108 research outputs found

    A Max-Term Counting Based Knowledge Inconsistency Checking Strategy and Inconsistency Measure Calculation of Fuzzy Knowledge Based Systems

    Get PDF
    The task of finding all the minimal inconsistent subsets plays a vital role in many theoretical works especially in large knowledge bases and it has been proved to be a NP-complete problem. In this work, at first we propose a max-term counting based knowledge inconsistency checking strategy. And, then, we put forward an algorithm for finding all minimal inconsistent subsets, in which we establish a Boolean lattice to organize the subsets of the given knowledge base and use leaf pruning to optimize the algorithm efficiency. Comparative experiments and analysis also show the algorithm’s improvement over past approaches. Finally, we give an application for inconsistency measure calculation of fuzzy knowledge based systems

    Constraint-Driven Fault Diagnosis

    Get PDF
    Constraint-Driven Fault Diagnosis (CDD) is based on the concept of constraint suspension [6], which was proposed as an approach to fault detection and diagnosis. In this chapter, its capabilities are demonstrated by describing how it might be applied to hardware systems. With this idea, a model-based fault diagnosis problem may be considered as a Constraint Satisfaction Problem (CSP) in order to detect any unexpected behavior and Constraint Satisfaction Optimization Problem (COP) constraint optimization problem in order to identify the reason for any unexpected behavior because the parsimony principle is taken into accountMinisterio de Ciencia y Tecnología TIN2015-63502-C3-2-

    Practical Tractability of CSPS by Higher Level Consistency and Tree Decomposition

    Get PDF
    Constraint Satisfaction is a flexible paradigm for modeling many decision problems in Engineering, Computer Science, and Management. Constraint Satisfaction Problems (CSPs) are in general NP-complete and are usually solved with search. Research has identified various islands of tractability, which enable solving certain CSPs with backtrack-free search. For example, one sufficient condition for tractability relates the consistency level of a CSP to treewidth of the CSP\u27s constraint network. However, enforcing higher levels of consistency on a CSP may require the addition of constraints, thus altering the topology of the constraint network and increasing its treewidth. This thesis addresses the following question: How close can we approach in practice the tractability guaranteed by the relationship between the level of consistency in a CSP and the treewidth of its constraint network? To achieve practical tractability, this thesis proposes: (1) New local consistency properties and algorithms for enforcing them without adding constraints or altering the network\u27s topology; (2) Methods to enforce these consistency properties on the clusters of a tree decomposition of the CSP; and (3) Schemes to bolster the propagation between the clusters of the tree decomposition. Our empirical evaluation shows that our techniques allow us to achieve practical tractability for a wide range of problems, and that they are both applicable (i.e., require acceptable time and space) and useful (i.e., outperform other consistency properties). We theoretically characterize the proposed consistency properties and empirically evaluate our techniques on benchmark problems. Our techniques for higher level consistency exhibit their best performances on difficult benchmark problems. They solve a larger number of difficult problem instances than algorithms enforcing weaker consistency properties, and moreover they solve them in an almost backtrack-free manner. Adviser: Berthe Y. Choueir

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Metareasoning about propagators for constraint satisfaction

    Get PDF
    Given the breadth of constraint satisfaction problems (CSPs) and the wide variety of CSP solvers, it is often very difficult to determine a priori which solving method is best suited to a problem. This work explores the use of machine learning to predict which solving method will be most effective for a given problem. We use four different problem sets to determine the CSP attributes that can be used to determine which solving method should be applied. After choosing an appropriate set of attributes, we determine how well j48 decision trees can predict which solving method to apply. Furthermore, we take a cost sensitive approach such that problem instances where there is a great difference in runtime between algorithms are emphasized. We also attempt to use information gained on one class of problems to inform decisions about a second class of problems. Finally, we show that the additional costs of deciding which method to apply are outweighed by the time savings compared to applying the same solving method to all problem instances

    Analyzing Satisfiability and Refutability in Selected Constraint Systems

    Get PDF
    This dissertation is concerned with the satisfiability and refutability problems for several constraint systems. We examine both Boolean constraint systems, in which each variable is limited to the values true and false, and polyhedral constraint systems, in which each variable is limited to the set of real numbers R in the case of linear polyhedral systems or the set of integers Z in the case of integer polyhedral systems. An important aspect of our research is that we focus on providing certificates. That is, we provide satisfying assignments or easily checkable proofs of infeasibility depending on whether the instance is feasible or not. Providing easily checkable certificates has become a much sought after feature in algorithms, especially in light of spectacular failures in the implementations of some well-known algorithms. There exist a number of problems in the constraint-solving domain for which efficient algorithms have been proposed, but which lack a certifying counterpart. When examining Boolean constraint systems, we specifically look at systems of 2-CNF clauses and systems of Horn clauses. When examining polyhedral constraint systems, we specifically look at systems of difference constraints, systems of UTVPI constraints, and systems of Horn constraints. For each examined system, we determine several properties of general refutations and determine the complexity of finding restricted refutations. These restricted forms of refutation include read-once refutations, in which each constraint can be used at most once; literal-once refutations, in which for each literal at most one constraint containing that literal can be used; and unit refutations, in which each step of the refutation must use a constraint containing exactly one literal. The advantage of read-once refutations is that they are guaranteed to be short. Thus, while not every constraint system has a read-once refutation, the small size of the refutation guarantees easy checkability

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier

    Higher-Level Consistencies: Where, When, and How Much

    Get PDF
    Determining whether or not a Constraint Satisfaction Problem (CSP) has a solution is NP-complete. CSPs are solved by inference (i.e., enforcing consistency), conditioning (i.e., doing search), or, more commonly, by interleaving the two mechanisms. The most common consistency property enforced during search is Generalized Arc Consistency (GAC). In recent years, new algorithms that enforce consistency properties stronger than GAC have been proposed and shown to be necessary to solve difficult problem instances. We frame the question of balancing the cost and the pruning effectiveness of consistency algorithms as the question of determining where, when, and how much of a higher-level consistency to enforce during search. To answer the `where\u27 question, we exploit the topological structure of a problem instance and target high-level consistency where cycle structures appear. To answer the \u27when\u27 question, we propose a simple, reactive, and effective strategy that monitors the performance of backtrack search and triggers a higher-level consistency as search thrashes. Lastly, for the question of `how much,\u27 we monitor the amount of updates caused by propagation and interrupt the process before it reaches a fixpoint. Empirical evaluations on benchmark problems demonstrate the effectiveness of our strategies. Adviser: B.Y. Choueiry and C. Bessier
    corecore