
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

Spring 5-3-2013

Practical Tractability of CSPS by Higher Level Consistency and Practical Tractability of CSPS by Higher Level Consistency and

Tree Decomposition Tree Decomposition

Shant Karakashian
University of Nebraska-Lincoln, shantgk@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Artificial Intelligence and Robotics Commons

Karakashian, Shant, "Practical Tractability of CSPS by Higher Level Consistency and Tree Decomposition"
(2013). Computer Science and Engineering: Theses, Dissertations, and Student Research. 58.
https://digitalcommons.unl.edu/computerscidiss/58

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/58?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages

PRACTICAL TRACTABILITY OF CSPS BY HIGHER LEVEL CONSISTENCY

AND TREE DECOMPOSITION

by

Shant Karakashian

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Computer Science

Under the Supervision of Professor Berthe Y. Choueiry

Lincoln, Nebraska

May, 2013

PRACTICAL TRACTABILITY OF CSPS BY HIGHER LEVEL CONSISTENCY

AND TREE DECOMPOSITION

Shant Karakashian, Ph. D.

University of Nebraska, 2013

Adviser: Berthe Y. Choueiry

Constraint Satisfaction is a flexible paradigm for modeling many decision problems

in Engineering, Computer Science, and Management. Constraint Satisfaction Problems

(CSPs) are in general NP -complete and are usually solved with search. Research

has identified various islands of tractability, which enable solving certain CSPs with

backtrack-free search. For example, one sufficient condition for tractability relates the

consistency level of a CSP to treewidth of the CSP’s constraint network. However,

enforcing higher levels of consistency on a CSP may require the addition of constraints,

thus altering the topology of the constraint network and increasing its treewidth. This

thesis addresses the following question: How close can we approach in practice the

tractability guaranteed by the relationship between the level of consistency in a CSP

and the treewidth of its constraint network?

To achieve “practical tractability,” this thesis proposes: (1) New local consistency

properties and algorithms for enforcing them without adding constraints or altering

the network’s topology; (2) Methods to enforce these consistency properties on the

clusters of a tree decomposition of the CSP; and (3) Schemes to bolster the propagation

between the clusters of the tree decomposition.

Our empirical evaluation shows that our techniques allow us to achieve practical

tractability for a wide range of problems, and that they are both applicable (i.e., require

acceptable time and space) and useful (i.e., outperform other consistency properties).

We theoretically characterize the proposed consistency properties and empirically

evaluate our techniques on benchmark problems. Our techniques for higher level

consistency exhibit their best performances on difficult benchmark problems. They

solve a larger number of difficult problem instances than algorithms enforcing weaker

consistency properties, and moreover they solve them in an almost backtrack-free

manner.

iv

COPYRIGHT

c© 2013, Shant Karakashian

v

DEDICATION

To my family and my wife

vi

ACKNOWLEDGMENTS

I am indebted to all those who helped me throughout the years of my graduate

studies. I am grateful to my adviser, Professor Berthe Y. Choueiry, for her guidance,

help, support and patience. I would like to thank the members of my Supervising

Committee for their support and input, in particular the two readers of my dissertation

Professor Rina Dechter and Professor Matthew Dwyer for the constructive feedback

and corrections. The research described in this dissertation was inspired by some of the

research contributions of Professor Dechter, and the discussion related in Section 6.5.4

is a direct result of her input.

I would like to acknowledge research collaborations and the scientific input of the

following individuals: Professor Rina Dechter and Dr. Radu Marinescu for discussions

about tree decomposition, Mr. Robert J. Woodward for collaboration on Chapters 3

and 5, Professor Stephen G. Hartke for collaboration on Appendix A, Dr. Christian

Bessiere for collaboration on Chapters 3, 5, and Appendix B, Mr. Christopher G.

Reeson for collaboration on Chapter 3, Professor Kostas Stergiou for sharing his

data and random problem generator, and Professor Stephen D. Scott and Mr. Daniel

Geschwender for collaboration on Chapter 4.

My gratitude goes to Mrs. Gassia Akilian, Mr. Daniel Geschwender, Ms. Phyllis

O’Neil, Mr. Tony Schneider, and Mr. Robert J. Woodward for carefully proofreading

this dissertation. Special thanks to Professor David Swanson, Mr. Tom Harvil and

the entire team of the Holland Computing Center team for supporting me with the

use of computing resources necessary for the experiments.

Special thanks to Professor Eugene C. Freuder, Dr. Stephen Prestwich, and

Dr. Richard Wallace for hosting me at 4C during Summer 2010, which was a wonderful

research experience and invaluable training.

vii

I would like to thank all the members of my family and my wife for their uncon-

ditional support, infinite sacrifice, and unwavering encouragement throughout this

journey. My sincere gratitude goes to Dr. Jihad Boulos and Dr. Walid Keirouz for

their mentorship and friendship, and for being there for me during the most critical

stages of my academic journey.

viii

GRANT INFORMATION

This research supported by a NSF CAREER Award #0133568 and NSF Grant No.

RI-111795. Experiments were conducted on the equipment of the Holland Computing

Center at UNL.

ix

Contents

Contents ix

List of Figures xvii

List of Tables xxi

List of algorithms xxiv

1 Introduction 1

1.1 Motivation & Claim . 2

1.2 Approach . 4

1.2.1 Higher level consistencies . 4

1.2.2 Tree decomposition . 4

1.3 Contributions . 5

1.4 Document Structure . 7

2 Background Information 10

2.1 Constraint Satisfaction Problems (CSPs) 10

2.1.1 Problem definition . 11

2.1.2 Defining constraints . 12

2.1.3 Graphical representations . 13

x

2.1.4 Solving CSPs . 15

2.2 Consistency Properties . 16

2.2.1 Variable-based consistency properties 16

2.2.2 Relation-based consistency properties 18

2.2.3 Global consistency properties 19

2.2.4 Comparing consistency properties 19

2.3 Algorithms for Enforcing Consistency 20

2.3.1 Domain filtering . 20

2.3.2 Constraint synthesis . 21

2.3.3 Relation filtering . 21

2.3.4 Techniques for improving performance in practice 22

2.4 Tree-Structured Constraint Networks 22

2.5 Tree Decomposition . 23

2.5.1 Definition . 23

2.5.2 Structural parameters and tractability 25

2.5.3 Main tree-decomposition techniques 25

2.6 Solving CSPs with Tree Decomposition 26

2.6.1 Cluster-centered methods . 27

2.6.2 Variable-centered methods . 28

2.6.3 Backtrack-search based methods 30

2.6.4 Approximation techniques . 31

3 Consistency Property R(∗,m)C 34

3.1 Overview . 35

3.2 R(∗,m)C . 36

3.3 Weakening R(∗,m)C . 38

xi

3.4 Theoretical Characterization . 40

3.5 A First Algorithm for Enforcing R(∗,m)C 40

3.5.1 Initializing the queue . 41

3.5.2 Processing the queue . 41

3.5.3 Searching for a support . 43

3.5.4 The index-tree data structure 43

3.5.5 Improving the search for support 45

3.5.6 Improving forward checking 45

3.5.7 Complexity analysis . 46

3.6 Related Work . 47

3.7 Empirical Evaluations . 49

3.7.1 Experimental set-up . 49

3.7.2 Results . 50

3.7.3 Conclusions . 62

4 An Alternative Algorithm for Enforcing R(∗,m)C 64

4.1 Background . 65

4.2 Related Work . 67

4.3 AllSol . 67

4.3.1 AllSol: Solving a single counting problem 67

4.3.2 Complexity analysis . 68

4.3.3 Qualitative comparison of PerTuple and AllSol 69

4.4 Building a Hybrid Solver . 71

4.4.1 Data used for building the classifiers 72

4.4.2 Parameters and features . 74

4.4.3 Building the classifiers . 76

xii

4.4.4 Empirical evaluations . 78

4.4.5 Conclusions . 83

5 Localized Consistency & Structure-Guided Propagation 84

5.1 Generating a Tree Decomposition . 85

5.2 Localizing Consistency to Clusters . 87

5.2.1 Information transfer between clusters 88

5.2.2 Characterizing cl-R(∗,m)C . 89

5.3 Structure-Guided Propagation . 89

5.3.1 Related Work . 91

5.3.2 Structure of the propagation queue 92

5.3.3 Queue-management strategies 93

5.3.4 Implementing Priority and Dynamic 94

5.3.4.1 Functions & accessors used in pseudocode 95

5.3.4.2 Selection from fringe 96

5.3.4.3 Algorithm for Priority 97

5.3.4.4 Algorithm for Dynamic 101

5.3.5 Correctness of the algorithms 103

5.4 Empirical Evaluations . 104

5.4.1 Experimental set-up . 104

5.4.2 Evaluating the localization . 105

5.4.3 Evaluating queue-management strategies 109

5.5 Conclusions . 112

6 Bolstering Propagation at Separators 114

6.1 Introduction . 114

6.2 Bolstering Propagation at Separators 115

xiii

6.2.1 Three bolstering schemes . 116

6.2.1.1 Adding constraint projections 117

6.2.1.2 Adding binary constraints 117

6.2.1.3 Adding clique constraints 119

6.2.1.4 Generating the relations of the binary and clique con-

straints . 120

6.2.2 Transferring information between clusters 122

6.3 Resulting Consistency Properties . 122

6.4 Related Work . 125

6.5 Empirical Evaluations . 126

6.5.1 Experimental set-up . 126

6.5.2 Aggregate results . 127

6.5.3 A finer view . 130

6.5.4 Performance as a function of the treewidth 132

6.5.5 Merging decomposed tree clusters 136

6.6 Conclusions . 136

7 Witness-Based Algorithm for Finding All of a CSP 137

7.1 Background . 137

7.2 WitnessBTD for Solution Counting 139

7.2.1 Notation used in pseudocode 139

7.2.2 Recursive specification of WitnessBTD 141

7.3 Theoretical Analysis of the Algorithm 143

7.4 Empirical Evaluations . 145

7.4.1 Comparing WitnessBTD to BTD (with GAC) 145

7.4.1.1 Experimental set-up 146

xiv

7.4.1.2 Results . 146

7.4.2 Comparing R(∗,m)C to GAC for finding all solutions 148

7.4.2.1 Experimental set-up 149

7.4.2.2 Results . 150

7.5 Conclusions . 154

8 Conclusion 156

8.1 Conclusions . 156

8.2 Directions for Future Research . 157

Bibliography 161

A Computing All k-Connected Subgraphs 174

A.1 Introduction . 174

A.2 Alternative Approaches . 176

A.3 Description of the Algorithm . 178

A.3.1 ConSubg and CombinationsWithV 179

A.3.2 Building the combination tree 180

A.3.2.1 Illustrating the execution of CombinationTree . . 183

A.3.2.2 Complexity of CombinationTree and BuildTree 185

A.3.2.3 Soundness and completeness of combination trees . . 186

A.3.3 Extracting k-ConnVertices from a combination tree 188

A.3.3.1 Defining of the ⊗t operator 190

A.3.3.2 Pseudocode of CombinationsFromTree 191

A.3.3.3 Illustrating the execution of CombinationsFromTree192

A.3.3.4 Implementation of the ⊗t operator 198

A.3.3.5 Completeness & soundness of CombinationsFromTree199

xv

A.4 Memoization . 203

A.5 Complexity Analysis of ConSubg . 204

A.5.1 Time complexity . 204

A.5.2 Space complexity . 209

A.6 Correctness . 209

A.7 Empirical Evaluations . 210

A.7.1 Graphs of a fixed degree . 211

A.7.2 Scale-free graphs . 216

A.7.3 CSP graphs . 218

A.8 Conclusion . 221

B The Solution Cover Problem is in NP-Complete 225

B.1 Introduction . 225

B.2 Constraint Satisfaction Problem (CSP) 226

B.3 The Solution Cover Problem (SolCP) 226

B.4 Proof of NP -Completeness . 227

B.4.1 SolCP is in NP . 227

B.4.2 The set cover problem (SCP) is in NP -Complete 228

B.4.3 Polynomial transformation from SCP to SolCP 228

B.4.3.1 Variables . 228

B.4.3.2 Constraints . 229

B.4.3.3 Domains . 230

B.5 Transformation Example from SCP to SolCP 231

B.6 Proof of the Polynomial Transformation 234

C Proofs of Main Theorems 239

C.1 Proofs from Section 3.2 . 239

xvi

C.2 Proofs from Section 3.3 . 240

C.3 Proofs from Section 4.3.2 . 241

C.4 Proofs from Section 5.2.2 . 242

C.5 Proofs from Section 6.3 . 243

D Iterative WitnessBTD 248

E Characteristics of the Benchmark Data 255

xvii

List of Figures

2.1 A simple CSP example. 12

2.2 Hypergraph. 13

2.3 Primal graph. 13

2.4 Dual graph. 13

2.5 Two representations of the hypergraph of a non-binary CSP. 14

2.6 The primal (left) and dual (right) graphs of the CSP in Figure 2.5. 14

2.7 Showing the redundant edges of the dual graph of a CSP. 15

2.8 Two redundant edges of the graph in Figure 2.4. 15

2.9 A tree decomposition of the CSP in Figure 2.2 (left) and Figure 2.5 (right). . 24

2.10 Cluster-centered methods. 27

2.11 Variable-centered methods. 27

2.12 The primal (left) and a triangulated primal (right) graphs of the CSP in Figure 2.5. 28

2.13 Illustrating the correspondence between a variable-based method (left), bucket

elimination, and the clusters of a tree decomposition (right) of the CSP in

Figure 2.5. 29

2.14 BTD on the tree decomposition at the right of Figure 2.9. The rectangles

between the clusters denote ‘materializations’ of partial solutions that appear in

a complete solution to the CSP (goods) or not (nogoods). 31

xviii

2.15 Bucket elimination (left) and its approximation by mini-bucket elimination

(MBE) (right). 33

3.1 The application of R(∗,m)C on a combination of m relations. 36

3.2 Dual graph. 38

3.3 Comparing GAC, maxRPWC, R(∗,m)C, wR(∗,m)C, and RmC. 40

3.4 ITRj ,{A,B,C}. 44

4.1 PerTuple conducts many backtrack searches, seeking one solution (satisfiabil-

ity). 66

4.2 AllSol conducts a single backtrack search, possibly seeking all solutions. . . 66

4.3 Decision tree of SolverC4.5. 79

5.1 The hypergraph of a CSP. 86

5.2 Triangulated primal graph of the example in Figure 5.1 and the corresponding

maximal cliques. 86

5.3 Maximal cliques. 86

5.4 Tree decomposition. 86

5.5 Two adjacent clusters with {A,B,C,D} and R4 in the separator. 88

5.6 Characterizing cl-R(∗,m)C in terms of GAC, maxRPWC, and R(∗,m)C. . . . 90

5.7 Comparing local to global for wR(∗,3)C. 107

5.8 Comparing cl-R(∗,|ψ(cl)|)C to GAC. 108

5.9 Comparing Random and Static for cl-R(∗,|ψ(cl)|)C. 111

5.10 Comparing Dynamic and Static for cl-R(∗,|ψ(cl)|)C. 112

6.1 Two adjacent clusters. 116

6.2 Unique constraint over the separator’s variables. 117

6.3 Constraint projections. 118

xix

6.4 Induced primal-graph. 118

6.5 Triangulated induced primal-graph. 118

6.6 Binary constraints. 118

6.7 Clique constraints. 119

6.8 Separator constraint example. 121

6.9 Comparing consistency properties. 123

6.10 Projection. 131

6.11 Clique. 131

6.12 Compared to GAC. 132

6.13 UNSAT instances: Cumulative count of completed instances within a treewidth

value. 134

6.14 SAT instances: Cumulative count of completed instances within a treewidth value.134

6.15 UNSAT instances: Cumulative count of number of instances solved backtrack-

free within a treewidth value. 135

6.16 SAT instances: Cumulative count of number of instances solved backtrack-free

within a treewidth value. 135

7.1 Illustrating wasteful enumeration of partial solutions. 138

7.2 Case of repeated search. 145

7.3 WitnessBTD and BTD time comparison. 149

A.1 Simple graph. 175

A.2 Simple graph. 181

A.3 Combination tree for a, k = 4, and Fig. A.2. 181

A.4 Simple example. 184

A.5 Combination tree rooted at vertex a with k = 4 for the graph in Figure A.4. . 184

A.6 Simple example. 188

xx

A.7 The tree rooted at vertex a for k = 4 for the graph in Figure A.6. 188

A.8 Simple graph. 192

A.9 The tree rooted at vertex a for k = 4 for the graph in Figure A.8. 192

A.10 Increasing k with |V |=100 and of degree 10. 212

A.11 Increasing k on graphs with |V |=100 and of degree 40. 213

A.12 Increasing the number of vertices for k = 4 and graphs of degree 10. 213

A.13 Increasing the number of vertices for k = 4 and graphs of degree 40. 214

A.14 Increasing the degree of the vertices for |V |=100 and k = 4. 215

A.15 Increasing the degree of the vertices for |V |=300 and k = 4. 215

A.16 Increasing the degree of the vertices for |V |=500 and k = 4. 216

A.17 Increasing the number of vertices with k = 4 in scale-free networks. 217

A.18 Increasing k in scale-free networks of 100 vertices. 218

B.1 A solution subset of size (|S| ∗ 2) + k = 12 that covers all the tuples. 234

xxi

List of Tables

3.1 Results on the unsatisfiable benchmark problems of the first group (part 1). . 52

3.2 Results on the unsatisfiable benchmark problems of the first group (part 2). . 53

3.3 Results on the unsatisfiable benchmark problems of the first group (part 3). . 54

3.4 Results on the satisfiable benchmark problems of the first group. 55

3.5 Results on the unsatisfiable benchmark problems of the second group. 56

3.6 Results on the satisfiable benchmark problems of the second group (part 1). . 57

3.7 Results on the satisfiable benchmark problems of the second group (part 2). . 58

3.8 Results on the unsatisfiable benchmark problems of the third group. 59

3.9 Results on the satisfiable benchmark problems of the third group (part 1). . . 60

3.10 Results on the satisfiable benchmark problems of the third group (part 2). . . 61

4.1 Summary of data used. 72

4.2 Number of instances solved and the corresponding average times. 73

4.3 Main learning algorithms and configurations tested. 77

4.4 Comparing the performance of all four algorithms. 80

4.5 Randomly generated CSPs. 81

4.6 Comparing the two new hybrid solvers. 82

5.1 Tested consistencies. 105

5.2 Aggregate results comparing R(∗,m)C and cl-wR(∗,m)C. 106

xxii

5.3 Comparison of the queue-management strategies. 110

6.1 Tested consistencies. 127

6.2 Aggregate results of the bolstering schemes. 129

7.1 Number of benchmark problems completed by each and both algorithms. . . 146

7.2 Number of instances with fewer #NV. 147

7.3 Average number of nodes visited. 147

7.4 Number of instances completed faster. 148

7.5 Average time in seconds. 148

7.6 Tested consistencies. 149

7.7 Comparing consistency properties using BTD. 152

7.8 Comparing consistency properties using WitnessBTD. 153

A.1 A quick reference table to the proposed algorithms. 179

A.2 Experiments on random graphs of a fixed degree. 211

A.3 Summary of results on 1689 CSP benchmark instances. 219

A.4 Results of experiments on CSP benchmarks for k = 5 (Part 1). 222

A.5 Results of experiments on CSP benchmarks for k = 5 (Part 2). 223

A.6 Results of experiments on CSP benchmarks for k = 5 (Part 3). 224

B.1 The umbrella relation with the empty set and subset tuples. 233

B.2 The element relations with the helper and element tuples. 233

E.1 Data characteristics of unsatisfiable binary instances (part 1). 257

E.2 Data characteristics of unsatisfiable binary instances (part 2). 258

E.3 Data characteristics of unsatisfiable binary instances (part 3). 259

E.4 Data characteristics of unsatisfiable binary instances (part 4). 260

E.5 Data characteristics of unsatisfiable binary instances (part 5). 261

xxiii

E.6 Data characteristics of unsatisfiable binary instances (part 6). 262

E.7 Data characteristics of unsatisfiable binary instances (part 7). 263

E.8 Data characteristics of unsatisfiable binary instances (part 8). 264

E.9 Data characteristics of unsatisfiable binary instances (part 9). 265

E.10 Data characteristics of unsatisfiable binary instances (part 10). 266

E.11 Data characteristics of unsatisfiable binary instances (part 11). 267

E.12 Data characteristics of unsatisfiable binary instances (part 12). 268

E.13 Data characteristics of unsatisfiable non-binary instances (part 1). 269

E.14 Data characteristics of unsatisfiable non-binary instances (part 2). 270

E.15 Data characteristics of unsatisfiable non-binary instances (part 3). 271

E.16 Data characteristics of unsatisfiable non-binary instances (part 4). 272

E.17 Data characteristics of satisfiable binary instances (part 1). 273

E.18 Data characteristics of satisfiable binary instances (part 2). 274

E.19 Data characteristics of satisfiable binary instances (part 3). 275

E.20 Data characteristics of satisfiable non-binary instances (part 1). 276

E.21 Data characteristics of satisfiable non-binary instances (part 2). 277

E.22 Data characteristics of satisfiable non-binary instances (part 3). 278

xxiv

List of Algorithms

1 PerTuple(Q,Φ). 42

2 AllSol(PD) . 68

3 RemoveMax(fringe) . 97

4 Priority-PreProcessing(Clusters) 98

5 Priority-Search(cluster, Clusters) . 100

6 Dynamic-PreProcessing(Clusters) 102

7 Dynamic-Search(cluster, Clusters) . 103

8 A recursive specification of WitnessBTD(∅,root,χ(root),countSol) 142

9 BF-ConSubg(k,G) . 177

10 LBF-ConSubg(k,G). 178

11 ConSubg(k,G). 179

12 CombinationsWithV(v, k,G). 180

13 CombinationTree(v, k,G). 181

14 BuildTree(nt, depth,G, k) . 184

15 CombinationsFromTree(tree, k) . 192

16 An iterative description of WitnessBTD. 253

17 ChooseVariable. 254

1

Chapter 1

Introduction

Constraint Satisfaction is a general and flexible paradigm for modeling many decision

problems in Engineering, Computer Science, and Management. The formulation of a

Constraint Satisfaction Problem (CSP) can easily be extended to include optimization

criteria, thus allowing the modeling of optimization tasks. In this thesis, we will focus

on decision problems.

Generally speaking, CSPs are NP -complete, thus, likely intractable. Research on

this topic started as early as the 1960’s [Sutherland, 1963; Fikes, 1970; Montanari, 1974;

Waltz, 1975], and the field has matured into an independent research area in Artificial

Intelligence with textbooks [Tsang, 1993; Dechter, 2003; Lecoutre, 2009], a handbook

[Rossi et al., 2006], a professional association1 and an international conference series.2

Two fundamental mechanisms are used to solve CSP instances: constraint propa-

gation and backtrack search, respectively called inference and conditioning [Dechter,

2003]. Typically, in a pre-processing step, we enforce a given consistency property on

a problem instance. We do this by constraint propagation, hoping to uncover incon-

sistency before starting search. This overhead can be worthwhile because constraint

1Association for Constraint Programming http://4c.ucc.ie/a4cp.
2International Conference on Principles and Practice of Constraint Programming.

2

propagation algorithms are usually efficient (i.e., run in polynomial time) whereas

search is usually not. Then, we interleave constraint propagation with (systematic,

exhaustive) backtrack search in a complete and sound algorithm to solve a CSP

instance. Local search is another approach for solving CSPs, but it yields techniques

that are generally neither complete nor sound. Such techniques are beyond the scope

of this thesis.

The contributions reported in this thesis are mainly concerned with inference-based

techniques. More specifically, we define new consistency properties, design algorithms

for enforcing them, and develop structure-based mechanisms for propagating them.

Below, we motivate our investigations and summarize our contributions.

1.1 Motivation & Claim

Although a CSP is in general NP -complete, research in Constraint Processing (CP)

has identified various islands of tractability as classes of CSPs that can be solved in

polynomial time in the size of the input [Gottlob and Szeider, 2008]. We single out

the tractability condition specified by a relationship between

• A structural parameter of the constraint network of a CSP such as the treewidth

or the hypertree width, and

• The level of a consistency that the corresponding CSP possesses.

Larger network widths typically require higher levels of consistency to guarantee

backtrack-free search [Freuder, 1982; Dechter and Pearl, 1987]. This approach is

hindered in practice by two main obstacles:

1. Finding the treewidth or hypertree width of a constraint network is an NP -hard

task [Arnborg et al., 1987; Gottlob et al., 2002].

3

2. Enforcing higher levels of consistency may require adding constraints to the

CSP, thus modifying its structure and width parameters.

As a result, few researchers have exploited this important tractability result for

solving CSPs or for counting a CSP’s number of solutions. Exceptions include

the following: a) Theoretical studies [Freuder, 1982; 1985]; b) Exact algorithmic

techniques [Dechter and Pearl, 1987; 1989; Gyssens et al., 1994; Jeavons et al., 1994;

Dechter, 1996; Gottlob et al., 2000; Jégou and Terrioux, 2003]; and c) Techniques that

provide upper bounds on the number of solutions [Dechter, 1997; Favier et al., 2009;

Rollon and Dechter, 2010]. Given the difficulty of finding the treewidth of the constraint

network of a CSP, most algorithmic techniques approximate the treewidth of the

constraint network using a tree decomposition embedding of that network.

In this thesis, we address the following question: How close can we approach in

practice the tractability guaranteed by the relationship between the level of consistency

in a CSP and the width of its constraint network? We propose to achieve “practical

tractability,” that is, recognizing, as we are solving them, problems whose complexity

is inherently bounded, as follows:

1. Propose new local consistency properties whose level is controlled by a

parameter and design algorithms for enforcing them that do not modify

the structure of the constraint network.

2. Control the cost of our algorithms by localizing them to the subproblems

delimited by a tree decomposition of the CSP.

3. Bolster constraint propagation and enhance communications between

subproblems by adding redundant constraints that do not affect the

treewidth of the tree decomposition used.

4

1.2 Approach

Our approach is centered on enforcing higher level consistencies in the context of a

tree decomposition in order to reap the benefits of such consistencies for solving CSPs.

1.2.1 Higher level consistencies

Generally, consistency algorithms operate on combinations of variables or constraints.

In practice, the most popular algorithms consider combinations of at most three

variables or two relations. Except for the simplest cases, all may in general require the

addition of new constraints [Freuder, 1978; Dechter and van Beek, 1997]. Moreover,

different problems require different levels of consistency. For this reason, it becomes

important to explore new properties:

1. Whose level of consistency can be controlled (i.e., parameterized consistency),

but

2. That do not modify the structure of the constraint network, and thus, do not

increase its width.

1.2.2 Tree decomposition

The main techniques that exploit the structure of the constraint network for solving

the CSP use a tree embedding of the constraint network. Because finding the optimal

decomposition is NP -Hard, heuristics are used to find a ‘good’ decomposition. Tech-

niques for finding tree decompositions include the following: join tree or tree clustering

[Dechter and Pearl, 1989], hinge decomposition [Cohen et al., 2008], and hypertree

decomposition [Gottlob and Scarcello, 2001]. We will use the tree clustering. It is the

5

most commonly used technique on graphical models, can be computed efficiently, and

produces trees of relatively good quality.

The vertices of a tree decomposition are subproblems of the CSP. In order to ensure

the consistency of the solutions of two adjacent subproblems, we must synthesize

and store a global constraint over their ‘overlap’ (i.e., their separator). The space for

storing such global constraints is a major obstacle.

We exploit the tree decomposition in our framework as follows:

1. Localize the application of our consistency algorithms to the subproblems induced

by the tree decomposition.

2. Guide the constraint-propagation process along the branches of the tree to favor

the most constrained paths for early conflict detection.

3. Enhance constraint propagation by adding properly chosen redundant constraints

between adjacent subproblems.

1.3 Contributions

In this section, we summarize our main contributions. We divide them into core

contributions, which support the main claim of this dissertation, and secondary

contributions, which are ‘peripheral’ to the main claim. Our core contributions are

the following:

1. Relational Consistency. We propose and theoretically characterize a new re-

lational consistency property, R(∗,m)C, parameterized by the number of con-

straints over which it applies.

6

2. Two algorithms for enforcing R(∗,m)C. We propose and empirically evaluate two

algorithms for enforcing R(∗,m)C. A key feature of our algorithms is that they

do not modify the topology of the constraint network, and thus do not affect its

treewidth. We show that the two algorithms perform best under complementary

conditions, and use machine learning techniques to build a decision tree to

determine when best to use each algorithm.

3. Localized consistency. We localize our mechanisms for relational consistency to

the subproblems delimited by a tree decomposition of the constraint network in

order to reduce the number of combinations of m relations to which R(∗,m)C is

applied.

4. Structure-based constraint propagation. We organize the propagation of consis-

tency algorithms along the tree decomposition, thus speeding up the propagation

process. We propose three such propagation schemas, and empirically show that

the benefits drawn from exploiting the structure largely dominate the other

improvements we envisaged.

5. Bolstering propagation at separators. We propose to add redundant constraints

at the separators in order to improve propagation between clusters. A unique

global constraint over a separator ensures a perfect communication between two

clusters. In practice, the size of the corresponding relation is prohibitive. We

propose three approximations of the ideal case. We identify and characterize

the consistency properties that result from this mechanism.

Our secondary contributions are the following:

1. Witness-based solutions counting. The technique known as “backtrack with tree

decomposition” (BTD) is a backtrack search that exploits a tree decomposition of

7

a CSP [Jégou and Terrioux, 2003]. Favier et al. use the BTD to count the number

of solutions of a CSP [2009]. We propose witness-based BTD (WitnessBTD)

as an improvement to the performance of the BTD for solutions counting. For a

given partial solution, WitnessBTD guarantees that the partial solution is not

a nogood by finding a ‘witness’ before attempting to count the number of other

partial solutions based on this partial solution. We compare the performance of

the BTD, WitnessBTD and our various strategies based on bolstering.

2. Computing all k-connected subgraphs. We propose a new algorithm for computing

all connected subgraphs of size k. This algorithm is important for computing

all combinations of m relations of a CSP, represented by the vertices of its dual

graph. It dramatically outperforms the naive algorithm for enumerating these

combinations for large sparse graph and small values of k.

3. Complexity of solution covering. We prove that finding the minimum number of

solutions that cover all the tuples of a minimal CSP is NP -hard.

Whenever applicable, we theoretically characterize and empirically evaluate and

compare the proposed new concepts and mechanisms.

1.4 Document Structure

The rest of this dissertation is organized as follows:

Chapter 2 reviews background information.

Chapter 3 defines the new relation consistency property R(∗,m)C, introduces a first

algorithm, PerTuple (Algorithm 1), for enforcing it, and empirically evaluates

8

the performance of this algorithm. Preliminary results from this chapter have

been published [Karakashian et al., 2010b; 2010a].

Chapter 4 introduces the algorithm AllSol (Algorithm 2) as an alternative to

PerTuple (Algorithm 1), and discusses a decision-tree procedure built using

Machine Learning techniques for choosing the appropriate algorithm. Preliminary

results from this chapter appeared in technical report [Karakashian et al., 2012].

Chapter 5 discusses localized consistency and structure-based constraint propagation.

Results from this chapter have been published [Karakashian et al., 2013].

Chapter 6 discusses three strategies for bolstering constraint propagation at the

separators in a tree decomposition by addition of redundant constraints. Results

from this chapter have been published [Karakashian et al., 2013].

Chapter 7 introduces our improvement to solution counting by the BTD via the

production of a witness solution.

Chapter 8 concludes this dissertation and suggests directions for future research.

In order to maintain the coherence of this document, incidental results and comple-

mentary information that are not central to the core contributions are organized in

five appendices:

Appendix A introduces a new algorithm for computing all combinations of k-sized

connected subgraphs of a given graph.

Appendix B introduces the solution-cover problem and shows that it isNP -complete.

Appendix C provides all the proofs of all theorems in the dissertation, removed to

appendices in order to increase readability.

9

Appendix D provides an iterative version of the algorithm WitnessBTD (Algo-

rithm 8), introduced recursively in Chapter 7.

Appendix E describes the characteristics of the benchmark data used in the experi-

ments in Chapters 5, 6, and 7.

Summary

This chapter introduced our motivation and claim, listed our contributions, and

established the structure of this document.

10

Chapter 2

Background Information

In this chapter, we introduce some relevant background information. In particular, we

discuss CSPs, their graphical representations, consistency properties, and algorithms

for enforcing such properties. Then, we define a tree decomposition, and give an

overview of exact and approximate methods for solving CSPs that exploit a tree

structure of the problem.

This chapter summarizes results from the literature that are relevant to the

contributions of this thesis. However, subsequent chapters may discuss related work

locally in order to draw better contrast and comparisons to the specific contributions

discussed in each chapter.

2.1 Constraint Satisfaction Problems (CSPs)

Below, we give a formal definition of a CSP and its components, describe its graphical

representations and the general methods for solving it.

11

2.1.1 Problem definition

A Constraint Satisfaction Problem (CSP) is defined by (X ,D, C) where

1. X = {A1, A2, . . . , An} is a set of n variables.

2. D = {D1, D2, . . . , Dn} is the set of respective domains, where Di, the domain of

variable Ai, is a set of values that can be assigned to variable Ai. In this thesis,

we consider only finite domains.

3. C = {C1, C2, . . . , Cm} is a set of m constraints, restricting the allowed combina-

tion of values to variables. (Section 2.1.2 discusses constraint definitions in more

detail.)

A solution to a CSP is an assignment of one value to each variable such that all

constraints are simultaneously satisfied. Solving a CSP corresponds to finding a

solution, which is a satisfiability problem, or finding all solutions, which is a counting

problem. Generally speaking, the satisfiability problem is NP -complete and the

counting problem is in #P. The optimization problem of finding the least constrained

solution (e.g., MAX-CSP [Freuder and Wallace, 1992]) is NP -hard.

Example 1 Consider P = (X ,D, C) where: a) X = {A,B,C,D,E, F,G}; b) D =

{DA, DB, DC , DD, DE, DF , DG}, with Di∈X = {0, 1} (such a CSP is thus called a

Boolean CSP); and c) The relations of the constraints in C are given in Figure 2.1.

The tuples highlighted in Figure 2.1 represent a solution to this CSP and correspond

to the following assignments of values to the variables:

(A, 0), (B, 0), (C, 1), (D, 1), (E, 1), (F, 0), (G, 0).

12

R1	

A	
 E	
 F	

0	
 0	
 1	

0	
 1	
 0	

0	
 1	
 1	

1	
 0	
 1	

1	
 1	
 0	

R3	

A	
 B	
 C	

0	
 0	
 1	

0	
 1	
 0	

0	
 1	
 1	

1	
 0	
 1	

1	
 1	
 0	

R4	

A	
 D	
 G	

0	
 0	
 1	

0	
 1	
 0	

0	
 1	
 1	

1	
 0	
 1	

1	
 1	
 0	

R2	

B	
 E	

0	
 1	

1	
 0	

R5	

B	
 D	

0	
 1	

1	
 0	

Figure 2.1: A simple CSP example.

2.1.2 Defining constraints

A constraint Ci is defined by its scope, denoted scope(Ci), and a relation Ri = rel(Ci).

The scope of Ci, scope(Ci) ⊆ X, is the set of variables to which the constraint

applies. The arity of a constraint is the cardinality of its scope, |scope(Ci)|. For a

unary constraint, |scope(Ci)| = 1, and for a binary constraint |scope(Ci)| = 2. When

|scope(Ci)| > 2, the constraint is said to be non-binary.

The relation Ri is a subset of the Cartesian product of the domains of the variables

in scope(Ci): rel(Ci) ⊆
∏

Ax∈scope(Ci)
Dx. The relation can be defined in intension by

a predicate function that determines whether or not a tuple is allowed, i.e., whether

the tuple is consistent with the constraint. Alternatively, the relation can be defined in

extension by explicitly listing the elements in the subset. Each element of this subset is

a tuple. The tuples can be the allowed combinations of values, called supports, or the

forbidden combinations, called conflicts or nogoods. When the relation is defined in

extension, the constraint is called a table constraint. While the discussion in this thesis

is limited to table constraints, some of the techniques can be extended to constraints

defined in intension. Such extensions are beyond the scope of this thesis.

A universal constraint is a binary constraint that allows every combination in the

cross product of the domains of the two variables.

13

2.1.3 Graphical representations

There are several graphical representations for a CSP:

• Hypergraph: The vertices represent the variables of the CSP and the hyperedges

represent the scopes of the constraints. Figure 2.2 shows the hypergraph of the

CSP in Example 1.

• Primal graph: The vertices represent the variables and (binary) edges link every

two variables that appear in the scope of some constraint. Figure 2.3 shows the

primal graph of the CSP in Example 1.

• Dual graph: The vertices represent constraints of the CSP, and are labeled by

the constraints’ respective scopes. An edge connects two vertices corresponding

to constraints whose scopes overlap. Figure 2.4 shows the dual graph of the CSP

in Example 1. Thus, the dual CSP is a binary CSP where: (1) variables are the

constraints of the original CSP; (2) the variables’ domains are the tuples of the

corresponding relations; and (3) the binary constraints enforce equalities over

the shared variables to prevent a given variable from having different values.

A B C

D

E
F

G
R4 R5

R2 R1

R3

Figure 2.2: Hypergraph.

A B
C

D

E F

G

Figure 2.3: Primal graph.

A,B,C

A,E,F E,B

B,D A,D,G

A

A

A B
D

B

B
E

Figure 2.4: Dual graph.

Figure 2.5 shows two alternative hypergraphs of a slightly more complex example

than the one in Figure 2.2. Here, the hyperedges are represented by two different but

equivalent ways. Figure 2.6 shows the corresponding primal and dual graphs.

14

A	
 B	
 C	

E	

D	

F	
 G	
 H	

I	
 J	
 K	

M	
 L	

N	

R4 R2

R3

R1

R5 R6

R7

A	
 B	
 C	

E	

D	

F	
 G	
 H	

I	
 J	
 K	

M	
 L	

N	

R1	

R3	

R2	
 R4	

R5	
 R6	

R7	

Figure 2.5: Two representations of the hypergraph of a non-binary CSP.

A	

B	

C	
 E	

D	

F	

G	

H	

I	

J	

K	

M	

L	

N	

R7

R2

R3

R5

R6

R1

A,B,C,N

I,J,K

I,M,N A,K,L

F,G,H

B,D,E,F C,D,H

N
A

I K H F

B
C

R4

D

Figure 2.6: The primal (left) and dual (right) graphs of the CSP in Figure 2.5.

A particularly interesting opportunity arises when we consider the dual graph of

a CSP. In the dual graph, edges enforce the equality of the shared variables of two

adjacent vertices. It was observed that an edge between two vertices is redundant if

there exists an alternate path between the two vertices such that the shared variables

appear in every vertex in the path [Dechter and Dechter, 1987; Dechter and Pearl, 1989;

Janssen et al., 1989; Dechter, 2003]. Such redundant edges can be removed without

modifying the set of solutions of the CSP. Figure 2.7 shows the dual graph of a CSP,

where the edges drawn in dashed lines are redundant. Indeed, the value for variable A

is enforced between R1 and R3 through R4, and for variable C between R2 and R3

through R5. Figure 2.8 shows two redundant edges in the dual graph of Figure 2.4.

15

Figure 2.7: Showing the redundant edges
of the dual graph of a CSP.

A,B,C

A,E,F E,B

B,D A,D,G

A

A

A B
D

B

B
E

Figure 2.8: Two redundant edges of the
graph in Figure 2.4.

Janssen et al. [1989] introduced an efficient algorithm for computing the minimal

dual graph by removing redundant edges. Many minimal graphs may exist, but they

are all guaranteed to have the same number of remaining edges.

2.1.4 Solving CSPs

A CSP can be solved by search (i.e., conditioning) or by synthesizing and propagating

constraints (i.e., inference) [Dechter, 2003]. Search can be based on backtracking or

on iterative repair (also called local search). In this thesis, we focus on backtrack

search and do not discuss local search.

Backtrack search is a constructive, systematic, exhaustive exploration of the

combinations of assignments of values to variables. It proceeds in a depth-first manner

by instantiating the variables, one at a time, iteratively building a consistent partial

solution. When the currently built path cannot be extended, instantiations are undone

by backtracking.

Variable ordering is known to significantly affect the performance of the search

process. The common wisdom is to first instantiate the ‘most constrained variable’

in an effort to reduce the branching factor of the tree. This general principal is

implemented by a variety of variable-ordering heuristics .

In order to reduce the size of the search space, we typically interleave backtrack

16

search with constraint propagation in what is called a look-ahead schema. Typically,

every time that a variable is instantiated during search, the effects of this decision are

propagated over the unassigned variables by removing from their domains values that

do not agree with the current instantiation. Look-ahead can be partial as in forward

checking, which updates the domains of only the variables adjacent to the variable

being instantiated. A full look-head schema enforces, after each variable instantiation,

a given consistency level over all uninstantiated variables.

Typically, inference methods operate on a CSP by enforcing consistency and

propagating constraints, with or without generating new constraints (constraint

synthesis).

2.2 Consistency Properties

A consistency property guarantees that the values of all combinations of a given

number of CSP variables (alternatively, the tuples of all combinations of a given size of

CSP relations) are consistent with the constraints that apply to them. This condition

is necessary but not sufficient for the values (or the tuples) to appear in a solution to

the CSP.

2.2.1 Variable-based consistency properties

Variable-based consistency properties are defined on combinations of variables, and

guarantee that the values of the variables in these combinations are consistent with

the set of constraints defined over the variables.

The Arc Consistency (AC) property is a popular consistency property for binary

CSPs [Mackworth, 1977]. AC is considered to be a low level consistency: it considers

every combination of only two variables and guarantees that every value in the domain

17

of one variable is consistent with at least one value in the domain of the other variable.

For non-binary CSPs, Generalized Arc Consistency (GAC) is popular. A CSP is GAC

if and only if, for every constraint, any value in the domain of any variable in the

scope of the constraint can be extended to a tuple satisfying the constraint.

More generally, k-consistency requires that every consistent assignment to every

k − 1 variables can be extended to every kth variable (i.e., the assignment to any k

variables satisfies all the constraints that apply to them) [Freuder, 1978]. Obviously,

if a given combination of values for k − 1 variables cannot be extended to some kth

variable, the combination cannot possibly appear in any solution to the CSP. Enforcing

k-consistency may require adding constraints of arity k − 1 in order to disallow all

(k − 1)-tuples that cannot be extended to some kth variable. Such an operation may

change the topology of the constraint network, which is one reason such consistency

properties are avoided for k > 2.

The more general (i, j)-consistency property requires that every consistent as-

signment of i variables can be extended into a consistent assignment to every j

other variables [Freuder, 1985]. Thus, AC is (1,1)-consistency and k consistency is

(k − 1, 1)-consistency.

Such parameterized consistency properties allow one to control the strength of

the property via the parameters i, j, k. While theoretically interesting, higher level

consistencies pose great practical challenges. The challenges are due to the high

processing cost and the memory cost for storing the added constraints.

AC and GAC are particularly popular in practice because of their relatively low

cost, high benefits, and the fact that they do not change the topology of the network.

AC for binary constraints and GAC for non-binary constraints are the most widely

used consistency properties.

18

2.2.2 Relation-based consistency properties

In this category, we target consistency properties defined on all combinations of a

fixed size of relations. The most general work in this area is the work of Dechter and

van Beek [1997] on relational m-consistency and relational (i,m)-consistency.

• Relational m-consistency considers every combination of m constraints and

requires that, if s is the union of the scopes of the m constraints, every consistent

assignment of every |s| − 1 variables of s can be extended in a consistent manner

to the sth variable. In practice, enforcing relational m-consistency may require

adding constraints of arity |s| − 1.

• Relational (i,m)-consistency is designed to bind the arity of the added constraints

by the parameter i. Hence, it requires that every consistent partial solution of

length i be extended to a consistent partial solution of length s. Again, s is the

set of variables in the scopes of every combination of m constraints.

The only other consistency property defined over combinations of constraints of

which we are aware is m-wise consistency. This property was proposed in the area of

relational databases [Gyssens, 1986], where it was defined but never used in practice.

To the best of our knowledge no algorithm was proposed for enforcing it. It is the

basis of the main contribution of this thesis.

For m = 2, this property is known as pairwise consistency [Beeri et al., 1983].

It requires that every tuple in a relation can be extended to a tuple in every other

relation such that both relations are satisfied. Pairwise consistency was studied by

Janssen et al. [1989].

19

2.2.3 Global consistency properties

When the property is restricted to combinations of variables or combinations of con-

straints of a fixed size, it is said to be local , such as the ones discussed in Sections 2.2.1

and 2.2.2 above. When the property is defined over the entire CSP, it is said to be

global . Examples of global consistency properties are minimality and decomposability

[Montanari, 1974].

Constraint minimality requires that every tuple in a constraint appears in a solution.

Decomposability guarantees that every consistent partial solution of any length can

be extended to a complete solution. Decomposability is a highly desirable property:

it guarantees that the CSP can be solved in a backtrack-free manner.

While local consistency properties are typically tractable, global constraints are in

general likely to be intractable.

2.2.4 Comparing consistency properties

In order to compare two consistency properties, we use the terminology introduced by

Debruyne and Bessiere [1997] and Bessiere et al. [2008]:

• A consistency property p is stronger than another p′ if in any CSP where p

holds, p′ also holds.

• A consistency property p is strictly stronger than p′ if p is stronger than p′ and

there exists at least one CSP in which p′ holds but not p.

• Two consistency properties p and p′ are equivalent when p is stronger than p′

and vice versa.

• Two consistency properties p and p′ are incomparable if there exists at least one

CSP in which p′ holds but not p, and another CSP in which p holds but not p′.

20

In practice, when a consistency property is stronger (respectively, weaker) than another,

enforcing the former never yields less (respectively, more) pruning than enforcing the

latter on the same problem.

2.3 Algorithms for Enforcing Consistency

More than one algorithm may exist for enforcing a given consistency property. A

consistency algorithm or constraint propagation algorithm can operate by removing

values from the domains of the variables (domain filtering), adding constraints (con-

straint synthesis), or removing tuples from the constraint definitions (relation filtering).

The added constraints, if any, are said to be implicit or redundant because they are

entailed by the original set of constraints but are needed to guarantee a given level of

consistency. Enforcing consistency reduces the search space, makes the solutions more

‘apparent,’ but never changes the set of solutions to the CSP.

2.3.1 Domain filtering

Domain filtering algorithms remove a value from the domain of a variable because it

is inconsistent with a constraint or a combination of constraints. Removal of values in

one part of the problem may cause other values to become inconsistent. The process

is repeated until quiescence, which is guaranteed in finite CSPs.

The Arc Consistency (AC) property is thoroughly studied and many algorithms

have been proposed for enforcing it on a CSP. For example, AC3 [Mackworth, 1977]

(noteworthy for its simplicity) and AC2001/3.1 [Bessiere et al., 2005] (popular for its

improved performance). Given the importance of AC, designing new algorithms for

enforcing it remains a popular research topic [Lecoutre and Hemery, 2007; Lecoutre et

al., 2008].

21

Dechter and Pearl provide algorithms for directionally enforcing AC and the

parameterized properties mentioned in Section 2.2.1 along a given fixed order of the

CSP variables [1987]. Enforcing directional consistency is cheaper than otherwise (and

in our experience, worthwhile) even though it results in a weaker form of the enforced

property.

2.3.2 Constraint synthesis

In order to enforce consistency properties of a level higher than AC or GAC, one may

have to generate new constraints. Constraint synthesis is a general algorithm that

iteratively generates constraints of arity k + 1 using all constraints of arity k starting

from k = 2 (arc consistency) to k = n (which guarantees solvability) [Freuder, 1978].

We are not aware of any practical implementation that exploits this approach, which

remains, however, conceptually appealing.

2.3.3 Relation filtering

Similarly to filtering out inconsistent values from the domains of the CSP variables,

one can imagine removing inconsistent tuples from the domains of the constraints.

Such mechanisms have received relatively little attention. The only mechanism in this

category of which we are aware is an algorithm for enforcing pairwise consistency by

running an arc consistency algorithm on the dual encoding of a CSP [Janssen et al.,

1989].

A central contribution of this thesis is the design and evaluation of two algorithms

of this category for enforcing a parameterized relational consistency property that

generalizes pairwise consistency. These algorithms are introduced and discussed in

Chapters 3 and 4.

22

2.3.4 Techniques for improving performance in practice

Various data structures are used to improve the performance of consistency algorithms

in practice. The most popular example is the support structure used in AC2001/3.1

[Bessiere et al., 2005], which remembers the support of every value of a variable in the

domain of the other variable. While constraints are being propagated, one does not

seek new supports unless the previously found ones were deleted by AC. Lecoutre et al.

[2003] generalized this approach to multiple supports by exploiting the symmetry of

the support relation (i.e., when a value supports another one, then it is also supported

by this other value), thus reducing the effort of seeking supports.

More recently, the multiple supports approach has been closely coupled with

backtrack search to save further on the effort of finding supports by exploiting

residual supports from the previous step during search [Likitvivatanavong et al., 2007;

Lecoutre and Hemery, 2007; Lecoutre et al., 2008].

2.4 Tree-Structured Constraint Networks

When the constraint network of a CSP has a tree structure, a well-established result

shows that:

• The existence of a solution (i.e., solvability or consistency) is efficiently guaran-

teed by directional arc consistency (DAC), which is enforced in the following

manner: starting from the leaves of the tree up to an arbitrary chosen root

node, the domain of each variable is revised by arc consistency with its children

[Freuder, 1982; Dechter and Pearl, 1987].

• After enforcing DAC, a solution can be built in a backtrack-free manner starting

from the root and proceeding down towards the leaves of the tree [Freuder, 1982;

23

Dechter and Pearl, 1987]. Further,

• The number of solutions of the CSP can be efficiently counted by multiplying

the number of ‘extensions’ in the children of a variable that are rooted at a value

of the variable and by summing up the number of partial solutions rooted at

the values of the variable [Dechter and Pearl, 1987].

In the case of a non-binary CSP, similar conditions hold when the dual graph is a tree

structure, which is called a join tree. Such a structure may be hidden by the existence

of redundant edges (see Section 2.1.3). Dechter recalls two procedure for determining

whether a dual graph has a join tree (see Section 9.1 [Dechter, 2003]).

When such an advantageous tree structure is not readily available, one can ap-

proximate it by a tree decomposition, which can bind the cost of solving the CSP by

a structural parameter of the generated tree structure such as its treewidth. Such

techniques have yielded new tractability results for CSPs based on single-parameter

complexity.

2.5 Tree Decomposition

A tree decomposition of a CSP is a tree embedding of the constraint network. Below,

we formally define it and discuss CSP solving methods that utilize it.

2.5.1 Definition

A tree decomposition of a CSP is a tree embedding of the constraint network of

the CSP. It is defined by a triple 〈T , χ, ψ〉, where T is a tree, and χ and ψ are two

functions that determine which CSP variables and constraints appear in which nodes of

24

the tree (see Chapter 9 [Dechter, 2003]). The tree nodes are thus clusters of variables

and constraints. A tree decomposition must satisfy two conditions:

1. Each constraint appears in at least one cluster, and the variables in its scope

must appear in this cluster.

2. For every variable, the clusters where the variable appears induce a connected

subtree.

Figure 2.9 shows a tree decomposition of the CSP in Figure 2.2 (left) and Figure 2.5

(right). A separator of two adjacent clusters is the set of variables in both clusters.

For example, the separator of clusters C1 and C2 in the left figure is {A,E}.

{A,B,C,E},{R2,R3}	

{A,B,D},{R5}	
 {A,E,F},{R1}	

{A,D,G},{R4}	

C1

C2 C3

C4

{A,B,C,N},{R1}	

{A,I,N},{R1,R2}	
 {B,C,D,H},{R5,R6}	

{I,M,N},{R2}	
 {B,D,F,H},{R5,R7}	

C1

C2

C3

C7

C8

{A,I,K},{R3,R4}	

C4

{I,J,K},{R3}	

C5

{A,K,L},{R4}	

C6

{B,D,E,F},{R5}	

C9

{F,G,H},{R7}	

C10

Figure 2.9: A tree decomposition of the CSP in Figure 2.2 (left) and Figure 2.5 (right).

A given tree decomposition is characterized by its treewidth, which is the maximum

number of variables in a cluster. The treewidths of both tree decompositions in

Figure 2.9 are four. The treewidth of a CSP is the minimum treewidth of all its

tree decompositions. Determining the treewidth of a CSP is, in general, NP -hard.

CSPs with a fixed treewidth can be solved in polynomial time and are thus tractable

[Arnborg, 1985; Robertson and Seymour, 1986].

A tree decomposition is also a hypertree decomposition if it satisfies the following

additional condition:

25

3. Each variable in the cluster must appear in the scope of a constraint that appears

in the cluster.

Similarly, a given hypertree decomposition is characterized by its hypertree width,

which is the maximum number of constraints in a cluster. The hypertree widths of

both tree decompositions in Figure 2.9 are two. The hypertree width of a CSP is

the minimum hypertree width of all its hypertree decompositions. Determining the

hypertree width of a CSP is also NP -hard in general. CSPs with fixed hypertree

widths can be solved in polynomial time and are thus tractable.

2.5.2 Structural parameters and tractability

The higher the level of consistency in a CSP, the more likely that a current path in

the search tree can be expanded towards a consistent assignment of the variables, and

thus, towards a solution. This observation prompts an important question: what is

the level of consistency that one must enforce on the CSP in order to guarantee a

backtrack-free search?

Freuder [1985] provided a sufficient condition for a backtrack-free search by linking

the consistency level to a structural parameter of the constraint graph of a binary CSP:

its width. However, in practice, enforcing a given level of consistency may require

adding constraints, thus modifying the width of the constraint graph, which, in turn,

increases the level of consistency required to guarantee a backtrack-free search.

2.5.3 Main tree-decomposition techniques

Finding the optimal tree-decomposition is NP -Hard, thus most approaches are heuris-

tics that attempt to find a ‘good’ decomposition. The main techniques for generating

tree decompositions and hypertree decompositions include the following: join tree

26

[Dechter and Pearl, 1989], hinge decomposition [Jeavons et al., 1994], hypertree de-

composition [Gottlob et al., 1999; 2000], and Cut-and-Traverse (CaT) [Zheng and

Choueiry, 2005].

Tree clustering proposed by Dechter and Pearl [1989] is a tree decomposition

method that clusters the maximal cliques in the triangulated primal graph of a CSP.

The quality of the decomposition depends on the heuristic used for triangulating the

graph.

Hypertree decomposition is more general than tree clustering. Algorithms proposed

by Gottlob and Samer [2009] find the optimal hypertree decomposition, though the

heuristic methods proposed by Dermaku et al. [2008] have better run times and achieve

near optimal results.

The hinge decomposition presented by Cohen et al. [2008] and hinge+ by Zheng

and Choueiry [2005] also implement tree decompositions. The hinge decomposition is

combined with tree clustering by Gyssens et al. [1994] to yield a more general tree

decomposition than each taken separately.

2.6 Solving CSPs with Tree Decomposition

As stated above, one important early result by Freuder [1985] provides a sufficient con-

dition for a backtrack-free search by linking the level of consistency satisfied by a CSP

to the width of its constraint graph. This result, along with theoretical developments

in relational databases, probabilistic reasoning, and dynamic programming, is at the

foundation of structure-based techniques for solving CSPs (see Section 9.5 of [Dechter,

2003]). These techniques are each represented by one of the following three categories:

1. Cluster-centered methods

27

2. Variable-centered methods

3. Backtrack-search based methods

While the first two types of methods are inference based (i.e., by constraint synthesis

and propagation), the third one is, for the most part, based on conditioning (i.e.,

search). However, all three types of methods are tightly linked in that they exploit

some tree decomposition of the CSP. The time complexity of these techniques is

bounded by the size of the treewidth of the tree decomposition (called induced width

in the case of variable-based methods) and the space complexity by the size of the

largest separator in the tree. For problems with a fixed treewidth, these techniques are

said to be efficient, with polynomial time worst-case complexity [Gottlob and Szeider,

2008].

2.6.1 Cluster-centered methods

These methods apply directly to a tree decomposition of the CSP. They process the

clusters of the tree decomposition (typically by inference), then channel information

between clusters along the paths of the tree (typically by propagation or message

passing), as demonstrated in Figure 2.10. Examples of such techniques include the

Figure 2.10: Cluster-centered methods. Figure 2.11: Variable-centered methods.

28

following: tree clustering (a.k.a. join-tree clustering) [Dechter and Pearl, 1989], cluster-

tree elimination (a.k.a. bucket-tree elimination) [Kask et al., 2005], and mini-cluster

tree elimination [Dechter et al., 2001].

2.6.2 Variable-centered methods

These methods exploit some fixed, linear ordering of the variables. Proceeding bottom-

up along the chosen ordering, they process the constraints, typically by inference,

that link the considered variable to the ones at higher levels in the ordering and

then channel the effects of this processing to the other variables in the scope of

those constraints, typically by propagation or by constraint synthesis (i.e, generation).

Figure 2.11 illustrates this process. Examples of such methods include the following:

adaptive consistency [Dechter and Pearl, 1987], bucket elimination [Dechter, 1996;

1999], and mini-bucket elimination [Dechter, 1997; Dechter and Rish, 2003].

A typical ordering of the variables is a perfect elimination ordering1 of the vertices

of some triangulation2 of the primal graph of a CSP. Figure 2.12 shows the primal

graph and a triangulated primal graph of the CSP in Figure 2.5.

A	

B	

C	
 E	

D	

F	

G	

H	

I	

J	

K	

M	

L	

N	

A	

B	

C	
 E	

D	

F	

G	

H	

I	

J	

K	

M	

L	

N	

Figure 2.12: The primal (left) and a triangulated primal (right) graphs of the CSP in
Figure 2.5.

1A perfect elimination ordering of a graph is an ordering of the vertices of the graph such that,
for each vertex v, v and the neighbors of v that occur after v in the order form a clique.

2A graph is triangulated, or chordal, if every cycle of length four or more in the graph has an
edge between two non-adjacent vertices.

29

At the left of Figure 2.13, we illustrate the operation of the bucket-elimination

(BE) method, a fundamental variable-centered method [Dechter, 1996; 1999].

R567|B,C,D	
 D	

R1234|A,B,C	
 A	

C	
 R1234567|B,C	

B	
 R1234567|B	

R1|A,B,C,N	
 R234	
 |A,N	
 N	

R34|A,I	
 R2|I,N	
 I	

R2|I,M,N	
 M	

R6|C,D,H	
 H	
 R57|B,D,H	

R7|F,H	
 R5|B,D,F	
 F	

R4|A,K	
 R3|I,K	
 K	

R3|I,J,K	
 J	

R4|A,K,L	
 L	

R5|B,D,E,F	
 E	

R7|F,G,H	
 G	

{A,B,C,N},{R1}	
 C1

{A,I,N},{R1,R2}	
 C2

{I,M,N},{R2}	
 C3

{B,C,D,H},{R1,R6}	
 C7

{B,D,F,H},{R5,R7}	
 C8

{A,I,K},{R1,R3}	
 C4

{I,J,K},{R3}	
 C5

{A,K,L},{R4}	
 C6

{B,D,E,F},{R7}	
 C9

{F,G,H},{R7}	
 C10 Buckets

Figure 2.13: Illustrating the correspondence between a variable-based method (left), bucket
elimination, and the clusters of a tree decomposition (right) of the CSP in Figure 2.5.

The variables are listed from bottom to top following a perfect elimination ordering

of the graph shown at the right of Figure 2.12. A bucket is associated with each

variable. Each relation in the problem is placed in the bucket associated with the

deepest variable in its scope. The original relations of the problem are shown with a

shaded background. In this simple example, there is at most one relation from the

original CSP in the bucket of a variable. Naturally, in general, there could be any

number of relations in the bucket. The relations computed by inference have a shaded

background. The inferred relations are generated as follows: buckets are processed

30

along the perfect elimination ordering; that is, from bottom to top in the example of

Figure 2.13. The relations in a bucket are joined, and their join is projected out to

eliminate the current variable from the relation; the resulting relation is added to the

bucket of some other variable placed higher up in the ordering.

It is easy to see that variable-based and cluster-based methods are tightly related

in the sense that:

• A perfect elimination order can be mapped to a chain of clusters, where each

variable and its parents in the ordering form a ‘cluster.’ And,

• The relations generated by inference in the bucket elimination method are nothing

but the materialization of the messages between clusters via the separators in

the decomposition shown at the right of Figure 2.13.

2.6.3 Backtrack-search based methods

While the techniques in the above two categories are based on inference, the technique

known as ‘backtrack search with tree decomposition’ (BTD) [Jégou and Terrioux,

2003] applied backtrack search (i.e., conditioning) on some tree decomposition of the

CSP. Figure 2.14 tries to illustrate the operation of BTD on the tree decomposition of

Figure 2.9.

Search follows the ordering of the variables in the clusters of the tree decomposition.

While variables can be instantiated in any order inside a cluster, they may not be

instantiated before any of the variables of the parent cluster. Unlike the previous

two types of methods, BTD does not generate the relations of all the separators by

inference. Instead, BTD generates and stores, as search proceeds, partial solutions

that succeed (i.e., goods) or fail (i.e., nogoods) in order to prevent the search process

from re-exploring known partial solutions. Indeed, these goods and nogoods allow

31

A	
 	

B	

C	

N	

A	

N	

I	

B	

C	

D	

H	

I	

N	

M	

B	

D	

H	

F	

C1

C2

C3

C7

C8 A	

I	

K	

C4

I	

J	

K	

C5
A	

K	

L	

C6
B	

D	

E	

F	

C9
F	

G	

H	

C10

AN	
 BC	

IN	
 AI	

IK	

BDH	

FH	
 BDF	
 AK	

Figure 2.14: BTD on the tree decomposition at the right of Figure 2.9. The rectangles
between the clusters denote ‘materializations’ of partial solutions that appear in a complete
solution to the CSP (goods) or not (nogoods).

BTD to avoid visiting the subtrees rooted at the corresponding separator when the

same partial assignments of the variables in a separator are encountered again. This

memoization process is particularly important when counting the number of solutions

of a CSP (see Section 2.4). BTD has been successfully used for solving CSPs [Jégou

and Terrioux, 2003] and for counting the number of solutions of a CSP [Favier et al.,

2009].

2.6.4 Approximation techniques

Tree-decomposition methods attempt to limit the time necessary for solving CSPs by

‘channeling’ interactions between clusters and storing information at the separators.

32

The space requirements can be a serious bottleneck in practice. Therefore, approxi-

mation techniques to reduce their severity have been proposed, mainly pioneered by

Dechter.

• For cluster-based methods, Mini-Cluster Tree Elimination (MCTE) [Dechter et

al., 2001] algorithm approximates Cluster-Tree Elimination (CTE) by partition-

ing the clusters into mini-clusters of manageable sizes.

• Similarly, for variable-based methods, Mini-Bucket Elimination (MBE) [Dechter,

1997; Dechter and Rish, 2003] is an approximation of Bucket Elimination

(BE) [Dechter and Rish, 1994].3 Figure 2.15 shows an example of BE and MBE

applied to the same CSP. In MBE, the buckets are divided into mini-buckets

of manageable sizes. MBE has been successfully used to solve optimization

problems [Dechter and Rish, 2003; Marinescu and Dechter, 2007].

Another contribution of this thesis is three new strategies for bolstering the propaga-

tion of constraints across separators while reducing the space necessary for storing

constraints at the separators. Those techniques are discussed in Chapter 6.

Summary

In this chapter, we defined CSPs and discussed their graphical representations and

different techniques for solving them. We surveyed the main consistency properties and

the algorithms for enforcing them. Then, we defined the tree decomposition of a CSP,

the structural parameters of a decomposition, and the relation of these parameters

to the tractability of solving a CSP. Finally, we discussed solving CSPs with tree

3Again, Bucket Elimination (BE) is a special case of the Cluster-Tree Elimination (CTE), where
a bucket is assigned to each variable, and given a variable ordering, the messages are passed between
the buckets following the ordering of the corresponding variables.

33

J	

G	
 R7|F,G,H	

H	
 R7|F,H	
 R6|C,D,H	

D	
 R67|C,D,F	
 R5|B,D,E,F	

R1|A,B,C,N	
 C	
 R567|B,C,E,F	

B	
 R1567|A,B,E,F,N	

F	
 R1567|A,E,F,N	

E	
 R1567|A,E,N	

A	
 R4|A,K,L	
 R1567|A,N	

N	
 R14567|K,L,N	
 R2|I,M,N	

I	
 R124567|I,K,L,M	
 R3|I,J,K	

K	

R1234567|J,K,L,M	

R1234567|K,L,M	

L	
 R1234567|L,M	

M	
 R1234567	
 |M	

J	

G	
 R7	
 |F,G,H	

H	
 R7|F,H	
 R6|C,D,H	

D	
 R67	
 |C,D,F	
 R5|B,D,E,F	

R1|A,B,C,N	
 C	
 R67	
 |C,F	

B	
 R1|A,B,N	
 R5	
 |B,E,F	

F	
 R67|F	
 R5|E,F	

E	
 R567|E	

A	
 R4|A,K,L	
 R1|A,N	

N	
 R14|K,L,N	
 R2|I,M,N	

I	
 R2|I,M	
 R3|I,J,K	

K	

R23|J,K,M	

R23|K,M	
 R14|K,L	

L	
 R234|L,M	

M	
 R234|M	

Figure 2.15: Bucket elimination (left) and its approximation by mini-bucket elimination
(MBE) (right).

decomposition, specifically, cluster-centered methods, variable-centered methods and

backtrack-search based methods, in addition to approximation techniques for counting

the number of solutions to a CSP.

34

Chapter 3

Consistency Property R(∗,m)C

Local consistency is at the heart of the success of Constraint Programming and

perhaps best distinguishes this field from other scientific disciplines that study the same

combinatorial problems. In this chapter, we study the relational consistency property

R(∗,m)C, which is equivalent to m-wise consistency proposed in relational databases

[Gyssens, 1986]. We also define wR(∗,m)C, a weaker variant of this property obtained

by removing redundant edges from the dual graph of the CSP, and theoretically

characterize the resulting consistency properties in terms of existing ones. We propose

an algorithm for enforcing these properties on a CSP, by tightening the existing relations

and without introducing new constraints, and a new data structure for facilitating

its implementation. We compare the impact of our approach on the performance of

problem solving with that of other consistency properties, and empirically show that

wR(∗,m)C solves in a backtrack-free manner all the instances of some CSP benchmark

classes, thus hinting at the tractability of those classes. Preliminary results from this

chapter have been published [Karakashian et al., 2010b; 2010a].

35

3.1 Overview

R(∗,m)C requires that every consistent assignment of variables appearing in the scope

of a constraint can be extended to a consistent assignment of the variables in the

scope of every (m− 1) other constraints. Enforcing R(∗,m)C filters existing relations

but does not add any new constraint to the problem.

We borrow the notation ‘relational (i,m)-consistency’ from [Dechter and van

Beek, 1997; Dechter, 2003], and abbreviate it to ‘R(∗,m)C’, where ‘∗’ indicates that

the property is concerned with only ‘the scopes of the m considered constraints

whatever their sizes are.’ An obvious algorithm for enforcing R(∗,m)C is joining

every combination of m constraints and projecting the result on their respective

scopes: ∀Ri ∈ {R1, · · · , Rm}, Ri = πscope(Ri)(onm
j=1 Rj). The space complexity of

this obvious algorithm is too prohibitive to be useful in practice. We propose an

alternative algorithm that overcomes that limitation. When enforcing R(∗,m)C on

every combination of m relations in the problem, much of this work is redundant

and could be avoided. We introduce a weakened variant of R(∗,m)C, which we

call wR(∗,m)C and obtain by removing redundant edges from the dual graph of

the CSP [Dechter and Dechter, 1987; Dechter and Pearl, 1989; Janssen et al., 1989;

Dechter, 2003]. The contributions of this chapter are as follows:

1. The introduction and characterization of the relational consistency properties

R(∗,m)C and wR(∗,m)C.

2. The design of a parameterized algorithm for enforcing those properties along

with a new data structure for locating tuples in large relations.

3. The analysis of the worst-case complexity of the new algorithm.

4. The empirical evaluation of our approach on benchmark problems.

36

3.2 R(∗,m)C

Below, we introduce R(∗,m)C using the definition format of R(i,m)C [Dechter and

van Beek, 1997].

Definition 1 A set of m relations R = {R1, · · · , Rm} with m≥2 is said to be

R(∗,m)C iff every tuple in each relation Ri ∈ R can be extended to the variables

in
⋃
Rj∈R scope(Rj) \ scope(Ri) in an assignment that satisfies all the relations in R

simultaneously. A network is R(∗,m)C iff every set of m relations, m≥2, is R(∗,m)C.

Informally, in every given set ϕ of m relations, every tuple τ in every relation

R ∈ ϕ can be extended to a tuple τ ′ in each R′ ∈ ϕ \ {R} such that all those tuples

form a consistent solution to the relations in ϕ. Figure 3.1 demonstrates how every

tuple in every relation is extended to a tuple in each of the m− 1 relations. R(∗,m)C

..…

For every combination
of m-1 relations

Every	
 tuple	

In	
 every	
 rela.on	

Figure 3.1: The application of R(∗,m)C on a combination of m relations.

can be enforced by filtering the existing relations and without introducing any new

relations to the CSP as follows. We repeatedly apply the following operation to all

combinations of m relations {R1, · · · , Rm} until quiescence:

∀Ri ∈ {R1, · · · , Rm}, Ri = πscope(Ri)(on
m
j=1 Rj) (3.1)

37

Expression (3.1) gives us an obvious algorithm for R(∗,m)C, but the space requirement

is prohibitive in practice. Note that π and on denote the relational operators project

and join, respectively.

After enforcing R(∗,m)C on a constraint network, variable domains are filtered by

projecting the filtered relations on the domains of the variables. Interestingly, these

domain reductions do not break the R(∗,m)C property.

Theorem 1 If a network is R(∗,m)C, domain filtering by GAC cannot enable further

constraint filtering by R(∗,m)C.

Proof: See Appendix C.1.

Now we compare R(∗,m)C with RmC [Dechter and van Beek, 1997]. For a given

set {R1, · · · , Rm} of m relations, RmC requires the projection of the joined relations

on all subsets A ⊆
⋃m
i=1 scope(Ri). Hence, every subset introduces a new constraint,

except those that have the same scope as existing constraints. In contrast, R(∗,m)C

projects the joined relations on the scope of each of its original relations, without

adding any new constraints.

Theorem 2 RmC is strictly stronger than R(∗,m)C.

Proof: See Appendix C.1.

We also compare R(∗,m)C with maxRPWC [Bessiere et al., 2008]. maxRPWC

requires that every value in every variable has a matching tuple τ in every constraint.

In addition, τ should have a matching tuple in every other constraint. All the matching

tuples should be valid, meaning all the values in the tuples should be alive in the

domains of the corresponding variables.

Theorem 3 R(∗,2)C is strictly stronger than maxRPWC.

Proof: See [Bessiere et al., 2008].

38

3.3 Weakening R(∗,m)C

We propose wR(∗,m)C, a weakened version of R(∗,m)C, which requires significantly

less time and space than R(∗,m)C while slightly reducing the amount of pruning.

In the dual graph, edges enforce the equality of the shared variables of two adjacent

vertices. It was observed that an edge between two vertices is redundant if there exists

an alternate path between the two vertices such that the shared variables appear

in every vertex in the path [Dechter and Dechter, 1987; Dechter and Pearl, 1989;

Janssen et al., 1989; Dechter, 2003]. Such redundant edges can be removed without

modifying the set of solutions. Janssen et al. [1989] introduced an efficient algorithm

for computing the minimal dual graph by removing redundant edges. Many minimal

graphs may exist, but they are all guaranteed to have the same number of remaining

edges. Figure 3.2 shows the dual graph of a CSP, where the edges drawn in dashed

lines are redundant. Indeed, the same value for A is enforced between R1 and R3

Figure 3.2: Dual graph.

through R4, and for C between R2 and R3 through R5. To enforce the R(∗,m)C

property on a CSP, we must consider only combinations of relations that induce a

connected component in the dual graph because tuples can be trivially extended to

relations that do not share variables. For wR(∗,m)C, instead of using the original dual

graph to generate the combinations of m relations on which to enforce the R(∗,m)C

property, we propose to use the minimal dual graph obtained using the algorithm

39

of Janssen et al. [1989]. While this operation reduces the number of combinations

considered (and consequently the time needed to process them and the space needed

to store them), it may yield a weaker filtering of the constraints.

Definition 2 wR(∗,m)C relative to a given minimal dual graph of a CSP P is defined

as the property of P where all the combinations of m relations that induce connected

components in the minimal dual graph verify the R(*,m)C consistency property. Note

that m≥2.

Given that, in general, more than one possible minimal dual network exists, the

property obviously depends on the minimal dual graph chosen, and is always defined

relative to that graph. For the sake of simplicity however, the particular minimal dual

graph is not included in the notation.

Theorem 4 wR(∗,2)C on any minimal dual graph of a CSP and R(∗,2)C are equiva-

lent.

Proof: The case where m = 2 corresponds to pairwise consistency and the proof is

given by Janssen et al. [1989]. �

Theorem 5 ∀a, b∈N where a<b≤|C|, wR(∗,b)C is strictly stronger than wR(∗,a)C

on the same connected minimal dual graph of the CSP.

Proof: See Appendix C.2.

Corollary 1 wR(∗,3)C is strictly stronger than R(∗,2)C on any connected minimal

dual graph of the CSP where |C|≥3.

Proof: By Theorem 4, R(∗,2)C is equivalent to wR(∗,2)C. By Theorem 5, wR(∗,3)C

is stronger than wR(∗,2)C. Further, the CSP Pe used in the proof of Theorem 5 is

R(∗,2)C but not wR(∗,3)C. �

40

Theorem 6 ∀m>2, R(∗,m)C is strictly stronger than wR(∗,m)C on any connected

minimal dual graph of the CSP.

Proof: See Appendix C.2.

3.4 Theoretical Characterization

Theorems 3 to 6 theoretically characterize the new properties in terms of GAC, maxR-

PWC and relational m-consistency (denoted RmC). Those relations are illustrated

Figure 3.3, where a directed edge from property p to property p′ indicates that p is

strictly weaker than p′.

GAC	
 maxRPWC	

R3C	

R(∗,2)C	

wR(∗,2)C	

R2C	

R(∗,3)C	
 R(∗,4)C	

R4C	

wR(∗,3)C	
 wR(∗,4)C	

R(∗,m)C	

RmC	

wR(∗,m)C	

Figure 3.3: Comparing GAC, maxRPWC, R(∗,m)C, wR(∗,m)C, and RmC.

3.5 A First Algorithm for Enforcing R(∗,m)C

Expression (3.1) gives an obvious algorithm for enforcing R(∗,m)C. However, this

algorithm requires computing and materializing the join of each combination of m

relations, which can be prohibitive in practice. Below, we propose PerTuple, an

algorithm that avoids computing and storing the intermediate joins. PerTuple

uses backtrack search to identify and remove every tuple that does not verify the

R(∗,m)C property. It computes the minimal constraints in each subproblem induced

by a combination of m constraints. First, we describe initializing the queue on which

41

PerTuple operates, then we discuss PerTuple. After that, we describe the search

for supports and the data structure we designed for this purpose.

Definition 3 The support of a tuple τ of a relation R in a combination ϕ of relations,

denoted Sτ,ϕ, is a set of tuples that verifies the condition: ∀Ri∈ϕ\{R}∃τi∈Sτ,ϕ, τi∈Ri

and the tuples in Sτ,ϕ∪{τ} agree on all shared variables.

3.5.1 Initializing the queue

Given the dual graph (or a minimal dual graph) of a CSP, let Φ be the set of all

combinations of m relations that induce connected components of the considered

graph. We initialize the queue, Q, over which our algorithm operates as follows:

• At preprocessing, before search, Q is set to all the combination-relation pairs

〈ϕ,R〉 such that ϕ∈Φ and R∈ϕ.

• For lookahead, during search, Q is set to all the combination-relation pairs 〈ϕ,R〉

for all relations neighboring any relation where the instantiated variable appears.

We have developed an algorithm, described in Appendix A, that computes Φ while

exploiting the topology of the considered graph. The advantage of our algorithm is

that it enumerates each connected component once and none of the non-connected

components. It performs particularly well on large sparse dual graphs when m is

small.

3.5.2 Processing the queue

PerTuple takes as input Q and Φ, see Algorithm 1. It filters the relations to enforce

R(∗,m)C, and returns true if it is successful and false otherwise. When PerTuple

42

is executed on a single combination φ (Φ = {φ}), it computes the minimal network

induced by the relations in φ.

Algorithm 1: PerTuple(Q,Φ).

Input: Q is propagation queue and Φ is the set of combinations of m constraints.
Output: true if the problem is R(∗,m)C, false otherwise
while (Q 6= ∅) do1

〈ϕ,R〉 ← Pop(Q)2

deleted← false3

foreach τ ∈ R do4

support←SearchSupport(τ, ϕ)5

if support = false then6

Delete(τ,R)7

if R = ∅ then return false8

deleted← true9

if deleted then foreach ϕ′ ∈ (Φ \ {ϕ}), R ∈ ϕ′ do10

foreach R′ ∈ (ϕ′ \ {R}) do11

Q ← Q∪ {〈ϕ′, R′〉}12

return true13

PerTuple proceeds by removing a combination-relation pair 〈ϕ,R〉 from the

queue (Line 2), and searches a support in ϕ for each τ ∈ R (Line 5). A tuple that

does not have a support is deleted from R (Line 7). When a relation loses its last

tuple, the algorithm returns false (Line 8). If, after processing all the tuples in R, any

tuples are deleted, the relations affected by the update of R are added to the queue.

The affected relations are those that appear with R in a combination other than ϕ.

Notice that a relation R′ that appears in a combination with R needs to be checked

only in those combinations in which it appears along with R. Therefore, when added

to the queue, an affected relation R′ is paired with the combination ϕ′, other than ϕ,

that includes both R and R′ (Line 12).

43

3.5.3 Searching for a support

To find a support Sτ,ϕ for a tuple τ of a relationR in a combination ϕ, SearchSupport

conducts a backtrack search on the dual encoding of the CSP induced by ϕ. This

dual CSP is denoted PDϕ. The variables of PDϕ are the relations in ϕ. Their domains

are the tuples of the relations except for the variable corresponding to R, which is

assigned the tuple τ . The constraints in PDϕ are binary, and enforce the equality of

the shared scope of the relations in ϕ. A solution to PDϕ is Sτ,ϕ, the support set of

τ in ϕ. The search stops at the first solution and returns Sτ,ϕ. It returns false if no

solution is found. The search process uses forward checking and dynamic variable

ordering with the domain/degree heuristic.

3.5.4 The index-tree data structure

In order to effectively implement the above mentioned forward-checking, we need to

locate all the tuples in a relation Rj that are consistent with a tuple τi of a relation Ri.

For that purpose, we designed the new index-tree data structure, which we introduce

below. We assume that the relations are implemented as tables of consistent tuples

and that the variables are in a canonical order. Each table includes a column to

indicate that the tuple is deleted (1) or not (0).

An index tree is built for each relation and each subset of its scope that is

shared with another relation in the problem. Given two relations Ri and Rj and

Xs=scope(Ri) ∩ scope(Rj), the index tree ITRj ,Xs returns for τi∈Ri all tuples τj∈Rj

to which τi can be extended, that is πXs(τi) = πXs(τj). An index tree ITRj ,Xs is a

rooted tree, with a dummy root, where all leaves are at height |Xs|. The level of a

node in the tree corresponds to a variable in Xs. The nodes are labeled with values of

the variables in Xs. Each leaf node holds a list of pointers to tuples in Rj. Figure 3.4

44

Figure 3.4: ITRj ,{A,B,C}.

shows an example of an index tree for the relation Rj and Xs={A,B,C}.

The tree is built as follows. The tuples of Rj are sequentially inserted in the tree.

For a given tuple τj∈Rj, we consider πXs(τj). Traversing ITRj ,Xs from the root, we

match the value of a variable in πXs(τj) with the label of a child of the current node in

the tree. If the two values match, we move to that child node in the tree and to the

value of the next variable in πXs(τj). Otherwise, we add a new child node with the

value of the variable in πXs(τj). When the variables in Xs are exhausted, we insert τj

at the end of the list at the leaf node.

When searching for the tuples in Rj that are consistent with τi, we traverse the

tree as explained above for πXs(τi). If, at a given level, no child to a tree node can be

found, we conclude that no such tuple exists and return null. Otherwise, we return,

from the list of pointers at the leaf, the non-deleted matching tuples.

The complexity of building the index tree is O(|Xs|td) for time and O(|Xs|t) for

space, where t is the number of tuples in the relation and d the largest domain size

of the variables in Xs. This bound is reached when each leaf node points to a single

tuple. The time complexity of a query is O(|Xs|d+ t).

45

3.5.5 Improving the search for support

We propose two improvements to the search for support.

When Sτ,ϕ is found, it is stored for the tuple-combination pair 〈τ, ϕ〉, and reused

as long as every tuple in Sτ,ϕ remains valid, similar to the ACS-residue algorithm

[Likitvivatanavong et al., 2007]. The importance of this improvement is further

discussed in the complexity analysis.

Further, once Sτ,ϕ is found, the support of every tuple τ ′∈Sτ,ϕ can be directly set

to be (Sτ,ϕ ∪ {τ}) \ {τ ′}, thus saving SearchSupport the effort of searching for

supports for all τ ′. This mechanism is reminiscent of the multi-directional support of

Lecoutre and Hemery [2007].

3.5.6 Improving forward checking

Another practical improvement in this work attempts to reduce the effort necessary for

executing forward checking. Given that the size of relations can be large, it becomes

important to check the consistency of two tuples without scanning all the relations.

We have already mentioned that we use the index-tree data structure for checking the

consistency of two tuples from two relations whose scopes overlap. Forward checking

operates by removing from the ‘future’ relations those tuples that are not consistent

with the current path. We call the tuples that are consistent ‘valid’ and those that

are not ‘invalid.’

For a given tuple ti in a given relation Ri, the index-tree data structure returns all

the tuples in an ‘adjacent’ relation that are consistent with ti. The set of such tuples

includes both valid and invalid tuples because the index-tree is not updated when

forward checking invalidates tuples in future relations. Thus, the returned tuples must

be scanned and only the ones considered to be valid should be considered. At some

46

point during the backtrack search, most of the tuples may become invalid. Hence, it

may be more efficient to check the valid tuples for consistency with ti than to check

for validity of the consistent tuples returned by the index-tree. For this purpose,

each relation keeps a counter of the number of ‘valid’ tuples and the index-tree data

structure keeps a counter of the number of (valid and invalid) tuples consistent with

ti. We compare the two counters, and the smaller set is examined.

3.5.7 Complexity analysis

The time complexity of the algorithm is dominated by PerTuple, hence the initial-

ization phase is omitted from the analysis.

Theorem 7 PerTuple is O(tm+1em+1).

Proof: Let t be the maximum number of tuples in a relation. It is bounded by O(dk),

where d is maximum domain size and k is the maximum arity of the relations. The

number of constraints is e and the maximum number of combinations is
(
e
m

)
and

bounded by O(minimum(em, e
e
2)). Below, we assume that m< e

2
.

PerTuple has two nested loops. The outer loop iterates over the combination-

relation pairs in Q. The number of times that the outer loop iterates is the initial size

of Q, which is O(em), plus the number of times a combination-relation pair is added

to Q in Line 12. A relation can participate in at most em−1 combinations. Therefore,

whenever a tuple is deleted O(em−1) pairs are queued in Line 12. There are O(te)

tuples and each tuple is deleted at most once. Thus, Line 10 is executed at most

O(te) times, each time enqueuing O(em−1) pairs. Therefore, the outer loop iterates at

most O(tem) times. The inner loop iterates over the tuples in a relation O(t) times.

When a support for a tuple has been identified, SearchSupport costs O(m) to

verify that every tuple in the support is still valid. When any tuple in the support

47

has been deleted, SearchSupport executes a backtrack search on PDϕ. PDϕ has m

variables of maximum domain size t, and the first variable is instantiated. Thus, the

complexity of the backtrack search is O(tm−1), and that of the inner loop is O(tm).

Thus, PerTuple is O(tm+1em). �

The time complexity of PerTuple is not worse than that of the obvious algorithm

based on Expression (3.1), which is O(tm+1em+1).

When intermediate joins are not stored, the space complexity of the obvious

algorithm is O(tm), and constitutes a major bottleneck for its practical implementation.

The space complexity of PerTuple is dominated by the space for storing the O(e2)

index trees, which is O(kte2).

Thus, our algorithm dramatically reduces the space complexity while slightly

improving the time complexity.

3.6 Related Work

The property m-wise consistency, proposed in the area of relational databases [Gyssens,

1986], requires that every tuple in a relation can be extended to a tuple in every

other relation. Pairwise consistency is a special case of m-wise consistency where

m=2, and is equivalent to R(∗,2)C. Janssen et al. [1989] proposed to enforce this

consistency property by enforcing arc-consistency on the dual CSP. Importantly, they

also described an algorithm for removing the redundant edges from the dual CSP to

avoid revising unnecessary relation pairs. We use their redundancy removal algorithm

for wR(∗,m)C. While m-wise consistency is equivalent to R(∗,m)C, to the best of our

knowledge, our work is the first to propose and evaluate an algorithm for enforcing it.

Jégou [1993] proposed hyper-k-consistency, which requires the tuples in every (k-1)

relations to be extendible to every kth relation. Generalizing the early work on local

48

consistency for CSPs [Montanari, 1974; Mackworth, 1977; Jégou, 1993], Dechter and

van Beek [1997] formalized relational consistency for non-binary CSPs in terms of

relational m-consistency and relational (i,m)-consistency . Enforcing any of the above

listed properties may require the addition of new constraints to the problem modifying

its topology, which we avoid doing in our approach.

None of the above-listed approaches evaluates practical algorithms for enforcing

the proposed properties. Next, we describe more recent approaches to relational

consistency that specify and evaluate the corresponding propagation algorithms.

Stergiou and Walsh [1999] studied arc consistency on three different encodings of

non-binary CSPs (i.e., the hidden variable, dual, and double encodings). Stergiou and

Samaras [2005] designed specialized arc-consistency algorithms for those encodings.

Their arc-consistency algorithm for the dual encoding improves performance by

grouping tuples that have the same supports, but yields filtering equivalent to pairwise

consistency and R(∗,2)C. While it is specialized for pairs of relations, our proposed

algorithm is parameterized and applies to any number of relations. Our algorithm can

benefit from the tuple grouping of Stergiou and Samaras [2005]. Further, we avoid

redundant checks as proposed by Janssen et al. [1989], which is an improvement over

the approach of [Stergiou and Samaras, 2005].

Bessiere et al. [2008] provided detailed theoretical, algorithmic, and empirical stud-

ies of domain filtering consistencies for non-binary CSPs. The consistency properties

that they studied do not modify the topology of the constraint network and are re-

stricted to combinations of two relations. Further, they are stronger than GAC (which

is relational (1,1)-consistency), but are weaker than pairwise consistency followed by

GAC. Our work complements and extends their approach by considering combinations

of an arbitrary number of constraints and updating the constraint definitions, thus

providing stronger consistency properties. In our experiments, we compare our work

49

against maxRPWC, which exhibits the best performance in their study.

Finally, we mention the consistency properties Conservative Path Consistency

introduced by Debruyne [1999] and the stronger property Conservative Dual Consis-

tency introduced by Lecoutre et al. [Lecoutre et al., 2007], which do not alter the

topology of the constraint graph. However, they are both restricted to binary CSPs

and consider only three constraints at the same time.

3.7 Empirical Evaluations

In this section we present the empirical evaluation of wR(∗,m) on benchmark problems.

3.7.1 Experimental set-up

To evaluate the performance of our algorithm for enforcing wR(∗,m) (i.e., R(∗,m)C on

the minimal dual graph), we compare it against GAC2001 [Bessiere et al., 2005] and

maxRPWC [Bessiere et al., 2008]. All those algorithms are integrated as full lookahead

strategies in a backtrack search procedure. After enforcing wR(∗,m) in the lookahead

schema, we filter the domains of the uninstantiated variables by projecting the

constraints on the variables. The search procedure finds the first solution of the original

CSP using the domain/degree heuristic for dynamic variable ordering. During search,

we timestamp the deleted tuples by the variable’s instantiation. Upon backtracking,

we restore all tuples that have the timestamp of the variable’s instantiation.

The experiments are conducted on the benchmarks of the CSP Solver Competition1

with a time limit of two hours per instance. We set the maximum processing time

per instance to two hours for two reasons: a) we targeted difficult instances; and

b) we wanted to observe the effect of stronger consistencies (i.e., backtrack-free search,

1http://www.cril.univ-artois.fr/CPAI08/

50

smaller trees) as opposed to measuring the effectiveness of our implementation. The

experiments compare wR(∗,2)C, wR(∗,3)C, wR(∗,4)C, GAC, and maxRPWC.

We split the benchmark problems into three groups according to the number of

nodes visited using the different consistency algorithms: The benchmarks that require

many node visits with GAC but require fewer node visits with the higher levels of

consistency are in the first group. The benchmarks that do not require many node

visits using any of the consistency algorithms are in the second group. Lastly, the

benchmarks that require many node visits using any of the consistency algorithms are

in the third group.

The tables give the number of nodes visited (#Nodes), the CPU time in seconds

(Time), and the maximum time (Max time) for the instances completed within a two-

hour time limit. They also give the number of instances completed (#C), the number

of instances with the fastest running time (#F), and the number of instances solved

backtrack free (#BF). Time out is denoted as ‘-’ and memory out as ‘mem.’ CPU

time includes preprocessing. Importantly, the averages of #Nodes, Time, and Max

time are computed over only the instances completed by all the compared algorithms,

but algorithms that do not complete any instances are not taken into consideration.

Thus, those values should be considered in light of the number of completed instances.

3.7.2 Results

The usefulness of stronger consistency is best illustrated on the unsatisfiable problems

of Tables 3.1 to 3.3 and the satisfiable problems of Table 3.4. wR(∗,m)C is the fastest

on most instances, and is able to solve more instances than GAC or maxRPWC2.

In many instances, GAC takes more than 100 times the CPU time of wR(∗,m)C.

2Bessiere et al. [2008] showed that pairwise consistency (i.e., R(*,2)C) followed by GAC is strictly
stronger than maxRPWC, which is strictly stronger than GAC.

51

In particular, many modifiedRenault instances are solved in a few seconds with

wR(∗,m)C, but not completed in two hours by GAC. Moreover, wR(∗,m)C solves

many more instances backtrack free than GAC and maxRPWC do. We emphasize

that all dag-rand and modifiedRenault are solved backtrack free by wR(∗,2)C and

wR(∗,4)C, respectively. Thus, wR(∗,m)C hints at the tractability of the corresponding

CSP class, and constitutes another step towards empowering constraint solvers to solve

problems without search, the main objective of this dissertation. Stronger consistency

almost always consistently reduces the number of nodes visited, but not the CPU time.

When search with a given consistency property visits relatively few nodes, enforcing a

stronger property on the same instance may be overkill and wasteful. This remark

holds for wR(∗,2)C and wR(∗,3)C on dag-rand, but not for rand-10-20-10 where

wR(∗,4)C beats all tested algorithms.

Table 3.5 for unsatisfiable problems and Tables 3.6 and 3.7 for satisfiable problems

show the results of the second group of benchmarks. In these problems, all tested

algorithms visit few nodes. The time for enforcing wR(∗,m)C is wasted and increases

with the value of m. As for the third group in Table 3.8 for unsatisfiable problems

and Tables 3.9 and 3.10 for satisfiable problems, wR(∗,m)C visits fewer nodes than

both GAC and maxRPWC for most of the instances, but is not able to outperform

them in terms of CPU time.

We do not report the results of R(∗,m)C for the following reasons. For m = 2,

R(∗,2)C and wR(∗,2)C are equivalent and the latter is significantly cheaper than the

former. In general, wR(∗,m)C considers significantly fewer combinations of constraints

than R(∗,m)C: it scales better than and outperforms R(∗,m)C.

The goal of our experiments is to evaluate different consistency properties under

similar conditions. Our solver does not implement the advanced heuristics used in the

Solver Competition. Hence, we do not compare the CPU time in our experiments to

52

Table 3.1: Results on the unsatisfiable benchmark problems of the first group (part 1).

Algorithm #Nodes Time Max time #C #F #BF

aim-100 (instances: 8, vars: 100, dom: 2, rels: 173, arity: 3)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C 4,619,373.00 2,016.78 6,008.34 3 1 0

wR(∗,3)C 18,776.67 97.36 282.09 4 3 0

wR(∗,4)C 18,685.33 944.17 2,725.35 4 1 1

aim-200 (instances: 8, vars: 200, dom: 2, rels: 348, arity: 3)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C - - - 0 0 0

wR(∗,4)C 38.00 5.54 5.54 1 1 0

aim-50 (instances: 8, vars: 50, dom: 2, rels: 84, arity: 3)

GAC 98,475.50 6.59 15.97 8 2 0

maxRPWC 89,254.88 10.34 28.64 8 0 0

wR(∗,2)C 25,615.75 6.90 39.85 8 3 0

wR(∗,3)C 8,054.00 17.68 73.08 8 1 3

wR(∗,4)C 4,019.75 58.12 455.80 8 2 5

composed-25-1-2 (instances: 10, vars: 33, dom: 10, rels: 224, arity: 2)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C 0.00 2.05 2.17 6 6 6

wR(∗,4)C 0.00 14.24 14.39 10 4 10

composed-25-1-25 (instances: 10, vars: 33, dom: 10, rels: 247, arity: 2)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C 1.00 2.52 16.89 8 8 6

wR(∗,4)C 0.00 2.82 17.21 10 2 10

composed-25-1-40 (instances: 10, vars: 33, dom: 10, rels: 262, arity: 2)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C 1.56 2.86 3.33 9 9 6

wR(∗,4)C 0.00 18.13 18.42 10 1 10

composed-25-1-80 (instances: 10, vars: 33, dom: 10, rels: 302, arity: 2)

GAC 1.00 0.08 0.08 4 2 0

maxRPWC 1.00 0.17 0.20 2 0 0

wR(∗,2)C 7.00 0.57 0.60 2 0 0

wR(∗,3)C 2.50 2.61 2.84 10 8 6

wR(∗,4)C 0.00 22.71 23.02 10 0 10

53

Table 3.2: Results on the unsatisfiable benchmark problems of the first group (part 2).

Algorithm #Nodes Time Max time #C #F #BF

composed-75-1-2 (instances: 10, vars: 83, dom: 10, rels: 624, arity: 2)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C 0.33 6.47 6.68 6 6 5

wR(∗,4)C 0.00 45.81 46.27 10 4 10

composed-75-1-25 (instances: 10, vars: 83, dom: 10, rels: 647, arity: 2)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C 0.33 6.82 7.08 6 6 5

wR(∗,4)C 0.00 45.84 49.09 10 4 10

composed-75-1-40 (instances: 10, vars: 83, dom: 10, rels: 662, arity: 2)

GAC - - - 0 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C - - - 0 0 0

wR(∗,3)C 0.33 6.82 7.05 6 6 5

wR(∗,4)C 0.00 48.83 51.46 10 4 10

composed-75-1-80 (instances: 10, vars: 83, dom: 10, rels: 702, arity: 2)

GAC 1.00 0.15 0.19 3 3 0

maxRPWC 1.00 0.27 0.35 3 0 0

wR(∗,2)C 7.00 1.26 1.28 3 0 0

wR(∗,3)C 0.67 7.69 8.09 8 5 5

wR(∗,4)C 0.00 51.85 57.70 10 2 10

dag-rand (instances: 25, vars: 23, dom: 3, rels: 16, arity: 15)

GAC 50,570.00 5,282.70 7,127.22 20 0 0

maxRPWC - - - 0 0 0

wR(∗,2)C 0.00 90.15 105.61 25 25 25

wR(∗,3)C - - - 0 0 0

wR(∗,4)C - - - 0 0 0

dubois (instances: 13, vars: 98, dom: 2, rels: 65, arity: 3)

GAC 105,250,810.00 949.47 2,094.12 5 0 0

maxRPWC 105,250,810.00 1,037.58 2,296.28 5 0 0

wR(∗,2)C 7,864,312.00 287.96 612.27 7 7 0

wR(∗,3)C 7,864,312.00 818.37 1,745.33 6 0 0

wR(∗,4)C 3,932,152.00 1,766.67 3,797.38 4 0 0

modifiedRenault (instances: 31, vars: 111, dom: 42, rels: 130, arity: 10)

GAC 1,171,458.43 782.32 5,259.99 9 2 0

maxRPWC 733.57 537.46 2,690.27 15 5 10

wR(∗,2)C 487.00 5.17 10.96 28 20 25

wR(∗,3)C 0.00 9.63 12.37 30 2 28

wR(∗,4)C 0.00 44.20 92.70 31 2 31

54

Table 3.3: Results on the unsatisfiable benchmark problems of the first group (part 3).

Algorithm #Nodes Time Max time #C #F #BF

os-taillard-4ExtConvert (instances: 10, vars: 16, dom: 256, rels: 48, arity: 2)

GAC 47.43 17.17 52.46 9 8 0

maxRPWC 47.43 19.89 61.85 9 0 0

wR(∗,2)C 498.57 332.38 816.93 8 0 0

wR(∗,3)C 74.86 431.04 1,057.94 9 1 1

wR(∗,4)C 0.00 486.57 1,325.49 10 1 9

rand-10-20-10 (instances: 20, vars: 20, dom: 10, rels: 5, arity: 10)

GAC 210.55 7.20 10.32 20 0 0

maxRPWC 0.55 4.45 14.36 20 0 20

wR(∗,2)C 0.00 1.27 1.39 20 0 20

wR(∗,3)C 0.00 1.17 1.24 20 0 20

wR(∗,4)C 0.00 0.88 0.99 20 20 20

that of the competition.

55

Table 3.4: Results on the satisfiable benchmark problems of the first group.

Algorithm #Nodes Time Max time #C #F #BF

aim-100 (instances: 16, vars: 100, dom: 2, rels: 307, arity: 3)

GAC 9,459,773.00 759.65 2,891.62 15 4 1

maxRPWC 6,254,877.13 931.10 5,749.12 16 0 1

wR(∗,2)C 234,526.67 125.60 1,872.78 16 7 5

wR(∗,3)C 3,979.07 19.43 267.39 16 3 7

wR(∗,4)C 559.13 26.32 265.34 16 2 9

aim-200 (instances: 16, vars: 200, dom: 2, rels: 625, arity: 3)

GAC 1,574,208.00 1,175.01 3,685.83 8 1 0

maxRPWC 1,138,576.83 2,091.46 7,194.08 8 0 0

wR(∗,2)C 28,724.00 77.41 430.50 12 10 4

wR(∗,3)C 4,821.33 127.08 586.33 15 4 8

wR(∗,4)C 3,423.67 954.31 4,362.43 14 1 10

aim-50 (instances: 16, vars: 50, dom: 2, rels: 152, arity: 3)

GAC 15,169.13 0.93 7.17 16 8 1

maxRPWC 1,781.38 0.39 3.23 16 1 3

wR(∗,2)C 389.44 0.26 1.75 16 4 5

wR(∗,3)C 63.44 0.38 1.33 16 3 8

wR(∗,4)C 55.06 2.33 8.06 16 0 10

modifiedRenault (instances: 19, vars: 110, dom: 42, rels: 128, arity: 10)

GAC 422,693.29 108.52 1,353.01 17 14 5

maxRPWC 1,339.47 99.12 361.15 18 0 8

wR(∗,2)C 211.53 4.98 8.32 19 5 7

wR(∗,3)C 110.35 13.33 16.69 19 0 14

wR(∗,4)C 110.24 81.28 106.84 19 0 16

rand-8-20-5 (instances: 20, vars: 20, dom: 5, rels: 18, arity: 8)

GAC 5,976.00 140.24 140.24 16 1 0

maxRPWC 5,979.00 4194.12 4194.12 1 0 0

wR(∗,2)C 535.00 197.72 197.72 20 19 0

wR(∗,3)C - - - 0 0 0

wR(∗,4)C - - - 0 0 0

56

Table 3.5: Results on the unsatisfiable benchmark problems of the second group.

Algorithm #Nodes Time Max time #C #F #BF

ogdVg (instances: 49, vars: 166, dom: 26, rels: 25, arity: 20)

GAC 3.22 1.24 3.77 24 20 4

maxRPWC 3.22 1.50 4.46 24 4 4

wR(∗,2)C 8.78 31.26 88.11 17 0 4

wR(∗,3)C 8.78 1,716.97 5,853.13 9 0 4

wR(∗,4)C - - - 0 0 0

os-taillard-5ExtConvert (instances: 26, vars: 25, dom: 356, rels: 100, arity: 2)

GAC 185.00 304.26 481.45 4 4 0

maxRPWC 185.00 456.75 724.23 3 0 0

wR(∗,2)C 2985.50 4,743.62 5,067.99 2 0 0

wR(∗,3)C - - - 0 0 0

wR(∗,4)C - - - 0 0 0

QCP-10 (instances: 5, vars: 100, dom: 10, rels: 822, arity: 2)

GAC 491.00 0.81 1.94 5 5 0

maxRPWC 491.00 1.73 4.20 5 0 0

wR(∗,2)C 640.67 2.92 5.90 5 0 0

wR(∗,3)C 291.67 9.40 16.52 5 0 0

wR(∗,4)C 249.00 51.53 90.00 3 0 0

57

Table 3.6: Results on the satisfiable benchmark problems of the second group (part 1).

Algorithm #Nodes Time Max time #C #F #BF

allIntervalSeriesExtConvert (instances: 23, vars: 51, dom: 80, rels: 1078, arity: 3)

GAC 26.38 0.14 0.99 23 22 23

maxRPWC 26.38 0.61 5.37 23 3 23

wR(∗,2)C 26.38 4.51 40.66 21 0 21

wR(∗,3)C 26.38 73.37 719.57 19 0 19

wR(∗,4)C 26.56 598.46 5,949.47 16 0 14

composed-25-10-20 (instances: 10, vars: 105, dom: 10, rels: 620, arity: 2)

GAC 123.60 0.20 0.25 6 6 0

maxRPWC 123.60 0.46 0.51 6 0 0

wR(∗,2)C 154.80 1.50 1.64 6 0 0

wR(∗,3)C 139.80 11.46 11.86 5 0 0

wR(∗,4)C 118.80 75.12 80.56 6 1 0

ogdVg (instances: 16, vars: 37, dom: 26, rels: 12, arity: 9)

GAC 21.25 0.10 0.19 16 4 7

maxRPWC 21.25 0.10 0.19 16 12 7

wR(∗,2)C 22.50 2.07 3.17 16 2 4

wR(∗,3)C 22.50 186.62 376.52 10 0 4

wR(∗,4)C 21.25 1,518.92 2,725.11 4 0 4

os-taillard-4ExtConvert (instances: 20, vars: 16, dom: 285, rels: 48, arity: 2)

GAC 35.08 13.51 138.75 17 14 13

maxRPWC 35.08 14.86 153.68 17 1 13

wR(∗,2)C 253.92 193.86 2,031.80 15 0 10

wR(∗,3)C 116.75 737.45 3,238.58 18 4 10

wR(∗,4)C 18.92 2,412.51 5,724.01 18 1 7

os-taillard-5ExtConvert (instances: 4, vars: 25, dom: 337, rels: 100, arity: 2)

GAC 945.00 293.56 407.15 2 1 0

maxRPWC 945.00 392.20 609.05 2 1 0

wR(∗,2)C 5,510.50 2,994.14 5,453.29 2 0 0

wR(∗,3)C - - - 1 1 1

wR(∗,4)C - - - 0 0 0

primes-10ExtConvert (instances: 12, vars: 100, dom: 28, rels: 50, arity: 5)

GAC 97.08 0.54 2.30 12 8 12

maxRPWC 97.08 0.52 2.07 12 9 12

wR(∗,2)C 73.42 2.57 10.54 12 0 12

wR(∗,3)C 73.42 14.32 80.33 12 0 12

wR(∗,4)C 65.42 59.52 504.74 12 0 12

primes-15ExtConvert (instances: 8, vars: 100, dom: 46, rels: 50, arity: 4)

GAC 98.13 0.10 0.28 8 5 8

maxRPWC 98.13 0.09 0.26 8 7 8

wR(∗,2)C 71.38 0.37 1.14 8 0 8

wR(∗,3)C 71.38 0.51 1.50 8 0 8

wR(∗,4)C 71.38 1.04 3.49 8 0 8

58

Table 3.7: Results on the satisfiable benchmark problems of the second group (part 2).

Algorithm #Nodes Time Max time #C #F #BF

primes-20ExtConvert (instances: 8, vars: 100, dom: 70, rels: 50, arity: 4)

GAC 98.13 0.31 0.85 8 5 8

maxRPWC 98.13 0.32 0.84 8 6 8

wR(∗,2)C 71.38 1.34 3.89 8 0 8

wR(∗,3)C 71.38 2.96 8.20 8 0 8

wR(∗,4)C 71.38 6.74 24.83 8 0 8

QCP-10 (instances: 10, vars: 100, dom: 10, rels: 822, arity: 2)

GAC 727.80 0.85 4.74 10 10 4

maxRPWC 727.80 1.61 9.02 10 0 4

wR(∗,2)C 832.90 2.77 12.51 10 0 2

wR(∗,3)C 661.20 11.26 45.42 10 0 2

wR(∗,4)C 551.60 53.91 214.91 10 0 2

QWH-10 (instances: 10, vars: 100, dom: 10, rels: 756, arity: 2)

GAC 146.30 0.21 0.36 10 10 3

maxRPWC 146.30 0.27 0.49 10 0 3

wR(∗,2)C 153.60 1.00 1.39 10 0 2

wR(∗,3)C 148.70 3.28 5.03 10 0 2

wR(∗,4)C 137.20 13.03 18.08 10 0 2

renault (instances: 2, vars: 101, dom: 42, rels: 113, arity: 10)

GAC 101.00 1.00 1.01 2 2 2

maxRPWC 101.00 94.66 94.74 2 0 2

wR(∗,2)C 99.00 3.97 4.00 2 0 2

wR(∗,3)C 99.00 12.98 13.04 2 0 2

wR(∗,4)C 99.00 84.15 87.80 2 0 2

ssa (instances: 6, vars: 2631, dom: 2, rels: 4721, arity: 6)

GAC 1,372.20 0.26 0.62 5 5 4

maxRPWC 1,372.20 0.31 0.80 5 1 4

wR(∗,2)C 1,916.60 2.10 5.34 5 0 2

wR(∗,3)C 1,916.60 3.04 8.93 5 0 2

wR(∗,4)C 1,917.40 7.49 27.76 6 1 2

59

Table 3.8: Results on the unsatisfiable benchmark problems of the third group.

Algorithm #Nodes Time Max time #C #F #BF

pret (instances: 8, vars: 105, dom: 2, rels: 70, arity: 3)

GAC 12,198,226.00 103.47 109.05 4 4 0

maxRPWC 12,198,226.00 140.19 140.42 4 0 0

wR(∗,2)C 13,583,698.00 365.85 367.81 4 0 0

wR(∗,3)C 4,986,706.00 429.11 429.85 4 0 0

wR(∗,4)C 4,986,706.00 800.82 804.26 4 0 0

rand-3-20-20 (instances: 25, vars: 20, dom: 20, rels: 58, arity: 3)

GAC 69,956.40 383.95 723.86 24 24 0

maxRPWC 69,404.80 3,153.09 6,316.88 12 0 0

wR(∗,2)C 36,509.90 3,343.66 6,112.08 12 0 0

wR(∗,3)C - - - 0 0 0

wR(∗,4)C - - - 0 0 0

ssa (instances: 2, vars: 897, dom: 2, rels: 1081, arity: 5)

GAC 244,086.00 11.51 11.51 1 1 0

maxRPWC 244,086.00 15.84 15.84 1 0 0

wR(∗,2)C 21,406,446 3,520.82 3,520.82 1 0 0

wR(∗,3)C - - - 0 0 0

wR(∗,4)C - - - 0 0 0

travellingSalesman-25 (instances: 7, vars: 76, dom: 1001, rels: 350, arity: 3)

GAC 138,985.75 1,741.48 2,208.56 4 4 0

maxRPWC 138,985.75 3,760.28 4,412.96 4 0 0

wR(∗,2)C 186,512.75 4,492.42 5,327.00 4 0 0

wR(∗,3)C - - - 0 0 0

wR(∗,4)C - - - 0 0 0

varDimacs (instances: 5, vars: 74, dom: 2, rels: 322, arity: 10)

GAC 66,064.00 7.32 13.65 4 4 0

maxRPWC 66,064.00 13.03 24.30 4 0 0

wR(∗,2)C 72,307.00 19.07 35.35 3 0 0

wR(∗,3)C 72,307.00 98.16 182.37 3 0 0

wR(∗,4)C 21,435.00 313.09 582.58 2 0 0

60

Table 3.9: Results on the satisfiable benchmark problems of the third group (part 1).

Algorithm #Nodes Time Max time #C #F #BF

bqwh-15-106 (instances: 100, vars: 106, dom: 7, rels: 593, arity: 2)

GAC 5,323.21 3.84 26.83 100 100 0

maxRPWC 5,323.21 8.88 62.38 100 0 0

wR(∗,2)C 6,050.88 17.03 116.33 100 0 0

wR(∗,3)C 4,409.51 55.82 356.73 100 0 0

wR(∗,4)C 1,964.50 140.79 878.88 100 0 0

bqwh-18-141 (instances: 100, vars: 141, dom: 8, rels: 878, arity: 2)

GAC 75,588.53 76.24 532.13 100 100 0

maxRPWC 75,588.53 159.70 1,067.85 100 0 0

wR(∗,2)C 85,944.91 294.30 2,068.03 99 0 0

wR(∗,3)C 57,672.90 794.33 3,841.06 93 0 0

wR(∗,4)C 23,568.94 2,118.25 6,992.22 82 0 0

driver (instances: 7, vars: 352, dom: 12, rels: 7201, arity: 2)

GAC 11,667.50 52.53 130.48 7 5 1

maxRPWC 11,667.50 115.63 288.26 7 1 1

wR(∗,2)C 12,173.25 72.07 188.91 7 2 1

wR(∗,3)C 12,140.25 306.73 806.13 5 0 1

wR(∗,4)C 12,088.50 1,278.97 3,353.11 4 0 1

QCP-15 (instances: 6, vars: 225, dom: 15, rels: 2519, arity: 2)

GAC 9,978.00 44.37 85.93 6 6 0

maxRPWC 9,978.00 85.69 167.19 6 0 0

wR(∗,2)C 11,493.67 76.48 148.09 6 0 0

wR(∗,3)C 10,487.67 262.00 413.35 4 0 0

wR(∗,4)C 9,353.00 1,531.16 2,942.51 3 0 0

QWH-15 (instances: 10, vars: 225, dom: 15, rels: 2324, arity: 2)

GAC 22,570.83 75.35 247.01 10 10 0

maxRPWC 22,570.83 154.01 495.67 10 0 0

wR(∗,2)C 25,650.67 154.96 490.50 10 0 0

wR(∗,3)C 23,096.00 646.23 1,917.15 8 0 0

wR(∗,4)C 9,449.67 1,734.28 3,379.88 6 0 0

rand-3-20-20 (instances: 25, vars: 20, dom: 20, rels: 59, arity: 3)

GAC 38,768.00 281.78 281.78 25 25 0

maxRPWC 38,636.00 2,274.60 2,274.60 20 0 0

wR(∗,2)C 20,923.00 1,238.25 1,238.25 20 0 0

wR(∗,3)C 5,890.00 2,589.74 2,589.74 6 0 0

wR(∗,4)C 618.00 5,318.61 5,318.61 1 0 0

61

Table 3.10: Results on the satisfiable benchmark problems of the third group (part 2).

Algorithm #Nodes Time Max time #C #F #BF

rand-3-20-20-fcd (instances: 50, vars: 20, dom: 20, rels: 58, arity: 3)

GAC 7,852.00 37.30 75.63 50 50 0

maxRPWC 7,778.67 369.01 777.57 38 0 0

wR(∗,2)C 1,877.00 125.47 191.77 40 0 0

wR(∗,3)C 1,314.00 656.73 927.07 16 0 0

wR(∗,4)C 560.33 4,089.56 6,111.99 3 0 0

travellingSalesman-20 (instances: 15, vars: 61, dom: 1001, rels: 230, arity: 3)

GAC 3,649.20 18.96 70.18 15 15 1

maxRPWC 3,649.20 39.41 143.36 15 0 1

wR(∗,2)C 4,617.20 59.72 197.40 15 0 0

wR(∗,3)C 4,541.90 303.98 1,011.68 13 0 0

wR(∗,4)C 4,484.50 1,632.82 5,474.64 10 0 0

travellingSalesman-25 (instances: 8, vars: 76, dom: 1001, rels: 350, arity: 3)

GAC 3,889.00 36.23 48.44 8 8 0

maxRPWC 3,889.00 89.25 105.02 8 0 0

wR(∗,2)C 5,054.00 126.55 151.14 8 0 0

wR(∗,3)C 5,054.50 668.48 785.84 6 0 0

wR(∗,4)C 5,025.50 3,814.75 4,582.45 4 0 0

varDimacs (instances: 4, vars: 1141, dom: 2, rels: 1226, arity: 5)

GAC 1,052.75 0.15 0.22 4 4 4

maxRPWC 1,052.75 0.17 0.25 4 1 4

wR(∗,2)C 1,053.75 0.94 2.16 4 0 2

wR(∗,3)C 1,053.50 1.55 3.16 4 0 2

wR(∗,4)C 1,053.25 4.75 8.64 4 0 3

62

3.7.3 Conclusions

The empirical evaluation showed that we can approach practical tractability using

R(∗,m)C on many benchmarks, and achieve practical tractability when the level of the

consistency is higher than the structural parameter of the corresponding constraint

network. We noticed that there are three groups of problems. Using higher levels of

consistency on the problems of the first group, we can approach practical tractability

for solving them. Unlike the problems in the first group, we can achieve practical

tractability on the problems of the second group with low consistency levels, and

thus higher levels are not necessary. Finally, there are problems that the higher level

consistency studied in this chapter is insufficient to approach practical tractability in

solving them. These are the problems in the third group.

Our algorithm can be further improved by reducing redundant consistency checks,

for example by grouping tuples [Stergiou and Samaras, 2005] or exploiting complex

residual supports [Likitvivatanavong et al., 2007; Lecoutre and Hemery, 2007; Lecoutre

et al., 2008]. Other interesting avenues for future work are to exploit the tightness of

the constraints to avoid considering ineffective combinations of relations and to design

techniques that automatically identify the level of consistency necessary for a given

problem.

Summary

In this chapter, we studied the relational consistency property R(∗,m)C, proposed a

weaker variant of it, wR(∗,m)C, and presented PerTuple, a parameterized algorithm

for enforcing it. Our algorithm operates by tightening the existing constraints, without

adding new ones. To demonstrate its usefulness, we evaluated it against algorithms

for GAC and maxRPWC. Our experiments showed that by maintaining a stronger

63

consistency, the performance of search can be improved by two orders of magnitude on

many benchmark problems. Several instances were solved in a backtrack-free manner,

hinting at the tractability of the corresponding problem class. We were able to achieve

practical tractability on problems that belonged to tractable problem classes, and

for other problems, we approached practical tractability by significantly reducing the

amount of backtracking.

64

Chapter 4

An Alternative Algorithm for

Enforcing R(∗,m)C

In this chapter, we introduce AllSol, another algorithm for enforcing R(∗,m)C as

an alternative to PerTuple (Algorithm 1) discussed in Chapter 3. While both

algorithms compute the same result (i.e., the minimal relations of a CSP), we argue

that their performances vary depending on the ‘type’ of problems to which they are

applied. We use machine learning techniques to build a decision tree that predicts

which of the two algorithms is more appropriate to apply to a given CSP instance

based on a set of parameters that assess various aspects of the considered instance.

Finally, we combine the two algorithms and the decision tree into a hybrid solver, and

empirically evaluate the advantages of our approach. Preliminary results from this

chapter appeared in technical report [Karakashian et al., 2012].

65

4.1 Background

Montanari defined the minimal network of a CSP [1974]. The formal definition is as

follows [Dechter, 2003].

Definition 4 Given a CSP P0, let {P1, . . . ,Pl} be the set of all networks equivalent

to P0. Then the minimal network M of P0 is defined by M(P0) = ∩li=1Pi.

Informally stated, the minimal network is the network where the relations are as tight

as can be; that is, each tuple in a relation can be extended to a solution to the CSP.

Gottlob argued that when a CSP has this property, a number of NP-hard queries

can be answered in polynomial time, but also showed that a) deciding whether or

not a constraint network is minimal is NP -complete and b) finding a solution to a

minimal network is also NP -complete [Gottlob, 2011], thus proving earlier conjectures

by Dechter and Pearl [1992].

PerTuple, (Algorithm 1) introduced in Chapter 3, is a first algorithm for enforcing

R(∗,m)C. In essence, the algorithm computes the minimal network of the problem

induced by every set of m relations of the CSP. When the input to PerTuple is

restricted to the relations of a single combination of m relations, PerTuple computes

the minimal network induced by those m relations.

In this chapter, we propose AllSol (Algorithm 2) as an alternative algorithm

for enforcing the same property. Both PerTuple and AllSol use backtrack search

to verify whether or not a given tuple appears in a solution to the problem, thus

yielding the minimal network of a CSP. However, the former repeats a ‘satisfiability’

search (i.e., stopping after finding the first solution) for every tuple in every relation,

in the worst case. The latter AllSol carries out a single ‘solution counting’ search

generating a sufficient number of solutions to cover all the tuples of the minimal

66

network (i.e., possibly exploring the entire search space). The two search mechanisms

are contrasted in Figures 4.1 and 4.2, respectively.

t1

ti
t2

t3

Figure 4.1: PerTuple conducts many
backtrack searches, seeking one solution
(satisfiability).

Figure 4.2: AllSol conducts a single
backtrack search, possibly seeking all so-
lutions.

The performances of both algorithms depend on whether many solutions exist and

are easy to find (favoring PerTuple), or whether solutions are rare and hard to find

(favoring AllSol, which traverses the search space only once).

We propose a set of parameters to predict the size of the search space and the

difficulty of solving a given instance. Using machine learning techniques, we build

a decision tree to select the appropriate solver to use PerTuple or AllSol. The

contributions of this chapter are as follows:

1. The presentation of an alternative algorithm for enforcing R(∗,m)C.

2. The identification of CSP parameters that can be computed in polynomial time,

and their use in building a decision tree that predicts the appropriate algorithm.

3. The creation of a hybrid algorithm that automatically determines whether to

use PerTuple or AllSol.

4. The empirical evaluation of the hybrid algorithm for computing the minimal

network of benchmark problems.

67

4.2 Related Work

The “algorithm selection problem” was discussed at length by Rice [1976] and has

recently witnessed a surge of successful implementations under the label of “algorithm

portfolio.” An excellent historical review of the topic can be found by Xu et al. [2008].

These authors introduced SATzilla, a wildly successful portfolio algorithm for solving

SAT problems. SATzilla uses 48 features, computed from 16 parameters of SAT

problems, to choose between seven SAT solvers. We use 12 attributes, computed from

five CSP parameters, to choose between two algorithms. Our choice of attributes is

sufficient for our task, which is simpler than SATzilla’s. Importantly, the time for

extracting and computing the features in our case is negligible compared to the time

taken by computing the minimal network using either algorithm.

4.3 AllSol

Below, we introduce AllSol, which computes the minimal network of a CSP given in

its dual representation, PD. We then qualitatively compare AllSol and PerTuple.

4.3.1 AllSol: Solving a single counting problem

Algorithm 2 describes the operation of AllSol.

First, Algorithm 2 initializes the tuple flags to ‘false’. Then it proceeds with the

single backtrack search by calling BTsearchNextSol in Line 5. However, it does

not stop after the first solution. It continues in the loop of Line 4 until all the solutions

are found. Note that only the first call to BTsearchNextSol starts a backtrack

search, and the subsequent calls only advance the backtrack search to the next solution.

Every time a solution is found, all the tuples in the solution are flagged as belonging

68

Algorithm 2: AllSol(PD)

Input: PD the dual representation of a CSP.
Output: Minimal relations of PD.
foreach Ri ∈ PD do1

foreach τi ∈ Ri do flag[τi]← false2

sol← true3

while sol = true do4

sol←BTsearchNextSol(PD)5

if sol 6= false then6

foreach τi ∈ sol do flag[τi]← true7

foreach Ri ∈ PD do8

foreach τi ∈ Ri do9

if flag[τi] = false then Delete(τi)10

to the minimal network in Line 7. Like PerTuple, AllSol uses forward checking.

Finally, it deletes all the tuples that were not flagged in Line 10.

An important improvement allows us to interrupt search before traversing the entire

space (which would be necessary in search for solution counting). After every step in

the search and after executing forward checking, the domains of the future ‘variables’

(in fact, the relations of the original CSP) are considered. If all the ‘surviving’ tuples

are flagged as belonging to the minimal network, as well as all the tuples in the current

path, then the search resumes from that path as if it was a dead-end. At the end of

search, which may or may not cover all solutions, all flagged false tuples are removed

from the relations.

4.3.2 Complexity analysis

Given a CSP PD in its dual representation, with e relations, t tuples per relation, and

total number of tuples T = et. AllSol conducts a single backtrack search on the

e variables of PD, and its worst-case time complexity is thus O(te). It is outlined in

69

Algorithm 2. Both AllSol and PerTuple may build more solutions than strictly

needed for computing the minimal network. Indeed, we prove the following theorem

in Appendix B:

Theorem 8 Given a CSP, the problem that answers the following question is NP -

Complete: is there a set of at most k solutions such that every tuple in every relation

of the minimal CSP appears in at least one solution?

Proof sketch. See Appendix C.3.

Therefore, we will likely have to find more than the minimum number of solutions

necessary for ‘covering’ the tuples in the minimal network.

In practice, our implementations of AllSol and PerTuple scale well with the

domain sizes of the dual variable (i.e., the number of support tuples in the relations).

Thanks to the index-tree structures, we could easily handle relations with 150,000

tuples.

4.3.3 Qualitative comparison of PerTuple and AllSol

Consider a network of e relations, and t tuples per relation. In order to compute

the minimal network, PerTuple solves O(et) times a satisfiability problem of size

O(te−1). Thus, its time complexity is O(ete). In contrast, AllSol solves a solution

counting problem of size O(te) exactly once, and its time complexity is O(te). Relating

the worst-case time complexities of the two algorithms, their behaviors may be more

clearly characterized thanks to the phase transition phenomenon observed on CSPs

[Cheeseman et al., 1991]. We note that AllSol and PerTuple differ in two main

aspects:

1. The cost of each backtrack search, and

70

2. The number of times a new search is started.

AllSol conducts a single search, but searches the entire space (Figure 4.2). PerTu-

ple conducts a search once for each tuple in the problem, but each search stops after

finding the first solution (Figure 4.1). Now, back to the phase-transition. According

to that macro-characterization of CSPs, we distinguish three main ‘regimes:’

• High solution density: When a problem instance is located in the area where the

existence of a solution is highly likely, solutions abound and are easy to find. In

those conditions, each call to PerTuple is likely to terminate successfully and

quickly. Even with repetitive calls to search, PerTuple remains quick. On the

other hand, although it is sweeping only once through the search space, AllSol

is likely to easily get ‘overwhelmed’ enumerating the large number of solutions.

In that area, PerTuple is likely significantly more efficient than AllSol.

• High nogood density: When a problem instance is located in the area where

the existence of a solution is highly unlikely, a search procedure with decent

lookahead is likely to effectively prune the tree, quickly terminating the search.

Even though PerTuple starts many more searches than AllSol does, both

algorithms are likely to quickly traverse the same ‘barren’ space and their

performances are comparable.

• Low solution density: The difference between the two algorithms arises around

the area of the phase transition. An instance in that area is likely to have many

‘almost’ solutions [Cheeseman et al., 1991]. AllSol traverses the space once. It

may struggle to find the few solutions, if any, as one expects to be the case at

the phase transition. However, the real misfortune is for PerTuple, because

71

it may have to repeat the same costly process for every tuple in each relation,

which may render it totally unusable in practice.

In summary, while PerTuple is likely to be quite cheap more often than AllSol,

when it encounters instances around the phase transition, it is unlikely to terminate

within a set time limit even when AllSol does. The experiments reported below

confirm the above interpretation.

4.4 Building a Hybrid Solver

As stated above, we expect, grossly speaking, the two algorithms to be ‘complementary’

in terms of their effectiveness in practice despite the fact that, there are problems too

hard for either algorithm, and others easy for both. Our goal is to build a hybrid solver

that adaptively chooses the ‘best’ algorithm to use or, at least, avoids the algorithm

that does not terminate. The hybrid solver consists of:

1. The two algorithms AllSol and PerTuple,

2. A set of parameters to compute for each problem instance given an input

(Section 4.4.2), and

3. A ‘quick’ but discriminating classifier (Section 4.4.3).

The hybrid solver computes the values of the parameters, gives them to the classifier,

which then determines whether to use PerTuple or AllSol. Below, we describe

the sample data, the problem parameters and features used, and the classifiers built.

We then discuss the evaluation of the two resulting hybrid solvers on the benchmarks

used to build the classifiers and on randomly generated problems that were not part

of the training data.

72

4.4.1 Data used for building the classifiers

We drew the sample data from 1,616 instances from 61 benchmarks of the CSP Solver

Competition.1 Because the ultimate goal of this research endeavor is to compute the

minimal network of each cluster of a tree decomposition of a CSP (see Chapters 5

and 6), we generated a tree decomposition of each problem instance, and considered

each cluster in the tree decomposition as an independent problem instance (see

Section 5.1). The characteristics of the instances extracted from the benchmarks and

those used are shown in Table 4.1.

Table 4.1: Summary of data used.

Original Data

Number of instances drawn from benchmarks 60,734

Number of instances solved by AllSol 53,083

Number of instances solved by PerTuple 58,444

Data Used in Study (|δtime| ≥ 256 msec)

Timeout per instance 30 minutes

Number of instances solved by AllSol: A 15,872

Number of instances solved by PerTuple: P 21,233

Number of instances in A \ P 1

Number of instances in P \ A 5,362

Total number of instances used: A ∪ P 21,234

Min Max Avg Median

Number of variables 3 213 38.46 28

Domain size 2 238 15.12 7

Number of relations 2 2,069 218.12 153

Arity of relations 2 16 2.82 2

Number of tuples per relation 3 150,000 4253.13 25

We computed the minimal network of all 60,734 instances extracted using PerTu-

ple and AllSol, and recorded the time taken by each algorithm. Neither algorithm

consistently outperformed the other, but PerTuple was faster on more instances than

AllSol was (20,400 instances versus 9,369 instances). We chose to ignore all instances

1http://www.cril.univ-artois.fr/CPAI08/

73

on which the execution of the two algorithms differed by less than 256 milliseconds,

which we estimate to be, in our context, an insignificant time difference. Typically,

the ignored instances are either ‘easily’ solved by both algorithms or solved by neither

algorithm. In this section, when we say ‘solved’ we mean computed the minimal

network within the time limit of 30 minutes. We set the time limit to 30 minutes to

maintain the duration of the experiment on 65,894 instances within reasonable limits.

To avoid overshadowing the differences between the two algorithms caused by the

benchmark distribution, we partitioned the 21,234 remaining instances into two sets.

P is the set of instances on which PerTuple was faster than AllSol by more than

256 milliseconds; A is the set on which AllSol runs faster than PerTuple by more

than 256 milliseconds.

The left-hand side of Table 4.2 reports the number of instances solved from each

set (A and P) by each algorithm (AllSol and PerTuple). The right-hand side of

the table reports the corresponding average CPU times in seconds. To compute the

average, we consider only the instances solved by both algorithms (i.e., 5,776 instances

from A and 10,095 instances from P). On the instances solved by both algorithms,

Table 4.2: Number of instances solved and the corresponding average times.

#Instances in solved by. . . Average CPU (sec)
AllSol PerTuple Both AllSol PerTuple

A 5,777 5,776 5,776 1.28 4.97

P 10,095 15,457 10,095 109.61 5.21

AllSol is 74.25% faster than PerTuple on the instances in A, while PerTuple

is 95.24% faster than AllSol on the instances in P. Incidentally, the average time

for PerTuple is small (5.21 seconds) on the particular subset of instances in P

that were solved by AllSol (10,095 instances). The average time of PerTuple

on all the instances of P (15,457 instances) is in fact much larger (17.55 seconds).

Table 4.2 shows that AllSol and PerTuple clearly outperform each other in their

74

respective ‘niche’ (here, the instance sets A and P respectively). In practice, we need

to determine from the outset which algorithm to use, which motivates us to build a

classifier that uses machine learning techniques.

4.4.2 Parameters and features

The topology of the constraint network (e.g., degree of a variable) and the definitions

of the constraints (e.g., tightness of a relation) heavily impact the performance of the

algorithms for solving CSPs (PerTuple) and counting their solutions (AllSol).

We suspect that the relative performance of AllSol and PerTuple is also affected

by the density of solutions in the space. Thus, we considered the following CSP

parameters. Below, π, σ and ./ denote the relational operators project, select and

natural join, respectively.

1. κ is a known parameter to predict if an instance is at the phase transition [Gent

et al., 1996]. It is defined for CSPs as κ = −
∑

R∈C log2(1−pR)∑
x∈X log2(domain(x))

, where pR is the

tightness of the constraint.

2. relLinkage is an approximate measure of how likely a ‘tuple at the overlap of

two relations’ is to appear in a solution. We propose to compute it as follows: for

every two relations Ri, Rj, let Vij = scope(Ri) ∩ scope(Rj). ∀t ∈ πVij(Ri ./ Rj):

relLinkage(t) =
∏

∀Rk scope(Rk)⊇Vij ,Rk

|σt(Rk)|∏
x∈scope(Rk)\Vij |domain(x)|

.

3. tupPerVvp is the sum of all tuples in which a given variable-value pair vvp

appears,
∑

Ri∈R |σvvp(Ri)|.

4. tupPerVvpNorm is the value of tupPerVvp normalized to the size of each relation,∑
Ri∈R

|σvvp(Ri)|
|Ri| .

75

5. tupPerVvpNormProd is similar to tupPerVvpNorm using the product instead of

the sum,
∏

Ri∈R
|σvvp(Ri)|
|Ri| .

6. relPerVar is the number of relations per variable v, |{Ri | v ∈ scope(Ri)}|,

which is the degree of v in the primal graph.

For a given CSP instance, each parameter yields a set of numbers, which we combine

into a single value using different statistical aggregations (e.g., average and standard

deviation) to obtain the following 12 features for training our classifiers:

1. κ

2. log2(avg(relLinkage))

3. log2(stDev(relLinkage))

4. stDev(relLinkage)
avg(relLinkage)

5. stDev(tupPerVvp)
avg(tupPerVvp)

6. avg(tupPerVvpNorm)

7. stDev(tupPerVvpNorm)

8. stDev(tupPerVvpNormProd)

9. stDev(tupPerVvpNormProd)
avg(tupPerVvpNormProd)

10. avg(relPerVar)

11. stDev(relPerVar)

12. stDev(relPerVar)
avg(relPerVar)

We originally considered 34 combinations of CSP parameters (e.g., product of domain

sizes, relations sizes, the entropy of constraint definitions) and ways to aggregate the

corresponding values (e.g., sums and products, their ratios and logarithms, averages,

and standard deviations). After constructing different decision trees produced by

the used learning algorithms (i.e., C4.5 and Random Forest, see Section 4.4.3), the

above-listed 12 features appeared constantly at the top levels of the produced trees.

It is commonly acknowledged by the machine learning community that the features

appearing at the top levels of decision trees are likely to be the most significant ones.

Thus, we settled with this set of 12 features.

76

4.4.3 Building the classifiers

To build the classifier, we used ‘off-the-shelf’ learning algorithms, the sample instances

described in Section 4.4.1, the values of the set of features listed in Section 4.4.2

on the sample data, and the CPU times for solving the sample instances with both

algorithms (PerTuple and AllSol).

• Learning algorithms. We experimented with ten different learning algorithms

from the open-source data-mining tool Weka [Hall et al., 2009]. The two

algorithms that yielded the best results were J48 and RF, which are Java

implementations of C4.5 [Quinlan, 1993] and Random Forests [Breiman, 2001],

respectively. In our experiments, we used the default parameters for each

algorithm (e.g., ten trees for RF). The advantage of C4.5 is that it outputs a

single decision tree which, when limited to around 20 nodes, seemed to provide

a good trade-off between classification precision and ‘transparency’ to a human

user. We tuned the C4.5 algorithm to output heavily pruned trees by reducing

the pruning confidence to one percent.

• The feature sets. We evaluated two feature sets: the set of 12 features listed

in Section 4.4.2, and a subset of it consisting of the features #1, #4, #5 and

#8. The four features of the latter consistently appeared at the top three levels

of the decision trees that were constructed on ten different partitions of the

training set. Thus, they are likely the most significant features.

• Classes. We classified the data into two classes: the first class is for the instances

on which PerTuple is faster than AllSol by more than 256 milliseconds, and

the second class is for the instances on which AllSol is faster than PerTuple

by more than 256 milliseconds.

77

• Training data (T). At the training stage, we used data from the partitions

A and P. We generated the training data, denoted by T , by sampling, for

every benchmark, a maximum of 30 instances from A and 30 instances from

P. To select the 30, we chose the 15 instances with the largest time difference

between AllSol and PerTuple, randomly selecting the rest from the remaining

instances in the benchmark. We sampled instances from A and P instead of

including all of them in order to balance the number of instances in each class.

We balanced the number of instances so that the classifier did not bias one class

over the other in its attempt to reduce the overall error rate.

We evaluated various configurations of the learning algorithms according to the

transparency of the classification process and the error rate. We consider the six

configurations listed in Table 4.3.

Table 4.3: Main learning algorithms and configurations tested.

Classifier Learning #Trees Avg. Setting #Features Avg.
Algorithm #Nodes Error

Rate

DT1 C4.5 1 18.27 Heavy pruning 12 0.21

DT2 C4.5 1 37.73 Default pruning 12 0.20

RF1 Random Forests 10 181.22 Default 12 0.19

DT3 C4.5 1 10.60 Heavy pruning 4 0.23

DT4 C4.5 1 23.55 Default pruning 4 0.23

RF2 Random Forests 10 207.87 Default 4 0.19

We partitioned the training set T described above into ten partitions, and cross-

validated each configuration by testing each partition on a classifier trained on the

other nine partitions. Only the decision trees produced by C4.5 with heavy pruning

were deemed to be transparent enough for readability. The number of nodes and

the error rates reported in Table 4.3 are the averages across all ten folds of the

cross-validation.

78

As for the classification error-rate, we performed a paired t-test and found no

statistically significant difference between the classifiers produced by C4.5, under

default pruning, using the set of 12 features and the set of four features (DT2 versus

DT4). Also, we observed no statistically significant difference between the classifiers

produced by C4.5 using the 12 feature set with pruning and the default pruning (DT1

and DT2).

However, we discovered that changing from the 12-feature set to four-feature set

increases the classification error, on the heavily pruned trees, with more than 95%

confidence. Moreover, we did not find any statistically significant difference between

Random Forests and C4.5 for the 12 feature set. Therefore, we chose to use the set

with 12 features for the remainder of the analysis, and for generating the production

classifier since it is both human readable and performs as well or better than the

others classifiers.

4.4.4 Empirical evaluations

We propose two hybrid solvers: SolverC4.5 and SolverRF based on each of the two

classifiers DT1 and RF1 of Table 4.3.

As described above, at the training stage, in order to avoid biasing the classifier

while exploiting all the data available, we partitioned T into ten partitions, and

performed a cross-validation by testing each partition using the classifier trained on

the other nine partitions. Subsequently, in an experiment separate from the cross-

validation, we trained a ‘production classifier’ on all the instances in T , and used it to

evaluate the instances in P that were not included in T . Therefore, all the instances

in A and P are validated with unbiased classifiers. The decision tree of the production

classifier output by C4.5 is given in Figure 4.3 and uses the following features:

79

1 κ

2 log2(avg(relLinkage))

3 log2(stDev(relLinkage))

7 stDev(tupPerVvpNorm)

10 avg(relPerVar)

#1≤ 0.22 No

 #3≤-2.79 No

 #7≤0.03 No

 #10≤10.05

Yes

No

 #2≤-28.75

Yes

No

PERTUPLE

ALLSOL Yes

Yes PERTUPLE

Yes

ALLSOL

ALLSOL #7≤0.23 Yes No

ALLSOL PERTUPLE

Figure 4.3: Decision tree of SolverC4.5.

Table 4.4 lists, to the left, the number of instances solved by each algorithm

(AllSol, PerTuple, SolverC4.5 and SolverRF), as well as the number of instances

solved by all four algorithms. To the right, it lists the average CPU-time for executing

each algorithm on those instances solved by all algorithms (and whose number is given

in the center of the table). On the instances solved by all algorithms:

• In the ideal case, the (non-existent) perfect solver would choose to execute

AllSol on 5,5776 instances averaging 1.27 seconds and PerTuple on 10,095

instances averaging 5.21 seconds.

• On the instances in partition A, SolverC4.5 loses 0.87 seconds by not making

the ideal decision (AllSol), but saves 2.83 seconds by avoiding making the

80

Table 4.4: Comparing the performance of all four algorithms.

P
a
rt

it
io

n
#Instances solved by Average CPU (sec)

A
l
l
S
o
l

P
e
r
T
u
p
l
e

S
o
lv

e
r
C
4
.5

S
o
lv

e
r
R
F

A
ll

so
lv

er
s

#
In

st
a
n

ce
s

A
l
l
S
o
l

P
e
r
T
u
p
l
e

S
o
lv

e
r
C
4
.5

S
o
lv

e
r
R
F

1 A 5,777 5,776 5,777 5,777 5,776 5,776 (ideal) 1.27 4.97 2.14 2.27

2 P 10,095 15,457 15,439 14,012 10,095 10,095 109.61 (ideal) 5.21 7.72 31.53

3 A ∪ P 15,872 21,233 21,216 19,789 15,871 15,871 70.18 5.12 5.69 20.88

wrong choice (PerTuple).

• On the instances in partition P , SolverC4.5 loses 2.51 seconds by not making

the ideal decision (PerTuple), but saves 101.89 seconds by avoiding making

the wrong choice (AllSol).

• On all common instances (A∪P), SolverC4.5 loses 2.51 seconds by not making

the ideal decision (PerTuple), but saves 101.89 seconds by avoiding making

the wrong choice (AllSol).

• SolverC4.5 consistently outperforms SolverRF .

• PerTuple remains the overall winner and the safest bet. For this reason, future

chapters use PerTuple.

One might worry that the benchmark data used to build and validate our classifiers

are not general enough. One may rightfully worry that the features we selected, which

attempt to capture the characteristics of the structure of a CSP, and our classifiers

trained on structured data, may lose their ‘edge’ when used on ‘amorphous’ instances

such as randomly generated CSPs. For this reason, we tested our two hybrid solvers

Solver4.5 and SolverRF on three sets of random CSPs (model B) generated in a

window around the phase transition. The hybrid solvers Solver4.5 and SolverRF use

81

the production classifiers trained on the benchmark data in set T , i.e., they were not

trained on any instance from the three sets of random CSPs. This experiments also

attempts to test how well the classifiers and solvers generalize to CSPs instances on

which they were not trained. The problem sets’ characteristics and the average times

on the instances solved by both AllSol and PerTuple are shown in Table 4.5.

Table 4.5: Randomly generated CSPs.

Set I Set II Set III

Number of variables 10 30 75

Domain size 10 6 5

Number of relations 100 75 120

Constraint arity 3

Number of tuples per relation [100,900] [22,194] [12,112]

Total number of instances 1000

Number of instances solved by AllSol 1,000 731 369

Number of instances solved by PerTuple 1,000 983 397

Number of instances solved by both 1,000 731 340

On the instances solved by both PerTuple and AllSol

Average time of AllSol in sec. 154.61 89.91 221.87

Average time of PerTuple in sec. 128.32 174.23 412.13

Average time of SolverRF in sec. 154.62 134.94 251.39

Average time of SolverC4.5 in sec. 150.98 174.23 412.12

In Table 4.6, we compare the performance of our ‘production’ solvers (SolverRF

and SolverC4.5) on the benchmark data and the randomly generated. Below, we

discuss the content of the table and summarize our conclusions:

• Fatal indicates the number of ‘fatal’ decisions corresponding to choosing the

wrong solver (AllSol or PerTuple), that is, choosing a solver that does not

complete within the time threshold over another that does.

• Saved indicates the number of correct decisions corresponding to choosing a

solver that completes within the time threshold over another that does not.

The number of instances ‘saved’ justifies the efforts of this research. While the

82

Table 4.6: Comparing the two new hybrid solvers.

#Instances Average savings Classification
Fatal Saved (sec) error

Benchmarks (21,234 instances)

SolverRF 1,445 3,918 33.54 0.22

SolverC4.5 18 5,345 63.92 0.31

Set I

SolverRF 0 0 -26.29 0.40

SolverC4.5 0 0 -19.01 0.42

Set II

SolverRF 108 144 -5.74 0.40

SolverC4.5 0 252 -84.32 0.55

Set III

SolverRF 53 33 132.22 0.17

SolverC4.5 29 57 -190.25 0.26

large number of ‘saved’ instances in the benchmark data can be justified by the

structure of the CSPs and the fact that the classifiers were trained on similar

data, the large numbers of ‘saved’ data on Sets II and III justify our endeavor

by demonstrating how well our system generalizes to new types of CSPs.

• Average savings indicates how much time on average is saved per instance by

the hybrid solver on the instances solved by both AllSol and PerTuple. The

hybrid solvers yielded positive savings in some of the cases.

• Classification error indicates the rate of bad choices made by each hybrid solver.

A bad choice occurs either when the chosen solver does not solve an instance

but the alternative solver does, or when the chosen solver is slower than the

alternative solver. The highest error rate is in Set II, which resulted in 84.32

seconds time loss on average.

83

4.4.5 Conclusions

We empirically evaluated PerTuple, AllSol and the hybrid solvers on benchmark

and random problems. On most benchmark instances, PerTuple outperformed

AllSoll. In the ideal situation, we expected the hybrid solvers to run the faster

algorithm for a given instance. All of our classifiers achieved an error less than 23% on

average. As a result, the hybrid solvers SolverRF and SolverC4.5 were able correctly

choose between PerTuple and AllSoll to yield savings both in the number of

solved instances and in the average CPU time.

The classifiers in the hybrid solvers were not trained on the randomly generated

problems. Nevertheless, they yielded savings in number of solved instances and average

time. In Set III, only SolverC4.5 achieved savings in terms of the number of solved

instances, and thus outperformed SolverRF .

Our preliminary investigations confirmed that more sophisticated techniques for

building the classifier are worth investigating [Geschwender et al., 2013]. However,

that research effort is beyond the scope of this thesis.

Again, in the current state of affairs, PerTuple remains the overall winner and

the safest bet and is used in the remaining chapters of this dissertation.

Summary

In this chapter, we presented AllSol, an alternative algorithm for enforcing R(∗,m)C.

We also identified various CSP parameters and used them to build a hybrid solver that

chooses either PerTuple or AllSol given a problem instance. We evaluated our

solvers on benchmark and randomly generated problems for computing the minimal

network of each problem.

84

Chapter 5

Localized Consistency &

Structure-Guided Propagation

In this chapter, we investigate ways to exploit the structure of a tree decomposition

of the constraint network of a CSP in the context of higher level consistencies. In

particular, we propose to

1. Restrict the application of R(∗,m)C to the clusters of a tree decomposition, and

2. Guide constraint propagation along the structure of the tree decomposition.

After quickly reviewing how we generate a tree decomposition of a CSP, we discuss

localization of R(∗,m)C to the clusters of a tree decomposition and theoretically

characterize the resulting consistency properties in terms of the previous ones discussed

in this thesis. Then we discuss structure-based constraint propagation and propose

three strategies for managing the propagation queue of the localized consistency. (Our

strategies are not restricted to localized consistency but applicable to any constraint

propagation algorithm, yielding qualitatively similar results.) Finally, we conduct

85

extensive empirical evaluations to demonstrate the effectiveness of our approach. The

contributions of this chapter are as follows:

1. Introduction of a cluster-based relational consistency property cl-R(∗,m)C.

2. Proposal of three queue-management strategies and the algorithms for imple-

menting them on a generic local consistency property.

3. Empirical evaluation of the above two contributions on benchmark problems.

Results from this chapter have been published [Karakashian et al., 2013].

5.1 Generating a Tree Decomposition

Many techniques for generating a tree decomposition of a CSP exist [Dechter and Pearl,

1989; Jeavons et al., 1994; Gottlob et al., 1999]. We use an adaption for non-binary

CSPs of the tree-clustering technique [Dechter and Pearl, 1989]:

1. We triangulate the primal graph of the CSP using the min-fill heuristic [Kjærulff,

1990]. Figure 5.1 shows a sample CSP and Figure 5.2 shows a triangulated

primal graph of the example in Figure 5.1. The dotted edges (B,H) and (A,I) in

Figure 5.2 are fill-in edges generated by the triangulation algorithm. The ten

maximal cliques of the triangulated graph are highlighted with ‘blobs.’

2. We identify the maximal cliques in the resulting chordal graph using the Max-

Cliques algorithm [Golumbic, 1980], and use the identified maximal cliques

to form the clusters of the tree decomposition as shown in Figure 5.3 for the

example in Figure 5.1 .

3. We build the tree by connecting the clusters using the JoinTree algorithm [Dechter,

2003]. While any cluster can be chosen as the root of the tree, we choose the

86

R2

A	
 B	
 C	

E	

D	

F	
 G	
 H	

I	
 J	
 K	

M	
 L	

N	

R4

R3

R1

R5 R6

R7

Figure 5.1: The hypergraph of
a CSP.

A	

B	

C	

E	

D	

F	

G	

H	

I	

J	

K	

M	

L	

N	

C1

C2

C7

C3

C4

C5

C6

C8

C9
C10

Figure 5.2: Triangulated primal graph of the example
in Figure 5.1 and the corresponding maximal cliques.

C8

A,B,C,N	

A,I,N	

B,C,D,H	

I,M,N	

B,D,F,H	

C1

C2

C3

C7

A,I,K	
 C4

I,J,K	
 C5

A,K,L	
 C6

B,D,E,F	
 C9

F,G,H	
 C10 E
lim

in
at

io
n

or
de

r
In

st
an

tia
tio

n
or

de
r

Figure 5.3: Maximal cliques.

{A,B,C,N},{R1}	

{A,I,N},{}	
 {B,C,D,H},{R6}	

{I,M,N},{R2}	
 {B,D,F,H},{}	

C1

C2

C3

C7

C8

{A,I,K},{}	

C4

{I,J,K},{R3}	

C5

{A,K,L},{R4}	

C6

{B,D,E,F},{R5}	

C9

{F,G,H},{R7}	

C10

Figure 5.4: Tree decomposition.

cluster that minimizes the longest chain from the root to a leaf. Figure 5.4 shows

the tree after connecting the maximal cliques of Figure 5.3. It illustrates also

the so-called elimination ordering (i.e., bottom up) and instantiation ordering

(i.e., top down) as used in this thesis.

4. We determine the variables and constraints of each cluster as follows: a) the

variables of a cluster cl, χ(cl), are the variables in the maximal clique that

yields the cluster; b) the clique in the primal graph formed by the vertices of

87

a given constraint R of the CSP is, by construction, a subset of at least one

maximal clique in the triangulated primal graph. Thus, scope(R) is a subset of

the variables of at least one cluster; and c) The constraints of a cluster cl, ψ(cl),

are the constraints Ri, such that scope(Ri) ⊆ χ(cl).

Figure 5.4 shows a tree decomposition produced by this process for the example of

Figure 5.1. Note that some clusters may end up with no constraints (e.g., C2, C4 and

C8), and are ignored during processing.

A separator of two adjacent clusters is the set of variables that are associated with

both clusters. A given tree decomposition is characterized by its treewidth, which is

the maximum number of variables in a cluster.

5.2 Localizing Consistency to Clusters

We denote by cl-R(∗,m)C the consistency property corresponding localizing R(∗,m)C

to the clusters of a tree decomposition. Here, we discuss the benefits of cl-R(∗,m)C,

explain its design, and compare it to the properties discussed in Chapter 3.

When we introduced the relational consistency property R(∗,m)C in Chapter 3,

we did not discuss the choice of the value of m. Obviously, increasing the value of m

increases the level of consistency enforced. However, the number of combinations of

relations to consider increases exponentially with m: It is O(
(
e
m

)
) = O(em) where e is

the number of constraints in the problem. By localizing R(∗,m)C to the clusters of

a tree decomposition, we reduce e to the number of constraints in a cluster cl (i.e.,

|ψ(cl)|), and, consequently, decrease the total number of combinations that we have to

store and handle for a given problem instance. In the extreme case, when m = |ψ(cl)|,

three goals are achieved:

88

1. We have to handle only one combination of constraints per cluster.

2. The value of m is directly determined by each cluster and ‘adaptively’ varies

along the tree decomposition. And,

3. The approach constitutes an appealing approximation of the famous tractability

condition of CSPs that relates the level of consistency of a CSP to a structural

parameter of its constraint network, such as the treewidth [Freuder, 1982; Dechter,

2003].

Next, we describe how we transfer information between clusters.

5.2.1 Information transfer between clusters

The information transferred from a cluster to its parent (or its child) transits via the

constraints common to the two adjacent clusters and the domains of the variables

in the separator. Any constraint whose scope is a subset of the variables in two

clusters is added to both of them (e.g., relation R4 in Figure 5.5). Thus, when it is

E

R6 R5 R7

R4

R2 R1 R3

B A D C

F

Figure 5.5: Two adjacent clusters with {A,B,C,D} and R4 in the separator.

filtered in one cluster, the information is automatically passed to the other cluster.

Information is also transferred between clusters through the domains of the variables.

89

The constraints in a cluster are projected onto the domains of the variables in the

separator, and constraints in the neighboring cluster are filtered with the domains of

the variables in the separator. In Chapter 6, we investigate more aggressive strategies

for improving information transfer between clusters.

5.2.2 Characterizing cl-R(∗,m)C

Localization prevents us from considering combinations of constraints across clusters.

As a result, the consistency enforced is weakened. Below, we characterize cl-R(∗,m)C

in terms of the consistency properties discussed in previous chapters.

Theorem 9 R(∗,m)C is strictly stronger than cl-R(∗,m)C.

Proof: See Appendix C.4.

Theorem 10 cl-R(∗,m)C and maxRPWC are not comparable for m ≥ 2.

Proof: See Appendix C.4.

Theorem 11 ∀a, b∈N where a<b≤|ψ(cl)|, cl-R(∗,a)C is strictly weaker than cl-

R(∗,b)C.

Proof: Straightforward. �

Figure 5.6 summarizes the above results and integrates them with those of Figure 3.3

in Chapter 3 (shown in grey for differentiation):

5.3 Structure-Guided Propagation

Algorithms for enforcing consistency typically maintain a queue of the variables (or

constraints) that need to be revised for propagation. However, the ordering of those

90

GAC	

maxRPWC	

R3C	

R(∗,2)C	
 ≡	

wR(∗,2)C	

R2C	

R(∗,3)C	
 R(∗,4)C	

R4C	

wR(∗,3)C	
 wR(∗,4)C	

R(∗,m)C	

RmC	

wR(∗,m)C	

cl-­‐R(∗,3)C	
 cl-­‐R(∗,2)C	
 cl-­‐R(∗,4)C	
 cl-­‐R(∗,m)C	

cl-­‐wR(∗,3)C	
 cl-­‐wR(∗,2)C	
 cl-­‐wR(∗,4)C	
 cl-­‐wR(∗,m)C	

Figure 5.6: Characterizing cl-R(∗,m)C in terms of GAC, maxRPWC, and R(∗,m)C.

elements in the queue is usually random. Information specific to a problem, such

as its structure, is typically neglected. One avenue to improve the performance of a

propagation algorithm is to ‘direct’ or ‘guide’ propagation along a ‘structural ordering’

of the constraint network. The only technique that follows this rationale of which

we are aware is directional consistency (e.g., directional i-consistency and adaptive

consistency) [Dechter and Pearl, 1987], which may require adding new constraints to

the problem and may thus increase the time and space cost. In this section, we exploit

the problem’s structure

1. Without weakening the consistency level enforced, and

2. Without adding new constraints to the problem.

We propose three ordering strategies (i.e., Static, Priority, and Dynamic) that

follow the structure of a tree decomposition of the CSP. We show that structure-

based orderings exhibit qualitatively equivalent performances among themselves, but

clearly outperform the random ordering (Random, which ignores the structure of the

constraint network but otherwise results in the same consistency level).

Although our approach is applicable to any constraint propagation algorithm,

consistency algorithms that are readily restricted to the clusters of a tree decomposition

91

(such as the ones discussed in Section 5.2) are particularly well suited to exploiting

the tree structure.

5.3.1 Related Work

Wallace and Freuder investigated various ordering heuristics for the propagation queue

of arc consistency showing a reduction of the number of constraint checks [1992].

Unlike the strategies studied in this paper, which exploit the structure of the net-

work, their heuristics considered the properties of individual domains and constraints.

Laburhe [2000] and Schulte and Stuckey [2004] ordered propagation queues by prior-

itizing the constraints based on the time complexity of their processing. Thus, the

queue ordering is based on the cost and a predefined set of rules, and not on the

structure of the problem as proposed in this paper. Schulte and Stuckey [2008] used

the semantics of the constraints/propagators in re-ordering the queue, but did not

exploit the structure of the problem. Lagerkvist and Schulte [2009] also studied the

propagation order of constraints, but required the user to specify the ordering. Francis

and Stuckey [2007] investigated a propagation ordering on problems with articulation

points, which is less general than a tree decomposition.

Freuder linked the width of the constraint network to the consistency level necessary

in a relation that guarantees a backtrack-free search [1982]. This approach was

extended by Dechter and Pearl [1987] to adaptive consistency where propagation

proceeds along a fixed variable ordering while generating new constraints. This work

is perhaps the closest in spirit to the one presented here. However, the approaches

differ in that adaptive consistency may require adding new constraints to the problem,

which can be prohibitive in terms of both time and space. Planken et al. [2008] used

DPC on a perfect elimination ordering of some triangulation of the constraint graph of

92

a binary CSP in order to propagate Partial Path Consistency (PPC) [Bliek and Sam-

Haroud, 1999], which requires adding constraints, thus modifying the constraint graph.

Their work is restricted to the Simple Temporal problem [Dechter et al., 1991]. The

work presented in this paper exploits the information gained from triangulation/tree

decomposition but does not alter the topology of the constraint network or add any

constraints to the problem.

More recently, Jégou and Terrioux [2010] proposed the consistency property w-SC,

which enforces inverse consistency (by domain filtering) of a relaxed CSP obtained by

removing constraints in order to guarantee a tree decomposition of bounded width w.

The structure of the tree decomposition is used to relax the problem and not to guide

the propagation.

5.3.2 Structure of the propagation queue

Although we restrict our discussion to the localized consistency properties introduced

in Section 5.2, we claim that the queue-management strategies proposed here are

generic and applicable to any consistency algorithm by a simple adaptation of the

propagation queue of the consistency algorithm.

In order to introduce the structure provided by the tree decomposition T = (V , E)

into the operation of a consistency algorithm, we use the propagation queue of the

consistency algorithm. Let Qcl be the queue of the algorithm for enforcing cl-R(∗,m)C.

Qcl is a set of sets of relation-combination pairs as given in Expression (5.1), where

Φ(cli) is the set of all m combinations of connected constraints in the dual graph

induced by the constraints in ψ(cli):

Qcl = {{〈ϕ,R〉 |R ∈ ψ(cli) ∧ ϕ ∈ Φ(cli)} | cli ∈ V}} (5.1)

93

Note that the consistency algorithms studied here implement a support-type data

structure for tuples; thus, revisions are executed only for tuples that lost a support

[Bessiere et al., 2005]. All queue-management strategies reach the same fixed point,

but differ in the order in which the clusters are visited and in the number of times

that consistency is enforced on them.

Further, the order of the relations in each element of Qcl is arbitrary. Ordering the

relations by increasing size yielded no difference in the performance, likely because

support structures were implemented for tuples.

5.3.3 Queue-management strategies

We propose the following queue-management strategies for cl-wR(∗,m)C to order the

clusters of a tree decomposition, and revise the relations associated to the clusters in

that order.

1. Random: The elements of Qcl are processed in first in first out order, without

following the tree structure of any specific criterion. The ordering is thus

arbitrary.

2. Static: The order of the elements of Qcl corresponds to the ordering given

by the MaxCliques algorithm [Golumbic, 1980]. The clusters are processed

back and forth in that order until quiescence. At preprocessing, we start from

bottom up, following the chain of maximal cliques in the direction of the perfect

elimination ordering (PEO). During search, we start at the shallowest cluster in

the MaxCliques ordering where a relation on the instantiated variable appears

and proceed down in the opposite direction to the of the PEO. We repeat until

quiescence.

94

3. Priority: The propagation algorithm sweeps through the tree, starting from

the leaves, and visiting each cluster once. Then it sweeps back starting from

one of the clusters towards the leaves. We keep a fringe of ‘open clusters,’ which

constitutes a frontier of last visited clusters. We select from the fringe the cluster

that has witnessed the most significant filtering as determined by a heuristic.

Importantly, each cluster is processed exactly once at each sweep or iteration.

4. Dynamic: The clusters are traversed in a similar way to the Priority ordering

except that the clusters can be processed more than once during an iteration

depending on the amount of ‘propagation activity’ (i.e., filtering) witnessed by

the relations in the cluster. Clusters that witness significant filtering activities

may be processed more than once during an iteration.

When the tree decomposition is a Berge-acyclic graph [Fagin, 1983], the Static and

Priority strategies require only two passes before reaching quiescence.

The algorithms that implement the last two strategies (i.e., Dynamic and Pri-

ority) are described in detail in Sections 5.3.4, 5.3.4.3, and 5.3.4.4. The motivation

for these two strategies is to discover inconsistency as quickly as possible by ‘tracing’

some noteworthy activity of constraint propagation. Both of these strategies were

expected to be particularly useful on unsolvable instances. However, the experimental

results showed all three structure-based strategies to be equivalent (see Section 5.4).

5.3.4 Implementing Priority and Dynamic

The algorithms implementing Priority and Dynamic proceed by iteration, where

each iteration consists of one sweep through the tree decomposition. During an

iteration, a given consistency property is enforced on each cluster individually. The

application of a given consistency algorithm to a given cluster cl is accomplished

95

by a call to EnforceConsistency(cl). (This call is made in Algorithms 4 and 5

for Priority, and in Algorithms 6 and 7 for Dynamic.) We use a data structure

called fringe where clusters are stored immediately after being processed; that is, after

calling EnforceConsistency on them. While the two strategies differ in which

clusters they add to the fringe, they use the same criterion to select from the fringe

the cluster whose neighbors are candidates for processing. The rationale is to choose

the cluster in the fringe that is likely to trigger the most propagation activity.

Below, we discuss the data structures used in our algorithms, the criterion for

choosing the cluster from the fringe, the pseudocode of Priority and Dynamic, and

finally we provide the algorithms for managing the propagation queue at preprocess-

ing (Algorithm 4 for Priority and Algorithm 6 for Dynamic) and during search

(Algorithm 5 for Priority; and Algorithm 7 for Dynamic).

5.3.4.1 Functions & accessors used in pseudocode

Below, we introduce the notations used in the pseudo-code. Typically, the names

of variables and attributes are italicized, and small caps are used for the names of

functions and methods.

• EnforceConsistency(cl) calls a local consistency algorithm and locally en-

forces on the cluster cl. It returns a tuple (consistent, change), where consistent

is a Boolean indicating whether or not the cluster is found to be consistent, and

change is the list of relations that lost tuples as a result of enforcing consistency.

• Iteration(cl) is an integer counter, an attribute of a cluster cl.

• Neighbors(cl) is the list of clusters adjacent to cl in the tree decomposition.

96

• Degree(cl) is degree of cl in the decomposition tree, which is the cardinality of

Neighbors(cl).

• Clusters(R) is the set of clusters where a relation R appears (i.e., {cl|R ∈ ψ(cl)}).

• Revisit(cl) is a Boolean flag on a cluster indicating that at least one tuple in

some relation in the cluster was deleted as a result of processing another cluster

where the relation also appears.

• NbrCurrTuples(cl) is a function that computes the number of tuples alive in

the cluster cl.

• NbrInitTuples(cl) is the number of tuples initially in the cluster cl, obtained

as the sum of tuples in the relations of the cluster.

• NbrDelTuples1(cl), NbrDelTuples2(cl) are two attributes of the cluster cl

storing the number of tuples deleted from the relations at some point in time.

5.3.4.2 Selection from fringe

Cluster selection is accomplished using the function RemoveMax in Algorithm 3.

Each tuple in a relation is marked as either alive or deleted. The two attributes

NbrDelTuples1(cl) and NbrDelTuples2(cl) store the total number of deleted tuples

from the relations in cl at two different points in time. NbrDelTuples1(cl) stores the

number of deleted tuples right before the last time consistency was enforced on the

cluster (and the cluster was then added to the fringe). NbrDelTuples2(cl) stores the

number of tuples deleted from cl since the beginning of any processing, which includes

the number of tuples deleted after the cluster was added to the fringe. The number

of tuples lost since the last time consistency was enforced on the cluster is obtained

by making the difference between NbrDelTuples2(cl) and NbrDelTuples1(cl). This

97

Algorithm 3: RemoveMax(fringe)

Input: fringe
Output: Cluster with the highest ratio of deleted tuples.
maxScore← 01

maxCluster ← First(fringe)2

foreach cl ∈ fringe do3

nbrtuples← NbrCurrTuples(cl)4

NbrDelTuples2(cl)← NbrInitTuples(cl)− nbrtuples5

score← NbrDelTuples2(cl)−NbrDelTuples1(cl)
nbrtuples6

if score ≥ maxScore then7

maxScore← score8

maxCluster ← cl9

return maxCluster10

number equals to the number of tuples deleted during the last processing of cl plus

the number of tuples deleted after cl was processed, as a result of filtering relations

in cl while processing other clusters where those relations also appear. The ratio of

the number of those deleted tuples to the total number of tuples remaining in the

cluster’s relations is computed and used to assess the degree of activity in the cluster.

The cluster with the largest ratio is assumed to be the one that witnessed the largest

amount of ‘activity.’ Naturally, other criteria can be used in place of this scheme.

5.3.4.3 Algorithm for Priority

A given iteration sweeps through the clusters from the leaves up the branches of the

tree (or in reverse order from a given cluster towards the leaves of the tree). When a

cluster is selected and removed from the fringe, EnforceConsistency is called on

each of its neighbors that have not been processed during the current iteration. Thus,

at any given sweep, each cluster is processed exactly once. The algorithm halts when

it detects no change throughout an entire iteration. There is a slight difference in how

the algorithm is applied during pre-processing (Algorithm 4) and for full-lookahead

98

during search (Algorithm 5). The pre-processing stage is described first, followed by

the full-lookahead stage.

Algorithm 4 proceeds by initializing the fringe with the clusters of degree one

(leaf clusters) in the loop on Line 5. Each cluster is processed before it is added

Algorithm 4: Priority-PreProcessing(Clusters)

Input: Clusters the list of clusters of a tree decomposition of the CSP
Output: true if the problem is consistent, false otherwise
foreach cl ∈ Clusters do1

Iteration(cl)← 0, NbrDelTuples1(cl)← 0, NbrDelTuples2(cl)← 02

iteration← 13

fringe← ∅4

foreach cl ∈ Clusters and Degree(cl) = 1 do5

(consistent, ∅)← EnforceConsistency(cl)6

if consistent = false then return consistent7

Iteration(cl)← iteration8

fringe← fringe ∪ {cl}9

newChange← true10

while newChange do11

newChange← false12

roots← ∅13

while fringe 6= ∅ do14

cl← RemoveMax(fringe)15

foreach cli ∈Neighbors(cl) and Iteration(cli) < iteration do16

NbrDelTuples1(cli)← NbrDelTuples2(cli)17

(consistent, change)← EnforceConsistency(cli)18

if consistent = false then return consistent19

newChange← newChange or change20

Iteration(cli)← iteration21

fringe← fringe ∪ {cli}22

if (∀clj ∈ Neighbors(cli) Iteration(clj) = iteration) then23

roots← roots ∪ {cli}24

cl←RemoveMax(roots)25

iteration← iteration+ 126

Iteration(cl)← iteration27

(consistent, change)← EnforceConsistency(cl)28

if consistent = false then return consistent29

fringe← {cl}30

return true31

99

to the fringe. Afterwards, in the loop on Line 14, the cluster cl with the highest

level of ‘activity’ in the latest iteration is removed from the fringe. RemoveMax

(Algorithm 3) selects and removes a cluster from the fringe. The clusters cli adjacent

to cl in the tree that were not processed during the current iteration are processed and

added to the fringe. We continue selecting and removing clusters from the fringe. The

iteration ends when the fringe is empty. A set of clusters is designated as pseudo-root

at the end of the iteration. These clusters are the ones that were processed after

all their neighbors. The pseudo-root that has the highest ‘activity’ value is selected,

processed, and added to the fringe if it is consistent on Line 28. The process loops until

quiescence. Whenever a relation becomes empty, EnforceConsistency returns false

and the algorithm ends, signaling inconsistency. When no relation needs processing,

the algorithm ends returning true.

The lookahead algorithm (Algorithm 5) is similar to the one for pre-processing

(Algorithm 4), but instead of initializing the fringe with the clusters of degree one, it

initializes the fringe with the shallowest cluster containing the variable instantiated

by search.

100

Algorithm 5: Priority-Search(cluster, Clusters)

Input: cluster a cluster that has the instantiated variable, and Clusters the list of
clusters of a tree decomposition of the CSP

Output: true if the problem is consistent, false otherwise
foreach cl ∈ Clusters do Iteration(cl)← 01

iteration← 12

(consistent, ∅)← EnforceConsistency(cluster)3

if consistent = false then return consistent4

Iteration(cluster)← iteration5

fringe← {cluster}6

newChange← true7

while newChange do8

newChange← false9

roots← ∅10

while fringe 6= ∅ do11

cl← RemoveMax(fringe)12

foreach cli ∈ Neighbors(cl) and Iteration(cli) < iteration do13

NbrDelTuples1(cli)← NbrDelTuples2(cli)14

(consistent, change)← EnforceConsistency(cli)15

if consistent = false then return consistent16

newChange← newChange or change17

Iteration(cli)← iteration18

fringe← fringe ∪ {cli}19

if (∀clj ∈ Neighbors(cli) Iteration(clj) = iteration) then20

roots← roots ∪ {cli}21

cl←RemoveMax(roots)22

iteration← iteration+ 123

Iteration(cl)← iteration24

(consistent, change)← EnforceConsistency(cl)25

if consistent = false then return consistent26

fringe← {cl}27

return true28

101

5.3.4.4 Algorithm for Dynamic

Dynamic differs from Priority in that clusters already processed during the current

iteration can be added to the fringe. Hence, a cluster may be processed multiple times

during a given iteration. Dynamic raises the following challenges:

1. Not terminating. Whenever a cluster is removed from the fringe, all of its

neighbors are candidates for processing. If all are processed, then all would have

to be added to the fringe. In this situation, the fringe will never be empty, and

the algorithm will not halt.

2. Early termination. Instead of processing all the neighbors and adding them

back to the fringe, we process only those clusters that lost a tuple since the

last processing and add them to the fringe. However, if, in some neighboring

clusters, no tuples are deleted, then they will not be processed and added to the

fringe. In this case, the algorithm may stop prematurely before checking all the

clusters.

Both problems are solved by adding to the fringe the clusters that either lost tuples

or were never processed during the current iteration.

Algorithms 6 and 7 outline the dynamic queue management for preprocessing

and maintaining the property during search, respectively. They are the same as

Algorithms 4 and 5, except for the condition for adding clusters back to the fringe.

The condition checks, in addition to the iteration counter of the cluster, the Revisit

flag on Line 18 of Algorithm 6. The Revisit flag for a cluster is set on Line 23 if a

relation in the cluster loses a tuple during the recent processing of a cluster.

102

Algorithm 6: Dynamic-PreProcessing(Clusters)

Input: Clusters the list of clusters of a tree decomposition of the CSP
Output: true if the problem is consistent, false otherwise
foreach cl ∈ Clusters do1

Iteration(cl)← 0, NbrDelTuples1(cl)← 0, NbrDelTuples2(cl)← 02

Revisit(cl)← true3

iteration← 14

fringe← ∅5

foreach cl ∈ Clusters and Degree(cl) = 1 do6

(consistent, ∅)← EnforceConsistency(cl)7

if consistent = false then return consistent8

Iteration(cl)← iteration9

fringe← fringe ∪ {cl}10

newChange← true11

while newChange do12

newChange← false13

roots← ∅14

while fringe 6= ∅ do15

cl← RemoveMax(fringe)16

foreach cli ∈ Neighbors(cl) do17

if Iteration(cli) < iteration or Revisit(cli) = true then18

NbrDelTuples1(cli)← NbrDelTuples2(cli)19

(consistent, change)← EnforceConsistency(cli)20

if consistent = false then return consistent21

newChange← newChange or change22

foreach clj ∈ Clusters(Ri), Ri ∈ change do Revisit(clj) = true23

Revisit(cli) = false24

Iteration(cli)← iteration25

fringe← fringe ∪ {cli}26

if (∀clj ∈ Neighbors(cli) Iteration(clj) = iteration) then27

roots← roots ∪ {cli}28

cl←RemoveMax(roots)29

iteration← iteration+ 130

Iteration(cl)← iteration31

(consistent, change)← EnforceConsistency(cl)32

if consistent = false then return consistent33

fringe← {cl}34

return true35

103

Algorithm 7: Dynamic-Search(cluster, Clusters)

Input: cluster a cluster that has the instantiated variable and Clusters the list of
clusters of a tree decomposition of the CSP

Output: true if the problem consistent, false otherwise
foreach cl ∈ Clusters do Iteration(cl)← 0, Revisit(cl)← true1

iteration← 12

(consistent, ∅)← EnforceConsistency(cluster)3

if consistent = false then return consistent4

Iteration(cluster)← iteration5

fringe← {cluster}6

newChange← true7

while newChange do8

newChange← false9

roots← ∅10

while fringe 6= ∅ do11

cl← RemoveMax(fringe)12

foreach cli ∈ Neighbors(cl) do13

if Iteration(cli) < iteration or Revisit(cli) = true then14

NbrDelTuples1(cli)← NbrDelTuples2(cli)15

(consistent, change)← EnforceConsistency(cli)16

if consistent = false then return consistent17

newChange← newChange or change18

foreach clj ∈ Clusters(Ri), Ri ∈ change do Revisit(clj)← true19

Revisit(cli)← false20

Iteration(cli)← iteration21

fringe← fringe ∪ {cli}22

if (∀clj ∈ Neighbors(cli) Iteration(clj) = iteration) then23

roots← roots ∪ {cli}24

cl← RemoveMax(roots)25

iteration← iteration+ 126

Iteration(cl)← iteration27

(consistent, change)← EnforceConsistency(cl)28

if consistent = false then return consistent29

fringe← {cl}30

return true31

5.3.5 Correctness of the algorithms

The algorithms that we presented are guaranteed to stop either by discovering the

inconsistency in the problem, or by enforcing the consistency property.

104

Algorithms 4 and 5 add a cluster to the fringe exactly once during an iteration.

A new iteration is started only if a tuple is deleted in a relation. Given that there

are a finite number of tuples, there will be a finite number of iterations. Thus, the

algorithms must eventually halt. Moreover, the algorithms stop after all the clusters

are processed and no tuple is deleted. Therefore, the consistency property is enforced

by both algorithms.

Algorithms 6 and 7 are more complicated with respect to the fringe management

schemes because the clusters may be added to the fringe multiple times during an

iteration. However, a cluster is guaranteed to be added to the fringe once, and for

each subsequent addition, it must have a relation that lost a tuple since it was last

added to the fringe. Therefore, Algorithms 6 and 7 will eventually halt, because there

are a finite number of tuples in relations. Because the last iteration is completed

by processing all the clusters without deleting any further tuples, the consistency

property is correctly enforced.

5.4 Empirical Evaluations

Below, we empirically evaluate the localization of R(∗,m)C in Section 5.4.2, and the

queue-management algorithms in Section 5.4.3.

5.4.1 Experimental set-up

The impact of localizing and managing the propagation queues is evaluated for finding

the first solution of a CSP using backtrack search. The consistency properties listed

in Table 5.1, as well as GAC [Bessiere et al., 2005] and maxRPWC [Bessiere et al.,

2008], are compared by enforcing them as full lookahead strategies in the backtrack

search using the domain/degree heuristic for dynamic variable ordering.

105

Table 5.1: Tested consistencies.

Type m = 2, 3, 4 m = |ψ(cli)|
global wR(∗,m)C
local cl-wR(∗,m)C cl-R(∗,|ψ(cli)|)C

The experiments were conducted on benchmark problems from the CSP Solver

Competition,1 with a total of 679 difficult CSP instances.2 The processing time for

each instance was limited to two hours.3 The results are split into satisfiable and

unsatisfiable problems.

5.4.2 Evaluating the localization

In Table 5.2, the results of localization of R(∗,m)C are reported in terms of:

• Completed: the number of tested instances that search solved within the allocated

time.

• BT-free: the number of tested instances that search solved in a backtrack-free

manner.

• Min(#NV): the number of tested instances where search visited the least number

of nodes.

1www.cril.univ-artois.fr/CPAI09
2The benchmarks tested are: aim-(50, 100, 200), composed-(25-10-20, 25-1-2, 25-1-25, 25-1-40,

25-1-80, 75-1-2, 75-1-25, 75-1-40, 75-1-80), dag-rand, dubois, graphColoring-(hosExtConvert, mug,
register-mulsol, register-zeroin, sgb-book, sgb-games, sgb-miles, sgb-queen), hanoi, modifiedRenault,
QCP-15, rand-(10-20-10, 8-20-5), rlfap(GraphsMod, Scens11, ScensMod), ssa, and tightness0.9. Their
characteristics are provided in Appendix E.

3We carried out our experiments on a large computer cluster with a heavy and variable load.
Although the cluster’s hardware is homogeneous, the load varies and affects the precision of the clock
time. For this reason, we measured the time in seconds computed from the instruction count instead
of the clock time, after normalizing the instruction cost and the CPU speed across all runs. We
compared the results in instruction counts and CPU time. Although they were qualitatively similar,
the former was more reproducible and precise.

106

• Fastest: the number of tested instances that were solved fastest by the corre-

sponding algorithm (within a precision of 256 msec).

For the algorithms enforcing the localized properties (i.e., cl-wR(∗,2)C, cl-wR(∗,3)C,

cl-wR(∗,4)C, and cl-R(∗,|ψ(cli)|)C), we used the Static queue-management strategy.

Table 5.2: Aggregate results comparing R(∗,m)C and cl-wR(∗,m)C.

Domain based wR(∗,2)C wR(∗,3)C wR(∗,4)C

#
In

st
an

ce
s

G
A

C

m
ax

R
P

W
C

gl
ob

al

lo
ca

l

gl
ob

al

lo
ca

l

gl
ob

al

lo
ca

l

cl
-R

(∗
,|ψ

(c
l i

)|)
C

C
om

p
le

te
d UNSAT 167 142 170 167 191 232 190 225 285

479 34.9% 29.6% 35.5% 34.9% 39.9% 48.4% 39.7% 47.0% 59.5%

SAT 174 159 179 178 147 164 132 151 152

200 87.0% 79.5% 89.5% 89.0% 73.5% 82.0% 66.0% 75.5% 76.0%

B
T

-F
re

e

UNSAT 0 30 70 39 97 104 141 104 187

479 0.0% 6.3% 14.6% 8.1% 20.3% 21.7% 29.4% 21.7% 39.0%

SAT 44 49 55 37 65 30 68 32 39

200 22.0% 24.5% 27.5% 18.5% 32.5% 15.0% 34.0% 16.0% 19.5%

M
in

(#
N

V
) UNSAT 19 39 74 43 105 116 154 134 231

479 4.0% 8.1% 15.4% 9.0% 21.9% 24.2% 32.2% 28.0% 48.2%

SAT 47 51 66 37 72 40 87 66 87

200 23.5% 25.5% 33.0% 18.5% 36.0% 20.0% 43.5% 33.0% 43.5%

F
a
st

es
t

UNSAT 72 14 20 35 18 106 17 35 184

479 15.0% 2.9% 4.2% 7.3% 3.8% 22.1% 3.5% 7.3% 38.4%

SAT 122 31 45 47 26 32 8 26 34

200 61.0% 15.5% 22.5% 23.5% 13.0% 16.0% 4.0% 13.0% 17.0%

As expected, the localization weakens the level of consistency enforced but is

quicker to process. For m = 2, 3, 4, wR(∗,m)C globally outperforms cl-wR(∗,m)C in

terms of number of nodes visited and BT-free. However, the opposite holds in terms

of ‘fastest’ and ‘completed.’

107

cl-R(∗,|ψ(cli)|)C), a localized strategy, is clearly the overall winner. The highlighted

cells in Table 5.2 indicate that cl-R(∗,|ψ(cli)|)C) outperforms all tested consistency

levels in the UNSAT category on all four reported criteria. However, on SAT instances,

it was not the best on time related performance (on the criteria ‘completed’ and

‘fastest’). Also, wR(∗,4)C solved more instances backtrack-free than cl-R(∗,|ψ(cli)|)C.

Regarding the time performance, we strongly suspect that the culprit is the

implementation of the algorithm, which can benefit from various optimizations such

as grouping tuples [Stergiou and Samaras, 2005]. A faster implementation would

overcome this unique limitation of the algorithm. Regarding the criterion BT-Free,

the performance of cl-R(∗,m)C is significantly improved by bolstering, as discussed in

Chapter 6.

Figures 5.7 and 5.8 compare, pairwise, the running time of the algorithms on

individual instances. Note the logarithmic scale. The diagonal line indicates equal

0.01

1

100

10000

0.01 1 100 10000

cl
-w

R
(∗

,3
)C

wR(∗,3)C

unsat
sat

Time (sec)

Figure 5.7: Comparing local to global for wR(∗,3)C.

108

0.01

1

100

10000

0.01 1 100 10000

cl
-R

(∗
,|
ψ

(c
l i)

|)
C

GAC

unsat
sat

Time (sec)

Figure 5.8: Comparing cl-R(∗,|ψ(cl)|)C to GAC.

performance of both algorithms. The points above the diagonal indicate that the

corresponding instances are solved faster by the algorithm on the horizontal axis, and

vice versa. The points along the top (right) edge indicate that the corresponding

instances timed out for the algorithm on the vertical (horizontal) axes.

Figure 5.7 compares the running time of wR(∗,3)C to cl-wR(∗,3)C. It shows that

localization (cl-wR(∗,3)C) outperforms the global version of the algorithm (wR(∗,3)C)

by roughly an order of magnitude (points below the diagonal).

Figure 5.8 compares the performance of GAC, which is the fastest on SAT instances,

to cl-R(∗,|ψ(cli)|)C, which is the fastest algorithm on UNSAT instances. The large

number of points clustered around the diagonal confirm that consistencies significantly

stronger than GAC are worthwhile even when the running time is considered.

The results strongly suggest that localization by tree decomposition is a crucial

facilitator to increasing the consistency level while keeping the algorithm fast and

109

practical.

5.4.3 Evaluating queue-management strategies

Table 5.3 shows the empirical results for the localized consistencies (i.e., cl-wR(∗,2)C,

cl-wR(∗,3)C, cl-wR(∗,4)C, and cl-R(∗,|ψ(cl)|)C) for each of the four queue-management

strategies (Random, Static, Priority, and Dynamic). The number of instances

completed, the number of instances on which the algorithm was fastest, and the average

CPU time are reported. The CPU results are averaged over the instances completed

by the various queue-management strategies for a given value of m. Therefore, the

numbers should not be compared across different values of m.

We also give the number of instances on which the average time was computed.

First, we consider m = 2, 3, 4. The number of completions for Random and the

structured orderings are similar. However, the average CPU time improves for the

structured orderings, with the exception of m = 2 on UNSAT instances, and they

are able to solve more instances fastest. The structured strategies are better than

Random. However, among the strategies that follow the tree structure (i.e., Static,

Priority, and Dynamic), there is not a clear winner.

Now, we consider m = |ψ(cl)|. The number of completions for the structured

orderings significantly increases for UNSAT, while remaining similar for SAT. The

structured orderings outperform Static in average CPU time, and they are able

to solve more instances the fastest. Among the ‘structured’ strategies (i.e., Static,

Priority, and Dynamic), Static is the fastest.

110

Table 5.3: Comparison of the queue-management strategies.

cl-wR(∗,2)C cl-wR(∗,3)C cl-wR(∗,4)C cl-R(∗,|ψ(cl)|)C

#
In

st
an

ce
s

R
a
n
d
o
m

S
t
a
t
ic

P
r
io
r
it
y

D
y
n
a
m
ic

R
a
n
d
o
m

S
t
a
t
ic

P
r
io
r
it
y

D
y
n
a
m
ic

R
a
n
d
o
m

S
t
a
t
ic

P
r
io
r
it
y

D
y
n
a
m
ic

R
a
n
d
o
m

S
t
a
t
ic

P
r
io
r
it
y

D
y
n
a
m
ic

C
om

p
le

te
d UNSAT 168 167 168 171 233 232 233 234 222 225 224 225 261 285 282 282

479 35.1% 34.9% 35.1% 35.7% 48.6% 48.4% 48.6% 48.9% 46.3% 47.0% 46.8% 47.0% 54.5% 59.5% 58.9% 58.9%

SAT 178 178 178 178 164 164 165 163 149 151 151 151 154 152 151 151

200 89.0% 89.0% 89.0% 89.0% 82.0% 82.0% 82.5% 81.5% 74.5% 75.5% 75.5% 75.5% 77.0% 76.0% 75.5% 75.5%

F
as

te
st

UNSAT 74 77 118 120 66 157 117 114 89 159 116 108 151 220 161 155

479 15.4% 16.1% 24.6% 25.1% 13.8% 32.8% 24.4% 23.8% 18.6% 33.2% 24.2% 22.5% 31.5% 45.9% 33.6% 32.4%

SAT 54 63 152 129 51 88 111 108 38 84 76 92 50 88 74 84

200 27.0% 31.5% 76.0% 64.5% 25.5% 44.0% 55.5% 54.0% 19.0% 42.0% 38.0% 46.0% 25.0% 44.0% 37.0% 42.0%

T
im

e
(s

ec
) UNSAT Nbr instances 167 Nbr instances 232 Nbr instances 220 Nbr instances 254

479 413.3 433.3 414.4 417.0 402.9 383.9 366.3 369.3 443.0 410.6 411.5 415.8 397.4 318.9 341.3 344.1

SAT Nbr instances 178 Nbr instances 162 Nbr instances 149 Nbr instances 150

200 500.2 490.5 453.7 454.7 622.9 601.6 599.2 598.3 324.2 313.8 309.5 309.5 571.1 542.5 557.7 546.8

111

Figures 5.9 and 5.10 compare the running time for two pairs of queue-management

strategies, showing a fine-grained analysis of the experiment. Figure 5.9 compares

the random and static orderings. Here, one can easily see that Static solves more

instances than Random (see the large number of points along the right edge). Notice

that a large number of these points are solved orders of magnitude faster than Random.

0.01

1

100

10000

0.01 1 100 10000

ST
A

TI
C

RANDOM

unsat sat

Time (sec)

Figure 5.9: Comparing Random and Static for cl-R(∗,|ψ(cl)|)C.

The different structured orderings showed no significant difference among them-

selves. Figure 5.10 compares the dynamic and static orderings. The majority of the

points lie near the line, indicating that there is no clear winner between the two

structured orderings.

112

0.01

1

100

10000

0.01 1 100 10000

D
Y

N
A

M
IC

STATIC

unsat sat

Time (sec)

Figure 5.10: Comparing Dynamic and Static for cl-R(∗,|ψ(cl)|)C.

5.5 Conclusions

The experimental results clearly demonstrated that localization by tree decomposition

is a crucial facilitator to increasing the consistency level while keeping the algorithm

fast and practical. Moreover, with localization, we were able to exploit the problem

structure to better manage the propagation queue of the consistency algorithm. The

random ordering of the queue is never a good idea, and exploiting the structure of the

problem is greatly beneficial. Interestingly, a simple static ordering that follows the

linear order of the maximal cliques performs as well as more sophisticated strategies

that attempt to ‘follow’ the propagation activity. Finally, and contrary to our hopes

and expectations, Priority and Dynamic do not discover inconsistency any earlier

than Static.

113

Summary

In this chapter, we presented techniques to improve the performance of algorithms

for higher-level consistency by localizing their application to the clusters of a tree

decomposition and directing propagation along the tree decomposition. We proposed

various strategies for managing the propagation queue of a consistency algorithm. We

established that exploiting the structure of the problem in the management of the

propagation queue of a consistency algorithm is beneficial and should not be ignored.

114

Chapter 6

Bolstering Propagation at

Separators

In Chapter 5, we proposed to apply R(∗,m)C locally to the clusters of a tree de-

composition of a CSP, improving performance by reducing the number of considered

constraint combinations but also reducing the consistency level enforced. In this

chapter, we propose to enhance propagation effectiveness between clusters by bolster-

ing propagation at separators of a tree decomposition via the addition of redundant

constraints on the variables of the separators. Results from this chapter have been

published [Karakashian et al., 2013].

6.1 Introduction

The tractability condition of CSPs that relates the level of consistency of a CSP

to the treewidth of a tree decomposition requires perfect ‘communication’ between

clusters [Freuder, 1982; Dechter, 2003]. A perfect communication between clusters

requires generating a unique constraint over the separator’s variables, but materializing

115

such a constraint is prohibitive in terms of space [Fattah and Dechter, 1996; Kask

et al., 2005]. In this chapter, we approximate this requirement to achieve practical

tractability by bolstering constraint propagation along the tree via the addition of

redundant constraints at the separators between clusters.

We present three schemes for bolstering propagation in the localized consistency

property. We characterize the resulting consistency properties by comparing them,

theoretically and empirically, to the original and localized R(∗,m)C, GAC, and maxR-

PWC, and establish the benefits of our approach for solving difficult problems. The

contributions of this chapter are as follows:

1. New relational consistency properties resulting from bolstering the propagation.

2. A theoretical characterization of those new properties.

3. An empirical evaluation of our approach establishing its benefits on difficult

benchmarks, solving many problems in a backtrack-free manner and, thus,

approaching ‘practical tractability.’

6.2 Bolstering Propagation at Separators

We introduce the simple example of two adjacent clusters shown in Figure 6.1 to

illustrate our approach. The variables in this example are A,B, . . . , F and the original

constraints are R1, R2, . . . , R7. When a consistency algorithm is applied locally to a

cluster, the effects of filtering relations in one cluster are propagated, or transferred, to

a neighboring cluster only through the domains of the variables and those constraints

common to both clusters (i.e., constraint R4 in Figure 6.1). Thus, localization may

compromise the effectiveness of constraint propagation across the entire problem.

Here, we explore ways to remedy this situation by adding redundant constraints at the

116

separators to boost the transfer of information between clusters. Below, we introduce

three schemes to this end, explain how to build them, and discuss their implementation.

E

R6 R5 R7

R4

R2 R1 R3

B A D C

F

Figure 6.1: Two adjacent clusters.

6.2.1 Three bolstering schemes

According to the Cluster-Tree Elimination algorithm [Dechter, 2003; Kask et al., 2005],

we can solve the CSP in a backtrack-free manner after adding a unique constraint over

the variables of each separator and enforcing R(∗,|ψ(cl)|)C (i.e., computing the minimal

network induced by each cluster) in a two-pass process from the leaves of the tree

to its root and back. Optimally, a single constraint over all the separator’s variables

would be added to every separator as shown as Rsep in Figure 6.2. Unfortunately,

the size of such a relation grows exponentially with the number of variables in the

separator, which is prohibitive in practice. Thus, trading space for time becomes

necessary [Fattah and Dechter, 1996]. Instead of generating one unique constraint per

separator, three schemes of increasing complexity and ‘completeness’ are considered:

1. Adding projections of all existing constraints.

117

E

F

R6 R5 R7

R2 R1 R3

B A D C Rsep

Figure 6.2: Unique constraint over the separator’s variables.

2. Adding new binary constraints.

3. Adding new ‘clique’ constraints.

Below, we describe how the constraints are added to the separators for each of the

above three schemes. (In all cases, the constraints in the clusters are normalized.)

Then we describe how the relations of the binary and clique constraints are generated.

6.2.1.1 Adding constraint projections

We add to each cluster the projection of all the constraints outside the cluster onto

the variables inside the cluster, then we normalize the constraints in the cluster. That

is, whenever the scope of a constraint is a subset of another constraint, we merge the

two constraints (see Section 6.2.2). In the example, this process results in the new

constraint R′3 added to the lower cluster as shown in Figure 6.3.

6.2.1.2 Adding binary constraints

In addition to the projected relations, we add to the separator all non-existing binary

constraints that result from triangulating the subgraph induced by the separator’s

118

E

R6 R5 R7

R4

R2 R1 R3

R3
’

B A D C

F

Figure 6.3: Constraint projections.

variables on the primal graph of the CSP. The subgraph induced by the separator on

the primal graph of the CSP before triangulation is shown in Figure 6.4, and after

triangulation in Figure 6.5, where BD is a fill-in edge resulting from triangulation.

This process results in the addition of the constraint Ra (scope(Ra)={B,D}) in the

above example as shown in Figure 6.6.

B
A D C

Figure 6.4: Induced primal-graph.

B
A D C

Figure 6.5: Triangulated induced primal-graph.

E

F

R6 R5 R7

R4

R2 R1 R3

R’3

B A D C

Ra

Figure 6.6: Binary constraints.

119

The process is applied as follows. First, the subgraph induced by the separator’s

variables on the primal graph is extracted. Second, the induced subgraph is triangulated

using the min-fill heuristic [Kjærulff, 1990]. Third, a binary constraint is generated

for each fill-in edge generated by the min-fill heuristic. For example, the relation Ra

is added to the separator in Figure 6.6 because after triangulating the primal graph

induced by the variables in the separator, the fill-in edge BD is added in Figure 6.5.

6.2.1.3 Adding clique constraints

In addition to those projected relations, we add to the separators all non-existent

non-binary constraints whose scopes are the maximal cliques of the triangulated

subgraph induced by the separator’s variables on the primal graph of the CSP. For

this reason, we refer to those constraints as clique constraints. The relations Rx and

Ry are added in the example as shown in Figure 6.7.

E

R6 R5 R7

R2 R1 R3

B A D C

Ry

Rx

F

R’3

Figure 6.7: Clique constraints.

The scopes of the constraints are generated as follows. As for binary constraints,

the subgraph induced by the separator’s variables on the primal graph is first extracted.

Second, the induced subgraph is triangulated using the min-fill heuristic [Kjærulff,

1990]. Third, the maximal cliques are identified in the resulting chordal graph using

120

the MaxCliques algorithm [Golumbic, 1980]. Fourth, for each maximal clique,

a constraint over the variables in the maximal clique is generated. For example,

in Figure 6.7, we add the constraints Rx and Ry whose scopes are {A,B,D} and

{B,C,D}, respectively, to the separator.

6.2.1.4 Generating the relations of the binary and clique constraints

In order to generate the relations of the binary and clique constraints added to the

separators, each cluster Ci is visited in the order of the clusters given by the elimination

ordering shown in Figure 5.3.

At each cluster, the selected consistency property is enforced to filter the existing

constraints (those whose relations are already defined). Then we generate the relations

of the constraints added at the separator between the cluster and its parent. The

relation of a binary or a clique constraint Rx in the separator of clusters Ci and Cj is

generated as follows:

1. Every constraint in ψ(Ci) is projected on the scope(Rx) and stored in the set of

relations R = {Rj|Ri ∈ ψ(Ci), Rj = πscope(Rx)Ri}

2. The relations in R are joined together to yield Rx: Rx =./Rj∈R Rj.

The join operation is implemented using a variation of AllSol (Algorithm 2). It

performs a backtrack search for all solutions on the dual CSP induced by the relations

in R using forward checking, and outputs a tuple in Rx for every solution it finds.

However, unlike AllSol, it does not filter the input relations.

For example, the clique constraints Rx and Ry shown in Figure 6.8 are generated

using the constraints in the cluster: R1, R2, R3 and R4. The constraints Rx and Ry

are generated independently as follows:

121

R1 R2 R3

B A D C

Ry Rx

F

R4

Figure 6.8: Separator constraint example.

1. The set of projected relations for Rx are prepared: R = {RAB, RB, RAD, RD}

where:

RAB = π{A,B,D}R1

RAD = π{A,B,D}R3

RB = π{A,B,D}R2

RD = π{A,B,D}R4

2. Then, the AllSol algorithm is used to find all solutions to the dual CSP with

the dual variables in R. Each solution is a tuple in Rx, and the process is

equivalent to Rx = RAB ./ RB ./ RAD ./ RD.

3. Afterwards, the process is repeated to generate Ry. The set of projected relations

for Ry are prepared: R = {RB, RBC , RBD, RCD} where:

RB = π{B,C,D}R1

RBD = π{B,C,D}R3

RBC = π{B,C,D}R2

RCD = π{B,C,D}R4

4. Then, the AllSol algorithm is used to find all solutions to the dual CSP with

the dual variables in R. Each solution is a tuple in Ry, and is equivalent to

Ry = RB ./ RBC ./ RBD ./ RCD.

The complexity for generating a constraint Rx is O(|ψ(Ci)| · d|scope(Rx)|), where d

122

is the maximum domain size of the variables in the scope(Rx). The factor |ψ(Ci)| is

due to the number of ‘original’ constraints that we may have to project on the scope

of Rx. This procedure can generate a constraint that is tighter than the constraint

obtained by taking the cross product of the domains of the variables in the scope(Rx).

However, it does not necessarily generate the tightest constraint.

6.2.2 Transferring information between clusters

The information transferred from a cluster to its parent (or its child) transits via

the domains of the separator’s variables and the added redundant constraints. In

the above three bolstering schemes, the constraints are normalized to save space and

processing effort. Due to this normalization, a mechanism is needed to ensure the

fullest transfer of information between constraints of overlapping scopes in neighboring

clusters. Assume that cluster cli is being processed after its neighbor clj was processed.

For every relation Rj in clj , consider s the set of variables in the scope of Rj that are

also in the separator between cli and clj, s = scope(Rj) ∩ χ(cli) ∩ χ(clj). s must be

a subset of some constraint Ri of cli (by construction of the projected constraints).

Before processing cli, Ri must be filtered given Rj in a process akin to directional

R(∗,2)C consistency. In the example of Figure 6.3, R6, R5, and R′3 are used to filter

R2, R1 and R3, respectively.

6.3 Resulting Consistency Properties

In Chapter 5, the consistency property corresponding to the localized version of

R(∗,m)C was denoted by cl-R(∗,m)C. Here, cl+proj-R(∗,m)C, cl+bin-R(∗,m)C, and

cl+clq-R(∗,m)C denote the properties resulting from combining localization and

the addition of projected constraints, binary constraints, and clique constraints,

123

respectively. Intuitively speaking, localization weakens R(∗,m)C because localization

ignores combinations across clusters. In contrast, adding constraints increases the level

of consistency. In Figure 6.9, the new properties are compared to GAC, maxRPWC,

R(∗,m)C, and cl-R(∗,m)C for m = 2, 3, 4, |ψ(cli)|. In this figure, the property at the

source of an arrow is strictly weaker than the one at which the arrow points. It is

interesting to note that R(∗,2)C, cl+proj-R(∗,2)C, and cl+bin-R(∗,2)C are equivalent,

as are R(∗,3)C and cl+proj-R(∗,3)C.

GAC	

maxRPWC	

cl+clq-­‐R(∗,3)C	
 cl+clq-­‐R(∗,4)C	
 cl+clq-­‐R(∗,2)C	

R(∗,4)C	

cl-­‐R(∗,|ψ(cli)|)C	

cl+proj-­‐R(∗,|ψ(cli)|)C	

cl+proj-­‐R(∗,3)C	

	
 R(∗,3)C	

cl-­‐R(∗,2)C	

cl+bin-­‐R(∗,4)C	
 cl+bin-­‐R(∗,3)C	
 cl+bin-­‐R(∗,|ψ(cli)|)C	

cl+clq-­‐R(∗,|ψ(cli)|)C	

cl+bin-­‐R(∗,2)C	

cl+proj-­‐R(∗,2)C	

	
 R(∗,2)C	

cl-­‐R(∗,3)C	
 cl-­‐R(∗,4)C	

cl+proj-­‐R(∗,4)C	

Figure 6.9: Comparing consistency properties.

When one considers the dual graph of a CSP, some edges in the dual graph may

be redundant and could be removed without changing the set of solutions to the

problem [Dechter and Dechter, 1987; Dechter and Pearl, 1989; Janssen et al., 1989;

Dechter, 2003]. In Chapter 3.3, we proposed to remove redundant edges using

the algorithm of Janssen et al.. This operation reduces the number of constraint

combinations that R(∗,m)C must consider, and results in significant cost savings

in time and space. The enforced consistency is strictly weaker than R(∗,m)C and

denoted wR(∗,m)C. Given the advantageous cost of wR(∗,m)C, in our empirical

evaluations in Section 6.5, the properties shown in Figure 6.9 were not implemented.

Instead, their weakened versions were tested (i.e., cl-wR(∗,m)C, cl+proj-wR(∗,m)C,

124

cl+bin-wR(∗,m)C, and cl+clq-wR(∗,m)C), obtained after removal of redundant edges

in the dual graph. The redundant edges are removed for m = 2, 3, 4. However, for

m = |ψ(cli)|, no edges are removed, because only a single combination per cluster is

considered. While the relationships shown in Figure 6.9 do not necessarily hold for the

weakened versions of the consistency properties, in the experiments, they applied for

the weakened properties as well. Moreover, the redundant constraints helped regain

some of the consistency strength lost due to removing the redundant edges from the

dual graph.

Theorem 12 R(∗,2)C and cl+proj-R(∗,2)C are equivalent.

Proof: See Appendix C.5.

When the redundant edges are removed, cl+proj-wR(∗,2)C and wR(∗,2)C are also

equivalent because wR(∗,2)C and R(∗,2)C are equivalent as shown in Chapter 3.

Theorem 13 cl+proj-R(∗,2)C and cl+bin-R(∗,2)C are equivalent.

Proof: See Appendix C.5.

Theorem 14 cl+bin-R(∗,m)C is strictly stronger than cl+proj-R(∗,m)C for m ≥ 2.

Proof: See Appendix C.5.

Theorem 15 R(∗,3)C and cl+proj-R(∗,3)C are equivalent.

Proof: See Appendix C.5.

Theorem 16 R(∗,m)C is strictly stronger than cl+proj-R(∗,m)C for m > 3.

Proof: See Appendix C.5.

Theorem 17 cl+clq-R(∗,m)C is strictly stronger than cl+bin-R(∗,m)C.

Proof: See Appendix C.5.

125

6.4 Related Work

The algorithm for cl-R(∗,m)C with bolstering is an implementation in the spirit of

the Cluster-Tree Elimination algorithm [Kask et al., 2005]. Because unique ‘global’

constraints are not added at the separators, neither converging nor solving the CSP is

guaranteed in two passes. Thus, it is used as a full-lookahead schema in backtrack

search. Nonetheless, experiments show that it yielded backtrack-free search on a large

number of instances.

Fattah and Dechter [1996] study space-time tradeoffs of tree clustering by increasing

the cluster sizes to reduce the separators’ sizes. In the approach presented in Section 6.2,

the space requirement is reduced by replacing the unique ‘global’ constraints at the

separators with constraints of smaller scopes.

Based on the bucket elimination method [Dechter, 1996; 1999], the mini-bucket

elimination (MBE) algorithm generates relations from the mini-buckets (which are

partitions of the relations in a cluster) and then projects them on the separators

[Rollon and Dechter, 2010]. This approach differs from the bolstering schemes, which

only generates relations on the separators. Moreover, the sizes of the mini-buckets

and those of the generated constraints are bounded by a fixed parameter z chosen by

trial and error, while the sizes in the clique bolstering are automatically determined

by the structure of the constraint graph at the separators.

The consistency property w-SC enforces inverse consistency (by domain filtering)

of a relaxed CSP obtained by removing constraints in order to guarantee a tree decom-

position of bounded width w [Jégou and Terrioux, 2010]. We use the decomposition

to process the consistency locally and do not relax the CSP.

Algorithms for higher-order consistency by domain filtering that remain weaker

than R(∗,m)C have been proposed [Bessiere et al., 2008] and more recently improved

126

upon [Paparrizou and Stergiou, 2012]. We compare our results to maxRPWC in the

experiments.

Stergiou and Samaras [2005] improved the performance of an arc-consistency

algorithm for the dual CSP (i.e., R(∗,2)C) by grouping tuples that have the same

supports. While we target stronger consistencies, their technique could be used to

improve the performance of our algorithms.

6.5 Empirical Evaluations

In this section, an empirical evaluation of the three bolstering schemes is presented.

6.5.1 Experimental set-up

We compare the advantages of enforcing the properties listed in Table 6.1 to those

of enforcing GAC [Bessiere et al., 2005] and maxRPWC [Bessiere et al., 2008]. All

consistencies are enforced as full lookahead strategies in a backtrack search using the

domain/degree heuristic for dynamic variable ordering. The benchmarks are selected

from the CSP Solver Competition.1 Because we target problems that require higher

consistency levels than provided by GAC, we selected 32 benchmarks that are not

easily solved by GAC, but compared against GAC as a baseline for evaluation. These

benchmarks are listed in Appendix E with their characteristics.

To evaluate the impact of bolstering propagation two contexts are distinguished:

solvable and unsolvable CSPs. Indeed, difficult, unsolvable CSPs are expected to be

more challenging for GAC and to require higher-level consistency. In the selected

benchmarks, 479 instances were unsatisfiable and 200 satisfiable. We set the maximum

1http://www.cril.univ-artois.fr/CPAI08/

127

Table 6.1: Tested consistencies.

Type m = 2, 3, 4 m = |ψ(cli)|
global wR(∗,m)C
local cl-wR(∗,m)C cl-R(∗,|ψ(cli)|)C
projection cl+proj-wR(∗,m)C cl+proj-R(∗,|ψ(cli)|)C
binary cl+bin-wR(∗,m)C cl+bin-R(∗,|ψ(cli)|)C
clique cl+clq-wR(∗,m)C cl+clq-R(∗,|ψ(cli)|)C

processing time per instance to two hours. In Table 6.2, the results of bolstering are

reported for each consistency algorithm in terms of:

• Completed: the number of tested instances that search solved within the allocated

time.

• BT-free: the number of tested instances that search solved in a backtrack-free

manner.

• Min(#NV): the number of tested instances where search visited the least number

of nodes.

• Fastest: the number of tested instances that were solved the quickest by the

corresponding algorithm (within a precision of 256 msec).

6.5.2 Aggregate results

First, we discuss m = |ψ(cli)|, which is a localized strategy and also the strongest

consistency property. It is clearly the overall winner. The highlighted cells in Ta-

ble 6.2 indicate that m = |ψ(cli)| outperforms all tested consistency levels in both

SAT/UNSAT categories and on all four reported criteria with only two exceptions.

Both exceptions are on SAT instances, and are related to time performance (on the

criteria ‘completed’ and ‘fastest’). This result strongly supports two aforementioned

claims: a) higher-level consistencies are useful for approaching tractability in practice;

128

and b) localization by tree decomposition is a crucial facilitator to increasing the

consistency level. (Indeed, very high-level consistencies are not possible without local-

ization because of the number of constraint combinations that need to be stored and

manipulated.) The two exceptions are related to the implementation of the algorithm

as discussed in Section 5.4.

Second, a little bolstering is great, but too much may be detrimental. For a given m

value, we see that, grossly speaking, ‘projection’ yields the best results (versus global,

localization, binary, and clique). Two reasons may explain why heavier bolstering

(i.e., binary and clique) are not the winners that were expected: a) the heavier the

bolstering, the more expensive the processing (indeed, the completion rate of clique

degrades); and b) in most of the tested instances clusters seem to overlap heavily

making the generation of redundant constraints overkill. One may want to decide

locally based on the overlap of the clusters which level of bolstering to apply.

Finally, localization and projection always outperformed ‘global’ for all considered

criteria, particularly when m ≥ 3. For m = 2, localization and projection are

equivalent to the global strategy confirming the theory of Section 6.3. Consequently,

the additional processing is wasted.

129

Table 6.2: Aggregate results of the bolstering schemes.

Domain based wR(∗,2)C wR(∗,3)C wR(∗,4)C R(∗,|ψ(cli)|)C

#
In

st
a
n
ce

s

G
A

C

m
a
x
R

P
W

C

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

C
o
m

p
le

te
d UNSAT 167 142 170 167 172 169 162 191 232 237 232 218 190 225 230 226 223 285 286 282 271

479 34.9% 29.6% 35.5% 34.9% 35.9% 35.3% 33.8% 39.9% 48.4% 49.5% 48.4% 45.5% 39.7% 47.0% 48.0% 47.2% 46.6% 59.5% 59.7% 58.9% 56.6%

SAT 174 159 179 178 176 169 104 147 164 155 149 111 132 151 153 147 112 152 138 124 113

200 87.0% 79.5% 89.5% 89.0% 88.0% 84.5% 52.0% 73.5% 82.0% 77.5% 74.5% 55.5% 66.0% 75.5% 76.5% 73.5% 56.0% 76.0% 69.0% 62.0% 56.5%

B
T

-f
re

e

UNSAT 0 30 70 39 70 70 74 97 104 139 139 132 141 104 142 142 149 187 223 223 213

479 0.0% 6.3% 14.6% 8.1% 14.6% 14.6% 15.4% 20.3% 21.7% 29.0% 29.0% 27.6% 29.4% 21.7% 29.6% 29.6% 31.1% 39.0% 46.6% 46.6% 44.5%

SAT 44 49 55 37 53 52 38 65 30 65 63 53 68 32 75 67 55 39 77 71 58

200 22.0% 24.5% 27.5% 18.5% 26.5% 26.0% 19.0% 32.5% 15.0% 32.5% 31.5% 26.5% 34.0% 16.0% 37.5% 33.5% 27.5% 19.5% 38.5% 35.5% 29.0%

M
in

(#
N

V
) UNSAT 17 37 73 43 72 72 77 103 115 147 147 144 150 127 159 159 167 220 249 248 239

479 3.5% 7.7% 15.2% 9.0% 15.0% 15.0% 16.1% 21.5% 24.0% 30.7% 30.7% 30.1% 31.3% 26.5% 33.2% 33.2% 34.9% 45.9% 52.0% 51.8% 49.9%

SAT 47 51 64 37 62 61 39 69 38 76 70 61 78 63 108 94 73 83 111 100 79

200 23.5% 25.5% 32.0% 18.5% 31.0% 30.5% 19.5% 34.5% 19.0% 38.0% 35.0% 30.5% 39.0% 31.5% 54.0% 47.0% 36.5% 41.5% 55.5% 50.0% 39.5%

F
a
st

es
t

UNSAT 72 14 13 35 5 1 1 15 106 58 13 15 12 35 3 0 0 176 108 42 37

479 15.0% 2.9% 2.7% 7.3% 1.0% 0.2% 0.2% 3.1% 22.1% 12.1% 2.7% 3.1% 2.5% 7.3% 0.6% 0.0% 0.0% 36.7% 22.5% 8.8% 7.7%

SAT 121 31 45 47 23 14 12 26 30 27 13 11 7 26 14 9 10 34 18 13 12

200 60.5% 15.5% 22.5% 23.5% 11.5% 7.0% 6.0% 13.0% 15.0% 13.5% 6.5% 5.5% 3.5% 13.0% 7.0% 4.5% 5.0% 17.0% 9.0% 6.5% 6.0%

130

6.5.3 A finer view

Figures 6.10 and 6.11 compare, pairwise, the running time of the algorithms on indi-

vidual instances for m = 3 with increasing sophistication (i.e., localization, projection,

then clique). Figure 6.12 compares the performance of GAC, which is the fastest

on SAT instances, to cl-R(∗,|ψ(cli)|)C, which solved the largest number of instances

backtrack-free. Note the logarithmic scale. The diagonal line plotted indicates equal

performance of both algorithms. The points above the diagonal indicate that the

corresponding instances are solved faster by the algorithm on the horizontal axis, and

vice versa. The points along the top (right) edge indicate that the corresponding

instances timed out for the algorithm on the vertical (horizontal) axes.

Figure 6.10 evaluates the cost of bolstering by projection (cl+proj-wR(∗,3)C).

Most of the points are tightly clustered above the diagonal, reflecting the additional

cost of processing the projected constraints. The cost of bolstering is compensated by

a group of problem instances that are solved orders of magnitude faster with bolstering

than without it (see points on the right edge).

Figure 6.11 compares projection and clique bolstering (cl+proj-R(∗,3)C versus

cl+clq-wR(∗,3)C), and illustrates how bolstering can be overkill. However, the points

below the diagonal suggest that results can be improved when ‘clique bolstering’ is

selectively applied to avoid situations where adjacent clusters significantly overlap.

Again, the best results were obtained with m = |ψ(cli)|. In Figure 6.12, cl-

R(∗,|ψ(cli)|)C is compared to GAC. The large number of points on the right edge

correspond to the instances that were solved with the strong consistency when GAC

was insufficient to solve them. Despite the difference in the cost of each application

of cl-R(∗,|ψ(cli)|)C compared to GAC, the overall cost of the backtrack search with

full-lookahead is in general comparable even for problems that do not necessarily

131

0.01

1

100

10000

0.01 1 100 10000

cl
+p

ro
j-

w
R

(∗
,3

)C

cl-wR(∗,3)C

unsat
sat

Time (sec)

Figure 6.10: Projection.

0.01

1

100

10000

0.01 1 100 10000

cl
+c

lq
-w

R
(∗

,3
)C

cl+proj-wR(∗,3)C

unsat
sat

Time (sec)

Figure 6.11: Clique.

require higher consistency levels. This fact can be seen from the large number of

points clustered near the diagonal.

132

0.01

1

100

10000

0.01 1 100 10000

cl
+p

ro
j-

R
(∗

,|
ψ

(c
l i)

|)
C

GAC

unsat
sat

Time (sec)

Figure 6.12: Compared to GAC.

6.5.4 Performance as a function of the treewidth

An interesting perspective on the results of Table 6.2 compares the performance

of search endowed with each of consistency levels as a function of the value of the

treewidth of the tree decomposition used in the experiments. The consistency levels

compared are: GAC, cl+proj-R(∗,2)C, cl+proj-R(∗,3)C, cl-R(∗,|ψ(cli)|)C and cl+proj-

R(∗,|ψ(cli)|)C. Those results are shown in four charts:

• Figures 6.13 and 6.14 show the number of instances completed for unsatisfi-

able and satisfiable instances, respectively. The horizontal axis represents the

treewidth and the vertical axis represents the cumulative count of the completed

instances within a given treewidth value.

• Figures 6.15 and 6.16 show the number of instances solved backtrack-free for

unsatisfiable and satisfiable instances, respectively. The horizontal axis represents

133

the treewidth and the vertical axis represents the cumulative count of the

instances solved in a backtrack-free manner within a given treewidth value.

Figure 6.13 shows that the compared algorithms have a similar performance for

instances with treewidth less than 15. As the value of the treewidth increases, the

difference in the performance of the consistency algorithms becomes increasingly

more significant. The performance of cl-R(∗,|ψ(cli)|)C and cl+proj-R(∗,|ψ(cli)|)C is

comparable. The algorithms are effective on instances with a treewidth value up to 60.

For larger values, the corresponding curves become flat. GAC and cl+proj-R(∗,2)C

are effective only on problems with a treewidth value up to 24. The performance of

cl+proj-R(∗,3)C occupies a middle ground between the two above pairs. In conclusion,

on unsatisfiable instances, higher consistency levels are more effective than lower

consistency levels as the treewidth value increases.

For satisfiable instances (Figure 6.14), all algorithms seem to be effective throughout

the considered treewidth range. The difference in performance does not become

noticeable until treewidth values larger than 17 where GAC and cl+proj-R(∗,2)C

seem slightly slightly more effective than the algorithms enforcing higher consistency

levels. However, the difference between the tested algorithms is not as large as for

unsatisfiable instances (Figure 6.13).

Figure 6.15 shows that GAC is unable to detect the inconsistency of the unsatisfiable

instances. cl+proj-R(∗,2)C is effective for instances with treewidth up to 23. The

higher consistencies are effective on problems with a larger treewidth value.

Finally, Figure 6.15 shows the higher the consistency levels clearly dominate the

lower ones and that the difference increases with increasing treewidth values.

134

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Treewidth

GAC

cl+proj-wR(∗,2)C

cl+proj-wR(∗,3)C

cl-R(∗,|ψ(cl)|)C

cl+proj-R(∗,|ψ(cl)|)C C
u

m
u

la
ti

ve
 c

o
u

n
t

o
f

co
m

p
le

te
d

 in
st

an
ce

s

Figure 6.13: UNSAT instances: Cumulative count of completed instances within a treewidth
value.

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180

Treewidth

GAC

cl+proj-wR(∗,2)C

cl+proj-wR(∗,3)C

cl-R(∗,|ψ(cl)|)C

cl+proj-R(∗,|ψ(cl)|)C C
u

m
u

la
ti

ve
 c

o
u

n
t

o
f

co
m

p
le

te
d

 in
st

an
ce

s

Figure 6.14: SAT instances: Cumulative count of completed instances within a treewidth
value.

135

0

50

100

150

200

250

0 50 100 150 200 250 300

Treewidth

GAC

cl+proj-wR(∗,2)C

cl+proj-wR(∗,3)C

cl-R(∗,|ψ(cl)|)C

cl+proj-R(∗,|ψ(cl)|)C

C
u

m
u

la
ti

ve
 c

o
u

n
t

o
f

B
TF

 in
st

an
ce

s

Figure 6.15: UNSAT instances: Cumulative count of number of instances solved backtrack-
free within a treewidth value.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180

Treewidth

GAC

cl+proj-wR(∗,2)C

cl+proj-wR(∗,3)C

cl-R(∗,|ψ(cl)|)C

cl+proj-R(∗,|ψ(cl)|)C

C
u

m
u

la
ti

ve
 c

o
u

n
t

o
f

B
TF

 in
st

an
ce

s

Figure 6.16: SAT instances: Cumulative count of number of instances solved backtrack-free
within a treewidth value.

136

6.5.5 Merging decomposed tree clusters

About 90% of the variables in a cluster were also in the separator for the tree

decompositions in most of the tested problems. The large overlap among the clusters

is not favorable for our bolstering technique because many of the original constraints

are repeated in the neighboring clusters and leave little opportunity for the bolstering

to improve the propagation.

We merged clusters with high overlap into a larger cluster to obtain a tree de-

composition with smaller overlaps among the clusters as described by Fattah and

Dechter [1996]. The resulting tree decompositions had fewer and larger clusters,

as a result of which cl-R(∗,m)C behaved more like R(∗,m)C and did not yield any

significant improvements.

6.6 Conclusions

The results show that higher-level consistency properties are useful for approaching

tractability in practice, and localization by tree decomposition and bolstering facilitated

an increase in the consistency level.

Localization and projection always outperformed ‘global’ for all considered criteria,

particularly when m ≥ 3. However, too much bolstering was detrimental. For a given

m value, projection yielded the best results, followed by binary and clique bolstering.

Summary

In this chapter, we presented techniques for bolstering the propagation at the separators

with redundant constraints. The empirical results demonstrated orders of magnitude

time savings over GAC and R(∗,m)C on difficult CSPs.

137

Chapter 7

Witness-Based Algorithm for

Finding All of a CSP

In this chapter we propose an improvement to the backtrack search with tree decom-

position (BTD) proposed by Jégou and Terrioux [2003]. Our technique improves BTD

by avoiding the enumerating solutions in a subtree that cannot be extended to a global

solution to the CSP.

7.1 Background

Backtrack search with tree decomposition (BTD) is a technique used for solving CSPs

[Jégou and Terrioux, 2003] and for counting the number of solutions to a CSP [Favier et

al., 2009]. It applies backtrack search on some tree decomposition of the CSP following

the ordering of the variables in the clusters of the tree decomposition. Moreover, BTD

generates and stores, as search proceeds, partial solutions that succeed (i.e., goods)

or fail (i.e., nogoods) in order to prevent the search process from re-exploring known

partial solutions. Indeed, these goods and nogoods allow BTD to avoid visiting the

138

subtrees rooted at the corresponding separator when the same partial assignments of

the variables in a separator are encountered again.

We use the example in Figure 7.1 to illustrate this situation. The variable ordering

forces the variables in a cluster Cp to be instantiated before the variables in the

subtrees rooted at Cp. Thus, given an assignment ap to the variables in Cp, every

Cp

ap

wasted inconsistent
Figure 7.1: Illustrating wasteful enumeration of partial solutions.

consistent assignment to the variables in one subtree rooted at Cp can be extended

to every assignment to the variables in the other subtrees. This property is crucial

for counting the number of solutions because it allows us to independently count the

number of solutions in each subtree rooted at Cp, and then multiply the counts to get

the total number of solutions that extend ap. However, if ap cannot be extended to a

solution in a subtree rooted at Cp, then ap cannot be extended to any solution to the

problem. Therefore, the solution counts in the other subtrees were not needed. In

this case, the effort made to count the number of solutions was wasted. The cost of

finding one solution is less than counting the number of solutions; thus we propose a

new algorithm called WitnessBTD that first guarantees the existence of a witness

solution to the problem, then counts the number of solutions, which can be extended

139

to the witness solution, in all the branches of the tree. Thus, we do not waste time

counting the solutions in one branch of the tree if another branch has no solutions.

The contributions of this chapter as as follows:

1. The introduction of a witness-based solution counting algorithm.

2. Theoretical analysis of the algorithm.

3. The empirical evaluation of the proposed algorithm.

7.2 WitnessBTD for Solution Counting

We now describe the algorithm for witness-based solution counting. It is similar to

BTD except that, for a partial assignment to the variables in a cluster, it first finds

the witness solution in each subtree before proceeding with counting the solutions in

the subtrees.

WitnessBTD, the witness-based solution counting procedure, is given in Algo-

rithm 8. The algorithm presented here is recursive, however, our implementation is

iterative. In the iterative implementation, when a witness is found in a tree branch,

the state of the search is preserved, so that when that branch is revisited to count all

the solutions, the effort for finding the first solution is not repeated. The pseudocode

of the iterative algorithm is give in Appendix D.

7.2.1 Notation used in pseudocode

Below, we summarize the notation used in Algorithm 8. We italicize the name of

variables and attributes and we use small upper case letters for the names of functions

and methods. The list of attributes is as follows:

140

• A: Set of variables assignments (i.e., a partial solution)

• χ(C): Set of variables in the cluster C

• Children(C): The children of cluster C

• countSol: State of counting solutions

• consistent: Indicates if the problem is consistent or should backtrack

• curCl: The current cluster being processed

• curDom(A): The current domain of the variable A

• curV ariable: The current variable being instantiated

• satisfy: Satisfiability state when searching for the witness solution

• solCount: The count of solutions for the assignment A

• state(C): The state of the search (solution counting or satisfiability check)

• VcurCl: Uninstantiated variables in cluster curCl

List of functions:

• GetGoodSolCount(C): Returns the stored solution count in goods for the

current assignment of the separator

• HasGoodSolCount(C): Indicates if the solution count is stored for the

current assignment of the separator

• Instantiate(A, v): Instantiates variable A with the value v in the current

domain

141

• IsGood(C): Indicates if the current assignment of the separator is a known

good

• IsNoGood(C): Indicates if the current assignment of the separator is a known

nogood

• Propagate(A): Propagates the consistency algorithm given the instantiation

of the variable A

• RecordGood(C): Records the good at cluster C with the optional solution

count if available

• RecordNoGood(C): Records the nogood at cluster C

7.2.2 Recursive specification of WitnessBTD

Algorithm 8 takes as parameters the set of instantiated variables A, the current cluster

curCl, set of uninstantiated variables in the cluster VC , and the state of the algorithm

state, which could be in satisfy to perform a satisfiability search for a witness solution,

or countSol to count the number of solutions. The algorithm is initially called with

the empty assignment set, the root cluster, χ(C), and countSol. It recursively calls

itself every time a new variable is instantiated, or when a child cluster is picked

to be the current cluster. The block starting at Line 2 is visited to instantiate an

uninstantiated variable in the current cluster. The current cluster is initially the root

of the tree.

After instantiating a variable in Line 5, the consistency property is propagated in

Line 6. If the consistency property is verified, the recursive call is made in Line 8 to

instantiate the next variable. The recursive call in Line 8 returns zero if no solution is

found, returns one if a solution is found and the state is satisfy, and otherwise returns

142

Algorithm 8: A recursive specification of WitnessBTD(∅,root,χ(root),countSol)

Input: A, curCl, VcurCl, state, where A is the set of instantiated variables, curCl is
the current cluster, VcurCl is the set of uninstantiated variables in the cluster.

Output: Number of solutions in the problem.
solCount← 01

if VcurCl then2

curV ariable← A,A ∈ VcurCl3

foreach v ∈ curDom(curV ariable) do4

Instantiate(curV ariable, v)5

consistent←Propagate(curV ariable)6

if consistent then7

count←WitnessBTD (A ∪ {curV ariable← v},8

curCl, VcurCl \ {curV ariable}, state)
if count > 0 then9

consistent← true10

solCount← solCount+ count11

if consistent AND state = satisfy then break12

else13

solCount← 114

foreach Ci ∈ Children(curCl) do15

if IsGood(Ci) then consistent← true16

else if IsNoGood(Ci) then consistent← false17

else18

consistent←WitnessBTD(A, Ci, χ(Ci) \ χ(CcurCl), satisfy) > 019

if consistent then RecordGood(Ci)20

if consistent = false then RecordNoGood(Ci)21

if consistent = false then return 022

if state = countSol then23

foreach Ci ∈Children(Ci) do24

if HasGoodSolCount(Ci) then count←GetGoodSolCount(Ci)25

else26

cont←WitnessBTD(A, Ci, χ(Ci) \ χ(CcurCl), countSol);27

RecordGood(Ci)

solCount← solCount× count28

return solCount29

the number of solutions in the subtree rooted at the current cluster that extend the

current assignment A. The solution count for the partial assignment ending at the

current variable is added in Line 11. Finally, if a solution is found and only a witness

143

solution is searched, the next value of the current variable is not instantiated, and the

loop breaks in Line 12. However, if no solution is found or if counting the number

of solutions, the search for solutions with the other values of the variable continues

through the loop in Line 4.

When all the variables are instantiated in a cluster, the search continues to the

variables in the children of the current cluster. The algorithm first checks if a witness

solution is found in the loop in Line 15. For each child, it first checks for a good or

nogood; if one is not found, it initiates a search for a single solution in Line 19. The

recursive call returns zero in Line 22 if the current assignment cannot be extended to

the variables in the subtree of the current cluster. The solution count is performed

only if a witness is found, and the state is countSol.

The state is countSol when every solution found in the subtree rooted at the current

cluster can be extended to a witness solution in the rest of the problem. Note that

the state can be countSol while a witness solution does not exist in the subtree. This

happens when the assignment in the current cluster changes to find the next solution.

The witness solution found for the rest of the problem will be valid in this case, but it

would have a different extension in the current subtree. For this reason the witness is

searched inside the condition of Line 19, even if the state is countSol. Finally, if the

solution count for the current assignment is not already computed and stored as good

at the separator, checked in Line 25, the search for all solutions is called in Line 27.

7.3 Theoretical Analysis of the Algorithm

The number of solutions to a CSP is counted by finding the solutions. The tree

decomposition allows us to find, at every tree node, all solutions in every branch

rooted at that node independently, and then multiply the counts of solutions in each

144

branch to get the total count of solutions. WitnessBTD never searches for all

solutions in a branch if the solutions in the branch cannot be continued to another

branch, and consequently the number of solutions in that branch will be multiplied by

zero. During the search for a witness solution, the implementation of the algorithm

should preserve the state of the search in a branch so that the time spent for finding

the first solution is not repeated when the same branch is revisited to count the rest

of the solutions. We preserve the state of the search in our implementation. However,

the effort for finding the first consistent assignment in a branch of the tree cannot

always be saved, and may be repeated. We next explain this case and discuss at what

cost it can be avoided.

Consider the case where the variables in cluster C1 are instantiated in the ordering

〈A,B,C,D〉 as shown in Figure 7.2. Let the cause of the conflict be the value of B.

As the search progresses, some other consistent value for B triggers a new search in

C1, thus the state of the search will be lost in C2. Later, another assignment with

the same values for C and D for which the solution count in C2 was not performed,

can be extended to the whole problem. In this case, the first solution searched in

C2 will be repeated, in order to count the rest of the solutions. When this situation

occurs, the witness-based BTD may visit more nodes than the regular BTD. We show

in the experiments in Section 7.4 that this situation in not likely to cause more node

visits than the number of node visits saved. This situation can be avoided by ordering

the variable instantiation according to their appearance in the subtrees. However,

forcing the variables ordering interferes with the operation of the variable ordering

heuristic, and is likely to be a bad trade-off. Another method to avoid this situation is

to store the state of the search in each subtree that reaches a consistent instantiation

but is not continued to find all solutions. This method is prohibitive because of its

exponential memory requirement.

145

A

B

C

D

C1

C2
C3

Figure 7.2: Case of repeated search.

7.4 Empirical Evaluations

All the experiments reported in this section are concerned with using the BTD for

counting the number of solutions of a CSP [Favier et al., 2009]. Below, we compare:

1. The performance of BTD with GAC against that of WitnessBTD with GAC.

2. The performance of the BTD with GAC, global R(∗,m)C, cl-R(∗,m)C, and

cl-R(∗,m)C with bolstering.

3. The performance of the WitnessBTD with GAC, global R(∗,m)C, cl-R(∗,m)C,

and cl-R(∗,m)C with bolstering.

7.4.1 Comparing WitnessBTD to BTD (with GAC)

The goal of this experiment is to assess the benefit of the witness-based strategy. We

compare WitnessBTD with BTD as described by Favier et al. [2009].

146

7.4.1.1 Experimental set-up

We integrate with GAC2001 [Bessiere et al., 2005] as full lookahead strategy in

WitnessBTD and BTD and use the domain/degree heuristic for dynamic variable

ordering inside clusters.

The experiments are conducted on the benchmarks of the CSP Solver Competition1

with a time limit of two hours per instance. We divided the instances into unsatisfiable

and satisfiable groups. We tested on 1647 unsatisfiable and 1320 satisfiable instances

(see Table 7.1). Of these instances, BTD completes 740 unsatisfiable and 997 satisfiable

instances, and WitnessBTD completed 743 unsatisfiable and 997 satisfiable instances.

Both algorithms completed on 735 unsatisfiable and 994 satisfiable instances.

Table 7.1: Number of benchmark problems completed by each and both algorithms.

BTD WitnessBTD Both
UNSAT (1,647) 740 743 735
SAT (1,320) 997 999 994
Total (2,967) 1,737 1,742 1,729

7.4.1.2 Results

The difference in the number of instances completed by each algorithm is clearly

insignificant, and is due to the random time fluctuations between runs. Thus, we

only consider the instances completed by both algorithms. Both algorithms visited

the same number of nodes on 646 unsatisfiable and 893 satisfiable instances. Also,

the average time difference between the two algorithms on these instances was less

than 0.1%. Thus, we focus our analysis on the remaining instances where there is a

difference in the number of nodes visited between the two algorithms.

1http://www.cril.univ-artois.fr/CPAI08/

147

BTD and WitnessBTD had different numbers of nodes visited on 89 unsatisfiable

and 101 satisfiable instances. BTD visited fewer nodes on 53 satisfiable instances.

WitnessBTD visited fewer nodes on 89 unsatisfiable and 49 satisfiable instances.

These counts are summarized in Table 7.2. Note that WitnessBTD did not visit

any more nodes than BTD on unsatisfiable instances. This result is consistent with

our theoretical analysis in Section 7.3.

Table 7.2: Number of instances with fewer #NV.

BTD WitnessBTD
UNSAT (89) 0 89
SAT (101) 53 49
Total (190) 53 138

The average number of nodes visited on these instances by each algorithm is given

in Table 7.3. WitnessBTD on average visited half the number of nodes visited by

BTD on unsatisfiable instances. However, on satisfiable instances, the difference was

insignificant. WitnessBTD visited fewer nodes, but this difference did not exceed

one percent that of BTD on average. Yet, this small percentage amounts to an average

saving of more than 50,000 node visits per instance.

Table 7.3: Average number of nodes visited.

BTD WitnessBTD
UNSAT 1,437,909.79 734,983.25
SAT 4,785,737.57 4,735,136.28

The difference in the number of nodes visited is reflected in the total time taken

by each algorithm to complete on each instance. Table 7.4 shows that 22 unsatisfiable

instances are solved faster using BTD compared to 80 instances solved faster using

WitnessBTD. However, as we expect from the results of nodes visited, 71 satisfiable

instances were solved faster using BTD and 38 instances solved faster using Wit-

nessBTD. Fortunately, the magnitude of the time difference is to the advantage of

148

WitnessBTD. Although more satisfiable instances are solved faster using BTD, the

average times given in Table 7.5 show that WitnessBTD is on average faster than

BTD by 15% on unsatisfiable instances. However, WitnessBTD is insignificantly

faster than BTD on satisfiable instances. We next analyze these results in more detail.

Table 7.4: Number of instances completed faster.

BTD WitnessBTD
UNSAT (89) 22 80
SAT (101) 71 38
Total (190) 93 118

Table 7.5: Average time in seconds.

BTD WitnessBTD
UNSAT 145.55 123.86
SAT 1,151.35 1,148.46

Figure 7.3 compares the running time of BTD to WitnessBTD. The time is

in seconds, with the time of BTD on the x-axis and WitnessBTD on the y-axis.

The points represent the 89 unsatisfiable and 101 satisfiable instances on which the

two algorithms had different numbers of nodes visited. Most of the points are on

the diagonal line, meaning both algorithms had the same time on those instances. A

number of points are below the diagonal, meaning that WitnessBTD was faster. No

points are observed above the diagonal, which implies that WitnessBTD is never

slower that BTD.

7.4.2 Comparing R(∗,m)C to GAC for finding all solutions

We now study the advantages of R(∗,m)C (Chapter 3) with localization (Chapter 5)

and bolstering (Chapter 6) for each of the BTD and WitnessBTD.

149

0.01

1

100

10000

0.01 1 100 10000

W
IT

N
ES

SB
TD

BTD

UNSAT
SAT

Time (sec)

Figure 7.3: WitnessBTD and BTD time comparison.

7.4.2.1 Experimental set-up

We compare the advantages of enforcing the properties listed in Table 7.6 BTD and

WitnessBTD. The consistency properties are enforced as full lookahead strategies in

BTD and WitnessBTD, with domain/degree heuristic for dynamic variable ordering

within the clusters. The benchmarks are selected from the CSP Solver Competition.2

and are listed in Appendix E with their characteristics.

Table 7.6: Tested consistencies.

Type m = 2, 3, 4 m = |ψ(cli)|
global GAC
global wR(∗,m)C
local cl-wR(∗,m)C cl-R(∗,|ψ(cli)|)C
projection cl+proj-wR(∗,m)C cl+proj-R(∗,|ψ(cli)|)C
binary cl+bin-wR(∗,m)C cl+bin-R(∗,|ψ(cli)|)C
clique cl+clq-wR(∗,m)C cl+clq-R(∗,|ψ(cli)|)C

In the selected benchmarks, 479 instances are unsatisfiable and 200 satisfiable. The

maximum processing time per instance is set to two hours. The results are reported

2http://www.cril.univ-artois.fr/CPAI08/

150

for BTD in Table 7.7 and for WitnessBTD in Table 7.8. In both tables, the results

are for each consistency algorithm, in terms of:

• Completed: the number of tested instances where the search counted the number

of solutions within the allocated time.

• BT-free: the number of tested instances where the search counted the solutions

in a backtrack-free manner.

• Min(#NV): the number of tested instances where the search visited the least

number of nodes.

• Fastest: the number of tested instances that were solved fastest by the corre-

sponding algorithm (within a precision of 256 msec).

7.4.2.2 Results

The results in Tables 7.7 and 7.8 show that higher levels of consistency with localization

and bolstering outperform GAC when used with BTD and WitnessBTD for finding

all solutions to the CSP. The results for the BTD (Table 7.7) and for WitnessBTD

(Table 7.8) are quantitatively similar. Indeed, the benefits of WitnessBTD are

significantly reduced because the high level of consistency eliminates the need of

ensuring the global consistency of a partial solution (i.e., finding a witness).

On the criteria ‘completed’ and ‘fastest’, we distinguish between the SAT and

UNSAT instances. On SAT instances, the localized properties with m ≥ 3 and

with and without bolstering outperform GAC (global) and wR(∗,m)C (global). cl-

R(∗,|ψ(cli)|)C is the overall winner. On SAT instances, the localized properties with

m ≥ 3 and without bolstering complete on similar number of problems as GAC.

However, GAC is the fastest (although the difference can be recovered by improving

151

our implementations). On the criteria Min(#NV) and BT-free, cl-R(∗,|ψ(cli)|)C with

projection and binary bolstering is the winner on both SAT and UNSAT instances.

152

Table 7.7: Comparing consistency properties using BTD.

wR(∗,2)C wR(∗,3)C wR(∗,4)C R(∗,|ψ(cli)|)C

#
In

st
a
n
ce

s

G
A

C

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

C
o
m

p
le

te
d UNSAT 202 190 199 190 190 175 193 248 238 236 221 193 240 236 234 226 302 291 286 277

479 42.2% 39.7% 41.5% 39.7% 39.7% 36.5% 40.3% 51.8% 49.7% 49.3% 46.1% 40.3% 50.1% 49.3% 48.9% 47.2% 63.0% 60.8% 59.7% 57.8%

SAT 112 92 110 92 89 71 87 111 100 96 81 81 109 96 92 80 108 90 89 78

200 56.0% 46.0% 55.0% 46.0% 44.5% 35.5% 43.5% 55.5% 50.0% 48.0% 40.5% 40.5% 54.5% 48.0% 46.0% 40.0% 54.0% 45.0% 44.5% 39.0%

B
T

-f
re

e

UNSAT 0 70 39 70 70 74 97 104 139 139 131 140 103 141 141 148 186 222 222 213

479 0.0% 14.6% 8.1% 14.6% 14.6% 15.4% 20.3% 21.7% 29.0% 29.0% 27.3% 29.2% 21.5% 29.4% 29.4% 30.9% 38.8% 46.3% 46.3% 44.5%

SAT 15 25 16 25 25 29 42 17 47 47 45 52 21 60 55 50 25 61 61 52

200 7.5% 12.5% 8.0% 12.5% 12.5% 14.5% 21.0% 8.5% 23.5% 23.5% 22.5% 26.0% 10.5% 30.0% 27.5% 25.0% 12.5% 30.5% 30.5% 26.0%

M
in

(#
N

V
) UNSAT 4 71 40 71 71 74 100 110 145 145 136 161 130 166 166 170 234 264 263 244

479 0.8% 14.8% 8.4% 14.8% 14.8% 15.4% 20.9% 23.0% 30.3% 30.3% 28.4% 33.6% 27.1% 34.7% 34.7% 35.5% 48.9% 55.1% 54.9% 50.9%

SAT 19 27 16 25 25 28 43 23 52 49 49 57 43 71 65 60 55 74 73 64

200 9.5% 13.5% 8.0% 12.5% 12.5% 14.0% 21.5% 11.5% 26.0% 24.5% 24.5% 28.5% 21.5% 35.5% 32.5% 30.0% 27.5% 37.0% 36.5% 32.0%

F
a
st

es
t

UNSAT 100 28 44 19 14 14 26 117 73 23 25 17 45 17 12 12 187 128 58 52

479 20.9% 5.8% 9.2% 4.0% 2.9% 2.9% 5.4% 24.4% 15.2% 4.8% 5.2% 3.5% 9.4% 3.5% 2.5% 2.5% 39.0% 26.7% 12.1% 10.9%

SAT 73 40 22 16 11 8 20 20 18 9 9 5 15 10 5 6 26 15 9 9

200 36.5% 20.0% 11.0% 8.0% 5.5% 4.0% 10.0% 10.0% 9.0% 4.5% 4.5% 2.5% 7.5% 5.0% 2.5% 3.0% 13.0% 7.5% 4.5% 4.5%

153

Table 7.8: Comparing consistency properties using WitnessBTD.

wR(∗,2)C wR(∗,3)C wR(∗,4)C R(∗,|ψ(cli)|)C

#
In

st
a
n
ce

s

G
A

C

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

g
lo

b
a
l

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

lo
ca

l

p
ro

je
ct

io
n

b
in

a
ry

cl
iq

u
e

C
o
m

p
le

te
d UNSAT 200 191 199 191 190 175 192 248 237 236 220 196 241 234 234 225 302 290 286 277

479 41.8% 39.9% 41.5% 39.9% 39.7% 36.5% 40.1% 51.8% 49.5% 49.3% 45.9% 40.9% 50.3% 48.9% 48.9% 47.0% 63.0% 60.5% 59.7% 57.8%

SAT 111 94 109 96 91 73 85 112 100 96 81 81 109 96 92 79 110 90 88 78

200 55.5% 47.0% 54.5% 48.0% 45.5% 36.5% 42.5% 56.0% 50.0% 48.0% 40.5% 40.5% 54.5% 48.0% 46.0% 39.5% 55.0% 45.0% 44.0% 39.0%

B
T

-f
re

e

UNSAT 0 70 39 70 70 74 97 104 139 139 131 140 103 141 141 148 186 221 222 212

479 0.0% 14.6% 8.1% 14.6% 14.6% 15.4% 20.3% 21.7% 29.0% 29.0% 27.3% 29.2% 21.5% 29.4% 29.4% 30.9% 38.8% 46.1% 46.3% 44.3%

SAT 15 25 16 25 25 29 42 17 47 47 45 52 21 60 55 50 25 61 61 52

200 7.5% 12.5% 8.0% 12.5% 12.5% 14.5% 21.0% 8.5% 23.5% 23.5% 22.5% 26.0% 10.5% 30.0% 27.5% 25.0% 12.5% 30.5% 30.5% 26.0%

M
in

(#
N

V
) UNSAT 2 72 41 72 72 74 101 111 145 145 136 163 132 166 166 169 235 263 264 244

479 0.4% 15.0% 8.6% 15.0% 15.0% 15.4% 21.1% 23.2% 30.3% 30.3% 28.4% 34.0% 27.6% 34.7% 34.7% 35.3% 49.1% 54.9% 55.1% 50.9%

SAT 19 26 16 24 25 28 42 23 52 49 49 57 43 71 65 61 57 74 73 65

200 9.5% 13.0% 8.0% 12.0% 12.5% 14.0% 21.0% 11.5% 26.0% 24.5% 24.5% 28.5% 21.5% 35.5% 32.5% 30.5% 28.5% 37.0% 36.5% 32.5%

F
a
st

es
t

UNSAT 100 28 44 21 15 15 26 120 71 23 23 23 46 21 15 15 189 126 58 52

479 20.9% 5.8% 9.2% 4.4% 3.1% 3.1% 5.4% 25.1% 14.8% 4.8% 4.8% 4.8% 9.6% 4.4% 3.1% 3.1% 39.5% 26.3% 12.1% 10.9%

SAT 73 39 23 15 11 8 20 20 18 9 9 5 15 10 5 6 27 15 9 9

200 36.5% 19.5% 11.5% 7.5% 5.5% 4.0% 10.0% 10.0% 9.0% 4.5% 4.5% 2.5% 7.5% 5.0% 2.5% 3.0% 13.5% 7.5% 4.5% 4.5%

154

7.5 Conclusions

The experimental results showed that the performance of WitnessBTD in terms

of total time and nodes visited is very similar to that of BTD for most instances.

However, in about ten percent of the completed instances, there was a difference in

the number of nodes visited, and we focused our analysis on these instances. Our

analysis showed that WitnessBTD is more effective on unsatisfiable instances than

on satisfiable instances, and yielded on average 49% reduction in number of nodes

visited on unsatisfiable instances compared to BTD. Consequently, WitnessBTD was

faster than BTD by 15% on the unsatisfiable instances. The results also showed that

although the benefits of WitnessBTD were not significant for satisfiable instances,

there was no significant overhead in using WitnessBTD.

Therefore, WitnessBTD can be safely applied with the potential of significantly

reducing the number of nodes visited without incurring significant increase in the

cost. The benefit of using WitnessBTD can be more valuable in situations where the

constraint checks are expensive, and thus the reduction in the number of nodes visited

can be even more significant.

The results on difficult CSPs showed that cl-R(∗,m)C outperforms GAC when

used with BTD and WitnessBTD. Therefore, the advantages of higher consistency

levels demonstrated in Chapters 5 and 6 also apply when these properties are used as

full lookahead strategies in BTD and WitnessBTD.

Summary

In this chapter, we proposed a new algorithm WitnessBTD to improve the per-

formance of BTD. WitnessBTD avoids the counting of solutions in a subtree that

155

cannot be extended to a global solution to a CSP. In our results, the behavior of

WitnessBTD measured in number of nodes visited differed from BTD in only 10%

of the computed CSPs. In those instances, WitnessBTD was most effective on

unsatisfiable instances. It yielded on average 49% reduction is number of nodes

visited, and consequently was faster than BTD by 15%. Although the benefits of

WitnessBTD were not significant for satisfiable instances, there was no significant

overhead in using WitnessBTD. Therefore, it can be safely used because it does

not have a significant overhead, and can be faster on certain instances. Moreover, we

experimentally showed that cl-R(∗,m)C outperforms GAC on difficult CSP when used

with BTD and WitnessBTD.

156

Chapter 8

Conclusion

Below, we reflect on our approach and draw directions for future research.

8.1 Conclusions

The research presented in this thesis addresses the question of achieving practical

tractability for solving CSPs. CSPs are in general NP -complete, and are usually

solved with search. In order to reduce the size of the search space, usually backtrack

search is interleaved with constraint propagation. Linking the level of consistency

satisfied by a CSP to the width of its constraint graph provides a sufficient condition for

a backtrack-free search. Although this condition is appealing in theory, its usefulness

in practice is limited because of its prohibitive space requirement.

We introduced a new parameterized relational consistency property, R(∗,m)C, and

two algorithms for implementing it. We identified problem parameters and used them

to construct a decision tree for dynamically selecting the appropriate algorithm for

enforcing R(∗,m)C. Further, we adapted R(∗,m)C to a tree decomposition of the CSP

by localizing the application of the algorithm to the clusters of the tree decomposition.

157

We proposed strategies for managing the propagation queue of a consistency algorithm

in order to guide propagation along the structure of a tree decomposition of the

problem. The strength of the consistency property, when localized to the clusters of a

tree decomposition, depends on the messages communicated between the clusters. We

proposed schemes for bolstering the separators of the clusters to further strengthen the

enforced consistency. In addition, we proposed an improvement to the BTD algorithm

for solution counting.

We characterized the proposed techniques and empirically evaluated their impact

on difficult problems. Our results showed that, on difficult benchmark problems

tested, the most effective technique is the one that enforces a minimal network on

the clusters of a tree decomposition while bolstering propagation at the separators

using projections of all existing constraints (i.e., cl+proj-R(∗,|ψ(cl)|)C). Indeed, using

cl+proj-R(∗,|ψ(cl)|)C we were able to solve 424 out of 679 difficult instances, solving

300 of them without backtracking.

In this thesis, we explored new frontiers in higher level consistency, and established

that achieving tractability in practice is both feasible and cost effective. We established

new ways for advantageously exploiting the problem’s structure in many aspects of

CSP solving: consistency algorithms, ordering heuristics, and in solution counting.

8.2 Directions for Future Research

Below we identify a number of directions for future work.

1. Extension to non-table constraints: In this dissertation, we focused on constraints

defined in extension. The consistency properties that we proposed here can

also be enforced when the constraints are defined in intension. However, the

enforced property may be weaker, because only values will be filtered from the

158

domains of the variables. Further research to study the generation of partial

table-constraints to strengthen the enforced property when used with intensional

constraints is an interesting direction for future work.

2. Alternative criteria for propagation-queue management: We showed the benefits

of managing the propagation queue of consistency algorithms along a tree

embedding of the CSP. We believe it may be worthwhile to investigate alternative

criteria for selecting the cluster to remove from the fringe similarly to the plethora

of variable ordering heuristics explored for backtrack search.

3. Automating the selection of consistency algorithms: Our hybrid solver that uses

a decision tree to select one of the two algorithms for computing a minimal

network (i.e., PerTuple and AllSol) performs well when applied to a single

problem instance. However, when used, in sequence, on each of the clusters on a

tree decomposition, the overall performance degraded, more because of incorrect

selections than because of the overhead of computing the parameters. We need

to investigate a more robust decision trees that performs competitively in the

context of the tree decomposition.

Another avenue is to design strategies that use the decision tree in the following

context: If we can predict that a cluster is too expensive to solve, we can delay

processing it, process other clusters, and then propagate, to the difficult cluster,

the effects of filtering its neighbors. The propagation may likely simplify the

difficult problem to the extent that it can be solved by one of our algorithms.

4. Automatic selection of consistency property: Finally, our research uncovers both

the opportunity and the need to dynamically and locally select the appropriate

consistency levels to enforce on a problem depending on the characteristics

of each cluster and its difficulty. This observation opens the door to a ‘fine

159

grain/cluster level’ portfolio-based methods for consistency selection [Xu et al.,

2008]. The hybrid solver presented in this dissertation (which selects between

PerTuple and AllSol) is a step in this direction. The approach can be

extended to include the choice of the appropriate consistency property to enforce

[Stergiou, 2009]. Coordination of such ‘context-sensitive’ methods with the

queue-management strategies will allow us to target a cluster with the ‘right’

property at the ‘right’ time.

5. Modify the structure of a tree decomposition: We experimentally showed that

bolstering can be an effective method to approach practical tractability. We also

noticed that, sometimes, too much bolstering may be detrimental. We suspect

that the large amount of overlap between the clusters is critical for choosing

the appropriate level of bolstering. One direction to overcame this situation is

to pre-process a CSP and decide whether clusters need to be merged or not,

similar to the work by Fattah and Dechter [1996], and locally choose the right

bolstering scheme based on the amount of the overlap at each separator.

6. Characterize the performance of our techniques on randomly generated problems:

We focused our evaluations of difficult benchmark problems. Characterizing

the effectiveness of our approach in terms of the structural properties of the

constraint network (e.g., treewidth in relation to the size of the separators) and

properties and types of constraints (e.g., arity and tightness) would increase our

understanding of those techniques and of their applicability. To this end, it may

be useful to write a generator of random structured problems with controllable

parameters [Hogg and Dyer, 1996; Jégou and Terrioux, 2003].

Although the opportunities for further investigations may seem endless, this thesis

has successfully and positively answered our original concern about implementing

160

tractability in practice: It provided a methodology and an arsenal of techniques to

erode the difficulty of solving CSPs in practice.

161

Bibliography

[Arnborg et al., 1987] Stefan A. Arnborg, Derek G. Corneil, and Andrzej Proskurowski.

Complexity of Finding Embeddings in a K-Tree. SIAM Journal on Algebraic Discrete

Methods, 8:277–284, April 1987.

[Arnborg, 1985] Stefan A. Arnborg. Efficient Algorithms for Combinatorial Problems

on Graphs with Bounded Decomposability–A Survey. BIT, 25:2–23, 1985.

[Arndt, 2010] Jörg Arndt. Matters Computational: Ideas, Algorithms, Source Code,

chapter Compositions. Academic Press, London, UK, 2010.

[Beeri et al., 1983] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis.

On the Desirability of Acyclic Database Schemes. Journal of the ACM, 30(3):479–

513, 1983.

[Bessiere et al., 2005] Christian Bessiere, Jean-Charles Régin, Roland H.C. Yap, and

Yuanlin Zhang. An Optimal Coarse-Grained Arc Consistency Algorithm. Artificial

Intelligence, 165(2):165–185, 2005.

[Bessiere et al., 2008] Christian Bessiere, Kostas Stergiou, and Toby Walsh. Domain

Filtering Consistencies for Non-Binary Constraints. Artificial Intelligence, 172(6-

7):800–822, 2008.

162

[Bliek and Sam-Haroud, 1999] Christian Bliek and Djamilla Sam-Haroud. Path Con-

sistency for Triangulated Constraint Graphs. In Proceedings of the 16th International

Joint Conference on Artificial Intelligence (IJCAI 1999), pages 456–461, 1999.

[Bollobás et al., 2003] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver

Riordan. Directed Scale-Free Graphs. In Proceedings of the 14th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2003), pages 132–139. Society

for Industrial and Applied Mathematics, 2003.

[Breiman, 2001] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[Cheeseman et al., 1991] Peter Cheeseman, Bob Kanefsky, and William M. Taylor.

Where the Really Hard Problems Are. In Proceedings of the 12th International

Joint Conference on Artificial Intelligence (IJCAI 1991), pages 331–337, 1991.

[Cohen et al., 2008] David A. Cohen, Peter Jeavons, and Marc Gyssens. A unified

theory of structural tractability for constraint satisfaction problems. Journal of

Computer and System Sciences, 74(5):721–743, 2008.

[Debruyne and Bessiere, 1997] Romuald Debruyne and Christian Bessiere. Some Prac-

tical Filtering Techniques for the Constraint Satisfaction Problem. In Proceedings

of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997),

pages 418–423, 1997.

[Debruyne, 1999] Romuald Debruyne. A Strong Local Consistency for Constraint

Satisfaction. In Proceedings of the 11th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI 1999), pages 202–209, 1999.

163

[Dechter and Dechter, 1987] Avi Dechter and Rina Dechter. Removing Redundancies

in Constraint Networks. In Proceedings of the sixth AAAI Conference on Artificial

Intelligence (AAAI 1987), pages 105–109, 1987.

[Dechter and Pearl, 1987] Rina Dechter and Judea Pearl. Network-Based Heuristics

for Constraint-Satisfaction Problems. Artificial Intelligence, 34(1):1–38, 1987.

[Dechter and Pearl, 1989] Rina Dechter and Judea Pearl. Tree Clustering for Con-

straint Networks. Artificial Intelligence, 38(3):353–366, 1989.

[Dechter and Pearl, 1992] Rina Dechter and Judea Pearl. Structure Identification in

Relational Data. Artificial Intelligence, 58(1-3):237–270, 1992.

[Dechter and Rish, 1994] Rina Dechter and Irina Rish. Directional Resolution: The

Davis-Putnam Procedure, Revisited. In Proceedings of the Fourth International

Conference on Principles of Knowledge Representation and Reasoning, pages 134–

145, 1994.

[Dechter and Rish, 2003] Rina Dechter and Irina Rish. Mini-Buckets: A General

Scheme for Bounded Inference. Journal of the ACM, 50(2):107–153, 2003.

[Dechter and van Beek, 1997] Rina Dechter and Peter van Beek. Local and Global

Relational Consistency. Theoretical Computer Science, 173(1):283–308, 1997.

[Dechter et al., 1991] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal Constraint

Networks. Artificial Intelligence, 49(1-3):61–95, 1991.

[Dechter et al., 2001] Rina Dechter, Kalev Kask, and Javier Larrosa. A General

Scheme for Multiple Lower Bound Computation in Constraint Optimization. In

Proceedings of the Seventh International Conference on Principle and Practice of

Constraint Programming (CP 2001), volume 2239 of LNCS, pages 346–360, 2001.

164

[Dechter, 1996] Rina Dechter. Bucket Elimination: A Unifying Framework for Proba-

bilistic Inference Algorithms. In Proceedings of the 12th Conference on Uncertainty

in AI (UAI 1996), pages 211–219, 1996.

[Dechter, 1997] Rina Dechter. Mini-Buckets: A General Scheme of Generating Ap-

proximations in Automated Reasoning. In Proceedings of the 15th International

Joint Conference on Artificial Intelligence (IJCAI 1997), pages 1297–1302, 1997.

[Dechter, 1999] Rina Dechter. Bucket Elimination: A Unifying Framework for Rea-

soning. Artificial Intelligence, 113(1-2):41–85, 1999.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Dermaku et al., 2008] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben Mcma-

han, Nysret Musliu, and Marko Samer. Heuristic Methods for Hypertree Decom-

position. In Proceedings of the 7th Mexican International Conference on Artificial

Intelligence (MICAI 2008), pages 1–11, 2008.

[Fagin, 1983] Ronald Fagin. Degrees of Acyclicity for Hypergraphs and Relational

Database Schemes. Journal of the ACM, 30(3):514–550, 1983.

[Fattah and Dechter, 1996] Yousri El Fattah and Rina Dechter. An Evaluation of

Structural Parameters for Probabilistic Reasoning: Results on Benchmark Circuits.

In Proceedings of the 12th Conference on Uncertainty in AI (UAI 1996), pages

244–251, 1996.

[Favier et al., 2009] Aurélie Favier, Simon de Givry, and Philippe Jégou. Exploiting

Problem Structure for Solution Counting. In Proceedings of the 15th International

Conference on Principle and Practice of Constraint Programming (CP 2009), volume

5732, pages 335–343, 2009.

165

[Fikes, 1970] Richard E. Fikes. REF-ARF: A System for Solving Problems Stated as

Procedures. Artificial Intelligence, 1:27–120, 1970.

[Francis and Stuckey, 2007] Kathryn Francis and Peter J. Stuckey. Constraint Propa-

gation for Loose Constraint Graphs. In Proceedings of the 122nd ACM Symposium

on Applied Computing (ACM SAC 2007), pages 334–335, 2007.

[Freuder and Wallace, 1992] Eugene C. Freuder and Richard J. Wallace. Partial

Constraint Satisfaction. Artificial Intelligence, 58:21–70, 1992.

[Freuder, 1978] Eugene C. Freuder. Synthesizing Constraint Expressions. Communi-

cations of the ACM, 21)(11):958–966, 1978.

[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search.

Journal of the ACM, 29(1):24–32, 1982.

[Freuder, 1985] Eugene C. Freuder. A Sufficient Condition for Backtrack-Bounded

Search. Journal of the ACM, 32(4):755–761, 1985.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers and

Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[Gent et al., 1996] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh.

The Constrainedness of Search. In Proceedings of the 13th AAAI Conference on

Artificial Intelligence (AAAI 1996), pages 246–252, 1996.

[Geschwender et al., 2013] Daniel Geschwender, Shant Karakashian, Robert Wood-

ward, Berthe Y. Choueiry, and Stephen D. Scott. Selecting the Appropriate

Consistency Algorithm for CSPs Using Machine Learning Techniques. In Pre-

PhD Student Abstract and Poster Program, Proceedings of the 27th Conference on

Artificial Intelligence (AAAI 2013), pages 1–2, 2013.

166

[Golumbic, 1980] Martin C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.

Academic Press Inc., New York, NY, 1980.

[Gottlob and Samer, 2009] Georg Gottlob and Marko Samer. A Backtracking-Based

Algorithm for Hypertree Decomposition. ACM Journal of Experimental Algorithmics,

13:1–19, 2009.

[Gottlob and Scarcello, 2001] Georg Gottlob and Francesco Scarcello. Hypertree de-

compositions: A survey. In Proceedings of the 26th International Symposium on

Mathematical Foundations of Computer Science (MFCS 2001), pages 37–57, 2001.

[Gottlob and Szeider, 2008] Georg Gottlob and Stefan Szeider. Fixed-Parameter Al-

gorithms For Artificial Intelligence, Constraint Satisfaction and Database Problems.

Compututer Journal, 51(3):303–325, 2008.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A Com-

parison of Structural CSP Decomposition Methods. In Proceedings of the 16 th

International Joint Conference on Artificial Intelligence (IJCAI 1999), pages 394–

399, 1999.

[Gottlob et al., 2000] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A

Comparison of Structural CSP Decomposition Methods. Artificial Intelligence,

124(2):243–282, 2000.

[Gottlob et al., 2002] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hyper-

tree Decompositions and Tractable Queries. Journal of Computer and System

Sciences, 64(3):579–627, 2002.

167

[Gottlob, 2011] Georg Gottlob. On Minimal Constraint Networks. In Proceedings of

the 17th International Conference on Principle and Practice of Constraint Program-

ming (CP 2011), volume 6876 of LNCS, pages 325–339, 2011.

[Gyssens et al., 1994] Marc Gyssens, Peter G. Jeavons, and David A. Cohen. Decom-

posing Constraint Satisfaction Problems Using Database Techniques. Artificial

Intelligence, 66(1):57–89, 1994.

[Gyssens, 1986] Marc Gyssens. On the Complexity of Join Dependencies. ACM

Transactions on Database Systems, 11(1):81–108, 1986.

[Hall et al., 2009] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,

Peter Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An

Update. SIGKDD Explorations Newsletter, 11:10–18, November 2009.

[Haralick and Elliott, 1980] Robert M. Haralick and Gordon L. Elliott. Increasing

Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence,

14(3):263–313, 1980.

[Hogg and Dyer, 1996] Tadd Hogg and Martin E. Dyer. Refining the Phase Transitions

in Combinatorial Search. Artificial Intelligence, 81 (1-2):127–154, 1996.

[Janssen et al., 1989] Philippe Janssen, Philippe Jégou, B. Nougier, and Marie-

Catherine Vilarem. A Filtering Process for General Constraint-Satisfaction Problems:

Achieving Pairwise-Consistency Using an Associated Binary Representation. In Pro-

ceedings of the IEEE Workshop on Tools for Artificial Intelligence, pages 420–427,

1989.

168

[Jeavons et al., 1994] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. A

Structural Decomposition for Hypergraphs. Contemporary Mathematics, 178:161–

177, 1994.

[Jégou and Terrioux, 2003] Philippe Jégou and Cyril Terrioux. Hybrid Backtracking

Bounded by Tree-Decomposition of Constraint Networks. Artificial Intelligence,

146(1):43–75, 2003.

[Jégou and Terrioux, 2010] Philippe Jégou and Cyril Terrioux. A New Filtering Based

on Decomposition of Constraint Sub-Networks. In Proceedings of the 22nd IEEE

International Conference on Tools with Artificial Intelligence (ICTAI 2010), pages

263–270, 2010.

[Jégou and Vilarem, 1993] Philippe Jégou and Marie-Catherine Vilarem. On Some

Partial Line Graphs of a Hypergraph and the Associated Matroid. Discrete Mathe-

matics, 111(1-3):333–344, 1993.

[Jégou, 1993] Philippe Jégou. On the Consistency of General Constraint-Satisfaction

Problems. In Proceedings of the 11th AAAI Conference on Artificial Intelligence

(AAAI 1993), pages 114–119, 1993.

[Karakashian and Choueiry, 2010] Shant Karakashian and Berthe Y. Choueiry. Tree-

Based Algorithms for Computing k-Combinations and k-Compositions. Technical

Report TR-UNL-CSE-2010-0009, Constraint Systems Laboratory, University of

Nebraska-Lincoln, Lincoln, NE, 2010.

[Karakashian et al., 2010a] Shant Karakashian, Robert Woodward, Christopher Ree-

son, Berthe Y. Choueiry, and Christian Bessiere. A First Practical Algorithm for

High Levels of Relational Consistency. In Proceedings of the 24th AAAI Conference

on Artificial Intelligence (AAAI 10), pages 101–107, 2010.

169

[Karakashian et al., 2010b] Shant Karakashian, Robert J. Woodward, Berthe Y.

Choueiry, and Christian Bessiere. Relational Consistency by Constraint Filter-

ing. In Proceedings of the 25th ACM Symposium On Applied Computing (ACM

SAC 2010), pages 2073–2074, 2010.

[Karakashian et al., 2012] Shant Karakashian, Robert J. Woodward, Berthe Y.

Choueiry, and Stephen D. Scott. Algorithms for the Minimal Network of a CSP and

a Classifier for Choosing Between Them. Technical Report TR-UNL-CSE-2012-0007,

Department of Computer Science and Engineering, University of Nebraska-Lincoln,

Lincoln, NE, 2012.

[Karakashian et al., 2013] Shant Karakashian, Robert Woodward, and Berthe Y.

Choueiry. Improving the Performance of Consistency Algorithms by Localizing

and Bolstering Propagation in a Tree Decomposition. In Proceedings of the 27th

Conference on Artificial Intelligence (AAAI 2013), pages 1–8 (to appear), 2013.

[Kask et al., 2005] Kalev Kask, Rina Dechter, Javier Larrosa, and Avi Dechter. Unify-

ing Tree Decompositions for Reasoning in Graphical Models. Artificial Intelligence,

166(1-2):165–193, 2005.

[Kjærulff, 1990] Uffe Kjærulff. Triangulation of Graphs – Algorithms Giving Small

Total State Space. Technical Report R-90-09, Aalborg University, Denmark, 1990.

[Laburhe, 2000] François Laburhe. CHOCO: Implementing a CP Kernel. In CP

Workshop on Techniques for Implementing Constraint Programming Systems

(TRICS 2000), pages 71–85, 2000.

[Lagerkvist and Schulte, 2009] Mikael Z. Lagerkvist and Christian Schulte. Propa-

gator Groups. In Proceedings of the 15th International Conference on Principle

170

and Practice of Constraint Programming (CP 2009), volume 5732 of LNCS, pages

524–538. Springer, 2009.

[Lecoutre and Hemery, 2007] Christophe Lecoutre and Fred Hemery. A Study of

Residual Support in Arc Consistency. In Proceedings of the 20th International Joint

Conference on Artificial Intelligence (IJCAI 2007), pages 125–130, 2007.

[Lecoutre et al., 2003] Christophe Lecoutre, Frédéric Boussemart, and Fred Hemery.

Exploiting Multidirectionality in Coarse-Grained Arc Consistency Algorithms. In

Proceedings of the Ninth International Conference on Principle and Practice of

Constraint Programming (CP 2003), volume 2833 of LNCS, pages 480–494. Springer,

2003.

[Lecoutre et al., 2007] Christophe Lecoutre, Stéphane Cardon, and Julien Vion. Con-

servative Dual Consistency. In Proceedings of the 22nd AAAI Conference on Artificial

Intelligence (AAAI 2007), pages 237–242, 2007.

[Lecoutre et al., 2008] Christophe Lecoutre, Chavalit Likitvivatanavong, Scott G.

Shannon, Roland H.C. Yap, and Yuanlin Zhang. Maintaining Arc Consistency with

Multiple Residues. Constraint Programming Letters, 2:3–19, 2008.

[Lecoutre, 2009] Christophe Lecoutre. Constraint Networks: Techniques and Algo-

rithms. ISTE Ltd & Wiley Press, 2009.

[Likitvivatanavong et al., 2007] Chavalit Likitvivatanavong, Yuanlin Zhang, Scott

Shannon, James Bowen, and Eugene C. Freuder. Arc Consistency During Search.

In Proceedings of the 20th International Joint Conference on Artificial Intelligence

(IJCAI 2007), pages 137–142, 2007.

171

[Mackworth, 1977] Alan K. Mackworth. Consistency in Networks of Relations. Artifi-

cial Intelligence, 8(1):99–118, 1977.

[Marinescu and Dechter, 2007] Radu Marinescu and Rina Dechter. Best-First

AND/OR Search for Graphical Models. In Proceedings of the 22nd AAAI Conference

on Artificial Intelligence (AAAI 2007), pages 1171–1176, 2007.

[Montanari, 1974] Ugo Montanari. Networks of Constraints: Fundamental Properties

and Application to Picture Processing. Information Sciences, 7:95–132, 1974.

[Paparrizou and Stergiou, 2012] Anastasia Paparrizou and Kostas Stergiou. An Effi-

cient Higher-Order Consistency Algorithm for Table Constraints. In Proceedings of

the 26th AAAI Conference on Artificial Intelligence (AAAI 2012), 2012.

[Planken et al., 2008] Léon Planken, Mathijs de Weerdt, and Roman van der Krogt.

P3C: A New Algorithm for the Simple Temporal Problem. In Proceedings of the 18th

International Conference on Automated Planning and Scheduling (ICAPS 2008),

pages 256–263, 2008.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993.

[Rice, 1976] John R. Rice. The Algorithm Selection Problem. Advances in Computers,

15:65–118, 1976.

[Robertson and Seymour, 1986] N. Robertson and P.D. Seymour. Graph Minors II:

Algorithmic Aspects of Tree-Width. Journal of Algorithms, 7:309–322, 1986.

[Rollon and Dechter, 2010] Emma Rollon and Rina Dechter. New Mini-Bucket Par-

titioning Heuristics for Bounding the Probability of Evidence. In Proceedings of

172

the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pages 1199–1204,

2010.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Hand-

book of Constraint Programming. Elsevier, 2006.

[Ruskey, 2010] Frank Ruskey. Combinatorial Generation. Unpublished manuscript

from Citeseer, 2010.

[Schulte and Stuckey, 2004] Christian Schulte and Peter J. Stuckey. Speeding up

Constraint Propagation. In Proceedings of the 10th International Conference on

Principle and Practice of Constraint Programming (CP 2004), volume 3258 of

LNCS, pages 619–633, 2004.

[Schulte and Stuckey, 2008] Christian Schulte and Peter J. Stuckey. Efficient Con-

straint Propagation Engines. Transactions on Programming Languages and Systems,

31(1), 2008.

[Stergiou and Samaras, 2005] Kostas Stergiou and Nikos Samaras. Binary Encodings

of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental

Results. Journal of Artificial Intelligence Research (JAIR), 24:641–684, 2005.

[Stergiou and Walsh, 1999] Kostas Stergiou and Toby Walsh. Encodings of Non-

Binary Constraint Satisfaction Problems. In Proceedings of the 16th AAAI Confer-

ence on Artificial Intelligence (AAAI 1999), pages 163–168, 1999.

[Stergiou, 2009] Kostas Stergiou. Heuristics for Dynamically Adapting Propagation

in Constraint Satisfaction Problems. AI Communications, 22(3):125–141, 2009.

173

[Sutherland, 1963] Ivan E. Sutherland. SKETCHPAD: A Man-Machine Graphical

Communications System. Technical Report 296, Lincoln Laboratory, MIT, Cam-

bridge, MA, 1963.

[Tsang, 1993] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,

1993. Out of print, available href="http://cswww.essex.ac.uk/CSP/papers/

Tsang-Fcs1993.pdf".

[Wallace and Freuder, 1992] Richard J. Wallace and Eugene C. Freuder. Ordering

Heuristics for Arc Consistency Algorithms. In Proceedings of the Ninth Canadian

Conference on Artificial Intelligence, pages 163–169, 1992.

[Waltz, 1975] David Waltz. Understanding Line Drawings of Scenes with Shadows. In

P.H. Winston, editor, The Psychology of Computer Vision, pages 19–91. McGraw-

Hill, Inc., 1975.

[Wilf, 1989] Herbert S. Wilf. Combinatorial Algorithms: An Update. SIAM CBMS-

NSF 55, 1989.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.

SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of AI Research,

32:565–606, 2008.

[Zheng and Choueiry, 2005] Yaling Zheng and Berthe Y. Choueiry. New Structural

Decomposition Techniques for Constraint Satisfaction Problems. In Boi Faltings

et al., editor, Recent Advances in Constraints, volume 3419 of Lecture Notes in

Artificial Intelligence, pages 113–127. Springer, 2005.

174

Appendix A

Computing All k-Connected

Subgraphs

This appendix presents a fast algorithm for generating fixed-sized connected combina-

tions of nodes in a graph.

A.1 Introduction

Identifying all connected subgraphs of a fixed size k of a graph G is a crucial step for

enforcing relational consistency in Constraint Satisfaction Problems [Karakashian et

al., 2010a]. It is likely to arise in other settings that rely on analysis of graphs such as

social networks. This combinatorial problem is computationally challenging in practice

because the number of combinations of vertices of G of size k grows exponentially

with the size of the graph. However, in sparse graphs, the number of connected

such subgraphs is significantly smaller than the number of combinations. Thus, it is

important to design an algorithm that enumerates only the connected combinations

of vertices by exploiting the structure of the graph.

175

Here we propose, discuss, and evaluate ConSubg, an algorithm for this purpose.

The two main features of our approach are the construction of a combination tree

T and the definition of an operator ⊗t. The combination tree T rooted at a vertex

v ∈ G has the property that the depth-first tree rooted at v of every G′, where G′ is a

connected subgraph induced on G by at most k vertices including v, is isomorphic to

a subgraph of T rooted at v. The operator ⊗t generates from T , without duplication,

all connected subgraphs of G of size k including v. We evaluate it empirically on

randomly generated graphs, scale-free graphs commonly used to model social networks,

and graphs derived from constraint satisfaction problems. We use the simple example

of Figure A.1 throughout this appendix to illustrate the operation of ConSubg. For

example, the connected subgraphs of size k = 4 for the graph shown in Figure A.1 are:

ConSubg(k,G) = {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, d, c, e}}. (A.1)

Note that {b, c, d, e} is not a connected subgraph of G and is thus excluded from the

result.

Figure A.1: Simple graph.

Definition 5 Given a graph G = (V,E) and a constant k, ConSubg(k,G) returns

all sets of V ′ vertices where V ′ ⊆ V , |V ′| = k, and the subgraph G′ of G induced by

V ′ is connected. We call such sets of k vertices k-ConnVertices.

The graph in Figure A.1 represents the dual graph of a Constraint Satisfaction

Problem (CSP) [Dechter, 2003]. A vertex in this graph represents a constraint, defined

176

as a relation on a set of variables, which is the scope of the constraint. An edge

connects two vertices whose scopes overlap (i.e., share a variable). Enforcing the

consistency properties R(i,k)C [Dechter and van Beek, 1997] and R(∗,k)C [Karakashian

et al., 2010a] on this CSP requires computing all connected subgraphs of size k.1

Beyond our original motivation, we believe that an algorithm that implements such a

functionality is useful in other contexts in Constraint Programming in particular and

in Combinatorics in general.

This appendix is structured as follows. Section A.2 reviews alternative approaches.

Section A.3 constitutes the bulk of this appendix: It discusses in great detail ConSubg

and its various components, introducing data structures that we designed for this

purpose and discussing the complexity, soundness and completeness of the constituent

components of ConSubg. Section A.4 proposes to improve the performance of the

algorithm by memoization. Section A.5 discusses the time and space complexity of

ConSubg and Section A.6 its correctness. Section A.7 demonstrates the practical

usefulness of our algorithm by comparing its performance on randomly generated

graphs, scale-free networks, and constraint satisfaction problems. Finally, Section A.8

concludes this appendix.

A.2 Alternative Approaches

A straightforward algorithm for implementing ConSubg is to first generate all k

combinations of the V vertices of the graph G, then to remove those combinations

that are not connected subgraphs of G. A simple algorithm for generating such

a combination consists of k nested loops, which we call the ‘brute-force algorithm’

1The graph in Figure A.1 can also represent the constraint network of a binary CSP where a
vertex represent a variable and an edge represent a binary constraint. The connected subgraphs of
size k are useful for enforcing the consistency property k-consistency [Freuder, 1978].

177

and denote BF-ConSubg. BF-ConSubg (Algorithm 9) enumerates all possible

combinations of k vertices storing only those that correspond to connected subgraphs.

Algorithm 9: BF-ConSubg(k,G)

Input: k, G
Output: A list of all k-ConnVertices of G
pos: a vector of the vertices of G;1

list← ∅;2

for i1 ← pos[1] to pos[s− k + 1] do3

for i2 ← pos[i1] to pos[s− k + 2] do4

for i3 ← pos[i2] to pos[s− k + 3] do5

. . .6

for ik ← pos[ik−1] to pos[s] do7

if (i1, i2, . . . , ik) forms a connected subgraph of G then8

Push((i1, i2, i3, . . . , ik), list)9

return list10

BF-ConSubg fails to exploit the connectivity of the graph: it may generate many

subgraphs that are not connected and have to be discarded, which is wasteful of

computing resources. In contrast, ConSubg exploits the connectivity of the graph

and generates only connected subgraphs. At the risk of significantly oversimplifying

it, ConSubg operates as follows:

1. It considers an arbitrary node in the graph as a ‘root’ node.

2. It restricts itself to the nodes of a distance k from this root node.

3. It generates all k-ConnVertices that include the root node.

4. It removes the root node from the graph.

5. Finally, it iteratively applies the above process to the remaining nodes of the

graph.

178

The strength of ConSubg stems from the particular structures and processes imple-

mented in the above mentioned Steps 2 and 3. In order to show that the effectiveness

of our approach is not limited to the above ‘decomposition’ strategy but that we do

exploit the topology of the graph in a much stronger sense, we modify the brute-force

algorithm BF-ConSubg (Algorithm 9) to apply it in a localized manner similarly to

the above-listed strategy, yielding LBF-ConSubg (Algorithm 10).

Algorithm 10: LBF-ConSubg(k,G).

Input: k,G
Output: A list of all k-ConnVertices of G
list ← ∅;1

queue← Vertices(G);2

foreach v ∈ queue do3

G′ ← the subgraph of G induced by vertices within distance k from v;4

list← list ∪ BF-ConSubg(k,G′);5

Remove(v,G);6

return list7

While the worst-case complexity of all algorithms remains exponential in k (because

the number of k-ConnVertices may be exponential in k), we conduct, in Section A.7,

an extensive empirical evaluation to compare the performance of ConSubg, BF-

ConSubg and LBF-ConSubg on various types of graphs, and empirically establish

the advantages of ConSubg.

A.3 Description of the Algorithm

For the sake of clarity and readability and to facilitate the analysis, we decompose

the presentation of our algorithm into components shown in Table A.1. After the

presentation of each component of the algorithm, we illustrate its operation on the

simple example of Figure A.1. When applicable, we also discuss the complexity,

179

Table A.1: A quick reference table to the proposed algorithms.

Algorithm Pseudocode Calls algorithm(s) Section

ConSubg Algorithm 11 CombinationsWithV Section A.3.1

CombinationsWithV Algorithm 12 CombinationTree Section A.3.1
CombinationsFromTree

CombinationTree Algorithm 13 BuildTree Section A.3.2

BuildTree Algorithm 14 Self Section A.3.2

CombinationsFromTree Algorithm 15 Self Section A.3.3
k-combinations
k-compositions

soundness, and completeness of the proposed component.

A.3.1 ConSubg and CombinationsWithV

ConSubg (Algorithm 11) takes as input an integer k and a graph G and returns

all lists of k vertices inducing connected subgraphs of G. Starting from an arbitrary

node, it calls CombinationsWithV (Algorithm 12) on a vertex of G to generate all

k-ConnVertices that include that vertex. Then it removes the vertex from the graph

and repeats the same operation on each of the remaining vertices in the graph.

Algorithm 11: ConSubg(k,G).

Input: k,G
Output: A list of all k-ConnVertices of G
list ← ∅;1

queue← Vertices(G);2

foreach v ∈ queue do3

list← list ∪ CombinationsWithV(v, k,G);4

Remove(v,G);5

return list6

CombinationsWithV (Algorithm 12) calls:

• CombinationTree (Algorithm 13), which builds a combination tree rooted at

the vertex given as input, and

180

• CombinationsFromTree (Algorithm 15), which operates on the generated

combination tree to compute the set of k-ConnVertices.

Algorithm 12: CombinationsWithV(v, k,G).

Input: v, k,G
Output: A list of all k-ConnVertices of G that include vertex v
tree←CombinationTree(v, k,G);1

ncombs← CombinationsFromTree(tree, k);2

return Labels(ncombs)3

Illustrating the execution of ConSubg and CombinationsWithV: Below

we discuss the application of ConSubg (Algorithm 11) with k = 4 to the graph of

Figure A.2. The queue is initialized in Line 2 to {a, b, c, d, e}, which is the list of

vertices of the graph. Calling CombinationsWithV (Algorithm 12) with a and k = 4

on G returns the list of all sought k-ConnVertices that include the vertex a. Thus, a

can be removed from G (Line 5) for all subsequent calls to CombinationsWithV.

The process is repeated on the remaining vertices (i.e., b, c, d, and e).

CombinationsWithV receives as input a vertex, the combination size, and the

graph. In Line 1, it generates a special tree structure, which we call combination

tree and discuss in Section A.3.2. The algorithm uses the tree in Line 2 to collect

the sought k-ConnVertices that include the vertex given as input. In the following

sections, we describe how the tree is built for the graph in Figure A.2 with the selected

node a and combination size 4.

A.3.2 Building the combination tree

In this section, we study the process of building a combination tree. We introduce the

algorithms, illustrate their application to a simple example, discuss their complexity,

and establish their soundness and completeness.

181

CombinationTree (Algorithm 13) calls BuildTree (Algorithm 14). Together,

these two algorithms yield a tree structure that we call the combination tree. We refer

to the vertices of the combination tree as “nodes” in order to distinguish them from

the vertices of the graph. The combination tree, rooted at a node n, is of maximum

depth k. The node n corresponds to the graph vertex given as input, and each node

nt in the tree corresponds to some vertex of G, denoted Vertex(nt). Two or more

nodes in the generated tree may correspond to the same vertex in G. Further, any

two nodes that are connected in the tree correspond to two connected vertices in the

graph G. Figure A.3 shows the tree generated by calling CombinationTree with

Algorithm 13: CombinationTree(v, k,G).

Input: v, k,G
Output: The root of a combination tree
root← a new tree node corresponding to v;1

for i ← 0 to (k − 1) do list[i]← ∅;2

list[0]← {v};3

BuildTree(root, 1, G, k) ;4

return root5

the parameters a, k = 4, and the graph of Figure A.2.

Figure A.2: Simple graph. Figure A.3: Combination tree for a, k = 4, and Fig. A.2.

BuildTree proceeds in a depth-first manner. For each node nt at depth l in the

tree such that l < k, it adds, as children to nt, all nodes n′t that satisfy the following

two conditions:

182

Condition 1: Vertex(n′t) ∈ Neighbors(Vertex(nt)).

Condition 2: The vertex of n′t is not the vertex of an ancestor, sibling, or a sibling

of any ancestor of nt.

Notably, BuildTree may visit a given vertex of the graph more than once, which

occurs when the vertex can be reached through an alternative path from the root.

The goal of Condition 2 is to:

1. Limit the size of the generated tree by pruning subtrees as argued in Proposition 6,

and

2. Guarantee the existence of a subtree elsewhere in the combination tree that

contains the vertices of the pruned subtree.

Indeed, Condition 2 above yields the following two propositions:

Proposition 1 No two siblings of a tree node in the combination tree correspond to

the same vertex of the graph.

Proof: Follows directly from Condition 2.

Proposition 2 The maximum branching factor of the combination tree is bounded.

Proof: Given that the number of vertices in the graph is bounded and given Proposi-

tion 1, each tree node has a bounded number of children. �

In order to generate a tree that satisfies the two above-listed conditions, each node

nt in the tree maintains:

1. A list of the vertices of the ancestors of nt in the tree, and

2. A list of the vertices of the siblings of the ancestors of nt generated before the

node nt itself was generated.

183

A child for nt is generated only when the corresponding vertex does not appear in the

list of nt. When the condition is not met, we say that the subtree rooted at this child

is omitted .2 When adding n′t to the tree, the following operations are performed in

sequence:

1. The vertex corresponding to n′t is added to the list of nt.

2. The list of n′t is a copy of the list of nt.

The pseudocode of BuildTree (Algorithm 14) uses two marking functions: MarkV

for graph vertices and MarkN for tree nodes:

1. MarkV is used to mark a vertex of the graph as ‘visited.’ We assume that all

graph vertices are initially marked as ‘unvisited.’

2. MarkN is used to mark a node in the tree as ‘new,’ thus indicating that the

corresponding graph vertex has not yet been encountered. Otherwise, the tree

node is marked as ‘seen’ indicating that there already exists, in the tree, another

node corresponding to the same graph vertex.

A.3.2.1 Illustrating the execution of CombinationTree

Below we illustrate the generation of the tree shown in Figure A.5, obtained by

applying CombinationTree (Algorithm 13) on the vertex a, k = 4, and the graph of

Figure A.4. Line 1 of Algorithm 13 generates the root of the tree, n1, to correspond to

the vertex a. Lines 2 and 3 initialize the vector array list[]. Line 4 calls BuildTree

(Algorithm 14) with the two parameters n1 and 1 (for the tree depth) to build the

children of the root.

2This terminology is used in several of the proofs below.

184

Algorithm 14: BuildTree(nt, depth,G, k)

Input: nt, depth,G, k
list[depth]← list[depth− 1];1

foreach v′ ∈ Neighbors(Vertex(nt)) do2

if v′ /∈ list[depth] then3

add n′t as a child to nt with Vertex(n′t) = v′;4

list[depth]← list[depth] ∪ {v′};5

if MarkV(v′) 6= visited then6

MarkN(n′t)← new;7

MarkV(v′)← visited;8

else9

MarkN(n′t)← seen;10

if depth+ 1 ≤ k then BuildTree(n′t, depth+ 1, G, k)11

Figure A.4: Simple example. Figure A.5: Combination tree rooted at vertex a with
k = 4 for the graph in Figure A.4.

In Line 1 of Algorithm 14, the list of ‘ancestors’ is copied from that of the parent.

Thus, we have list[1] = {a}. Then, the subtrees corresponding to each of the neighbors

of a (i.e., b, d and e) are built, see Figure A.5.

First the vertex b is considered. Because b /∈ list[1]={a}, a node n2 corresponding

vertex to b is added as a child to the root. The vertex b is added to list[1] (i.e.,

list[1]={a,b}) for the sake of the descendants of n2. n2 is marked as ‘new’ because

b was not visited before. The vertex b is marked as ‘visited.’ Then, Line 11 calls

Algorithm 14 recursively to generate the children of the node n2 corresponding to

vertex b.

In the new recursive call to Algorithm 14, the set of ancestors at depth 2 is set

185

to {a, b} (i.e., list[2]={a,b}). Vertices a, c, and d are adjacent to vertex b. Because

a ∈ list[2], it is skipped. The node n3 is created for vertex c and added as a child of

node n2. Then the node n3 and the vertex c are appropriately marked as ‘new’ and

‘visited,’ respectively. Now, list[2] = {a, b, c}. The recursive call generates a child n4

for n3, where n4 corresponds to vertex d.

At this point, we have depth = 3. The condition in Line 11 is not satisfied, which

ends the recursion. Back to node n2 at the previous level in the recursion, the second

neighbor d of b is considered. The list of ancestors is list[2] = {a, b, c} and d 6∈ list[2].

Therefore, a tree node n5 corresponding to the vertex d is added as a child of n2. The

list of ancestors at this level list[2] is updated to {a, b, c, d}. Because vertex d was

visited in a previous recursive call, the node n5 is marked as ‘seen.’ Similarly the rest

of the nodes are added to the tree resulting in the tree shown in Figure A.5.

A.3.2.2 Complexity of CombinationTree and BuildTree

We make the following observations about the combination tree. The depth of the

generated tree is (k − 1).

If the maximum degree of the graph is d, the size of the list at depth=1 can be

at most 2d, and the size of the list at depth=(k − 1) inheriting from the ancestors is

bounded by O(d · k).

Because Algorithms 13 and 14 proceed in a depth-first manner, only the lists along

the current path are stored. Thus, the space complexity of the lists is O(d · k2). These

lists are stored in an 1×k array indexed by the depth of the node in the tree.

Proposition 3 (Complexity of CombinationTree and BuildTree.) The num-

ber of nodes in the tree is O(d(k−1)) assuming that the maximum degree of G is d. Thus,

the time and space complexity of CombinationTree and BuildTree is O(d(k−1)).

186

A.3.2.3 Soundness and completeness of combination trees

Below, we prove that:

1. The combination trees generated by ConSubg partition the set of all k-

ConnVertices of the graph.

2. BuildTree terminates.

3. All connected subgraphs of size k including a given vertex are ‘represented’ in

the combination tree built for this vertex.

Proposition 4 (Partitioning of combinations) No k-ConnVertices set can be ex-

tracted from two different combination trees generated by Algorithm 13.

Proof: Every k-ConnVertices set extracted by CombinationsFromTree from

the combination tree includes the vertex of the root of the tree. Moreover, once a

combination tree has been processed, the vertex of the root is removed from the graph.

Hence, the same combination cannot be extracted from subsequent combination trees.

�

Proposition 5 Let T be the combination tree generated by applying Combination-

Tree on v and G. For every connected subgraph G′ induced on G by at most k

vertices including v, the depth-first tree of G′ rooted at v is isomorphic to a subgraph

of T rooted at v. Moreover, every node in T is necessary for this property to hold.

Proof: Let T be the combination tree rooted at v resulting from applying

BuildTree on G, and let G′ be an induced connected subgraph of G of at most k

vertices including v. Let T ′ a depth-first traversal of G′ rooted at v. We prove that T ′

is isomorphic to a subgraph of T . Because T visits G in a depth-first manner with-

out skipping already visited vertices except those violating Condition 2, a subgraph

187

isomorphic to T ′ exists in T unless pruned by Condition 2. We next show that even

after the application of Condition 2, there exists in T a subgraph T ′′ of T that is

isomorphic to T ′.

Consider a node np of T such that (1) Vertex(np)∈ G′, (2) the vertices of the

ancestors of np in T are in G′, and (3) np is pruned by Condition 2. We show that the

path from the root of T to np cannot be isomorphic to a path in T ′, but that there

exists a path in T from the root to a node n′p such that Vertex(np)=Vertex(n′p)

that is isomorphic to a path in T ′. Because np is pruned by Condition 2, then a node

n′p where Vertex(np)=Vertex(n′p) must exist in T where the ancestors of n′p are all

in G′ (by Condition 2). Consequently, there are two paths p and p′ in T where (1) p is

the path from the root of T to np, (2) p′ is the path from the root to n′p, and (3) the

vertices of the nodes in p and p′ are all in G′. Thus, there must exist two paths in G′

from v to v′ that are isomorphic to p and p′. Further, only one of those two paths

in G′ appears in T ′, which is our depth-first traversal of G′. A path isomorphic to p

cannot appear in T ′ because of the canonical ordering of the vertices is used to build

the trees. Thus, there exists a path in T ′ that is isomorphic to p′, and p′ must be

isomorphic to a path in T ′. As a conclusion, the pruning by Condition 2 will maintain

in T a tree isomorphic to T ′.

Now, we prove that every node in T is necessary for the above property to hold.

Consider a node n ∈ T , and let p be the path in T from the root to n. Let G′ be the

subgraph in G induced by the vertices of the nodes in p. Given the canonical ordering

of the graph vertices, p is isomorphic to the depth-first tree of G′. Because no two

siblings in T have the same vertex label, p is the only subgraph of T isomorphic to

the depth-first tree of G′. Therefore, if n was removed from T , there will not be a

subgraph of T that is isomorphic to the depth-first tree of G′, and the above property

will be lost. �

188

Figure A.6: Simple example. Figure A.7: The tree rooted at vertex a for k = 4 for
the graph in Figure A.6.

Proposition 6 CombinationTree terminates.

Proof: BuildTree (Algorithm 14) traverses the graph in a depth-first manner

without skipping already visited vertices. Thus, the termination of BuildTree is a

legitimate concern. The algorithm stops proceeding down a path under two conditions:

1. The condition in Line 11, which guarantees that the length of the ‘current’ path

is always smaller than or equal to k, e.g. node n4 in Figure A.7. Thus, the depth

of the tree generated by Algorithm 14 is never larger than k.

2. The condition in Line 3 fails, which enforces Condition 2 of Section A.3.2.

Proposition 2 guarantees that the branching factor of the tree generated by

Algorithm 14 is bounded.

Consequently, the size of the tree generated by BuildTree is bounded, and BuildTree

terminates. �

A.3.3 Extracting k-ConnVertices from a combination tree

CombinationsFromTree (Algorithm 15) is recursive and calls itself at Line 11. It

also calls the functions k-combinations and k-compositions, and uses a new set

operator ⊗t.

189

• k-combinations(i,s) generates all combinations of size i of the elements of a set

s. We assume that each element in the generated set is ordered. For example,

k-combinations(2, {n2, n6, n8}) ={{n2,n6},{n2,n8},{n6,n8}}.

BF-ConSubg (after removing Line 8) is an obvious implementation for k-

combinations. Other implementations are reported in [Ruskey, 2010; Arndt,

2010]. Ours is described in [Karakashian and Choueiry, 2010].

• k-compositions generates all strings of length size on the integer interval

[1,(Sum− size+ 1)] such that the sum of the elements of a string is equal to

Sum. For example,

k-compositions(3, 4) = {{1, 1, 2}, {1, 2, 1}, {2, 1, 1}}.

Because every element in the generated set is a string, the element is considered

to be ordered. A recursive algorithm for k-compositions is attributed to

Knuth [Wilf, 1989]. Implementations are reported in [Ruskey, 2010; Arndt,

2010]. Our implementation is tree based and described in [Karakashian and

Choueiry, 2010].

• The binary operator ⊗t operates on sets of sets and is discussed in Section A.3.3.1.

Below, we formally define and analyze the operator ⊗t, provide the pseudocode of A.3.3,

illustrate its execution on our running example, and discuss the implementation of

the operator ⊗t.

190

A.3.3.1 Defining of the ⊗t operator

We introduce the following definition for an operator that operates on two sets:

Definition 6 (UnionProduct) We define the binary operator UnionProduct,

denoted ⊗, as the operator that combines two sets of sets as follows:

S1 ⊗ S2 = { x | (x = s1 ∪ s2) ∧ (s1 ∈ S1) ∧ (s2 ∈ S2) } (A.2)

UnionProduct is a cross-product-like operator in which two elements are combined

by union instead of forming the usual tuple.

We refine the UnionProduct operator into a binary operator denoted ⊗t, which

we use in CombinationsFromTree (Line 14 of Algorithm 15). ⊗t operates on two

sets of nodes from a combination tree as follows:

S1 ⊗t S2 =



∅, if S1 = ∅

S1, if S2 = ∅

{x | (x = s1 ∪ s2) ∧ (s1 ∈ S1) ∧ (s2 ∈ S2)

∧ (∀i ∈ s1, j ∈ s2,Vertex(i) 6=Vertex(j))

∧ ((∃j ∈ s2MarkN(j) =‘new’) ∨ (∀i ∈ s1, j ∈ s2, l ∈Children(i),

Vertex(j) 6=Vertex(l)))}, otherwise.

(A.3)

Let us explain the meaning of the two conditions in Expressions (A.3). The first

condition is:

∀i ∈ s1, j ∈ s2,Vertex(i) 6=Vertex(j). (A.4)

This condition guarantees that no two nodes in an element of S1 ⊗t S2 correspond

to the same graph vertex. The goal is to guarantee that every element of S1 ⊗t S2

191

has only nodes corresponding to distinct graph vertices. The second condition is the

disjunction of the two following conditions:

∃j ∈ s2MarkN(j) = ‘new’ (A.5)

∀i ∈ s1, j ∈ s2, l ∈Children(i),Vertex(j) 6=Vertex(l). (A.6)

The condition in Expression (A.5) guarantees that an element is added to S1 ⊗t S2

when at least one of the tree nodes in s2 is ‘new,’ that is, it corresponds to a vertex

that had not been encountered before. The condition in Expression (A.5) is thus to

ensure that elements not encountered before are included in S1 ⊗t S2.

The intuition behind the condition in Expression (A.6) is as follows. When a tree

node j ∈ s2 corresponds to the same vertex as a child of a tree node i ∈ s1, then the

set of vertex labels obtained from the subtree rooted at j can also be obtained from

the subtree rooted at i and from subtrees rooted at siblings, parents, and siblings of

parents of i. Hence, s1 ∪ s2 is omitted from S1 ⊗t S2.

Note that, while the operator ⊗ is commutative, the operator ⊗t, by definition, is

associative but not commutative.

Proposition 7 (Time complexity of S1 ⊗t S2.) The time complexity of S1 ⊗t S2

is O (|S1| · |S2| · |s1| · |s2|), where |s1| and |s2| are the sizes of the largest elements of

|S1| and |S2| respectively.

A.3.3.2 Pseudocode of CombinationsFromTree

CombinationsFromTree (Algorithm 15) takes as parameters a combination tree

and a combination size k. It returns combinations of nodes of the tree that:

1. Include the root of the tree and

192

2. Correspond to the connected subgraphs of size k of the original graph.

Algorithm 15: CombinationsFromTree(tree, k)

Input: tree, k
Output: A list of sets of nodes of the tree including the root node
t← roottree;1

lnodesets← ∅;2

if k = 1 then return {t};3

for i← 1 to Min(|Children(t)|, (k − 1)) do4

foreach NodeComb ∈ k-combinations(i,Children(t)) do5

foreach string ∈ k-compositions(i, (k − 1)) do6

fail← false;7

for pos← 1 to i do8

stRoot← element in position pos in NodeComb;9

size← element in position pos in string;10

S[pos]←CombinationsFromTree(stRoot, size);11

if S[pos] = ∅ then fail← true; break12

if fail then continue;13

foreach combProduct in S[1]⊗t · · · ⊗t S[i] do14

lnodesets← lnodesets ∪ {combProduct ∪ {t}};15

return lnodesets16

A.3.3.3 Illustrating the execution of CombinationsFromTree

Consider the graph in Figure A.8 and its corresponding combination tree shown in

Figure A.9. The tree is passed to Algorithm 15 with k = 4, yielding:

Figure A.8: Simple graph. Figure A.9: The tree rooted at vertex a for k = 4 for
the graph in Figure A.8.

193

{{n1, n2, n3, n4}, {n1, n2, n3, n8}, {n1, n2, n5, n8}, {n1, n6, n7, n8}}, (A.7)

which is mapped in a straightforward manner to yield the following combinations of

vertices:

{{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, d, c, e}}. (A.8)

Below, we explain step by step how CombinationsFromTree reaches the result in

Expression (A.7). The call to CombinationsFromTree(n1,4) yields three iterations

for i=1, 2, and 3 in Line 4. Thus, in Line 5, NodeComb iterates over the elements of

the following sets:

• For i = 1, k-combinations(1,{n2, n6, n8})= {{n2}, {n6}, {n8}},

• For i = 2, k-combinations(2,{n2, n6, n8})= {{n2, n6}, {n2, n8}, {n6, n8}},

and

• For i = 3, k-combinations(3,{n2, n6, n8})= {{n2, n6, n8}}.

At Line 6, string iterates over the elements of the following sets:

• For i = 1, k-compositions(1,3)={{3}},

• For i = 2, k-compositions(2,3)={{1,2},{2,1}}, and

• For i = 3, k-compositions(3,3)={{1,1,1}}.

In order to continue our illustration of the operation of CombinationsFromTree,

we introduce the following definition:

Definition 7 (Configuration) We define a configuration to be a set of 3-tuple

〈j,Nj, Cj〉 where:

194

1. j is a positive integer denoting the number of subtrees of the combinations tree

to consider,

2. Nj is an ordered set of size j (|Nj| = j) of tree nodes that have the same parents

in the combination tree, and

3. Cj is an ordered set of positive integers (|Cj| = j). Each integer in Cj specifies

the size of the combination of tree nodes to be extracted from the subtree rooted

at the node at the same position in Nj.

Examples of configurations in Figure A.9 are

〈1, {n2}, {3}〉, 〈2, {n2, n6}, {1, 2}〉, 〈3, {n2, n6, n8}, {1, 1, 1}〉. (A.9)

The three nested loops from Line 4 to Line 15 generate all configurations for the

children of a given root (Lines 4, 5, and 6), generate the combinations of tree nodes

from each configuration (Line 11), then combine the resulting combinations within

each configuration (Line 14). Below, we illustrate this process for i=1, 2, and 3.

For i = 1, NodeComb ∈ {{n2}, {n6}, {n8}}, and string ∈ {{3}}. We have three

configurations at this point:

〈1, {n2}, {3}〉, 〈1, {n6}, {3}〉, 〈1, {n8}, {3}〉. (A.10)

For pos=1, Line 11 calls CombinationsFromTree on each node appearing in

a configuration as follows:

• CombinationsFromTree(n2,3) returns S[1]= {{n2, n3, n4}}.

• CombinationsFromTree(n6,3) returns S[1]= ∅.

195

• CombinationsFromTree(n8,3) returns S[1]= ∅.

Given that each configuration has only one node, the operator ⊗t is not applied.

Given that the first configuration yields one element and the second and third

configurations yield empty results, Line 14 is called only once for i = 1, yielding:

combProduct = {{n2, n3, n4}} (A.11)

For i = 2, NodeComb ∈ {{n2, n6}, {n2, n8}, {n6, n8}}, and string ∈ {{1,2}, {2,1}}.

We have six configurations at this point:

〈2, {n2, n6}, {1, 2}〉, 〈2, {n2, n6}, {2, 1}〉,

〈2, {n2, n8}, {1, 2}〉, 〈2, {n2, n8}, {2, 1}〉, (A.12)

〈2, {n6, n8}, {1, 2}〉, 〈2, {n8, n8}, {2, 1}〉.

Line 11 calls CombinationsFromTree on each node appearing in a configura-

tion as follows:

1. For configuration 〈2, {n2, n6}, {1, 2}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,1) returns S[1]={{n2}}.

• pos=2, CombinationsFromTree(n6,2) returns S[2]={{n6,n7}}.

2. For configuration 〈2, {n2, n6}, {2, 1}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,2) returns S[1]={{n2,n3}, {n2,

n5}}.

• pos=2, CombinationsFromTree(n6,1) returns S[2]={{n6}}.

3. For configuration 〈2, {n2, n8}, {1, 2}〉, we have the following calls:

196

• pos=1, CombinationsFromTree(n2,1) returns S[1]={{n2}}.

• pos=2, CombinationsFromTree(n8,2) returns S[2]= ∅.

4. For configuration 〈2, {n2, n8}, {2, 1}〉, we have the following calls:

• pos=1, CombinationsFromTree(n2,2) returns S[1]={{n2,n3}, {n2,n5}}.

• pos=2, CombinationsFromTree(n8,1) returns S[2]= {{n8}}.

5. For configuration 〈2, {n6, n8}, {1, 2}〉, we have the following calls:

• pos=1, CombinationsFromTree(n6,1) returns S[1]={{n6}}.

• pos=2, CombinationsFromTree(n8,2) returns S[2]= ∅.

6. For configuration 〈2, {n8, n8}, {2, 1}〉, we have the following calls:

• pos=1, CombinationsFromTree(n6,2) returns S[1]={{n6,n7}}.

• pos=2, CombinationsFromTree(n8,1) returns S[2]= {{n8}}.

Hence, Line 14 is called only four times because two of the above results for

pos = 2 are empty:

combProduct = {{n2}} ⊗t {{n6, n7}}

= ∅ (A.13)

combProduct = {{n2, n3}, {n2, n5}} ⊗t {{n6}}

= ∅ (A.14)

combProduct = {{n2, n3}, {n2, n5}} ⊗t {{n8}}

= {{n2, n3, n8}, {n2, n5, n8}} (A.15)

combProduct = {{n6, n7}} ⊗t {{n8}}

= {{n6, n7, n8}} (A.16)

197

For i = 3, NodeComb ∈ {{n2, n6, n8}} and string ∈ {{1, 1, 1}}. We have one con-

figuration at this point: 〈3, {n2, n6, n8}, {1, 1, 1}〉. Line 11 calls Combinations-

FromTree on each node in this unique configuration with the corresponding

results:

• pos=1, CombinationsFromTree is called with (n2,1), which returns

S[1]= {{n2}}.

• pos=2, CombinationsFromTree is called with (n6,1), which returns

S[2]= {{n6}}.

• pos=3, CombinationsFromTree is called with (n8,1), which returns

S[3]= {{n8}}.

Hence, Line 14 is called only once to combine the results of the above calls,

yielding:

combProduct = ({{n2}} ⊗t {{n6}})⊗t {{n8}}

= ∅ (A.17)

At the end, adding the root node n1, we have

lnodesets = {{n1, n2, n3, n4}, {n1, n2, n3, n8}, {n1, n2, n5, n8}, {n1, n6, n7, n8}}.

Thus, the set of combinations of four vertices extracted from the combination tree of

Figure A.9 is {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, d, c, e}}.

198

A.3.3.4 Implementation of the ⊗t operator

In general, the process of computing S1⊗tS2, where S1 and S2 are sets of sets, can be

executed in two steps:

1. The computation of S1 ⊗ S2 as specified in Expression (A.2), and

2. The removal from the resulting set of those elements that do not satisfy the

conditions of ⊗t specified in Expression (A.3).

We propose to compute S1⊗t S2⊗t . . .⊗t Sn by modeling the problem as a Constraint

Satisfaction Problem (CSP) [Dechter, 2003]. A CSP, P=(V ,D, C), is fully defined by

specifying the set of variables V , the set of their respective domains D, and the set of

constraints C that restrict the allowed combinations of values to variables. A solution

to a CSP is an assignment of a value to each variable such that all constraints are

simultaneously satisfied. In general, the task is to find one or all solutions to the CSP.

CSPs are commonly used to model combinatorial problems and solve using advanced

search techniques and constraint propagation algorithms [Dechter, 2003]. We model

the execution of the operator ⊗t over a sequence of sets S1, S2, . . . , Sn as a CSP as

follows. A variable Vi of the CSP is (the ‘name’ of) the set Si ∈ {S1, S2, . . . , Sn}.

The domain of the variable Vi is the definition of the corresponding set. A binary

constraint is applied to every two variables Vi and Vj such that i < j. It constrains

the acceptable combinations of values for Vi and Vj to satisfy the conditions3 specified

by Expression (A.3). We solve the CSP using exhaustive backtrack search [Dechter,

2003], which yields all solutions to the problem, thus the set S1 ⊗t S2 ⊗t . . . ⊗t Sn.

The ordering of the variables in the search is fixed and static, and follows that of the

sets Si. We use a standard partial-lookahead technique to improve the performance of

3These conditions are discussed in the proof of Theorem 18.

199

the search known as forward checking (FC) [Haralick and Elliott, 1980]. In summary,

backtrack search with FC operates as follows:

1. A variable Vi is assigned a value from its domain. Initially i = 1.

2. All variables Vj>i are ‘revised’ given Vi. To revise a variable Vj given a variable

Vi, we remove all values in the domain of Vj that do not have at least one

consistent value in the domain of Vi.

The search process is repeated by assigning any unassigned variable, until all the

variables have been assigned. When all the variables are assigned, the assignment

is a solution to the CSP, and consequently a valid element of S1 ⊗t S2 ⊗t . . . ⊗t Sn.

If, at some point during search, the domain of any of the unassigned variables is

empty or after a solution is found, we backtrack chronologically to consider alternative

assignments to the variables. The process ends when all the values for the first variable

have been considered.

A.3.3.5 Completeness & soundness of CombinationsFromTree

We first establish that CombinationsFromTree generates only connected subgraphs,

then use this result to prove its soundness and completeness.

Proposition 8 Every combination of tree nodes generated by CombinationsFromTree

induces a connected subgraph of the combination tree and corresponds to a set of vertices

that induce a connected subgraph in the graph.

Proof: We first prove that every combination generated by CombinationsFromTree

induces a connected subgraph in the combination tree. Then, we prove that the vertices

corresponding to the generated combination of tree nodes form a connected subgraph

of the original graph.

200

The proof is by induction. When Algorithm 15 is called on a tree of depth zero,

the only combination returned is the root, which induces a connected subgraph in

the tree. Thus, we established the base case. We form the inductive hypothesis as

follows: all generated combinations from tree of depth (d−1) are connected. Then, we

state and prove the inductive step: If all generated combinations from tree of depth

(d− 1) are connected, then the combinations returned from the tree of depth d are

also connected. When Algorithm 15 is called on a tree of depth d rooted at root, it

is recursively called on the children of the root. Each combination generated from

the tree is formed of combinations of nodes obtained from calls to Algorithm 15 on

subtrees of depth at most (d− 1). Each of those subtrees are rooted at a child of root,

hence each combination returned from the subtrees includes a child of root, and is

connected. When these combinations are combined, and root is added to them, the

result is a combination of nodes that induces a connected subgraph in the combination

tree.

An edge between two nodes in the combination tree exists when the graph vertices

to which the tree nodes correspond are adjacent. Thus, every edge in the combination

tree corresponds to an edge in the original graph. Consequently, the set of vertices

corresponding to a combination of connected tree nodes are also connected in the

graph. Thus, the proof holds by the principle of mathematical induction. �

Theorem 18 (CombinationsFromTree is sound and complete.) Given a com-

bination tree generated from a graph G with vertex v and the parameter k, Combina-

tionsFromTree generates all unique k-ConnVertices sets that include the vertex v.

Proof: First, we prove that CombinationsFromTree (Algorithm 15) generates

all k-ConnVertices sets that include v. Consider a combination of k vertices of G

201

that includes vertex v and induces a connected subgraph of G. Consider also the

combination tree T generated from G with vertex v and the parameter k. Proposition 5

insures that, for every connected subgraph G′ induced on G by at most k vertices

including v, the depth-first tree of G′ rooted at v is isomorphic to a subgraph of T

rooted at v. Therefore, considering all possible connected subgraphs of T of size k

rooted at v guarantees that all connected subgraphs in G that include vertex v are

considered.

The argument now shifts to showing that all possible induced subtrees in the

combination tree including the root are considered in Line 14 of Algorithm 15. Let

root be the root of the combination tree considered. The three loops in Lines 4, 5,

and 6 ensure that Algorithm 15 systematically enumerates all the configurations4

that lead to combinations of size (k − 1). Using these configurations, Algorithm 15 is

recursively called in Line 11 on subtrees rooted at the children of root, and then the

results are passed to the operator ⊗t to generate combinations of tree nodes of size

(k − 1). The task is thus now to prove that Line 14 produces all k-ConnVertices sets.

The operator ⊗t is applied to the sets S[pos], where pos varies from one to the

number of subtrees in the considered configuration. The sets S[pos] are produced by

Algorithm 15 (see Line 11) from subtrees ti rooted at children of root. Further, each

element in S[pos] is a combination of tree nodes and induces a connected subgraph

in the tree by Proposition 8. Each element in the set produced at Line 11 by the

application of the ⊗t operator is a set of tree nodes of size (k − 1). The set produced

at Line 14 is, by the definition5 of operator ⊗t, a subset of the cross-product-like

operation of the sets to which it is applied. The elements that are not removed

from the ‘complete’ cross-product are those that verify the conditions specified in

4See Definition 7.
5See Definition 6.

202

Expression (A.3). The task is now to prove that:

• The elements ‘ruled out’ by the Expression (A.3) yield combinations of tree

nodes that are already in the set (i.e., they are ‘duplicate’ elements).

• No ‘duplicate’ elements are present in the resulting set.

Let us return to the application of the operator ⊗t in Algorithm 15. Let S[pos]

and S[pos+ 1] be two sets of tree-nodes combinations obtained from recursive calls to

Algorithm 15 and to which Algorithm 15 applies the operator ⊗t. At the lowest level of

the recursive calls, the tree roots given as arguments to CombinationsFromTree in

Line 11 of Algorithm 15 are single tree nodes. In Line 14, the result from subtrees that

have the same parent are combined using the operation ⊗t. Hence, the Expression (A.6)

must hold for every pair of nodes in an element of S[pos]⊗t S[pos+ 1],

Let comb and comb′ be two combinations generated from a combination tree such

that the set of tree nodes in comb is different from that in comb′, but such that

comb and comb′ correspond to the same set of graph vertices. Given a combination

of tree nodes, which is element of S[pos]⊗t S[pos + 1], we showed in Proposition 8

that the nodes in the combination are connected in the tree. By construction, the

root of the combination tree is one of the nodes in the combination. Hence, both

comb and comb′ induce connected sets of nodes in the tree, and include the root

node of the combination tree. Given that comb 6= comb′, there must necessarily

exist a tree node n that has a child nc, such that n ∈ comb, n ∈ comb′, nc ∈ comb

and nc /∈ comb′. Because comb and comb′ both correspond to the same set of graph

vertices, there must be a node n′c ∈ comb′ such that Vertex(n′c) =Vertex(nc),

which is impossible because it violates Expression (A.6). Indeed, we have the nodes

n, n′c ∈ comb′ such that ∃nc ∈Children(n) such that Vertex(nc)=Vertex(n′c).

Because of this impossibility, we conclude that no two combinations of tree nodes in

203

S[pos]⊗t S[pos+ 1] can correspond to the same set of graph vertices. In conclusion,

no two elements in S[pos]⊗t S[pos+ 1] are the same. �

A.4 Memoization

At a node n at depth depth in the combination tree, CombinationsFromTree

(Algorithm 15) recursively calls itself (Line 11) at most the following number of times:

k−depth−1∑
i=1

(
idi(k − depth− i− 1)(i−1)

)
, (A.18)

where d denotes the degree of the graph. At each call, the arguments passed to

CombinationsFromTree are a child of n and a value of size ranging from 1 to

(k− depth− 1). Hence, there are at most d · (k− depth− 1) distinct calls that can be

made from a single node at depth in the combination tree.

To avoid executing the redundant calls CombinationsFromTree, the first time

Algorithm 15 is called on a tree node with a given combination size, the result is

stored in the node. The next time the call is made on the same node with the same

combination size, the stored result is retrieved and used, which avoids re-executing

the call. Hence we store at most (k − depth− 1) sets of k-ConnVertices sets at each

node. These k-ConnVertices sets are stored in an array indexed by the size of the

combination.

Likewise, the results of the calls to k-compositions are also memoized in a data

structure that is global to ConSubg (Algorithm 11). The former memoization (i.e.,

in CombinationsFromTree) proved to be extremely effective in reducing running

time. The latter (i.e., in k-compositions) was also quite effective but to a lesser

extent than the former. Neither introduced running-time overhead. The memory

204

overhead of the former dominates that of the latter and is analyzed in Section A.5.2.

A.5 Complexity Analysis of ConSubg

The procedure presented in this appendix can be divided into two parts:

1. Construction of the combination tree in BuildTree (Algorithm 14), and

2. Generation of the combinations from the generated combination tree in Combi-

nationsFromTree (Algorithm 15).

Let V be the set of vertices of the graph G and k be the size of the combinations

sought. Below, we assume that d is the degree of the graph.

A.5.1 Time complexity

Algorithm 15 is called recursively in Line 11 on the nodes of the combination tree

generated by Algorithm 14 (Section A.3.2). The depth of tree is (k − 1). At a given

depth, Algorithm 15 is called on each node for combination sizes varying from 1 to

(k − depth). Therefore, except for the root node, Algorithm 15 is called on each node

(k − depth) distinct times. Algorithm 15 is called only once on the root node with

the combination size k. The results of calling Algorithm 15 recursively on a node of

the combination tree is stored by memoization for future use in the recursion (see

Section A.4). Consequently, to analyze the time complexity of Algorithm 15, we only

need to account for the cost of the distinct calls on each node.

The number of nodes at depth depth is ddepth. Let T (k) be the time complexity

of calling Algorithm 15 on a node with combination size k that does not include the

cost of the recursive step. The value T (k) depends on the value of k. Adding the

205

number of nodes and the number of distinct calls to Algorithm 15 on each node of the

combination tree yields the following time complexities per depth:

depth = 0 : T (k) (A.19)

depth = 1 : [T (1) + T (2) + · · ·+ T (k − 1)]× d (A.20)

depth = 2 : [T (1) + T (2) + · · ·+ T (k − 2)]× d2 (A.21)

depth = 3 : [T (1) + T (2) + · · ·+ T (k − 3)]× d3 (A.22)

. . .

depth = k − 2 : [T (1) + T (2)]× dk−2 (A.23)

depth = k − 1 : [T (1)]× dk−1 (A.24)

Expression (A.19) is the cost of calling Algorithm 15 on a node with combination

size k. Expressions (A.20) to (A.24) are the cost of the distinct recursive calls. At

each depth, there are ddepth nodes, and the algorithm is called with combination sizes

ranging from 1 to (k − depth − 1). Given the memoization mechanism explained

in Section A.4, only (k − depth)ddepth recursive calls are effectively executed at a

given depth depth. Summing and grouping Expressions (A.19) to (A.24) yields the

complexity of Algorithm 15 including all distinct recursive calls:

T (k)+T (k−1)d+T (k−2)
2∑
i=1

di+T (k−3)
3∑
i=1

di · · ·+T (2)
k−2∑
i=1

di+T (1)
k−1∑
i=1

di (A.25)

Let Ck be an upper bound on the number of k-ConnVertices sets returned by

Algorithm 15. All the combinations include the vertex in the label of the root node.

Given that a combination tree has O(d(k−1)) nodes, we have Ck = O(d(k−1)
2
). On the

other hand, the O(d(k−1)) nodes of the combination tree correspond to at most |V |

206

vertices of the original graph. Thus,

Ck = O(min(|V |(k−1), d(k−1)2)). (A.26)

When Ck is close to Θ(|V |(k−1)), using the brute-force algorithm, LBF-ConSubg

(Algorithm 9), to generate all k-ConnVertices sets, is justified. Our approach is

justified when CK is much smaller than Θ(|V |(k−1)).

Below, we express the complexity of Algorithm 15 in terms of Ck. First, we consider

a direct application of Proposition 7.

Corollary 2 (Time complexity of S1 ⊗t S2 . . . ⊗t Sk−1 in Algorithm 15.) The

time complexity of S1 ⊗t S2 . . . ⊗t Sk−1 is O (|S1| · |S2| · . . . · |Sk−1| · k3), where k is

the size of combinations sought in Algorithm 15.

Proof: We assume that the check l ∈ Children(i) in Expression (A.3) is per-

formed in constant time using a hash-table data-structure for the children of the node.

The operator ⊗t as used in Algorithm 15 in Line 14 acts on s1, s2, . . ., sk−1, which are

elements of S1, S2, . . ., Sk−1 respectively such that s1 ∪ s2 ∪ . . . ∪ sk−1 is a candidate

combination of size (k − 1) and (|s1| + |s2| + . . . + |sk−1|) = (k − 1). The operator

⊗t is left associative. Therefore, when it is applied |Si| · |Sj| times the two left-most

operands Si and Sj, it yields an operand of size |Si| · |Sj| whose elements’ size is less

than k. The cost of the application of ⊗t on Si and Sj is O(|Si| · |Sj| ·k2). The resulting

set is used as an operand in the following application of ⊗t. The operator ⊗t is applied

(k− 2) times. Thus the cost of (k− 2) applications is O(|S1| · |S2| · . . . · |Sk−1| · k3). �

Proposition 9 (The complexity of T (k) of Expression (A.19).)

T (k) = O
(
k(k+2)d(k−1)(Ck−1)

(k−1)) . (A.27)

207

Proof: We will consider the time complexity of the recursive call to be constant,

because it is already accounted for in Expression (A.25). We assume without loss

of generality that k < d. The bounds will also hold for d ≤ k because Line 4 of

Algorithm 15 chooses the minimum of k and d. The loop in Line 4 iterates at most

(k − 1) times, the loop in Line 5 iterates
(

d
(k−1)

)
times, and the loop in Line 6 iterates

O
(
k(k−2)

)
times. Multiplying the three costs yields

O
(
kd(k−1)k(k−2)

)
. (A.28)

The loop in Line 8 iterates at most k times. We consider that the body of this loop is

executed in constant time (see above). The loop in Line 14 iterates at most (Ck−1)
(k−1)

times, and the cost of the loop in Line 14 is O
(
(Ck−1)

(k−1)k3
)
. The complexity of

the body of the loop in Line 6 is dominated by the complexity of the loop in Line 14.

Thus, the cost for the body of the loop in Line 6 is:

O
(
(Ck−1)

(k−1)k3
)
. (A.29)

Combining Expressions (A.28) and (A.29) yields

T (k) = O
(
k(k+2)d(k−1)(Ck−1)

(k−1)) . (A.30)

�

208

Substituting Expression (A.27) in Expression (A.25) yields:

O
(
k(k+2)d(k−1)(Ck−1)

(k−1)) (A.31)

+ O
(
k(k+1)d(k−1)(Ck−2)

(k−2)) (A.32)

+ O
(
k(k)(d(k−1) + d(k−2))(Ck−3)

(k−3)) (A.33)

+ O
(
k(k−1)(d(k−1) + d(k−2) + d(k−3))(Ck−4)

(k−4)) (A.34)

. . .

+ O

(
k4

k−1∑
i=2

di(C1)

)
(A.35)

+ O

(
k3

k−1∑
i=1

di

)
. (A.36)

Note that the Expressions (A.32) to (A.36) belong to O
(
k(k+1)d(k−1)(Ck−1)

(k−1)),
because (Ck−1)

(k−1) > (Cα)α for all α < (k−1) and kd(k−1) >
k−1∑
i=1

di. There are (k−1)

terms in Expressions (A.32) to (A.36). Hence, their sum, which is the complexity of

computing the combinations from a combination tree, is bounded by

O
(
k(k+2)d(k−1)(Ck−1)

(k−1)) . (A.37)

Because Algorithm 15 is repeated |V | times, the overall complexity of Algorithm 11 is

O
(
|V |k(k+2)d(k−1)(Ck−1)

(k−1)) . (A.38)

Note that, in Expression (A.38), d is the degree of the graph. Thus, the complexity

of our algorithm, ConSubg (Algorithm 11), depends on the degree of the graph.

Alternatively, on graphs of bounded degree, the complexity of ConSubg is dominated

by the number of connected subgraphs (i.e., Ck−1
k−1). In contrast, the complexity of the

209

brute-force algorithm BF-ConSubg (Algorithm 9) is dominated by the number of

vertices in the graph (i.e., Θ|V |k) and that of its localized version, LBF-ConSubg

(Algorithm 10), depends on the degree of the graph but not on the number of connected

components (i.e., O(|V |dk(k−1))).

A.5.2 Space complexity

The space complexity is dominated by the space required to store the results of

Algorithm 15 for every considered k in each node of the combination tree generated

by Algorithm 14. Therefore, the space complexity is

O
(
d(k−1)(Ck−1)

(k−1)) . (A.39)

This memory requirement is detrimental to the performance of our algorithm on

problems that have many connected subgraphs, a situation that corresponds to high

density graphs and large value of k. Indeed, Figure A.11 illustrates a situation where

ConSubg cannot terminate on a graph of 100 vertices, of density 40%, and with

k = 6.

A.6 Correctness

Theorem 19 (Soundness and completeness of ConSubg) ConSubg (Algorithm 11)

generates all unique k-ConnVertices sets from the combination trees.

Proof: Let v be the first vertex considered in Algorithm 11. Algorithm 15 returns all

unique combinations of vertices including v, as established by Theorem 18. Therefore,

any k-ConnVertices set that includes v is generated from the combination tree with a

root node labeled with vertex v.

210

After removing vertex v from the graph, Algorithm 11 repeats the same process

for a vertex v′ chosen arbitrarily from the graph. All k-ConnVertices sets starting at

v′ in the updated graph are generated in a similar manner. Thus, all k-ConnVertices

sets in the graph that include v′ are generated either when Algorithm 11 processes

v (and those combinations would thus include v) or when it processes v′. Hence, no

k-ConnVertices set that includes v′ can be missed. Finally, all k-ConnVertices sets for

each of the remaining graph vertices are generated in a similar manner. Indeed, the

k-ConnVertices sets for a given vertex are generated by Algorithm 11 at any point

either before the vertex is considered or when it is processed (at the latest).

Proposition 4 asserts that no k-ConnVertices set can be generated from two distinct

combination trees. Theorem 18 guarantees that all k-ConnVertices sets generated

from a combination tree are unique. Therefore, all k-ConnVertices sets generated by

Algorithm 11 are also unique. �

A.7 Empirical Evaluations

Below, we compare the performance of the proposed algorithm, ConSubg, to that of

the brute-force algorithm, BF-ConSubg, and its localized variant, LBF-ConSubg.

We measured the CPU time of executing the algorithms on graphs with a fixed degree

(Section A.7.1), scale-free graphs (Section A.7.2), and graphs of constraint satisfaction

benchmarks (Section A.7.3). For random graphs (i.e., fixed degree and scale-free

graphs), we generated 30 instances per data point. In all cases, we averaged the results

on the instances that completed within one hour of CPU time. A missing data point

corresponds to an experiment that did not terminate within the one-hour time limit.

211

A.7.1 Graphs of a fixed degree

Because ConSubg is designed to exploit the structure of the graph, one would expect

that its performance would be worse on graphs where all vertices have the same degree

(i.e., graphs lacking structure). For this purpose, we wrote a generator to generate

connected random graphs where all vertices have the same degree. Given the number

of vertices of a graph and the degree of the graph (which is a constant less than

the number of vertices), we first determine the number of edges in the graph using

the hand-shaking theorem. Then, we repeat the following steps until each edge is

connected to two vertices. We select an edge that has not been connected to any

vertices. Then, we select two random vertices, and connect them with the edge only

if the two vertices are not already adjacent and if the degree of each of them is less

than the specified degree entered as input. If the resulting graph is not connected, we

discard it and repeat the process.

To test our algorithms on the graphs generated as described above, we conducted

the experiments summarized in Table A.2. In those experiments, we investigated the

Table A.2: Experiments on random graphs of a fixed degree.

Experiment |V | Degree Size of subgraphs Figure

I 100 10 k = 3, 4, 5, 6, 7 Figure A.10
100 40 k = 3, 4, 5, 6 Figure A.11

II {100,150,. . .,900} 10 k = 4 Figure A.12
{100,150,. . .,900} 40 k = 4 Figure A.13

III 100 {5,10,. . .,40} k = 4 Figure A.14
300 {5,10,. . .,40} k = 4 Figure A.15
400 {5,10,. . .,40} k = 4 Figure A.16

effect of increasing the size of the subgraph on sparse and dense graphs of 100 vertices

(Experiment I), the effect of increasing the number of vertices for a fixed size of the

subgraph on sparse and dense graphs (Experiment II), and the effect of increasing

212

the density of the graph for a fixed subgraph size and on graphs with 100, 300, and

400 vertices.

Experiment I Figure A.10 shows the performance of the three algorithms on sparse

graphs for increasing combination values k. On those graphs, ConSubg clearly

outperforms BF-ConSubg and LBF-ConSubg. Notably, BF-ConSubg and LBF-

ConSubg fail to terminate within the CPU time limit for k = 7 while ConSubg

succeeds. Figure A.11 shows the only experiment where ConSubg fails to terminate

because of the memory limitation while BF-ConSubg and LBF-ConSubg do. This

situation occurs for k = 6. Note that the graph density in this experiment is 40.40%.

Clearly, ConSubg fails to handle large values of k on dense graphs because of its

memory requirements as discussed in Section A.5.2. However, note that large dense

graphs are not of much use in practice because they have a prohibitively large number

of connected subgraphs, which are challenging to store and operate on even if we were

able to generate them.

0

100

200

300

400

500

600

700

800

900

3 4 5 6 7

Ti
m

e
 (

se
c)

k

Random: 100 vertices, degree=10

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.10: Increasing k with |V |=100 and of degree 10.

213

0

500

1,000

1,500

2,000

2,500

3 4 5 6

Ti
m

e
 (

se
c)

k

Random: 100 vertices, degree=40

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.11: Increasing k on graphs with |V |=100 and of degree 40.

Experiment II Figures A.12 and A.13 show that our new algorithm ConSubg

vastly outperforms the brute-force algorithm BF-ConSubg and its localized version

LBF-ConSubg as the size of the network increases. Indeed, on graphs of degree 10,

BF-ConSubg and LBF-ConSubg cannot handle graphs beyond 650 vertices. On

graphs of degree 40, they both stop at graphs with 600 vertices. ConSubg easily

scales to larger graphs in both cases and its cost remains relatively negligible.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

100 200 300 400 500 600 700 800 900

Ti
m

e
 (

se
c)

Number of Vertices

Random: degree=10, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.12: Increasing the number of vertices for k = 4 and graphs of degree 10.

214

0

500

1,000

1,500

2,000

2,500

3,000

3,500

100 200 300 400 500 600 700 800 900

Ti
m

e
 (

se
c)

Number of Vertices

Random: degree=40, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.13: Increasing the number of vertices for k = 4 and graphs of degree 40.

Experiment III Figures A.14, A.15, and A.16 show the performance of the algo-

rithms as the degree of the graph grows on graphs with 100, 300, and 500 vertices

respectively and for a fixed combination size k = 4. Here again, we see that the

performance of our new algorithm ConSubg deteriorates as the density of the graph

increases, again reaffirming that ConSubg is not suitable for dense graphs (see

Figure A.14). However, as the number of vertices increases, the brute-force algorithms

BF-ConSubg and its localized version LBF-ConSubg are an order of magnitude

more costly than ConSubg (see Figures A.15 and A.16). The main drawback of

BF-ConSubg and LBF-ConSubg is that they generate many subgraphs that are

not connected and, thus, must be discarded after they are generated, which ConSubg

is designed to not do. Incidentally, in Figures A.14, A.15, and A.16 the number of

combinations generated by LBF-ConSubg and BF-ConSubg is constant for all

degree values. However the corresponding curves present a slight positive slope. This

slight slope can be attributed to the cost of testing the connectivity of the generated

combinations.

In summary and in all our experiments on randomly generated graphs of a fixed

215

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40

Ti
m

e
 (

se
c)

Degree

Random: 100 vertices, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.14: Increasing the degree of the vertices for |V |=100 and k = 4.

0

50

100

150

200

250

5 10 15 20 25 30 35 40

Ti
m

e
 (

se
c)

Degree

Random: 300 vertices, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.15: Increasing the degree of the vertices for |V |=300 and k = 4.

degree, ConSubg usually and largely outperforms LBF-ConSubg, which always

outperforms BF-ConSubg. In particular:

1. The performances of LBF-ConSubg and BF-ConSubg are notably similar,

while the localized version is always slightly quicker than, or at least as quick as,

the original brute-force algorithm.

2. As the density of the graph increases, the likelihood that a given combination of

k vertices induces a connected subgraph increases, and the benefit of exploiting

216

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

5 10 15 20 25 30 35 40

Ti
m

e
 (

se
c)

Degree

Random: 500 vertices, k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.16: Increasing the degree of the vertices for |V |=500 and k = 4.

the structure of the graph obviously decreases. At some point, the cost of

building the data structures necessary for ConSubg becomes detrimental. Note

that, of all the experiments we conducted, this problem is visible only in the

experiments shown in Figures A.11 and A.16 where the graph density is 40.40%,

which is considered a high-density graph in practice.

A.7.2 Scale-free graphs

Scale-free graphs are commonly thought to model social networks and have received

an increased attention in recent years. To Generate Scale-Free Networks, we used

the procedure scale free graph from the open-source software NetworkX.6 The

procedure is based on the model proposed in [Bollobás et al., 2003]. We chose

the default parameters for scale free graph (alpha=0.41, beta=0.54, gamma=0.05,

delta in=0.2, and delta out=0) to generate the directed graph, and used the procedure

to undirected in NetworkX to obtain the corresponding undirected graph. We

generated undirected graphs of 100, 200, . . ., 900 vertices.

6NetworkX 1.3 http://networkx.lanl.gov/.

217

Increasing the number of vertices Figure A.17 shows the CPU time needed

to generate all subgraphs of size four (i.e., k = 4) by each of the three algorithms

compared. We see that both our algorithms ConSubg and LBF-ConSubg scale

significantly better with increasing number of vertices than the brute-force algorithm

BF-ConSubg. Also, ConSubg clearly outperforms LBF-ConSubg.

0

500

1000

1500

2000

2500

3000

3500

50 150 250 350 450 550 650 750 850

Ti
m

e
 (

se
c)

Number of Vertices

Scale Free: k=4

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.17: Increasing the number of vertices with k = 4 in scale-free networks.

Increasing k, the combination size Figure A.18 compares the performance of

the three algorithms on scale-free networks of 100 vertices as k grows. The brute-force

algorithm, BF-ConSubg, does not terminate within the time limit of one hour for

k = 7, and the performance of its localized version, LBF-ConSubg, is an order of

magnitude worse than that of ConSubg.

In summary, ConSubg clearly outperforms its competitors on scale-free graphs,

which are of practical importance. Interestingly, the performance of the localized

variant of the brute-force algorithm, LBF-ConSubg, is significantly better than that

of the original algorithm, albeit it is not as good as that of ConSubg. Thus, while

localization helps, it does not take full advantage of the problem structure.

218

0

500

1000

1500

2000

3 4 5 6 7

Ti
m

e
 (

se
c)

k

Scale Free: 100 vertices

ConSubg

LBF-ConSubg

BF-ConSubg

Figure A.18: Increasing k in scale-free networks of 100 vertices.

A.7.3 CSP graphs

We examined the benchmarks of constraint satisfaction problems (CSPs) used in the

2009 Constraint Solver Competition,7 and considered the dual graphs of 1689 CSP

instances. Given that our algorithm is best suited for sparse graphs, it is appropriate

to report the density of those benchmarks. 56.5% of the dual graphs of the 1689

benchmark instances have density less than or equal to 15%. The dual graphs can

be reformulated, without loss of information, into equivalent graphs by removing

redundant edges [Dechter, 2003]. We applied the algorithm proposed in [Janssen et

al., 1989; Jégou and Vilarem, 1993] to remove redundant edges. The resulting minimal

dual graphs that have density less than or equal to 11% constitute 79.7% of all tested

instances. Consequently, it is fair to say that most benchmark problems, including

the most challenging ones, have sparse dual graphs.

We executed ConSubg, LBF-ConSubg, and BF-ConSubg with k = 5 on the

dual graphs of those 1689 instances after removing redundancies. Each experiment

on a single instance was limited to a one hour. Table A.3 shows a summary of the

7http://www.cril.univ-artois.fr/CSC09/benchs/CSC09.tar.

219

results. Below we relate some observations:

Table A.3: Summary of results on 1689 CSP benchmark instances.

Number of instances ConSubg LBF-ConSubg BF-ConSubg

Completed 1633 1602 918

Not completed 56 87 771

Algorithm performs best 1296 35 0

Completed by no algorithm 21

Missed by only ConSubg 35

• ConSubg is clearly the champion, both in terms of the number of instances

it solves (1633 for ConSubg versus 1602 for LBF-ConSubg and 918 for

BF-ConSubg) and the number of instances on which it performs as good as,

or better than, the other two algorithms (1296 for ConSubg versus 35 for

LBF-ConSubg and 0 for BF-ConSubg).

• ConSubg failed to complete the 56 instances because it ran out of memory

space as predicted in Section A.5.2 well before the one-hour time limit imposed

on the experiments. However, LBF-ConSubg and BF-ConSubg failed to

complete 87 and 771 instances respectively only because of the time limitation.

• ConSubg does not terminate within one hour processing time on 35 instances

that were completed by both LBF-ConSubg and BF-ConSubg. A quick

examination of those 35 instances shows that they all come from a single

problem class (called bddSmall). They have high density (average 31.59%) and

relatively few vertices (exactly 133 vertices), which means that most of the

combinations enumerated by LBF-ConSubg and BF-ConSubg are connected.

Such problems are not suited for ConSubg, which is intended for large problems

with small density where LBF-ConSubg and BF-ConSubg would fail. Further,

those 35 instances yield a huge number of k-ConnVertices (from 65,848,590

220

to 102,891,308), which is one to two orders of magnitude the number of k-

ConnVertices of all 1654 other instances. Thus, that constraint propagation

algorithms intended to be applied on such problems become totally impractical.

In conclusion, this class of problems is not relevant to the techniques targeted

by our approach.

• Excluding the 35 bddSmall instances discussed above, we notice that the set of 21

instances not completed by ConSubg is a strict subset of the set of 87 instances

not completed by LBF-ConSubg, which is in turn a strict subset of the 771

instances not completed by BF-ConSubg. Thus, except for the 35 bddSmall

instances, ConSubg terminates on more instances than LBF-ConSubg, which

terminates on more instances than BF-ConSubg.

Tables A.4, A.5, and A.6 provide condensed information on 1617 instances pertain-

ing to 123 classes of problems (the remaining 72 instances tested were too simple to

be reported). For each class, the tables provide the number of instances, the average

number of vertices of the dual graphs after removing redundant edges, and the average

density of the resulting graphs. The tables provide also the average CPU time and

the number of instances solved by ConSubg, LBF-ConSubg, and BF-ConSubg.

The average CPU time is computed over the number of completed instances by the

algorithm. Finally, those tables give the average number of connected subgraphs of

size 5. Entries shown in boldface in the table correspond to the best values found.

The dash character (-) indicates that the algorithm did not terminate on any instance

in the class. ConSubg runs out of memory, and LBF-ConSubg and BF-ConSubg

run out of time.

Tables A.4 and A.5 show instances where ConSubg clearly outperforms the other

two algorithms, frequently solving instances that resisted other algorithms and always

221

reducing the CPU by often several orders of magnitude.

Table A.6 shows seven problem classes where the performance of ConSubg was the

least spectacular. As one can clearly see, the graphs of those instances have relatively

few vertices but high density. However, except for the class bddSmall, ConSubg

solves all instances solved by the other algorithms and CPU time does not exceed half

a second.

A.8 Conclusion

In this appendix, we proposed a new algorithm, ConSubg, for computing all connected

subgraphs of a graph that have a fixed size. This problem is particularly important for

enforcing high levels of consistency on Constraint Satisfaction Problems. We compared

the performance of ConSubg to that a brute-force algorithm, BF-ConSubg, that

generates all subgraphs then discards those that are not connected and also to a

localized version of the brute-force algorithm, LBF-ConSubg, which we also proposed.

We showed that ConSubg outperforms all other algorithms on structured graphs but

is not suited for dense graphs when k is relatively large.

Our contributions are: (1) the posing of the problem of generating all connected

subgraphs of a graph that have a fixed size, (2) the identification of an application

where it is needed, and (3) the design and evaluation of a new algorithm for solving it.

We are currently investigating how to reduce, or eliminate, the memory requirements

while maintaining the processing time within practical limits.

222

Table A.4: Results of experiments on CSP benchmarks for k = 5 (Part 1).

Benchmark ConSub LBF BF

#
In

st
a
n
c
e
s

#
V
e
r
ti
c
e
s

(a
v
e
r
a
g
e
)

D
e
n
si
ty

%
(a

v
e
r
a
g
e
)

T
im

e
[m

s]
(a

v
e
r
a
g
e
)

#
In

st
a
n
c
e
s

so
lv
e
d

T
im

e
[m

s]
(a

v
e
r
a
g
e
)

#
In

st
a
n
c
e
s

so
lv
e
d

T
im

e
[m

s]
(a

v
e
r
a
g
e
)

#
In

st
a
n
c
e
s

so
lv
e
d

#
C
o
m
b
in

a
ti
o
n
s

(a
v
e
r
a
g
e
)

aim-100 24 262.58 1.82 126.67 24 292,679.38 16 740,320.63 16 42,677.21
aim-200 24 532.75 0.94 419.17 24 1,765,608.57 7 - 0 134,159.83
aim-50 24 129.58 3.55 41.67 24 229,633.33 24 99,642.50 20 14,076.46
allIntervalSeries 14 563.43 2.58 172.86 14 16,051.43 14 387,881.25 8 33,688.64
BH-4-4 10 431.00 0.86 110.00 10 22,413.00 10 - 0 26,673.60
BH-4-7 15 1,261.00 0.30 417.33 15 89,696.67 15 - 0 89,585.80
bqwh-15-106 10 592.30 0.62 129.00 10 247,296.00 10 - 0 30,528.40
bqwh-18-141 10 876.90 0.42 207.00 10 485,233.00 10 - 0 47,419.70
chessbdColor 6 405.67 3.04 1,486.67 6 896,425.00 4 859,603.33 3 369,164.67
coloring 11 198.73 3.34 39.09 11 468,465.45 11 12,216.67 9 9,603.55
composed-25-1-2 6 224.00 1.66 50.00 6 14,581.67 6 2,347,030.00 6 12,398.83
composed-25-1-25 5 247.00 1.52 58.00 5 23,394.00 5 - 0 14,528.00
composed-25-1-40 5 262.00 1.44 62.00 5 31,174.00 5 - 0 15,795.80
composed-25-1-80 6 302.00 1.26 66.67 6 40,040.00 6 - 0 19,014.67
composed-25-10-20 5 620.00 0.59 144.00 5 328,602.00 5 - 0 34,134.20
composed-75-1-2 5 624.00 0.60 156.00 5 1,317,028.00 5 - 0 41,653.00
composed-75-1-25 5 647.00 0.58 168.00 5 1,383,910.00 5 - 0 43,806.40
composed-75-1-40 5 662.00 0.57 170.00 5 1,475,066.00 5 - 0 45,147.60
composed-75-1-80 5 702.00 0.54 184.00 5 1,754,266.00 5 - 0 48,667.80
dag-half 15 56.00 21.68 1,595.33 15 2,490.67 15 2,576.00 15 343,818.73
driver 2 2,136.00 0.82 845.00 2 1,430.00 1 1,993,930.00 1 136,263.50
dubois 13 65.38 5.47 3.08 13 14.62 13 103,950.77 13 597.85
ehi-85 5 4,108.40 0.09 1,740.00 5 - 0 - 0 310,019.40
ehi-90 5 4,368.00 0.09 1,910.00 5 - 0 - 0 329,943.00
frb30-15 5 225.40 1.65 50.00 5 52,640.00 5 1,696,837.50 4 13,743.00
frb35-17 5 312.00 1.15 70.00 5 179,202.00 5 - 0 20,030.80
frb40-19 5 371.80 0.97 86.00 5 232,160.00 5 - 0 24,209.20
frb45-21 5 436.60 0.83 100.00 5 348,554.00 5 - 0 28,827.00
frb50-23 5 480.40 0.77 120.00 5 479,054.00 5 - 0 32,679.80
frb53-24 5 540.40 0.67 134.00 5 605,546.00 5 - 0 36,977.20
frb56-25 5 558.80 0.66 148.00 5 691,146.00 5 - 0 38,599.20
frb59-26 5 596.60 0.62 164.00 5 868,088.00 5 - 0 41,594.80
geom 10 422.80 0.90 99.00 10 73,799.00 10 - 0 24,598.40
golombRlrArity3 11 751.00 0.90 233.64 11 39,200.00 11 180,920.00 1 47,821.55
golombRlrArity4 5 238.40 1.39 136.00 5 517,702.00 5 792,390.00 3 46,421.60
hanoi 5 46.60 13.43 0.00 5 0.00 5 24,966.00 5 42.60
haystacks 5 1,539.20 0.38 454.00 5 11,812.00 5 - 0 65,296.60
jobShop-e0ddr1 10 265.00 1.37 54.00 10 17,356.00 10 - 0 11,570.00
jobShop-e0ddr2 10 265.00 1.37 51.00 10 15,673.00 10 - 0 11,555.70
jobShop-enddr1 10 265.00 1.37 51.00 10 17,593.00 10 - 0 11,570.00
jobShop-enddr2 6 265.00 1.37 50.00 6 14,650.00 6 - 0 11,571.50
jobShop-ewddr2 10 265.00 1.37 48.00 10 15,849.00 10 - 0 11,555.70
js-taillard-15 10 1,785.00 0.21 505.00 10 234,190.00 10 - 0 88,542.80
js-taillard-20 10 4,180.00 0.09 1,677.00 10 519,587.00 10 - 0 220,239.10
js-taillard-20-15 10 3,130.00 0.12 1,113.00 10 357,110.00 10 - 0 165,069.40
knights 10 52.00 18.46 9.00 10 266.00 10 114.44 9 2,009.00
langford 4 380.75 3.21 97.50 4 3,905.00 4 110.00 1 19,725.50
langford2 14 446.71 2.94 122.14 14 4,650.71 14 327,998.33 6 23,874.36
langford3 11 948.82 1.09 300.00 11 11,165.45 11 44,445.00 2 53,292.36
langford4 10 999.00 1.10 321.00 10 11,833.00 10 86,395.00 2 56,382.60
lexHerald 10 487.90 8.34 8,895.00 10 110.00 4 115.00 4 2,502,517.60
lexPuzzle 14 289.00 7.87 2,211.54 13 414,564.00 10 106,602.22 9 657,299.38
Results continue in next table.

223

Table A.5: Results of experiments on CSP benchmarks for k = 5 (Part 2).

Benchmark ConSub LBF BF

#
In

st
a
n
c
e
s

#
V

e
rt

ic
e
s

(a
v
e
ra

g
e
)

D
e
n
si

ty
%

(a
v
e
ra

g
e
)

T
im

e
[m

s]
(a

v
e
ra

g
e
)

#
In

st
a
n
c
e
s

so
lv

e
d

T
im

e
[m

s]
(a

v
e
ra

g
e
)

#
In

st
a
n
c
e
s

so
lv

e
d

T
im

e
[m

s]
(a

v
e
ra

g
e
)

#
In

st
a
n
c
e
s

so
lv

e
d

#
C

o
m

b
in

a
ti

o
n
s

(a
v
e
ra

g
e
)

modifiedRenault 40 151.58 1.78 16.50 40 8,893.00 40 323,745.25 40 6,036.60
nengfa 2 976.50 1.40 145.00 2 33,065.00 2 217,290.00 1 40,707.00
ogdPuzzle 15 263.60 14.88 2,164.29 14 365,969.09 11 88,025.00 10 598,629.64
os-gp 15 1,000.00 0.38 270.67 15 108,932.67 15 - 0 52,697.00
os-taillard-10 10 900.00 0.42 236.00 10 256,556.00 10 - 0 51,909.80
os-taillard-15 10 3,150.00 0.12 1,151.00 10 901,699.00 10 - 0 191,352.40
os-taillard-4 10 48.00 7.09 7.00 10 388.00 10 914.00 10 1,563.90
os-taillard-5 10 100.00 3.54 18.00 10 4,112.00 10 39,267.00 10 4,203.00
os-taillard-7 10 294.00 1.25 60.00 10 48,247.00 10 - 0 15,300.80
pigeons 10 309.20 3.90 79.00 10 3,756.00 10 88,726.00 5 16,210.60
pret 8 70.00 5.36 2.50 8 35.00 8 19,972.50 8 497.00
primes-10 15 44.00 11.01 28.00 15 2,839.33 15 3,246.00 15 9,520.73
primes-15 16 46.25 10.39 80.63 16 2,403.13 16 3,223.75 16 25,388.38
primes-20 15 48.00 10.81 103.33 15 3,601.33 15 4,612.00 15 32,392.33
primes-25 15 48.00 11.81 99.33 15 2,928.67 15 3,838.67 15 31,125.33
primes-30 15 60.00 8.96 121.33 15 5,952.67 15 6,198.00 15 38,786.40
QCP-10 15 822.00 0.46 213.33 15 281,187.33 15 - 0 47,558.87
QCP-15 15 2,519.27 0.15 853.33 15 1,306,854.67 15 - 0 155,672.87
queenAttacking 6 723.50 2.39 235.00 6 17,148.33 6 65,610.00 2 40,884.00
queens 6 141.17 12.25 31.67 6 971.67 6 212,408.00 5 6,536.67
queensKnights 8 426.38 3.59 127.50 8 4,282.50 8 29,032.00 5 22,682.25
QWH-10 10 756.00 0.49 195.00 10 309,081.00 10 - 0 43,646.00
QWH-15 10 2,324.00 0.16 760.00 10 1,324,365.00 10 - 0 142,604.00
ramsey3 8 794.63 1.35 1,188.75 8 468,151.43 7 101,260.00 1 287,281.25
ramsey4 1 2,300.00 0.25 4,000.00 1 - 0 - 0 921,557.00
rand-2-23 10 253.00 1.52 60.00 10 1,877.00 10 - 0 12,194.00
rand-2-24 10 276.00 1.39 66.00 10 2,127.00 10 - 0 13,466.00
rand-2-25 10 300.00 1.28 68.00 10 2,351.00 10 - 0 14,801.00
rand-2-26 10 325.00 1.19 79.00 10 2,610.00 10 - 0 16,199.00
rand-2-27 10 351.00 1.10 83.00 10 2,872.00 10 - 0 17,660.00
rand-2-30-15 20 220.90 1.70 48.50 20 45,228.00 20 2,184,997.00 20 13,641.25
rand-2-30-15-fcd 20 221.55 1.69 50.50 20 48,451.00 20 2,223,963.50 20 13,700.70
rand-2-40-19 25 337.88 1.12 83.60 25 148,037.20 25 - 0 22,288.68
rand-2-40-19-fcd 25 338.60 1.12 79.60 25 157,371.60 25 - 0 22,361.60
rand-2-50-23 25 467.44 0.81 121.20 25 374,346.40 25 - 0 32,173.88
rand-2-50-23-fcd 25 466.72 0.81 117.60 25 370,328.80 25 - 0 32,116.40
rand-3-20-20 25 58.44 6.07 13.20 25 2,000.80 25 2,563.20 25 4,122.32
rand-3-20-20-fcd 25 58.72 6.02 11.20 25 2,045.60 25 2,619.60 25 4,109.84
rand-3-24-24 25 74.44 4.95 20.00 25 6,536.80 25 8,828.00 25 6,766.32
rand-3-24-24-fcd 25 74.76 4.95 18.80 25 6,652.00 25 8,943.60 25 7,066.68
rand-3-28-28 30 93.00 4.08 30.67 30 19,161.00 30 27,041.67 30 10,964.03
rand-3-28-28-fcd 29 93.00 4.08 31.38 29 19,083.10 29 27,315.17 29 10,855.48
renault 2 123.50 2.06 15.00 2 2,530.00 2 121,715.00 2 3,918.00
rlfapGraphs 10 2,638.00 0.18 767.00 10 480,292.00 10 - 0 125,167.30
rlfapGraphsMod 10 2,680.20 0.11 774.00 10 468,671.00 10 - 0 115,128.20
rlfapScens 10 3,702.60 0.12 1,238.00 10 458,117.00 10 - 0 175,810.00
rlfapScens11 10 4,103.00 0.09 1,343.00 10 440,730.00 10 - 0 188,087.00
rlfapScensMod 10 1,975.10 0.33 607.00 10 207,821.00 10 - 0 86,347.10
Results continue in next table.

224

Table A.6: Results of experiments on CSP benchmarks for k = 5 (Part 3).

Benchmark ConSub LBF BF

#
In

st
a
n
c
e
s

#
V

e
rt

ic
e
s

(a
v
e
ra

g
e
)

D
e
n
si

ty
%

(a
v
e
ra

g
e
)

T
im

e
[m

s]
(a

v
e
ra

g
e
)

#
In

st
a
n
c
e
s

so
lv

e
d

T
im

e
[m

s]
(a

v
e
ra

g
e
)

#
In

st
a
n
c
e
s

so
lv

e
d

T
im

e
[m

s]
(a

v
e
ra

g
e
)

#
In

st
a
n
c
e
s

so
lv

e
d

#
C

o
m

b
in

a
ti

o
n
s

(a
v
e
ra

g
e
)

schurrLemma 9 375.22 3.64 168.89 9 622,366.67 9 325,518.33 6 44,669.67
ssa 7 1,505.71 0.22 135.71 7 48,061.43 7 694,430.00 1 28,497.00
subs 9 385.00 1.05 92.22 9 10,845.56 9 2,307,540.00 1 19,848.78
super-queens 5 211.80 4.93 54.00 5 9,212.00 5 493,927.50 4 13,722.20
tightness0.1 15 752.07 0.52 214.00 15 11,058.67 15 - 0 42,869.33
tightness0.2 15 414.00 0.92 106.00 15 119,200.67 15 - 0 27,847.67
tightness0.35 15 250.00 1.48 54.00 15 133,288.00 15 - 0 15,384.33
tightness0.5 15 180.00 1.99 32.00 15 67,550.00 15 768,524.00 15 9,522.47
tightness0.65 15 135.00 2.54 20.00 15 26,266.00 15 178,738.67 15 5,952.00
tightness0.8 25 103.00 3.16 10.40 25 7,806.80 25 45,634.40 25 3,498.24
tightness0.9 25 84.00 3.67 7.20 25 2,733.60 25 16,226.80 25 2,192.64
TSP-20 15 230.00 1.59 45.33 15 1,572.00 15 2,643,796.67 15 10,168.00
TSP-25 15 350.00 1.06 78.67 15 2,800.67 15 - 0 16,613.00
ukPuzzle 13 234.00 13.69 1,497.50 12 76,992.00 10 95,790.00 10 456,936.25
varDimacs 9 810.56 0.95 113.33 9 116,662.22 9 821,695.00 2 29,054.44
wordsPuzzle 14 253.21 14.20 2,252.86 14 352,576.00 10 17,054.44 9 631,028.36
bddSmall 35 133.00 31.59 - 0 386,073.43 35 435,296.00 35 80,665,957.60
dag-rand 15 16.00 94.17 66.67 15 4.00 15 4.67 15 4,367.13
ogdVg 45 21.62 51.85 460.22 45 59.56 45 64.67 45 65,490.60
rand-8-20-5 20 18.00 52.58 41.00 20 7.00 20 7.00 20 6,549.05
ukVg 45 21.20 51.91 425.78 45 56.22 45 61.11 45 61,197.53
lexVg 40 21.35 51.92 427.00 40 56.50 40 60.50 40 60,771.28
wordsVg 40 21.53 52.32 413.50 40 54.75 40 57.50 40 58,599.68

Tally 1617 1579 1566 879

225

Appendix B

The Solution Cover Problem is in

NP-Complete

We prove in this appendix that finding the minimum number of solutions that cover

all the tuples of a minimal CSP is NP -hard.

B.1 Introduction

Given a CSP with a set of constraints C, we want to verify that every tuple in every

relation Ri defining a constraint Ci ∈ C is covered by a solution to the CSP. A tuple is

covered by a solution if the projection of the solution on the scope of the tuple equals

the tuple. The verification can be done with a subset of solutions that cover all the

tuples. Minimum Solution Cover problem is the problem of finding the smallest subset

of solutions that cover all the tuples, and it is in NP -Hard. The decision problem of

finding a subset of solutions of size k or less solutions such that every tuple is covered

by a solution from this set is in NP -Complete. We reduce the set cover problem to

solution cover by mapping the subsets to solutions and the elements to tuples.

226

By proving that the solution cover problem is in NP -Hard, we establish the

hardness of finding the minimum number of solutions necessary to compute the

minimal constraint network of a constraint satisfaction problem.

B.2 Constraint Satisfaction Problem (CSP)

A Constraint Satisfaction Problem (CSP) is defined by (X ,D, C) where:

1. X = {A,B, . . .} is a set of variables.

2. D = {DA, DB, . . .} is the set of finite domains, where DA, the domain of variable

A, is a set of values that can be assigned to A.

3. C = {C1, C2 . . . , Cn} is a set of constraints restricting the allowed combination of

values to variables in its scope, denoted scope(Ci), and is defined by the relation

Ri. The scope is the set of variables to which the constraint applies and the

relation is a subset of the Cartesian product of the domains of the variables in

the scope of Ci.

A solution to a CSP is an assignment of one value to each variable such that all

constraints are simultaneously satisfied. Solving a CSP corresponds to finding a

solution, which is a satisfiability problem, or finding all solutions, which is a counting

problem. In general, the satisfiability is NP -complete and the counting problem is

#P.

B.3 The Solution Cover Problem (SolCP)

Given a CSP, the solution cover problem (SolCP) is to answer if there is a solution

cover (SolC) of size less or equal to k, i.e. a subset of solutions to the CSP of size k

227

or less such that every tuple is covered by at least one of the solutions. A tuple is

covered by a solution if the projection of the solution on the scope of the tuple equals

the tuple. We prove that this problem is NP -Complete by constructing a polynomial

time transformation from the set cover problem (SCP).

The minimum solution cover is an optimization problem, where we want to find

the minimum SolC. It is in NP -Hard.

B.4 Proof of NP -Completeness

We first show that SolCP is in NP , then we choose the set cover problem (SCP)

and construct a polynomial time transformation from SCP to SolCP.

B.4.1 SolCP is in NP

Given a set of solutions of size k, we can check each tuple against this set to verify

that the tuple is covered by at least one of the solutions.

Theorem 20 The SolCP is in NP .

Proof: Given a set of solutions S of size k to the CSP, we can verify in polynomial

time that all the tuples can be covered by the solutions in S. It is sufficient to find for

each tuple τ ∈ R, a solution s ∈ S such that: the combination of values given by τ is

the projection of s on the variables in scope(R).

Each tuple can be checked against a solution in O(|X)|. Therefore, the solution

can be verified in O(tk · |X)|), where t is the total number of tuples in all the relations.

�

228

B.4.2 The set cover problem (SCP) is in NP -Complete

Consider the Set Cover problem (SCP) (U ,S) with a finite set of elements U and

a collection S of subsets of U . Is there a set cover (SC) of S of size k or less, i.e.

SC ⊆ S with |SC| ≤ k such that every element in U belongs to at least one member

of SC? SCP is in NP -Complete [Garey and Johnson, 1979].

B.4.3 Polynomial transformation from SCP to SolCP

We construct a polynomial transformation from SCP to SolCP such that a SC of

size k exists iff a SolC of size (2 · |S|+ k) exists.

Given a SCP (U ,S), we construct the CSP (X ,D, C) corresponding to the SCP.

Each CSP variable corresponds to an element in U , and each solution to the CSP

corresponds to a subset in S. Moreover, the constraints correspond to the elements in

U , and the tuples correspond to the membership of the elements in the subsets in S.

In addition, we add an umbrella constraint to restrict the solutions to the subsets in

S.

The CSP has additional variables and tuples in the relations to help the construction

which are detailed below.

B.4.3.1 Variables

We construct a CSP variable for each element in U , in addition to identifier variables.

Hence, for clarity, we partition the variables into two sets XU and XI , the former

corresponding to the set of elements in U and the latter containing the identifier

variables:

1. XU : each element corresponds to an element in U .

2. XI : the elements in this set are used to identify the tuples in the relations.

229

X = XU ∪XI

XU = {A|A ∈ U}

XI = {IA|A ∈ U}

B.4.3.2 Constraints

The set of constraints is composed of an umbrella constraint C0 and a set of constraints,

one for each element in U called element constraint.

For each element A in U we have a constraint CA. The scope of CA is binary with

the variables A and IA. Relation RA defines CA. By default, a tuple with value xA

assigned to A is added to RA called element tuple. Also, for each occurrence of A in a

subset in S, an additional element tuple is added. Thus, multiple tuples in RA may

have the value xA for variable A. The variable IA in the scope of CA is used to give a

unique identity to each tuple.

In addition, helper tuples are added to RA that assign a numerical value to A. We

have a helper tuple in RA for each subset in S.

The element constraints do not have any common variable in their scopes. To map

each solution to a subset in S (in addition to the empty set), the umbrella constraint

C0 is added.

The scope of C0 has all the variables in U . Each subset in S is encoded as a tuple

in R0. These tuples are called subset tuples. The subset tuple that encodes the subset

Si assigns value xA to the variable A if A ∈ Si and the numerical value i otherwise.

Moreover, for every subset in S, an extra tuple is added to R0 called empty-set tuple.

The extra tuples generate solutions which correspond to the empty.

230

The constraints are:

C = {Co} ∪ {CA|∀A ∈ U}

With the scopes:

scope(Co) = 〈A|∀A ∈ U〉

scope(CA) = 〈IA, A〉, A ∈ U

The scopes are given as ordered sequences to allow referring to a variable at given

position in the scope. The relations are defined as:

R0 =
{
〈1, . . . , 1〉, 〈2, . . . , 2〉, . . . , 〈|S|, . . . |S|〉

}
∪
⋃
∀Si∈S

{〈
f(Si, 1), . . . , f

(
Si, |scope(C0)|

)〉}
RA =

{
〈1, 1〉 . . . , 〈|S|, |S|〉

}
∪
{〈
|S|+ 1, xA

〉
. . . ,

〈
|S|+ αA + 1, xA

〉}
,∀A ∈ U

Where:

αA =
∣∣{S ′|A ∈ S ′, S ′ ∈ S}∣∣

f(Si, j) =

 xA if A ∈ Si, where A = scope(C0)[j]

i scope(C0)[j] /∈ Si

B.4.3.3 Domains

The domain of each variable A ∈ XU has a unique value for each subset in S, in

addition to the element ‘xA’. Hence, the domain of each variable in XU has numbers

from 1 to |S| and an extra value xA. The domain of an identifier variable IA ∈ XI

231

has a value for each tuple in RA. Hence, the domains are:

D = DU ∪DI

DU =
{
DA

∣∣∣DA = {1 . . . , |S|} ∪ {xA},∀A ∈ XU

}
DI =

{
DIA

∣∣∣DIA = {1 . . . , (|S|+ αA + 1)},∀IA ∈ XI

}

B.5 Transformation Example from SCP to SolCP

In this section we present an example demonstrating how SCP is transformed to a

SolCP. Consider the following set-cover problem (U ,S):

1. U = {A,B,C,D,E, F}

2. S =
{
{A,B,C,E}, {C,D,E, F}, {A,D}, {B,E}, {C,F}

}
The transformation of (U ,S) to the CSP (X ,D, C) is as follows:

1. X = {A,B,C,D,E, F, IA, IB, IC , ID, IE, IF}

2. D = {DA, DB, DC , DD, DE, DF , DIA , DIB , DIC , DID , DIE , DIF }

DA = {1, 2, 3, 4, 5, XA}

DB = {1, 2, 3, 4, 5, XB}

DC = {1, 2, 3, 4, 5, XC}

DD = {1, 2, 3, 4, 5, XD}

DE = {1, 2, 3, 4, 5, XE}

DF = {1, 2, 3, 4, 5, XF}

DIA = {1, 2, 3, 4, 5, 6, 7, 8}

DIB = {1, 2, 3, 4, 5, 6, 7, 8}

DIC = {1, 2, 3, 4, 5, 6, 7, 8, 9}

232

DID = {1, 2, 3, 4, 5, 6, 7, 8}

DIE = {1, 2, 3, 4, 5, 6, 7, 8, 9}

DIF = {1, 2, 3, 4, 5, 6, 7, 8}

3. C = {Co, CA, CB, CC , CD, CE, CF}

scope(Co) = 〈A,B,C,D,E, F 〉

scope(CA) = 〈IA, A〉

scope(CB) = 〈IB, B〉

scope(CC) = 〈IC , C〉

scope(CD) = 〈ID, D〉

scope(CE) = 〈IE, E〉

scope(CF) = 〈IF , F 〉

The relations are shown in Tables B.1 and B.2. The first five tuples in R0 are the

empty-set tuples and the rest are the subset tuples. In all of the relations RA, RB,

RC , RD, RE, and RF , the first five tuples are the helper tuples, and the rest are the

element tuples.

Figure B.1 shows all the tuples in the CSP represented by dots and the SolC

represented by lines. Each row corresponds to a relation. The first row is for the

umbrella relation, where the white dots are the empty-set tuples and the black dots

are the subset tuples. In the remaining rows, the white dots are the helper tuples,

and the black dots are the element tuples. Each line going from a dot in the top row

to a dot in the bottom row is a solution. The only valid substitution of tuples in a

solution can be obtained by substituting one black dot for another in the same row.

233

R0

A B C D E F
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
XA XB XC 1 XE 1
2 2 XC XD XE XF

XA 3 3 XD 3 3
4 XB 4 4 XE 4
5 5 XC 5 5 XF

Table B.1: The umbrella relation with the empty set and subset tuples.

RA

IA A
1 1
2 2
3 3
4 4
5 5
6 XA

7 XA

8 XA

RB

IB B
1 1
2 2
3 3
4 4
5 5
6 XB

7 XB

8 XB

RC

IC C
1 1
2 2
3 3
4 4
5 5
6 XC

7 XC

8 XC

9 XC

RD

ID D
1 1
2 2
3 3
4 4
5 5
6 XD

7 XD

8 XD

RE

IE E
1 1
2 2
3 3
4 4
5 5
6 XE

7 XE

8 XE

9 XE

RF

IF F
1 1
2 2
3 3
4 4
5 5
6 XF

7 XF

8 XF

Table B.2: The element relations with the helper and element tuples.

For each tuple τi in R0, a single solution (shown in solid lines) is necessary and

sufficient to cover τi and all but one tuple in every element relation. This is because

every element relation RA has one element tuple more than the number of subsets

that element A belongs to in S. Thus, additional solutions are necessary to cover

the rest of the uncovered tuples which are shown in dashed and dotted lines. The

additional solutions correspond to the solution to the SCP.

234

R0

RA

RB

RC

RD

RE

RF

S1 S2 S3 S4 S5

Figure B.1: A solution subset of size (|S| ∗ 2) + k = 12 that covers all the tuples.

B.6 Proof of the Polynomial Transformation

We first prove that the reduction can be done in polynomial time in the size of the

SCP. Then we prove that a SolC of size (2s+ k) exists iff a SC of size k exists.

Theorem 21 The reduction requires Polynomial time and space.

Proof: Given a SCP (U ,S), transforming it to the corresponding CSP takes polyno-

mial time and space. Let e = |U| and s = |S|.

• The Variables: The CSP has 2e variables and are generated in O(e).

• The Domains: A variable can have a maximum domain size of 2s. The

maximum value can be reached for the domain of a variable that enumerates

the element tuples for the element that appears in every subset. Therefore, the

domains can be constructed in O(es).

• Constraints: The CSP has e+ 1 constraints. The umbrella constraint has 2s

tuples, and the size of each tuple is e. A single scan of the set S is enough to

235

construct this constraint in O(es).

The element constraints can be constructed by scanning each subset in S once,

and adding a tuple for each member element. Each element constraint has

additional s tuples. Thus, all the element constraints can be constructed in

O(es) time. Therefore, the construction of all the constraints can be done in

O(es). �

Theorem 22 A SC of size k exists iff a SolC of size (2s+ k) exists.

Proof: Given a SC of size k, we can find a SolC of size (2s + k). We have four

categories of tuples:

• s empty-set tuples in the umbrella relation.

• s subset tuples in the umbrella relation.

• s helper tuples in each element relation and es in total.

• αA + 1 element tuples in each element relation RA and
∑
∀A∈X

(αA + 1) in total.

Each empty-set tuple can only be extended to a solution that covers a single helper

tuple in every element relation. Note that each helper tuple in each element relation

only matches one empty-set tuple. Since there are s empty-set tuples in the umbrella

relation and s helper tuples in each element relation, with s solutions, all the empty

set and helper tuples will be covered.

In an element relation RA, each element tuple requires a solution with one of the

subset tuples ti in the umbrella relation such that ti corresponds to a subset Si, and

A ∈ Si. There are αA such tuples in the umbrella-relation. Any element tuple in RA

can be matched with any such ti in the umbrella relation without conflicting with the

choice of other tuples in the other element relations. Therefore, αA element tuples in

236

RA can be covered by αA solutions with αA different subset tuples that correspond to

the subsets that A belongs to.

There are αA + 1 element tuples in each element relation; therefore, all but one

element tuple will be covered in each element relation with the s solutions. We need

to cover a single element-tuple in each element relation with only k solutions.

There are total of k subsets in the solution to SCP that cover all the elements

in U . Thus, additional k solutions to the CSP, each extending a subset tuple that

corresponds to one of the k subsets, will cover at least one element tuple in each

element relation. Therefore, a SolC of size 2s+ k exists.

We now prove that given a SolC of size (2s+ k), we can find a SC of size k. We

will proof by construction. We will show that the tuples covered by the 2s solutions

necessarily leave uncovered a single element tuple from each element relation. Since all

the tuples are covered by the (2s+ k) solutions, the remaining k solutions necessarily

cover the remaining tuples. Consequently, k subsets that correspond to the k different

subset tuples in the k solutions, cover all the elements in U .

s solutions are necessary to cover the s empty-set tuples of the umbrella relation.

Each empty-set tuple matches exactly one helper tuple in each element relation. Hence,

all the empty set and helper tuples will be covered with s solutions.

When an element A belongs to two subsets Si and Sj, two subset tuples ti and tj

in R0 corresponding to Si and Sj respectively, match any element tuple in RA. Next

we argue that matching ti and tj to two different element tuples will always lead to

no fewer covered tuples than matching the same element tuple to ti and tj.

Proposition 10 When two distinct subset tuples ti and tj in R0 match two distinct

element tuples in the same element relation RA, it is safe to match ti to one and tj to

another element tuple.

237

Let two solutions Sol1 and Sol2 corresponding to the subsets Si and Sj , cover two

distinct subset tuples ti and tj respectively such that element A ∈ Si and A ∈ Sj.

Consider two valid cases:

1. The two solutions cover two different element tuples in RA.

2. The two solutions cover the same element tuple in RA.

In both cases, the same tuples can be covered with the other solutions except for

the one element tuple in RA, which may or may not be covered in case 2.

Hence, whenever we have to choose between case (1) and case (2), and we choose

case (1), that is to cover two distinct element tuples in the same element relation with

two distinct solutions, we will be guaranteed to cover with the rest of the solutions all

the tuples that would be covered if we choose case (2). Therefore, it is safe to cover

two distinct element tuples whenever we can. �

s solutions are necessary to cover each of the s subset tuples in R0. Each subset

tuple corresponding to the subset Si only matches the element tuples in each element

relation whose corresponding element is in Si. Thus, the s solutions with the s subset

tuples will cover
∑
∀A∈X αA element tuples if we choose the case (2) in Proposition 10.

This is the maximum number of element tuples that can be covered with 2s

solutions. Thus, with the 2s solutions necessary to cover all the tuples in the umbrella

relation, we cover all the helper tuples and
∑
∀A∈X αA element tuples. Since there

are
∑
∀A∈X (αA + 1) element tuples in total, e tuples are left to be covered with the k

remaining solutions. Moreover, the e remaining element tuples are distributed with

one in each element relation.

Since we have a SolC of size 2s+ k, the remaining k solutions necessarily cover the

remaining uncovered tuples. The remaining tuples are all element tuples; hence, only

238

subset tuples can be matched. Since only k solutions are available, k subset tuples

extend to k solutions to cover the remaining element tuples. Note that two solutions

with the same subset tuple cannot cover any more of the uncovered element-tuples

than a single solution will, with the same subset tuple. Each subset tuple used in the

k solutions corresponds to a subset in S, and the covered element tuples correspond

to the elements in the subset. Therefore, the subsets corresponding to the k subset

tuples are the subsets that cover all the elements in U . �

239

Appendix C

Proofs of Main Theorems

C.1 Proofs from Section 3.2

Theorem 1 If a network is R(∗,m)C, domain filtering by GAC cannot enable further

constraint filtering by R(∗,m)C.

Proof: The proof is by contradiction. Recall that a CSP is GAC iff for every constraint,

any value in the domain of any variable in the scope of the constraint can be extended

to a tuple satisfying the constraint. Assume that filtering the domains with GAC

after enforcing R(∗,m)C removes value x from the domain of variable Vi. Then, there

exists a relation Ra that applies to Vi where the value x for Vi does not appear in any

tuple in Ra. For GAC to enable further constraint filtering by R(∗,m)C, there must

exist at least one constraint Rb that applies to Vi and the value x for Vi appears in

some tuple in Rb. Thus, there must be a tuple in Rb that cannot be extended to a

tuple in Ra, which yields a contradiction because the problem is R(∗,m)C. �

Theorem 2 RmC is strictly stronger than R(∗,m)C.

240

Proof: Consider a CSP P and let Prmc and Pr∗mc be the problems obtained after

enforcing RmC and R(∗,m)C on P, respectively. Consider a partial assignment τ

over some of the variables of P, scope(τ), that is consistent with the constraints of

Prmc. We prove that τ must necessarily be consistent with the constraints in Pr∗mc.

Assume that τ is not consistent with the constraints in Pr∗mc. Thus, there must

be at least one relation Rx∗ in Pr∗mc s.t. τ 6∈ πscope(τ)(Rx∗). For every relation R in

P there is a relation in Pr∗mc and another one in Prmc with the same scope as R.

Pr∗mc does not have any additional relations but Prmc does. Thus, Prmc must have

a relation Rx s.t. scope(Rx∗)=scope(Rx). Since τ is a consistent partial solution in

Prmc, then τ∈πscope(τ)(Rx). τ∈πscope(τ)(Rx) and τ 6∈πscope(τ)(Rx∗) is impossible because

joining more relations of Prmc and projecting them on the same scope cannot possibly

introduce more tuples. Thus, we reach a contradiction and RmC is stronger than

R(∗,m)C.

Below, we provide an example that is R(∗,m)C but not RmC. Let P be the

following Boolean CSP with the four variables V1, V2, V3, and V4 and the four

constraints: CV1,V2 = CV2,V3 = CV3,V4 = CV4,V1 = {〈0, 0〉, 〈1, 1〉}. Let Prmc and Pr∗mc

be the problems after RmC and R(∗,m)C are enforced on P , respectively. The partial

assignment 〈(V1, 0), (V3, 1)〉 is consistent in Pr∗mc because P has no constraint between

V1 and V3 and by definition, R(∗,m)C does not add new constraints. However, this

partial assignment violates the constraint CV1,V3 = {〈0, 0〉, 〈1, 1〉} which is added in

Prmc by RmC. Thus, RmC is strictly stronger than R(∗,m)C. �

C.2 Proofs from Section 3.3

Theorem 5 ∀a, b∈N where a<b≤|C|, wR(∗,b)C is strictly stronger than wR(∗,a)C

on the same connected minimal dual graph of the CSP.

241

Proof: Let Φa and Φb be the set of combinations of wR(∗,a)C and wR(∗,b)C,

respectively. For every ϕa∈Φa there exists ϕb∈Φb such that ϕa⊂ϕb. wR(∗,b)C is

stronger than wR(∗,a)C .

Consider the Boolean CSP Pe with the three variables V1, V2, and V3 and the three

constraints: CV1,V2 = CV2,V3 = CV1,V3 = {〈0, 1〉, 〈1, 0〉}. Clearly, Pe is wR(∗,2)C but

not wR(∗,3)C. �

Theorem 6 ∀m>2, R(∗,m)C is strictly stronger than wR(∗,m)C on any connected

minimal dual graph of the CSP.

Proof: Every combination of relations considered by wR(∗,m)C is also considered by

R(∗,m)C. Hence, R(∗,m)C is stronger than wR(∗,m)C.

Assume that wR(∗,m)C is stronger than R(∗,m)C and that the CSP of Figure 3.2

is inconsistent because there is no assignment for the variables A,B,D that simultane-

ously satisfies relations {R1, R2, R3}. For example, assume that πAB(R1) = πBC(R2) =

{〈1, 1〉, 〈0, 0〉}, and πAC(R3) = {〈0, 1〉, 〈1, 0〉}. For m=3, the combination {R1, R2, R3}

considered by R(∗,3)C uncovers the inconsistency. However, this combination is not

considered by wR(∗,m)C on the minimal dual graph obtained from removing the

two dashed-line edges because the combination induces a disconnected sub-graph of

that minimal dual graph. Therefore, wR(∗,m)C fails to uncover the inconsistency

uncovered by R(∗,m)C. �

C.3 Proofs from Section 4.3.2

Theorem 8 Given a CSP, the problem that answers the following question is NP -

Complete: is there a set of at most k solutions such that every tuple in every relation

of the minimal CSP appears in at least one solution?

242

Proof sketch. We reduce Minimum Set Cover [Garey and Johnson, 1979] to this

problem in polynomial time. Given a collection C of subsets of a finite set S and a

positive integer k, a set cover of size k or less exists iff a set of at most (2 · |S|+ k)

solutions exists. The reduction is accomplished by constructing a CSP with a variable

for each element in S, and domains and relations to have a solution corresponding to

each subset in C. The details of the construction are given in Appendix B. �

C.4 Proofs from Section 5.2.2

Theorem 9 R(∗,m)C is strictly stronger than cl-R(∗,m)C.

Proof: Every connected combination of relations in a cluster is considered by R(∗,m)C.

However, some connected combinations of relations in R(∗,m)C are not necessarily

considered by cl-R(∗,m)C. This situation arises when a relation Ri is in one cluster,

and another relation Rj is in the neighboring cluster: cl-R(∗,m)C will not consider

them together in a combination even if they share a variable. Indeed, in the case of

cl-R(∗,m)C, the transfer of information between clusters is through the domains of

the variables. For example, consider a problem that has constraints Ri and Rj, such

that Ri and Rj are not in the same cluster and scope(Ri)∩scope(Rj) = {A,B}. Let

Ri be the equality constraint and Rj be the all different constraint. The inconsistency

is detected by R(∗,2)C but not by cl-R(∗,2)C. �

Theorem 10 cl-R(∗,m)C and maxRPWC are not comparable for m ≥ 2.

Proof: Theorem 3 guarantees that that R(∗,2)C is strictly stronger than maxRPWC.

Thus, cl-R(∗,m)C is strictly stronger than maxRPWC within a cluster. However, if

two constraints that have more than one common variable in their scopes are not in

243

the same cluster, then cl-R(∗,m)C will not guarantee the requirements of maxRPWC.

Namely, cl-R(∗,m)C will not check if a tuple in one constraint has a matching tuple

in the other constraint. Therefore, cl-R(∗,m)C and maxRPWC are not comparable. �

C.5 Proofs from Section 6.3

Theorem 11 R(∗,2)C and cl+proj-R(∗,2)C are equivalent.

Proof: We show that for any combination of two constraints, R(∗,2)C and cl+proj-

R(∗,2)C are equivalent, and conclude that R(∗,2)C and cl+proj-R(∗,2)C are equivalent

on the whole problem. Consider s the set of variables in the scope of two constraints

Ri and Rj: s =scope(Ri)∩scope(Rj). Given a partial assignment τ to the variables in

s, by the definition of R(∗,2)C, πs(Ri) = πs(Rj). If Ri and Rj are in the same cluster,

cl+proj-R(∗,2)C is equivalent to R(∗,2)C.

πs(Ri) = πs(Rj) is true when Ri and Rj are in different clusters. Consider two

clusters Ci and Cj, such that Ri ∈ ψ(Ci) and Rj ∈ ψ(Cj). First assume that Ci

and Cj are adjacent. By the definition of projected constraints, there must be a

constraint R′i ∈ sep(Ci, Cj), such that R′i = πχ(Ci)∩χ(Cj)Ri. Thus, πs(Ri) = πs(R
′
i) and

πs(R
′
i) = πs(Rj). Therefore, πscope(τ)(Ri) = πscope(τ)(Rj).

Now assume that Ci and Cj are not adjacent. By the definition of tree decomposi-

tion, the variables in scope(Ri) ∩ scope(Rj) appear in every cluster Ck on the path

from Ci to Cj. Therefore, there must exist some constraint Rk in every cluster Ck

such that scope(Ri)∩ scope(Rj) ⊆ scope(Rk), and consequently πs(Ri) = πs(Rk), and

πs(Rk) = · · · = πs(Rj). Therefore, πs(Ri) = πs(Rj). �

244

Theorem 12 cl+proj-R(∗,2)C and cl+bin-R(∗,2)C are equivalent.

Proof: Consider a binary constraint R, scope(R) = {A,B}. Initially, R will have all

the allowed tuples, i.e., the cross product of the domains of A and B. The intersection

of scope(R) with the scope of another constraint can either be {A} or {B}. Without

loss of generality, let tuples in R be removed after revising R with RA, such that

variable A ∈ scope(RA), and RA has no tuples for some value ‘x’ for A. R can

propagate consistency in two cases, but in both cases, R is not necessary.

In the first case, tuples are deleted in some other relation R′A, which has A in its

scope, after revising it with R. In this case, the same tuples in R′A are deleted when

RA and R′A are revised. Therefore, the same result can be obtained without R.

In the second case, tuples are deleted in some relation R′B, B ∈scope(R′B), after

revising it with R. We will show that this case happens only when the inconsistency

of the problem is detected. In order to delete tuples in R′B by revising it with R,

there must be some value ‘y’ for B, such that R has no tuples with that value for

B. R will lose tuples only when revised with RA. In order for R to lose all tuples

with value ‘y’ for B, RA must have no tuples, in which case the problem will be

inconsistent irrespective of R. Also, R is not useful for propagating messages across

clusters, because the scope of R can intersect with other constraints’ scopes in at

most one variable. Consequently, the message that R can pass across clusters, can be

passed through the domains of the separator variables. �

Theorem 13 cl+bin-R(∗,m)C is strictly stronger than cl+proj-R(∗,m)C for m ≥ 2.

Proof: cl+bin-R(∗,m)C is as strong as cl+proj-R(∗,m)C, since it processes all the

combinations of relations that cl+proj-R(∗,m)C does. In the next example, cl+proj-

R(∗,m)C holds but not cl+bin-R(∗,m)C. Consider four variables {A,B,C,D} in

245

the separator of a cluster, and the constraints {RAB, RBD, RAC , RCD}, where RAB,

RBD and RAC are equality constraints, and RCD is the all different constraint. The

subscripts of the constraints’ names indicate their scopes. This problem is clearly

cl+proj-R(∗,3)C.

The constraint RAD will be added in the case of cl+bin-R(∗,m)C. After processing

the combination {RAB, RBD, RAD}, RAD will only allow equal values for A and D.

However, when relational consistency is enforced on the combination {RAC , RCD, RAD},

RAD will only allow different values for A and D. Therefore, cl+bin-R(∗,m)C does

not hold. �

Theorem 14 R(∗,3)C and cl+proj-R(∗,3)C are equivalent.

Proof: It is first necessary to show that if the dual graph induced by three constraints

of a combination is acyclic, then R(∗,3)C and cl+proj-R(∗,3)C are equivalent. Second,

it is necessary to show that for every cycle of three nodes in the dual-graph, there is

an equivalent set of three constraints, which occur in the same cluster. Then it can be

shown that R(∗,3)C and cl+proj-R(∗,3)C are equivalent.

Given a combination of three constraints, if the dual graph induced by the three

constraints is acyclic, then pairwise consistency is sufficient to make the constraints

minimal [Janssen et al., 1989]. Because pairwise consistency corresponds to R(∗,2)C,

and R(∗,2)C and cl+proj-R(∗,2)C are equivalent, cl+proj-R(∗,2)C is sufficient to

make the constraints minimal. Also, cl+proj-R(∗,3)C is sufficient because every pair

of constraints considered by cl+proj-R(∗,2)C is also considered by cl+proj-R(∗,3)C.

Now consider the case where the dual graph of each combination of three constraints

is not acyclic. For any three constraints R1, R2, and R3, if a cluster Ci exists such

that {R1, R2, R3} ⊆ ψ(Ci), then cl+proj-R(∗,3)C is equivalent to R(∗,3)C. The case

246

where none of the two constraints are in one cluster is impossible because it violates

the tree decomposition definition. Hence, the only other case to consider is when two

clusters Ci and Cj exist, such that {R1, R2, R3} ⊆ ψ(Ci) ∪ ψ(Cj).

Without loss of generality, assume scope(R1)\(scope(R2)∪scope(R3)) 6= ∅, {R2, R3} ⊆

ψ(Ci) and R1 ∈ ψ(Cj). Then, there must exist a constraint R′1 = πχ(Ci)scope(R1),

R′1 ∈ ψ(Ci). Enforcing cl+proj-R(∗,3)C in Ci and then revising R1 given R′1 is equiva-

lent to applying R(∗,3)C on the combination of {R1, R2, R3}. Therefore, R(∗,3)C and

cl+proj-R(∗,3)C are equivalent in this case.

Now consider the case where {R2, R3} ⊆ ψ(Ci), R1 ∈ ψ(Cj) and scope(R1) \

(scope(R2)∪scope(R3)) = ∅. But scope(R2)∪scope(R3) ⊆ χ(Ci), hence R1 ∈ χ(Ci).

Therefore, in this case also cl+proj-R(∗,3)C is equivalent to R(∗,3)C because {R1, R2, R3}

⊆ ψ(Ci). �

Theorem 15 R(∗,m)C is strictly stronger than cl+proj-R(∗,m)C for m > 3.

Proof: R(∗,m)C is stronger than cl+proj-R(∗,m)C, because every combination of con-

straints considered by cl+proj-R(∗,m)C is also considered by R(∗,m)C. Now consider

four constraints R1, R2, R3 and R4 such that {R1, R2} ⊆ ψ(Ci) and R3, R4 /∈ ψ(Ci).

Moreover, @Rx such that scope(R3) ∩ scope(R4) ⊆ scope(Rx). Assume that no par-

tial assignments to scope(R3) ∩ scope(R4) satisfy the four constraints simultaneously.

R(∗,4)C detects the inconsistency but cl+proj-R(∗,4)C does not. Therefore, R(∗,m)C

is strictly stronger than cl+proj-R(∗,m)C for m > 3. �

Theorem 16 cl+clq-R(∗,m)C is strictly stronger than cl+bin-R(∗,m)C.

247

Proof: Clearly, cl+clq-R(∗,m)C is as strong as cl+bin-R(∗,m)C because for every

combination considered by cl+bin-R(∗,m)C, cl+clq-R(∗,m)C either considers the

same combination, or considers a different combination, such that the scopes of

the constraints are supersets of the constraints in the combination considered by

cl+bin-R(∗,m)C. This is because every triangulation edge necessarily appears in some

maximal clique. Moreover, clique constraints propagate more information across

clusters than binary constraints do. �

248

Appendix D

Iterative WitnessBTD

In Chapter 7, we presented a recursive algorithm for WitnessBTD, which improves

BTD for counting the solutions to a CSP. Here we present the algorithm in iterative

form.

The WitnessBTD iterative algorithm searches for a witness solution before

proceeding to counting all the solutions to the problem. Thus, it operates in two

states: satisfy (for searching for a witness) and countSol (for counting solutions). The

state is represented by state, and is set for each cluster. A given cluster is in satisfy if

the parent cluster is in satisfy state. However, a cluster can be in either state if the

parent is in countSol state.

Algorithm 16 forms the main loop of the algorithm. The while loop in Line 4

repeats as long as the problem has an uninstantiated variable and a variable is chosen

to be the current variable. The variable is instantiated if it has values in its domain

in Line 5 or backtracks in Line 18.

After instantiating the variable, Propagate is called to propagate the given

consistency property. When the problem is consistent with all the variables instantiated

in the cluster, the solution count for the cluster is incremented. consistent is set to

249

false to force the algorithm to backtrack when searching for all solutions in Line 11.

The next variable is chosen in Line 13 if the problem is consistent and there are more

uninstantiated variables or searching for all solutions. Otherwise, the value of the

instantiated variable is deleted from the domain in Line 15.

When the domain of the current variable is empty, the algorithm proceeds to

backtrack in Line 18. The latest instantiated variable in the current cluster is assigned

to be the current variable if it exists. Otherwise, the parent of the current cluster

becomes the current cluster. When moved to the parent cluster, the good or nogood

is recorded in Line 24.

The state of the search in the previous cluster is preserved if the problem was

consistent, and a new variable is chosen from the next cluster in Line 28. Choo-

seVariable performs depth-first traversal (DFT) of the tree to choose the next

cluster with uninstantiated variables. The second parameter to it specifies whether

the traversal is backwards or not, to avoid visiting the same cluster again.

When the problem is inconsistent, the subtree rooted at the current cluster is reset,

and the value of the current instantiated-variable is deleted in the block in Line 29.

Algorithm 17 performs three main tasks in addition to choosing the next unassigned

variable: it maintains the state of the algorithm, checks for goods and nogoods, and

computes the solution count. The main loop of the algorithm in Line 1 is for the

progression of the DFT until a cluster is found with uninstantiated variables. The

block in Line 3 checks if a witness is found for the current assignment in the subtree,

and switches the state of the algorithm accordingly. The goods and nogoods are

checked in the block of Line 12 before descending into a subtree. The structure

DFTV isited maintains the state of the DFT. When all the variables in the subtree of

the current cluster are instantiated in Line 24, the DFT backtracks from the current

cluster after computing the solution count. Finally, in Line 38, an uninstantiated

250

variable chosen from the cluster according to a specified variable ordering heuristic

within the cluster and returned. NIL is returned if no uninstantiated variable can be

found, which terminates the search.

Next, we describe the attributes and functions used in the two algorithms.

List of attributes:

• χ(C): Set of variables in the cluster C

• P : The CSP

• backwards: The direction of DFT

• Children(C): The children of cluster C

• countSol: State of counting solutions

• consistent: Indicates if the problem is consistent or should backtrack

• curCluster: The current cluster being processed

• curDom(A): The current domain of the variable A

• curV ariable: The current variable being instantiated

• DFTV isited(C): Indicates if cluster C is visited in the current DFT

• Domain(A): The original domain of the variable A

• Parent(C): The parent cluster of C

• Reductions(A): The set of value reductions in A caused by other instantiations

• satisfy: Satisfiability state when searching for the witness solution

251

• solutionCount(C): The count of solution in cluster C for the current assignment

of the separator

• state(C): The state of the cluster C

• subtreeInstantiated(C): Indicates if all the variables in the subtree of C are

instantiated

• value(A): The value assigned to the variable A

• witnessFound: Indicates if a witness solution is found

List of functions:

• GetGoodSolCount(C): Returns the stored solution count in goods for the

current assignment of the separator

• HasGoodSolCount(C): Indicates if the solution count is stored for the

current assignment of the separator

• Instantiate(A): Instantiates variable A with the next value it its current

domain.

• IsGood(C): Indicates if the current assignment of the separator is a known

good

• IsNoGood(C): Indicates if the current assignment of the separator is a known

nogood

• LastAssignedVariable(C): Returns the variable assigned most recently in

cluster C

• Propagate(A): Propagates the consistency algorithm given the instantiation

of the variable A

252

• RecordGoodsNogoods(C): Records a good if a solution is found, or records

a nogood otherwise

• UndoReductions(A): Undoes all the reductions caused by the instantiation

of the variable A

• UpdateSubtree(C): Undoes all the instantiations of the variables in the

subtree rooted at C

253

Algorithm 16: An iterative description of WitnessBTD.

Input: P, root
Output: Number of solutions in the problem.
curCluster ← root // current cluster1

curV ariable← ChooseVariable(curCluster, false) // current variable2

state[curCluster] = countSol3

while ∃A ∈ XP s.t. value[A] =NIL AND curV ariable 6= NIL do4

if curDom(curV ariable) then5

Instantiate(curV ariable)6

consistent← Propagate(curV ariable,P)7

if @A ∈ χ(curCluster) s.t. value[A] =NIL then8

if children(curCluster) = ∅ then9

solutionCount[curCluster]← solutionCount[curCluster] + 110

if state[curCluster] = countSol then consistent← false11

if consistent AND (∃A ∈ XP s.t. value[A] =NIL OR12

state[curCluster] = countSol) then
curV ariable← ChooseVariable(curCluster, false)13

else14

curDom(curV ariable)← curDom(curV ariable)\value[curV ariable]15

else16

UndoReductions(curV ariable)17

curDom(curV ariable)← Domain(curV ariable)\ Reductions(curV ariable)18

curV ariable← NIL19

if ∃A ∈ χ(curCluster) s.t. value[A] 6=NIL then20

curV ariable←LastAssignedVariable(curCluster)21

curDom(curV ariable)← curDom(curV ariable)\value[curV ariable]22

else23

RecordGoodsNogoods(curCluster)24

consistent← solutionCount[curCluster] > 025

curCluster ← Parent(curCluster)26

if consistent then27

curV ariable← ChooseVariable(curCluster, true)28

else29

if Parent(curCluster) =NIL then state[curCluster]← countSol30

else state[curCluster]← state[Parent(curCluster)]31

UpdateSubtree(curCluster)32

curV ariable← LastAssignedVariable(curCluster)33

curDom(curV ariable)← curDom(curV ariable)\value[curV ariable]34

return solutionCount[root]35

254

Algorithm 17: ChooseVariable.

Input: curCluster, backwards
Output: curV ariable
while ∃A ∈ χ(curCluster) s.t. value[A] =NIL do1

subtreeInstantiated← true2

if backwards=false then3

state[curCluster]← satisfy4

if Parent(curCluster)=NIL) OR state[Parent(curCluster)] = countSol5

then
witnessFound← true6

foreach child ∈ Children(curCluster) do7

if IsGood(child) = false then witnessFound← false; Break8

if witnessFound then state[curCluster]← countSol9

if state[curCluster]← countSol then10

foreach child ∈ Children(curCluster) do DFTV isited[child]← false11

foreach child ∈ Children(curCluster) do12

if DFTV isited[child] = false then13

DFTV isited[child] = true14

if IsNoGood(child) then solutionCount[child]← 0; Break15

if IsGood(child) then16

if solutionCount[child] = false OR HasGoodSolCount(child)17

then
solutionCount[child]← GetGoodSolCount(child); Continue18

state[child]← state[curCluster]19

curCluster ← child20

if Children(curCluster) 6= ∅ OR state[curCluster] = satisfy OR21

∃A ∈ χ(curCluster), value[A] =NIL then
subtreeAssigned← false22

Break23

if subtreeAssigned then24

solutionCount← 025

if Children(curCluster) 6= ∅ then solutionCount← 126

foreach child ∈ Children(curCluster) do27

solutionCount← solutionCount× solutionCount[child]28

DFTV isited[child]← false29

solutionCount[curCluster]← solutionCount[curCluster] + solutionCount30

if solutionCount[curCluster] = 0 OR state[curCluster] = countSol then31

curV ariable← LastAssignedVariable(curCluster)32

curDom(curV ariable)← curDom(curV ariable)\value[curV ariable]33

else34

RecordGoodsNogoods(curCluster)35

curCluster ← Parent(curCluster)36

else Break37

return A ∈ χ(curCluster), value[A] =NIL38

255

Appendix E

Characteristics of the Benchmark

Data

In this appendix, we give the characteristics of the benchmark data used in the

empirical evaluations of Chapters 5 and 6. The benchmarks are selected from those

used in the CSP Solver Competition.1 The following tables list the instances in each

benchmark, and give the following characteristics:

• file: the name of the file

• #variables: the number of variables

• #constraints: the number of constraints

• #total tuples: the total number of tuples in all relations

• max domain: the size of the largest domain

• max arity: the arity of the constraint with the largest scope

1http://www.cril.univ-artois.fr/CPAI08/

256

• #clusters: the number of clusters in the tree decomposition

• treewidth: the number of variables in the largest cluster

• largest sep.: the number of variables in the largest separator

• max |ψ(cl)| local: the maximum number of constraints in a cluster without

bolstering

• max |ψ(cl)| proj: the maximum number of constraints in a cluster with the

addition of the projection constraints

• max |ψ(cl)| binary: the maximum number of constraints in a cluster with the

addition of the binary constraints

• max |ψ(cl)| clique: the maximum number of constraints in a cluster with the

addition of the clique constraints

The tree decomposition characteristics correspond to the tree decompositions

computed using an adaption for non-binary CSPs of the tree-clustering technique

[Dechter and Pearl, 1989] by first triangulating the primal graph of the CSP using

the min-fill heuristic [Kjærulff, 1990], and then identifying the maximal cliques in the

resulting chordal graph using the MaxCliques algorithm [Golumbic, 1980].

The characteristics refer to the original constraints in the problems, except for the

last three, which report the numbers of constraints resulted in each bolstering scheme.

A ‘-’ is added when the numbers were not computed.

Tables E.1 to E.12 describe the unsatisfiable binary instances, and Tables E.13

to E.16 describe the unsatisfiable non-binary instances. Similarly, Tables E.17 to E.19

describe the unsatisfiable binary instances, and Tables E.20 to E.22 describe the

unsatisfiable non-binary instances.

257

Table E.1: Data characteristics of unsatisfiable binary instances (part 1).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

composed-25-1-2

composed-25-1-2-0 33 224 17,960 10 2 10 20 18 128 128 172 128

composed-25-1-2-1 33 224 17,960 10 2 11 19 18 119 119 149 119

composed-25-1-2-2 33 224 17,960 10 2 12 19 18 125 125 155 125

composed-25-1-2-3 33 224 17,960 10 2 11 20 17 131 131 164 131

composed-25-1-2-4 33 224 17,960 10 2 12 19 17 126 126 152 126

composed-25-1-2-5 33 224 17,960 10 2 12 19 18 123 123 151 123

composed-25-1-2-6 33 224 17,960 10 2 12 19 18 121 121 150 121

composed-25-1-2-7 33 224 17,960 10 2 12 19 18 119 119 153 119

composed-25-1-2-8 33 224 17,960 10 2 12 19 18 123 123 158 123

composed-25-1-2-9 33 224 17,960 10 2 12 19 18 130 130 154 130

composed-25-1-25

composed-25-1-25-0 33 247 20,145 10 2 13 21 20 142 142 192 142

composed-25-1-25-1 33 247 20,145 10 2 13 21 20 150 150 184 150

composed-25-1-25-2 33 247 20,145 10 2 13 21 20 141 141 179 141

composed-25-1-25-3 33 247 20,145 10 2 14 20 19 131 131 174 131

composed-25-1-25-4 33 247 20,145 10 2 15 19 18 122 122 152 122

composed-25-1-25-5 33 247 20,145 10 2 14 20 19 137 137 168 137

composed-25-1-25-6 33 247 20,145 10 2 14 20 19 128 128 165 128

composed-25-1-25-7 33 247 20,145 10 2 14 20 19 133 133 179 133

composed-25-1-25-8 33 247 20,145 10 2 14 20 19 133 133 162 133

composed-25-1-25-9 33 247 20,145 10 2 14 20 19 141 141 178 141

composed-25-1-40

composed-25-1-40-0 33 262 21,570 10 2 12 22 21 140 140 186 140

composed-25-1-40-1 33 262 21,570 10 2 12 22 19 155 155 190 155

composed-25-1-40-2 33 262 21,570 10 2 13 21 20 144 144 182 144

composed-25-1-40-3 33 262 21,570 10 2 14 20 19 126 126 158 126

composed-25-1-40-4 33 262 21,570 10 2 12 22 20 146 146 194 146

composed-25-1-40-5 33 262 21,570 10 2 13 21 20 135 135 171 135

composed-25-1-40-6 33 262 21,570 10 2 12 22 20 146 146 186 146

composed-25-1-40-7 33 262 21,570 10 2 12 22 21 151 151 204 151

composed-25-1-40-8 33 262 21,570 10 2 13 21 19 146 146 183 146

composed-25-1-40-9 33 262 21,570 10 2 12 22 20 150 150 191 150

258

Table E.2: Data characteristics of unsatisfiable binary instances (part 2).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

composed-25-1-80

composed-25-1-80-0 33 302 25,370 10 2 9 25 24 186 186 246 -

composed-25-1-80-1 33 302 25,370 10 2 10 24 23 177 177 222 177

composed-25-1-80-2 33 302 25,370 10 2 11 23 22 161 161 215 161

composed-25-1-80-3 33 302 25,370 10 2 9 25 23 190 190 262 190

composed-25-1-80-4 33 302 25,370 10 2 10 24 23 175 175 237 175

composed-25-1-80-5 33 302 25,370 10 2 9 25 24 187 187 251 187

composed-25-1-80-6 33 302 25,370 10 2 9 25 23 184 184 262 184

composed-25-1-80-7 33 302 25,370 10 2 8 26 24 198 198 268 198

composed-25-1-80-8 33 302 25,370 10 2 9 25 23 178 178 248 178

composed-25-1-80-9 33 302 25,370 10 2 9 25 23 173 173 252 173

composed-75-1-2

composed-75-1-2-0 83 624 51,960 10 2 35 46 45 253 253 659 253

composed-75-1-2-1 83 624 51,960 10 2 34 47 46 267 267 676 267

composed-75-1-2-2 83 624 51,960 10 2 34 47 45 240 240 607 240

composed-75-1-2-3 83 624 51,960 10 2 32 49 48 277 277 767 277

composed-75-1-2-4 83 624 51,960 10 2 35 46 45 242 242 706 242

composed-75-1-2-5 83 624 51,960 10 2 34 47 45 264 264 690 264

composed-75-1-2-6 83 624 51,960 10 2 34 46 45 251 251 721 251

composed-75-1-2-7 83 624 51,960 10 2 32 48 45 279 279 735 279

composed-75-1-2-8 83 624 51,960 10 2 32 49 48 271 271 746 271

composed-75-1-2-9 83 624 51,960 10 2 34 47 46 273 273 728 273

composed-75-1-25

composed-75-1-25-0 83 647 54,145 10 2 35 48 46 259 259 665 259

composed-75-1-25-1 83 647 54,145 10 2 36 48 46 259 259 668 259

composed-75-1-25-2 83 647 54,145 10 2 36 48 45 252 252 682 252

composed-75-1-25-3 83 647 54,145 10 2 35 49 46 279 279 773 279

composed-75-1-25-4 83 647 54,145 10 2 34 50 48 287 287 785 287

composed-75-1-25-5 83 647 54,145 10 2 35 49 47 282 282 756 282

composed-75-1-25-6 83 647 54,145 10 2 36 48 47 263 263 715 263

composed-75-1-25-7 83 647 54,145 10 2 37 46 45 252 252 580 252

composed-75-1-25-8 83 647 54,145 10 2 34 50 48 277 277 683 277

composed-75-1-25-9 83 647 54,145 10 2 36 48 47 279 279 699 279

259

Table E.3: Data characteristics of unsatisfiable binary instances (part 3).

max |ψ(cl)|
fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

composed-75-1-40

composed-75-1-40-0 83 662 55,570 10 2 36 47 46 260 260 698 260

composed-75-1-40-1 83 662 55,570 10 2 33 51 49 280 280 702 280

composed-75-1-40-2 83 662 55,570 10 2 34 50 48 266 266 706 266

composed-75-1-40-3 83 662 55,570 10 2 35 49 48 279 279 840 279

composed-75-1-40-4 83 662 55,570 10 2 34 50 45 276 276 700 276

composed-75-1-40-5 83 662 55,570 10 2 33 51 50 302 302 685 302

composed-75-1-40-6 83 662 55,570 10 2 33 51 48 298 298 743 298

composed-75-1-40-7 83 662 55,570 10 2 34 50 49 293 293 796 293

composed-75-1-40-8 83 662 55,570 10 2 32 52 51 304 304 846 304

composed-75-1-40-9 83 662 55,570 10 2 35 49 48 293 293 795 293

composed-75-1-80

composed-75-1-80-0 83 702 59,370 10 2 29 55 53 336 336 1,109 336

composed-75-1-80-1 83 702 59,370 10 2 30 54 53 325 325 980 325

composed-75-1-80-2 83 702 59,370 10 2 32 52 48 289 289 842 289

composed-75-1-80-3 83 702 59,370 10 2 31 53 52 308 308 936 308

composed-75-1-80-4 83 702 59,370 10 2 32 52 50 291 291 784 291

composed-75-1-80-5 83 702 59,370 10 2 32 51 50 287 287 737 287

composed-75-1-80-6 83 702 59,370 10 2 30 54 51 319 319 899 -

composed-75-1-80-7 83 702 59,370 10 2 31 53 52 313 313 864 -

composed-75-1-80-8 83 702 59,370 10 2 29 55 52 332 332 905 332

composed-75-1-80-9 83 702 59,370 10 2 31 53 52 322 322 1,060 322

graphColoring-hosExtConvert

abb313GPIA-5 1,557 53,356 1,067,120 5 2 257 121 116 3,759 3,759 4,869 -

abb313GPIA-7 1,557 53,356 2,240,952 7 2 257 121 116 3,759 3,759 4,869 -

abb313GPIA-8 1,557 53,356 2,987,936 8 2 257 121 116 3,759 3,759 4,869 -

abb313GPIA-9 1,557 53,356 3,841,632 9 2 257 121 116 3,759 3,759 4,869 -

ash331GPIA-3 662 4,181 25,086 3 2 318 89 68 143 144 240 94

ash608GPIA-3 1,216 7,844 47,064 3 2 585 122 92 211 211 349 134

ash958GPIA-3 1,916 12,506 75,036 3 2 912 127 97 239 245 420 284

will199GPIA-5 701 6,772 135,440 5 2 287 109 83 596 596 1,191 596

will199GPIA-6 701 6,772 203,160 6 2 287 109 83 596 596 1,191 -

graphColoring-mugExtConvert

mug100-1-3 100 166 996 3 2 65 4 2 5 5 5 5

mug100-25-3 100 166 996 3 2 65 4 2 5 5 5 5

mug88-1-3 88 146 876 3 2 57 4 2 5 5 5 5

mug88-25-3 88 146 876 3 2 57 4 2 5 5 5 5

260

Table E.4: Data characteristics of unsatisfiable binary instances (part 4).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-register-mulsolExtConvert

mulsol-i-1-05 197 3,925 78,500 5 2 67 51 50 1,243 1,243 1,243 1,243

mulsol-i-1-10 197 3,925 353,250 10 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-15 197 3,925 824,250 15 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-20 197 3,925 1,491,500 20 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-25 197 3,925 2,355,000 25 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-30 197 3,925 3,414,750 30 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-35 197 3,925 4,670,750 35 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-40 197 3,925 6,123,000 40 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-45 197 3,925 7,771,500 45 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-46 197 3,925 8,124,750 46 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-47 197 3,925 8,485,850 47 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-1-48 197 3,925 8,854,800 48 2 67 51 50 1,243 1,243 1,243 -

mulsol-i-2-05 188 3,885 77,700 5 2 96 33 31 496 496 496 496

mulsol-i-2-10 188 3,885 349,650 10 2 96 33 31 496 496 496 -

mulsol-i-2-15 188 3,885 815,850 15 2 96 33 31 496 496 496 -

mulsol-i-2-20 188 3,885 1,476,300 20 2 96 33 31 496 496 496 -

mulsol-i-2-25 188 3,885 2,331,000 25 2 96 33 31 496 496 496 -

mulsol-i-2-28 188 3,885 2,937,060 28 2 96 33 31 496 496 496 -

mulsol-i-2-29 188 3,885 3,154,620 29 2 96 33 31 496 496 496 -

mulsol-i-2-30 188 3,885 3,379,950 30 2 96 33 31 496 496 496 -

mulsol-i-3-05 184 3,916 78,320 5 2 97 33 31 496 496 496 496

mulsol-i-3-10 184 3,916 352,440 10 2 97 33 31 496 496 496 -

mulsol-i-3-15 184 3,916 822,360 15 2 97 33 31 496 496 496 -

mulsol-i-3-20 184 3,916 1,488,080 20 2 97 33 31 496 496 496 -

mulsol-i-3-25 184 3,916 2,349,600 25 2 97 33 31 496 496 496 -

mulsol-i-3-28 184 3,916 2,960,496 28 2 97 33 31 496 496 496 -

mulsol-i-3-29 184 3,916 3,179,792 29 2 97 33 31 496 496 496 -

mulsol-i-3-30 184 3,916 3,406,920 30 2 97 33 31 496 496 496 -

mulsol-i-4-05 185 3,946 78,920 5 2 97 33 31 496 496 496 496

mulsol-i-4-10 185 3,946 355,140 10 2 97 33 31 496 496 496 -

mulsol-i-4-15 185 3,946 828,660 15 2 97 33 31 496 496 496 -

mulsol-i-4-20 185 3,946 1,499,480 20 2 97 33 31 496 496 496 -

mulsol-i-4-25 185 3,946 2,367,600 25 2 97 33 31 496 496 496 -

mulsol-i-4-28 185 3,946 2,983,176 28 2 97 33 31 496 496 496 -

mulsol-i-4-29 185 3,946 3,204,152 29 2 97 33 31 496 496 496 -

mulsol-i-4-30 185 3,946 3,433,020 30 2 97 33 31 496 496 496 -

mulsol-i-5-05 186 3,973 79,460 5 2 99 33 31 480 480 480 480

261

Table E.5: Data characteristics of unsatisfiable binary instances (part 5).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-register-mulsolExtConvert

mulsol-i-5-10 186 3,973 357,570 10 2 99 33 31 480 480 480 -

mulsol-i-5-15 186 3,973 834,330 15 2 99 33 31 480 480 480 -

mulsol-i-5-20 186 3,973 1,509,740 20 2 99 33 31 480 480 480 -

mulsol-i-5-25 186 3,973 2,383,800 25 2 99 33 31 480 480 480 -

mulsol-i-5-28 186 3,973 3,003,588 28 2 99 33 31 480 480 480 -

mulsol-i-5-29 186 3,973 3,226,076 29 2 99 33 31 480 480 480 -

mulsol-i-5-30 186 3,973 3,456,510 30 2 99 33 31 480 480 480 -

graphColoring-register-zeroinExtConvert

zeroin-i-1-05 211 4,100 82,000 5 2 60 51 49 1,243 1,243 1,243 1,243

zeroin-i-1-10 211 4,100 369,000 10 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-15 211 4,100 861,000 15 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-20 211 4,100 1,558,000 20 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-25 211 4,100 2,460,000 25 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-30 211 4,100 3,567,000 30 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-35 211 4,100 4,879,000 35 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-40 211 4,100 6,396,000 40 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-45 211 4,100 8,118,000 45 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-46 211 4,100 8,487,000 46 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-47 211 4,100 8,864,200 47 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-1-48 211 4,100 9,249,600 48 2 60 51 49 1,243 1,243 1,243 -

zeroin-i-2-05 211 3,541 70,820 5 2 93 34 30 464 464 464 464

zeroin-i-2-10 211 3,541 318,690 10 2 93 34 30 464 464 464 464

zeroin-i-2-15 211 3,541 743,610 15 2 93 34 30 464 464 464 -

zeroin-i-2-20 211 3,541 1,345,580 20 2 93 34 30 464 464 464 -

zeroin-i-2-25 211 3,541 2,124,600 25 2 93 34 30 464 464 464 -

zeroin-i-2-27 211 3,541 2,485,782 27 2 93 34 30 464 464 464 -

zeroin-i-2-28 211 3,541 2,676,996 28 2 93 34 30 464 464 464 -

zeroin-i-2-29 211 3,541 2,875,292 29 2 93 34 30 464 464 464 -

zeroin-i-3-05 206 3,540 70,800 5 2 93 34 30 464 464 464 464

zeroin-i-3-10 206 3,540 318,600 10 2 93 34 30 464 464 464 464

zeroin-i-3-15 206 3,540 743,400 15 2 93 34 30 464 464 464 -

zeroin-i-3-20 206 3,540 1,345,200 20 2 93 34 30 464 464 464 -

zeroin-i-3-25 206 3,540 2,124,000 25 2 93 34 30 464 464 464 -

zeroin-i-3-27 206 3,540 2,485,080 27 2 93 34 30 464 464 464 -

zeroin-i-3-28 206 3,540 2,676,240 28 2 93 34 30 464 464 464 -

zeroin-i-3-29 206 3,540 2,874,480 29 2 93 34 30 464 464 464 -

262

Table E.6: Data characteristics of unsatisfiable binary instances (part 6).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-sgb-bookExtConvert

anna-10 138 493 44,370 10 2 111 13 12 62 62 65 62

anna-5 138 493 9,860 5 2 111 13 12 62 62 65 62

anna-8 138 493 27,608 8 2 111 13 12 62 62 65 62

anna-9 138 493 35,496 9 2 111 13 12 62 62 65 62

david-10 87 406 36,540 10 2 59 14 12 75 75 77 75

david-5 87 406 8,120 5 2 59 14 12 75 75 77 75

david-8 87 406 22,736 8 2 59 14 12 75 75 77 78

david-9 87 406 29,232 9 2 59 14 12 75 75 77 80

homer-10 561 1,628 145,710 10 2 444 32 30 207 207 272 207

homer-11 561 1,628 178,090 11 2 444 32 30 207 207 272 -

homer-12 561 1,628 213,708 12 2 444 32 30 207 207 272 -

homer-5 561 1,628 32,380 5 2 444 32 30 207 207 272 210

homer-8 561 1,628 90,664 8 2 444 32 30 207 207 272 207

huck-10 74 301 26,730 10 2 32 11 6 55 55 55 55

huck-5 74 301 5,940 5 2 32 11 6 55 55 55 55

huck-8 74 301 16,632 8 2 32 11 6 55 55 55 55

huck-9 74 301 21,384 9 2 32 11 6 55 55 55 55

jean-5 80 254 5,080 5 2 51 10 8 45 45 45 45

jean-7 80 254 10,668 7 2 51 10 8 45 45 45 46

jean-8 80 254 14,224 8 2 51 10 8 45 45 45 46

jean-9 80 254 18,288 9 2 51 10 8 45 45 45 46

graphColoring-sgb-gamesExtConvert

games120-5 120 638 12,760 5 2 65 41 35 83 83 116 83

games120-7 120 638 26,796 7 2 65 41 35 83 83 116 83

games120-8 120 638 35,728 8 2 65 41 35 83 83 116 83

263

Table E.7: Data characteristics of unsatisfiable binary instances (part 7).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-sgb-milesExtConvert

miles1000-10 128 3,216 289,440 10 2 59 51 48 1,109 1,109 1,163 1,109

miles1000-15 128 3,216 675,360 15 2 59 51 48 1,109 1,109 1,163 -

miles1000-20 128 3,216 1,222,080 20 2 59 51 48 1,109 1,109 1,163 -

miles1000-25 128 3,216 1,929,600 25 2 59 51 48 1,109 1,109 1,163 -

miles1000-30 128 3,216 2,797,920 30 2 59 51 48 1,109 1,109 1,163 -

miles1000-35 128 3,216 3,827,040 35 2 59 51 48 1,109 1,109 1,163 -

miles1000-38 128 3,216 4,521,696 38 2 59 51 48 1,109 1,109 1,163 -

miles1000-39 128 3,216 4,766,112 39 2 59 51 48 1,109 1,109 1,163 -

miles1000-40 128 3,216 5,016,960 40 2 59 51 48 1,109 1,109 1,163 -

miles1000-41 128 3,216 5,274,240 41 2 59 51 48 1,109 1,109 1,163 -

miles1000-5 128 3,216 64,320 5 2 59 51 48 1,109 1,109 1,163 1,109

miles1500-10 128 5,198 467,820 10 2 40 78 77 2,956 2,956 2,956 -

miles1500-20 128 5,198 1,975,240 20 2 40 78 77 2,956 2,956 2,956 -

miles1500-30 128 5,198 4,522,260 30 2 40 78 77 2,956 2,956 2,956 -

miles1500-40 128 5,198 8,108,880 40 2 40 78 77 2,956 2,956 2,956 -

miles1500-50 128 5,198 12,735,100 50 2 40 78 77 2,956 2,956 2,956 -

miles1500-55 128 5,198 15,438,060 55 2 40 78 77 2,956 2,956 2,956 -

miles1500-60 128 5,198 18,400,920 60 2 40 78 77 2,956 2,956 2,956 -

miles1500-65 128 5,198 21,623,680 65 2 40 78 77 2,956 2,956 2,956 -

miles1500-70 128 5,198 25,106,340 70 2 40 78 77 2,956 2,956 2,956 -

miles1500-71 128 5,198 25,834,060 71 2 40 78 77 2,956 2,956 2,956 -

miles1500-72 128 5,198 26,572,176 72 2 40 78 77 2,956 2,956 2,956 -

miles250-6 128 387 9,810 6 2 62 10 9 37 37 38 37

miles250-7 128 387 13,734 7 2 62 10 9 37 37 38 37

miles500-10 128 1,170 105,300 10 2 68 24 22 244 244 245 -

miles500-15 128 1,170 245,700 15 2 68 24 22 244 244 245 -

miles500-18 128 1,170 358,020 18 2 68 24 22 244 244 245 -

miles500-19 128 1,170 400,140 19 2 68 24 22 244 244 245 -

miles500-5 128 1,170 23,400 5 2 68 24 22 244 244 245 244

miles750-10 128 2,113 190,170 10 2 58 41 35 576 576 577 -

miles750-15 128 2,113 443,730 15 2 58 41 35 576 576 577 -

miles750-20 128 2,113 802,940 20 2 58 41 35 576 576 577 -

miles750-25 128 2,113 1,267,800 25 2 58 41 35 576 576 577 -

miles750-28 128 2,113 1,597,428 28 2 58 41 35 576 576 577 -

miles750-29 128 2,113 1,715,756 29 2 58 41 35 576 576 577 -

miles750-30 128 2,113 1,838,310 30 2 58 41 35 576 576 577 -

miles750-5 128 2,113 42,260 5 2 58 41 35 576 576 577 576

264

Table E.8: Data characteristics of unsatisfiable binary instances (part 8).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-sgb-queenExtConvert

queen10-10-10 100 1,470 132,300 10 2 18 80 76 924 924 2,709 -

queen10-10-11 100 1,470 161,700 11 2 18 80 76 924 924 2,709 -

queen10-10-8 100 1,470 82,320 8 2 18 80 76 924 924 2,709 -

queen10-10-9 100 1,470 105,840 9 2 18 80 76 924 924 2,709 -

queen11-11-10 121 1,980 178,200 10 2 23 96 92 1,235 1,235 4,201 -

queen11-11-11 121 1,980 217,800 11 2 23 96 92 1,235 1,235 4,201 -

queen11-11-12 121 1,980 261,360 12 2 23 96 92 1,235 1,235 4,201 -

queen11-11-8 121 1,980 110,880 8 2 23 96 92 1,235 1,235 4,201 -

queen11-11-9 121 1,980 142,560 9 2 23 96 92 1,235 1,235 4,201 -

queen12-12-10 144 2,596 233,640 10 2 26 118 115 1,739 1,739 6,311 -

queen12-12-11 144 2,596 285,560 11 2 26 118 115 1,739 1,739 6,311 -

queen12-12-12 144 2,596 342,672 12 2 26 118 115 1,739 1,739 6,311 -

queen12-12-13 144 2,596 404,976 13 2 26 118 115 1,739 1,739 6,311 -

queen12-12-14 144 2,596 472,472 14 2 26 118 115 1,739 1,739 6,311 -

queen13-13-10 169 3,328 299,520 10 2 29 138 131 2,198 2,198 8,666 -

queen13-13-11 169 3,328 366,080 11 2 29 138 131 2,198 2,198 8,666 -

queen13-13-12 169 3,328 439,296 12 2 29 138 131 2,198 2,198 8,666 -

queen13-13-13 169 3,328 519,168 13 2 29 138 131 2,198 2,198 - -

queen13-13-14 169 3,328 605,696 14 2 29 138 131 2,198 2,198 - -

queen14-14-12 196 4,186 552,552 12 2 27 161 151 2,822 2,822 - -

queen14-14-13 196 4,186 653,016 13 2 27 161 151 2,822 2,822 - -

queen14-14-14 196 4,186 761,852 14 2 27 161 151 2,822 2,822 - -

queen14-14-15 196 4,186 879,060 15 2 27 161 151 2,822 2,822 - -

queen14-14-16 196 4,186 1,004,640 16 2 27 161 151 2,822 2,822 - -

queen15-15-13 225 5,180 808,080 13 2 31 184 173 3,459 3,459 - -

queen15-15-14 225 5,180 942,760 14 2 31 184 173 3,459 3,459 - -

queen15-15-15 225 5,180 1,087,800 15 2 31 184 173 3,459 3,459 - -

queen15-15-16 225 5,180 1,243,200 16 2 31 184 173 3,459 3,459 - -

queen15-15-17 225 5,180 1,408,960 17 2 31 184 173 3,459 3,459 - -

queen16-16-14 256 6,320 1,150,240 14 2 32 219 196 4,617 4,617 - -

queen16-16-15 256 6,320 1,327,200 15 2 32 219 196 4,617 4,617 - -

queen16-16-16 256 6,320 1,516,800 16 2 32 219 196 4,617 4,617 - -

queen16-16-17 256 6,320 1,719,040 17 2 32 219 196 4,617 4,617 - -

queen16-16-18 256 6,320 1,933,920 18 2 32 219 196 4,617 4,617 - -

265

Table E.9: Data characteristics of unsatisfiable binary instances (part 9).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-sgb-queenExtConvert

queen5-5-4 25 160 1,920 4 2 7 19 18 87 87 141 87

queen6-6-6 36 290 8,700 6 2 10 27 25 156 156 299 -

queen7-7-6 49 476 14,280 6 2 12 38 36 276 276 599 276

queen8-12-10 96 1,368 123,120 10 2 20 73 67 787 787 2,079 -

queen8-12-11 96 1,368 150,480 11 2 20 73 67 787 787 2,079 -

queen8-12-12 96 1,368 180,576 12 2 20 73 67 787 787 2,079 -

queen8-12-8 96 1,368 76,608 8 2 20 73 67 787 787 2,079 -

queen8-8-8 64 728 40,768 8 2 15 49 47 414 414 970 -

queen8-8-9 64 728 52,416 9 2 15 49 47 414 414 970 -

queen9-9-8 81 1,056 59,136 8 2 16 66 58 702 702 1,883 -

queen9-9-9 81 1,056 76,032 9 2 16 66 58 702 702 1,883 -

QCP-15

qcp-15-120-10 225 2,519 200,102 15 2 115 110 109 708 708 3,795 -

qcp-15-120-11 225 2,519 200,102 15 2 114 112 110 731 731 3,873 -

qcp-15-120-12 225 2,519 200,102 15 2 114 111 109 722 722 3,788 -

qcp-15-120-13 225 2,520 199,920 15 2 114 111 110 723 723 3,628 -

qcp-15-120-14 225 2,519 200,102 15 2 113 111 109 724 724 3,594 -

qcp-15-120-2 225 2,520 199,920 15 2 114 111 109 722 722 3,628 -

qcp-15-120-5 225 2,519 200,102 15 2 114 111 108 722 722 3,769 -

qcp-15-120-6 225 2,519 200,102 15 2 114 112 110 733 733 3,850 -

qcp-15-120-9 225 2,519 200,102 15 2 114 111 109 723 723 3,705 -

rlfapGraphsModExtConvert

graph12-w1 680 1,148 703,017 44 2 593 37 29 10 28 28 28

graph13-w1 916 1,479 931,076 44 2 796 46 38 12 41 41 41

graph14-f27 916 4,638 1,081,870 19 2 615 243 214 486 498 977 -

graph14-f28 916 4,638 952,263 18 2 615 243 214 486 498 977 498

graph2-f25 400 2,245 550,494 21 2 250 88 74 154 163 173 163

graph8-f10 680 3,757 2,602,084 34 2 428 184 151 366 368 491 -

graph8-f11 680 3,757 2,463,291 33 2 428 184 151 366 368 491 368

graph9-f10 916 5,246 3,875,472 34 2 582 230 181 527 541 656 541

graph9-f9 916 5,246 4,157,294 35 2 582 230 181 527 541 656 -

266

Table E.10: Data characteristics of unsatisfiable binary instances (part 10).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

rlfapScens11ExtConvert

scen11-f10 680 4,103 3,098,170 34 2 300 33 28 240 240 311 240

scen11-f11 680 4,103 2,974,001 33 2 300 33 28 240 240 311 240

scen11-f12 680 4,103 2,860,048 32 2 300 33 28 240 240 311 240

scen11-f1 680 4,103 5,279,405 43 2 300 33 28 240 240 311 -

scen11-f2 680 4,103 5,011,502 42 2 300 33 28 240 240 311 -

scen11-f3 680 4,103 4,750,411 41 2 300 33 28 240 240 311 -

scen11-f4 680 4,103 4,496,772 40 2 300 33 28 240 240 311 -

scen11-f5 680 4,103 4,249,959 39 2 300 33 28 240 240 311 -

scen11-f6 680 4,103 4,010,424 38 2 300 33 28 240 240 311 -

scen11-f7 680 4,103 3,776,246 37 2 300 33 28 240 240 311 -

scen11-f8 680 4,103 3,546,574 36 2 300 33 28 240 240 311 240

scen11-f9 680 4,103 3,320,443 35 2 300 33 28 240 240 311 240

rlfapScensModExtConvert

scen1-f9 916 5,548 3,309,990 35 2 411 33 28 237 237 304 -

scen10-w1-f3 680 1,138 516,766 41 2 423 8 7 15 15 19 11

scen2-f25 200 1,235 358,088 21 2 96 21 17 188 188 199 -

scen3-f10 400 2,760 2,161,813 34 2 192 34 29 209 209 271 -

scen3-f11 400 2,760 2,069,789 33 2 192 34 29 209 209 271 -

scen6-w1-f2 200 319 12,032 42 2 20 5 4 10 10 10 6

scen6-w2 200 648 553,172 44 2 139 14 12 58 58 58 58

scen7-w1-f5 400 660 129,498 39 2 225 8 7 15 15 15 8

scen9-w1-f3 680 1,138 516,766 41 2 423 8 7 15 15 19 11

267

Table E.11: Data characteristics of unsatisfiable binary instances (part 11).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

tightness0.9

rand-2-40-180-84-900-11 40 84 271,856 180 2 30 10 9 9 10 10 10

rand-2-40-180-84-900-14 40 84 273,008 180 2 31 10 9 12 12 14 11

rand-2-40-180-84-900-15 40 84 272,796 180 2 31 10 9 10 11 12 11

rand-2-40-180-84-900-16 40 84 272,242 180 2 30 10 9 8 9 9 9

rand-2-40-180-84-900-18 40 84 271,525 180 2 31 10 8 10 11 12 8

rand-2-40-180-84-900-22 40 84 268,772 180 2 29 10 9 10 11 12 9

rand-2-40-180-84-900-23 40 84 272,861 180 2 31 10 9 9 10 10 9

rand-2-40-180-84-900-25 40 84 271,936 180 2 31 10 8 9 10 10 9

rand-2-40-180-84-900-27 40 84 272,483 180 2 30 11 10 10 11 11 11

rand-2-40-180-84-900-28 40 84 271,875 180 2 33 8 7 11 11 12 8

rand-2-40-180-84-900-29 40 84 272,610 180 2 30 11 9 12 12 14 10

rand-2-40-180-84-900-2 40 84 272,120 180 2 29 11 9 9 10 10 10

rand-2-40-180-84-900-34 40 84 272,167 180 2 31 10 9 10 11 11 11

rand-2-40-180-84-900-35 40 84 272,022 180 2 30 11 10 11 11 11 9

rand-2-40-180-84-900-39 40 84 271,965 180 2 31 10 9 9 10 10 10

rand-2-40-180-84-900-3 40 84 271,885 180 2 32 9 8 10 11 12 8

rand-2-40-180-84-900-40 40 84 272,106 180 2 30 11 8 13 13 14 11

rand-2-40-180-84-900-41 40 84 272,696 180 2 30 11 10 11 11 11 10

rand-2-40-180-84-900-43 40 84 272,767 180 2 31 10 9 11 12 12 8

rand-2-40-180-84-900-45 40 84 272,491 180 2 32 9 8 9 11 11 9

rand-2-40-180-84-900-46 40 84 271,778 180 2 30 11 9 13 13 13 10

rand-2-40-180-84-900-4 40 84 272,319 180 2 31 10 9 14 15 16 10

rand-2-40-180-84-900-54 40 84 269,890 180 2 29 10 9 12 12 13 10

rand-2-40-180-84-900-57 40 84 272,206 180 2 31 10 9 9 10 10 8

rand-2-40-180-84-900-58 40 84 268,742 180 2 28 10 8 12 13 15 10

rand-2-40-180-84-900-60 40 84 272,722 180 2 29 12 10 7 11 11 11

rand-2-40-180-84-900-62 40 84 272,292 180 2 31 10 9 12 13 13 10

rand-2-40-180-84-900-63 40 84 272,398 180 2 30 11 9 11 11 12 9

rand-2-40-180-84-900-65 40 84 272,190 180 2 29 12 9 7 11 11 11

rand-2-40-180-84-900-67 40 84 272,113 180 2 31 10 9 13 14 14 9

rand-2-40-180-84-900-6 40 84 271,675 180 2 30 11 10 10 11 12 9

268

Table E.12: Data characteristics of unsatisfiable binary instances (part 12).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

tightness0.9

rand-2-40-180-84-900-70 40 84 273,356 180 2 30 11 10 12 12 13 11

rand-2-40-180-84-900-75 40 84 272,569 180 2 30 11 9 12 12 12 9

rand-2-40-180-84-900-76 40 84 272,638 180 2 29 12 11 12 12 12 12

rand-2-40-180-84-900-77 40 84 271,261 180 2 32 9 7 9 10 10 9

rand-2-40-180-84-900-78 40 84 271,701 180 2 29 12 11 7 10 10 10

rand-2-40-180-84-900-79 40 84 272,163 180 2 30 11 10 9 11 11 11

rand-2-40-180-84-900-7 40 84 271,884 180 2 30 11 8 10 11 11 10

rand-2-40-180-84-900-80 40 84 271,973 180 2 32 9 8 9 9 9 9

rand-2-40-180-84-900-82 40 84 268,849 180 2 28 11 10 12 12 12 12

rand-2-40-180-84-900-84 40 84 271,857 180 2 30 11 9 8 9 9 9

rand-2-40-180-84-900-85 40 84 272,786 180 2 30 11 9 12 12 14 10

rand-2-40-180-84-900-86 40 84 271,878 180 2 29 12 10 8 12 12 12

rand-2-40-180-84-900-87 40 84 272,585 180 2 31 10 9 9 12 13 9

rand-2-40-180-84-900-89 40 84 272,769 180 2 29 12 10 12 13 13 11

rand-2-40-180-84-900-90 40 84 270,846 180 2 29 12 10 13 13 13 11

rand-2-40-180-84-900-92 40 84 272,420 180 2 30 11 9 8 9 9 9

rand-2-40-180-84-900-93 40 84 271,848 180 2 31 10 9 13 13 13 8

rand-2-40-180-84-900-94 40 84 272,637 180 2 29 11 10 10 11 11 10

rand-2-40-180-84-900-95 40 84 270,912 180 2 31 10 9 13 13 17 11

rand-2-40-180-84-900-97 40 84 271,985 180 2 31 10 9 9 11 11 9

rand-2-40-180-84-900-98 40 84 269,492 180 2 30 9 8 7 8 8 8

rand-2-40-180-84-900-99 40 84 272,598 180 2 30 11 9 11 12 14 11

rand-2-40-180-84-900-9 40 84 272,155 180 2 30 11 10 9 13 13 11

269

Table E.13: Data characteristics of unsatisfiable non-binary instances (part 1).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

aim-100

aim-100-1-6-unsat-1 100 157 1,096 2 3 58 41 34 8 62 130 59

aim-100-1-6-unsat-2 100 150 1,032 2 3 58 40 35 9 65 145 58

aim-100-1-6-unsat-3 100 151 1,050 2 3 57 41 37 6 66 135 56

aim-100-1-6-unsat-4 100 157 1,088 2 3 60 39 37 5 62 169 52

aim-100-2-0-unsat-1 100 196 1,368 2 3 48 51 47 13 106 410 79

aim-100-2-0-unsat-2 100 192 1,337 2 3 44 54 47 20 103 417 84

aim-100-2-0-unsat-3 100 193 1,338 2 3 49 51 50 12 98 330 73

aim-100-2-0-unsat-4 100 191 1,328 2 3 48 51 46 17 95 351 82

aim-200

aim-200-1-6-unsat-1 200 308 2,140 2 3 108 88 82 16 151 602 132

aim-200-1-6-unsat-2 200 302 2,095 2 3 113 83 79 15 145 577 -

aim-200-1-6-unsat-3 200 309 2,144 2 3 112 79 71 12 118 411 113

aim-200-1-6-unsat-4 200 316 2,208 2 3 105 92 82 16 158 613 145

aim-200-2-0-unsat-1 200 389 2,709 2 3 91 98 95 21 188 1,070 -

aim-200-2-0-unsat-2 200 383 2,661 2 3 89 105 100 19 219 1,420 -

aim-200-2-0-unsat-3 200 388 2,697 2 3 88 107 100 24 228 1,401 -

aim-200-2-0-unsat-4 200 392 2,724 2 3 88 106 96 27 216 1,299 -

aim-50

aim-50-1-6-unsat-1 50 69 472 2 3 33 16 14 5 18 24 17

aim-50-1-6-unsat-2 50 77 536 2 3 29 21 18 6 30 53 22

aim-50-1-6-unsat-3 50 70 476 2 3 31 19 17 5 29 41 21

aim-50-1-6-unsat-4 50 76 528 2 3 29 21 18 6 36 63 29

aim-50-2-0-unsat-1 50 97 676 2 3 22 29 26 9 60 168 43

aim-50-2-0-unsat-2 50 94 652 2 3 24 27 26 7 56 122 38

aim-50-2-0-unsat-3 50 92 636 2 3 23 27 25 7 52 111 37

aim-50-2-0-unsat-4 50 94 650 2 3 27 24 22 9 41 97 31

270

Table E.14: Data characteristics of unsatisfiable non-binary instances (part 2).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

dag-rand

rand-n23-d3-e16-r15-t150000-1 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-10 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-11 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-12 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-13 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-14 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-15 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-16 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-17 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-18 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-19 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-2 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-20 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-21 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-22 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-23 23 16 2,400,000 3 15 2 22 21 9 16 16 16

rand-n23-d3-e16-r15-t150000-24 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-25 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-3 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-4 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-5 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-6 23 16 2,400,000 3 15 2 22 21 12 16 16 16

rand-n23-d3-e16-r15-t150000-7 23 16 2,400,000 3 15 2 22 21 12 16 16 16

rand-n23-d3-e16-r15-t150000-8 23 16 2,400,000 3 15 1 23 0 16 16 16 16

rand-n23-d3-e16-r15-t150000-9 23 16 2,400,000 3 15 1 23 0 16 16 16 16

dubois

dubois-100 300 200 800 2 3 198 4 3 2 2 2 2

dubois-20 60 40 160 2 3 38 4 3 2 2 2 2

dubois-21 63 42 168 2 3 40 4 3 2 2 2 2

dubois-22 66 44 176 2 3 42 4 3 2 2 2 2

dubois-23 69 46 184 2 3 44 4 3 2 2 2 2

dubois-24 72 48 192 2 3 46 4 3 2 2 2 2

dubois-25 75 50 200 2 3 48 4 3 2 2 2 2

dubois-26 78 52 208 2 3 50 4 3 2 2 2 2

dubois-27 81 54 216 2 3 52 4 3 2 2 2 2

dubois-28 84 56 224 2 3 54 4 3 2 2 2 2

dubois-29 87 58 232 2 3 56 4 3 2 2 2 2

dubois-30 90 60 240 2 3 58 4 3 2 2 2 2

dubois-50 150 100 400 2 3 98 4 3 2 2 2 2

271

Table E.15: Data characteristics of unsatisfiable non-binary instances (part 3).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

renault-mod-10

renault-mod-10 111 128 204,467 42 10 87 11 10 6 8 8 8

renault-mod-12 111 128 198,878 42 10 87 11 10 5 8 8 8

renault-mod-14 111 126 200,498 42 10 88 12 11 5 8 8 8

renault-mod-15 111 128 202,514 42 10 90 11 10 6 10 10 10

renault-mod-16 111 127 200,340 42 10 88 11 10 4 8 8 6

renault-mod-17 111 127 199,013 42 10 88 11 10 5 8 9 6

renault-mod-18 111 127 198,390 42 10 86 12 11 4 8 8 7

renault-mod-19 111 128 199,586 42 10 90 10 9 5 7 7 6

renault-mod-1 111 126 200,801 42 10 90 11 9 4 7 7 7

renault-mod-20 111 135 204,879 42 10 86 12 11 9 13 13 15

renault-mod-21 111 134 206,076 42 10 88 12 11 10 13 13 13

renault-mod-22 111 134 202,392 42 10 87 10 9 11 12 12 12

renault-mod-23 111 136 205,517 42 10 90 10 9 9 14 14 14

renault-mod-24 111 135 205,262 42 10 88 12 11 9 12 12 15

renault-mod-25 111 135 201,901 42 10 87 11 10 9 14 14 15

renault-mod-26 111 136 209,114 42 10 90 10 9 11 16 16 16

renault-mod-27 111 136 203,992 42 10 90 12 10 9 13 13 13

renault-mod-28 111 135 206,411 42 10 84 10 9 13 15 15 17

renault-mod-29 111 137 208,281 42 10 87 12 10 14 18 18 18

renault-mod-30 111 131 201,400 42 10 89 11 10 4 7 8 6

renault-mod-33 111 133 202,220 42 10 89 12 11 5 8 8 8

renault-mod-35 111 133 203,144 42 10 88 11 10 6 7 8 7

renault-mod-37 111 133 199,797 42 10 90 13 12 7 12 12 12

renault-mod-39 111 132 197,984 42 10 90 13 11 5 11 12 7

renault-mod-3 111 125 199,261 42 10 91 11 10 4 7 8 8

renault-mod-40 108 128 198,070 42 10 91 12 11 6 9 9 9

renault-mod-42 108 126 197,154 42 10 91 13 11 5 9 13 8

renault-mod-47 108 128 197,403 42 10 86 13 12 5 10 10 10

renault-mod-5 111 125 199,771 42 10 88 13 11 5 8 9 10

renault-mod-6 111 125 198,651 42 10 88 11 10 4 6 7 6

renault-mod-8 111 125 197,300 42 10 90 12 11 4 7 8 7

272

Table E.16: Data characteristics of unsatisfiable non-binary instances (part 4).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

rand-10-20-10

rand-10-20-10-5-10000-0 20 5 50,000 10 10 7 13 12 1 5 5 5

rand-10-20-10-5-10000-10 20 5 50,000 10 10 4 15 12 2 5 5 5

rand-10-20-10-5-10000-11 20 5 50,000 10 10 5 13 11 2 5 5 5

rand-10-20-10-5-10000-12 20 5 50,000 10 10 7 13 11 1 5 5 5

rand-10-20-10-5-10000-13 20 5 50,000 10 10 5 15 13 2 5 5 5

rand-10-20-10-5-10000-14 20 5 50,000 10 10 6 13 11 1 5 5 5

rand-10-20-10-5-10000-15 20 5 50,000 10 10 6 14 12 1 5 5 5

rand-10-20-10-5-10000-16 20 5 50,000 10 10 5 15 13 2 5 5 5

rand-10-20-10-5-10000-17 20 5 50,000 10 10 4 14 12 2 5 5 5

rand-10-20-10-5-10000-18 20 5 50,000 10 10 8 12 11 1 5 5 5

rand-10-20-10-5-10000-19 20 5 50,000 10 10 5 14 11 1 5 5 5

rand-10-20-10-5-10000-1 20 5 50,000 10 10 6 13 12 1 5 5 5

rand-10-20-10-5-10000-2 20 5 50,000 10 10 6 12 11 1 5 5 5

rand-10-20-10-5-10000-3 20 5 50,000 10 10 5 14 12 2 5 5 5

rand-10-20-10-5-10000-4 20 5 50,000 10 10 6 13 11 1 5 5 5

rand-10-20-10-5-10000-5 20 5 50,000 10 10 6 14 13 1 5 5 5

rand-10-20-10-5-10000-6 20 5 50,000 10 10 4 14 12 2 5 5 5

rand-10-20-10-5-10000-7 20 5 50,000 10 10 5 13 10 1 5 5 6

rand-10-20-10-5-10000-8 20 5 50,000 10 10 5 15 13 2 5 5 5

rand-10-20-10-5-10000-9 20 5 50,000 10 10 6 14 12 1 5 5 5

ssa

ssa-0432-003 435 501 2,147 2 5 372 19 15 9 16 16 16

ssa-2670-130 1,359 1,660 7,558 2 5 1,157 27 20 18 26 26 26

273

Table E.17: Data characteristics of satisfiable binary instances (part 1).

max |ψ(cl)|
fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

composed-25-10-20

composed-25-10-20-0 105 620 47,000 10 2 82 24 23 183 183 260 -

composed-25-10-20-1 105 620 47,000 10 2 82 24 23 186 186 257 -

composed-25-10-20-2 105 620 47,000 10 2 82 24 23 183 183 251 -

composed-25-10-20-3 105 620 47,000 10 2 81 25 16 200 200 266 -

composed-25-10-20-4 105 620 47,000 10 2 82 24 23 184 184 248 -

composed-25-10-20-5 105 620 47,000 10 2 81 25 19 200 200 266 -

composed-25-10-20-6 105 620 47,000 10 2 81 24 23 186 186 255 -

composed-25-10-20-7 105 620 47,000 10 2 82 24 21 184 184 255 -

composed-25-10-20-8 105 620 47,000 10 2 80 24 22 189 189 270 -

composed-25-10-20-9 105 620 47,000 10 2 81 24 22 183 183 249 -

graphColoring-hosExtConvert

abb313GPIA-10 1,557 53,356 4,802,040 10 2 259 121 116 3,759 3,759 4,869 -

ash331GPIA-4 662 4,181 50,172 4 2 318 89 68 143 144 240 94

ash608GPIA-4 1,216 7,844 94,128 4 2 585 122 92 211 211 349 134

ash958GPIA-4 1,916 12,506 150,072 4 2 912 127 97 239 245 420 -

will199GPIA-7 701 6,772 284,424 7 2 287 109 83 596 596 1,191 -

graphColoring-mugExtConvert

mug100-1-4 100 166 1,992 4 2 65 4 2 5 5 5 5

mug100-25-4 100 166 1,992 4 2 65 4 2 5 5 5 5

mug88-1-4 88 146 1,752 4 2 57 4 2 5 5 5 5

mug88-25-4 88 146 1,752 4 2 57 4 2 5 5 5 5

graphColoring-register-mulsolExtConvert

mulsol-i-1-49 197 3,925 9,231,600 49 2 126 51 50 1,243 1,243 1,243 -

mulsol-i-2-31 188 3,885 3,613,050 31 2 111 33 31 496 496 496 -

mulsol-i-3-31 184 3,916 3,641,880 31 2 107 33 31 496 496 496 -

mulsol-i-4-31 185 3,946 3,669,780 31 2 107 33 31 496 496 496 -

mulsol-i-5-31 186 3,973 3,694,890 31 2 109 33 31 480 480 480 -

graphColoring-register-zeroinExtConvert

zeroin-i-1-49 211 4,100 9,643,200 49 2 145 51 49 1,243 1,243 1,243 -

zeroin-i-2-30 211 3,541 3,080,670 30 2 147 34 30 464 464 464 -

zeroin-i-3-30 206 3,540 3,079,800 30 2 142 34 30 464 464 464 -

graphColoring-sgb-bookExtConvert

anna-11 138 493 54,230 11 2 111 13 12 62 62 65 -

david-11 87 406 44,660 11 2 59 14 12 75 75 77 -

homer-13 561 1,628 252,564 13 2 452 32 30 207 207 272 -

huck-11 74 301 33,000 11 2 33 11 6 55 55 55 53

jean-10 80 254 22,860 10 2 54 10 8 45 45 45 28

graphColoring-sgb-gamesExtConvert

games120-9 120 638 45,936 9 2 65 41 35 83 83 116 36

274

Table E.18: Data characteristics of satisfiable binary instances (part 2).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

graphColoring-sgb-milesExtConvert

miles1000-42 128 3,216 5,537,952 42 2 59 51 48 1,109 1,109 1,163 -

miles1500-73 128 5,198 27,320,688 73 2 40 78 77 2,956 2,956 2,956 -

miles250-8 128 387 21,560 8 2 80 10 9 37 37 38 10

miles500-20 128 1,170 444,600 20 2 68 24 22 244 244 245 -

miles750-31 128 2,113 1,965,090 31 2 58 41 35 576 576 577 -

graphColoring-sgb-queenExtConvert

queen10-10-12 100 1,470 194,040 12 2 18 80 76 924 924 2,709 -

queen5-5-5 25 160 3,200 5 2 7 19 18 87 87 141 20

queen6-6-7 36 290 12,180 7 2 10 27 25 156 156 299 -

queen7-7-7 49 476 19,992 7 2 12 38 36 276 276 599 -

queen9-9-10 81 1,056 95,040 10 2 16 66 58 702 702 1,883 -

hanoi

hanoi-3 6 5 246 27 2 5 2 1 1 1 1 1

hanoi-4 14 13 2,652 81 2 13 2 1 1 1 1 1

hanoi-5 30 29 19,614 243 2 29 2 1 1 1 1 1

hanoi-6 62 61 128,868 729 2 61 2 1 1 1 1 1

hanoi-7 126 125 806,646 2,187 2 125 2 1 1 1 1 1

QCP-15

qcp-15-120-0 225 2,519 200,102 15 2 113 110 108 711 711 3,873 -

qcp-15-120-1 225 2,519 200,102 15 2 114 111 109 721 721 3,720 -

qcp-15-120-3 225 2,520 199,920 15 2 113 111 109 724 724 3,746 -

qcp-15-120-4 225 2,519 200,102 15 2 114 111 109 723 723 3,631 -

qcp-15-120-7 225 2,520 199,920 15 2 113 113 111 745 745 4,086 -

qcp-15-120-8 225 2,519 200,102 15 2 115 110 109 712 712 3,522 -

rlfapGraphsModExtConvert

graph12-w0 680 340 24 44 2 340 2 0 - - - -

graph13-w0 916 458 24 44 2 458 2 0 - - - -

graph2-f24 400 2,245 597,335 22 2 250 88 74 154 163 173 59

rlfapScensModExtConvert

scen1-f8 916 5,548 3,545,401 36 2 427 33 28 237 237 304 -

scen2-f24 200 1,235 382,310 22 2 96 21 17 188 188 199 -

scen6-w1 200 319 201,537 44 2 120 8 7 15 15 15 8

scen7-w1-f4 400 660 338,740 40 2 260 8 7 15 15 15 8

tightness0.9

rand-2-40-180-84-900-0 40 84 272,808 180 2 30 11 9 11 12 13 10

rand-2-40-180-84-900-10 40 84 272,033 180 2 31 10 8 9 11 13 9

rand-2-40-180-84-900-12 40 84 271,724 180 2 30 11 9 7 8 8 8

rand-2-40-180-84-900-13 40 84 272,352 180 2 32 9 8 9 9 9 8

rand-2-40-180-84-900-17 40 84 272,099 180 2 31 10 9 8 10 10 10

rand-2-40-180-84-900-19 40 84 273,025 180 2 29 12 10 8 11 11 11

275

Table E.19: Data characteristics of satisfiable binary instances (part 3).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

tightness0.9

rand-2-40-180-84-900-1 40 84 271,729 180 2 31 10 9 10 11 11 11

rand-2-40-180-84-900-20 40 84 272,009 180 2 30 11 9 11 13 15 10

rand-2-40-180-84-900-21 40 84 272,281 180 2 30 11 10 8 10 10 10

rand-2-40-180-84-900-24 40 84 272,204 180 2 30 11 9 6 9 9 9

rand-2-40-180-84-900-26 40 84 272,146 180 2 30 11 9 9 10 12 10

rand-2-40-180-84-900-30 40 84 272,423 180 2 29 12 11 8 12 13 10

rand-2-40-180-84-900-31 40 84 271,657 180 2 31 10 9 7 8 8 8

rand-2-40-180-84-900-32 40 84 272,237 180 2 30 11 10 12 12 17 11

rand-2-40-180-84-900-33 40 84 272,741 180 2 29 12 11 14 16 19 13

rand-2-40-180-84-900-36 40 84 272,554 180 2 30 11 10 9 10 10 10

rand-2-40-180-84-900-37 40 84 273,336 180 2 31 10 9 8 11 11 11

rand-2-40-180-84-900-38 40 84 271,877 180 2 30 11 9 8 11 11 11

rand-2-40-180-84-900-42 40 84 272,451 180 2 30 11 10 13 13 13 10

rand-2-40-180-84-900-44 40 84 272,100 180 2 30 10 8 9 10 10 9

rand-2-40-180-84-900-47 40 84 272,104 180 2 31 10 9 6 9 9 9

rand-2-40-180-84-900-48 40 84 272,260 180 2 29 12 10 9 12 12 10

rand-2-40-180-84-900-49 40 84 272,409 180 2 31 10 8 6 8 8 8

rand-2-40-180-84-900-50 40 84 272,629 180 2 30 11 10 9 10 10 10

rand-2-40-180-84-900-51 40 84 271,997 180 2 29 12 11 9 11 11 11

rand-2-40-180-84-900-52 40 84 272,765 180 2 30 11 9 8 10 10 10

rand-2-40-180-84-900-53 40 84 271,384 180 2 31 10 9 9 10 10 8

rand-2-40-180-84-900-55 40 84 272,957 180 2 30 11 8 10 10 10 10

rand-2-40-180-84-900-56 40 84 271,686 180 2 30 11 9 10 11 11 9

rand-2-40-180-84-900-59 40 84 272,860 180 2 30 11 10 10 11 11 11

rand-2-40-180-84-900-5 40 84 272,571 180 2 30 11 10 8 11 11 11

rand-2-40-180-84-900-61 40 84 272,181 180 2 30 11 10 8 10 10 10

rand-2-40-180-84-900-64 40 84 268,112 180 2 28 11 10 7 10 10 10

rand-2-40-180-84-900-66 40 84 272,164 180 2 30 11 10 10 11 14 9

rand-2-40-180-84-900-68 40 84 272,594 180 2 30 11 9 7 10 10 10

rand-2-40-180-84-900-69 40 84 272,035 180 2 31 10 9 7 8 8 8

rand-2-40-180-84-900-71 40 84 271,515 180 2 30 11 10 10 11 14 9

rand-2-40-180-84-900-72 40 84 272,743 180 2 29 12 11 10 11 13 9

rand-2-40-180-84-900-73 40 84 271,089 180 2 30 11 10 11 11 11 11

rand-2-40-180-84-900-74 40 84 272,519 180 2 31 10 9 10 11 12 9

rand-2-40-180-84-900-81 40 84 272,145 180 2 30 11 9 9 9 9 9

rand-2-40-180-84-900-83 40 84 272,326 180 2 30 11 10 13 15 17 11

rand-2-40-180-84-900-88 40 84 272,230 180 2 31 10 9 11 12 12 9

rand-2-40-180-84-900-8 40 84 272,470 180 2 30 11 10 9 - - -

rand-2-40-180-84-900-91 40 84 272,774 180 2 30 11 10 9 - - -

rand-2-40-180-84-900-96 40 84 272,863 180 2 28 13 12 12 - - -

276

Table E.20: Data characteristics of satisfiable non-binary instances (part 1).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

aim-100

aim-100-1-6-sat-1 100 154 1,068 2 3 60 37 33 5 44 63 36

aim-100-1-6-sat-2 100 156 1,084 2 3 62 34 31 6 42 73 39

aim-100-1-6-sat-3 100 156 1,088 2 3 60 38 32 6 56 113 59

aim-100-1-6-sat-4 100 157 1,096 2 3 61 37 34 5 47 75 40

aim-100-2-0-sat-1 100 194 1,350 2 3 52 46 43 10 69 202 63

aim-100-2-0-sat-2 100 197 1,368 2 3 51 43 37 10 66 172 70

aim-100-2-0-sat-3 100 191 1,324 2 3 54 45 42 10 70 186 62

aim-100-2-0-sat-4 100 195 1,361 2 3 53 45 43 10 72 185 64

aim-100-3-4-sat-1 100 320 2,216 2 3 37 63 54 55 190 943 -

aim-100-3-4-sat-2 100 316 2,176 2 3 38 62 61 56 184 964 -

aim-100-3-4-sat-3 100 312 2,157 2 3 36 64 62 54 197 1,152 -

aim-100-3-4-sat-4 100 317 2,193 2 3 35 65 59 56 210 1,077 -

aim-100-6-0-sat-1 100 559 3,861 2 3 27 73 71 188 381 1,828 -

aim-100-6-0-sat-2 100 559 3,868 2 3 27 74 72 193 369 1,892 -

aim-100-6-0-sat-3 100 561 3,880 2 3 24 77 75 216 408 2,222 -

aim-100-6-0-sat-4 100 570 3,946 2 3 28 73 72 190 381 2,032 -

aim-200

aim-200-1-6-sat-1 200 315 2,196 2 3 121 72 64 6 101 237 100

aim-200-1-6-sat-2 200 315 2,199 2 3 128 68 65 8 88 183 91

aim-200-1-6-sat-3 200 311 2,165 2 3 120 72 59 8 100 208 95

aim-200-1-6-sat-4 200 318 2,208 2 3 123 75 61 7 94 177 96

aim-200-2-0-sat-1 200 386 2,687 2 3 101 92 84 13 156 615 140

aim-200-2-0-sat-2 200 382 2,653 2 3 99 90 80 15 151 546 137

aim-200-2-0-sat-3 200 387 2,693 2 3 100 89 77 24 141 513 140

aim-200-2-0-sat-4 200 389 2,705 2 3 102 95 84 15 169 653 148

aim-200-3-4-sat-1 200 646 4,481 2 3 71 130 119 115 424 3,807 -

aim-200-3-4-sat-2 200 636 4,409 2 3 74 125 123 103 391 3,800 -

aim-200-3-4-sat-3 200 641 4,441 2 3 73 124 118 106 377 3,843 -

aim-200-3-4-sat-4 200 643 4,459 2 3 71 128 120 123 407 3,803 -

aim-200-6-0-sat-1 200 1,152 8,009 2 3 45 156 154 487 962 8,810 -

aim-200-6-0-sat-2 200 1,169 8,135 2 3 42 158 157 501 1,001 9,359 -

aim-200-6-0-sat-3 200 1,150 8,003 2 3 45 156 154 479 984 8,957 -

aim-200-6-0-sat-4 200 1,155 8,033 2 3 47 154 153 454 971 8,804 -

277

Table E.21: Data characteristics of satisfiable non-binary instances (part 2).

max |ψ(cl)|
fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

aim-50

aim-50-1-6-sat-1 50 77 536 2 3 31 19 17 6 24 39 22

aim-50-1-6-sat-2 50 76 529 2 3 33 17 15 6 20 22 16

aim-50-1-6-sat-3 50 78 536 2 3 29 20 18 5 24 37 22

aim-50-1-6-sat-4 50 77 528 2 3 31 20 17 5 22 34 23

aim-50-2-0-sat-1 50 94 653 2 3 25 26 23 8 44 87 40

aim-50-2-0-sat-2 50 96 664 2 3 24 26 22 7 39 73 33

aim-50-2-0-sat-3 50 96 668 2 3 27 24 21 8 41 94 32

aim-50-2-0-sat-4 50 93 643 2 3 28 21 19 7 30 49 29

aim-50-3-4-sat-1 50 156 1,079 2 3 19 31 29 24 96 252 50

aim-50-3-4-sat-2 50 161 1,118 2 3 18 32 29 36 95 266 39

aim-50-3-4-sat-3 50 161 1,118 2 3 19 32 31 31 104 298 41

aim-50-3-4-sat-4 50 159 1,094 2 3 19 31 29 32 84 255 39

aim-50-6-0-sat-1 50 289 2,011 2 3 13 38 35 107 193 461 39

aim-50-6-0-sat-2 50 283 1,956 2 3 13 38 36 101 174 485 40

aim-50-6-0-sat-3 50 267 1,835 2 3 13 38 36 99 173 482 41

aim-50-6-0-sat-4 50 272 1,877 2 3 14 37 36 98 173 438 40

modifiedRenault

renault-mod-0 111 125 198,433 42 10 89 11 9 4 6 6 6

renault-mod-11 111 126 200,750 42 10 88 11 10 4 8 8 6

renault-mod-13 111 128 203,753 42 10 87 10 9 4 7 7 6

renault-mod-2 111 129 201,513 42 10 87 14 13 6 11 11 7

renault-mod-31 111 133 206,800 42 10 89 11 10 4 8 9 6

renault-mod-32 111 132 210,607 42 10 92 13 12 6 8 8 6

renault-mod-34 111 132 203,713 42 10 91 12 11 5 9 9 8

renault-mod-36 111 131 200,087 42 10 90 12 11 5 7 8 7

renault-mod-38 111 133 202,728 42 10 90 12 11 5 9 9 6

renault-mod-41 108 128 200,610 42 10 87 14 12 6 9 13 7

renault-mod-43 108 128 200,466 42 10 87 12 11 5 9 9 5

renault-mod-44 108 127 196,306 42 10 90 12 11 7 9 9 7

renault-mod-45 108 128 198,947 42 10 93 11 10 4 8 8 6

renault-mod-46 108 128 197,604 42 10 86 12 11 5 10 11 6

renault-mod-48 108 128 202,599 42 10 87 13 12 6 9 10 8

renault-mod-49 108 127 198,602 42 10 88 11 10 4 9 11 6

renault-mod-4 111 126 200,503 42 10 92 11 10 4 8 8 5

renault-mod-7 111 125 198,972 42 10 89 11 10 5 8 8 6

renault-mod-9 111 125 202,777 42 10 93 11 10 6 8 8 6

278

Table E.22: Data characteristics of satisfiable non-binary instances (part 3).

max |ψ(cl)|

fi
le

#
v
a
ri

a
b
le

s

#
c
o
n
st

ra
in

ts

#
to

ta
l

tu
p
le

s

m
a
x

d
o
m

a
in

m
a
x

a
ri

ty

#
c
lu

st
e
rs

tr
e
e
w

id
th

la
rg

e
st

se
p
.

lo
c
a
l

p
ro

j

b
in

a
ry

c
li
q
u
e

rand-8-20-5

rand-8-20-5-18-800-0 20 18 1,407,561 5 8 3 18 17 8 18 20 -

rand-8-20-5-18-800-10 20 18 1,404,280 5 8 3 18 17 10 18 18 -

rand-8-20-5-18-800-11 20 18 1,406,099 5 8 3 18 17 11 18 18 -

rand-8-20-5-18-800-12 20 18 1,405,607 5 8 3 18 17 9 18 20 -

rand-8-20-5-18-800-13 20 18 1,407,854 5 8 3 18 17 9 18 21 -

rand-8-20-5-18-800-14 20 18 1,406,879 5 8 4 17 16 9 18 18 -

rand-8-20-5-18-800-15 20 18 1,405,279 5 8 3 18 17 11 18 19 -

rand-8-20-5-18-800-16 20 18 1,405,823 5 8 3 18 17 8 18 18 -

rand-8-20-5-18-800-17 20 18 1,406,089 5 8 3 18 16 9 18 18 -

rand-8-20-5-18-800-18 20 18 1,405,715 5 8 3 18 16 10 18 21 -

rand-8-20-5-18-800-19 20 18 1,406,180 5 8 4 17 16 9 18 19 -

rand-8-20-5-18-800-1 20 18 1,406,243 5 8 3 18 16 8 18 22 -

rand-8-20-5-18-800-2 20 18 1,406,899 5 8 4 17 16 6 18 19 -

rand-8-20-5-18-800-3 20 18 1,407,581 5 8 3 18 16 11 18 19 -

rand-8-20-5-18-800-4 20 18 1,406,167 5 8 3 18 17 9 18 22 -

rand-8-20-5-18-800-5 20 18 1,405,786 5 8 3 18 16 8 18 20 -

rand-8-20-5-18-800-6 20 18 1,406,135 5 8 4 17 16 9 18 19 -

rand-8-20-5-18-800-7 20 18 1,405,338 5 8 4 17 15 8 18 20 -

rand-8-20-5-18-800-8 20 18 1,407,092 5 8 4 17 16 8 18 20 -

rand-8-20-5-18-800-9 20 18 1,405,300 5 8 3 18 17 10 18 20 -

ssa

ssa-2670-141 391 177 655 2 4 83 6 3 6 6 6 6

ssa-6288-047 10,408 22,141 124,515 2 6 7,877 122 86 30 82 82 82

ssa-7552-038 1,501 1,985 8,657 2 6 1,300 30 21 24 26 34 20

ssa-7552-158 1,363 1,641 6,402 2 5 1,206 11 10 12 12 14 12

ssa-7552-159 1,363 1,639 6,402 2 5 1,206 11 9 12 12 14 12

ssa-7552-160 757 744 3,942 2 3 368 5 3 6 6 6 6

	Practical Tractability of CSPS by Higher Level Consistency and Tree Decomposition
	

	tmp.1366664737.pdf.lGW1B

