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ABSTRACT 

This is an annotated bibliography of the literature on sequencing and sched­

uling problems that was published in 1981 or later. The literature prior to 

1981 is represented by some books and survey papers. 
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The theory of scheduling is concerned with the optimal allocation of scarce 
resources to activities over time. Of obvious practical importance, it has 
been the subject of extensive research over the past decades. In view of the 
fact that the above description allows for a wide variety of problem types, 
it should come as no surprise that the development of the theory has gone 
hand in hand with the refinement of a detailed problem classification, for 
which the ultimate foundation was laid in the classic book Theory of Sched­
uling [Conway, Maxwell & Miller 1967] (see §1.1). 

Partly under the influence of their work, the emphasis has been on the 
investigation of machine scheduling problems, in which the activities are 
repres~nted by jobs and the resources by machines, each of which can process 
at most one job at a time. Typically, the number of feasible allocations or 
schedules will be finite, but very large. If all the relevant information on 
jobs, machines and optimality criterion is known in advance, the scheduling 
problem becomes an example of a combinatorial optimization problem, and 
indeed most of the techniques developed for such problems have at some point 
been applied to scheduling problems. 

one of the techniques that has been especially successful is the com­
plexity classification that results from the theory of NP-completeness (see 
[Garey & Johnson 1979], §1.1). This theory allows for a formal interpretation 
of the empirical difference between easy and difficult combinatorial optimi­
zation problems, by equating the former group with the problems that are 
well-solvable in the sense that their solution requires only time bounded by 
a polynomial function of problem size, and tI:ie latter group with the NP-hard 
problems for which a polynomial algorithm is very unlikely to exist. 

The application of NP-completeness theory in conjunction with various 
algorithmic techniques has succeeded in settling the complexity status ("well­
solvable" or "NP-hard") of the large majority of the scheduling problems that 
occur in a detailed problem classification first published in [Graham, Lawler, 
Lenstra & Rinnooy Kan 1979] (see §1.2). We trust that we will be excused for 
adhering closely to their classification in this bibliography. 

Thus, we first classify scheduling problems according to the type of 
machine environment in which they are situated. The simplest such environment 
is a single machine, on which job j has to spend an (integral) processing 
time Pj (j = 1, .•• ,n). An obvious generalization is to assume that each job 
has to be executed on any one of m parallel machines, which may be identical, 
uniform (machine i processes its jobs at speed si) or unrelated (machine i 
is able to process job j at speed sij). Another generalization is to assume 
that each job may have to visit more than one machine: if each job requires 
processing on all m machines in arbitrary order, the system is called an 
open shop; if each job has to visit all machines in a fixed order which is 
the same for each job, we have a flow shop; if the orders are fixed but pos­
sibly different for each job, we have a job shop. As the bibliography will 
partly reveal, flow shops and job shops have been the traditional domain of 
operations researchers and industrial engineers, whereas the study of paral­
lel machine systems has been strongly influenced by their applicability in 
computer science. 

Within each of these subclasses, we may further classify problem types 
by specifying certain job characteristics. First of all, it is important to 
distinguish between the case that preemption (job splitting) is allowed at 
zero cost and the case that a job, once started on a machine, must be pro­
cessed,without interruption until its completion on that machine. Secondly, 
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various types of precedence constraints may be defined on the job set, that 
must be respected in each feasible schedule. Another way to generalize the 
model is to assume that job j becomes available for processing at an (inte­
gral) release date rj and has to be completed no later than an (integral) 
deadline dj; in the basic model, all rj = 0 and all dj = 00 • Further, it is 
often fruitful to consider the special case of unit processing times, in 
which all Pj = 1. 

The final component of the classification scheme is the optimality cri­
terion adopted. This is usually defined in terms of cost functions fj of the 
job completion times Cj in a particular schedule; fj may also depend on a 
given (integral) due date dj and weight Wj (j = 1, ••• ,n). We distinguish 
between minmax criteria, i.e., the minimization of maximum cost maxj{fj(Cj)}, 
and minsum criteria, i.e., the minimization of total cost lj fj (c3). Important 
minmax criteria are maximum completion time maxj{Cj} and maximum lateness 
maxj{cj-dj}; important minsum criteria are total completion time lj cj, total 
tarainess lj max{O,~-dj}, the number of late jobs lj(if Cj ~ dj then O else 1}, 
and the weighted versions of these in which the j-th term is multiplied by wj 
(j = 1, ... , n} • 

It should be apparent that the number of problems in the above class is 
huge. Still, as we shall see below, many interesting problem types are not 
included and require special introduction in the bibliography. 

In drawing up this bibliography, we have concentrated on publications 
that appeared in 1981 or later. For the literature prior to 1981, we refer 
to the books and surveys listed in §§1.1,2. We have exercised some judgement 
in determining which publications to include; if any reader feels we have 
overlooked an important contribution, we would be pleased to hear from him 
or her. we have not included papers on parallel scheduling algorithms, as 
those are dealt with in one of the other contributions to this volume. 

,, 
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1. BOOKS AND SURVEYS 

In this section, we list some books and surveys that will serve as a general 
introduction to the area and to the less than recent literature, as well as 
some papers that bear on the problem classification. 

1.1. Books 

R.W. Conway, W.L. Maxwell, L.W. Miller (1967). Theory of Scheduling, Addison­
Wesley, Reading, MA. 

As the first serious book on scheduling theory, this text is now rather 
outdated but still remarkable for the way it mixes deterministic scheduling 
with queueing and simulation - a mix that has recently become fashionable 
again (see §11). 

K.R. Baker (1974). Introduction to Sequencing and Scheduling, Wiley, New York. 
Although this textbook largely ignores recent issues such as computation­

al complexity and analysis of heuristics, it does provide a very readable 
introduction to the basic results in the area. 

E.G. Coffman, Jr. (ed.) (1976). Computer & Job/Shop Scheduling Theory, Wiley, 
New York. 

This edited collection of papers contains some careful reviews of the 
state of the art around 1975, with particula~ly nice contributions by R. Sethi 
on minimizing maximum completion time and by R.L. Graham on the worst case 
analysis of heuristics. 

A.H.G. Rinnooy Kan (1976). Machine Scheduling Problems: Classification, Com­
plexity and Computations, Nijhoff, The Hague. 
J.K. Lenstra (1977). Sequencing by Enumerative Methods, Mathematicai Centre 
Tracts 69, Mathematisch Centrum, Amsterdam. 

These Ph.D. theses contain surveys of optimization algorithms and com­
plexity results. For some single machine, flow shop and job shop problems, 
branch-and-bound algorithms are developed and evaluated. 

M.R. Garey, D.S. Johnson (1979). Computers and Intractability: a Guide to the 
Theory of NP-Completeness, Freeman, San Francisco. 

The first textbook on computational complexity offers a well-written 
introduction to the tools and techniques in this area, with an extremely 
useful survey of NP-completeness results at the end. 

s. French (1982). Sequencing and Scheduling: an Introduction to the Mathema­
tics of the Job-Shop, Horwood, Chichester. 

Aimed at the same audience as [Baker 1974] (see above), this text covers 
most of the classical scheduling theory, including computational complexity 
and analysis of heuristics but with less emphasis on parallel machine models. 

M.A.H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.) {1982). Deterministic 
and Stochastic Scheduling, Reidel, Dordrecht. 

The proceedings of the NATO Advanced Study and Research Institute on 
Theoretical Approaches to Scheduling Problems, held in Durham, England in 
1981, provide some up-to-date surveys. Particular attention is paid to the 

~ 
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interfaces between deterministic and stochastic scheduling. Among the contrib­
utors are E.G. Coffman, Jr., M.L. Fisher, J.C. Gittins, E.L. Lawler, M.L. 
Pinedo, S. Ross, L.E. Schrage, K. Sevcik and G. Weiss. 

1.2. Surveys 

M.J. Gonzalez, Jr. (1977). Deterministic processor scheduling. Comput. Surveys 
9, 173-204. 

A less than complete selection from the scheduling results available in 
1977, aimed at a computer science audience. 

R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979). Optimiza­
tion and approximation in deterministic sequencing and scheduling: a survey. 
Ann. Discrete Math. 5, 287-326. 

Written on the occasion of the D077 conference in Vancouver in 1977, 
this survey provides a comprehensive review of optimization and approximation 
algorithms, including complexity results and worst case performance bounds, 
based on the problem classification sketched above. More than 150 references 
to the literature are listed. Need we say more? 

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1982). Recent developments in 
deterministic sequencing and scheduling: a survey. M.A.H. Dempster, J.K. 
Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling, 
Reidel, Dordrecht, 35-73. 

On the occasion of the summer school on deteihninistic and stochastic 
schedulinginDurham, England in 1981, the preceding survey was revised to 
contain information on results up to 1981. 

E.L. Lawler, J.K. Lenstra (1982). Machine scheduling with precedenc~ con­
straints. I. Rival (ed.). Ordered Sets, Reidel, Dordrecht, 655-675. 

Presented at the Symposium on Ordered Sets in Banff in 1981, this survey 
provides an exposition of the basic results in precedence constrained sched­
uling, including a treatment of the influence of so-called series-parallel 
constraints. 

J.K. Lenstra, A.H.G. Rinnooy Kan (1982). Two open problems in precedence con­
strained scheduling. Report BW 170, Mathematisch Centrum, Amsterdam. 

A contribution to the sequel of the Banff meeting, held in Lyon in 1982, 
this small survey deals with two open questions concerning scheduling unit­
time jobs subject to precedence constraints, as well as a few new NP-hardness 
results. 

J. Carlier,P. Chretienne (1982). Un domaine tres ouvert: les problemes d'or­
donnancement. RAIRO Rech. Oper. 16, 175-217. 

Written in French, this survey is in a sense an update of [Coffman 1976] 
(see §1.1), with emphasis on contributions by the authors. It is not so much 
a complete treatment as an attempt to focus on some of the main problem types 
and solution techniques. 

E.L. Lawler (1983). Recent results in the theory of machine scheduling. A. 
Bachem, M. Grotschel, B. Korte (eds.). Mathematical Programming: the State 
of the Art - Bonn 1982, Springer, Berlin, 202-234. 
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A tutorial at the 11th International Symposium on Mathematical Program­
ming in Bonn in 1982, this paper emphasizes polynomial algorithms and reviews 
a number of open problems. 

E.G. Coffman, Jr., M.R. Garey, D.S. Johnson (1983). Approximation algorithms 
for bin-packing - an updated survey. Bell Laboratories, Murray Hill, NJ. 

This survey provides an overview of the analysis of approximation algo­
rithms for the minimization of maximum completion time on identical parallel 
machines and for the related bin packing problem of minimizing the number of 
machines subject to a given bound on the maximum completion time. 

D.S. Johnson (1983). The NP-completeness column: an ongoing guide. J. Algo­
rithms 4, 189-203. 

The seventh in a series of updates on [Garey & Johnson 1979] (see §1.1), 
this column surveys two types of complexity issues around parallel machine 
models: first the parallelization of algorithms and secondly the design and 
scheduling of multiprocessor systems. 

S.C. Graves (1981). A review of production scheduling. Oper. Res. 29, 646-675. 
This well-written survey deals with a wide range of sequencing and lot­

sizing problems. A review of the practice of production scheduling leads to 
various challenging research questions. More than 100 references are given. 

1.3. Classification 

The problem classification sketched above was introduced in [Conway, Maxwell 
& Miller 1967] (see §1.1) and refined in [Graham, Lawler, Lenstra & Rinnooy 
Kan 1979] (see §1.2). In addition, the following papers are relevant. 

B.J. Lageweg, J.K. Lenstra, E.L. Lawler, A.H.G. Rinnooy Kan (1982). Computer­
aided complexity classification of combinatorial problems. Comm. ACM 25, 817-
822. 

A computer program is described that maintains a record of the known 
complexity results for a structured class of combinatorial problems. Given 
listings of well-solvable and NP-hard problems, the program employs a reduci­
bility relation defined on the class to classify each problem as easy, hard 
or open and to produce listings of the hardest easy problems, the easiest 
open ones, the hardest open ones and the easiest hard ones. The application 
of the program to a class of 120 single machine problems is demonstrated. 

B.J. Lageweg, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1981). Computer­
aided complexity classification of deterministic scheduling problems. Report 
BW 138, Mathematisch Centrum, Amsterdam. 

This documents the results obtained by application of the above-mentioned 
program to a class of 4536 scheduling problems. 

N. Hefetz, I. Adiri (1982). A note on the influence of missing operations on 
scheduling problems. Naval Res. Logist. Quart. 29, 535-539. 

If the processing time of an operation is equal to zero, this can be 
interpreted to mean that the processing time is infinitesimally small, but 
also that the operation does not exist. These interpretations are by no means 
equiva],ent, as is demonstrated by various examples. 
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2. SINGLE MACHINE SCHEDULING: MINMAX CRITERIA 

2.1. Maximum lateness 

J. earlier (1982). The one-machine sequencing problem. European J. 0per. Res. 
11, 42-47. 

Although the problem of miniD1.1.zing maximum lateness on a single machine 
subject to release dates is NP-hard, it possesses sufficient structure to 
make it reasonably well solvable in practical terms. A very efficient branch­
and-bound algorithm was developed by McMahon & Florian (Management Sci. 17 
(1975), 782-792) and refined by Lageweg, Lenstra & Rinnooy Kan (Statist. 
Neerlandica 30 (1976), 25-41). The author improves over this method by propos­
ing a different branching rule. 

J. Erschler, G. Fontan, C. Merce, F. Roubellat (1982). Applying new dominance 
concepts to job schedule optimization. European J. 0per. Res. 11, 60-66. 
J. Erschler, G. Fontan, c. Merce, F. Roubellat (1983). A new dominance con­
cept in scheduling n jobs on a single machine with ready times and due dates. 
0per. Res. 31, 114-127. 

Dominance results among schedules may be used in the obvious way to 
speed up enumerative procedures. These two papers introduce dominance based 
on the (rj,dj)-intervals, assuming that the objective is simply to meet all 
due dates. The jobs for which the (rj,dj)-interval is minimal under the par­
tial order defined by inclusion, turn out to play an important role: they may 
be assumed to appear in order of nondecreasing rj, and the jobs dominated by 
them in the partial order are, roughly speaking, spread around them. 

M.R. Garey, D.S. Johnson, B.B. Simons, R.E. Tarjan (1981). Scheduling unit­
time tasks with arbitrary release times and deadlines. SIAM J. Comput. 10, 
256-269. 

The special case in which all processing times are equal (or, equiva­
lently, all Pj = 1 and the rj and dj need not be integral) has been open for 
a long time. In this situation, feasibility of the rj and dj can be tested in 
O(n log n) time by what amounts to repeated application of a dynamic version 
of Jackson's rule, which gives priority to the available jobs with the 
smallest dj. 

G.N. Frederickson (1983). Scheduling unit-time tasks with integer release 
times and deadlines. Inform. Process. Lett. 16, 171-173. 

If, in the above problem, all Pj = 1 and the r; and dj are integral, 
then Jackson's rule solves the problem in O(n log nJ time. Here, it is shown 
how an optimal schedule can actually be constructed in O(n) time. 

2.2. Maximum cost 

K.R. Baker, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1983). Preemptive 
scheduling of a single machine to minimize maximum cost subject to release 
dates and precedence constraints. Oper. Res. 31, 381-386. 

The problem described in the title is solved in O(n3) time by general­
izing Lawler's algorithm for the case of equal release dates. 



C.L. Monma (1980). Scheduling to minimize the maximum job cost. Oper. Res. 
28, 942-951. 

8 

Let cj indicate the amount of resource consumed (or, if cj < 0, contrib­
uted) by job j. The problem is to fi~d a job permutation~ minimizing the 
maximum cumulative cost maxj{f~(j) <Ir:} c~(i))}. This problem is shown to 
generalize various scheduling problems. An NP-hardness proof and polynomial 
algorithms for special cases are presented. 

C.L. Monma (1981). Sequencing with general precedence constraints. Discrete 
Appl. Math. 3, 137-150. 
J.B. Sidney (1981). A decomposition algorithm for sequencing with general 
precedence constraints. Math. Oper. Res. 6, 190-204. 

These papers study ender what conditions certain job interchange tech­
niques can cope with general precedence constraints. This typically results 
in polynomial solvability for series-parallel constraints and in less complete 
characterizations of optimality for more complicated structures. 
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3. SINGLE MACHINE SCHEDULING: MINSUM CRITERIA 

3.1. Optimization algorithms: dynamic programming 

In the dynamic programming approach to minimizing total cost on a single ma­
chine subject to precedence constraints, the minimum cost of scheduling a set 
of jobs is related to the minimum cost of all its subsets that are feasible 
with respect to the precedence constraints. The implementation by Baker~ 
Schrage (Oper. Res. 26 (1978), 111-120, 444-449), in which each feasible sub­
set receives an integer label within a certain range, produced impressive 
computational results. The labeling is, however, not compact in the sense 
that, conversely, not every integer in the range corresponds to a feasible 
subset. Thus, there appeared to be room for further improvement. 

E.L. Lawler (1979). Efficient implementation of dynamic programming algorithms 
for sequencing problems. Report BW 106, Mathematisch Centrum, Amsterdam. 

An alternative to the implementation scheme of Baker & Schrage is pro­
posed. Time is proportional ton times the number of feasible sets generated, 
and space is proportional ton plus the maximum number of feasible sets of 
given size. 

E.P.C. Kao, M. Queyranne (1982). On dynamic programming methods for assembly 
line balancing. Oper. Res. 30, 375-390. 

Carefully designed experiments confirm that Lawler's scheme is computa­
tionally superior to the Baker-Schrage scheme. 

R.N. Burns, G. Steiner (1981). Single machine scheduling with series-parallel 
precedence constraints. Oper. Res. 29, 1195-1207. 

A compact labeling scheme is developed for the case that the precedence 
constraints are series-parallel. 

G. Steiner (1981). Single machine scheduling with precedence constraints of 
dimension 2. Unpublished manuscript. 

The compact labeling scheme from the previous paper is generalized to 
the case that the precedence constraints have dimension 2. 

E.L. Lawler (1982). Scheduling a single machine to minimize the number of 
late jobs. Preprint, Computer Science Division, University of California, 
Berkeley. 

Three results are presented. One is an O(n log n) algorithm that improves 
on an O(n2 ) method of Kise, Ibaraki & Mine (Oper. Res. 26 (1978), 121-126). 
Another is an O(n6) dynamic programming algorithm for finding an optimal 
preemptive schedule subject to arbitrary release dates. Finally, the problem 
(with equal release dates) is shown to be NP-hard when there are deadlines in 
addition to due dates. 

3.2. Optimization algorithms: branch-and-bound 

C.N. Potts, L.N. Van Wassenhove (1982). A decomposition algorithm for the 
single machine total tardiness problem. Oper. Res. Lett. 1, 177-181. 

The problem of minimizing total tardiness on a single machine can be 
solved ~n O(n4lPj) (i.e., pseudopolynomial) time by a dynamic programming 
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algorithm due to Lawler (Ann. Discrete Math. 1 (1977), 331-342), which de­
composes eachproblem into subproblems. The authors use a similar decomposi­
tion approach, but apply the Baker-Schrage method as soon as the subproblems 
get sufficiently small. Supported by additional dominance rules, the algo­
rithm solves problems of up to 100 jobs. 

C.N. Potts, L.N. Van Wassenhove (1983). An algorithm for single machine 
sequencing with deadlines to minimize total weighted completion time. 
European J. Oper. Res. 12, 379-387. 

Lagrangean relaxation of the constraints cj ~ dj is applied. The multi­
pliers are constrained so that a simple heuristic for the original problem 
provides an optimal solution to the relaxed one. 

A.M.A. Hariri, C.N. Potts (1983). An algorithm for single machine sequencing 
with release dates to minimize total weighted completion time. Discrete Appl. 
Math. 5, 99-109. 

In the same spirit as the previous paper, the constraints Cj ~ rj+Pj are 
dualized. A dynamic version of Smith's rule (order the jobs in order of non­
increasing wj/Pj) solves the relaxed problem. 

L. Bianco, S. Ricciardelli (1982). Scheduling of a single machine to minimize 
total weighted completion time subject to release dates. Naval Res. Logist. 
Quart. 29, 151-167. 

The same problem, a simpler lower bound, and more elaborate dominance 
conditions. 

3.3. Approximation algorithms 

Theoretically, the best possible heuristics are fully polynomial approximation 
schemes, which produce an £-optimal schedule in time polynomial in problem 
size and 1/£. 

E.L. Lawler (1982). A fully polynomial approximation scheme for the total 
tardiness problem. Oper. Res. Lett. 1, 207-208. 

This scheme applies the author's pseudopolynomial algorithm (Ann. Dis­
crete Math. 1 (1977), 331-342) to a problem with rescaled processing times. 
The running time is O(n7/e). 

G.V. Gens, E.V. Levner (1981). Fast approximation algorithms for job sequen­
cing with deadlines. Discrete Appl. Math. 3, 313-318. 

This fully polynomial approximation scheme for the problem of minimizing 
the weighted number of late jobs requires O(n2log n + n2/£) time. The emphasis 
is on the derivation of a tight lower bound so that ideas for the related 
knapsack problem can be fruitfully employed. 

3.4. Related models: due date selection 

Rather than taking due dates as given, the two papers below treat them as 
decision variables. 

K.R. Baker, J.W.M. Bertrand (1981). A comparison of due-date selection rules. 
AIIE T~ans. 13, 123-131. 
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The problem of minimizing the average due date Ld•/n is investigated 
under the assumption that no job may be late and that aj only depends on job 
parameters such as rj and Pj that are known in advance. 

S.S. Panwalkar, M.L. Smith, A. Seidmann (1982). Common due date assignment 
to minimize total penalty for the one machine scheduling problem. Oper. Res. 
30, 391-399. 

A polynomial algorithm is given for the minimization of a weighted sum 
of a common due dated, total tardiness, and total earliness lj max{O,d-Cj}. 

3.5. Related models: minimization of variance 

J.J. Kanet (1981). Minimizing variation of flow time in single machine sys­
tems. Management Sci. 27, 1453-1459. 

This paper present a simple algorithm for minimizing the total absolute 
difference of job completion times on a single machine, and a heuristic for 
the more difficult problem of minimizing variance of completion times. 

J.J. Kanet (1981). Minimizing the average deviation of job completion times 
about a common due date. Naval Res. Logist. Quart. 28, 643-651. 

The total absolute difference between job completion times and a common 
due date on a single machine can be minimized by a minor modification of the 
first method from the previous paper. 

3.6. Related models: minimization of the number of setups 

Given a schedule of precedence constrained jobs, a setup is said to occur 
when a job does not directly follow one of its immediate predecessors. To 
the large literature on this problem, the following papers have been added. 

W.R. Pulleyblank (1981). On minimizing setups in precedence constrained sched­
uling. Report 81185-0R, Institut fur Okonometrie und Operations Research, 
Universitat Bonn. 

NP-Hardness for the case of a bipartite precedence graph is established, 
and a polynomial algorithm for (again!) series-parallel constraints is given. 

M.M. Syslo (1983). Minimizing the jump number for ordered sets: a graph­
theoretic approach. Report 83288, Institut fur Okonometrie und Operations 
Research, Universitat Bonn. 

The results for the case of series-parallel constraints are derived in 
a different manner. 

D. Duffus, I. Rival, P. Winkler (1981). Minimizing setups for cycle-free 
ordered sets. Unpublished manuscript. 

The obvious lower bound on the minimum number of setups, given by the 
Dilworth width minus 1, is shown to be tight for the case that the precedence 
graph contains no alternating cycles. 

G. Gierz, w. Poguntke (1983). Minimizing setups for ordered sets: a linear 
algebraic approach. SIAM J. Algebraic Discrete Meth. 4, 132-144. 

A lower bound that dominates the previous one is presented and shown to 
be tight for a class slightly more general than series-parallel constraints. 



12 

3.7. Related models: two criteria 

Given two optimality criteria, the following papers deal with the determina­
tion of the set of Pareto-optimal points. 

L.N. Van Wassenhove, L.F. Gelders (1980). Solving a bicriterion scheduling 
problem. European J. Oper. Res. 4, 42-48. 

A pseudopolynomial algorithm is given for the total completion time and 
maximum lateness criteria. 

L.N. Van Wassenhove, K.R. Baker (1982). A bicriterion approach to time/cost 
trade-offs scheduling. European J. Oper. Res. 11, 48-54. 

A procedure is developed for the maximum completion cost and total 
crashing cost criteria; the crashing cost of job j is given by cj(bj-Pj), 
where Pj (aj ~ Pj ~ bj) is a decision variable and aj, bj and cj are known. 
The procedure is polynomial under additional assumptions on the completion 
cost functions. 

K.S. Lin (1983). Hybrid algorithm for sequencing with bicriteria. J. Optimiza­
tion Theory Appl. 39, 105-124. 

A dynamic programming approach is presented for the total completion time 
and total tardiness criteria. 
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4. NONPREEMPTIVE PARALLEL MACHINE SCHEDULING: INDEPENDENT JOBS 

4.1. Optimization algorithms 

J.Y.-T. Leung (1982). On scheduling independent tasks with restricted execu­
tion times. Oper. Res. 30, 163-171. 

The problem of minimizing maximum completion time on m identical parallel 
machines can be solved by dynamic programming in O(log Pmax•log m•n2 (k-l)) 
time, if the Pj can take on at most k different values. 

B. Simons (1983). Multiprocessor scheduling of unit-time jobs with arbitrary 
release times and deadlines. SIAM J. Comput. 12, 294-299. 

Them-machine generalization of the single machine problem solved in 
[Garey, Johnson, Simons & Tarjan 1981] (see §2.1) is considered. An algorithm 
with running time O(n 3log log n) is developed. 

B. Simons (1982). On scheduling with release times and deadlines. M.A.H. 
Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Stochas­
tic Scheduling, Reidel, Dordrecht, 75-88. 

This paper surveys polynomial algorithms and NP-completeness results for 
scheduling equal-length jobs on one or more identical parallel machines sub­
ject to release dates and deadlines. 

I. Meilijson, A. Tamir (1981). Minimizing flow time on identical processors 
with variable processing rate. Unpublished manuscript. 

A classical result states that the problem of minimizing total completion 
time on identical parallel machines can be solved by the SPT rule, assigning 
the jobs to machines in order of nondecreasing Pj· If the machines have a 
speed that increases over time, the SPT rule remains optimal; if the speed 
decreases, the problem becomes NP-hard. 

4.2. Approximation algorithms: identical machines 

Unless stated otherwise, the papers in §§4.2-4 consider the minimization of 
maximum completion time. 

In a list scheduling heuristic, the jobs are placed in a fixed list and, 
at each step, the earliest available machine is selected to process the first 
available job on the list. 

J.O. Achugbue, F.Y. Chin (1981). Bounds on schedules for independent tasks 
with similar execution times. J. Assoc. Comput. Mach. 28, 81-99. 

For arbitrary list scheduling, tight worst case relative error bounds 
as a function of p = PmaxlPmin are obtained. E.g., if p ~ 3, then the bound 
is equal to 2-1/3lm/3J if m ~ 6, 17/10 if m = 5 and 5/3 if m = 3,4. 

B.L. Deuermeyer, D.K. Friesen, M.A. Langston (1982). Scheduling to maximize 
the minimum processor finish time in a multiprocessor system. SIAM J. Alge-
braic Discrete Meth. 3, 190-196. · 

For the unusual criterion of maximizing the minimum machine completion 
time, the LPT list scheduling heuristic, in which the jobs are listed in order 
of nonincreasing Pj, is shown to have a worst case ratio of 4/3. While the 
result is similar to Graham's result for minimizing maximum completion time 
(see, ;.g., [Coffman 1976] in §1. 1), the proof technique is quite different. 
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4.3. Approximation algorithms: uniform machines 

Y. Cho, s. Sahni (1980). Bounds for list schedules of uniform processors. 
SIAM J. Comput. 9, 91-103. 

It is known that both arbitrary list scheduling on identical machines 
and LPT list scheduling on uniform machines have a worst case ratio tending 
to 2 if m goes to infinity. Here, it is shown that for arbitrary list sched­
uling on uniform machines, the ratio is not bounded by a constant but in­
creases not faster than O(v'm). 

D.K. Friesen, M.A. Langston (1983). Bounds for multifit scheduling on uniform 
processors. SIAM J. Comput. 12, 60-70. 

The multifit heuristic, which involves repeated application of the 
first-fit-decreasing heuristic for bin packing to the packing of jobs in m 
intervals [0,Cmax], is extended to uniform machines and shown to have a 
worst case ratio between 1.341 and 1.4. This is the best ratio found so far 
for this model. 

4.4. Approximation algorithms: unrelated machines 

E. Davis, J.M. Jaffe (1981). Algorithms for scheduling tasks on unrelated 
processors. J. Assoc. Comput. Mach. 28, 721-736. 

An adaptation of list scheduling is considered that incorporates a 
search for a relatively fast machine for each job. The worst case ratio is 
shown to be O(v'm). 
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5. PREEMPTIVE PARALLEL MACHINE SCHEDULING: INDEPENDENT JOBS 

5.1. Optimization algorithms 

G. Schmidt (1983). Preemptive scheduling on identical processors with time 
dependent availabilities. Bericht 83-4, Fachbereich 20 Informatik, Technische 
Universitat Berlin. 

In case the machines are available only in certain given time intervals, 
the existence of a feasible preemptive schedule can be tested in polynomial 
time. 

C. Martel (1982). Preemptive scheduling with release times, deadlines and 
due times. J. Assoc. Comput. Mach. 29, 812-829. 

Polymatroidal network flow techniques are used to construct a preemptive 
schedule on uniform machines respecting release dates and meeting deadlines 
(if it exists) in O(m2n4+n5) time. The algorithm is combined with search 
techniques to minimize maximum lateness in polynomial time as well. 
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6. PARALLEL MACHINE SCHEDULING: PRECEDENCE CONSTRAINED JOBS 

6.1. Optimization algorithms: unit-time jobs 

The fundamental algorithmic results for scheduling precedence constrained 
unit-time jobs on m identical parallel machines so as to minimize maximum 
completion time are Hu's algorithm (Oper. Res. 9 (1961), 841-848) for the 
case of tree-type constraints and various polynomial algorithms for the case 
of two machines. The complexity of the problem is open for every fixed number 
of machines greater than two. There are persistent rumors that these problems 
have turned out to be well solvable. 

O. Marcotte, L.E. Trotter, Jr. (1982). An application of matroid polyhedral 
theory to unit-execution time, tree-precedence constrained job scheduling. 
Technical report 554, School of Operations Research and Industrial Engineer­
ing, Cornell University, Ithaca, NY. 

Hu's algorithm is rederived from a minmax result due to Edmonds on 
covering the elements of a matroid (here, a transversal matroid on the jobs) 
by its bases (here, so-called feasible machine histories). 

C.L. Monma (1982). Linear-time algorithms for scheduling on parallel proces­
sors. Oper. Res. 30, 116-124. 

The generalization of Hu's algorithm to the problem of minimizing maxi­
mum lateness subject to intree constraints and some other scheduling problems 
are implemented to run in linear time by an adapted version of bucket sorting. 

H.N. Gabow (1982). An almost-linear algorithm for two-processor scheduling. 
J. Assoc. Comput. Mach. 29, 766-780. 

The two-machine problem with arbitrary precedence constraints is solved 
by an adaptation of Hu's algorithm in almost linear time ••• 

H.N. Gabow, R.E. Tarjan (1983). A linear-time algorithm for a special case of 
disjoint set union. Proc. 15th Annual ACM Symp. Theory of Computing, 246-251 • 

••• and in strictly linear time. 

K. Nakajima, J.Y.-T. Leung, S.L. Hakimi (1981). Optimal two processor sched­
uling of tree precedence constrained tasks with two execution times. Perfor­
mance Evaluation 1, 320-330. 

The two-machine problem with tree-type constraints and processing times 
equal to 1 or 2 is solved by a complicated O(n log n) algorithm. (For practi­
cal purposes, a heuristic due to Kaufman (IEEE Trans. Comput. 23 (1974), 1169-
1174) which has a worst case absolute error of 1, may be more attractive.) 

M.R. Garey, D.S. Johnson, R.E. Tarjan, M. Yannakakis (1983). Scheduling 
opposing forests. SIAM J. Algebraic Discrete Meth. 4, 72-93. 

Them-machine problem in which the precedence graph is the disjoint 
union of an inforest and an outforest is considered. If mis arbitrary, the 
problem is NP-hard; if mis fixed, it is solvable in polynomial time; if 
m = 2, there is a linear time algorithm. 

D. Dolev, M.K. Warmuth (1982). Profile scheduling of opposing forests and 
level 9rders. Research report RJ 3553, IBM, San Jose, CA. 
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Opposing forests can be scheduled in O(n2m-2log n) time; this improves 
over the above algorithm. Level orders, in which any two incomparable jobs 
with a common predecessor or successor have identical sets of predecessors 
and successors, can be scheduled in O(nm-l) time; the case of arbitrary mis 
NP-hard. 

D. Dolev, M.K. Warmuth (1982). Scheduling flat graphs. Research report RJ 
3398, IBM, San Jose, CA. 

The theorems and background of the results in the above paper are pre­
sented. 

D. Dolev, M.K. Warmuth (to appear). Scheduling precedence graphs of bounded 
height. J. Algorithms. 

Precedence graphs in which the longest path has at most h arcs can be 
scheduled in O(nh(m-1)+1) time. The case h = 2 is already NP-hard. 

E. Mayr (1981). Well structured programs are not easier to schedule. Report 
STAN-CS-81-880, Department of Computer Science, Stanford University. 

Them-machine problem remains NP-hard if the graph has a so-called 
hierarchical parallel structure. 

6.2. Optimization algorithms: preemptive scheduling 

E.L. Lawler (1982). Preemptive scheduling of precedence-constrained jobs on 
parallel machines. M.A.H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.). 
Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 101-123. 

Some well-solvable problems involving the nonpreemptive scheduling of 
unit-time jobs turn out to have well-solvable counterparts involving the 
preemptive scheduling of jobs with arbitrary processing times. The latter 
problems include the minimization of maximum lateness on m identical machines 
subject to intree constraints and on two uniform machines subject to release 
dates and arbitrary precedence constraints. These results suggest a strong 
relationship between the two models. 

6.3. Approximation algorithms 

M. Kunde (1981). Nonpreemptive LP-scheduling on homogeneous multiprocessor 
systems. SIAM J. Comput. 10, 151-173. 

In critical path list scheduling, the jobs are listed in order of non­
increasing total processing time of all jobs on the longest path starting at 
the job in question. This rule is investigated for the case of finding non­
preemptive schedules on identical machines subject to tree-type and chain­
type precedence constraints. In the former case, the worst case ratio is 
2-2/(m+1); in the latter case, the ratio tends to 5/3 as m goes to infinity. 
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7. PARALLEL MACHINE SCHEDULING: RELATED MODELS 

7.1. Additional resource constraints 

The class of scheduling models known as resource constrained project sched­
uling, in which resources are of a more general nature than machines, has 
generated an impressive literature of its own. Virtually all these problems 
are NP-hard in a very strong sense. Below, we list a few publications that 
appear to be on the borderline between the general class and the restricted 
class considered here. 

The first four papers deal with unit-time jobs, arbitrary precedence 
constraints and the maximum completion time criterion. 

E.L. Lloyd (1980). List scheduling bounds for UET systems with resources. 
Inform. Process. Lett. 10, 28-31. 

There are m identical machines and 2 additional resources h of size Rti,; 
job j requires rhj units of resource h during its execution (j = 1, ••• ,n; 
h = 1, ••• ,2). Arbitrary list scheduling is shown to have a tight worst case 
ratio of min{m,2-1/m+LRti,(1-1/m)}. 

E.L. Lloyd (1981). Coffman-Graham scheduling of UET task systems with 0-1 
resources. Inform. Process. Lett. 12, 40-45. 

Here, all l\i = 1 and all rh• € {0,1}. A generalization of the Coffman­
Graham labeling algorithm (Acta inform. 1 (1~72), 200-213) turns out to have 
a similar worst case behavior as arbitrary list scheduling. 

E.L. Lloyd (1982). Critical path scheduling with resource and processor con­
straints. J. Assoc. Comput. Mach. 29, 781-811. 

A complicated analysis shows that, for the model of [Lloyd 1980] (see 
above), the worst case ratio of a generalization of Hu's algorithm is bounded 
by a piecewise linear function of 2 and m. 

J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan (1983). Scheduling subject to 
resource constraints: classification and complexity. Discrete Appl. Math. 5, 
11-24. 

A detailed complexity classification is given for problems with identical 
or uniform machines and various types of resource constraints, parametrized 
according to 2, Rti, and max{rhj}, each of which is taken to be equal to 1 or 
to an arbitrary integral value. 

In another common model, each machine i has its own resource (say, memory) 
of size Ri and can only process jobs whose resource requirements are no 
larger than Ri. 

T.-H. Lai, S. Sahni (1981). Preemptive scheduling of a multiprocessor system 
with memories to minimize ~x· Technical report 81-20, Computer Science 
Department, University of Minnesota, Minneapolis. 

A network representation yields a preemptive schedule on identical ma­
chines minimizing maximum lateness in O(n 3) time. 

T.-H. Lai, S. Sahni (1982). Preemptive scheduling of uniform processors with 
memory., Technical report 82-5, Computer Science Department, University of 
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Minnesota, Minneapolis. 
Linear programming formulations are given for finding preemptive sched­

ules on uniform machines minimizing maximum completion time and maximum late­
ness. 

Two yet different models conclude this subsection. 

E.L. Lloyd (1981). Concurrent task systems. Oper. Res. 29, 189-201. 
Again unit-time jobs, arbitrary precedence constraints and the maximum 

completion time criterion. Job j requires qj identical machines during its 
execution. The problem is well solvable form= 2 and NP-hard form~ 3. 
Arbitrary list scheduling has a worst c~~e ratio (2m-<Iroax)/(m-glHax+1). 

J. earlier, A.H.G. Rinnooy Kan (1982). Scheduling subject to nonrenewable­
resource constraints. Oper. Res. Lett. 1, 52-55. 

If the resources are actually consumed by the jobs (take, e.g., money) 
and the machine capacity is not binding (m ~ n), then minmax problems are 
well solvable, even if the amount of resource becomes available gradually 
over time. 

7.2. Periodic scheduling 

In (preemptive) periodic scheduling, each job j has a period Pj and is to be 
executed in each interval (rj+kpj,dj+kpj! (k = 0,1,2, ••• ). On a single ma­
chine, the rule that gives priority to the available job with the closest 
deadline is known to construct a feasible schedule, if one exists. 

J.Y.-T. Leung, M.L. Merrill (1980). A note on preemptive scheduling of 
periodic, real-time tasks. Inform. Process. Lett. 11, 115-118. 

The problem of deciding feasibility is shown to be NP-complete for each 
m ~ 1. The above priority rule form= 1 turns out to provide an exponential 
method, in the sense that it is sufficient to verify whether feasibility has 
been achieved in a period equal to the least common multiple of the Pji after 
which the schedule repeats itself. 

E.L. Lawler, c.u. Martel (1981). Scheduling periodically occurring tasks on 
multiple processors. Inform. Process. Lett. 12, 9-12. 

The last mentioned result is extended to the case of unrelated machines. 

A.A. Bertossi, M.A. Bonuccelli (1983). Preemptive scheduling of periodic jobs 
in uniform multiprocessor systems. Inform. Process. Lett. 16, 3-6. 

The Lawler-Martel algorithm above allows a more efficient implementation 
in the case of uniform machines. 

J.Y.-T. Leung, J. Whitehead (1982). On the complexity of fixed-priority 
scheduling of periodic, real-time tasks. Performance Evaluation 2, 237-250. 

The case of identical machines and equal release dates is solved in 
pseudopolynomial time. The complexity of this nroblem is still open. 

7.3. Restricted starting times 

K. Nakajima, S.L. Hakimi (1982). Complexity results for scheduling tasks with 
discrete starting times. J. Algorithms 3, 344-361. 
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A detailed complexity analysis is given for the problem of finding a 
feasible nonpreemptive schedule on m identical machines in which each job j 
may start at any one of kj given starting times. Even if the processing times 
can assume only two different values, the problem turns out to be NP-complete 
in the case that m = 1 and all kj ~ 3 and in the case that mis arbitrary and 
all kj = 2. For some more restricted cases, polynomial algorithms are devel­
oped. 

K. Nakajima, S.L. Hakimi, J.K. Lenstra (1982). Complexity results for sched­
uling tasks in fixed intervals on two types of machines. SIAM J. Comput. 11, 
512-520. 

The problem is to find a nonpreemptive schedule on two types of parallel 
machines: inexpensive slow machines and expensive fast ones. Job j requires 
a processing time Pj on a slow machine or qj < Pj on a fast one. Two models 
are considered: (a) each job j must be processed in an interval (rj,rj+Pj]; 
(b) each job j must start at time rj. The objective is to minimize total ma­
chine cost. Both problems turn out to be NP-hard. For some special cases, 
in which all qj = 1, polynomial algorithms are presented. 



8. OPEN SHOP SCHEDULING 

8.1. Optimization algorithms 

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1981). Minimizing maximum 
lateness in a two-machine open shop. Math. Oper. Res. 6, 153-158. 
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1982). Erratum. Math. Oper. 
Res. 7, 635. 
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The problem of finding a preemptive schedule minimizing maximum lateness 
in a two-machine open shop is solved by a linear time algorithm. The nonpre­
emptive case is shown to be NP-hard. 

Y. Cho, S. Sahni (1981). Preemptive scheduling of independent jobs with re­
lease and due times on open, flow and job shops. Oper. Res. 29, 511-522. 

The existence of a preemptive schedule respecting release dates and 
deadlines in an m-machine open shop can be determined by linear programming. 
The analogous problems for two-machine flow and job shops are NP-hard. 

T. Fiala (1983). An algorithm for the open-shop problem. Math. Oper. Res. 8, 
100-109. 

In a very original contribution, results from graph theory are invoked 
to show that the problem of finding a nonpreemptive schedule minimizing max­
imum com~letion time in an m-machine open shop can be solved in O(m3n2) time 
if maxi{lj Pij} ~ (16m'log m'+5m')Pmax' where_ m' is the roundup of m to the 
closest power of 2. 

E.L. Lawler, M.G. Luby, V.V. Vazirani (1982). Scheduling open shops with 
parallel machines. Oper. Res. Lett. 1, 161-164. 

For a generalization of the preemptive open shop problem, in which there 
are given speeds sijk at which machine i can process the k-th operation of 
job j, a linear programming formulation minimizes maximum completion time. 

8.2. NP-hardness results 

J.O. Achugbue, F.Y. Chin (1982). Scheduling the open shop to minimize mean 
flow time. SIAM J. Comput. 11, 709-720. 

The problem of finding a nonpreemptive schedule minimizing total com­
pletion time inatwo-machine open shop, so far a prominent open problem, is 
shown to be NP-hard through a reduction starting from 3-PARTITION. Further, 
tight bounds are derived on the quality of arbitrary schedules and shortest­
processing-time-first schedules for an m-machine open shop. 

T. Gonzalez (1982). Unit execution time shop problems. Math. Oper. Res. 7, 
57-66. 

The problem of finding a nonpreemptive or preemptive schedule minimizing 
total completion time in an m-machine open shop is shown to be NP-hard, even 
if Pij E {0,1} for all (i,j). Similar results hold for the problems of mini­
mizing maximum or total completion time in flow and job shops. 
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9. FLOW SHOP SCHEDULING 

9.1. Optimization algorithms and NP-hardness results 

F.Y. Chin, L.-L. Tsai (1981). on J-maximal and J-minimal flow-shop schedules. 
J. Assoc. Comput. Mach. 28, 462-476. 

For special cases of the problem of minimizing maximum completion time 
in an m-machine flow shop in which, for some machine h, Phj = maxi{Pi·} for 
all j or Phj = mini{Pi'} for all j, NP-hardness results complemented ly poly­
nomial algorithms are !erived. In addition, bounds on the length of arbitrary 
permutation schedules are derived. 

J.O. Achugbue, F.Y. Chin (1982). Complexity and solution of some three-stage 
flow shop scheduling problems. Math. Oper. Res. 7, 532-544. 

A detailed analysis of the three-machine flow shop problem, in which 
each machine may be maximal or minimal in the above sense, leads to an ex­
haustive complexity classification. 

W. Szwarc (1981). Precedence relations of the flow-shop problem. Oper. Res. 
29 I 400-411. 

Conditions are provided under which Johnson's algorithm for the two-ma­
chine flow shop can be extended to them-machine case. 

W. Szwarc (1983). Flow shop problems with time lags. Management Sci. 29, 
477-481. 

An extension of the flow shop model is shown to cover many flow shop 
problems with time lags. Application of Johnson's algorithm yields lower and 
upper bounds. 

J. Grabowski (1982). A new algorithm of solving the flow-shop problem. G. 
Feichtinger, P. Kall (eds.). Operations Research in Progress, Reidel, Dor­
drecht, 57-75. 

A new branching scheme is proposed for the permutation flow shop problem, 
based on an analysis of the transformations required to shorten the critical 
path corresponding to the feasible schedule in the current node of the search 
tree, and as such related to earlier work by Balas (Oper. Res. 17 (1969), 
941-957). The algorithm uses the bounding scheme developed by Lageweg, Lenstra 
and Rinnooy Kan (Oper. Res. 26 (1978), 53-67). Grabowski's method requires 
less time and generates smaller search trees than the method of Lageweg et al. 

J. Grabowski, E. Skubalska, C. Smutnicki (1983) • On flow shop scheduling with 
release and due dates to minimize maximum lateness. J. Oper. Res. Soc. 34, 
615-620. 

The above approach is extended to the minimization of maximum lateness 
subject to release dates. 

9.2. Approximation algorithms 

I. Barany (1981). A vector-sum theorem and its application to improving flow 
shop guarantees. Math. Oper. Res. 6, 445-452. 

A surprising geometrical argument leads to a flow shop heuristic that 
requires O(m3n2+m4n) time and whose absolute error is bounded by ,. 



(m-1) (3m-1)Pmax/2. A remarkable feature of this result is that the error 
does not depend on n. 
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H. Rock, G. Schmidt (1982). Machine aggregation heuristics in shop scheduling. 
Bericht 82-11, Fachbereich 20 Informatik, Technische Universitat Berlin. 

Aggregation heuristics proceed by replacing m machines by two machines, 
on which the job processing times are given by the appropriate sums of the 
original processing times. The worst case ratios of such heuristics are 
proportional tom. 

C.N. Potts (1981). Analysis of heuristics for two-machine flow-shop sequenc­
ing subject to release dates. Report BW 150, Mathematisch Centrum, Amsterdam. 

For the problem of minimizing maximum completion time in a two-machine 
flow shop subject to release dates, three heuristics with worst case ratio 2 
are presented. Repeated application of one of them, that is inspired by a 
dynamic application of Johnson's algorithm to a modified version of the prob­
lem, reduces the worst case ratio to 5/3. 

9.3. Related models: no wait in process 

There has always been a special interest in the flow shop model in which all 
operations of a job must be performed without interruption. The problem of 
minimizing maximum completion time under this restriction is a special case 
of the traveling salesman problem. The case of two machines is solvable in 
O(n log n) time by the Gilmore-Gomory algorithm for a special TSP; the case 
of four machines was proved NP-hard by Papadimitriou & Kanellakis (J. Assoc. 
Comput. Mach. 27 (1980), 533-549). 

H. Rock (to appear). The three-machine no-wait flow shop problem is.NP-com­
plete. J. Assoc. Comput. Mach. 

This settles the open question implied by the paragraph above. 

H. Rock (to appear). Some new results in no-wait flow shop scheduling. z. 
Oper. Res. 

The problems of minimizing maximum lateness and total completion time 
in a two-machine no wait flow shop are shown to be NP-hard. For the case of 
unit processing times and a single additional resource of unit size, an 
O(n log n) time algorithm is presented. 
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10. JOB SHOP SCHEDULING 

10.1. Optimization algorithms 

The problem of minimizing maximum completion time in a job shop is NP-hard, 
even in the case of three machines and unit processing times and in the case 
of two machines and processing times equal to 1 or 2 (Lenstra & Rinnooy Kan, 
Ann. Discrete Math. 4 (1979), 121-140). Below, N denotes the total number of 
operations of all jobs. 

N. Hefetz, I. Adiri (1982). An efficient optimal algorithm for the two-machines 
unit-time jobshop schedule-length problem. Math. Oper. Res. 7, 354-360. 

The above problem with two machines and unit processing times is shown 
to be solvable in O(N) time, through a rule that gives priority to the longest 
remaining job. 

P. Brucker (1981). Minimizing maximum lateness in a two-machine unit-time job 
shop. Computing 27, 367-370. 

In the same model, maximum lateness can be minimized in O(N log N) time; 
the priority of a job now depends on the difference between its due date and 
its number of operations. 

P. Brucker (1982). A linear time algorithm to minimize maximum lateness for 
the two-machine, unit-time, job-shop, scheduling problem. R.F. Drenick, F. 
Kozin (eds~). System Modeling and Optimization, Lecture Notes in Control and 
Information Sciences 38, Springer, Berlin, 566-571. 

The previous algorithm can be implemented to run in O(N) time. 

M.L. Fisher, B.J. Lageweg, J.K. Lenstra, A.H.G. Rinnooy Kan (1983). Surrogate 
duality relaxation for job shop scheduling. Discrete Appl. Math. 5, 65-75. 

As part of the continuing (and, so far, rather fruitless) attack on the 
general job shop problem, computational experience is reported with surrogate 
duality relaxations of capacity and precedence constraints. Although the lower 
bounds dominate the classical ones and also those obtained by Langrangean 
relaxation, a lot of time is required for their computation. The notorious 
10-job 10-machine problem remains unsolved. 
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11. PROBABILISTIC SCHEDULING MODELS 

Probability theory finds application in scheduling in two ways. The first one 
is through a probabilistic analysis of the performance of scheduling rules: 
given a probability distribution over the class of problem instances, the 
behavior of a random variable representing the performance is investigated. 
The second way arises when certain job data are no longer assumed to be known 
in advance; for example, the processing time of a job may be a random vari-
able, whose realization becomes known at the job's completion. The term sto­
chastic scheduling is usually reserved for the latter interpretation. We list 
a few typical references in both areas. 

11.1. Probabilistic analysis 

P.G. Gazmuri (1981). Probabilistic analysis of a machine scheduling problem. 
Unpublished manuscript. 

The problem of minimizing total completion time on a single machine sub­
ject to release dates is studied under the assumption that processing times 
as well as release dates are independent and identically distributed. For 
each of two cases characterized by the relation between expected processing 
time and expected interarrival time, a heuristic is developed whose relative 
error tends to O in probability. 

E.G. Coffman, Jr., G.N. Frederickson, G.S. Lueker (1982). Probabilistic anal­
ysis of the LPT processor scheduling heuristic. M.A.H. Dempster, J.K. Lenstra, 
A.H.G. Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling, Reidel, 
Dordrecht, 319-331. 

The average performance of the longest-processing-time-first rule, used 
to minimize maximum completion time on m identical parallel machines, is 
studied under the assumption that processing. times are uniformly distributed 
on (0,1]. The ratio of expected LPT schedule length to expected optimal 
length is bounded by 1+0(m2/n2). 

11.2. Stochastic scheduling 

G. Weiss (1982). Multiserver stochastic scheduling. M.A.H. Dempster, J.K. 
Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Stochastic Scheduling, 
Reidel, Dordrecht, 157-179. 

This is a survey of stochastic scheduling results for parallel machine 
mode is. Typical examples are the optimality of the longest (shortest) -ex­
pected-processing-time rule for minimizing maximum (total) completion time 
on uniform machines, under a variety of assumptions on the distribution of 
processing times. 

M. Pinedo, L. Schrage (1982). Stochastic shop scheduling: a survey. M.A.H. 
Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.). Deterministic and Sto­
chastic Scheduling, Reidel, Dordrecht, 181-196. 

This survey deals with stochastic scheduling results for open shop, 
flow shop (including the no wait case) and job shop models. Most of the 
stronger results are for two-machine shops. Much work remains to be done. 
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12. RELATED SCHEDULING MODELS 

This final section is devoted to two scheduling models that do not fit into 
the preceding framework. 

12.1. Cyclic scheduling 

The (k,m)-cyclic staff scheduling problem is to minimize the number of work­
ers in an m-period cyclic schedule such that requirements varying over the 
periods are met and each person works fork consecutive periods. In the ob­
vious integer programming formulation, the coefficient matrix has a special 
structure that is capitalized on in the following papers. 

J.J. Bartholdi III, H.D. Ratliff (1978). Unnetworks, with applications to 
idle time scheduling. Management Sci. 24, 850-858. 

The complement of the matrix has exactly m-k ones in each column. On the 
basis of this observation, the (5,7)-problem and several related problems are 
solved in polynomial time by a series of network flow or matching problems. 

J.J. Bartholdi III, J.B. Orlin, H.D. Ratliff (1980). Cyclic scheduling via 
integer programming with circular ones. Oper. Res. 28, 1074-1085. 

The (k,m)-problem is solved by transforming the integer program to a 
series of network flow problems. An unusual round-off property allows the 
problem also to be solved as a linear program. These techniques are extended 
to more general cyclic scheduling problems. 

J.J. Bartholdi III (1981). A guaranteed-accuracy round-off algorithm for 
cyclic scheduling and set covering. Oper. Res. 29, 501-510. 

If the workers are only intermittently available, the cyclic staff 
scheduling problem turns out to be NP-hard, but the linear-programming round­
off technique has an acceptable worst case absolute error. 

12.2. Hierarchical scheduling 

Often, scheduling is the last step in a sequence of planning decisions, where 
each decision affects the form and the constraints of its successors. If 
resources have to be acquired under uncertainty about what will be required 
of them, multistage stochastic integer programming formulations in which the 
scheduling decision appears at the last stage are a natural class of models. 
In the following papers, heuristics with strong properties of asymptotic 
optimality are developedforsuch models. The probabilistic analyses in ques­
tion are based on accurate estimates of the value of an optimal schedule. 

M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra, A.H.G. 
Rinnooy Kan (1981). Analytical evaluation of hierarchical planning systems. 
Oper. Res. 29, 707-716. 

This introductory paper provides the motivation for the approach 
sketched above and gives some preliminary results. 

M.A.H. Dempster, M.L. Fisher, L. Jansen, B.J. Lageweg, J.K. Lenstra, A.H.G. 
Rinnooy Kan (to appear). Analysis of heuristics for stochastic programming: 
results for hierarchical scheduling problems. Math. Oper. Res. 

~ 
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Results are presented for the case that the scheduling problem involves 
the minimization of maximum completion time on a set of identical or uniform 
parallel machines that has to be acquired when only the number of jobs and 
the probability distribution of their processing times are known. 

M.A.H. Dempster (1982). A stochastic approach to hierarchical planning and 
scheduling. M.A.H. Dempster, J.K. Lenstra, A.H.G. Rinnooy Kan (eds.). Deter­
ministic and Stochastic Scheduling, Reidel, Dordrecht, 271-296. 

This paper includes a survey of relevant results in stochastic schedul­
ing and discusses some interesting open questions. 

J.B.G. Frenk, A.H.G. Rinnooy Kan·, L. Stougie (1983). A hierarchical schedul­
ing problem with a well-solvable second stage. Report BW 177, Mathematisch 
Centrum, Amsterdam. 

Here, the scheduling problem involves the minimization of total comple­
tion time. 

J.K. Lenstra, A.H.G. Rinnooy Kan, L. Stougie (1983). A framework for the 
probabilistic analysis of hierarchical planning systems. Report BW 180, 
Mathematisch Centrum, Amsterdam. 

Relations between various measures of asymptotic optimality are derived, 
and general conditions are established under which a two-stage heuristic is 
asymptotically clairvoyant with probability 1. 
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