the similarity between parts Pk and Pl 

28. v is the number of voids in the solution 

29. w is a constant relating the importance of intercellular movement (equal to 0.5 in 

 the  study) 

30. ���� , �;� is the similarity between part k and part i 
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APPENDIX D 

Source Code 

#include<stdio.h> 

#include<math.h> 

#include<stdlib.h> 

#define PARTS 20 

#define MACHINES 8 

#define ANTS 2 

#define MEM 8 

#define TRUE 1 

#define FALSE 0 

 

#define SUCCESS 0 

#define FAIL 1 

 

//--------------------------------------------------------------------------- 

 

int CM[MACHINES][PARTS];                      // the components matrix 

double SM[PARTS][PARTS];                     // the similarity matrix 

 

int C = ceil(sqrt((double) PARTS * 4.0));  // Dynamic chessboard dimension 
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//--------------------------------------------------------------------------- 

 

int InRange(int x, int y) 

{ 

  if(x>=0 && x<C && y>=0 && y<C) return TRUE; 

  return FALSE; 

} 

 

//--------------------------------------------------------------------------- 

 

#include "T_position.hpp" 

#include "T_que.hpp" 

#include "T_part.hpp" 

 

//--------------------------------------------------------------------------- 

 

TPart PartList[PARTS]; 

 

//------------------------------------------------------------------------------ 

 

void InitiatePartLocations(void) 

{ 

  for(int i=0; i<PARTS; i++) 
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  { 

    PartList[i].SetId(i);  PartList[i].TakeALocation(); 

  } 

} 

 

//------------------------------------------------------------------------------ 

 

int PartsAtXY(int x, int y, int *found_parts) 

{ 

  int found=0; 

 

  for(int i=0; i<PARTS; i++) 

    if(PartList[i].AreYouAt(x, y) == TRUE) 

      found_parts[found++] = PartList[i].GetId(); 

  return found; 

} 

 

//------------------------------------------------------------------------------ 

 

int HeapPart(int *FoundParts, int Prts) 

{ 

  double Similarity(TPart, TPart); // just a prototype 

  double Sum=0, *sum = new double[Prts]; 
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  for(int i=0; i<Prts; i++) sum[i]=0;  // resetting sums 

 

  int count = 0; 

  for(int i=0; i<Prts-1; i++) 

    for(int j=i+1; j<Prts; j++) 

    { 

      ++count; 

      Sum += Similarity(PartList[FoundParts[i]], PartList[FoundParts[j]]); 

    } 

  Sum /= count; 

 

  for(int i=0; i<Prts; i++) 

  { 

    for(int j=0; j<Prts; j++) 

      if(i==j) continue; 

      else 

        sum[i] += Similarity(PartList[FoundParts[i]], PartList[FoundParts[j]]); 

    sum[i] /= (Prts-1); 

  } 

 

  double MaxValue, Value; int BestPart; 

  for(int i=0; i<Prts; i++) 

  { 
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    Value = fabs(Sum-sum[i]); 

    if(i==0) 

    { 

      MaxValue = Value;  BestPart = i; 

    } 

    else 

        if(Value > MaxValue) 

        { 

          MaxValue = Value;  BestPart = i; 

        } 

  } 

 

  delete[] sum; 

  return BestPart; 

} 

 

//--------------------------------------------------------------------------- 

 

#include "T_ant.hpp" 

 

//------------------------------------------------------------------------------ 

 

TAnt AntList[ANTS]; 
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//------------------------------------------------------------------------------ 

 

void InitiateAntLocations(void) 

{ 

  int occupied; 

  for(int i=0; i<ANTS; i++) 

  { 

    AntList[i].SetId(i); 

    do 

    { 

      occupied = FALSE; 

      AntList[i].TakeALocation(); 

      for(int j=0; j<i; j++) 

        if(AntList[j].AreYouAt(AntList[i].GetXLocation(), AntList[i].GetYLocation()) == 

TRUE) 

        { 

          occupied = TRUE;  break; 

        } 

    } while(occupied == TRUE); 

  } 

} 

 



 
  

114 
 

//------------------------------------------------------------------------------ 

 

double Similarity(TPart p1, TPart p2) 

{ 

  int a, b, c, d, k=0; 

 

  a = b = c = d = 0; 

  for(int i=0; i<MACHINES; i++) 

    if(CM[i][p1.GetId()] == 1 && CM[i][p2.GetId()] == 1) 

      ++a; 

    else 

      if(CM[i][p1.GetId()] == 1 && CM[i][p2.GetId()] == 0) 

        ++b; 

      else 

        if(CM[i][p1.GetId()] == 0 && CM[i][p2.GetId()] == 1) 

          ++c; 

        else 

          if(CM[i][p1.GetId()] == 0 && CM[i][p2.GetId()] == 0) 

            ++d; 

 

  double Num = (a-k) + sqrt((a-k)*d); 

  double Den = Num + b + c + d; 

  return Num/Den; 
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} 

 

//------------------------------------------------------------------------------ 

 

void ComputeSimilarityMatrix(void) 

{ 

  for(int i=0; i<PARTS; i++) 

    for(int j=0; j<PARTS; j++) 

      SM[i][j] = Similarity(PartList[i], PartList[j]); 

} 

 

//------------------------------------------------------------------------------ 

 

int LoadComponentMatrix(char *file_name) 

{ 

  FILE *f = fopen(file_name, "r"); 

  if(!f) return FALSE; 

  for(int i=0; i<MACHINES; i++) 

    for(int j=0; j<PARTS; j++) 

      fscanf(f, "%d", &CM[i][j]); 

  fclose(f); 

 

  ComputeSimilarityMatrix(); 
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  return TRUE; 

} 

 

//------------------------------------------------------------------------------ 

 

void PrintParts(char *f_name) 

{ 

   FILE *f = fopen(f_name, "a"); 

 

   fprintf(f, "Parts:\n======\n"); 

   for(int i=0; i<PARTS; i++) 

     fprintf(f, "P%d --> (%d, %d)\n", i, PartList[i].GetXLocation(), 

PartList[i].GetYLocation()); 

   fprintf(f, "\n\n"); 

   fclose(f); 

} 

 

//------------------------------------------------------------------------------ 

 

void PrintAnts(char *f_name) 

{ 

   FILE *f = fopen(f_name, "a"); 
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   fprintf(f, "Ants:\n=====\n"); 

   for(int i=0; i<ANTS; i++) 

   { 

     fprintf(f, "Ant%d --> (%d, %d) --> [%d parts]:", i, AntList[i].GetXLocation(), 

                       AntList[i].GetYLocation(), AntList[i].GetParts()); 

     for(int j=0; j<AntList[i].GetParts(); j++) 

       fprintf(f, "%d, ", AntList[i].GetPart(j)); 

     fprintf(f, "\n"); 

   } 

   fprintf(f, "\n\n"); 

   fclose(f); 

} 

 

//------------------------------------------------------------------------------ 

 

int main(int argc, char* argv[]) 

{ 

  randomize(); 

  InitiatePartLocations();  PrintParts("d:\\Ant\\AntOutput.txt"); 

  InitiateAntLocations(); PrintAnts("d:\\Ant\\AntOutput.txt"); 

  LoadComponentMatrix("d:\\Ant\\CM01.txt");  // it does compute similarities as well 

 



 
  

118 
 

  for(int i=0; i<ANTS; i++) 

  { 

    AntList[i].Move();  PrintAnts("d:\\Ant\\AntOutput.txt"); 

  } 

 

  return 0; 

} 

//--------------------------------------------------------------------------- 



 

119 
 

REFERENCES 

1. Abdule-Wahab, R. S., Monmarché, N., Silmane, M., Fahdil, M. A., & Saleh, H. H. 

(2006). A Scatter Search Algorithm for the Automatic Clustering Problem. Lecture Notes 

in Computer Science , 350-364. 

 

2. Adil, G., Rajamani, D., & Strong, D. (1993). A mathematical model for cell formation 

considering investment and operational costs. European Journal of Operational Research 

, 69 (3), 330-341. 

 

3. Al-Sultan, K. S. (1997). A hard clustering approach to the part family problem. 

Production Planning and Control , 8, 231-236. 

 

4. Arikan, F., & Güngör, Z. (2009). Modeling of a Manufacturing Cell Design Problem with 

Fuzzy Multi-objective Parametric Programming. Mathematical and Computer Modelling 

, 50 (3-4), 407-420. 

 

5. Askin, R., & Chiu, K. (1990). A graph partitioning procedure for machine assignment 

and cell formation in group technology. International Journal of Production Research , 

28 (8), 1555-1572. 

 

6. Askin, S., Cresswell, S., Goldberg, J., & A.J., V. (1991). A Hamiltonian path approach to 

reordering the part-machine matrix for cellular manufacturing. International Journal of 

Production Research , 29 (6), 1081-1100. 

 

7. Bajestani, M. A., Rabanni, M., Rahimi-Vahed, A. R., & Khoshkhou, G. B. (2009). A 

multi-objective scatter search for a dynamic cell formation problem. Computers and 

Operations Research , 36 (3), 777-794. 

 



 

120 

8. Baykasoglu, A. (2001). MOAPPS 1.0: aggregate production planning using the multiple-

objective tabu search. International Journal of Production Research, , 39 (16), 3685-

3702. 

 

9. Beaulieu, A., Gharbi, A., & Ait-Kadi. (1997). An algorithm for the cell formation and the 

machine selection problems in the design of a cellular manufacturing system. 

International Journal of Production Research , 35 (7), 1857-1874. 

 

10. Beni, G., & Wang, J. (1989). Swarm Intelligence in Cellular Robotic Systems. NATO 

Advanced Workshop on Robots and Biological Systems. Tuscany, Italy. 

 

11. Bhide, P., Bhandwale, A., & Kesavadas, T. (2005). Cell formation using multiple process 

plans. Journal of Intelligent Manufacturing , 16 (1), 53-65. 

 

12. Black, J. (2000). Lean Manufacturing Implementation. Innovations in competitive 

manufacturing , 177-186. 

 

13. Brandon, J. (1996). Cellular Manufacturing: Integrating Technology and Management. 

England: Somerset. 

 

14. Brown, E. C., & Sumichrast, R. T. (2001). CF-CGA: a grouping genetic algorithm for the 

cell formation problem. International Journal of Production Research , 36, 3651-3669. 

 

15. Burbridge, J. L. (1992). Change to group technology: process organisation is obsolete. 

International Journal of Production Research , 30 (5), 1202-1219. 

 



 

121 

16. Caux, C., Bruniaux, R., & Pierreval, H. (2000). Cell formation with alternative process 

plans and machine capacity constraints: A new combined approach. International 

Journal Production Economics , 64 (1-3), 279-284. 

 

17. Chan, H. M., & Milner, D. A. (1982). Direct Clustering Algorithm for Group Formation 

in cellular Manufacture. Journal of Manufacturing Systems , 1 (1), 65-75. 

 

18. Chandrasekharan, M. P., & Rajagopalan, R. (1986a). An ideal seed non-hierarchical 

clustering algorithm for cellular manufacturing. International Journal of Production 

Research , 24 (2), 451-464. 

 

19. Chandrasekharan, M. P., & Rajagopalan, R. (1989). GROUPABILITY: an analysis of the 

properties of binary data matrices for group technology. International Journal of 

Production Research , 27 (6), 1035-1052. 

 

20. Chandrasekharan, M. P., & Rajagopalan, R. (1986b). MODROC: An extension of rank 

order clustering for group technology. International Journal of Production Research , 24 

(5), 1221-1233. 

 

21. Chang, P.-T., & Lee, E. S. (2000). A multisolution Methid for Cell Formation-Exploring 

Practical Alternatives in Group Technology Manufacturing. Computers and Mathematics 

with Applications , 40 (10-11), 1285-1296. 

 

22. Choobineh, F. (1988). A framework for the design of cellular manufacturing systems. 

International Journal of Production Research , 26 (7), 1161-1172. 

 

23. Chow, W. S., & Hawaleshka, O. (1993). Minimizing intercellular part movements in 

manufacturing cell formation. International Journal of Production Research , 31 (9), 

357-372. 



 

122 

24. Chu, C.-h., & Tsai, M. (1990). A comparison of three array-based clustering techniques 

for manufacturing cell formation. International Journal of Production Research , 28 (8), 

1417-1433. 

 

25. Co, H., & Arrar, A. (1988). Configuring cellular manufacturing systems. International 

Journal of Production Research , 26 (9), 1511-1522. 

 

26. da Silveira, G. (1999). A methodology of implementation of cellular manufacturing. 

International Journal of Production Research , 37 (2), 467-479. 

 

27. Dahel, N., & Smith, S. (1993). Designing flexibility into cellular manufacturing systems. 

International Journal of Production Research , 43 (5), 933-945. 

 

28. Damodaran, V., Singh, N., & Lashkari, R. (1993). Design of cellular manufacturing 

systems with refixturing and material handling considerations. Applied Stochastic Models 

and Data Analysis , 9 (2), 97-109. 

 

29. De Witte, J. (1980). The use of similarity coefficients in production flow analysis. 

International Journal of Production Research , 18 (4), 503-514. 

 

30. Defersha, F. M., & Chen, M. (2006). A comprehensive mathematical model for the 

design og cellular manufacturing systems. International Journal of Production 

Economics , 103 (2), 767-783. 

 

31. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System: Optimization by a Colony 

of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B: 

Cybernetics , 26 (1), 29-41. 

 



 

123 

32. Du, K. L. (2010). Clustering: A neural network approach. Neural Networks , 23 (1), 89-

107. 

 

33. Dutta, S. P., Lashkari, R. S., Nadoli, G., & Ravi, T. (1986). A heuristic procedure for 

determining manufacturing families from design based grouping for FMS. Computers 

and Industrial Engineering , 10 (3), 193-201. 

 

34. El-Essawy, I., & Torrance, J. (1972). Component Flow Analysis. The Production 

Engineer , 165-70. 

 

35. Gombinski, ,. J. (1969). Fundamental aspects of component classification. Annals of the 

CIRP , 367-374. 

 

36. Gonçalves, J. F., & Resende, M. G. (2004). An evolutionary algorithm for manufacturing 

cell formation. Computers and Industrial Engineering , 47 (2-3), 247-273. 

 

37. Groover, M., & Zimmers, E. (1984). CAD/CAM: Computer-aided design and 

manufacturing. Englewood Cliffs, NJ, USA: Prentice-Hall. 

 

38. Gunasingh, K. R., & Lashkari, R. S. (1989). Machine grouping problem in cellular 

manufacturing systems— an integer programming approach Machine grouping problem 

in cellular manufacturing systems-an integer programming approach. International 

Journal of Production Research , 27 (9), 1465-1473. 

 

39. Gupta, T. (1993). Design of manufacturing cells for flexible environment considering 

alternative routeing. International Journal of Production Research , 31 (6), 1259-1273. 

 



 

124 

40. Gupta, T., & Seifoddinni, H. (1990). Production data based similarity coeffcient for 

machine-component grouping decisions in the design of a cellular manufacturing system. 

InternationalJournal of Production Research , 28 (7), 1247-1269. 

 

41. Hartuv, E., & Shamir, R. (2000). A clustering algorithm based on graph connectivity. 

Information Processing Letters , 76 (4-6), 175-181. 

 

42. Hinchey, M. G., Sterritt, R., & Rouff, C. (2007). Swarms and Swarm Intelligence. 

Computer , 40 (4), 111-113. 

 

43. Hothersall, D. (2004). History of Psychology. Boston: McGraw-Hill. 

 

44. Hsu, C.-m., & Su, C.-t. (1998). Multi-objective machine-component grouping in cellular 

manufacturing: a genetic algorithm. Production Planning and Control , 9 (2), 155-166. 

 

45. Hyde, W. F. (1981). Improving productivity by classification, coding, and data base 

standardization. New York: Marcel Dekker. 

 

46. Hyer, N. L., & Wemmerlöv, U. (1984). Group technology and productivity. Harvard 

Business Review , 140-149. 

 

47. Hyer, N. L., Paulson, J., & Handfield, R. (1989). An effective implementation of parts 

coding system: a case study of PACCAR, Inc. Proceedings of the Decision Sciences 

Institute Annual Conference , 1005-1007. 

 

48. Islam, K., & Sarker, B. (2000). A similarity coefficient measure and machine-parts 

grouping in cellular manufacturing systems. International Journal of Production 

Research , 38 (3), 699-720. 



 

125 

49. Islier, A. A. (1998). A genetic algorithm approach for multiple criteria facility layout 

design. International Journal of Production Research , 36 (6), 1549 - 1569. 

 

50. Islier, A. A. (2005). Group technology by an ant system algorithm. International Journal 

of Production Research , 43 (5), 913-932. 

 

51. Jeon, G., & Leep, H. (2006). Forming part families by using genetic algorithm and 

designing machine cells under demand changes. Computers & Operations Research , 33 

(1), 263-283. 

 

52. Jeon, G., Leep, H. R., & Parsaei, H. (1998). A cellular manufacturing system based on 

new similarity coefficient which considers alternative routes during machine failure. 

Computers & Industrial Engineering , 34 (1), 21-36. 

 

53. Kamrani, A., & Parsaei, H. (1993). A group technology based methodology for machine 

cell formation in a computer integrated manufacturing environment. Computers and 

Industrial Engineering , 24 (3), 431-447. 

 

54. Kandiller, L. (1998). A cell formation algorithm: Hypergraph approximation- Cut tree. 

European Journal of Operational Research , 109 (3), 686-702. 

 

55. Kao, Y., & Fu, S. C. (2006). An ant-based clustering algorithm for manufacturing cell 

design. International Journal of Advanced Manufacturing Technology , 28 (11-12), 1182-

1189. 

 

56. Kao, Y., & Li, Y. L. (2008). Ant colony recognition systems for part clustering problems. 

International Journal of Production Reseach , 46 (15), 4237-4258. 

 



 

126 

57. King, J. R. (1980). Machine-component grouping in production flow analysis an 

approach. International Journal of Production Research , 18 (2), 117-133. 

 

58. Kumar, A., & Vannelli, A. (1987). Strategic subcontracting for efficient disaggregated 

manufacturing. International Journal of Production Research , 9 (6), 1715-1728. 

 

59. Kumar, A., Kusiak, A., & Vannelli, A. (1986). Grouping of parts and components in 

flexible manufacturing systems. European Journal of Operational Research , 24 (3), 387-

397. 

 

60. Kusiak, A. (1987). The generalized group technology concept. International Journal of 

Production Research , 25 (4), 561-569. 

 

61. Kusiak, A., & Cho, M. (1992). Similarity coefficient algorithms for solving the group 

technology problem . International Journal of Production Research , 2633-2646. 

 

62. Kusiak, S., Kaparthi, S., Suresh, N., & Cerveny, R. (1993). An improved neural network 

leader algorithm for part-machine grouping in group technology. European Journal of 

Operational Research , 69 (3), 342-356. 

 

63. Labroche, N., Monmarché, N., & Venturini, G. (2003). AntClust: Ant Clustering and 

Web Usage Mining. Lecture Notes in Computer Science , 2723 (201), 25-36. 

 

64. Lesmana, S. (2002). Formation of flexible manufacturing cells with human lifting 

consideration (Master's Thesis). University of Windsor: Windsor, Ontario. 

 



 

127 

65. Liang, M., & Taboun, S. (1992). Part selection and part assignment in flexible 

manufacturing systems with cellular layout. Computers and Industrial Engineering , 23 

(1-4), 63-67. 

 

66. Lin, S.-W., Ying, K.-C., & Lee, Z.-J. (2010). Part-machine cell formation in group 

technology using a simulated annealing-based meta-heuristic. International Journal of 

Production Research , 48 (12), 3579-3591. 

 

67. Logendran, R. (1993). A Binary Integer Programming Approach for Simultaneous 

Machine-Part Grouping in. Computers and Industrial Engineering , 24 (3), 329-336. 

 

68. McAuley, J. (1972). Machine grouping for efficient production. The Production Engineer 

, 51 (2), 52-53. 

 

69. McCormick, W. T., Schweitzer, ,. P., & White, ,. T. (1972). Problem Decomposition and 

Data Reorganization by a Clustering Technique. Operations Research , 20 (5), 993-1009. 

 

70. Miltenburg, J., & Zhang, W. (1991). A Comparative Evaluation of Nine Well-Known 

algorithms for Solving the Cell Formation Problem in Group Technology. Journal of 

Operations Management , 10 (1), 44-72. 

 

71. Monmarché, N., Slimane, M., & Venturini, G. (1999). AntClass: découverte de classes 

dans des données numériques grâce à l'hybridation d'une colonie de fourims avec 

l'algorithme des centres mobiles. Tours, France: Université de Tours. 

 

72. Moon, C., & Gen, M. (1999). A genetic algorithm-based approach for design of 

independent manufacturing cells. International Journal of Production Economics , 60-61, 

421-426. 



 

128 

73. Mosier, C. T. (1989). An experiment investigating the application of clustering 

procedures and similarity coefficients to the GT machine cell formation problem. 

International Journal of Production Research , 48 (12), 1811-1835. 

 

74. Moussa, S. E., & Kamel, M. (1996). A Direct Method for Cell Formation and Part-

Machine Assignment Based on Operation Sequences and Processing Time Similarity. 

Engineering Design and Automation , 35 (3-4), 141-155. 

 

75. Onwubolu, G. C., & Mutingi, M. (2001). A genetic algorithm approach to cellular 

manufacturing systems. Computers and Industrial Engineering , 39 (1), 125-144. 

 

76. Opitz, H. (1970). A Classification System to Describe Work-Pieces. New York: 

Pergamon Press. 

 

77. Opitz, H., & Wiendahl, H. P. (1971). Group technology and manufacturing systems for 

small and medium quantity production. International Journal of Product Research , 9 

(1), 181-203. 

 

78. Ozdemir, A. A. (1995). Simultaneous part family and machine cell formations in cellular 

manufacturing systems: an analytical and algorithmic approach (Master's Thesis). 

University of Windsor: Windsor, Ontario. 

 

79. Rajagopalan, R., & Batra, J. (1975). Design of cellular production systems A graph-

theoretic approach. International Journal of Production Research , 13 (6), 567-579. 

 

80. Rajamani, N., Singh, N., & Aneja, Y. (1992). A model for cell formation in 

manufacturing systems with sequence dependence. International Journal of Production 

Research , 30 (6), 1227-1235. 



 

129 

81. Rajamani, N., Singh, N., & Aneja, Y. (1990). Integrated design of cellular manufacturing 

systems in the presence of alternate process plans. International Journal of Production 

Research , 28 (8), 1541-1554. 

 

82. Satoglu, S., & Suresh, N. (2009). A goal-programming approach for design of hybrid 

cellular manufacturing systems in dual resource constrained environments. Computers 

and Industrial Engineering , 56 (2), 560-575. 

 

83. Seifoddini, H., & Hsu, C.-P. (1994). Comparitive study of similarity coefficients and 

clustering algorithms in cellular manufacturing. Journal of Manufacturing Systems , 13 

(2), 119-127. 

 

84. Selvam, R. P., & Balasubramanian, K. N. (1985). Algorithmic grouping of operation 

sequences. Engineering Costs and Production Economics , 9 (1-3), 125-134. 

 

85. Shafer, S. M., & Merideth, J. R. (1990). A comparison of selected manufacturing cell 

formation techniques. Ineternational Journal of Production Research , 28 (4), 661-673. 

 

86. Shafer, S., & Rogers, D. (1992). A mathematical programming approach for dealing with 

exceptional elements in cellular manufacturing. International Journal of Production 

Research , 30 (5), 1029-1036. 

 

87. Shafer, S., & Rogers, D. (1993a). Similarity and distance measures for cellular 

manufacturing. Part I. A survey. International Journal of Production Research , 31 (5), 

1133-1142. 

 

88. Shafer, S., & Rogers, D. (1993b). Similarity and distance measures for cellular 

manufacturing. Part II. An extension and comparison. International Journal of 

Production Research , 31 (6), 1315-1326. 



 

130 

89. Singh, N., & Mohanty, B. (1991). Fuzzy multi-objective routing problem with 

applications to process planning in manufacturing systems. International Journal of 

Production Research , 29 (6), 1161-1170. 

 

90. Slomp, J., Bokhorst, J., & Molleman, E. (2005). Cross-training in a cellular 

manufacturing environment. Computers & Industrial Engineering , 48 (3), 609-624. 

 

91. Slomp, J., Chowdary, B. V., & Suresh, N. C. (2005). Design of virtual manufacturing 

cells: a mathematical programming approach. Robots and Computer-Integrated 

Manufacturing , 21 (3), 273-288. 

 

92. Sofianopoulou, S. (2006). Manufacturing cells efficiency evaluation using data 

envelopment analysis. Journal of Manufacturing Technology Management , 17 (2), 224-

238. 

 

93. Tam, K. Y. (1990). An operation sequence based similarity coefficient for part families 

formations. Journal of Manufacturing Systems , 35 (3-4), 55-68. 

 

94. Tariq, A., Hussain, I., & Ghafoor, A. (2009). A hybrid genetic algorithm for machine-part 

grouping. Computers and Industrial Engineering , 56 (1), 347-356. 

 

95. Tatikonda, M. V., & Wemmerlöv, U. (1992). Adoption and implementation of group 

technology classification and coding systems. International Journal of Production 

Research , 30 (9), 2087-2110. 

 

96. Tsai, C.-C., & Lee, C.-y. (2006). Optimization of manufacturing cell formation with a 

multi-functional mathematical programming model. International Journal of Advanced 

Manufacturing Technology , 30 (3-4), 309-318. 

 



 

131 

97. Uddin, M. K., & Shanker, K. (2002). Grouping of parts and machines in presence of 

alternative process routes by genetic algorithm. International Journal of Production 

Economics , 76 (3), 219-228. 

 

98. Vakharia, A. J., & Wemmerlöv, U. (1995). A comparitive investigation of hierarchical 

clustering techniques and dissimilarity measures applied to the cell formation problem. 

Journal of Operations Management , 13 (2), 117-138. 

 

99. Venugopal, V., & Narendran, T. T. (1992). A genetic algorithm approach to the machine-

component grouping problem with multiple objectives. Computers and Industrial 

Engineering , 22 (4), 469-480. 

 

100. Vohra, T., Chen, D., Chang, J., & Chen, H. (1990). A network approach to cell formation 

in cellular manufacturing. International Journal of Production Research , 28 (11), 2075-

2084. 

 

101. Waghodekar, P. H., & Sahu, S. (1984). Machine-component cell formation in group 

technology. International Journal of Production Research , 28 (6), 937-948. 

 

102. Wemmerlöv, U., & Johnson, D. J. (1997). Cellular manufacturing at 46 user plants: 

implementation experiences and performance improvements. International Journal of 

Production Research , 35 (1), 29-49. 

 

103. Wu, N., & Salvendy, G. (1993). Modified network approach for the design of cellular 

manufacturing systems. International Journal of Production Research , 31 (6), 1409-

1421. 

 



 

132 

104. Yin, Y., & Yasuda, K. (2005). Similarity coefficient methods applied to the cell 

formation problem: a comparative investigation. Computers and Industrial Engineering , 

48 (3), 471-489. 

 

105. Yin, Y., & Yasuda, K. (2006). Similarity coefficient methods applied to the cell 

formation problem: a taxonomy and review. International Journal of Production 

Economics , 101 (2), 329-352. 

 

106. Zhao, C., & Wu, Z. (2000). A genetic algorithm for cell formation with multiple routes 

and multiple objectives. International Journal of Production Research , 38 (2), 385-396. 

 

107. Zhao, F., Dong, J., Li, S., & Sun, J. (2008). An improved ant colony optimization 

algorithm with embedded genetic algorithm for the traveling salesman problem. 

Intelligent control and automation, 2008 7th world congress on Intelligent Control and 

Automation (pp. 7902-7906). Chongqing, China: Intelligent control and automation. 

 

 

  



 

133 

VITA AUCTORIS 

 
NAME: Mohammed Salem Taboun 
 
PLACE OF BIRTH: Windsor, Ontario 
 
YEAR OF BIRTH: 1976 
 
EDUCATION: Kennedy Collegiate Institute 
  Windsor, Ontario 
 2000-2004 
  
 B.A.Sc., Industrial and Manufacturing Systems Engineering 
 University of Windsor 
 Windsor Ontario 
  

Currently a candidate for a Masters of Applied Science in Industrial and 
Manufacturing Systems Engineering with hopes of graduating in the fall 
of 2010. 

  

 


	Development of Manufacturing Cells Using an Artificial Ant-Based Algorithm with Different Similarity Coefficients
	Recommended Citation

	Mohammed S. Taboun THESIS - Ant Algorithms

