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14.1 Introduction

Constraint-Driven Fault Diagnosis (CDD) is based on the concept of constraint
suspension [6], which was proposed as an approach to fault detection and diagnosis.
In this chapter, its capabilities are demonstrated by describing how itmight be applied
to hardware systems. With this idea, a model-based fault diagnosis problem may
be considered as a Constraint Satisfaction Problem (CSP) in order to detect any
unexpected behavior and Constraint Satisfaction Optimization Problem (COP) in
order to identify the reason for any unexpected behavior because the parsimony
principle is taken into account.

In order to automate the CDD, in an efficient way, different techniques for solving
theseCSP/COPs could be considered. The first to be considered is related to themath-
ematical properties of the semiring CSP [26], where efficient diagnosis solutions are
obtained decomposing the problem into trees applying dynamic programming. The
second one is related to the solving of overconstrained CSPs and identification of
conflicts [1, 20, 24]. The third approach [14, 15] uses a known symbolic technique
called as Gröbner basis, that allows obtaining automatically, in certain cases, the
Analytic Redundancy Restrictions which are used in Fault Detection and Identifi-
cation (FDI) paradigm. The last efficient technique is related to specific clustering
techniques that allow decomposing the original model-based diagnosis in several
simpler problems and the computational complexity is reduced in a significant way.
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In this chapter, the CDD is applied to typical hardware diagnostic problems such
as multiplier–adder circuits and heat exchangers.

14.2 Constraint Programming in a Nutshell

Constraint Programming is based on the automatic resolution of CSPs, which are
problemswhere an assignment of values to variables must be found in order to satisfy
a finite number of constraints.

The model-based approach for automating the fault detection problems may be
expressed as a Boolean Satisfiability Problem (SAT) or CSP instances. Therefore,
the solving process consists of trying to run an SAT or CSP solver, respectively, and
to determine whether they have any solution. In the case that the problems have no
solution, the automation of the fault diagnosis problems consist of solving a MAX-
SAT or MAX-CSP (COP) in order to implement constraint suspension.

A good guideline or rule to choose SAT or CSP representation can be related to
the natural expression of the hardware models for using in model-based diagnosis
approach. Another rule could be related to the computational efficiency, because
either SAT solvers perform better than CSP solvers or where CSP solvers perform
better than SAT solvers.

14.2.1 CSP and COP

On top of constraint technology lies the concept of the CSP [10]. In general, a CSP
is composed of a set of variables, a domain for each variable, and a set of constraints.
Each constraint is defined over some subset of the original set of variables and limits
the combinations of values that the variables in this subset can take. The goal is to find
one assignment to the variables such that the assignment satisfies all the constraints.
In somekind of problems, the goal is to find all such assignments [23]. The constraints
are then the relationships between the various choices for the variables.

Definition 14.1 A Constraint Satisfaction Problem (CSP) represents a reasoning
framework consisting of variables, domains and constraints 〈V,D, C〉. The set of vari-
ables V = {v1, v2, . . . , vn} could have the following domains D = {d1, d2, . . . , dn}
and a constraint ck (vk1 , . . ., vkn) is the set of assignment of the subset of variables
in the corresponding domains that belongs to Cartesian Product dk1 × · · · × dkn . The
solutions of a CSP is the set of assignment of the variables V in their corresponding
domains that satisfy all constraints C.

A typical example of CSP is the map-coloring problem, where given a geograph-
ical map split into regions, a color has to be assigned to all the regions dealing with
adjacent regions must have different colors. An example map with eight regions is
depicted in Fig. 14.1. The formalization of this CSP could be as follows:



⇒

Fig. 14.1 Map-coloring problem

V = {R1,R2,R3,R4,R5,R6,R7,R8}. (14.1)

D = {red , green, blue, yellow}. (14.2)

C = {R1 �= R2,R1 �= R8,R2 �= R3,R2 �= R8,R2 �= R7,

R3 �= R4,R3 �= R5,R7 �= R5,R5 �= R4,R5 �= R6}. (14.3)

The problem is composed of eight variables that represent each region, the
domains are the colors, and the constraints establish the inequality conditions that
the color of one region is different from the adjacent regions.

One application of the CSP might be the determination of the color assignments
to regions, for instance, as given in Fig. 14.1. Another application might be given
a solution to determine whether the solution is satisfiable or to determine the fault
diagnosis pointing out the constraint andvariables thatmake theCSPunsatisfied.This
type of problem is modeled as MAX-CSP, thus a Constraint Optimization Problem
(COP).

Definition 14.2 A Constraint Optimization Problem (COP) is a CSP in which the
solutions optimize (minimize or maximize) an objective function, f over a subset of
variables V of the CSP.

Following the map-coloring example, if a color assignment is given as observa-
tional model such as the right map as shown in Fig. 14.2. By applying the previous
CSP, we can check the unsatisfiability since the regions R1 and R8 have the same
color green. In this case, reified constraints can be applied by means of a COP (i.e.,
MAX-CSP) in order to automatically determine the faults. The representation of the
problem might be as follows:

V = {R1,R2,R3,R4,R5,R6,R7,R8,RR1,RR2,RR3,RR4,RR5,RR6,

RR7,RR8,RR9,RR10}. (14.4)

DRx = {red , green, blue, yellow}. (14.5)

DRRx = {0, 1}. (14.6)

C = {R1 = green,R2 = red ,R3 = green,R4 = red ,R5 = blue,



⇒

Fig. 14.2 Fault diagnosis of an assignment

R6 = green,R7 = yellow,R8 = green. (14.7)

RR1 = 1,RR2 = 1,RR3 = 1,RR4 = 1,RR5 = 1,RR6 = 1,

RR7 = 1,RR8 = 1,RR9 = 1,RR10 = 1, (14.8)

RR1 == R1 �= R2,RR2 == R1 �= R8,RR3 == R2 �= R3,

RR4 == R2 �= R8,RR5 == R2 �= R7,RR6 == R3 �= R4,

RR7 == R3 �= R5,RR8 == R7 �= R5,RR9 == R5 �= R4,

RR10 == R5 �= R6}. (14.9)

F = maximize(RR1 + RR2 + RR3 + RR4 + RR5 + RR6 +
RR7 + RR8 + RR9 + RR10). (14.10)

The COP tries to maximize the sum of the reified constraints to be satisfied. The
reified constraints are represented as “Boolean” variables RRx with zero or one as
domain. The RRx variables have been forced to 1 value (cf. RRx = 1). These values
force the accomplishment of the constraints such asRR1 == R1 �= R8. However, this
constraint cannot be satisfiable since the values of R1 and R8 are the same, green.
This contradiction makes the COP unsatisfiable due to the assignment of green color
for the adjacent regions Region 1 and Region 8 as shown in right map in Fig. 14.2.

The techniques used in solving the CSPs depend on the kind of constraints being
considered. Constraints are often used on a finite domain, to the point that CSP is
typically identified with problems based on constraints on a finite domain. Such
problems are usually solved via techniques that combine propagation and search, in
a particular way of backtracking or local search. Constraint propagation is a method
used on such problems, but the majority of them are incomplete. In general, they
may solve the problem or check if it is unsatisfiable, but not always. For this reason,
these methods are also used in conjunction with a search algorithm to make possible
the solving of these problems. Other considered kinds of constraints are on real or
rational numbers, solving problems on these constraints is done via specific constraint
propagation and search algorithms.

One of the main difficulties in CSP resolution is the appearance of local inconsis-
tencies. Local inconsistencies are values of the variables that cannot take part in the
solution because they do not satisfy any consistency property. Therefore if any con-



sistency property is forced, we can remove all the values which are inconsistent with
regard to the property. But it can be possible that some values which are consistent
with regard to a property are inconsistent with regard to another property at the same
time. Global consistency implies that all values which cannot take part in a solution
can be removed. The constraints of a CSP generate local inconsistencies because
they are combined. If the search algorithm does not store these inconsistencies, it
will waste time and effort trying to carry out instantiations which have already been
tested.

Different orders of consistency can be considered [22] according to the size of
subnetworks taken into account: 1-consistency for networks involving one variable,
2-consistency for two variables, and in general k-consistency for networks involving
k variables. An algorithm for computing k-consistency for discrete CSP [12] had
been proposed whose runtime is exponential in k.

As it has been shown, since CSP can be used to detect constraint inconsistencies, it
can be also be usedwithin themodel-based diagnosis paradigm. To diagnose a system
within the CSP framework one must first represent the model of the system structure
and the correct behavior. The structural elements of the system being diagnosed are
modeled as CSP variables, and the behavioral relationships among the constituent
components are expressed as constraints.

The diagnosis schema employs a CSP engine, whose outputs are the expected
diagnoses based on the discrepancies between the predictions of the CSP represen-
tation and the observations from running the system. The diagnosed system is found
faulty if some constraints cannot be satisfied, in which case the violated constraints
are the precise reasons for the cause of the fault [11].

14.2.2 SAT and MAX-SAT

The Boolean Satisfiability Problem (SAT) is the problem of deciding whether there
is a variable assignment that satisfies a given propositional expression. The boolean
expressions with Boolean variables have no quantifiers. In 3-SAT, the maximum
number of literals for the clause is 3 and in 2-SAT, the maximum number of literals
for the clause is 2. It is solved efficiently by using path searches in graphs. For
certain problems of fault detection, the SAT can be used and the MAX-SAT for fault
diagnosis. An application of SAT and MAX-SAT is going to be illustrated in the
Model-based Software Debugging chapter.

The solving process of these problems is carried out by means of SAT Solver or
either translating MAX-SAT to MAX-CSP that is trivial. Translating CSP to SAT
is not trivial, because it is necessary to convert multivalued variables into a set of
boolean assignment variables and translate the constraints into clauses over assign-
ment variables. SAT solvers may be complete such as solvers based on the Davis–
Putnam–Logemann–Loveland (DPLL) algorithm, and incomplete SAT solvers based
on local search and hybrid SAT solvers.



 

14.3 Automation of Constraint-Driven Fault Diagnosis

In order to efficiently automate the constraint-driven fault diagnosis, a set of concepts 
is necessary to consider for a system with m components (physical components):

Definition 14.3 System Model (SM) is a finite set of linear or nonlinear (polynomial) 
equality constraints (P), which determine the hardware system behavior. This is done 
by means of the relations between the system non-observable variables (Vnob) and 
the system observable variables (Vob), which are directly obtained from sensors that 
are supposed to work correctly for hardware systems. The representation of an SM 
is a tuple (P , Vob, Vnob).

An example used in the bibliography with respect to model-based diagnosis [5–7, 
16, 22] is the polybox system previously introduced in Chap. 2 (cf. Logical Case Stud-
ies). This system is composed of three multipliers and two adders such as the shown in 
Fig. 14.3. We will have the following System Model (SM): 〈P : {a ∗ c = x, b ∗ d = 
y, c ∗ e = z, x + y = f , y + z = g}, Vob{a, b, c, d , e, f , g}, Vnob : {x, y, z}〉.
Definition 14.4 Context Set (CS) is a subset of components of the system and its 
associated constraints. The possible context set will be 2m.

Definition 14.5 Context Network (CN) is a lattice of subsets of the component of 
the system, ordered by “is subset of”, according to the way proposed by ATMS [21]. 
The number of possible contexts for a system of n components is 2m − 1.

Definition 14.6 Observational Model (OM) is defined by a tuple of values for the 
observable variables. In the example model in Fig. 14.3, two observation models 
could be

OM1 ≡ {a = 3, b,= 2, c = 2, d = 3, e = 3, f = 10, g = 12}. (14.11)

OM2 ≡ {a = 3, b = 2, c = 2, d = 3, e = 3, f = 10, g = 10}. (14.12)

Definition 14.7 Diagnosis Problem is defined by a tuple composed of a System
Model (SM) and an Observational Model. The solution to this problem is a set of
possible failed components of the system.

Fig. 14.3 Model of three
multipliers and two adders
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A set of computational techniques for the constraint-driven fault diagnosis are
presented in the following subsections.

14.3.1 Constraint Suspension for Diagnostic Reasoning

In 1984, Davis [6] presents a new technique for diagnostic reasoning called con-
straint suspension. The reasoning from first principles is proposed using different
languages for describing the structure and the component behavior. According to
these languages, a constraint network is obtained and then the goal is to derive the
components that could be responsible for a concrete fault, given the observations of
the system. In the faulty case, the constraint network is inconsistent and the possible
consistency is achieved by retracting some constraints (component behavior) of the
network when we take into account the observational model. In order to improve the
efficiency, this work proposed the concept of discrepancy detection.

14.3.2 Semiring CSP for Diagnostic Reasoning

Semiring CSP [2] is a framework for soft constraints. Soft constraints establish
preference levels changing the definition of hard constraints. In these soft constraints,
the assignments are associated with different interpretations such as weight, cost,
preference, etc.

Model-based diagnosis may be solved as a COP over lattices. Sachenbacher and
Williams [26] presents a framework as semiring CSPs. The mathematical proper-
ties of a semiring CSP allow to obtain efficient solution decomposing model-based
problems into trees and later applying dynamic programming. The method allows
to perform diagnosis over the general class of lattice preference structures and it is
compared with the diagnosis algorithms SAB [9] and TREE* [27] for tree-structured
problems that are special cases.

14.3.3 Overconstrained CSPs and Identification of Conflicts

SolvingCSP process assigns values to variables satisfying all of the set of constraints,
but it is impossible when a fault is present in the diagnosis problems. In the constraint
programming area, these problems are called as overconstrained CSP and do not
have any solution. We need to consider some ways of relaxing or weakening the
specification of detection fault problem (in our case of the description of the hardware
systemmodel) until solutions can be found. Therefore, the systematic or local search
does not find solutions for these overconstrained CSPs. Nevertheless, the number of



satisfied constraints could be maximized for the detection fault problem. There are
in the bibliography four ways of weakening an overconstrained CSP:

• Extending the domain of a variable,
• Extending the definition of a constraint,
• Eliminating any variable,
• Suspending any constraint.

The idea, related to fault diagnosis, is that given an infeasible set of constraints C,
the goal is obtain explanations of infeasibility. For this reason, we must find out:

• All Minimal Unsatisfiable Subsets (MUSes) of the problem where all proper sub-
sets satisfiable or,

• All Maximal Satisfiable Subsets (MSSes) of the problem.

The definition and strong relationship betweenMUSes andMSSes of a determined
overconstrained problem has been analyzed in a previous work [25]. An adequate
and specific solver could compute all Minimally Unsatisfiable Subsets (MUSes) of
a given overconstrained CSP. For the following overconstrained CSP:

V = {a, b, c, d , e, f , g, x, y, z}. (14.13)

D = {2, 3, 3, 2, 2, 10, 12, [0, 100] , [0, 100] , [0, 100]}. (14.14)

C = {c1 = a × c = x, c2 = b × d = y, c3 = c × e = z, (14.15)

c4 = x + y = f , c5 = y + z = g}.

The set of constraints {c1, c2, c4} and {c1, c3, c4, c5} are minimally unsatisfiable
subsets for this problem. They will eventually be used for obtaining the solution of
the fault diagnosis problem. A CSP is satisfiable iff it contains no MUSes.

Also, we could determineMSSes or CoMSSes, that is the complement of MSSes.
Every CoMSS could be obtained as an irreducible hitting set of the collection of all
MUSes. In the above example, CoMSSes are {c1}, {c4}, {c2, c3}, {c2, c5}. Therefore,
hitting sets provide a transformation from MUSes to CoMSSes and they provide
the possible solutions for the fault diagnosis problem. This transformation removes
those constraints making the overconstrained CSP unsatisfiable.

Also, in the literature, Baker et al. [1] propose the Diagnosis of Over-determined
CSPs (DOC), which identifies the set of least-important constraints that should be
relaxed to the initial overconstrained CSP has a solution. If the solution is unaccept-
able for a user, the DOC selects next-best sets of least-important constraints until an
acceptable solution has been generated. QUICKXPLAIN [20] improves this method
by decomposing the complete explanation into subproblems of the same size.

For overconstrained CSP in specific domains, different works have been proposed
in the bibliography. In overconstrained instances of the Disjunctive Temporal Prob-
lem (DTP), Liffiton et al. [24] describe the Musilitis algorithm for finding MUSes of



overconstrained DTP. Also, for numeric overconstrained CSPs (NCSPs), the paper
[13] proposes a set of methods for efficiently deriving all Numeric MUSes (NMUS)
using theNeighborhood-based StructuralAnalysis on overconstrainedNCSP. In such
work, different bottom-up derivation strategies are described by taking into account
the concept of the neighborhood for the different types of NCSPs. Depending on the
structural aspects of these problems, the search methods are different.

14.3.4 Symbolic Techniques

In engineering problems, themodels are almost always a set of linear and polynomial
constraints. In order to automate and improve the fault diagnosis a new model can
be derived, which is made up of a single constraint using a symbolic technique such
as Gröbner basis. First, it eliminates the non-observable variables and obtains new
constraints of the different set of components of the system. We build a context
network with these polynomial constraints in the node and propose a methodology
that is composed of an incremental algorithm that avoids the recalculation of previous
constraints. A standard framework is used to obtain the minimal diagnosis. The
obtained results are similar to those shown in the bibliography, but they are obtained
by means of a more efficient and automatic way. This approach may be very useful
for on-board diagnosis [14, 15].

Before presenting the methodology to carry out the fault diagnosis process for
this model, we need to present the concept of Gröbner basis. A Gröbner basis is a set
of multivariate polynomials that have desirable algorithmic properties. An algorithm
permits to transform the set of polynomials into a Gröbner basis. It generalizes previ-
ous techniques such as Gaussian elimination for solving linear systems of equations,
the Euclidean algorithm for computing the greatest common divisor of two univariate
polynomials, and the Simplex Algorithm for linear programming. The introduction
for Gröbner basis is presented in several works [3, 8, 19].

According to theoretical considerations, a set of multivariate polynomials P = 0
does not have solutions if and only if 1 is in its Gröbner basis [3]. Therefore,

• If a polynomial model is overconstrained and have redundant constraints, the
calculation of Gröbner basis eliminated them.

• If the polynomial model is overconstrained and inconsistent, one of the constraints
obtained is 1 = 0, that determine the inconsistency of the model.

Table 14.1 Minimal conflict contexts of the model in Fig. 14.3 without observational model

Minimal conflict contexts Associated constraints Truth value

M1,M2,A1 a ∗ c + b ∗ d − f = 0 Not evaluated

M2,M3,A2 b ∗ d + c ∗ e − g = 0 Not evaluated

M1,M3,A1,A2 a ∗ c − c ∗ e − f + g = 0 Not evaluated



Fig. 14.4 Context network for the model of three multipliers and two adders

• If a set of polynomials is underconstrained, the Gröbner basis obtained is very
useful for the possible resolution.

The parameters of the functionGröbnerBasis are the set of polynomial constraints,
set of observable variables, set of non-observable variables. These functions allow the
calculation of the Gröbner basis. For example in Fig. 14.4, given the context for the
components {M1,M2,M3,A1,A2}, the function GröbnerBasis ({a ∗ c − x, b ∗ d −
y, c ∗ e − z, x + y − f , y + z − g}, {a, b, c, d , e, f , g}, {x, y, z}) obtains the follow-
ing result:

{b ∗ d + c ∗ e − g = 0, a ∗ c − c ∗ e − f + g = 0}. (14.16)

The application of the GröbnerBasis function to all contexts of the system repre-
sented inFig. 14.3 permits to obtain thenewcontext network represented inTable14.1
and Fig. 14.5. In this figure, the contexts with only one component are not repre-
sented because all the contexts with two components of the Gröbner function are
empty. Only the contexts with no-empty Gröbner functions are relevant and useful
for fault diagnosis.

According to this new context network, the methodology for solving the fault
diagnosis problem for the system given an observation model is the following:

• Searching the Minimal Conflict Contexts: An algorithm of Breadth-First Search
(BFS) of the graph represented in Fig. 14.5 obtain for this system:

• Considering the observational model OM1 the previous table is completed. We
obtain the minimal conflict contexts (ARR in FDI) that are evaluated as false,
resulting as shown in Table 14.2.

• Obtaining the minimal diagnoses. A standard algorithm to obtain the hitting set
is used. For the previous observational models, the results are presented in Table
14.3.



Fig. 14.5 Context network with Gröbner Basis for the model of three multipliers and two adders

Table 14.2 Minimal conflict contexts of the model in Fig. 14.3 with observational model OM1

Minimal conflict contexts Associated constraints Truth value

M1,M2,A1 a ∗ c + b ∗ d − f = 0 False

M2,M3,A2 b ∗ d + c ∗ e − g = 0 True

M1,M3,A1,A2 a ∗ c − c ∗ e − f + g = 0 False

Table 14.3 Minimal diagnoses of the model in Fig. 14.3

Observational model Minimal diagnosis

OM1 {A1}, {M1}, {A2, M2}, {M2, M3}

OM2 {M2}, {A1, A2}, {A1, M3}, {A2, M1},{M1,
M3}

As an exercise, the reader can try to build the Minimal Conflict Context for
OM2 similarly to the Table 14.2. Finally, compare the results with the diagnosis in
Table 14.3.

14.3.5 Improvements for Determining the Minimal Conflicts
Contexts

For determining theMinimal Conflicts Contexts in an efficient way, in this subsection
two improvements are proposed [4]: a structural pretreatment in order to reduce
drastically the number of nodes of context network, and a reduction of the number
of contexts where Gröbner Bases algorithm is applied. These two improvements can
be done in an offline process.



14.3.5.1 Clusters of Components

The first step is the partition of the system into independent subsystems, in such a
way that the Minimal Conflicts Contexts of the system can be obtained as the union
of all Minimal Conflicts Contexts of all subsystems. These subsystems are smaller
than the whole system, and therefore the computational complexity for detecting
conflicts is reduced.

Definition 14.8 Cluster of components. A set of components C is a cluster of com-
ponent only if:

1. For all non-observable inputs and outputs of each component of C, these inputs
and outputs are always linked only with components of C.

2. It does not exist another set C ′ ⊆ C which satisfies the first condition.

The first part the definition guarantees that we are able to detect a conflict in a
cluster of components without information about other clusters. The second part of
the definition guarantees that the size of clusters will be as small as possible. For
each cluster, an independent context network is obtained. The set of conflicts for
each cluster can be obtained by independent processes (also in a parallel way), and
the union of the conflicts of all the clusters will be the complete set of conflicts of
the system.

ExampleThere is just one cluster in the polybox example, and the context network
contains 25 − 1 = 31 nodes. But, for example, if the visibility of variable y is changed
from non-observable to observable, there will be three clusters: {M1, A1}, {M2} and
{M3,A2}, and there will be three context networks with a total of (22 − 1) + (21 − 1)
+ (22 − 1) = 7 nodes.

14.3.5.2 Relevant Contexts

In order to obtain an equivalent context network but without non-observable vari-
ables, Gröbner Basis algorithm is applied. The goal is reducing the number of nodes
(of the context network) to be processed, and therefore reducing the computational
complexity. The idea is to select which contexts are important for detecting conflicts.
These contexts are named relevant contexts.

Definition 14.9 Relevant contexts. RC is a relevant context if applying Gröbner
Basis algorithm (GB), one or more obtained constraints cannot be obtained by apply-
ing the same algorithm to other sub-contexts RC ′ ⊆ RC, and ∀ RC ′ ⊆ RC: GB(RC ′)
⊆ GB(RC).

In order to know if a context is relevant or irrelevant, the first step is removing
for each context all the constraints which include only observable variables. In this
case, it has no sense to apply Gröbner Basis algorithm. The next step is removing
the constraints that contain at least one non-observable variable, which appears only



Fig. 14.6 Context network of the polybox example. Relevant contexts are shown in bold

one time in the set of constraints associated with each context because Gröbner Basis
algorithm is not able to remove these variables. Finally, the context is relevant, if
after the first and second step, there is at least one constraint for each component of
the context.

Gröbner Basis algorithm is not applied to irrelevant contexts, because the set of
obtained constraints will be empty or included in the set of obtained constraints of
relevant contexts. Irrelevant contexts are not necessary for obtaining the complete
set of conflicts of a system.

Example InFig. 14.6, the context network for the polyboxexample is shown.Gröb-
ner Basis algorithm is applied only to the relevant contexts: M2M3A1A2, M1M2A2,
and M2M3A2.

14.3.5.3 Determination of Minimal Conflict Contexts

A constraint-driven algorithm is proposed in order to obtain the Minimal Conflict
Contexts (MCCs), based on the following definition:

Definition 14.10 Context Analytical Redundancy Constraint (CARC). A constraint
derived from SM where only observable variables are related. The set of CARCs is
the union of all the constraints obtained by applying Gröbner Basis algorithm for
each relevant context.

A relevant context RC is an MCC if it has not an empty set of constraints and it
satisfies one of the following predicates:

• All its sub-contexts are not MCCs.
• At least one CARC of the context RC is not included in any of its sub-contexts
which are MCCs.



In order to determine which relevant contexts are MCCs, the graph of relevant
contexts is traversed from the leaf nodes to the root, in such a way that only upper
relevant contexts that satisfy the definition of MCC will be taken into account.

Example In the polybox example, all relevant contexts are MCCs. There are
three CARCs: ac − ce − f + g = 0 (context M2M3A1A2), ac + bd − f = 0 (con-
text M1M2A2), bd + ce − g = 0 (context M2M3A2).

The set of minimal diagnoses is obtained by applying a standard hitting set algo-
rithm to the MCCs, which are evaluated to false when an observational model is
applied. The evaluation of the MCCs and the hitting set algorithm are done in an
online process (when an observational model is known), but all previous steps (as
the process for obtaining the MCCs) can be done in an offline process and just one
time for all possible observational models.

14.4 Application to a Case of Study

In Fig. 14.7, a system of heat exchangers is shown. This system [18] consists of
six heat exchangers, three flows f i come in at different temperatures ti. There are
three different subsystems, each one formed by two exchangers: E1, E2, E3, E4, and
E5, E6. Each of the six exchangers and each of the eight nodes of the system are
considered as components in order to be able to verify their correct behavior. In [17],
the complete SM of the example is shown.

The system of heat exchangers has five clusters:{N11}, {N13}, {N12, N21, N22, E1,
E2}, {N14, N23, N24, E5, E6}, and {E3, E4}. For example, {E3, E4} is a cluster because
all the connections (inputs and outputs) to other components outside the cluster are
observable. There are some non-observable connections inside the cluster, but do not
connect to components outside the cluster. For example, the outputs f32 and t32 of
the component E3 are not observables, but they are inputs for the component E4.

For each cluster, an independent context network is obtained. This pretreatment
reduces the number of nodes of the context network, for example from 214 − 1 to
(21 − 1) + (21 − 1) + (25 − 1) + (25 − 1) + (22 − 1) = 67.

Gröbner Basis algorithm is not applied for irrelevant contexts. For example, con-
text N12 is irrelevant because all variables of their constraints are observable. The
context N12N21E1E2 is irrelevant because there exists another context, N12E1E2,
without component N21, that generates the same set of constraints. Another example
is E1E2, it is an irrelevant context because applying Gröbner Basis is not possible to
obtain any constraint.

In Fig. 14.8, the context network for the components cluster {N12, N21, N22,
E1, E2} is shown. Gröbner Basis algorithm is applied only to the relevant contexts:
N12E1E2, N21N22E1E2, and N12N21N22E1E2. In Table 14.4, the differences between
applying Gröbner Basis algorithm to all contexts (as in [14, 15]) or only to the
relevant contexts for each cluster are shown.

In Fig. 14.9, all CARCs grouped by clusters are shown. In order to determine
which relevant context is MCC, we have to traverse the graph of the context network



The normal behaviour of the system can be described by means of these constraints:∑
i fi = 0: mass balance at each node∑

i fi·ti=0: thermal balance at each node∑
in fi·ti-

∑
out f j·t j=0: enthalpy balance for each heat exchanger

C. Constraints C. Constraints C. Constraints
N11 f11-f12-f13 N22 f24+f25-f26 E2 f13-f15

f11·t11-f12·t12-f13·t13 f24·t24+f25·t25-f26·t26 f23-f25
N12 f14+f15-f16 N23 f27-f28-f29 f13·t13-f15·t15+f23·t23-f25·t25

f14·t14+f15·t15-f16·t16 f27·t27-f28·t28-f29·t29 E3 f26-f27
N13 f17-f18-f19 N24 f210+f211-f212 f31-f32

f17·t17-f18·t18-f19·t19 f210·t210+f211·t211-f212·t212 f26·t26-f27·t27+f31·t31-f32·t32
N14 f110+f111-f112 E1 f12-f14 E4 f16-f17

f110·t110+f111·t111-f112·t112 f22-f24 f32-f33
N21 f21-f22-f23 f12·t12-f14·t14+f22·t22-f24·t24 f16·t16-f17·t17+f32·t32-f33·t33

f21·t21-f22·t22-f23·t23

C. Constraints C. Constraints
E5 f18-f110 E6 f19-f111

f28-f210 f29-f211
f18·t18-f110·t110+f28·t28 -f210·t210 f19·t19-f111·t111+f29·t29 -f211·t211

Vobservable={f11,f12,f13,f16,f17,f18,f19,f112,f23,f21,f26,f27,f212,f31,f33,t11,t12,t13,
t16,t17,t18,t19,t112,t21,t26,t27,t212,t31,t33}

VnonObservable={f14,f15,f21,f22,f22,f23,f24,f25,f28,f29,f210,f211,f32,t14,t15,t110,t111,
t22,t23,t24,t25,t28,t29,t210,t211,t32}

Fig. 14.7 System of heat exchangers, components, equations, and variables



Fig. 14.8 Context network of the cluster {N12, N21, N22, E1, E2}. Relevant contexts are shown in
bold

Table 14.4 Improvement by obtaining clusters of components and relevant contexts

No reduction Using clusters Using clusters and
Relevant C

Number of nodes of
the context net

214 − 1 67 67

Calls to Gröbner Basis 214 − 1 67 7

Number of obtained
constraints

64 14 14

Index Cluster Constraints
1 1 f11 - f12 - f13 = 0
2 1 f11 t11 - f12 t12 - f13 t13 = 0
3 2 f17 - f18 - f19 = 0
4 2 f17 t17 - f18 t18 - f19 t19 = 0
5 3 f12 + f13 - f16 = 0
6 3 f21 - f26 = 0
7 3 f12 t12 + f13 t13 - f12 t16 - f13 t16 + f21 t21 - f21 t26 = 0
8 4 f18 + f19 - f112 = 0
9 4 f27 - f212 = 0
10 4 f18 t18 + f19 t19 - f18 t112 - f19 t112 + f27 t27 - f27 t212 = 0
11 5 f26 - f27 = 0
12 5 f16 - f17 = 0
13 5 f31 - f33 = 0
14 5 f16 t16 - f17 t17 + f26 t26 - f27 t27 + f31 t31 - f31 t33 = 0

Fig. 14.9 Context analytical redundancy constraints

from the leaf nodes to the root, in such a way that, if any of the upper contexts do
not validate the definition of MCC, it cannot be considered as an MCC. In the heat
exchangers example, all the relevant contexts are MCC. In Fig. 14.10, all MCCs of
the system are shown.



Fig. 14.10 Minimal conflicts contexts network of the system

14.5 Conclusions

The paradigm of Constraint-driven Fault Diagnosis is an adequate alternative to the
automation of the fault diagnosis problems for hardware systems. These problems
are represented as CSPs/COPs or SAT/MaxSAT in order to detect and identify the
possible cause of the faults. The solving process of CSPs/COPs is based on applying
consistency and search techniques. The high complexity of the exhaustive search
algorithm for certain CSPs/COPs requires the application of decomposition or sym-
bolic techniques in order to reduce this complexity.
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