876 research outputs found

    A secure and private RFID authentication protocol based on quadratic residue

    Get PDF
    Radio Frequency IDentification based systems are getting pervasively deployed in many real-life applications in various settings for identification and authentication of remote objects. However, the messages that are transmitted over a insecure channel, are vulnerable to security and privacy concerns such as data privacy, location privacy of tag owner and etc. Recently, Yeh et al.'s proposed a RFID authentication protocol based on quadratic residue which is claimed to provide location privacy and prevent possible attacks. In this paper, we formally analyzed the protocol and we proved that the protocol provides destructive privacy according to Vaudenay privacy model. Moreover, we proposed a unilateral authentication protocol and we prove that our protocol satisfies higher privacy level such as narrow strong privacy. Besides, we proposed an enhanced version of our proposed protocol, which has same privacy level as Yeh at al protocol, but has reader authentication against stronger adversaries. Furthermore, the enhanced version of our protocol uses smaller number of cryptographic operations when compared to Yeh at al protocol and it is also cost efficient at the server and tag side and requires O(1) complexity to identify a RFID tag

    SLRV: An RFID Mutual Authentication Protocol Conforming to EPC Generation-2 Standard

    Get PDF
    Having done an analysis on the security vulnerabilities of Radio Frequency Identification (RFID) through a desynchronization and an impersonation attacks, it is revealed that the secret information (i.e.: secret key and static identifier) shared between the tag and the reader is unnecessary. To overcome the vulnerability, this paper introduces Shelled Lightweight Random Value (SLRV) protocol; a mutual authentication protocol with high-security potentials conforming to  electronic product code (EPC) Class-1 Generation-2 Tags, based on lightweight and standard cryptography on the tag’s and reader’s side, respectively. SLRV prunes de-synchronization attacks where the updating of internal values is only executed on the tag’s side and is a condition to a successful mutual authentication. Results of security analysis of SLRV, and comparison with existing protocols, are presented

    Analysis on the Performance of Server-less RFID Searching Protocol

    Get PDF
    Radio frequency identification (RFID) has spread into many fields. Its security and privacy has received more and more attention. Based on traditional authentication protocols, some other branches related to practical applications have been introduced including server-less authentication and searching protocols. The server-less searching protocol is extended from server-less authentication protocol and both of them are executedwithout the support from the backend servers. Through analyzing some proposed protocols, we found that the probabilistic tracking attack is one of the major threats on the serverless RFID security protocols. The probability of being tracked and the cost on computation are related with the probability of the undesired tag’s response. Based on the analysis, a practical conclusion is given which can be used in most of the server-less RFID systems

    Secure ownership transfer in multi-tag/multi-owner passive RFID systems

    Full text link
    In this paper we propose a secure ownership transfer protocol for a multi-tag and multi-owner RFID environment. Most of the existing work in this area do not comply with the EPC Global Class-1 Gen-2 (C1G2) standard since they use expensive hash operations or sophisticated encryption schemes that cannot be implemented on low-cost passive tags that are highly resource constrained. Our work aims to fill this gap by proposing a protocol based on simple XOR and 128-bit Pseudo Random Number Generators (PRNG), operations that can be easily implemented on low-cost passive RFID tags. The protocol thus achieves EPC C1G2 compliance while meeting the security requirements. Also, our protocol provides additional protection using a blind-factor to prevent tracking attacks

    Vulnerability Analysis of a Mutual Authentication Protocol Conforming to EPC Class-1 Generation-2 Standard

    Full text link
    In this paper we scrutinize the security properties of an RFID authentication protocol conforming to the EPC Class-1 Generation-2 standard. The protocol is suitable for Gen-2 passive tags and requires simple computations. The authors claim that the scheme provides privacy protection and authentication and offers resistant against commonly assumed attacks. We propose a de-synchronization and an impersonation attack in which the disclosing of the secret information (i.e. secret key and static identifier) shared between the tag and the reader is unnecessary to success in these attacks

    Design and Analysis for RFID Authentication Protocol

    Get PDF
    Radio frequency identification (RFID) technology has been widely used in ubiquitous infrastructures. On the other hand, the low-cost RFID system has potential risks such as privacy and security problems, which would be a big barrier for the application. First of all, we analyze the current security protocols for the RFID system. To protect user privacy and remove security vulnerabilities, we propose a robust and privacy preserving mutual authentication protocol that is suitable for the low-cost RFID environment. Finally, the correctness of the proposed authentication protocol is proved by the BAN logic.published_or_final_versio

    Vulnerability Analysis of a Mutual Authentication Protocol Conforming to EPC Class-1 Generation-2 Standard

    Get PDF
    In this paper we scrutinize the security properties of an RFID authentication protocol conforming to the EPC Class-1 Generation-2 standard. The protocol is suitable for Gen-2 passive tags and requires simple computations. The authors claim that the scheme provides privacy protection and authentication and offers resistant against commonly assumed attacks. We propose a de-synchronization and an impersonation attack in which the disclosing of the secret information (i.e. secret key and static identifier) shared between the tag and the reader is unnecessary to success in these attacks

    Product Authentication Using Hash Chains and Printed QR Codes

    Get PDF
    This thesis explores the usage of simple printed tags for authenticating products. Printed tags are a cheap alternative to RFID and other tag based systems and do not require specialized equipment. Due to the simplistic nature of such printed codes, many security issues like tag impersonation, server impersonation, reader impersonation, replay attacks and denial of service present in RFID based solutions need to be handled differently. An algorithm that utilizes hash chains to secure such simple tags while still keeping cost low is discussed. The security characteristics of this scheme as well as other product authentication schemes that use RFID tags are compared. Arguments for static tags being at least as secure as RFID tags is discussed. Finally, a scheme for combining RFID authentication with static tags to achieve security throughout the supply chain is discussed
    • …
    corecore