
Research Article
A Max-Term Counting Based Knowledge Inconsistency
Checking Strategy and Inconsistency Measure Calculation of
Fuzzy Knowledge Based Systems

Hui-lai Zhi

School of Computer Science and Technology, Henan Polytechnic University, No. 2001, ShiJi Avenue, Jiaozuo 454000, China

Correspondence should be addressed to Hui-lai Zhi; zhihuilai@126.com

Received 27 April 2015; Revised 21 July 2015; Accepted 4 August 2015

Academic Editor: Miguel A. Salido

Copyright © 2015 Hui-lai Zhi. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The task of finding all the minimal inconsistent subsets plays a vital role in many theoretical works especially in large knowledge
bases and it has been proved to be a NP-complete problem. In this work, at first we propose a max-term counting based knowledge
inconsistency checking strategy. And, then, we put forward an algorithm for finding all minimal inconsistent subsets, in which
we establish a Boolean lattice to organize the subsets of the given knowledge base and use leaf pruning to optimize the algorithm
efficiency. Comparative experiments and analysis also show the algorithm’s improvement over past approaches. Finally, we give an
application for inconsistency measure calculation of fuzzy knowledge based systems.

1. Introduction

A large knowledge system operating for a long time almost
inevitably becomes polluted by wrong data that make the
system inconsistent. Despite this fact, a sizeable part of the
system remains unpolluted and retains useful information. It
is widely adopted that amaximal consistent subset of a system
contains a significant portion of unpolluted data [1]. So,
simply characterizing a knowledge base as either consistent
or inconsistent is of little practical value, and thus ensuring
the consistency becomes an important issue [2–4].

In practice, there are two types of methods: one method
is based on minimal inconsistent subsets, where every strict
subset is consistent and the other is directly based onmaximal
consistent subsets. Actually, the relationship between mini-
mal inconsistent subsets and maximal consistent subsets was
discovered separately in [1, 5, 6], which is known as the hitting
subset problem [7].

As finding minimal inconsistent subsets or maximal con-
sistent subsets is NP-complete, the most efficient algorithm
is not known yet, and there are a number of heuristic
optimizations that can be used to substantially reduce the size
of the search space. In practice, heuristic information [8, 9],

optimization [10, 11], and hybrid techniques [12, 13] are
recognized to reduce time complexity. In the latest research,
McAreavey et al. presented a computational approach to
finding and measuring inconsistency in arbitrary knowledge
bases [14], while Mu et al. gave a method for measuring the
significance of inconsistency in the viewpoints framework
[15]. In all the abovementioned works, effectively finding
minimal inconsistent subsets is the critical step which has
a great impact on the applications especially for large
knowledge bases. Apparently, its computational complexity
depends on the underlying strategies used for checking the
consistency of subsets of the knowledge base, but till now this
important issue has not gotten a satisfying solution.

In this paper, we first propose an efficient strategy to check
the consistency of a given knowledge base. And, then, we put
forward an algorithm to find all of the minimal inconsistent
subsets of the given knowledge base. Thereafter, to illustrate
the algorithm’s improvement, we conduct thorough compara-
tive experiments and analysis with respect to one of the latest
proposed algorithm MARCO [16] and give a discussion on
the relative algorithms DAA [17] and PDDS [18]. Finally, we
give an application for inconsistency measure calculation of
fuzzy knowledge based systems.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 134950, 7 pages
http://dx.doi.org/10.1155/2015/134950

2 Mathematical Problems in Engineering

2. Theoretical Basis

Let 𝐿 denote the propositional language built from a finite
set of variables 𝑃 using logical connectives {∧, ∨, ¬, → } and
logical constants {𝑇, 𝐹}. Every variable 𝑝 ∈ 𝑃 is called an
atomic formula or an atom.A literal is an atomor its negation.
A clause 𝜑 is a formula restricted to a disjunction of literals
and let var(𝜑) denote the set of variables in a clause 𝜑. A
knowledge base 𝐾 ∈ 2𝐿 is a finite set of arbitrary formulae.

As every formula can be converted into an equivalent
conjunction normal form (CNF) formula, knowledge base
can be normalized in such away that every formula contained
in it is a clause. For a given normalized knowledge base, if
there are no redundant clauses, we say it is an optimized
knowledge base.

By the syntactic approach in proof theory, if both 𝜑 and
¬𝜑 can be derived from a knowledge base 𝐾, then we say 𝐾

is inconsistent. With the semantic approach in model theory,
an interpretation or world 𝜔 is a function 𝜔 : 𝑃 󳨃→ {𝐹, 𝑇}

from 𝑃 to the set of Boolean values {𝐹, 𝑇}. Let 2𝑃 denote the
set of worlds of 𝐿. A world 𝜔 is a model of 𝐾, denoted as
𝜔 ⇒ 𝐾, iff 𝐾 is true under 𝜔 in the classical truth-functional
manner. Let mod(𝐾) denote the set of models of 𝐾; that is,
mod(𝐾) = {𝜔 : 𝜔 ∈ 2𝑃 | 𝜔 ⇒ 𝐾}. We say that 𝐾 is satisfiable
iff there exists a model of 𝐾. Conversely, 𝐾 is unsatisfiable iff
there are no models of 𝐾. These two approaches coincide in
propositional logic; that is, a knowledge base 𝐾 is consistent
iff 𝐾 is satisfiable.

In the following discussion, let the Greek lower case
letters 𝜑, 𝜓, . . . be formulae from 𝐿 and English lower case
letters 𝑎, 𝑏, . . . variables from 𝑃.

Definition 1. For a Boolean function of 𝑛 variables 𝑥1, . . . , 𝑥𝑛,
a sum term in which each of the 𝑛 variables appears once (in
either its complemented or uncomplemented form) is called
a max-term.

Proposition 2. Let 𝑥1, . . . , 𝑥𝑛 be 𝑛 variables and 𝑀0, . . . ,
𝑀2𝑛−1 the 2𝑛 different max-terms built on these 𝑛 variables.
Then ∏

2𝑛−1
𝑖=0 𝑀

𝑖
= 𝑀0 ∧ 𝑀1 ∧ ⋅ ⋅ ⋅ ∧ 𝑀2𝑛−1 = 𝐹.

For example, let 𝑀0 = 𝑝 ∨ 𝑞, 𝑀1 = 𝑝 ∨ ¬𝑞, 𝑀2 = ¬𝑝 ∨ 𝑞,
and 𝑀3 = ¬𝑝 ∨ ¬𝑞 be formulas built on {𝑝, 𝑞}. Then it
is trivial to show that 𝑀0 ∧ 𝑀1 ∧ 𝑀2 ∧ 𝑀3 = 𝐹, which
means no assignments to 𝑝 and 𝑞 satisfy 𝑀1, 𝑀2, 𝑀3, and
𝑀4 simultaneously.

Definition 3. Let 𝜑 be a formula built on a set of variables 𝑃.
Then we call ext(𝜑) the extension of 𝜑; that is,

ext (𝜑) = {𝜑 ∨ 𝑎
𝛽1
1 ∨ ⋅ ⋅ ⋅ ∨ 𝑎

𝛽
𝑠

𝑠
} ,

(𝛽1, . . . , 𝛽𝑠) ∈ {0, 1}
𝑠
, {𝑎1, . . . , 𝑎𝑠} = 𝑃 − var (𝜑) ,

(1)

and, for each 𝑖 ∈ {1, 2, . . . 𝑠}, 𝑎0
𝑖

= 𝑎
𝑖
, 𝑎1
𝑖

= ¬𝑎
𝑖
.

For example, let 𝜑 = 𝑝 ∨ ¬𝑞 be a formula built on 𝑃 =

{𝑝, 𝑞, 𝑟}. Then we have var(𝜑) = {𝑝, 𝑞} and ext(𝜑) = {𝑝 ∨

¬𝑞 ∨ 𝑟, 𝑝 ∨ ¬𝑞 ∨ ¬𝑟}. Actually, a simple manipulation leads to
𝜑 = 𝑝 ∨ ¬𝑞 = (𝑝 ∨ ¬𝑞 ∨ 𝑟) ∧ (𝑝 ∨ ¬𝑞 ∨ ¬𝑟).

Remark 4. It is easy to see that carrying extension of 𝜑 does
not change the original meaning of 𝜑.

Theorem 5. Let 𝜑1 = 𝑎
𝛽1
1 ∨ 𝑎

𝛽2
2 ∨ ⋅ ⋅ ⋅ ∨ 𝑎

𝛽
𝑟

𝑟
(𝛽
𝑖

∈ {0, 1} (𝑖 ∈

{1, 2, . . . , 𝑟})) and 𝜑2 = 𝑎
𝛽
󸀠

1
1 ∨ 𝑎

𝛽
󸀠

2
2 ∨ ⋅ ⋅ ⋅ ∨ 𝑎

𝛽
󸀠

𝑠

𝑠
(𝛽
󸀠

𝑗
∈ {0, 1} (𝑗 ∈

{1, 2, . . . , 𝑠})) be two formulas built on a set of variables𝑃(|𝑃| =

𝑚), in which 𝑎
0
𝑖

= 𝑎
𝑖
, 𝑎1
𝑖

= ¬𝑎
𝑖
. Then the following propositions

hold:

(i) If there exists a variable 𝑎
𝑖
such that one of 𝑎

𝑖
and ¬𝑎

𝑖

appears in 𝜑
𝑟
and the other one appears in 𝜑

𝑠
, then

|ext(𝜑1) ∩ ext(𝜑2)| = 0.

(ii) Otherwise, |ext(𝜑1) ∩ ext(𝜑2)| = 2𝑚−|var(𝜑1)∪var(𝜑2)|.

Proof. (i) As there exists a variable 𝑎
𝑖
such that one of 𝑎

𝑖
and

¬𝑎
𝑖
appears in 𝜑1 and the other one appears in 𝜑2, then one

of 𝑎
𝑖
and ¬𝑎

𝑖
must appear in ext(𝜑1) and the other one must

appear in ext(𝜑2), which makes ext(𝜑1) differ from ext(𝜑2).
Therefore we have |ext(𝜑1) ∩ ext(𝜑2)| = 0.

(ii) If there does not exist a variable 𝑎
𝑖
such that one of 𝑎

𝑖

and ¬𝑎
𝑖
appears in 𝜑1 and the other one appears in 𝜑2, then

there are two situations that need to be surveyed, respectively.

Situation 1. If var(𝜑1) ∪ var(𝜑2) = 𝑃, then there exists only
one common formula of 𝜑1 and 𝜑2, that is, 𝜑1 ∨𝜑2. Hence, we
have |ext(𝜑1) ∩ ext(𝜑2)| = 1, which is equivalent to

󵄨󵄨󵄨󵄨ext (𝜑1) ∩ ext (𝜑2)
󵄨󵄨󵄨󵄨 = 2𝑚−|var(𝜑1)∪var(𝜑2)| = 20 = 1. (2)

Situation 2. If var(𝜑1) ∪ var(𝜑2) ⊂ 𝑃, then the common
formula of 𝜑1 and 𝜑2 is

𝜑1 ∨ 𝜑2 ∨ 𝑎
𝛽1
1 ∨ ⋅ ⋅ ⋅ ∨ 𝑎

𝛽
𝑠

𝑠

(𝛽
𝑖
∈ {0, 1} (𝑖 ∈ {1, 2, . . . , 𝑠})) , 𝑎

0
𝑖

= 𝑎
𝑖
, 𝑎

1
𝑖

= ¬𝑎
𝑖
,

(3)

where {𝑎1, . . . , 𝑎𝑠} = 𝑃 − var(𝜑1) ∪ var(𝜑2). Hence, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝜑1 ∨ 𝜑2 ∨ 𝑎

𝛽1
1 ∨ ⋅ ⋅ ⋅ ∨ 𝑎

𝛽
𝑠

𝑠

󵄨󵄨󵄨󵄨󵄨󵄨
= 2𝑚−|var(𝜑1)∪var(𝜑2)|. (4)

Therefore, combining the above two situations, the theo-
rem is proved.

Corollary 6. Let {𝜑1, 𝜑2, . . . , 𝜑𝑘} be a set of formulas built on
a set of variables 𝑃(|𝑃| = 𝑚). Then the following propositions
hold:

(1) If there exist a variable 𝑎
𝑖
and two formulas 𝜑

𝑟
and 𝜑

𝑠

such that one of 𝑎
𝑖
and ¬𝑎

𝑖
appears in 𝜑

𝑟
and the other

one appears in 𝜑
𝑠
, then | ⋂

𝑘

𝑖=1 ext(𝜑𝑖)| = 0.

(2) Otherwise, | ⋂
𝑘

𝑖=1 ext(𝜑𝑖)| = 2𝑚−|⋃
𝑘

𝑖=1 var(𝜑𝑖)|.

Theorem 7. Let Φ = {𝜑1, 𝜑2, . . . , 𝜑𝑛} be a set of formulas
built on a set of variables 𝑃(|𝑃| = 𝑚). Then after carrying

Mathematical Problems in Engineering 3

extensions for 𝜑1, 𝜑2, . . . , 𝜑𝑛, respectively, and using 𝜎 to denote
the number of different formulas obtained, we have

𝜎 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

⋃

𝑖=1
ext (𝜑

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨ext (𝜑
𝑖
)
󵄨󵄨󵄨󵄨 − ∑

1≤𝑖<𝑗≤𝑛

󵄨󵄨󵄨󵄨󵄨
ext (𝜑

𝑖
) ∩ ext (𝜑

𝑗
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅

+ (−1)
𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

⋂

𝑖=1
ext (𝜑

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(5)

Moreover, if 𝜎 = 2𝑚, then Φ is inconsistent; otherwise Φ is
consistent.

Proof. According to inclusion-exclusion principle and in
light of Proposition 2 the proof is trivial.

Let Φ = {𝑝, ¬𝑝 ∨ 𝑞, 𝑟} be a set of formulas defined on
{𝑝, 𝑞, 𝑟}. According to Theorem 7, we have 𝜎 = 23−1 + 23−2 +

23−2 − 0 − 23−2 − 23−3 + 0 = 5 and thus Φ is consistent.

3. An Algorithm for Finding All Minimal
Inconsistent Subsets

In this section, at first we propose an algorithm for finding all
nominal inconsistent subsets via Boolean lattice. And, then,
we give an illustrative example and a thorough comparative
study with algorithm MARCO by using the number of
visited subsets as the benchmark. Besides this, we also give
a discussion on relative algorithms DAA and PDDS.

3.1. Algorithm. An algorithm to find the minimal inconsis-
tent subsets of a given knowledge system must check each
of its subsets for inconsistency. One way to proceed is to
construct a Boolean lattice of subsets of the given knowledge
system, which is initially used by Bird and Hinze in the
process of finding the maximal consistent subsets [19].

A lattice 𝐿 is called a Boolean lattice if

(i) 𝐿 is distributive,
(ii) 𝐿 has 0 and 1,
(iii) each 𝑎 ∈ 𝐿 has a complement 𝑎

∗
∈ 𝐿.

Figure 1 sketches a three-variable Boolean lattice, where
all the labels of the nodes consist of the power set of set
{𝑎, 𝑏, 𝑐}.

In Algorithm 1, a Boolean lattice is also established and
leaf pruning is adopted to optimize the algorithm efficiency.
Because the cardinality of the subsets at each level is smaller
than those on the level above it, a breadth-first search of the
lattice will consider all smaller sets before any larger ones.
Apparently, leaf pruning strategy can be used based on the
fact that if a node denotes an minimal inconsistent subset,
then all of its ancestors are inconsistent; dually, if a node
denotes a consistent subset, then all of its descendents are
consistent.

a b c

a, b, c

b, c a, ca, b

{}

Figure 1: Three-variable Boolean lattice.

According to Theorem 7, directly computing 𝜎 is time
consuming, so we will store the intermediate calculation
results. For example, in Algorithm 1, for each visited node
(whose corresponding formula set is {𝜑

𝑖
| 𝑖 ∈ 𝑇}), we will

store the value of | ⋂
𝑖∈𝑇

ext(𝜑
𝑖
)|. Apparently, when computing

the 𝜎 value of 𝑘-degree node, the stored value | ⋂
𝑖∈𝑇

ext(𝜑
𝑖
)|

of each (𝑘 − 1)-degree nodes can be reused to save time cost.
In the minimal inconsistent subsets finding algorithm

proposed in [14], which is derived indirectly on maximal
consistent subset, there exists a disadvantage that while get-
ting maximal consistent subset, pseudo-maximal consistent
subset will be generated [11, 15]. As our proposed algorithm
always checks the smaller sets before the larger sets, so it can
overcome this problem.

If the maximal cost for checking inconsistency of is 𝑇,
the complexity of this algorithm is 𝑂(2

|𝐾|
𝑇) in the worst

case. In the following, by using experiment, we will show
the relationship between the number of subsets that were
checked for inconsistency and the size the of the knowledge
base with respect to different probabilities that two formulas
are consistent.

In the experiment, we use generator GENBAL [20] to
generate knowledge bases.The graphs in Figures 2 and 3 show
the number of subsets that were checked for inconsistency
related to |𝐾|, the number of clauses contained in the given
normalized knowledge base and 𝑝, and the probability that
two formulas are consistent. All counts are averaged across
100 randomly generated formulae by using GENBAL.

From Figures 2 and 3, we can see that larger values for 𝑝

mean that more subsets will be checked. Moreover, it is easy
to show that larger values for 𝑝 generally also lead to fewer
and smaller minimal inconsistent subsets.

3.2. An Illustrative Example and Comparative Study. Apart
from our proposed method, there are many other solvers for
computing minimal inconsistent subsets. One of the latest
published algorithm is MARCO [16], which adopts the most
recent advances. At first we give an illustrative example and
then we compare our method with MARCO.

Example 8. Considering a set of formulas, 1 : (𝑎), 2 : (¬𝑎), 3 :

(¬𝑎∨𝑏), and 4 : (¬𝑏), which is used in [16], we useAlgorithm 1
to find all the minimal inconsistent subsets.

At first we also establish a Boolean lattice, which is shown
in Figure 4.

4 Mathematical Problems in Engineering

Input: a knowledge base 𝐾

Output: all the minimal inconsistent subsets MI(𝐾) of knowledge base 𝐾

Begin
(1) normalize the knowledge base 𝐾 to ensure that every formula contained in it is a clause,

and denoted it as norm(𝐾) = {𝜑1, 𝜑2, . . . , 𝜑𝑚};
initialize MI(𝐾) to be an empty set of sets;

(2) build a 𝑚 variable Boolean lattice BL
𝑚
with each node denoting a set of formulas

(if a node denotes a 𝑛 formula set, then we call it a 𝑛-degree node), and give each node a unmarked flag;
(3) set up an empty list List, and put all of the 2-degree nodes into List;

fetch the head Head from List;
if Head is inconsistent, then //by usingTheorem 7
Begin
put Head into MI(𝐾);
mark all the ancestors of Head;

End
else Head is consistent, then
Begin
insert all of the un-marked upper neighbors of Head at the front of List;
mark all the descendants of Head, and if they exist in List, then remove them from List;

End
(4) return MI(𝐾).
End.

Algorithm 1: Finding all the minimal inconsistent subsets of a knowledge base.

0

10000

8000

6000

4000

2000

N
um

be
r o

f v
isi

te
d

su
bs

et
s

0.0 0.2 0.4 0.6 0.8 1.0

p

Figure 2: Number of subsets visited as a function of 𝑝 for |𝐾| = 15.

Then we establish a list 𝐿𝑖𝑠𝑡, and initialize 𝐿𝑖𝑠𝑡 as

𝐿𝑖𝑠𝑡 : {1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4} . (6)

Fetch the head 𝐻𝑒𝑎𝑑 from 𝐿𝑖𝑠𝑡; that is, 𝐻𝑒𝑎𝑑 = {1, 2}.
According to Theorem 7, 𝐻𝑒𝑎𝑑 = {1, 2} is inconsistent, and
then mark its ancestors {1, 2, 3}, {1, 2, 4}, and {1, 2, 3, 4}.

Fetch the head 𝐻𝑒𝑎𝑑 from 𝐿𝑖𝑠𝑡; that is, 𝐻𝑒𝑎𝑑 = {1, 3}.
According to Theorem 7, 𝐻𝑒𝑎𝑑 = {1, 3} is consistent; insert
its unmarked upper neighbor {1, 3, 4} at the front of 𝐿𝑖𝑠𝑡, and
mark its descendants {1} and {3}.

Fetch the head 𝐻𝑒𝑎𝑑 from 𝐿𝑖𝑠𝑡; that is, 𝐻𝑒𝑎𝑑 = {1, 3, 4}.
According toTheorem 7, 𝐻𝑒𝑎𝑑 = {1, 3, 4} is inconsistent.

4 5 6 7 8 9

N
um

be
r o

f v
isi

te
d

su
bs

et
s

p = 0.9

p = 0.6

p = 0.3

|K|

215

214

213

212

211

210

29

28

27

26

25

24

10 12 14 1611 13 15

Figure 3: Number of subsets visited as a function of |𝐾| for 𝑝 = 0.3,
𝑝 = 0.6, and 𝑝 = 0.9.

Fetch the head 𝐻𝑒𝑎𝑑 from 𝐿𝑖𝑠𝑡; that is, 𝐻𝑒𝑎𝑑 = {1, 4}.
According to Theorem 7, 𝐻𝑒𝑎𝑑 = {1, 4} is consistent, and
mark its unmarked descendant {4}.

Fetch the head 𝐻𝑒𝑎𝑑 from 𝐿𝑖𝑠𝑡; that is, 𝐻𝑒𝑎𝑑 = {2, 3}.
According to Theorem 7, 𝐻𝑒𝑎𝑑 = {1, 3} is consistent; insert
its unmarked upper neighbor {2, 3, 4} at the front of 𝐿𝑖𝑠𝑡, and
mark its unmarked descendant {2}.

Mathematical Problems in Engineering 5

1, 2, 3, 4

1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4

1, 3 1, 4 2, 3 2, 41, 2 3, 4

1 2 3 4

{}

Figure 4: Four-variable Boolean lattice.

Fetch the head 𝐻𝑒𝑎𝑑 from 𝐿𝑖𝑠𝑡; that is, 𝐻𝑒𝑎𝑑 = {2, 3, 4}.
According to Theorem 7, 𝐻𝑒𝑎𝑑 = {1, 3} is consistent, and
mark its unmarked descendant {2, 4} and {3, 4} and remove
{2, 4} and {3, 4} from 𝐿𝑖𝑠𝑡.

At this point, 𝐿𝑖𝑠𝑡 is empty; algorithm terminates with
results {1, 2} and {1, 3, 4}.

It is apparent that in order to get all the minimal
inconsistent subsets we have to judge the consistency of 6 sets,
which are

{1, 2} , {1, 3} , {1, 3, 4} , {1, 4} , {2, 3} , {2, 3, 4} . (7)

Fundamentally, the MARCO algorithm operates repeat-
edly:

(i) Selecting an unexplored point in the power set lattice,
a subset of 𝐶 that we call a seed.

(ii) Checking the satisfiability of the seed.
(iii) Growing or shrinking it to an MSS or an MUS as

appropriate.
(iv) Marking a corresponding region of the lattice as

explored.

When we use algorithm MARCO, the consistency of 10
sets needs to be considered one by one, which are

{1, 2, 4} , {1, 2} , {3} , {1, 3} , {2} , {2, 3} , {2, 4} , {2, 3, 4} ,

{1, 4} , {1, 3, 4} .

(8)

So, our algorithm performs better thanMARCOwith respect
to the number of the visited sets.

The difference between our algorithm and MARCO is
that our algorithm traverses the Boolean lattice incremental
according to the cardinalities of the sets while MARCO tra-
verses the Boolean lattice randomly, as the functionGetUnex-
plored() used in MARCO randomly returns any unexplored
sets. As the objectives of both algorithms are to find all of the
minimal sets which are inconsistent, the incremental feature
of our algorithm brings a higher efficiency.

In the comparative study, we also use generator GENBAL
[20] to generate knowledge base. Number of visited subsets
is used as the benchmarks, as it is more objective than the
other benchmarks. For example, we do not choose CPU times

4 6 8 10 12

Our algorithm
MARCO

14 16

N
um

be
r o

f v
isi

te
d

su
bs

et
s

|K|

212

211

210

29

28

27

26

25

24

Figure 5: Number of subsets visited as a function of |𝐾| for 𝑝 = 0.3.

4 6 8 10 12

Our algorithm
MARCO

14 16

N
um

be
r o

f v
isi

te
d

su
bs

et
s

|K|

212

210

28

26

24

Figure 6: Number of subsets visited as a function of |𝐾| for 𝑝 = 0.6.

as the benchmark as it is strongly affected by the running
environment, including the status of both hardware and
software.

The graphs in Figures 5, 6, and 7 show the number of
subsets that were checked for inconsistency related to |𝐾|,
the number of clauses contained in the given normalized
knowledge base and 𝑝, and the probability that two formulas
are consistent. All counts are averaged across 100 randomly
generated formulae by using GENBAL. All of Figures 5, 6,
and 7 show that our algorithm performs better thanMARCO
with respect to the number of the visited sets.

DAA is another algorithm that exploits the hitting set
duality between minimal correction sets (MCSes) and mini-
mal unsatisfiable subsets [17]. DAA uses the Grow subroutine
on known-satisfiable subsets to produce maximal satisfiable
subsets (MSSes) and their complementary MCSes and then
computes minimal hitting sets of the MCSes found thus

6 Mathematical Problems in Engineering

4 6 8 10 12

Our algorithm
MARCO

14 16

N
um

be
r o

f v
isi

te
d

su
bs

et
s

|K|

212

214

210

28

26

24

Figure 7: Number of subsets visited as a function of |𝐾| for 𝑝 = 0.9.

far. PDDS, an approach closely related to DAA, was later
proposed [18]. The main differences are that PDDS takes an
initial set of either maximal satisfiable subsets (MUSes) or
MCSes as input, and PDDS does not necessarily compute
all hitting sets of the MCSes at each iteration, avoiding the
memory scaling issues of DAA.

TheDAA and PDDS algorithms have the benefit that they
are decoupled from the choice of hitting set algorithm. It
is pointed out that the choice of the incremental algorithm
presented by Fredman and Khachiyan [21] for computing
hitting sets results in a version of the DAA algorithm with
worst case runtime that is subexponential in the size of the
output [22]. And studies have shown that MARCO performs
better than DAA and PDDS [16].

4. Inconsistency Measure Calculation for
Fuzzy Knowledge Based Systems

In this section, we show an application of Algorithm 1 for
inconsistency measure calculation of fuzzy knowledge based
systems.

Fuzzy knowledge based systems are a typical rule-based
inference system for providing expertise over a domain,
which is capable of drawing conclusions fromgiven uncertain
evidence [23]. In fuzzy knowledge based systems, knowledge
is represented by using possibilistic logic.

Let Δ = {(𝜑1, 𝛼1), (𝜑2, 𝛼2), . . . , (𝜑𝑛, 𝛼𝑛)} denote a fuzzy
knowledge based system, in which 𝜑1, 𝜑2, . . . , 𝜑𝑛 are classical
propositional logic formulas and 𝛼1, 𝛼2, . . . , 𝛼𝑛 are their
possibility measures.

Definition 9. Let Δ be a fuzzy knowledge based system. If Δ

contains two formulas (𝜑, 𝛼1), (𝜑, 𝛼2) with 𝛼1 > 𝛼2, then we
call Δ

󸀠
= Δ − (𝜑, 𝛼2) the possibility based deduction result of

Δ and denote by 𝑑(Δ) = Δ
󸀠.

Definition 10. Let (𝜑, 𝛼) be a possibility formula built on a set
of variables 𝑃. Then we call ext(𝜑, 𝛼) the extension of (𝜑, 𝛼);
that is,

ext (𝜑, 𝛼) = {𝜑 ∨ 𝛾
𝛽1
1 ∨ ⋅ ⋅ ⋅ ∨ 𝛾

𝛽
𝑠

𝑠
, 𝛼} ,

(𝛽1, . . . , 𝛽𝑠) ∈ {0, 1}
𝑠
, {𝛾1, . . . , 𝛾𝑠} = 𝑃 − var (𝜑) ,

(9)

and for each 𝑖 ∈ {1, 2, . . . , 𝑠}, 𝛾0
𝑖

= 𝛾
𝑖
, 𝛾1
𝑖

= ¬𝛾
𝑖
.

Definition 11. Let Δ = {(𝜑1, 𝛼1), (𝜑2, 𝛼2), . . . , (𝜑𝑛, 𝛼𝑛)} be
a fuzzy knowledge based system. Then we call 𝜋(Δ) =

{𝜑1, 𝜑2, . . . , 𝜑𝑛} the projection of Δ onto the classical knowl-
edge base.

Definition 12 (see [24]). Let Δ be a fuzzy knowledge based
system. If Δ is inconsistent, then its inconsistency measure is
defined as

INCON (Δ) = max
Δ
󸀠
⊆Δ,INCON(Δ󸀠)>0

min {𝛼 | (𝜑, 𝛼) ∈ Δ
󸀠
} . (10)

Theorem 13. LetΔ be a fuzzy knowledge based system built on
a set of variables 𝑃(|𝑃| = 𝑚). After extensions and possibility
based deduction of Δ are performed, Δ󸀠 is derived. If |𝜋(Δ

󸀠
)| =

2𝑚, then Δ is inconsistent, and its inconsistency measure is

INCON (Δ) = Min {𝛼
𝑖
| (𝜑
𝑖
, 𝛼
𝑖
) ∈ Δ
󸀠
} . (11)

Proof. As INCON(Δ) = max
Δ
∗
⊆Δ
󸀠
,INCON(Δ∗)>0 min{𝛼 | (𝜑, 𝛼)

∈ Δ
∗
} and Δ

󸀠 is result of extensions and possibility based
deduction of Δ, then INCON(Δ) = INCON(Δ

󸀠
). Since

|𝜋(Δ
󸀠
)| = 2𝑚, we know that Δ

󸀠 is inconsistent, and its
inconsistency measure is Min{𝛼

𝑖
| (𝜑
𝑖
, 𝛼
𝑖
) ∈ Δ

󸀠
}. Hence, the

theorem is proved.

Example 14. Let Δ = {(¬𝑝 ∨ 𝑞, 0.6), (𝑝 ∨ ¬𝑞, 0.8), (𝑞 ∨

𝑟, 1), (𝑟, 0.3), (¬𝑟, 0.5)} be a fuzzy knowledge based system
built on {𝑝, 𝑞, 𝑟}.

After carrying extensions and possibility based deduction
of Δ, we get

Δ
󸀠

= {(¬𝑝 ∨ 𝑞 ∨ ¬𝑟, 0.6) , (𝑝 ∨ ¬𝑞 ∨ 𝑟, 0.8) ,

(𝑝 ∨ ¬𝑞 ∨ ¬𝑟, 0.8) , (𝑝 ∨ 𝑞 ∨ 𝑟, 1) , (¬𝑝 ∨ 𝑞 ∨ 𝑟, 1) ,

(¬𝑝 ∨ ¬𝑞 ∨ 𝑟, 0.3) , (𝑝 ∨ 𝑞 ∨ ¬𝑟, 0.5) ,

(¬𝑝 ∨ ¬𝑞 ∨ ¬𝑟, 0.5)} .

(12)

According toTheorem 13, we know that Δ is inconsistent
and its inconsistency measure is 0.3.

5. Conclusions

The purpose of this paper is to find all the minimal inconsis-
tent subsets of a given knowledge system. Initially we pro-
pose a max-term counting based knowledge inconsistency
checking strategy. And, then, we put forward an algorithm
for finding all minimal inconsistent subsets, in which we
establish a Boolean lattice to organize the subsets of the given

Mathematical Problems in Engineering 7

knowledge base and use leaf pruning to optimize the algo-
rithm efficiency. Finally, we give a method for inconsistency
measure calculation of fuzzy knowledge based system.

As in a fuzzy knowledge based system, there may be
several statements in contradiction to each other; how to
measure the significance of the inconsistency is a valuable
problem for further study.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The work presented in this paper is supported by Doctorial
Foundation of Henan Polytechnic University (B2011-102).
The author also gratefully acknowledges the helpful com-
ments and suggestions of the reviewers, which have greatly
improved the presentation.

References

[1] E. Birnbaum and E. L. Lozinskii, “Consistent subsets of incon-
sistent systems: structure and behaviour,” Journal of Experimen-
tal & Theoretical Artificial Intelligence, vol. 15, no. 1, pp. 25–46,
2003.

[2] Z. Sun, Z. Zhang, andH.Wang, “Consistency and error analysis
of prior-knowledge-based kernel regression,” Neurocomputing,
vol. 74, no. 17, pp. 3476–3485, 2011.

[3] J. Ramı́rez and A. de Antonio, “Checking the consistency of a
hybrid knowledge base system,” Knowledge-Based Systems, vol.
20, no. 3, pp. 225–237, 2007.

[4] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumpt-
ner, “Consistency-based diagnosis of configuration knowledge
bases,” Artificial Intelligence, vol. 152, no. 2, pp. 213–234, 2004.

[5] J. Bailey and P. J. Stuckey, “Discovery of minimal unsatisfiable
subsets of constraints using hitting set dualization,” in Proceed-
ings of the 7th International Symposium on Practical Aspects of
Declarative Languages (PADL ’05), pp. 174–186, January 2005.

[6] M. H. Liffiton, M. D. Moffitt, M. E. Pollack, and K. A. Sakallah,
“Identifying conflicts in overconstrained temporal problems,”
in Proceedings of the 19th International Joint Conference on
Artificial Intelligence, pp. 205–211, August 2005.

[7] R. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations, E. R. Miller and J. W.
Thatcher, Eds., pp. 85–103, Plenum Press, New York, NY, USA,
1972.

[8] I. Shah, “A hybrid algorithm for finding minimal unsatisfiable
subsets in over-constrained CSPs,” International Journal of
Intelligent Systems, vol. 26, no. 11, pp. 1023–1048, 2011.

[9] I. Shah, “Direct algorithms for finding minimal unsatisfiable
subsets in over-constrained CSPs,” International Journal on
Artificial Intelligence Tools, vol. 20, no. 1, pp. 53–91, 2011.

[10] A. Felfernig, M. Schubert, and C. Zehentner, “An efficient
diagnosis algorithm for inconsistent constraint sets,” Artificial
Intelligence for Engineering Design, Analysis andManufacturing,
vol. 26, no. 1, pp. 53–62, 2012.

[11] R. Malouf, “Maximal consistent subsets,” Computational Lin-
guistics, vol. 33, no. 2, pp. 153–160, 2007.

[12] E. Di Rosa, E. Giunchiglia, and M. Maratea, “Solving satisfia-
bility problems with preferences,” Constraints, vol. 15, no. 4, pp.
485–515, 2010.

[13] M. H. Liffiton and K. A. Sakallah, “Algorithms for computing
minimal unsatisfiable subsets of constraints,” Journal of Auto-
mated Reasoning, vol. 40, no. 1, pp. 1–33, 2008.

[14] K. McAreavey, W. Liu, and P. Miller, “Computational
approaches to finding andmeasuring inconsistency in arbitrary
knowledge bases,” International Journal of Approximate
Reasoning, vol. 55, no. 8, pp. 1659–1693, 2014.

[15] K. Mu, Z. Jin, W. Liu, D. Zowghi, and B. Wei, “Measuring
the significance of inconsistency in the viewpoints framework,”
Science of Computer Programming, vol. 78, no. 9, pp. 1572–1599,
2013.

[16] M. H. Liffiton, A. Previti, A. Malik, and J. Marques-Silva, “Fast,
flexible MUS enumeration,” Constraints, 2015.

[17] J. Bailey and P. J. Stuckey, “Discovery of minimal unsatisfiable
subsets of constraints using hitting set dualization,” in Proceed-
ings of the 7th International Symposium on Practical Aspects
of Declarative Languages (PADL ’05), vol. 3350, pp. 174–186,
January 2005.

[18] R. T. Stern, M. Kalech, A. Feldman, and G. M. Provan, “Explor-
ing the duality in conflict-directed model-based diagnosis,” in
Proceedings of the 26thAAAIConference onArtificial Intelligence
and the 24th Innovative Applications of Artificial Intelligence
Conference (AAAI ’12), pp. 828–834, July 2012.

[19] R. Bird and R. Hinze, “Functional pearl: trouble shared is
trouble halved,” in Proceedings of the ACM SIGPLANWorkshop
on Haskell, pp. 1–6, Uppsala, Sweden, 2003.

[20] J. A. Navarro and A. Voronkov, “Generation of hard non-
clausal random satisfiability problems,” in Proceedings of the
20th National Conference on Artificial Intelligence, pp. 436–442,
July 2005.

[21] M. L. Fredman and L. Khachiyan, “On the complexity of
dualization of monotone disjunctive normal forms,” Journal of
Algorithms, vol. 21, no. 3, pp. 618–628, 1996.

[22] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen,
and R. S. Sharma, “Discovering all most specific sentences,”
ACM Transactions on Database Systems, vol. 28, no. 2, pp. 140–
174, 2003.

[23] E. Sanchez, Approximate Reasoning in Intelligent Systems, Deci-
sion and Control, Pergamon Press, 1st edition, 1987.

[24] J. Lang, “Possibilistic logic: complexity and algorithms,” in
Handbook ofDefeasible Reasoning andUncertaintyManagement
Systems, D.M. Gabby, P. Semts, J. Kohlas, and S.Moral, Eds., pp.
179–220, Springer, 1997.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

