207 research outputs found

    Multiple-input multiple-output least-squares constant modulus algorithms

    Get PDF
    Published versio

    CMF-DFE Based Adaptive Blind Equalization Using Particle Swarm Optimization

    Get PDF
    The channel matched filter (CMF) is the optimum receiver providing the maximum signal to noise ratio (SNR) for the frequency selective channels. The output intersymbol interference (ISI) profile of the CMF convolved by the channel can be blindly obtained by using the autocorrelation of the received signal. Therefore, the inverse of the autocorrelation function can be used to equalize the channel passed through its own CMF. The only missing part to complete the proposed blind operation is the CMF coefficients. Therefore, in this work, the best training algorithm investigation is subjected for blind estimation of the CMF coefficients. The proposed method allows using more effective training algorithms for blind equalizations. However, the expected high performance training is obtained when the swarm intelligence is used. Unlike the stochastic gradient algorithms, the particle swarm optimization (PSO) is known to have fast convergence because its performance is independent of the characteristics of the systems used. The obtained mean square error (MSE) and bit error rate (BER) performances are promising for high performance real-time systems as an alternative to non-blind equalization techniques

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Blind adaptive equalization for QAM signals: New algorithms and FPGA implementation.

    Get PDF
    Adaptive equalizers remove signal distortion attributed to intersymbol interference in band-limited channels. The tap coefficients of adaptive equalizers are time-varying and can be adapted using several methods. When these do not include the transmission of a training sequence, it is referred to as blind equalization. The radius-adjusted approach is a method to achieve blind equalizer tap adaptation based on the equalizer output radius for quadrature amplitude modulation (QAM) signals. Static circular contours are defined around an estimated symbol in a QAM constellation, which create regions that correspond to fixed step sizes and weighting factors. The equalizer tap adjustment consists of a linearly weighted sum of adaptation criteria that is scaled by a variable step size. This approach is the basis of two new algorithms: the radius-adjusted modified multitmodulus algorithm (RMMA) and the radius-adjusted multimodulus decision-directed algorithm (RMDA). An extension of the radius-adjusted approach is the selective update method, which is a computationally-efficient method for equalization. The selective update method employs a stop-and-go strategy based on the equalizer output radius to selectively update the equalizer tap coefficients, thereby, reducing the number of computations in steady-state operation. (Abstract shortened by UMI.) Source: Masters Abstracts International, Volume: 45-01, page: 0401. Thesis (M.A.Sc.)--University of Windsor (Canada), 2006

    Blind Equalization and Channel Estimation in Coherent Optical Communications Using Variational Autoencoders

    Get PDF
    We investigate the potential of adaptive blind equalizers based on variational inference for carrier recovery in optical communications. These equalizers are based on a low-complexity approximation of maximum likelihood channel estimation. We generalize the concept of variational autoencoder (VAE) equalizers to higher order modulation formats encompassing probabilistic constellation shaping (PCS), ubiquitous in optical communications, oversampling at the receiver, and dual-polarization transmission. Besides black-box equalizers based on convolutional neural networks, we propose a model-based equalizer based on a linear butterfly filter and train the filter coefficients using the variational inference paradigm. As a byproduct, the VAE also provides a reliable channel estimation. We analyze the VAE in terms of performance and flexibility over a classical additive white Gaussian noise (AWGN) channel with inter-symbol interference (ISI) and over a dispersive linear optical dual-polarization channel. We show that it can extend the application range of blind adaptive equalizers by outperforming the state-of-the-art constant-modulus algorithm (CMA) for PCS for both fixed but also time-varying channels. The evaluation is accompanied with a hyperparameter analysis.Comment: Published (Open Access) in IEEE Journal on Selected Areas in Communications, Sep 202

    Digital Signal Processing on FPGA for Short-Range Optical Communications Systems over Plastic Optical Fiber

    Get PDF
    Nowadays bandwidth requirements are increasing vertiginously. As new ways and concepts of how to share information emerge, new ways of how to access the web enter the market. Computers and mobile devices are only the beginning, the spectrum of web products and services such as IPTV, VoIP, on-line gaming, etc has been augmented by the possibility to share, store data, interact and work on the Cloud. The rush for bandwidth has led researchers from all over the world to enquire themselves on how to achieve higher data rates, and it is thanks to their efforts, that both long-haul and short-range communications systems have experienced a huge development during the last few years. However, as the demand for higher information throughput increases traditional short-range solutions reach their lim- its. As a result, optical solutions are now migrating from long-haul to short-range communication systems. As part of this trend, plastic optical fiber (POF) systems have arisen as promising candidates for applications where traditional glass optical fibers (GOF) are unsuitable. POF systems feature a series of characteristics that make them very suitable for the market requirements. More in detail, these systems are low cost, robust, easy to handle and to install, flexible and yet tolerant to bendings. Nonetheless, these features come at the expense of a considerable higher bandwidth limitation when compared to GOF systems. This thesis is aimed to the investigate the use of digital signal processing (DSP) algorithms to overcome the bandwidth limitation in short-range optical communications system based on POF. In particular, this dissertation presents the design and development of DSP algorithms on field programmable gate arrays (FPGAs) with the ultimate purpose of implementing a fully engineered 1Gbit/s Ethernet Media Converter capable of establishing data links over 50+ meters of PMMA-SI POF using an RC-LED as transmitte

    Signal Processing Design of Low Probability of Intercept Waveforms

    Get PDF
    This thesis investigates a modification to Differential Phase Shift Keyed (DPSK) modulation to create a Low Probability of Interception/Exploitation (LPI/LPE) communications signal. A pseudorandom timing offset is applied to each symbol in the communications stream to intentionally create intersymbol interference (ISI) that hinders accurate symbol estimation and bit sequence recovery by a non-cooperative receiver. Two cooperative receiver strategies are proposed to mitigate the ISI due to symbol timing offset: a modified minimum Mean Square Error (MMSE) equalization algorithm and a multiplexed bank of equalizer filters determined by an adaptive Least Mean Square (LMS) algorithm. Both cooperative receivers require some knowledge of the pseudorandom symbol timing dither to successfully demodulate the communications waveform. Numerical Matlab® simulation is used to demonstrate the bit error rate performance of cooperative receivers and notional non-cooperative receivers for binary, 4-ary, and 8-ary DPSK waveforms transmitted through a line-of-sight, additive white Gaussian noise channel. Simulation results suggest that proper selection of pulse shape and probability distribution of symbol timing offsets produces a waveform that is accurately demodulated by the proposed cooperative receivers and significantly degrades non-cooperative receiver symbol estimation accuracy. In typical simulations, non-cooperative receivers required 2-8 dB more signal power than cooperative receivers to achieve a bit error rate of 1.0%. For nearly all reasonable parameter selections, non-cooperative receivers produced bit error rates in excess of 0.1%, even when signal power is unconstrained

    Angular CMA: A modified Constant Modulus Algorithm providing steering angle updates

    Get PDF
    Conventional blind beamforming algorithms have no direct notion of the physical Direction of Arrival angle of an impinging signal. These blind adaptive algorithms operate by adjusting the complex steering vector in the case of changing signal conditions and directions. This paper presents Angular CMA, a blind beamforming method that calculates steering angle updates (instead of weight vector updates) to keep track of the desired signal. Angular CMA and its respective steering angle updates are particularly useful in the context of mixed-signal hierarchical arrays as means to find and distribute steering parameters. Simulations of Angular CMA show promising convergence behaviour, while having a lower complexity than alternative methods (e.g., MUSIC)

    Tecnologias coerentes para redes ópticas flexíveis

    Get PDF
    Next-generation networks enable a broad range of innovative services with the best delivery by utilizing very dense wired/wireless networks. However, the development of future networks will require several breakthroughs in optical networks such as high-performance optical transceivers to support a very-high capacity optical network as well as optimization of the network concept, ensuring a dramatic reduction of the cost per bit. At the same time, all of the optical network segments (metro, access, long-haul) need new technology options to support high capacity, spectral efficiency and data-rate flexibility. Coherent detection offers an opportunity by providing very high sensitivity and supporting high spectral efficiency. Coherent technology can still be combined with polarization multiplexing. Despite the increased cost and complexity, the migration to dual-polarization coherent transceivers must be considered, as it enables to double the spectral efficiency. These dual-polarization systems require an additional digital signal processing (DSP) subsystem for polarization demultiplexing. This work seeks to provide and characterize cost-effective novel coherent transceivers for the development of new generation practical, flexible and high capacity transceivers for optical metro-access and data center interconnects. In this regard, different polarization demultiplexing (PolDemux) algorithms, as well as adaptive Stokes will be considered. Furthermore, low complexity and modulation format-agnostic DSP techniques based on adaptive Stokes PolDemux for flexible and customizable optical coherent systems will be proposed. On this subject, the performance of the adaptive Stokes algorithm in an ultra-dense wavelength division multiplexing (U-DWDM) system will be experimentally evaluated, in offline and real-time operations over a hybrid optical-wireless link. In addition, the efficiency of this PolDemux algorithm in a flexible optical metro link based on Nyquist pulse shaping U-DWDM system and hybrid optical signals will be assessed. Moreover, it is of great importance to find a transmission technology that enables to apply the Stokes PolDemux for long-haul transmission systems and data center interconnects. In this work, it is also proposed a solution based on the use of digital multi-subcarrier multiplexing, which improve the performance of long-haul optical systems, without increasing substantially, their complexity and cost.As redes de telecomunicações futuras permitirão uma ampla gama de serviços inovadores e com melhor desempenho. No entanto, o desenvolvimento das futuras redes implicará vários avanços nas redes de fibra ótica, como transcetores óticos de alto desempenho capazes de suportar ligações de muito elevada capacidade, e a otimização da estrutura da rede, permitindo uma redução drástica do custo por bit transportado. Simultaneamente, todos os segmentos de rede ótica (metropolitanas, acesso e longo alcance) necessitam de novas opções tecnológicas para suportar uma maior capacidade, maior eficiência espetral e flexibilidade. Neste contexto, a deteção coerente surge como uma oportunidade, fornecendo alta sensibilidade e elevada eficiência espetral. A tecnologia de deteção coerente pode ainda ser associada à multiplexação na polarização. Apesar de um potencial aumento ao nível do custo e da complexidade, a migração para transcetores coerentes de dupla polarização deve ser ponderada, pois permite duplicar a eficiência espetral. Esses sistemas de dupla polarização requerem um subsistema de processamento digital de sinal (DSP) adicional para desmultiplexagem da polarização. Este trabalho procura fornecer e caracterizar novos transcetores coerentes de baixo custo para o desenvolvimento de uma nova geração de transcetores mais práticos, flexíveis e de elevada capacidade, para interconexões óticas ao nível das futuras redes de acesso e metro. Assim, serão analisados diferentes algoritmos para a desmultiplexagem da polarização, incluindo uma abordagem adaptativa baseada no espaço de Stokes. Além disso, são propostas técnicas de DSP independentes do formato de modulação e de baixa complexidade baseadas na desmultiplexagem de Stokes adaptativa para sistemas óticos coerentes flexíveis. Neste contexto, o desempenho do algoritmo adaptativo de desmultiplexagem na polarização baseado no espaço de Stokes é avaliado experimentalmente num sistema U-DWDM, tanto em análises off-line como em tempo real, considerando um percurso ótico hibrido que combina um sistema de transmissão suportado por fibra e outro em espaço livre. Foi ainda analisada a eficiência do algoritmo de desmultiplexagem na polarização numa rede ótica de acesso flexível U-DWDM com formatação de pulso do tipo Nyquist. Neste trabalho foi ainda analisada a aplicação da técnica de desmultiplexagem na polarização baseada no espaço de Stokes para sistemas de longo alcance. Assim, foi proposta uma solução de aplicação baseada no uso da multiplexagem digital de múltiplas sub-portadoras, tendo-se demonstrado uma melhoria na eficiência do desempenho dos sistemas óticos de longo alcance, sem aumentar significativamente a respetiva complexidade e custo.Programa Doutoral em Engenharia Eletrotécnic
    corecore