3,817 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling aircraft landings - the static case

    Get PDF
    This is the publisher version of the article, obtained from the link below.In this paper, we consider the problem of scheduling aircraft (plane) landings at an airport. This problem is one of deciding a landing time for each plane such that each plane lands within a predetermined time window and that separation criteria between the landing of a plane and the landing of all successive planes are respected. We present a mixed-integer zero–one formulation of the problem for the single runway case and extend it to the multiple runway case. We strengthen the linear programming relaxations of these formulations by introducing additional constraints. Throughout, we discuss how our formulations can be used to model a number of issues (choice of objective function, precedence restrictions, restricting the number of landings in a given time period, runway workload balancing) commonly encountered in practice. The problem is solved optimally using linear programming-based tree search. We also present an effective heuristic algorithm for the problem. Computational results for both the heuristic and the optimal algorithm are presented for a number of test problems involving up to 50 planes and four runways.J.E.Beasley. would like to acknowledge the financial support of the Commonwealth Scientific and Industrial Research Organization, Australia

    Integrated Models and Algorithms for Automotive Supply Chain Optimization

    Get PDF
    The automotive industry is one of the most important economic sectors, and the efficiency of its supply chain is crucial for ensuring its profitability. Developing and applying techniques to optimize automotive supply chains can lead to favorable economic outcomes and customer satisfaction. In this dissertation, we develop integrated models and algorithms for automotive supply chain optimization. Our objective is to explore methods that can increase the competitiveness of the automotive supply chain via maximizing efficiency and service levels. Based on interactions with an automotive industry supplier, we define an automotive supply chain planning problem at a detailed operational level while taking into account realistic assumptions such as sequence-dependent setups on parallel machines, auxiliary resource assignments, and multiple types of costs. We model the research problem of interest using mixed-integer linear programming. Given the problem’s NP-hard complexity, we develop a hybrid metaheuristic approach, including a constructive heuristic and an effective encoding-decoding strategy, to minimize the total integrated cost of production setups, inventory holding, transportation, and production outsourcing. Furthermore, since there are often conflicting objectives of interest in automotive supply chains, we investigate simultaneously optimizing total cost and customer service level via a multiobjective optimization methodology. Finally, we analyze the impact of adding an additional transportation mode, which offers a cost vs. delivery time option to the manufacturer, on total integrated cost. Our results demonstrate the promising performance of the proposed solution approaches to analyze the integrated cost minimization problem to near optimality in a timely manner, lowering the cost of the automotive supply chain. The proposed bicriteria, hybrid metaheuristic offers decision makers several options to trade-off cost with service level via identified Pareto-optimal solutions. The effect of the available additional transportation mode’s lead time is found to be bigger than its cost on the total integrated cost measure under study

    Scheduling theory since 1981: an annotated bibliography

    Get PDF

    Integer Batch Scheduling Problems for a Single-Machine to Minimize Total Actual Flow Time

    Get PDF
    AbstractThis research addresses a batch scheduling model for a single-machine under a Just-In-Time (JIT) production system that produces discrete parts. The objective is to minimize the total actual flow time, defined as the time when parts are flowing on the shop floor from its arrival time to their common delivery time. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. The problem is solved based on the Lagrange Relaxation method. The optimality test of the proposed algorithm is done by comparing the result of the proposed algorithm with the Integer Composition method. The result of numerical experiments demonstrates that the proposed algorithm is very efficient to solve the problems

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    TRADE-OFF BALANCING FOR STABLE AND SUSTAINABLE OPERATING ROOM SCHEDULING

    Get PDF
    The implementation of the mandatory alternative payment model (APM) guarantees savings for Medicare regardless of participant hospitals ability for reducing spending that shifts the cost minimization burden from insurers onto the hospital administrators. Surgical interventions account for more than 30% and 40% of hospitals total cost and total revenue, respectively, with a cost structure consisting of nearly 56% direct cost, thus, large cost reduction is possible through efficient operation management. However, optimizing operating rooms (ORs) schedules is extraordinarily challenging due to the complexities involved in the process. We present new algorithms and managerial guidelines to address the problem of OR planning and scheduling with disturbances in demand and case times, and inconsistencies among the performance measures. We also present an extension of these algorithms that addresses production scheduling for sustainability. We demonstrate the effectiveness and efficiency of these algorithms via simulation and statistical analyses
    corecore