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ABSTRACT OF DISSERTATION

TRADE-OFF BALANCING FOR STABLE AND SUSTAINABLE OPERATING
ROOM SCHEDULING

The implementation of the mandatory alternative payment model (APM) guarantees
savings for Medicare regardless of participant hospitals ability for reducing spending
that shifts the cost minimization burden from insurers onto the hospital administrators.
Surgical interventions account for more than 30% and 40% of hospitals total cost and
total revenue, respectively, with a cost structure consisting of nearly 56% direct cost,
thus, large cost reduction is possible through efficient operation management. Howev-
er, optimizing operating rooms (ORs) schedules is extraordinarily challenging due to
the complexities involved in the process. We present new algorithms and managerial
guidelines to address the problem of OR planning and scheduling with disturbances
in demand and case times, and inconsistencies among the performance measures. We
also present an extension of these algorithms that addresses production scheduling for
sustainability. We demonstrate the effectiveness and efficiency of these algorithms via
simulation and statistical analyses.
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Chapter 1

Introduction and Motivation

In this chapter, we elaborate the need for effective and efficient management strategies
to improve the efficacy of operating rooms. We show how efficient operating room
contributes to a larger picture in which health care quality is improved and the deficit
reduction is achieved.

The business environment for hospitals has been rapidly changing due to priva-
tization, reimbursement constraints, aging population, and social awareness. These
driving forces propel hospitals administrators to improve the quality of care while re-
ducing costs which are typically in conflicts. Health care expenditures account for
approximately 18% of the United States Gross Domestic Product (GDP) [1]. Experts
in economy, healthcare policy, and public finance believe that the healthcare expen-
ditures control is the main component of the deficit reduction challenge facing the
U.S. government [2]. Surgical interventions are responsible for nearly 22% of hospital
stays [3] but account for more than 40% of the total expenditure [4] with average cost
of $21,200 per stay in 2012 [5]. Operating rooms (ORs) also drive many other areas
within the hospital such as post anaesthesia care units (PACUs), intensive care units
(ICUs), wards, etc. [6]. Statistics show that individuals aged 45-84 are accounted for
approximately 52% of hospital stays and 66% of hospital costs [7], moreover, with
the aging population the demand for surgical stays is sharply increasing [8]. On the
other hand, the rate of OR capacity expansion is lower than the rate of increasing
demand. Thus, OR managers must leverage their resources by efficient OR planning
and scheduling strategies. Significant improvements can be achieved through efficient
and effective OR schedules. However, OR scheduling is an extraordinarily complex
and challenging task due to the conflicts among stakeholders’ interests, conflicts a-
mong strategic, tactical, and operational decisions, and the highly dynamic nature of
the system. Therefore, the aim of OR management is to balance the trade-offs among
conflicting objectives.

As Zeleny and Cochrane (1973) [9] point out, studying a system as a single-attribute
problem is a search and measurement process rather than being a decision making
process. The decision making problem uprises once the optimum decision is determined
by multiple criteria. Hence, the main purpose of this dissertation is analyzing the
conceptual and operational features of decision making process in the operating room
planning and scheduling problem that involves multiple conflicting objectives.

1



A wide range of performance measures have been introduced to evaluate the per-
formance of OR plans and schedules such as throughput [10, 11, 12, 13, 14], waiting
time [15, 16, 17, 18, 19], utilization [19, 20, 21, 22, 23], cost [24, 25, 26, 27, 28], etc.
Literature also vary according to the applied research methodologies. Majority of the
problems have been formulated as combinatorial optimization models and many exact,
heuristics, and scenario-based approaches have been proposed.

The majority of studies model the ORs as an isolated unit. This approach is based
on the fundamental assumption that the OR is the bottleneck of the peri-operative
process and the upstream and downstream resources abound. This assumption removes
the resource constraints imposed on the models and reduces their complexity. However,
in reality, it may shift the bottleneck from OR to other stages that results in OR
blocking and/or starvation. OR blocking/starvation negatively impact the utilization
of the ORs and the peri-operative process as a whole.

Guido and Conforti (2017) [29] proposed a multi-objective model for integrated OR
planning and scheduling. A hybrid method based on genetic algorithms was develope-
d to solve the proposed combinatorial model. A set of Pareto optimal solution are
proposed to support the decision making process. Addis et al. (2016) [30] proposed
an approach for integrated offline and online surgery scheduling. The objective is to
minimize the cost of waiting times, urgency, and tardiness of the patients. The results
of the integrated offline-online model and the offline model are compared. The results
showed the superiority of the offline-online model, however, the computation time was
significantly higher than that of the offline model. Robinson and Chen (2003) [31]
studied a scheduling problem with random case times with the objective of minimizing
patient waiting time and doctor’s idle time. A sample average approximation approach
is used to solve the stochastic linear programming model and a closed-form heuristic
to set up surgery start times is proposed with worst-case performance usually within
20% of the optimal. Zhang and Xie (2015) [32] studied the scheduling of a sequence
of surgeries with random case times in a multiple operating rooms context. Surgeries
are assigned to ORs dynamically on a first-come, first-serve (FCFS) basis. A discrete-
event framework is proposed to proactively predict the surgery start times with the
objective of minimizing the total cost incurred by surgeon waiting, OR idling, and OR
overtime. The problem is solved by stochastic approximation. Numerical experiments
showed that the stochastic approximations converge to a unique global optima. Duenas
et al. (2016) [33] proposed a compromise programming model with three objectives
including minimizing operating room costs, minimizing the maximum number of re-
quired nurses, and minimizing the number of open operating rooms. They proposed
a set of non-dominated solutions for the studied OR scheduling problem. Aringheiri
et al. (2015) [34] studied the joint OR planning and scheduling problem. The aim is
to determine, over a planning horizon, the allocation of OR time blocks to specialties
together with the subsets of patients to be scheduled within each time block. The
objective function is to optimize both patient utility (by reducing waiting time costs)
and hospital utility (by reducing production costs measured in terms of the number of
weekend stay beds required by the surgery planning). A metaheuristic is developed to
solve the proposed NP -hard 0-1 linear programming model.

Modeling the OR peri-operative process is more complex compared to modeling
the isolated ORs. Jebali and Diabat (2017) proposed a chanced-constrained stochastic
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programming model in which the downstream resource constraints (ICUs) are inte-
grated into the model. The variations in demand (emergency arrivals) are also taken
into consideration. The objective is to minimize the cost to the patients, cost of OR
over/underutilization, and surgery cancellation. An Average Approximation (AA) al-
gorithm is proposed to solve the combinatorial model. Their results shows that higher
scheduling robustness is achieved at the cost of lower OR utilization and higher overall
cost. Marcon and Dexter (2006) [35] studied the impact of surgical case sequencing
on the OR overtime and PACU staffing. Multiple sequencing methods are compared
over a wide range of scenarios. They recommended against the Longest Case First
(LCF , also known as LPT ) rule that leads to over-utilized OR and the requirement
of more PACU nurses. MIX method is recommended for surgical case sequencing,
MIX method is a mixture of two simple rules for sequencing, the LCF rule and the
Shortest Case First (SCF also known as SPT rule), where the longest or shortest
case is evaluated by maximum or minimum of case times. However, in another study,
Marcon and Dexter (2007) [36] concluded that the LCF rule did not perform worse
than other methods, including the MIX method, and the overall process behaved as
if there was random sequencing, given significant variations in case times from the ex-
pected ones, where random sequencing can be interpreted as the first come first serve
(FCFS) rule. Vissers et al. (2005) [37] proposed a mixed integer programming model
for OR planning in order to generate an optimal case mix in a cardiothoracic surgery
department. They studied the impacts of decreasing or increasing the number of re-
sources including ICUs on the outcomes of the surgery department such as utilization
and throughput. They proposed optimum scenarios of number resources and patient
mix for the studied surgery department. Pham and Klinkert (2008) [38] modeled the
surgical case scheduling problem as an extension of job shop scheduling problem. A
mixed integer linear programming model is proposed with the objective of optimizing
utilization. They point out that the surgical case sequencing must be performed con-
sidering all activities involved in the process, in other word, surgical case sequencing
should take a holistic view of all activities and resource constraints in the OR suite
instead of focusing on only an individual stage such as an OR or ICU.

In order to avoid enlarging this introductory chapter, detailed and specific literature
reviews are provided in each chapter.

1.1 Problem statement

An OR peri-operative (peri-op) process normally consists of three sequential stages
of preoperative (pre-op), intra-operative (intra-op), and post-operative (post-op), as
shown by Figure 1.1, where the following activities occur: patient preparation in the
pre-op stage, surgical intervention in the intra-op stage, and post anesthesia care in
the post-op stage.

The stages in the OR peri-op process are tightly coupled, thus, any disturbance at
any stage flows across the OR peri-op process boundaries which negatively affect the
outcomes of the process. Many key performance indicators (KPIs) including utilization,
patient flow, waiting time, overcrowdings, quality of care, etc. have been identified to
illustrate the impacts of ORs on the overall healthcare systems. It is worth mentioning
that the KPIs are frequently translated into financial terms to demonstrate the link
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Figure 1.1: Schematic representation of OR peri-operative process

of healthcare systems and the national economy. The prime goal of OR planning and
scheduling is to simultaneously improve the healthcare quality and hospitals solvency.
Of course, the outcomes of OR peri-op process significantly depend upon the efficacy
of the applied operation management strategies and techniques.

Regardless of the studied system, the operation management strategy can be ex-
pressed by a linear programming (LP) model in the canonical form as shown by Equa-
tions(1.1) to (1.3). Equation(1.1) represents the objective functions, Equations(1.2)
and (1.3) are the constraints, where x = [x1, x2, ..., xK ] is the vector of decision vari-
ables, c = [c1, c2, ..., cK ] is the coefficients of the objective function (also known as
weights), A is a P × K matrix, and b = [b1, b2, ..., bP ] is the vector of nonnegative
constants.

min cTx (1.1)
Ax < b (1.2)
x ≥ 0 (1.3)

The traditional approach for modeling the decision making process is based on the
fundamental assumption that the objective function is a well-defined single-attribute
function. Although, this approach is logically correct, its tenability is undermined by
the fact that in reality the decision maker’s goal is to achieve an optimal balance among
multiple objectives, many of which are competing/conflicting. Examples for multi-
criteria decision making can be found almost in any area of the business environment
and the daily life as well. Operating room planning and scheduling is no exception
where with many stakeholders the existence of the conflicting objectives is the rule
rather than an exception. Another assumption in the traditional approach is the
rigidity of the constraints such that any violation is not allowed. However, in reality, it
is always possible to take a certain level of violation at least in one of the constraints,
for example, in the OR context, surgeons may start performing a surgery even though
a portion of the operation may be done in overtime, meaning that a small amount of
overtime trade offs for a large amount of idletime.

A system of linear equations is called inconsistent if it has no solutions [39] which
means with inconsistencies among objectives, there is no solution that simultaneously
optimizes all objectives. Thus, any solution generates some levels of trade-offs in the
system. Therefore, balancing trade-offs is a meaningful and practical objective.

We use compromised programming (CP ), which was first proposed by Zeleny and
Cochrane (1973) [9] to formulate the objective function of the trade-off balancing ap-
proach. The first step in CP is to establish an ’ideal point ’, the coordinates of the
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ideal point are given by the optimum values (LBk) of all objectives. It is obvious that
with inconsistent objectives the ideal point is not feasible, therefore, the ideal point is
only a point of reference for CP . The second step in CP is to establish an ’anti-ideal ’
point. The coordinates of the anti-ideal point are given by the worst values (UBk) of
all objectives. The objective of CP is to find the closest efficient solution to the ideal
point [40]. In the minimization sense, the coordinates of the ideal point and the anti-
ideal point are (LB1, LB2, ..., LBk) and (UB1, UB2, ..., UBk), respectively. Therefore,
the degree of closeness between solution σ to the coordinate k of the ideal point is
given by yk(σ) = γk(σ)−LBk

UBk−LBk
which is known as the normalized deviation from the best

value.
To measure the distances between outcomes of the solution σ and the ideal point,

a family of distance functions are introduced by Lg(αk,σ) =
(∑K

k=1(αkyk(σ))g
)1/g,

where αk is the weight of attribute k in the objective function, without loss of generality
we assume

∑K
k=1 αk = 1. When g = 1, L1 measures the longest distance (geometrically

speaking) between the solution and the ideal point. The best compromise or the closest
solution to the ideal point is obtained by solving the linear programming (LP) model
presented by Equation(1.4). Where, F is the set of feasible solutions.

min L1 =
K∑
k=1

αkyk, s.t. x ∈ F (1.4)

Decision making process in operating rooms generally entails three hierarchical lev-
els of strategic in long-term, tactical in medium-term, and operational in short-term [6].
The strategic level covers the long-term decisions such as the number and the mix of
surgeries by which OR managers balance the waiting lists within the budget and time
constraints. Strategic planning is “the process of reconciling supply and demand ” [41].
OR planning is a complex task, because it is subjected to competing objectives, mul-
tiple stakeholders, and variations in demand. The major outcome of planning is to set
a goal for the organization [42], a goal is a realistic and specific long-term aim for a
specific time period. The long-terms decisions also involve the capacity dimensioning
such as number of ORs, PACUs, ICUs, ward beds, nursing and support staff, etc. to
match the demand with capacity.

Once the strategic decisions are made, their outputs are fed to the tactical level
as inputs. At the tactical level, OR time is assigned to surgery specialties in order
to produce a timetable called master surgery schedule (MSS). The MSS pairs each
specialty with an OR-day in order to support the decisions made at the strategic level.
According to the MSS, OR managers also produce a timetable for the number, types,
and shifts of the support staff on each day.

Finally, at the operational level, surgical case sequencing occurs in order to assign
patients a date, an OR, and a surgery start time. Scheduling is defined as “defining
the sequence and time allocated to an operation” [41]. Scheduling allocates resources to
operations in order to optimize one or multiple objectives [43]. Decisions made at the
planning level directly impact OR scheduling such that OR scheduling must support the
long-terms goals of resource utilization, patient mix, waiting list, etc. However, with
the dynamics inherent to the system such as variations in arrivals (due to emergencies
or no shows) and surgical case times, disturbances frequently occur in real time across
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the peri-op process. Moreover, different stakeholders in different stages of the peri-op
process have different preferences and priorities for OR management which is another
source of trade-offs in the system.

In this dissertation, the goal is to design optimization models that reduce the
negative impacts of trade-offs on the outcomes of the OR peri-op process. We seek
for operation management strategies by proposing trade-off balancing models in the
form Equation(1.4) to hedge against disturbances and inconsistencies in the system.
We present novel algorithms and managerial guidelines to shift the outcomes of the
system towards a more predictable state where the subjective values of the attributes
are also at the nearest possible distance from their optima.

1.2 Motivation

Despite the fact that numerous operation management strategies and techniques ex-
ist in the industrial domain which are also applicable to the healthcare systems, the
decision making process in the operating room context is heavily relied on the OR
manager’s experience [44] or even sometimes is on a first-come first-serve [45, 36] basis.
Furthermore, the lack of systematic decision making processes leads to expediently use
the scare and expensive resources to dampen the exigencies of disturbances once they
occur. This may increase the expenditure and/or reduce the quality of care which
negatively impact both the process and patients. Moreover, with revolving system
dynamics during operations, the existing models fail to deliver the expected outcomes,
thus, optimization models and managerial insights are required to shift the outcomes
towards desirable targets while synchronizing the decisions made at different levels.

1.3 Summary of Contribution

Chapter 2 presents a novel stochastic model for OR planning with the objective of
minimizing the trade-offs between throughput (number of patients) and total cost.
Total cost is modeled is a function of OR utilization in terms of overtime and idle-
time. Newsvendor model and chance-constrained programming are used to model the
studied problem under the presence of uncertainties in patient arrivals and surgery
case times. The performance of the proposed models are examined using an OR his-
torical dataset. We use statistical process control (SPC) techniques to evaluate the
outcomes of different planning strategies. Our results show that minimizing trade-offs
between inconsistent objectives of utilization and throughput provides the managers
with a flexible tool to manage the waiting lists with lower costs. The proposed models
address the strategic decision of reconciling demand and supply.

Chapter 3 presents a Priority-Type-Duration (PTD) algorithm which is simple
but novel to assign surgeries to ORs under the constraints of surgery priority, surgery
type, and OR costs. Patient assignment problem is normally modeled as a bin-packing
problem with the objective of minimizing the number of required ORs, i.e., maximizing
utilization. It is known that the longest processing time first (LPT ) rule performs best
in generating the initial sequence for the bin-packing problem. However, LPT rule fails
to address concerns such as surgery priorities and surgery types. Using LPT a short
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case with a high priority is scheduled at the end of the sequence which is in conflict with
the concept of prioritization. On the other hand, each surgery type requires different
equipment and trained staff, yet using LPT , different surgery types may be scheduled
in the same OR that increases the number of setups and turnovers. To address these
issues, we propose the PTD algorithm that orders the surgeries according to their
priority, then in each priority group, PTD segregates the sequence according to the
surgery types. Finally, in each segment, PTD sequence cases with regard to their case
times using LPT rule. PTD significantly decreases the total cost of OR scheduling
by reducing the number of required ORs and setups while addressing the priority
of surgeries. PTD is capable of addressing tactical and operational decision making
processes.

In Chapter 4, we propose a novel heuristic to balance the trade-offs between patient
flow mean (PtF ) and patient flow variance (PtFV ). Minimizing patient flow mean,
i.e., min(PtF ) reduces the average patient waiting time but at the cost high variation
in the individual waiting times. Minimizing patient flow variance, i.e., min(PtFV )
ensures the uniformity of waiting times among all individuals, but at the cost of higher
average waiting time. We prove that the objectives of min(PtF ) and min(PtFV ) are
inconsistent, thus, any sequence generates some levels of trade-offs in the system. We
propose a fast heuristic to solve the combinatorial mixed integer problem with the
objective of balancing trade-offs between min(PtF ) and min(PtFV ). The proposed
models address the operational level of the decision making process.

Chapter 5 presents a mixed integer programming model to reduce the number of
blockings between OR and the downstream resources of ICUs and PACUs. Once a
surgery case is finished in the OR, it must be removed from the OR and transformed
to either an ICU or PACU unit. If all of the downstream resources are occupied, the
patient is held in the OR until a unit is available. This incident is called OR blocking
that negatively affects the OR utilization and patient waiting times. Our proposed
model recursively update itself with the number of available downstream units, then
assigns surgery cases to ORs such that the number of blockings is minimized. Our
proposed model outperforms existing models in the literature.

In Chapter 6, we mark the boundaries of risk management in an operating room
peri-operative process. To this aim, we elaborate risk definition, risk sources, and pro-
pose risk management strategies. We identify uncertain demand, uncertain surgical
case time, and the inconsistencies among objectives as the risk sources. We identify
process utilization (Util) and patient length of stay (LoS) as two major KPIs driv-
ing value flow and patient flow, respectively. We show that surgical case sequencing
significantly affect the distribution of the outcomes and has the potential to shift the
performance of the system towards a less risky situation in which the outcomes are
more predictable. We model the OR peri-op process as a 3-stage flow shop scheduling
problem. Through extensive case studies on the historical data of UKHC, we show the
efficiency and effectiveness of trade-off balancing in mitigating the risk.

Chapter 7 extends our trade-off balancing models to address sustainability concerns
in production scheduling. Despite the substantial research in sustainable manufactur-
ing, a holistic model for sustainable production scheduling is virtually absent. To
address this gap, this chapter presents a metric-based model to systematically and
holistically evaluate the sustainability of the production schedules. We first identify
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the fundamental metrics driving different areas of production, second, we asses those
metrics with respect to the triple bottom lines (TBL) including economic, environ-
mental, and social pillars. Third, we show the inconsistencies among the fundamental
performance metrics and consequently among the objectives defined in the TBL. Fi-
nally, we propose a generic model for production scheduling for sustainability based
on balancing the trade-offs among the inconsistent objectives.

Tabel 1.1 presents a summary of decisions, problems, models, and contributions of
the chapters of this dissertaion.

In this dissertation, the notations are defined and valid within each chapter.
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Table 1.1: Summary of Contributions

C
h
ap

ter

Decision Problem Models Contributions

2 Reconciling de-
mand and supply

Variations in demand
and case times

bi-level chance-
constrained pro-
gramming models

Balancing the trade-offs between
throughput and total cost.

3 Assigning Patients
to ORs

Surgery priorities,
surgery types, and total
cost

A novel algorithm to
form the initial se-
quence for the bin-
packing problem

Balancing trade-offs among idletime,
overtime, and surgery constraints.

4 Smoothing patient
flow

Inconsistency between
patient flow mean and
variance

A novel algorithm to
sequence surgery cas-
es in ORs

Proof of optimality of the proposed
models for balancing trade-offs.

5
Synchronizing ORs
with downstream
resources

Blockings between
stages

A novel mixed in-
teger programming
model

- Balancing trade-offs between OR uti-
lization and patient flow.
- Uniform load distribution.

6 Operational risk
management

Variations in demand
and case times, and in-
consistencies among ob-
jectives

Sequencing methods Marking the boundaries of risk manage-
ment in OR scheduling.

7 Sustainable
scheduling

Inconsistencies among
objectives defined in
the triple bottom lines

Scheduling methods

- Identifying the performance measures
driving different areas of production.
- Balancing trade-offs among the incon-
sistent objectives.
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Chapter 2

Reconciling Supply and Demand: Stochastic
Optimization Models for Efficient Operating Room
Planning

In this chapter, we address the strategic problem of reconciling supply and demand by
balancing the trade-offs between cost and throughput. Cost is formulated as a function
of resource utilization. Throughput is defined as the number of patients served over
the planning horizon. Our models seek efficient solutions to manage the waiting lists
while the resources are also efficiently utilized.

Within a hospital, the operating room department has the largest cost and revenue.
Because of the aging population, the demand for surgical services has been increasing
sharply in recent years. On the other hand, the rate of OR capacity expansion is
lower than the rate of increasing demand. As the result, OR managers must lever-
age their resources by efficient OR planning. OR planning is challenging due multiple
competing/conflicting objectives such as cost minimization and throughput maximiza-
tion. Inherent uncertainty in the surgical procedures and patients arrivals complicate
the decision making process even more. This increases the risk of non-realization of
the system objectives. In this chapter, stochastic bi-level optimization models were
formulated to optimize total cost and throughput of ORs under the presence of uncer-
tainties in patient arrivals and case times. Newsvendor model and chance-constrained
optimization method were used to optimize multiple objectives under the presence of
uncertainties. Using historical data, a simulation model was established to validate the
results of the optimization models. Using statistical process control (SPC) techniques,
the stability of each model was investigated. Using bi-level optimization, we addressed
managerial preferences for total cost and throughput. Optimizing one objective may
lead to a compromise of the optimality of the other one. Using a trade-off balancing
model, we found solutions that minimize the sum of deviations from the best solutions
for both total cost and throughput. Trade-off balancing optimization models may lead
to better solutions, compared to the traditional multi-objective optimization models.
The results of this chapter appears in [46].
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2.1 Introduction

Healthcare is one of the most important sectors of the economy, historical data show
a continuous increasing trend for the healthcare expenditures in recent decades. In
2009, the U.S. healthcare expenditures exceeded 17% of the gross domestic product
(GDP), but was only 4.6% of the GDP in 1950 [47]. Experts in economy, healthcare
policy, and public finance believe that the healthcare expenditures control is the main
component of the deficit reduction challenge facing the U.S. government [2]. Hospitals,
physicians, and drugs are the prime categories of expenditures, among which, hospital
costs are the largest part of the healthcare expenditures [47].

As a result of increasing costs, hospitals need to leverage their resources by using
them more efficiently. Within a hospital, the operating room department is one of
the most critical resources, which has the largest cost and revenue [6, 48]. Because of
the aging population, the demand for surgical services has been increasing sharply in
recent years [49]. Therefore, efficient OR management has the potential of offering a
significant cost saving. To efficiently utilize ORs, hospitals must provide high quali-
ty care more effectively with limited resources by developing efficient OR plans and
schedules [6].

OR planning is challenging because it is under the continuous pressure of compet-
ing objectives, such as cost minimization, waiting time minimization, etc. There are
numerous affecting factors and various active players in an OR department. Patients,
surgeons, and OR managers are some of the OR active players who may have com-
peting/conflicting objectives, with respect to cost, waiting times, etc. A large variety
of performance measures are used to evaluate the OR planning, such as throughput,
waiting lists, utilization, total cost, etc. The choice among these objectives is chal-
lenging and complex, because of multiple stakeholders (i.e., patients, surgeons, OR
managers, etc.) with different incentives and priorities [6]. Therefore, any decision on
one objective may generate trade-offs on the other objectives.

At the planning level, waiting time is defined as “the time between the referral date
and the surgery date”. Waiting time is of particular importance for patients [6]. In
general, patients prefer to get on schedule as soon as possible. Long waiting times may
negatively affect the patients’ health conditions and consequently decrease the quality
of care and patients’ satisfaction. On the other hand, deteriorated health condition
may results in an increase in the intensity and the cost of the required care, which
is not desirable for the patients and/or for the healthcare providers, and insurance
companies [50, 35, 51]. Throughput, which is defined as the number of patients treat-
ed in a period of time, is of particular importance for surgeons. Surgeons prefer to
perform as many surgeries as possible in their assigned OR times. In general, because
of educational and research workloads, surgeons are available on limited hours/days.
Therefore, any idletime is not desirable for them [52, 53, 54].

The dependency between waiting time and throughput is clearly described by E-
quation(2.1), which is known as Little′sLaw [6, 55]. The average work in process (L)
in the system equals the average arrivals (λ) to the system times the average cycle-time
(W ).

L = λW (2.1)
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In the OR planning context, L can be interpreted as the average number of pa-
tients on the waiting list, λ as the average throughput andW as the average of waiting
time and case time. Therefore, by increasing throughput, the waiting time indirectly
decreases, if the average number of patients in the waiting list keeps the same [6]. OR
utilization is of importance for OR managers. OR utilization measures the propor-
tion of potential output that is actually realized. OR utilization is a very important
operational metric, because it provides insight to the existing slack in the system.
An OR department with utilization less than 100%, ’theoretically ’ has the potential to
increase the production without generating overhead costs associated with capacity ex-
pansion. OR utilization is also a very effective metric to illuminate the cost structure of
the OR department, by defining under-utilization (idletime) costs and over-utilization
(overtime) costs. OR utilization is one the most extensively studied OR performance
measures. According to the literature, the OR utilization should be maximized to
avoid under-utilization (idletime) costs. But due to the high variations in case times
and patients arrivals, highly utilized ORs are unstable [6, 56].

In this chapter, two performance criteria, throughput (TP ) and total cost (TC)
are taken into consideration. These performance measures are of importance to three
main stakeholders (i.e. patients, surgeons, and OR managers) and each stakeholder
must be ’adequately ’ satisfied.

There are two types of well-defined uncertainties in the OR planning literatures:
(i) uncertainty in the case times, which is the difference between expected and actual
surgery duration, and (ii) uncertainty in the patients arrivals caused by emergency
arrivals and patients no-show cases [6, 57]. A large body of research has been done to
tackle the uncertainty in case times [50, 51, 52, 58]. On the other hand, there are a
few works addressing the uncertainty in the arrival rate [51, 53, 59]. There are fewer
works, if any, considering uncertainties in both case times and patients’ arrivals at the
same time.

In this chapter, we propose a model which takes both sources of uncertainties into
consideration. Without loss of generality, we assume that the case times and patients’
arrivals are normally distributed. Using joint distribution of case times and patients’
arrivals, we provide theoretical properties for OR department cost function (consisting
of overtime and idletime). Using the Newsvendor model, we minimize the mismatch
between expected and actual cost. Then, we utilize a bi-level chance constrained
optimization model to optimize TC and TP . To this aim, we alternate the order
of objectives to show the trade-offs generated by the competing objectives. Finally,
we propose a trade-off balancing model, to show the effectiveness and efficiency of
trade-offs balancing over the traditional optimization models.

The main contributions of this chapter are (i) a stochastic model that explicitly
takes uncertainties in both case times and patient arrivals into account, (ii) bi-level
optimization models in which the order of objectives is alternated to show the trade-off
among objectives, and (iii) a trade-off balancing model which balances the trade-offs
between competing objectives of max(TP ) and min(TC). The proposed approach is
unique because it provides a flexible tool for OR managers to perform OR planning
more efficiently by avoiding excessive overtime/idletime cost and long waiting lists.
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2.2 Problem formulation

This section first presents a brief introduction to the Newsvendor model and the chance-
constrained optimization method. Next, two bi-level chance constrained models for
OR planning problem under the presence of uncertainties in case times and patients’
arrivals are proposed. A trade-off balancing model is also presented at the end of this
section.

Notations

Co Overage cost ratio

Cs Shortage cost ratio

D Demand, D ∼ N(µD, σ
2
D)

Q Inventory level

Newsvendor model

Newsvendor model is a mathematical model used to determine optimal inventory levels sub-
jected to fixed cost ratios (with Co for the overage cost and Cs for the shortage cost, and
Co, Cs > 0) where demand (D) is normally distributed, i.e., D ∼ N(µD, σ

2
D) . Before the real-

ization of D, the decision maker has to make the decision for inventory level (Q). Minimizing
the mismatch between Q and D is the objective of the Newsvendor model. If Q > D, the
overage cost occurs, which is Co(max(0, Q−D)). If Q < D, the shortage cost occurs, which is
Cs(max(0, D−Q)). The optimaQ∗ minimizes the E{Co(max(0, Q−D))+Cs(max(0, D−Q))}.
Assuming unconstrained problem and taking convexity of objective function in Q into consid-
eration, the optimal solution can be derived by the first order condition [60, 61]. Therefore,
F (Q∗) = Φ(z) = Cs

Co+Cs
, where z = Q∗−µD

σD
, and Φ(·) is the cumulative distribution function

of the standard normal distribution. Q∗ is explicitly presented by Q∗ = µD + zσD.

Chance-constrained optimization

Chance-constrained optimization method is one of the approaches to solve optimization mod-
els in the presence of uncertainty. The basic idea is to ensure that the probability of meeting
certain constraints is above a predetermined level [62, 63]. In other word chance-constrained
model restricts the solution feasible region to achieve higher confidence level for the solution.
The general optimization model under uncertainty can be formulated as follows:

min f(x, ξ) (2.2)
s.t.

g(x, ξ) = 0 (2.3)
h(x, ξ) ≥ 0 (2.4)

Equation(2.2) describes the objective function, Equation(2.3) imposes the equality constraints,
and Equation(2.4) imposes the inequality constraints. x is the decision variables vector and
ξ is the uncertainties vector. Using chance-constrained method the inequality constraints can
be formulated as P{h(x, ξ) ≥ 0} ≤ α, where α ∈ [0, 1] is the predetermined probability level.
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Bi-level optimization models

P1: Total cost to throughput

We propose a bi-level optimization model that at the first level minimizes TC, and then at
the second level maximizes TP subjected to the cost constraints imposed by the first level
optimization.

First level: Total cost

Without loss of generality, we assume that the patients randomly arrive to the OR department
via a normal distribution d ∼ N(µd, σ

2
d). This assumption is very common in the literature

and it fits the actual data when the number of arrivals is large enough.
Case times are assumed to be independent, identically distributed (i.i.d) random variables

with normal distribution p ∼ N(µp, σ
2
p). This assumption is also common in the literature

and it fits the actual data when the patients’ population is large enough. We assume that
set-up and clean-up times are factored into the case time p. In this chapter, we deal with the
strategic OR planning problem which is a long-term one. Therefore, the assumption of having
a large population of patients holds. Assuming that the case times and patients’ arrivals are
i.i.d, we define a new random variable named workload (l) as the product of patients’ arrival
d and case times p (i.e., l = d × p). It is worth noting that the product of two normal
distributions is not always a normal distribution. But, under some conditions the product
can be approximated to a normal distribution. Particularly, for two normal distributions with
different mean (µx 6= µy) and different variance (σ2

x 6= σ2
y), as the inverse variation coefficient

λ = µ
σ increases (λ > 1), the distribution of the product of two independent normal variables

tends to a normal distribution [64].
Using approximation formulas proposed by Macias and Oliviera (2012) [64], we can com-

pute mean and variance of l by Equation(2.5) and Equation(2.6), respectively.

µl ≈ µdµp (2.5)

σ2
l ≈ µ2

dσ
2
p + µ2

pσ
2
d + σ2

dσ
2
p (2.6)

We are now able to utilize the Newsvendor model to obtain the optimum workload for
the planning horizon (T ) minimizing the total cost TC. To translate cost factors Cs and Co
into the OR planning context, we argue as follow: shortage cost occurs in OR department
when the planned capacity is less than the actual realized workload. Therefore, a fraction
of actual workload must be done in overtime (overtime=max(0, Actual workload − Planned
capacity). With this argument, shortage cost of the Newsvendor model is an equivalent for the
overtime in ORs. On the other hand, overage cost occurs in ORs when the planned capacity
is greater than the actual realized workload, thus, a fraction of the planned capacity sits idle
(idletime=max(0, Planned capacity − Actual workload). Therefore, the overage cost of the
Newsvendor model is an equivalent for the idletime in ORs. Based on what was discussed
above, to drive out optimal planned capacity (B∗) in the time period of T , we can define the
expected cost by Equation(2.7). Let g(·) and G(·) be the density and cumulative distribution
functions.

Y (B) = Co

∫ B

0
(B − l)g(l)dl + Cs

∫ ∞
B

(l −B)g(l)dl (2.7)

Because Equation(2.7) is a convex function in B, by applying the first derivative condition,
we can derive out the optimal planned capacity B∗. Applying the Leibnize rule [65] for
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differentiation under the integral sign with respect to B and setting it equal to zero, it yields:

dY (B)

dB
= Co

∫ B

0
1g(l)dl + Cs

∫ ∞
B

(−1)g(l)dl = CoG(B)− Cs[1−G(B)] = 0→

G(B∗) =
Cs

Co + Cs

G(B∗) = Φ(z) = Φ
(B∗ − µl

σl

)
=

Cs
Co + Cs

(2.8)

B∗ = µl + zσl (2.9)

G(B∗) represents the probability of workload being less than or equal to B∗ (i.e P (l ≤
B∗) = G(B∗)). In other words, the probability of having enough capacity to meet l is
Cs

Co+Cs
. Another interesting implication of Equation(2.9) is that for the normal case, B∗ is

an increasing function of µl and σl, provided that the z is positive (because Cs and Co are
strictly positive). Considering this fact that the cost of overtime hours is always greater (or
equal) than the cost of the idletime hours, we can conclude that Cs

Co+Cs
≥ 0.5. Therefore, we

should allocate more capacity to avoid overtime (shortage cost). B∗ is then imposed as the
capacity constraints onto the second level optimization model, which maximizes throughput,
i.e., max(TP ).

Second level: Throughput

In order to maximize TP , the OR manager can estimate the expected case times based on
historical data and surgeon estimation. The OR manager can use n × p̄ ≤ B∗ to derive out
the number of patients to be planned. Where p̄ is the OR manager’s estimation for the case
times and n denotes the number of patients to be planned. The drawback of this simple
procedure is that it ignores the variability in the case times and patients’ arrivals and it does
not provide any insights to the probability of expected overtime/idletime levels. To estimate
the expected overtime, stochastic constraints must be imposed to the objective function to
capture the uncertainties inherent to the surgical procedures. By letting α ∈ [0, 1] be the
probability of overtime exceeding a threshold (tolerance on overtime) denoted by TL, we can
formulate the probabilistic constraints by Equation(2.10).

P
{

(

n∑
i=1

pi −B∗) > TL
}
≤ α (2.10)

While avoiding the overtime, OR managers also wish to minimize the idletime to treat
more patients in a given time period. Therefore, we can formulate the nonlinear optimization
model for throughput (TP ) by Equation(2.11), where E(·) is the expected value.

min E
(

max
(
0, (B∗ −

n∑
i=1

pi)
))

(2.11)

s.t.

P
{

(

n∑
i=1

pi −B∗) > TL
}
≤ α (2.12)

Equation(2.11) is the objective function which minimizes the expected idletime. This implies
that the objective function indirectly maximizes TP by packing more patients into B∗. E-
quation(2.12) is the chance constraints which guarantees that the overtime does not exceed a

15



predetermined threshold of TL. TL and α are two managerial preferences by which the OR
manager can balance the waiting list. If managers experience an increasing waiting list, by
adjusting a larger value for TL, they are capable of managing the waiting list. However, it is
important to consider resource availabilities (e.g., available budget, staff availability, etc.).

Case times are assumed to be independent, identically distributed (i.i.d) random variables
with normal distribution p ∼ N(µp, σ

2
p). Therefore, overtime which is defined by Ot =

max(0,
∑n

i=1 pi − B∗), is also a normally distributed random variable Ot ∼ N(µOt, σ
2
Ot)

, where µOt = nµp and σ2
Ot = nσ2

p. The chance-constrained optimization model can be
approximated to its nonlinear deterministic counterpart as follows [63]:

min E
(

max
(
0, (B∗ −

n∑
i=1

pi)
))

(2.13)

s.t.

µOt + Φ−1(1− α)σOt ≤ TL (2.14)
nµp ≤ B∗ (2.15)

Equation(2.14) guarantees that overtime does not exceed the predetermined threshold (TL)
with probability of α. Where Φ(·) represents the cumulative distribution function of the
standard normal variable. Equation(2.15) imposes the notion that the long-term performance
must converge to the expected one. Figure 2.1 represents the relationship among number of
planned patients, ratio of overtime threshold to planned capacity, and probability level α.
This relationship provides the OR managers with managerial guidelines for managing their
OR department according to their preference over the acceptable overtime threshold and the
associated risk of non-realization. By packing more patients into B∗ the risk of overtime
increases (as we would intuitively expect). Given TL and α, the final output of this bi-level
optimization is an ordered pair (B∗1 , n∗1), which specifies the optimum planned capacity and
optimum number of patients to be planned.

Figure 2.1: Overtime threshold to planned capacity ratio vs. number of planned patients

P2: Throughput to Total cost

First level: Throughput

In order to show the trade-offs generated by the competing objectives, we alternate the order
of objectives in our bi-level optimization models. If the OR managers’ preference is to meet
the demand by a predetermined confidence level β, they must first find the optimum number
of patients to be planned and its associated risk of non-realization. Afterwards, they have to
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find the required capacity, which minimizes the total cost generated by overtime and idletime.
To this aim, we formulate the first level optimization model to maximize TP as follows:

min E
(

max(0, d− n)
)

(2.16)
s.t.

P
{

(d− n) > γn
}
≤ β (2.17)

Where, d is the actual number of arrivals, n is the number of patients to be planned,
γ is the acceptable threshold for number patients more than n, and β is the confidence
level. It is worth mentioning that γ is proportional to n. Patients’ arrivals are assumed
to be independent, identically distributed (i.i.d) random variables with normal distribution
d ∼ N(µd, σ

2
d). The chance-constrained optimization model can be rewritten to its nonlinear

deterministic counterpart as follows[63]:

min E
(

max(0, d− n)
)

(2.18)
s.t.

(1 + γ)n ≥ µd + Φ−1(1− β)σd (2.19)

Equation(2.18) is the objective function, which minimizes (d− n), the difference between
the actual number of arrivals and the planned number of patients. Equation(2.19) imposes
that d− n does not exceed a predetermined level with the probability of β. Figure 2.2 shows
the relationship among n, γ and β.

Figure 2.2: γn threshold vs. n

Total cost

Let n∗ be the optimal number of patients to be planned obtained from the first level op-
timization. At the second level of the optimization model, the objective is to minimize
total cost (TC) generated by overtime and idletime under the constraints of treating n∗

patients over the planning horizon. We again use the Newsvendor model, to find to opti-
mum capacity which minimizes TC. We define the workload (l) which is a random variable
as the product of n∗ and the case times (i.e., l = n∗ × p). Case times are assumed to
be normally distributed random variables, therefore l is also a normally distributed ran-
dom variable. Using standard formula for the product of a real number and normally dis-
tributed random variables, we can compute mean and variance of l by µl = n∗ × µp and
σ2
l = n∗×σ2

p, respectively. We utilize the Newsvendor model to obtain the optimum planned
capacity for the planning horizon (T ) that minimizes TC. The Newsvendor model yields
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G(B∗) = Φ(z) = Φ(B
∗−µl
σl

) = Cs
Co+Cs

→ B∗ = µl + zσl. Given γ and β, the final output
of this bi-level optimization is an ordered pair (B∗2 , n

∗
2) which specifies the optimum planned

capacity and optimum number of patients to be planned for.

P3: Trade-off balancing model

Intuitively, when we optimize the OR planning problem based on different orders of objectives,
it is very likely that the OR plan performs poorly with regard to the second level objective.
In other words, the result of the bi-level optimization model is the global optima with regard
to the first level objective, whereas it is the local optima with regard to the second level
objective. Therefore, alternating the order of objectives generates trade-offs in the system.

We utilize a simulation-based trade-off balancing model to minimize the trade-offs gen-
erated by alternating the order of objectives. Let j ∈ {1, 2} denote the orders of objectives,
where, 1 represents P1 and 2 represents P2. The trade-offs balancing model can be formulated
as follows:

min Yj = θ
BestTP − TPj

|BestTP −WorstTP |
+ (1− θ) TCj −BestTP

|BestTC −WorstTC |
(2.20)

where θ ∈ [0, 1] is the managerial weight assigned to max(TP ) and intuitively (1 − θ) to
min(TC), setting these weights is a subjective decision, hence, difficult to argue. Equa-
tion(2.20) expresses the sum of normalized deviations to tackle the fact that each performance
measure is measured by a different unit and with different granularity.

2.3 Case study

To analyze the efficiency of our proposed models, we establish a simulation model using his-
torical data provided by UKHealthcare (University of Kentucky healthcare). UKHealthcare
hospitals perform a wide variety of surgery procedures and on average treat more than 30,000
surgery cases per year.

Different scenarios for different combination of managerial preferences for the order of ob-
jectives, α, β, TL, and γ are considered. Different performance measures including through-
put, total cost (TC = Co × idletime+Cs × overtime), idletime, and overtime are computed
to compare the performance of the proposed models.

Data generation

Normality tests for patients’ arrivals and case times distributions are performed on the
UKHealthcare historical data of a certain surgery group. Anderson-Darling normality test
shows a p value of 0.3355 and 0.166 for patient arrivals and case times respectively (p ≥ 0.05
for both), and the data plots form a fairly straight line along the fitted line. Therefore, it
appears that the normal distribution is a good fit to the data set. Detailed results of the
normality tests can be found in Table 2.1 and Figure 2.3. To generate random data, we find

Table 2.1: Statistics obtained from UKHealthcare data

µ σ
Case times 156 60

Patient arrivals 72 33
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Figure 2.3: Anderson-Darling normality tests

the maximum and minimum value of case time (and patients’ arrivals as well), then using
R = max−min, we calculate the range of data. R then was discretized to 5 equal increments
and the probability of each increment was calculated. Assuming T (planning horizon) as
equal to one week, using Monte Carlo simulation, patients’ arrivals and associated case times
were generated for 50 weeks. 50 replications for each week were done and the data stored to
run the simulation model.

Cost ratios

In this case study, without loss of generality, we assume that Cs = 2Co. This implies that
the cost of overtime is twice as the cost of idletime, although in practice these cost ratios
may vary place to place, as long as Cs ≥ Co, it does not affect the form of the cost function.
Therefore, in our case; Φ(z) = Cs

Co+Cs
= 0.6667→ z = 0.4307.

Managerial preferences

P1: Total cost to throughput

We consider α ∈ {0.01, 0.05, 0.10, 0.20, 0.30}, and TL ∈ {0.1B∗, 0.2B∗, 0.3B∗}, therefore,
we have 15 different combinations of confidence levels and acceptable overtime thresholds.
Using Equation(2.3), Equation(2.5), Equation(2.9), and the historical data (d ∼ N(72, 33)
and p ∼ N(156, 60)), we obtain B∗ = 13194.06 minutes. Having B∗, by using Equation(2.13)
through Equation(2.15), we obtain n∗. Table 2.2 shows n∗ for different combinations of α and
TL. For the sake of brevity, a code is assigned to each combination of α and TL as shown in
Table 2.2 (e.g., C2P-1 for TL = 0.1 and α = 0.01). It is worth mentioning that n∗ is the same
for those combinations with α > 0.01 or TL > 0.1B∗, this is because Equation(2.15) sets an
upper bound on the number of patients to ensure that the long term performance converges
to the expected one.

P2: Throughput to Total cost

We consider β ∈ {0.01, 0.05, 0.10, 0.20} and γ ∈ {0.10n∗, 0.20n∗, 0.30n∗}, therefore, we have
15 combinations of different β and γ. Table 2.3 shows (B∗, n∗) of these combinations. A code
is assigned to each combination of α and γ as shown in Table 2.3 (e.g., P2C-1 for γ = 0.1
and β = 0.01).
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Table 2.2: (B∗, n∗) of different combinations of different α and TL

TL
α 0.1 0.2 0.3

0.01 C2P-1
(13194,84)

C2P-6
(13194,87)

C2P-11
(13194,87)

0.05 C2P-2
(13194,87)

C2P-7
(13194,87)

C2P-12
(13194,87)

0.10 C2P-3
(13194,87)

C2P-8
(13194,87)

C2P-13
(13194,87)

0.20 C2P-4
(13194,87)

C2P-9
(13194,87)

C2P-14
(13194,87)

0.30 C2P-5
(13194,87)

C2P-10
(13194,87)

C2P-15
(13194,87)

Table 2.3: (B∗, n∗) of different combinations of different β and γ

γ
β 0.1 0.2 0.3

0.01 P2C-1
(22008,144)

P2C-6
(20948,137)

P2C-11
(20190,132)

0.05 P2C-2
(19130,125)

P2C-7
(18372,120)

P2C-12
(17766,116)

0.10 P2C-3
(17766,116)

P2C-8
(17160,112)

P2C-13
(16553,108)

0.20 P2C-4
(16098,105)

P2C-9
(15643,102)

P2C-14
(15188,99)

0.30 P2C-5
(15491,101)

P2C-10
(15036,98)

P2C-15
(14733,96)

Performance measures

Several performance measures including throughput, total cost, idletime and overtime were
computed to compare the performance of the proposed models.

2.4 Results

Statistical process control (SPC) techniques are used to monitor the performance of the pro-
posed models. x̄-R charts and process capability analyses are used to compare the quality of
the proposed models. Process capability index cp is an indicator, representing if the outcomes
of a process are within the user-defined specification limits, where cp = USL−LSL

6σ , and USL
and LSL are user-defined upper specification limit and lower specification limit, respectively.
The larger the cp, the less variations in the process. Process capability index cpk represents
the congestion of outcomes around the center line, the larger the cpk, the more congestion of
outcomes around the center line [66].

C2P -1 has the best performance on idletime, overtime, throughput and total cost among
all combinations of P1. As mentioned earlier, Equation(2.15) sets an upper bound on the
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number of patients to ensure that the long-term performance converges to the expected one,
therefore, all combinations of C2P -2 to C2P -15 have the same performance, and are not
sensitive to managerial preferences. Consequently, hereafter we only review the behavior of
C2P -1.

Idletime

Idletime represents the unproductive time of ORs. In our case study, idletime is the difference
between the actual workload and the planned capacity, i.e., idletime = max(0, B∗−

∑n
i=1 pi)

where i is the index of cases. OR managers want to minimize the amount of idletime. For
the sake of brevity, we present the best scenario of each model. Average idletime for C2P -1
and P2C-15 equals 3907 and 6163 minutes, respectively. C2P -1 outperforms the best P2C
by 6163−3907

6163 = 36.6%.
Process capability analyses results for idletime show that the cp = 0.30 for C2P -1 and

cp = 0.32 for P2C-15. This implies that the P2C-15 is more stable, but on average it generates
a larger amount of idletime compared to C2P -1. For C2P -1 a big proportion of experiments
(almost 1/3) does not generate any idletime. cpk = 0.27 for C2P -1 and cpk = 0.08 for P2C-
15, which implies that the outcomes of C2P -1 are more centered around the center line of
specification limits. Figure 2.4 shows the SPC results for idletime.

Figure 2.4: SPC results for Idletime

Overtime

Overtime represents the amount of time spent after regular hours to treat all patients. In our
case study, overtime is the difference between the actual workload and the planned capacity,
i.e., Overtime = max(0,

∑n
i=1 pi − B∗). OR managers want to minimize the amount of

overtime. P2C-15 has the worst performance on generating overtime among all combinations
of β and γ, i.e., generating the largest amount of overtime. Therefore, we compare the
performance of C2P -1 with the performance of P2C-15. Average overtime is 1030 minutes
for C2P -1 and 582 minutes for P2C-15. Therefore, P2C-15 outperforms C2P -1 by 1030−58

1030 =
43.50%.

Process capability analyses results for overtime show that the cp = 0.09 for C2P -1 and
cp = 0.14 for P2C-15. This implies that P2C-15 generates less variations in overtime. Fig-
ure 2.5 shows the SPC results for overtime.
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Figure 2.5: SPC results for Overtime

Total cost

Total cost is defined by TC = Co × idletime+Cs × overtime. This formula provides insight
to the trade-off between overtime and idletime costs. The Newsvendor model minimizes this
trade-off. P2C-15 has the best performance on total cost among all combinations of β and γ.
Therefore, we compare the performance of C2P -1 with the performance of P2C-15. C2P -1
outperforms P2C-15 by 6163.36−5967.16

6163.36 = 3.18%. Since this percentage is not a large number,
an ANOVA was performed to determine whether the difference between C2P -1 and P2C-15 is
significant. The ANOVA results demonstrates that the difference between total cost of C2P -1
and P2C-15 is statistically significant at 95% confidence level (p < 0.05). Process capability
analysis shows that C2P -1 has lower mean and less variations compared to P2C-15. Detailed
results of SPC and ANOVA for total cost can be found in Table 2.4. Figure 2.6 shows the
SPC results for total cost.

Table 2.4: ANOVA results for total cost between C2P − 1 and P2C − 15

Source DF SS MS p
Factor 1 48119225 48119225 0.041
Error 4998 63045301205 12614106
Total 4999 63093420430

Figure 2.6: SPC results for total cost
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Throughput

Throughput is defined as the number of treated patients in a given period of time. In this
case study, we assume that all arriving patients must be treated. This assumption implies two
points: first, the number of treated patients is the same for all scenarios, second, scenarios
throughput differ from each other only by the number of patients treated in the overtime.
Therefore, we use the number of patients treated in overtime as a performance indicator, to
compare the throughput of different scenarios.

As we showed in previous section, P2C-15 has the lowest total cost among all combinations
of P2C (all combinations of β and γ). It also has the worst performance on the number of
patients served in overtime among all combinations of β and γ. Therefore, we compare
the performance of C2P -1 with the performance of P2C-15. P2C-15 outperforms C2P -1
by 6.75−3.318

6.75 = 50.84%. Process capability analysis shows that cp = 0.29 for C2P -1 and
cp = 0.47 for P2C-15, which implies that P2C-15 has less variations on the number of served
patients in overtime. Figure 2.7 shows the SPC results for throughput (number of patients
served in overtime).

Figure 2.7: SPC results for the number of patients served in overtime

Trade-off balancing

As we showed in earlier sections, min(TC) and max(TP ) are inconsistent objectives, which
imply that optimizing one may lead to compromise on the optimality of the other one. There-
fore, a model that has the least deviations from both objectives optima may be of interest to
OR managers. We define θ ∈ {0, 0.25, 0.50, 0.75, 1}, as the set of OR managers’ preference for
max(TP ) over min(TC). Using Equation(2.20) and simulation results for best/worst perfor-
mance, we find the most efficient model that minimizes sum of deviations from the objectives
optima. We have 80 different scenarios and different θ as shown by Table 2.5.

As we intuitively expected, C2P -1 has the least deviations from the best value of min(TC)
(i.e., θ = 0). Once OR managers have equal preferences over both objectives (i.e., θ = 0.50),
P2C-3 has the best performance. Several combinations of P2C have the best performance
on max(TP ) (i.e., θ = 1), as we intuitively expected. Figure 2.8 shows the sum of average
deviations from the best values of min(TC) and max(TP ).
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Table 2.5: Sum of average deviations from the best TC and TP

θ = 0 θ = 0.25 θ = 0.50 θ = 0.75 θ = 1.00

C2P-1 0.2882
(Best) 0.2552 0.2222 0.1892

(Worst)
0.1562
(Worst)

P2C-1 0.5637
(Worst) 0.4228 0.2819

(Worst) 0.1409 0.0000
(Best)

P2C-2 0.4253 0.3190 0.2127 0.1063 0.0000
(Best)

P2C-3 0.3689 0.2784 0.0973
(Best)

0.0187
(Best) 0.0068

P2C-4 0.3202 0.2503 0.1804 0.1105 0.407
P2C-5 0.3082 0.2461 0.1840 0.1220 0.0599

P2C-6 0.5126 0.3845 0.2563 0.1281 0.0000
(Best)

P2C-7 0.3922 0.2945 0.1968 0.0991 0.0015
P2C-8 0.3486 0.2653 0.1821 0.0989 0.0156
P2C-9 0.3109 0.2468 0.1828 0.1188 0.0548

P2C-10 0.3011 0.2451
(Best) 0.1891 0.1331 0.0772

P2C-11 0.3571 0.4761
(Worst) 0.2381 0.1190 0.000

(Best)
P2C-12 0.3689 0.2784 0.1879 0.0973 0.0068
P2C-13 0.3314 0.2557 0.1800 0.1043 0.0286
P2C-14 0.3033 0.2453 0.1873 0.1292 0.0712
P2C-15 0.2972 0.2453 0.1934 0.1416 0.0897

Figure 2.8: Sum of average deviations from the best TC and TP

2.5 Conclusion

In this chapter, we present bi-level optimization models for OR planning which captures
uncertainties in patients’ arrivals and case times. Minimizing total cost min(TC) and maxi-
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mizing throughput max(TP ) are selected as objectives of the optimization models. Different
managerial preferences for objectives are taken into account. By alternating the orders of
objectives in our bi-level optimization models, we show that min(TC) and max(TP ) are in-
consistent. We propose a simulation-based trade-off balancing model to minimize the sum
of deviations from the best value of each objective. Using historical data obtained from
UKHealthcare, a large set of computational experiments are carried out. The simulation
results show that for min(TC) our proposed C2P has the best performance, whereas P2C
has the best performance on max(TP ). The proposed models provide a flexible tool for OR
managers to perform OR planning more efficiently based on their preferences and settings.
The results of the study are applicable to manufacturing systems with multiple objectives
under the presence of variations in demand and processing times.
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Chapter 3

Tactical Operating Room Planning Under Surgery
Type and Priority Constraints

Operating room tactical planning is critical in healthcare systems to reduce cost and improve
the efficiency of ORs. The OR planning problem is complicated, involving many conflicting
factors, such as overtime and idletime that both affect OR utilization and consequently affect
the cost to the hospital. Allocating different types of surgeries into OR blocks affects the setup
cost, whereas priorities of surgeries affect the sequence of surgeries in the OR block scheduling.
Surgery durations affect both OR utilization and OR block scheduling. Traditionally, one
important method for OR block scheduling is the bin-packing model, and the LPT rule is the
most commonly used method to generate the initial sequence for the bin-packing problem.
However, in addition to case times, it is necessary in OR scheduling to consider two additional
properties of the surgeries including (i) surgery priority, and (ii) surgery types. (i) means
surgery with high priories should be scheduled earlier than those with low priority, and (ii)
means that the same type of surgeries should be scheduled into ORs equipped accordingly.
LPT rule fails to address the priority of surgeries where a short case with a high priority may
be scheduled at the end of the sequence. LPT also does not distinguish between surgery types,
thus, different surgery types may be assigned to the same OR that consequently increases the
number of required setups and turnovers.

In this chapter, we propose a simple multi-step approach called priority-type-duration
(PTD) rule to generate the initial sequence for bin packing. The results of our case studies
show that PTD rule outperforms the LPT rule in terms of total cost, and priority concerns.
The results of this chapter appears in [67].

3.1 Introduction

Tactical OR planning is a medium-term decision making process which its major output is the
OR block schedules. OR block schedules specify the allocation of OR block times to surgery
specialties, and the assignment of surgery specialties to daily OR slots. The tactical OR plan-
ning specifies the number of required ORs on each day, and the associated human resources
(i.e., anesthesiologists, surgeons, nurses, staff, etc.), and finally, the equipment needed in each
OR. Overtime, idle time, setups, and cost are of concern in OR block scheduling, thus, it is
under the budget constraints.

A wide range of research methodologies were used to address, evaluate, and optimize
the performance of OR block schedules [6]. Marques and Captivo (2012) [68] used integer
programming to assign elective surgeries to an operating room, a day, and a specific period of
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time on a weekly planning horizon in order to maximize the use of ORs. They used real data
to test their approach and to compare their results with actual OR performance. Lamiri et
al. (2008) [50] established a stochastic model for operating room planning for both elective
and emergency cases, in order to minimize the overtime costs of ORs. They used Monte
Carlo simulation and mixed integer programming to solve the proposed model. The model
reduced the cost of ORs over the long-term horizon, and fulfilled the demand of emergent
cases. Hsu et al. (2003) [69] proposed a tabu search approach to sequence elective cases in
order to minimize the number of required nurses in PACU. Testi et al. (2007) [11] developed
a hierarchical three-phase approach for scheduling of operating rooms in order to improve
the overall operating theatre efficiency. At the first phase, a bin-packing problem was solved
in order to select the number of surgeries to be scheduled on a weekly basis. At the second
phase, a blocked booking method was used to determine the optimal time tables which defined
the assignment of wards and ORs. At the third phase, the longest processing time (LPT )
rule and the shortest processing time (SPT ) rule were used to sequence cases. Fei et al.
(2010) [70] designed a weekly surgery scheduling method for an operating theatre in order to
minimize the overtime cost in the operating theatre, maximize the utilization of ORs, and
to minimize the unexpected idle time between surgical cases. This problem was solved in
two phases. First, the planning problem is solved to assign a surgery date to each patient
with regard to the availability of operating rooms and surgeons. Second, a daily scheduling
problem is devised to determine the sequence of surgeries in each operating room on each
day, taking into account the availability of the recovery beds.

A surgery priority indicates the severity of patient’s health condition such that a surgery
with high priority needs immediate care in order to prevent deteriorated health condition. I
our study, we adopt the priority groups proposed by Valente et al. (2009) [71] as shown by
Table 3.1.

Table 3.1: Urgency Related Groups

URG∗ Clinical assessment MTBT ∗∗

(Days)
A1 Evident fast progression of disease affecting outcome by delay 8
A2 Potential fast progression of disease affection outcome by delay 30

B Severe pain and/or dysfunction, and/or disability, but no fast pro-
gression of disease affecting outcome by delay 60

C Mild pain, and/or dysfunction, and/or disability, but no fast pro-
gression of disease affecting outcome by delay 180

D No pain, dysfunction, and disability, no fast progression of disease
affecting outcome by delay 360

* Urgency Related Groups(URG) ** Maximum Time Before Treatment (MTBT)

Many studies has been reported on assigning the surgery cases to ORs in order to optimize
the OR efficiency from different perspectives, but there are few works considering the surgery
priority, surgery type, and their impacts on the overall performance of ORs. In most cases, the
surgery type is omitted at planning phase, and several surgery types are scheduled together
in a single OR. This incident not only increases the number of setups for each OR, but also
the increases the idle time due to the high number of required turnovers. In most studies
at the planning phase, the surgeries are sequenced by the LPT rule to generate the initial
sequence of the bin-packing problem.
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This chapter presents a novel yet simple rule to assign surgeries to ORs under the con-
straints of surgery priority, surgery type, and OR costs. Patient assignment problem is
normally modeled as a bin-packing problem with the objective of minimizing the number
of required ORs, i.e., maximizing ORs utilization. It is known that the longest processing
time first (LPT ) rule performs best in generating the initial sequence for the bin-packing
problem. However, LPT rule fails to address issues such as surgery priorities and surgery
types. Using LPT a short case with a high priority is scheduled at the end of the sequence
which is in conflict with the concept of prioritization. On the other hand, each surgery type
requires different equipment and trained staff, yet using LPT , different surgery types may
be scheduled in the same OR that increases the number of setups and turnovers. To address
these issues, we propose a simple algorithm called PTD (Priority-Type-Duration) that order-
s the surgeries according to their priority, then in each priority group, PTD segregates the
sequence according to the surgery types. Finally, in each segment, PTD sequence cases with
regard to their case times using LPT rule. PTD significantly decreases the total cost of OR
scheduling by reducing the number of required ORs and setups while addressing the priority
of surgeries at the same time. PTD is capable of addressing tactical and operational decision
making processes.

3.2 Problem Formulation

The interest at the tactical planning level is to assign an OR to each patient while satisfying
their priority under the budget and time constraints. For a fixed number of patients n, the
objective is to minimize the total cost of the ORs. Total cost is a function of overtime,
idletime, and setup costs as defined by Equation(3.1) where j ∈ {1, 2, ..., J} is the index of
operating rooms. Rj is the amount of workload performed in regular hours in OR j, and CR
is the cost of regular time per minute. Oj is the amount of workload performed in overtime
in OR j, and CO is the cost of overtime per minute. Ij is the amount of idletime in OR j,
and CI is the cost of idletime per minute. Finally, Sj is the number of setups in OR j, and
CS is the cost of each setup.

J∑
j=1

RjCR +OjCO + IjCI + SjCS (3.1)

Notations

j Index of operating rooms, j = 1, 2, ..., J

Rj The amount of regular working time of OR j (min)

Oj The amount of overtime working time of OR j (min)

Ij The amount of idle time of OR j (min)

Sj The number of setups in OR j

CR Cost per unit of regular working time ($/min)

CO Cost per unit of overtime working time ($/min)

CI Cost per unit of idle working time ($/min)
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CS Cost of each set-up ($)

i Index surgery cases, i = 1, 2, ..., n

pi Priority of case i, pi ∈ {1, 2, ..., 5}

ti Surgery type of case i, ti ∈ {1, 2, ..., T}

di Surgery time of case i

H Regular working time of ORs (min)

The average cost of OR regular working time varies over a wide range from $22 to $133 per
minutes. The actual cost depends on many factors including the region, surgery type, whether
the OR cost includes the fixed overhead costs that are constant regardless of the number of
surgeries performed, or if it only accounts for the variable costs, which vary according to the
number of cases performed, or whether professional fees of the physician work in the OR
are included [72]. We assume the cost per unit of idletime is equal to the cost per unit of
regular time CR = CI , this is because that the staff monthly payment is fixed regardless of
whether they are working or waiting for the beginning of a surgery. According to the Fair
Labor Standards Act (FLSA) [73], overtime must be paid at a rate no less than 1.5 times
regular rates after 40 hours of work in a week, ,thus, we arbitrarily assume CO = 1.5 × CR,
although this ratio varies place to place, it does not affect the form of the objective function.
Setup cost generally depends on the complexity of surgeries, equipment and resources used
for the surgeries. Thus, this cost varies over a wide range. In summary Equation(3.1) can be
expressed by Equation(3.2).

J∑
j=1

(Rj + 1.5Oj + Ij)CR + SjCS (3.2)

Let pi ∈ {1, 2, ..., 5} denote the priority of case i such that the greater the pi the higher the
priority associated to case i, ti ∈ {1, 2, ..., T} denotes the surgery type of case i, and finally,
let di denote the surgery duration of case i. A bin-packing model maximizes utilization and
minimizes the idle time which consequently affects the cost of the planning horizon. The
following model represents the general mathematical model of bin-packing for ORs.

min z =

J∑
j=1

yj (3.3)

s.t.
n∑
i=1

dixij ≤ H (3.4)

J∑
j=1

xi,j = 1 (3.5)

n∑
i=1

xi,j = 1 (3.6)

yj =

{
1, if OR j is used
0, otherwise

xi,j =

{
1, if case i is assigned to OR j

0, otherwise
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Objective function(3.3) minimizes the number of required ORs. Constraints(3.4) imposes
H as the total available time(capacity) of each OR. xi,j is an integer decision variable that
equal 1 if the surgery i is assigned to the OR j, otherwise 0. Constraints(3.5) and (3.6)
guarantee that each surgery is assigned to an OR only once. yj is an integer decision variable
that equal 1 if the OR j is used over the planning horizon, otherwise 0. The bin-packing
problem is proved to be NP -complete [74]. Therefore, exact solutions are not computationally
efficient. Multiple heuristics have been proposed to find a near-optimal solution to the bin-
packing problem among which first fit decreasing (FFD) and best fit decreasing (BFD) are
known to perform best [75]. The initial sequence for FFD and BFD is generated by ordering
the items by LPT rule. However, as it was mentioned earlier in the OR context, LPT rule
fails to address surgery priorities and types.

We propose a simple multi-step procedure to sequence surgery cases in order to generate an
initial sequence for the bin-packing model. Since the priority is the most important factor for
performing a surgery, we first sequence surgeries according to their relative priorities. Thus,
we have five groups of surgeries with regard to their priority. The second step is to group
surgeries according to surgery types within each priority group. The third step is to sequence
surgeries in each subgroup by the LPT rule with regard to the surgery duration. After
obtaining the initial sequence, we assign surgeries to ORs from the head of the sequence (the
highest priority) to the tail of the sequence (the lowest priority), while we avoid combining
different surgery types into the same OR. If there is still some slack time in an OR after
assigning all cases of high priority group, we search for a compatible case from the lower
priority groups with the same surgery type. If there is no compatible cases, we leave the
remaining time idle. For the last case in the initial sequence, if there is no slack in any
OR, instead of opening a new OR, we assign the last case to an OR even though the case is
performed in overtime. This step is to reduce the idletime cost generated due to opening a new
OR for only one case. The proposed procedure is named as PTD (Priority-Type-Duration)
and summarized by Algorithm1.

Algorithm 1 PTD algorithm for assigning surgery cases to ORs
Step 1. Group surgeries according to their priority.
Step 2. Group surgeries in priority groups by their types.
Step 3. Within each subgroup sequence surgeries according to their duration

by LPT rule. Now we have the initial sequence for bin-packing.
Step 4. Assign surgeries to ORs according to initial sequence.
Step 5. If an OR has some slack time after assigning all high priority cases,

search lower priorities for compatible cases with the same surgery type.
If there is no compatible case, leave the rest of OR time idle.
This step is to reduce the idle time and number of setup as well.

Step 6. For the last case of each surgery type overtime is allowable.

3.3 Case studies

In order to examine the performance of the proposed PTD algirthm, we perform a series
of case study on the OR historical dataset. We compare the performance of PTD with
that of LPT . According to the historical data from a local hospital, there are 24 surgery
types. Thus the surgery types in this case study are randomly generated from a uniform
distribution of [1, 24] as an integer value, i.e., ti ∈ [1, 24], ti ∈ Z. To achieve efficient OR

30



planning, the surgery duration must be estimated accurately, many researchers used historical
data to estimate surgery duration, and some recommended log-normal distribution to estimate
surgery duration [76]. In this study surgery durations are randomly generated from a uniform
distribution of [60,180] based on the historical data from the hospital, i.e., di ∈ [60, 180]. The
unit of time is minute for all time values. OR block time is set at 600 minutes (10 hours) for
all ORs. Each surgery can be assigned to any OR, but a setup cost occurs if different types
of surgeries are assigned to the same OR. In this case study n elective cases with different
priorities and different surgery types are selected from the waiting list.

We use several performance measures such as OR utilization, overtime, idle time, number
of ORs, and number of setups to evaluate the performance of OR tactical planning. We
sequence surgeries in order to minimize the total cost of the planning level which consists
of maximizing the ORs utilization, reducing overtime and idletime, reducing the number of
required ORs, and reducing the number of setups. We compare our proposed method with
the well-known method LPT . The aforementioned performance measure were calculated for
both methods. Smoothness Index (SI) as defined by Equation(3.7) is used to compare the
evenness of surgery load distribution between ORs.

SI =

√√√√ J∑
j=1

(H −
n∑
i=1

xi,jdj)2 (3.7)

Utilization is the ratio of sum of case times and the total available time of all ORs, and can
be expressed by Equation(3.8) where N is the number of required ORs.

Util =

∑n
i=1 di

N ×H
(3.8)

3.4 Results and Discussion

500 elective surgeries are randomly generated for a planning horizon of one week (5 days). The
PTD and LPT rules were coded using MATLAB R2015b and the performance measures for
each method were calculated, to prepare more comprehensive data this scenario was replicated
200 times that is equal to four years. Table 3.2 shows the computational results.

Table 3.2: Computation results for PTD and LPT

R O I N S SI Util

PTD

Min 58197 0 3946 104 104 824.01 87.31
Max 61847 966 8675 116 116 1490.99 93.67
Ave 60024 286.38 6801 111.37 111.37 1195.47 89.83
STD 794 160.77 811.95 1.93 1.93 125.58 1.10

LPT

Min 58338 0 14963 123 472 1431.97 76.65
Max 62105 0 18346 133 494 1687.70 79.96
Ave 60269 0 16660 128.21 480.21 1553.20 78.34
STD 800 0 661.65 2.03 4.10 52.31 0.61

Number of ORs and Number of Setups

From the managerial perspective, number of required ORs, i.e., N should be minimized to
reduce the overhead, staffing and equipment costs. Figure 3.1.a shows the histogram of
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number of required ORs for PTD and LPT . As shown in Figure 3.1.a and Table 3.2, the
average number of required ORs for PTD is significantly smaller than that of LPT . A t-test
was performed to test the significance of difference between the two methods, with p-value of
p < 0.001 the difference between the two methods is statistically significant. The calculated
number of ORs is for a planning horizon of 5 days. Thus, the average daily number of ORs
required by PTD roughly equals to 20 that is compatible with the capacity of medium size
hospitals.

Number of setups represents the number of changes in equipment settings to accommo-
date different surgery types. PTD avoids combining different surgery types into the same
OR which reduces the number of setups on average about 4.3 times compared to LPT . Fig-
ure 3.1.b shows the histogram of number of setups for PTD and LPT . A t-test was performed
to test the significance of difference between the two methods, with p-value of p < 0.001 the
difference between the two methods is statistically significant. As it is shown by Table 3.2,
the number of setups and number of required ORs are approximately equal by PTD, meaning
that each OR is equipped only once on each day that significantly decreases the total cost
and ideltime.

a) Number of ORs b) Number of Setups

Figure 3.1: Histograms of number of ORs and number of setups

Idle time and Overtime

Idle time represents the proportion of total available time that elapsed idle either waiting for
the start of the next surgery or due to lack of a compatible surgery. As Figure 3.2.a shows,
on average the PTD reduces the idle time almost 2.5 times compared with LPT . A t-test
was performed to test the significance of difference between the two methods, with p value of
p < 0.001 the difference between the two methods is statistically significant. LPT does not
allow packing surgery cases (items) beyond the capacity of the ORs (bin), thus, overtime is
not allowed, but PTD allows for overtime only for the last case of each surgery type in order
to reduce the number of required ORs, number of setups, and idletime. Reducing the number
of setup significantlly affect the total cost of the planning horizon because each setup not
only causes setup cost but also results in more idle time. Figure 3.2.b shows the overtime for
PTD and LPT . As shown by Table 3.2, PTD on average generates 286 minutes of overtime
for average number of ORs equal 111, meaning that PTD on average generate 2.5 minutes of
overitme in each OR which is negligible. On the other hand, PTD on average generates 3946
minutes of idletime which is 3.79 times less than that of LPT . Therefore, we can conclude
that PTD successfully balances the trade-offs between idletime and overtime.
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a) Idle time b) Overtime

Figure 3.2: Histograms of idle time and overtime and

Utilization and Smoothness Index

Equation(3.8) defines the utilization of ORs as the percentage of total available time spent
on performing surgeries. Figure 3.3.b shows the histogram of utilization for PTD and LPT .
With average utilization of 89.83% PTD outperforms LPT by roughly 10.4%. The reason
for the better performance of PTD is the Step.5 in PTD that searches for the same surgery
types from lower priority groups, and also for the last case of each surgery group overtime is
allowed by PTD that slightly leads to overtime but decreases the idle time significantly. A
t-test was performed to test the significance of difference between the two methods, with p
value of p < 0.001 the difference between the utilization of the two methods is statistically
significant.

Smoothness index (SI) represents the evenness of load distribution among ORs. The
smaller the SI the more even load distribution. Figure 3.3.a shows the histogram of SI for
PTD and LPT . As shown by Table 3.2 on average SI = 1195.47 for PTD, and SI = 1553.20
for LPT , meaning that PTD more evenly distributes the load among the ORs. A t-test was
performed to test the significance of difference between the two methods, with p value of
p < 0.001 PTD outperforms LPT .

a) SI b) Utilization

Figure 3.3: Histograms of smoothness index and utilization
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Total Cost

Using Equation(3.2) and average values of overtime, idletime, regular time, number of setups,
we calculate the average total cost for PTD and LPT to compare the total cost for both
methods, we consider the average cost of regular time as CR = $60. To avoid prejudice in
favor of the number of setups, we vary the setup cost between 0 and $2000. As it is shown
by Figure 3.4 the total cost of PTD is significantly lower than that of LPT regardless of
the setup cost. The PTD total cost has a lower sensitivity to setup cost and ranges over
[4.03, 4.26] million dollars with different setup costs, as opposed to LPT total cost that varies
steeply ranging over [4.61, 5.59] million dollars.
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Figure 3.4: Total cost with different setup costs

3.5 Conclusion

Operating room tactical planning is an important phase for OR management in which efficient
resource allocation is the main objective. Regular working time, overtime, number of ORs,
and equipment are some indicators for capacity dimensioning at the tactical planning phase.
An efficient OR planning assesses the tradeoff among these indicators, this assessment is
frequently based on financial indicators. However, the cost structure of operating room is
often complex. It makes the tactical planning phase more complicated. In this chapter, we
proposed a multi-step procedure to assign surgeries to ORs on a weekly planning horizon.
Our proposed procedure called PTD groups surgeries according to their priority, surgery type
and surgery duration in order to form the initial sequence for the bin-packing problem. PTD
reduces the idletime, number of required ORs, and number of setups that leads to a higher
utilization and even load distribution among ORs. By taking surgery types into consideration
PTD reduces the number of required setups. Longest processing time first (LPT ) rule is the
most common rule in bin-packing, thus, we compare the performance of PTD with those of
LPT . The LPT rule is merely based on the surgery duration and fails to address the surgery
priorities and surgery types concerns. Priority is the level of urgency of a surgery, thus,
surgeries with higher priorities must be performed earlier than those of lower priorities. PTD
successfully addresses the priorities concerns. From the cost perspective, PTD compared to
LPT significantly reduces the idletime and number of required setups, leading to a higher
utilization and significant lower total cost. Although PTD generate more overtime comapred
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to LPT , it reduces the idletime significantly that leads to a lower total cost. In other word,
PTD balances the trade-offs between idletime, overtime, and number of required setups.
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Chapter 4

Operational Operating Room Scheduling by
Smoothing Patient Flow

In operational level of operating room scheduling, patient flow time mean (PtF ) and patient
flow time variance (PtFV ) are two key performance indicators driving many areas with-
in a hospital. Surgical case sequences significantly affect PtF and PtFV . Sequencing to
min(PtF ) reduces patients’ waiting time and overcrowding between the preoperative stage
and the OR. However, min(PtF ) results in a rushed flow to the post-operative stage gener-
ating overcrowding between the OR and the post-op stage that negatively affect the quality
of care. Sequencing to min(PtFV ) ensures an approximately the same waiting time for all
patients, and balances the OR intake and discharge flows. However, min(PtFV ) negatively
impacts PtF and consequently the staff and patients’ satisfaction. By modeling OR as a
single-machine production system, we show that min(PtF ) and min(PtFV ) are inconsistent
objectives. Therefore, any sequence generates some levels of trade-offs in the system. We
propose balancing trade-offs between min(PtF ) and min(PtFV ) as an alternative objective
function, we also propose a fast algorithm to find the optimal sequence to minimizing trade-
offs in O(n log n). Through extensive case studies, we demonstrate the superiority of our
trade-off balancing models over the singe-attribute and existing bi-criteria models. Balancing
trade-offs enables OR managers to shift the outcomes of ORs towards a more predictable yet
near optimal state.

4.1 Introduction

An OR peri-operative process normally consists of three sequential stages of pre-op, intra-op,
and post-op, where the following activities occur: patient preparation in the pre-op stage,
surgical intervention in the intra-op stage, and post anesthesia care in the post-op stage.
Patient flow (PtF ) is the movement of the patients across the boundaries of the OR peri-
op process. Smoothing patient flow can reduce the waiting times, overcrowding, and poor
handoffs that consequently improves the quality of care [77]. Studies show that surgical case
sequencing can significantly affect the outcomes of OR peri-op process [4, 78, 79, 80, 35]

With ORs being the most expensive resource in the OR peri-op process [81], the man-
agerial efforts have been focused on optimizing ORs efficiency [35]. Minimizing OR patient
flow time i.e. min(PtF ) that minimizes patient’s waiting time i.e. “the time interval from
the time that the patient is available to the time that the surgery starts” [35, 82] is one the
most studied objectives. The common practice to min(PtF ) is to sequence surgical cases
in the non-decreasing order (i.e. shortest processing time first (SPT )). Sequencing with
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SPT rule minimizes the patients’ waiting time and reduces overcrowdings between pre-op
and intra-op stages. However, scheduling by SPT rule results in a rushed patient flow to the
post-op stage at the beginning of the schedule when a large number of patients with short
surgical case times are discharged from the OR generating overcrowding in the post-op stage.
Studies show that rushed OR patient flow may negatively affect the outcomes of downstream
resources such as the ICUs and the performance of support staff such as laboratory [83, 84].
Baker et al.(2009) [85] pointed out that ICU overcrowding may result in a premature discharge
from the ICU that increases the risk of readmission to the ICU by 2.34 times. Marcon and
Dexter(2006) [35] showed the negative impacts of overcrowding in the post-op stage on the
PACUs staffing and OR overtime due to delays in PACU admissions. Therefore, smoothing
the patient flow across the OR peri-op process is imperative to improve the quality of care.

Patient flow variance (PtFV ) is a measure to quantify the uniformity of patient flow
time. Minimizing patient flow time variance i.e. min(PtFV ) finds application whenever it
is desirable to provide the patients with approximately the same treatment such that each
patient’s waiting time is the same as every other patient. Minimizing PtFV in ORs results
in a balance between the flow to the ORs and the discharge flow from the ORs. Therefore,
min(PtFV ) is able to balance the overcrowdings between pre-op and intra-op stages, and
between intra-op and post-op stages. However, as we show in 4.3, the objectives of min(PtF )
and min(PtFV ) are inconsistent, meaning optimizing one may be at the cost of the other. As
we later show, schedules to min(PtF ) have high fluctuations in patient flow times in which the
longest surgical cases that commonly are more critical procedures suffer the highest waiting
times. At the other hand, schedules to min(PtFV ) have high average patient flow time
that conflicts with the preferences of both surgeons and patients. Therefore, balancing the
trade-offs between these two extremes is necessary to improve the patient flow across the OR
peri-op process, staff and patients’ satisfaction, and eventually the quality of care.

An operating room can be modeled as a single-machine production system [86, 87], where
the surgical cases are treated as jobs, surgical case times as the job processing times, and
the OR is thought of as a machine. In an n-job single-machine system, Cj =

∑j
l=1 pl is the

completion of time of job j in the sequence where pl is the processing time of job l. Cj can be
written as Cj =

∑j−1
l=1 pl+pj where

∑j−1
l=1 pl is referred as the waiting time of job j equivalent

to the waiting time of patient j. Total completion time is the sum of all jobs completion times
and defined as TCT =

∑n
j=1Cj . Average completion time i.e. ACT = TCT/n represents

the time that a job on average spends in the systems which is equivalent to patient flow
time (PtF ), thus, min(ACT ) is a surrogate objective function for min(PtF ). For a fixed n,
minimizing average completion time (min(ACT )) is the same as minimizing total completion
time i.e. min(TCT ), thus, hereafter, we use min(TCT ) as the surrogate objective function
for min(PtF ). The optimal sequence to min(TCT ) is obtained by ordering the jobs in a
non-decreasing order (i.e. by SPT rule) [43].

Completion time variance is defined as CTV =
(∑n

j=1(Cj − ACT )2
)
/n and represent

the fluctuations in completion times. Minimizing completion time variance i.e. min(CTV )
in a single-machine production system has been extensively studied [88, 89, 90, 91]. Ku-
biak(1993) [89] proved that min(CTV ) in a single-machine systems is NP -hard. Multi-
ple algorithms have been proposed to find the optimal sequence to min(CTV ) [88, 90,
92]. Kanet(1981) [90] proposed the total absolute differences in completion times defined
by TADC =

∑n
j=1

∑n
i=1

∣∣Cj − Ci∣∣ as an alternative measure to completion time variance,
and proved that TADC has the same complexity as CTV but the optimal solutions to
min(TADC) are easier to find. Kanet(1981) [90] also proposed a fast heuristic to find the
optimal solutions to min(TADC). Because of the advantages of TADC over CTV , we adopt
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min(TADC) as the surrogate function for min(PtFV ).
Surgical case sequencing significantly affects the outcomes of operating rooms and the

associated upstream and downstream resources. Patient flow time mean and patient flow time
variance are two inconsistent key performance indicators in operating room scheduling that
derive many other areas within a hospital. However, with inconsistencies among objectives
high levels of trade-offs are generated in the system. We propose trade-off balancing models
to reduce the negative impacts of inconsistencies on the operating room outcomes. Through
extensive case studies, we demonstrate the efficiency and effectiveness of trade-off balancing
models in shifting the OR outcomes towards a more predictable state with minimum deviation
for the ’ideal point ’ at which all objective are at their optima, with inconsistencies among the
objectives the ideal point is infeasible and only used as a point of reference.

The remainder of this paper is organized as follows: in Section 4.2, we present the mathe-
matical formulations of our trade-off balancing models. In Section 4.5, we presents the details
of the case studies and the evaluation schemes to systematically evaluate the performance of
sequencing methods on the University of Kentucky Healthcare (UKHC) OR historical data.
In Section 4.6, we present results and discussions. Finally, in Section 4.7, we draw conclusions
and present future research directions.

4.2 Problem description

As it was mentioned in Section 4.1, we model an operating room as a single machine produc-
tion system, where the objectives of min(TCT ) and min(TADC) are surrogate objectives for
min(PtF ) and min(PtFV ), respectively. In this section, given the vector of processing times
P, we present the mathematical formulations to balancing trade-offs between min(TCT ) and
min(TADC) in the form Z(α,σ,P) = αy1 + (1 − α)y2, where α is weight of min(TCT ) in
the trade-off function, σ is a sequence of jobs , yk = γ(σ,P)−LBk(P)

UBk(P)−LBk(P) is the normalized devi-
ations from the best (minimum) possible value of attribute k, UBk(P) and LBk(P) are the
best (minimum) and the worst (maximum) possible value of attribute k, respectively. It is
worth mentioning that in order to distinguish between scalars and vectors, we use bold font
to represent vectors (e.g. σ vs. σ(i)).

In 4.2 and 4.2, we present methods for calculating LBk and UBk. In 4.3, we prove the
inconsistency between the objectives of min(TCT ) and min(TADC). Finally, in 4.3, we
propose a heuristic to balance trade-offs between min(TCT ) and min(TADC).

Notations

n Number of jobs

pj Processing time of job j, j = 1, 2, , n

P Vector of job processing times, P = [p1, p2, ..., pn]T

Ω Decision space, |Ω| = n!

σ σ ∈ Ω, a permutation of of n jobs

i Index of positions in σ, i = 1, 2, ..., n

σ(i) Job that occupies position i in sequence σ = [σ(1), σ(2), ..., σ(n)]

k Index of attributes, k = 1, 2, with k = 1 for TCT and k = 2 for TADC
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γk(σ,P) A function describing attribute k given σ and P

wk(i) Weight of position i in objective function γk

Wk Vector of positional weights in γk, Wk = [wk(1), wk(2), ..., wk(n)]

xj,i Binary decision variable, xj,i = 1 if σ(i) = j, otherwise 0

X n× n assignment matrix where X(j, i) = xj,i

LBk(P) The minimum possible value for attribute k given P

UBk(P) The maximum possible value for attribute k given P

yk(σ,P) Normalized deviation from the best value of attribute k given σ and P

α Weight of min(γ1) in the objective function, α ∈ [0, 1]

Total completion time (TCT )

Given n jobs, there are n! possible sequences i.e. |Ω| = n!, where Ω is the decision space.
Let σ ∈ Ω be a sequence of n jobs, and i ∈ {1, 2, ..., n} be the index of positions in σ i.e.
σ = {σ(1), σ(2), ..., σ(n)}, σ(i) = j if job j is assigned to position i in σ. For a deterministic
single-machine production system with n jobs, we can formulate total completion time (TCT )
by Equation 4.1, where Cσ(i) is the completion time of the job in position i. Note that the
positional weight w1(i) = (n− i+ 1) is independent of pσ(i) and can be written in the vector
form of W1, where W1(1, i) = w1(i).

γ1(σ,P) =
n∑
i=1

Cσ(i) =
n∑
i=1

(n− i+ 1)pσ(i) =
n∑
i=1

w1(i)pσ(i) (4.1)

By introducing the binary decision variable xj,i = 1, if σ(i) = j, otherwise 0, we can write
σ in the form of an assignment matrix of X, where X(j, i) = xj,i. Thus, Equation(4.1) is
written in the matrix form as γ1(σ,P) = W1XP. The mixed integer programming (MIP)
models to find LB1(P) and UB1(P) are presented by Equation(4.2) and Equation(4.6), re-
spectively. LB1(P) and UB1(P) can be solved in O(nlog(n)) by ordering jobs in the non-
decreasing order (

+
σ1(P) = SPT ), and non-increasing order (Longest Processing Time first,

LPT rule) (
−
σ1(P) = LPT ), respectively. Therefore, the range of TCT is calculated as

R1(P) = UB1(P)− LB1(P) = γ1(
−
σ1,P)− γ1(

+
σ1,P) in O(n log n) as well.

LB1(P) = min
σ∈Ω

(γ1(σ,P)) = min
X∈F

(W1XP) (4.2)

s.t.
n∑
i=1

xj,i = 1 (4.3)

n∑
j=1

xj,i = 1 (4.4)

xj,i ∈ {0, 1} (4.5)

UB1(P) = max
σ∈Ω

(γ1(σ,P)) = max
X∈F

(W1XP) (4.6)

s.t. (4.3), (4.4), (4.5)
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Total absolute deviations in completion times (TADC)

For a deterministic single-machine production system with n jobs, we can formulate total
absolute differences in completion times (TADC) by Equation(4.7).

γ2(σ,P) =
n∑
i=1

n∑
l=1

∣∣∣Cσ(i) − Cσ(l)

∣∣∣ =
n∑
i=1

(i− 1)(n− i+ 1)pσ(i) (4.7)

The positional weight of w2(i) = (i − 1)(n − i + 1) is independent of pσ(i), thus, can
be written in the vector form of W2, where W2(1, i) = w2(i). By using the assignment
matrix X, Equation(4.7) is rewritten as γ2(σ,P) = W2XP. The mixed integer programming
(MIP) models to find LB2(P) and UB2(P) are presented by Equation(4.8) and Equation(4.9),
respectively.

LB2(P) = min
σ∈Ω

(γ2(σ,P)) = min
X∈F

(W2XP) (4.8)

s.t. (4.3), (4.4), (4.5)

UB2(P) = max
σ∈Ω

(γ2(σ,P)) = max
X∈F

(W2XP) (4.9)

s.t. (4.3), (4.4), (4.5)

Kubiak (1993) [89] proved that the completion time variance minimization problem is NP -
hard. Intuitively, we can conclude that problems (4.8) and (4.9) are also NP -hard. Kanet
(1981) [90] showed that the optimal sequence to min

σ∈Ω
(γ2(σ,P)) is V -shaped. In a V -shaped

sequence, jobs before and after the job with the shortest processing time are ordered by LPT
and SPT rules, respectively. Figure 4.1.a shows an example of a V -shaped sequence.

f 

a) V-shaped processing sequence b) non-V-shaped processing sequence

Figure 4.1: V -shaped and non-V -shaped processing sequences

Kanet’s [90] heuristic to find +
σ2(P ) the optimal sequence to min

σ∈Ω
(γ2(σ,P)) is presented

by Algorithm 2.

Lemma 1.
+
σ2(P) must have the following properties [90]:

1.
+
σ2(P) is V -shaped.

2. The longest job must be scheduled first
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Algorithm 2
+
σ2(P), the optimal sequence to min

σ∈Ω
(γ2(σ,P)), [90]

Let:
U be the of unscheduled jobs, B, A be empty sets;
For j = 1 : n
Remove the longest jobs from U and label it Jj
if j is odd

place Jj in the last empty position of B
else
place Jj in the first empty position of A

End
+
σ2(P) = {B,A}

Proof of Lemma 1.1:
If σ is the optimal sequence to min

σ∈Ω
(γ2(σ,P)) and is NOT V -shaped, then there are three

consecutive jobs (i, j, k) such that pj > pi and pj > pk, as depicted in Figure 4.1.b.
We prove that σ cannot be the optimal sequence to min

σ∈Ω
(γ2(σ,P)) because exchanging

either i and j or j and k will result in a smaller γ2(P). Let σ′ be the sequence generated by
exchanging jobs i and j. Similarly, let σ′′ be the sequence generated by exchanging jobs j
and k. We need to prove the following:

I. γ2(σ,P)− γ2(σ′,P) < 0⇒ γ2(σ,P)− γ2(σ′′,P) > 0

II. γ2(σ,P)− γ2(σ′′,P) < 0⇒ γ2(σ,P)− γ2(σ′,P) > 0

Proof for II. is similar to the proof for I., therefore, we only prove I.. Let e be the position of
job i in sequence σ, using Equation(4.7), we have:

γ2(σ,P)=
∑e−1
h=1(h−1)(n−h+1)ph+(e−1)(n−e+1)pi+(e)(n−e)pj+(e+1)(n−e−1)pk+∑n

h=e+3(h−1)(n−h+1)ph (4.10)

γ2(σ′,P)=
∑e−1
h=1(h−1)(n−h+1)ph+(e−1)(n−e+1)pj+(e)(n−e)pi+(e+1)(n−e−1)pk+∑n

h=e+3(h−1)(n−h+1)ph (4.11)

γ2(σ′′,P)=
∑e−1
h=1(h−1)(n−h+1)ph+(e−1)(n−e+1)pi+(e)(n−e)pk+(e+1)(n−e−1)pj+∑n

h=e+3(h−1)(n−h+1)ph (4.12)

By assumption γ2(σ,P)− γ2(σ′,P) < 0⇒
(pi−pj)︸ ︷︷ ︸
<0

(2e− n− 1) < 0 =⇒ (2e− n− 1) > 0 (4.13)

γ2(σ,P)− γ2(σ′′,P) = (pj−pk)︸ ︷︷ ︸
<0

( (2e−n−1)︸ ︷︷ ︸
>0, by 4.13

+2)⇒ γ2(σ,P)− γ2(σ′′,P) > 0 (4.14)

Equation(4.14) states that σ′′ is strictly better than σ, therefore,
+
σ2(P) must be V -

shaped.
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Proof of Lemma 1. 2
Assume σ is the optimal sequence to min

σ∈Ω
(γ2(σ,P)) and the longest job with processing time

pL is NOT scheduled first i.e. pσ(1) 6= pL, pσ(i) = pL, i ∈ {2, 3, ..., n}. Let σ′ be the sequence
obtained from σ by exchanging the position of the first job and the longest job (which is in
position e). We have the followings:

γ2(σ,P) = 0× pσ(1) + (e− 1)(n− e+ 1)pL +

n∑
h6=e

(h− 1)(n− h+ 1)pσ(h) (4.15)

γ2(σ′,P) = 0× pL + (e− 1)(n− e+ 1)pσ(1) +
n∑
h6=e

(h− 1)(n− h+ 1)pσ(h) (4.16)

γ2(σ,P)− γ2(σ′,P) = (e− 1)(n− e+ 1)︸ ︷︷ ︸
>0

(pL − pσ(1))︸ ︷︷ ︸
>0

> 0 (4.17)

Equation(4.17) clearly states that σ′ is strictly better than σ, therefore, the longest job must
be scheduled first in

+
σ2(P).

We show that
−
σ2(P) the optimal sequence to max

σ∈Ω
(γ2(σ,P)) is Λ-shaped. In a Λ-shaped

sequence, jobs before and after the job with the longest processing time are ordered by SPT
and LPT rules, respectively. Figure 4.2 shows an example of a Λ-shaped sequence. We
propose Algorithm 3 to find

−
σ2(P), which has the same complexity as that of Algorithm 2

i.e. O(n log n).

Figure 4.2: Λ-shaped processing sequence

Lemma 2.
−
σ2(P) must have the following properties:

1.
−
σ2(P) is Λ-shaped.

2. The shortest job must be scheduled first

Proof of Lemma 2.1
If σ is the optimal sequence to max

σ∈Ω
(γ2(σ,P)) and is NOT Λ-shaped, then there are three

consecutive jobs (i, j, k) such that pj < pi and pj < pk, as depicted in Figure 4.3.
We prove that σ cannot be the optimal sequence to max

σ∈Ω
(γ2(σ,P)) because exchanging

either i and j or j and k will result in a greater γ2(P). Let σ′ be the sequence obtained form
σ by exchanging jobs i and j. Similarly, let σ′′ be the sequence generated by exchanging jobs
j and k. We need to prove the following:
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Figure 4.3: A non-Λ-shaped processing sequence

I. γ2(σ,P)− γ2(σ′,P) > 0⇒ γ2(σ,P)− γ2(σ′′,P) < 0

II. γ2(σ,P)− γ2(σ′′,P) > 0⇒ γ2(σ,P)− γ2(σ′′,P) < 0

Proof for II. is similar to the proof for I., therefore, we only prove I.. Let e be the position
of job i in σ, then:

By assumption γ2(σ,P)− γ2(σ′,P) = (pi − pj)︸ ︷︷ ︸
>0

(2e− n− 1) > 0

⇒ (2e− n− 1) > 0 (4.18)

γ2(σ,P)− γ2(σ′′,P) = (pj − pk)︸ ︷︷ ︸
<0

((2e− n− 1)︸ ︷︷ ︸
>0 by4.18

+2)

⇒ γ2(σ,P)− γ2(σ′′,P) < 0 (4.19)

Equation(4.19) clearly states that σ′′ is strictly better than σ, therefore,
−
σ2(P) must be

Λ-shaped.
Proof of Lemma 2.2

Assume σ is the optimal sequence to max
σ∈Ω

(γ2(σ,P)) and the shortest job with processing time

pS is NOT scheduled first i.e. pσ(1) 6= pS , pσ(i) = pS , i ∈ {2, 3, ..., n}. Let σ′ be the sequence
obtained from σ by exchanging the position of the first job and the shortest job (which is in
position e). We have the following:

γ2(σ,P) = 0× pσ(1) + (e− 1)(n− e+ 1)pS +

n∑
h6=e

(h− 1)(n− h+ 1)pσ(h) (4.20)

γ2(σ′,P) = 0× pS + (e− 1)(n− e+ 1)pσ(1) +

n∑
h6=e

(h− 1)(n− h+ 1)pσ(h) (4.21)

γ2(σ,P)− γ2(σ′,P) = (e− 1)(n− e+ 1)︸ ︷︷ ︸
>0

(pS − pσ(1))︸ ︷︷ ︸
<0

< 0 (4.22)

Equation(4.22) clearly states that σ′ is strictly better than σ, therefore, the shortest job
must be scheduled first in

−
σ2(P).

By utilizing Algorithm 2 and Algorithm 3, we are able to calculate R2(P) = UB2(P) −
LB2(P) = γ2(

−
σ2,P)− γ2(

+
σ2,P) in O(n log n).
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Algorithm 3
−
σ2(P), the optimal sequence to max

σ∈Ω
(γ2(σ,P))

Let:
U be the of unscheduled jobs, B,A be empty sets;
For j = 1 : n
Remove the shortest jobs from U and label it Jj
if j is odd

place Jj in the first empty position of B
else
place Jj in the last empty position of A

End
−
σ2(P) = {B,A}

4.3 Inconsistency between min(TCT ) and min(TADC)

From the shape of
+
σ1(P) and

+
σ2(P) (i.e. SPT and V -shaped, respectively), we can intuitively

conclude that the objective of min
σ∈Ω

(γ1(σ,P)) and min
σ∈Ω

(γ2(σ,P)) are inconsistent. We also

provide a proof of this inconsistency in Appendix A.1.

Lemma 3. min(TCT ) and min(TADC) are inconsistent.

A system of linear equations is called inconsistent if it has no solutions [39]. We show
that min

σ∈Ω
(γ1(σ,P)) and min

σ∈Ω
(γ2(σ,P)) are inconsistent, consequently, there is no sequence

that simultaneously minimizes both. Given inconsistency between objectives, any sequence
generates some levels of trade-offs in the system. Therefore, balancing trade-offs is an inter-
esting objective.

Trade-off balancing

We use compromised programming (CP ), which was first proposed by Zeleny and Cochrane
(1973) [9] to the define the objective function of trade-off balancing. The first step in CP is to
establish an ’ideal point ’, the coordinates of the ideal point are given by the optimum values
of all objectives. It is obvious that with inconsistent objectives the ideal point is not feasible,
therefore, the ideal point is only a point of reference for CP . The second step in CP is to
establish an ’anti-ideal ’ point. The coordinates of the anti-ideal point are given by the worst
values of all objectives. The objective of CP is to find the closest efficient solution to the ideal
point [40]. In the minimization sense, the coordinates of ideal point and anti-ideal point are
(LB1, LB2, ..., LBk) and (UB1, UB2, ..., UBk), respectively. Therefore, the degree of closeness
between solution σ to the coordinate k of the ideal point is defined by yk(σ) = γk(σ)−LBk

UBk−LBk .
To measure the distances between outcomes of solution σ and the ideal point, a family

of distance functions are introduced by Lg(αk,σ) =
(∑K

k=1(αkyk(σ))g
)1/g, where αk is the

weight of attribute k in the objective function, without loss of generality we assume
∑K

k=1 αk =
1. When g = 1, L1 measures the longest distance (geometrically speaking) between the
solution and the ideal point. The best compromise or the closest solution to ideal point is
obtained by solving the linear programming (LP) model presented by Equation(4.23). Where,
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F is the set of feasible solutions.

min L1 =

K∑
k=1

αkyk, s.t. x ∈ F (4.23)

In balancing trade-offs between min(TCT ) and min(TADC), we can reformulate Equa-
tion(4.23) into Equation(4.24), where α is the weight of min

σ∈Ω
(γ1(σ,P)).

min
σ∈Ω

Z(α,σ,P) =

2∑
k=1

αkyk ⇒

min
σ∈Ω

Z(α,σ,P) = α
γ1(σ,P)− LB1(P)

R1(P)
+ (1− α)

γ2(σ,P)− LB2(P)

R2(P)
(4.24)

Since it has been proven that min
σ∈Ω

(γ2(σ,P)). is NP -hard, it can be speculated that

min
σ∈Ω

(Z(α,σ,P)) is also NP -hard with |Ω| = n!. Therefore, seeking the optimal solution to

min
σ∈Ω

(Z(α,σ,P) is not computationally efficient.

4.4 Optimal sequence to min
σ∈Ω

Z(α,σ,P)

We prove that
+
σZ(P) the optimal solution to min

σ∈Ω
(Z(α,σ,P)) is V -shaped. Given n jobs,

there exist 2n−1 V -shaped sequences, therefore,
∣∣∣Ωmin(Z(α,σ,P))

∣∣∣ = 2n−1.

Lemma 4.
+
σZ(P); the optimal solution to min(Z(α,σ,P)) is V -shaped.

Proof for Lemma 4 is similar to that of Lemma 1. 1, and is also provided in Appendix A.2.
Equation(4.24) can be rewritten by Equation(4.25). The second term on the right hand

side (RHS) of Equation(4.25) denoted by π(α,P) is a constant given α and P, therefore,
min
σ∈Ω

Z ′(α,σ,P) is a surrogate function for min
σ∈Ω

Z(α,σ,P).

min
σ∈Ω

Z(α,σ,P) =
α

R1(P)
γ1(σ,P) +

(1− α)

R2(P)
γ2(σ,P)︸ ︷︷ ︸

Z′(α,σ,P)

− (
αLB1(P)

R1(P)
+

(1− α)LB2(P)

R2(P)
)︸ ︷︷ ︸

π(α,P)

(4.25)

Z ′(α,σ,P) =
α
∑n

i=1(n− i+ 1)pσ(i)

R1(P)
+

(1− α)
∑n

i=1(i− 1)(n− i+ 1)pσ(i)

R2(P)
⇒

Z ′(α,σ,P) =
α
∑n

i=1w1(i)pσ(i)

R1(P)
+

(1− α)
∑n

i=1w2(i)pσ(i)

R2(P)

Z ′(α,σ,P) =

n∑
i=1

(αw1(i)

R1(P)
+

(1− α)w2(i)

R2(P)

)
pσ(i) =

n∑
i=1

w
[α,P]
Z′ (i)pσ(i) (4.26)

We can rewrite Z ′(α,σ,P) into Equation(4.26). w1(i) and w2(i) are independent of P,
moreover, R1(P) and R2(P) are obtained as discussed in 4.2 and 4.2, respectively. Thus, given
α and P, we are able to obtain W

[α,P]
Z′ = [w

[α,P]
Z′ (1), ..., w

[α,P]
Z′ (n)] that results in Z ′(α,σ,P) =

W
[α,P]
Z′ [pσ(1), pσ(2), ..., pσ(n)]

T .
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Note that Z ′(α,σ,P) is the sum of pair-wise products of two vectors of W
[α,P]
Z′ and

[pσ(1), pσ(2), ..., pσ(n)]
T , therefore, it can be minimized by arranging W

[α,P]
Z′ in the non-decreasing

order and [pσ(1), pσ(2), ..., pσ(n)]
T in the non-increasing order [93]. We propose a fast heuristic

with complexity of O(n log n) to find
+
σZ′(α,P) the optimal sequence to min

σ∈Ω
(Z ′(α,σ,P)) as

presented by Algorithm 4. It is worth reminding that Z ′(α,σ,P) is the surrogate function
for Z(α,σ,P), therefore,

+
σZ′(α,P) is also the optimal sequence to min

σ∈Ω
(Z(α,σ,P)).

Algorithm 4
+
σ

[α]

Z (P), the optimal sequence to min
σ∈Ω

(Z(α,σ,P))

Given α and P

Step.1 Obtain R1(P) = UB1(P)− LB1(P) = γ1(
−
σ1(P),P)− γ1(

+
σ1(P),P), where

−
σ1(P) and

+
σ1(P) are obtained by LPT and SPT rules, respectively.

Step.2 Obtain R2(P) = UB2(P)− LB2(P) = γ2(
−
σ2(P),P)− γ2(

+
σ2(P),P), where

−
σ2(P) and

+
σ2(P) are obtained by Algorithm 3 and Algorithm 2, respectively.

Step.3 Obtain the positional weights w[α,P]
Z′ (i) = α(n−i+1)

R1(P) + (1−α)(i−1)(n−i+1)
R2(P) , and form

W
[α,P]
Z′ = [w

[α,P]
Z′ (1), ..., w

[α,P]
Z′ (n)].

Step.4 Order W
[α,P]
Z′ in the non-decreasing order, arbitrarily break the ties, and call

it W′.
Step.5 Sort P by SPT rule and call it σ.
Step.6 Obtain

+
σZ(α,P) by replacing each job in σ by the rank of its w′(i) in W.

We demonstrate the determination of
+
σZ(α,P) by Algorithm 4 for a 7-job example with

α = 0.4 i.e. min
σ∈Ω

(Z(α,σ,P)) = 0.4y1 + 0.6y2 as shown by Table 4.1.

Table 4.1: An example for demonstrating Algorithm 4
P 2 21 9 65 82 3 6

Step.1
−
σ1(P) 82 65 21 9 6 3 2 UB1 = 1131

R1 = 785+
σ1(P) 2 3 6 9 21 65 82 LB1 = 373

Step.2
−
σ2(P) 2 6 21 82 65 9 3 UB2 = 2118

R2 = 1392+
σ2(P) 82 21 6 2 3 9 65 LB2 = 726

Step.3 w
[α,P]
Z

(i) 0.0037 0.0058 0.0069 0.0073 0.0068 0.0054 0.0031

Step.4 W′ 0.0073 0.0069 0.0068 0.0058 0.0054 0.0037 0.0031
Rank 4 3 5 2 6 1 7

Step.5 σ 2 3 6 9 21 65 82
Step.6 +

σZ(α,P) 65 9 3 2 6 21 82
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Bi-criteria models

Multiple works[92, 94] have been reported on optimizing the bi-criteria problem of TCT -
TADC in the form ZBC(α,σ,P) = αTCT + (1− α)TADC as presented by Equation(4.27).

min
σ∈Ω

ZBC(α,σ,P) = αγ1(σ,P) + (1− α)γ1(σ,P) =

α
n∑
i=1

w1(i)pσ(i) + (1− α)
n∑
i=1

w2(i)pσ(i) ⇒

min
σ∈Ω

ZBC(α,σ,P) =
n∑
i=1

(
α
(
w1(i)− w2(i)

)
+ w2(i)

)
pσ(i) =

n∑
i=1

w
[α]
BC(i)pσ(i) ⇒

min
σ∈Ω

ZBC(α,σ,P) = W
[α]
BC [pσ(i), ..., pσ(n)]

T (4.27)

+
σ

[α]

BC(P) the optimal sequence to min
σ∈Ω

ZBC(α,σ,P) is obtained by ordering W
[α]
BC in non-

increasing order and [pσ(i), ..., pσ(n)]
T in the non-decreasing order. In order to demonstrate the

effectiveness and efficiency of trade-off balancing, we compare the performance of min
σ∈Ω

(Z(α,σ,P))

with that of min
σ∈Ω

ZBC(α,σ,P).

4.5 Case studies

By varying α the weight of min(TCT ) in the objective functions with α ∈ {0.0, 0.1, ..., 1.0}, we
examine the performance of sequencing methods with different objective functions. Therefore,
we have 11 methods of Z(α) for the trade-off balancing problem, and 11 methods of ZBC(α)
for the bi-criteria problem.

Let h be the index of methods where h ∈ H = {1, 2, ..., 11, 12, 13, ..., 22}. Where H ≡
{Z(0.0), Z(0.1), ..., Z(1.0), ZBC(0.0), ZBC(0.1), ..., ZBC(1.0)} denote the set of objective func-
tions. OR Historical data of 260 days per year, for 5 years from the University of Ken-
tucky HealthCare (UKHC) were used in this case study (Q = 1300 samples in total). Let
q = 1, 2, ..., Q be the index of samples, and Pq be the surgical case times vector of surgeries
in sample q.

Given Pq, let σh(Pq), h ∈ H denote the optimal sequence generated by method h. Thus,
we have the normalized deviation of attribute k generated by method h from its possible best

value as yh,k,q(σh, Pq) =
γk(σh,Pq)−LBk,q
UBk,q−LBk,q . Let Dh,k =

∑Q
q=1 yh,k,q
Q be the average normalized

deviation of attribute k generated by method h over all Q samples.

Evaluation schemes

In order to systematically evaluate the performance of sequencing methods, we discuss the re-
sults from two perspectives (i) inconsistency between objectives of min(TCT ) and min(TADC),
(ii) inconsistency between the first order (expected value) and the second order (variance) of
trade-off. To address (i), we utilize the Pareto dominance conditions, and to address (ii), we
use modern portfolio theory (MPT).

Pareto dominance

For minimization problems, if x
[k]
A and x

[k]
B ∈ RK are two vectors that measure a positive

attribute k such as the utility of decision A and B, respectively, decision A dominates decision
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B if the following conditions are satisfied:

x
[k]
A ≤ x

[k]
B , ∀ k ∈ {1, 2, ..,K} (4.28)

x
[k]
A < x

[k]
B , ∃ k ∈ {1, 2, ..,K} (4.29)

Equation(4.28) states that decision A is not worse than decision B in any dimension, while
Equation(4.29) states that decision A is better than decision B at least in one dimension.
Pareto optimal outcomes cannot be improved without the sacrificing of at least one objective.

Modern portfolio theory

Modern portfolio theory (MPT) was first proposed by Markowitz (1952) [95]. MPT is a
mathematical framework to balance the trade-offs between the expected value of return/loss
and the associated risk. We formulate an MPT model for balancing the trade-off between
the expected value of trade-off and its variance as the measure of risk. Assume that yk has a
density function p(yk) with mean µk and variance σ2

k. Now, we consider the case where the
decision vector x represents a portfolio of preferences on yk such that x = (x1, x2) with the
conditions that xk ≥ 0 and x1 +x2 = 1 Let Y = (y1, y2) denote a random vector representing
the normalized deviations. The distribution of Y is a joint distribution of y1 and y2 and is
independent of x with density of p(Y).

Let us define the loss of portfolio x as the sum of normalized deviations on individual yk
scaled by proportion xk. Therefore, the loss is given by Equation(4.30).

f(x,Y) = [x1y1 + x2y2] = xTY (4.30)

Given mean and variance of yk, we have the vector of means m = (µ1, µ2) and the covariance
matrix COV (yk). Therefore, we are able to calculate the mean and variance of the loss
associated with portfolio x as follows:

µf(x,Y) = xTm (4.31)

σ2
f(x,Y) = xTCOV x (4.32)

For each x, the loss f(x,Y) is random variable with a distribution in R induced by
p(Y). In this work, efficient portfolio frontiers are utilized to assess the performance of the
sequencing methods, in terms of µf(x,Y) and σ2

f(x,Y).

4.6 Results and Discussions

The performance of 22 sequencing methods including 11 trade-off balancing methods and 11
bi-criteria methods are evaluated with the UKHC OR historical data.

Pareto dominance

Table 4.2 shows the statistics of the average normalized deviations for the sequencing methods.
It is observed that the bi-criteria method i.e. ZBC(α) is almost insensitive to α and it is strictly
to the favor of min(TADC) by generating large deviations from the best value of TCT i.e.
D1. This behavior makes the bi-criteria model unsuitable for simultaneously optimizing TCT
and TADC. On the other hand as it is shown by Figure 4.4, trade-off balancing methods i.e.
Z(α) are sensitive to α, thus, able to reflect the weights of objectives. Based on the average
deviations none of the Z(α) methods are dominated.
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Table 4.2: Statistics of average normalized deviations

Method Metric α
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Z(α)
D1 0.5075 0.4779 0.4220 0.3707 0.3016 0.2150 0.1279 0.0384 0.0000 0.0000 0.0000
D2 0.0000 0.0018 0.0118 0.0291 0.0663 0.1384 0.2470 0.4138 0.5200 0.5200 0.5200
D̄ 0.2537 0.2398 0.2169 0.1999 0.1839 0.1767 0.1874 0.2261 0.2600 0.2600 0.2600

ZBC(α)
D1 0.5075 0.5075 0.5075 0.5075 0.5075 0.4925 0.4925 0.4779 0.4497 0.3831 0.0000
D2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0006 0.0018 0.0057 0.0242 0.5200
D̄ 0.2537 0.2537 0.2537 0.2537 0.2537 0.2466 0.2466 0.2398 0.2277 0.2036 0.2600
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Figure 4.4: Pareto frontiers based on D1 and D2

Let D̄h = (D1 + D2)/2 denote the grand average normalized deviations generated by
method h. As it is shown by Table 4.2 and Figure 4.5, trade-off balancing methods i.e. Z(α)
dominate the bi-criteria methods in terms of D̄ except for α = 0.8 and α = 0.9. Although
at α = 0.8 and α = 0.9, respectively 80% and 90% of the weight in the objective function is
assigned to min(γ1), it is observed that ZBC(0.8) and ZBC(0.90) generate very large deviations
of 44.97% and 38.31% from LB1, respectively. The cause of this behavior of ZBC(α) is the
difference between the magnitudes of TCT and TADC where TADC � TCT that forces the
solutions towards min(γ2). Therefore, we conclude that the bi-criteria methods are not solid
and appropriate methods for simultaneously optimizing TCT and TADC, whereas, trade-off
balancing methods by using the normalized deviations i.e. yk fairly treat both attributes.

It is also observed that Z(0.5) generate minimum D̄ with the value of 0.1767. Another
interesting observation from Table 4.2, Figure 4.4, and Figure 4.5 is that for α > 0.7, min(γ1)
dominates the solutions of Z(α) returning the SPT sequence.

Since the performance of the bi-criteria methods are inferior to those of the trade-off
balancing methods, we exclude the bi-criteria methods from our further discussions.

Modern portfolio theory

Using Equation(4.31) and Equation(4.32), we calculate the loss generated by trade-off bal-
ancing functions i.e. Z(α) for a wide range of portfolios xm = (x1, x2) such that xm ∈M =
{(0.0, 1.0), (0.01, 0.99), ..., (1.0, 0.00)} as shown by Figure 4.6. Our purpose by loss analysis is
to examine the ability of sequencing methods to satisfy the needs of decision makers with a
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different portfolio of preferences. Figure 4.6 shows that Z(0.5) is the method with the least
sensitivity to x with a small range of loss average and standard deviation.
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Figure 4.6: Portfolio frontiers of trade-off balancing functions

In order to comprehensively evaluate the performance of the sequencing methods, let

µ̄h =
∑|M|
m=1 µf(xm,Yh)

|M| denote the average loss generated by method h over all portfolios,
similarly, σ̄h denote the standard deviation of loss generated by method h over all portfolios.
Also let µmax

h = max
m∈M

(µf(xm,Yh)), µmin
h = min

m∈M
(µf(xm,Yh)), σmax

h = max
m∈M

(
√
σ2
f(xm,Yh)), σ

min
h =

min
m∈M

(
√
σ2
f(xm,Yh)) denote maximum loss, minimum loss, maximum loss standard deviation,
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and minimum loss standard deviation by method h over all portfolios, respectively, as shown
by Table 4.3.

Table 4.3: Statistics of loss generated by sequencing methods over all portfolios

Method (h) Loss Average Loss Standard Deviation
µ̄h µmax

h µmin
h R

[µ]
h

σ̄h σmax
h σmin

h σmax
h −σmax

h

Z(0.0) 0.2537 0.5075 0.0000 0.5075 0.1480 0.0012 0.0000 0.0012
Z(0.1) 0.2398 0.4779 0.0018 0.4761 0.1388 0.0019 0.0000 0.0019
Z(0.2) 0.2169 0.4220 0.0118 0.4102 0.1196 0.0052 0.0001 0.0051
Z(0.3) 0.1999 0.3707 0.0291 0.3415 0.0997 0.0078 0.0003 0.0075
Z(0.4) 0.1839 0.3016 0.0663 0.2353 0.0688 0.0104 0.0007 0.0096
Z(0.5) 0.1767 0.2150 0.1384 0.0767 0.0232 0.0120 0.0018 0.0102
Z(0.6) 0.1874 0.2470 0.1279 0.1191 0.0353 0.0108 0.0036 0.0072
Z(0.7) 0.2261 0.4138 0.0384 0.3753 0.1097 0.0129 0.0051 0.0078
Z(0.8) 0.2600 0.5200 0.0000 0.5200 0.1521 0.0203 0.0000 0.0203
Z(0.9) 0.2600 0.5200 0.0000 0.5200 0.1521 0.0203 0.0000 0.0203
Z(1.0) 0.2600 0.5200 0.0000 0.5200 0.1521 0.0203 0.0000 0.0203

It is observed that Z(0.5) has the minimum average loss of µ̄Z(0.5) = 0.1767 among all
sequencing methods, it also has the minimum standard deviations of σ̄Z(0.5) = 0.0232. We
use R[µ]

h = µmax
h − µmin

h to assess the range of loss generated by method h over all portfolios.
Z(0.5) exhibits a uniform performance over all portfolios with R[µ]

Z(0.5) = 0.0767 which implies
that Z(0.5) is fairly insensitive to the decision maker’s portfolio of preferences. Figure 4.7
shows the Pareto frontier of loss average and standard deviation for the trade-off balancing
functions. Z(0.5) dominates all other sequencing methods in terms loss average and standard
deviation. Single-attribute models of Z(1.0) and Z(0.0) show the two worst performances,
respectively.
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Figure 4.7: Trade-off balancing functions Loss average and Standard deviations over all
portfolios

Balancing trade-offs between flow time mean and flow time variance provides a powerful
yet flexible tool to shift the performance of the single-machine system towards a desired
state where the outcomes are more predictable and also close to the infeasible ideal point. By
translating this conclusion into the operating room scheduling, we can conclude that balancing
trade-offs between patient flow time mean and patient flow time variance provides a smooth
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patient flow across the OR peri-op process. Smoothing patient flow results in reduced waiting
times and overcrowdings that consequently improves the quality of care. Balancing trade-
offs enables the OR managers to efficiently use resources by reflecting different stakeholders
interests into the objective function.

4.7 Conclusion

Flow time mean and variance are two important measures in any production system, specif-
ically, in operating room (OR) scheduling, mean patient flow time (PtF ) and patient flow
time variance (PtFV ) are two indicators for service throughput and uniformity, respectively.
Minimizing patient flow time i.e. min(PtF ) reduces waiting times and overcrowdings between
upstream resources and OR but it may negatively affect the downstream resources. Minimiz-
ing patient flow variance i.e. min(PtFV ) provides the patients with an approximately the
same waiting time that could improve patient’s satisfaction but at cost of increased waiting
time. However, we showed that the objectives of min(PtF ) and min(PtFV ) are inconsistent
objectives and optimizing one is on the cost of the other. By modeling OR as a single-machine
production system, we utilized yk the normalized deviations from the best value of attribute
k to formulate the objective function in the form of Z(α) = αy1 + (1 − α)y2 to balance the
trade-offs between min(PtF ) and min(PtFV ). We also proposed a fast heuristic to find the
optimal sequence to minZ(α) in O(n log n). Through extensive case studies on the Universi-
ty of Kentucky Healthcare (UKHC) OR historical data, we showed that balancing trade-offs
outperforms single-attribute models of min(PtF ) and min(PtFV ), and the bi-criteria models
in the form of ZBC(α) = αPtF + (1− α)PtFV as well.

The results showed that trade-off balancing models are able of reflecting the the stake-
holders interests and the decision maker’s preferences while shifting the performance of the
system towards a predictable state with minimum deviation from an ’ideal point ’ at which
all attributes are at their optima. Balancing trade-offs between min(PtF ) and min(PtFV )
can smooth the patient flow across the OR peri-operative process resulting in an improved
quality of care.
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Chapter 5

An Optimization Model for Operating Room
Scheduling to Reduce Blocking Across the
Perioperative Process

Operating room scheduling is important. Because of increasing demand for surgical services,
hospitals must provide high quality care more efficiently with limited resources. When con-
structing the OR schedule, it is necessary to consider the availability of downstream resources,
such as ICU and PACU. The unavailability of downstream resources causes blockings between
every two consecutive stages. In this chapter, we address the master surgical schedule (MSS)
problem in order to minimize blockings between two consecutive stages. First, we present a
blocking minimization (BM) model to construct the MSS using linear integer programming,
based on deterministic data. The BM model determines the OR block schedule for the next
day by considering the current occupancy (number of patients) of the downstream resources
with the objective of minimizing the number of blockings between intra-opertaive and post-
operative stages. Second, we test the effectiveness of our model under variations in case times
and patient arrivals, using discrete event simulation. The simulation results show that the
BM model can significantly reduce the number of blockings by 94% improvement over the
hospital base model. Scheduling patient flow across the 3-stage peri-operative process can be
applied to work flow scheduling for the s-stage flow shop production in manufacturing, and
also smoothing patient flow in peri-operative processes can be applied to no-wait flow shop
production. The results of this chapter appears in [96].

5.1 Introduction

In most hospitals when OR blocks are assigned to surgery groups, there is no specific mecha-
nism to ensure the availability of downstream resources, such as the beds in ICU or PACU [97].
Because of the unavailability of downstream resources, patients cannot be sent to the next
stage, but are held in the current stage, causing blockings between every two consecutive
stages. Blockings negatively impact OR performance across the peri-op process, such as in-
creased waiting time in each stage, increased length of stay (LoS) across the peri-op process,
excessive overtime and overnight shifts, etc. In this chapter, we develop a blocking mini-
mization (BM) model to reduce the number of blockings between two consecutive stages. To
avoid blocking, the number of patients in each stage should not exceed the number of beds
in that stage. The number of patients in each stage is affected by three events:

• Patients arriving on each day from the upstream stage.
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• Patients from previous days who still need to stay in the current stage.

• Patients from previous days who have spent enough time in the current stage and are
ready to leave.

Our BM model provides an optimal OR block schedule by taking these three events into
consideration. The BM model determines the OR block schedule for the next day by consid-
ering the current stage occupancy (number of patients in the stage) in order to minimize the
number of blockings between the intra-op and the post-op stages. Therefore, the BM model
balances the admission and departure of the post-op stage, while avoiding the accumulated
number of patients exceeding the number of resources. Using discrete event simulation, we
show that our BM model effectively dampens the variations in the case times and patient
arrivals.

Surgeries are categorized into two major classes: elective cases, and emergency cases [6,
49]. Elective cases are scheduled several days prior to the intervention date, but emergency
cases should be scheduled as soon as possible [50]. OR scheduling consists of three major
phases, which challenges the OR block scheduling. Three major phases in OR scheduling are
described as follows:

• Strategic: The main objective of the strategic phase is to provide a ’case mix plan’,
which allocates OR blocks to surgery groups. The strategic phase is based on historical
data and/or forecasts, and typically has a time horizon of one year [49, 24, 98, 61, 60].

• Tactical: The main objective of the tactical phase is to provide a master surgical
schedule. The MSS determines the number, type and opening hours of ORs for each
surgery group. In the MSS, surgery types are clustered to surgery groups based on
similar characteristics of specialties and requirement on resources, such as facilities
in ORs, ICUs and PACUs. The time horizon of tactical phase usually is one to three
months. The MSS is mainly based on elective cases, the number and case time of which
do not vary remarkably in three months. Therefore, the MSS is cyclic and repeated
in the tactical phase. Hospital administrators prefer to assign OR blocks to surgery
groups instead of individual surgery types. This allows them to swap OR blocks among
surgery types within the same group in case of necessity. These small swaps will not
change the optimal schedule, thus, they do not have to develop a new schedule for any
small change. Figure 5.1 shows an example of MSS, where the number of available
OR blocks (an OR block means daily working hours of an OR or an OR-day) is 6 on
each day, there are three surgery groups G1, G2, and G3. The MSS should be revised
whenever the total amount of available OR blocks changes [49].

Figure 5.1: An example of MSS

• Operational: After development of the MSS, the assignment of cases to ORs and
start/end time of each case are determined on a daily basis.
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High OR utilization is one of the main objectives of OR scheduling and allocates OR
blocks to surgery groups. However, high variations in case times and patient arrivals may fail
an OR schedule with high OR utilization at the tactical phase [97, 6, 99, 100, 101]. According
to the literature, the OR utilization should be maximized to avoid under-utilization costs,
however, due to the high variations in case times and patients arrivals, highly utilized ORs
are unstable [6, 45, 102]. Highly utilized ORs cannot dampen the variations because there is
no time buffer, thus, a slight variation in case or arrival time may cause high overtime cost
or surgery cancellation [6]. It is also important to develop an OR schedule that leads to a
leveled occupancy of downstream stages[6].

OR utilization has been intensively studied [103, 68, 51, 104, 105, 106, 67], but few papers
addressed the patient flow across the peri-op process. OR schedule directly affects PACUs
and ICUs in the post-op stage [97, 107]. After performing a surgery in an OR, the patient is
recovered in PACU, then moved to an ICU bed to receive the required care. The amount of
time that a patient stays in ICU before being moved to the ward is referred as length of stay
(LoS) in ICU. After spending the required time in ICU, the patient is moved to a NonICU
bed in the ward. Sometimes based on the acuity level, the patient is directly moved from
PACU to the ward. For those patients who do not need the ICU care, we can consider their
ICU LoS as zero.

Figure 5.2 shows the patients’ path in the peri-operative process. If there is no available

Figure 5.2: The patients’ path in the peri-operative process

bed in PACU, patients have to stay in the OR [107], which is considered as blocking. OR
blocking means no surgery is performed until a bed in PACU or ICU is available. OR blocking
decreases the OR utilization that leads to the waste of costly OR time. An efficient OR
schedule not only maximizes the OR utilization, but also smooths the patient flow across the
peri-op process, i.e., reducing the number of blockings.

Price et al. (2011) [107] proposed a deterministic PACU Boarding model (hereafter we
refer to this model as PB) to develop an optimal MSS that balances the admission and
discharge rate of ICU. The PB model used deterministic data for patient arrivals and ICU
LoS. They used simulation to evaluate PB model under the presence of variations. According
to their results, the PB can reduce the number of blockings between OR and ICU compared
to the base model of the studied hospital. Their focus was on minimizing the discrepancy
between admission and discharge rate of ICU. Because in their model the current number of
patients in the ICU was neglected, the impact of patient accumulation in ICU has not been
taken into consideration. Using simulation, Marcon and Dexter (2006) [35] examined the
effect of different sequencing rules in ORs, on the PACU workload. The results showed that
the case sequencing in ORs has a minor effect on the PACU workload. They stated that the
best practice is to use optimization in order to match the PACU workload and its capacity.

The remainder of this chapter is organized as follows: Section 5.2 describes the problem
settings and mathematical formulation of the BM model. Section 5.3 presents the details
of case studies for evaluating the effectiveness of OR block schedules. Section 5.4 draws
conclusion and proposes future work.
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5.2 Problem Formulation

We are interested in the performance of BM model in terms of weekly number of blockings
and daily post-op occupancy. Our BM model recursively considers the number of patients in
the post-op stage in order to minimize the likelihood of blocking between ORs in the intra-
op stage and the post-op stage. BM model takes the current post-op stage occupancy into
consideration to determine the OR assignment for the next day such that the accumulated
number of patients in post-op does not exceed the number of available beds. Using discrete
event simulation, we show that our BM model outperforms the model proposed by Price et
al.(2011) [107]. For the sake of simplicity, hereafter we refer to the Price et al.(2011) model
as PB model.

Notations

g Index of surgery groups, g ∈ G = {1, 2, ..., G}.

j, k Index of days, j ∈ D = {1, 2, ..., D}.

bgj The number of OR blocks assigned to surgery group g on day j.

ng The total number of OR blocks that group g requires.

O The number of available ORs in the intra-op stage.

λg The expected number of patients per block for group g.

µg LoS in the post-op stage for group g.

Lg The minimum number of OR blocks that should be assigned to group g.

Ug The maximum number of OR blocks that can be assigned to group g.

B The number of available beds in the post-op stage.

Pj The number of patients in the post-op stage on day j.

λg is the expected number of patients per block for surgery group g. λg is estimated
by dividing the length of an OR block by the mean case times plus mean setup time plus
the mean cleanup time. The setup time is the time required to adjust equipment before the
surgical intervention, and the cleanup time is the required time to clean and disinfect the
equipment after completion of a surgery. The required maximum and minimum of OR blocks
for each surgery group (i.e. Lg and Ug are determined from the historical data.

The BM model is formulated as follow:
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min z =
∑
j∈D

∣∣Pj −B∣∣ (5.1)

s.t. ∑
j∈D

bg,j = ng (5.2)

∑
g∈G

bg,j ≤ 0 (5.3)

Pj =
∑
g∈G

λgbg,jXg,j +
∑
k
k<j

∑
g∈G

λgbg,jYg,j (5.4)

Xg,j =

{
1, if µg > 0

0, otherwise
(5.5)

Yg,j =

{
1, if µg − (j − k) > 0

0, otherwise
, ∀ g, k < j (5.6)

Lg ≤ bg,j ≤ Ug, ∀ g, j (5.7)
bg,j ≥ 0, bg,j ∈ Z (5.8)

Objective function(5.1) minimizes the difference between the post-op stage capacity and
its occupancy (number of patients in the ICU). This function not only minimizes the over-
occupancy in the post-op stage, but also balances the daily post-op occupancy. Constrain-
t(5.2) imposes that the number of assigned OR blocks is equal to each group required OR
blocks. Constraint(5.3) imposes that the number of assigned OR blocks does not exceed the
number of available ORs. Constraint(5.4) recursively determines the occupancy of the post-
op stage on day j. The term

∑
g∈G λgbg,jXg,j determines the number of arrivals from OR to

the post-op stage on day j. The BM model distinguishes between different LoSs, i.e. Xgj = 1
if the µg > 0, which means that the patient needs to be sent to the post-op stage, otherwise
he/she is sent directly to the ward (i.e. if µg = 0).

The term
∑

k
k<j

∑
g∈G λgbg,jYg,j determines the number of patients in the post-op stage

transferred to day j from the previous days, Yg,k = 1 if the patient still needs to stay in the
post-op stage. Constraint(5.5) describes Xg,j , as a binary decision variable, which is equal to
1, if µg > 0. A patient is sent to the post-op stage if his/her post-op LoS is greater than zero,
otherwise he/she will be directly sent to a bed in the ward. Constraint(5.6) describes Yg,k, as
a binary decision variable, which is equal to 1, if µg − (j − k) > 0. If a patient in the post-op
stage still needs to spend more time in the post-op, Yg,k is equal to 1, otherwise he must
be sent to a bed in the ward (discharge from post-op stage). Constraint(5.7) imposes that
the daily number of OR blocks assigned to each group must fall between specified minimum
and maximum values. Constraint(5.8) imposes that the number of OR blocks assigned to
each group must be a positive integer. The BM model uses the deterministic average LoS
of the post-op stage to determine the MSS. The BM model explicitly deals with the post-op
occupancy by considering arrivals, discharges, and current occupancy of the post-op stage.
Here an assumption is that the ORs and post-op resources are universal, which means they
can be assigned to any surgery group.
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5.3 Case Study

To validate the performance of the BM model for OR block scheduling, we carry out three
types of case studies. First, we solve the BM model to obtain the optimal MSS. Second,
we construct a discrete event simulation model to assess the robustness of MSS(s) gener-
ated by BM , PB, and the current MSS implementing in the studied hospital by Price et
al.(2011) [107]. For the sake of simplicity, we name the hospital MSS in Price et al.(2011)
as ’Base model’. We introduce variations in µg and λg in the simulation model, in order
to observe the number of blockings and daily occupancy of the post-op stage generated by
the three models. Third, we evaluate the process capabilities for the three models, using
statistical process control (SPC).

Optimal MSS

We use the data provided by Price et al.(2011) [107] to construct the simulation model.
There are 16 ORs, 31 beds in the ICU, and 3 surgery groups. Patients are clustered into
groups based on similarity in their case times and LoS. Table 5.1 shows the historical data of
surgery groups. Patients in group 1 have short LoS and case times. Patients of group 2 have
relatively longer LoS than group 1, and the case time is also longer. Finally, group 3 has the
longest case time and also the longest LoS. Studies show that the prolonged case times in OR
are associated with increased LoS in the post-op stages [108]. The required, maximum and
minimum OR blocks for each surgery group are determined from the historical data.

Table 5.1: Historical data of the surgery groups

Surgery
group

Minimum
blocks

Maximum
blocks

Required
blocks

ICU
LoS

Total
LoS

Patient
per block

1 1.0 5.0 11.1 0 1 2.5
2 2.0 13.0 30.6 1 2 1.5
3 3.0 15.0 33.2 2 3 1.25

Table 5.2 shows the optimal MSS generated by the BM model. Figure 5.3 shows the
graphical representation of the OR block schedule, each entry is the number of OR blocks
assigned to each surgery group.. It is possible to assign an OR block to a surgery group only
for the morning or the afternoon, which is called ’half-block’. The MSS is constructed for a
5-week horizon, therefore the base unit of OR block is a tenth of a block over one week [107].
Since the base unit of OR block is 0.1, the bgj is scaled by a factor of 10 to maintain the
integer nature of the problem, for example, the value 21 obtained from the BM model is
equal to 2.1 blocks in the MSS. As

Table 5.2: The optimal MSS obtained from the BM model

Surgery group Mon Tue Wed Thu Fri Total
1 2.1 1.0 3.0 2.0 3.0 11.1
2 5.9 5.8 7.1 6.6 5.2 30.6
3 7.9 8.2 5.9 6.2 3.0 31.2

Total 15.9 15.0 16.0 14.8 11.2 72.9
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Figure 5.3: A graphical representation of the BM model optimal MSS

Simulation

The BM model uses deterministic values for µg and λg, but in practice these parameters are
random variables following known distributions. We construct a simulation model to assess
the robustness of the BM model under the presence of variations in ICU LoS and number of
patients per block. Variation in number of patients per block is associated with variations in
the case times and also the arrival of emergency cases. We compare the robustness of the BM
model with the PB model, and the Base model. A robust MSS can absorb the variations,
and leads to a fewer blockings.

First, we simulate the model for a long period of time to observe and collect the number
of weekly blockings and daily occupancy of ICU. Second, we compare the performance of the
BM model MSS with that of the PB model, and the Base model in Price et al.(2011). In
each OR block, a random number of cases was generated. In order to involve the disturbances
induced by variations in case times and emergency arrivals, we considered ś50% variation in
the number of patients per block (i.e. λg). For example, for group 2, we have 1.5[0.50, 1.50] =
[0.75, 2.75] ≈ [1, 3].

The ICU LoS for each case was randomly generated from a uniform distribution between
1/6 and 1/2 of the total LoS (see table 5.1). All random numbers were rounded to the nearest
greater integer. The simulation was warmed up for 20 weeks in order to reach a steady state
behavior; the model was then run for 52 weeks (one year) and results were averaged.

Table 5.3 represents the average and standard deviation of daily occupancy of the post-op
stage. Figure 5.4 shows the average ICU occupancy generated by the three models. BM
model has a maximum average occupancy of 25.30 which is far from the maximum capacity
of ICU (31 beds), therefore, BM model can dampen the variations in number of patients and
ICU LoS better than the PB and the Base models with average maximum occupancy of 30.01
and 30.49, respectively. The maximum ICU occupancy of PB and Base models is 30.1 and
30.49, respectively, which occur on Tuesday. Their maximum ICU occupancy is remarkably
close to the maximum capacity (31 beds), therefore a slight variation causes blockings in
the peri-op process. Although the PB model has a lower occupancy on Wednesday (21.64)
and Thursday (18.72) compared to those of the BM model (24.41 and 22.68, respectively),
on Tuesday and Thursday its ICU occupancy is close to the maximum capacity (30.49 and
29.92), respectively. This makes the PB model generate more blockings on Tuesday and
Thursday, under the presence of variations. Besides, average ICU occupancy on Saturday is
only 2.03 in the BM model, which is desirable for OR managers because less weekend shifts
will be required. Figure 5.5 shows the individual plot of blockings generated by the three
models. Since the BM model takes the current occupancy of the ICUs into consideration it
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exhibits more slack capacity by efficiently assigning the surgery cases to ORs. The BM model
could generate fewer blockings compared to the PB and the Base models. Therefore, we can
conclude that the BM model is more robust under the presence of variations in patients’
arrivald and ICU LoS.

Table 5.3: Daily occupancy of the post-op stage

Model Mon Tue Wed Thu Fri Sat Sun
µ σ µ σ µ σ µ σ µ σ µ σ µ σ

BM 19.65 3.89 25.30 4.21 24.41 4.29 22.68 3.96 16.53 2.97 2.03 1.18 0.00 0.00
PB 22.57 4.37 30.01 5.75 21.64 3.80 18.2 3.41 23.16 4.94 8.02 2.92 0.00 0.00
Base 21.23 3.98 30.49 4.73 27.32 4.42 29.92 4.47 30.24 4.93 9.56 2.90 0.00 0.00
µ: Average, σ: Standard Deviation

Figure 5.4: The average daily ICU occupancy

Figure 5.5: Dotplot of blockings for the studied models

In these models the total number of required OR blocks is fixed and is equal to 72.9
(obtained from the historical data), but the number of available OR blocks is 80 (5 day and
16 OR blocks on each). Using the BM model, we can provide post-op resources for more OR
blocks, because BM evenly distributes the post-op workload over the weekdays. Therefore,
we can schedule for more patients using the unutilized OR blocks (80−72.9 = 7.1 OR blocks).
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Statistical Process Control (SPC)

To compare the robustness and stability of the block scheduling models, we use SPC method
to generate the process capability results for the discussed models. Figure 5.6 shows the
process capability diagrams.

Figure 5.6: Capabilities of the studied model for the number of blockings

Process capability cp indicates if the outcomes of a process are within the control limits.
With the fixed range of specification limits, which is [LSL,USL], the greater the cp, the less
variations in the outcomes. Process capability index cpk indicates if the outcomes are centred
around the average performance. The greater the cpk, the less likely that the outcomes fall
out of [LSL,USL] range. As shown in Figure 5.6, cp = 1.66 for BM , cp = 0.57 for PB, and
cp = 0.34 for the Base model. Therefore, the BM model generates the least variations in the
outcomes (number of blockings). cpk = 1.56 for BM ,cpk = 0.33 for PB, and cpk = −0.01 for
the Base model. Therefore, the blockings generated by the BM model are the most centred
within limits. Obviously, the average blockings generated by BM is more centred within the
specification limits and with less variation, compared with those of the PB and the Base
model. Table 5.3 shows the results of SPC and process capability indices. SPC x̄−R charts
of average weekly blockings are shown shown by Figure 5.7.

Table 5.4: SPC and capability results of weekly number of blockings

Model
capability
index

Number of
Blockings

Improvement
vs

Improvement
vs

cp cpk Max mean Min Base model PB

BM 1.66 1.56 8 2.71 0.30 94% 85%
PB 0.54 0.33 12 7.90 2.07 - -
Base 0.34 -0.01 31 13.36 5.12 - -

We simulated the models over a 52 weeks time period. As shown by Figure 5.7 and
Table 5.3, the average weekly number of blockings are 0.30 for BM , 2.07 for PB, and 5.12
for the Base model. Besides, there are occasions for the BM model generating almost zero
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Figure 5.7: SPC charts of average weekly number of blockings

blockings. Compared with the Base model, the improvement on average number of blockings
can be calculated as (5.12− 0.30)/5.12100 = 94%. Moreover, compared with the PB model,
the improvement of (2.07 − 0.30)/2.07100 = 85% can be achieved. The average range of
variation of the number of blockings for the BM model is 2.71, less than 7.9 and 13.36 those
of PB and the Base model, respectively. Therefore, the BM model generates the least average
variations in the number of blockings. The results from x̄−R charts support those of cp and
cpk. 94% improvement on the number of blockings indicates that potentially on average 250
additional cases could be served in one year, if the BM model is used for the OR block
scheduling. There would be an increase in the hospital net revenue from the additional cases.
An estimate of this value can be calculated by multiplying the number of additional cases by
the net revenue per case, therefore, there would be an annual increase of $250× 15000 = 3.75
million dollars in the hospital revenue. However, in practice, the availability of ORs, surgeons
and staff are other factors that may limit the estimated increase in the hospital revenue.

5.4 Conclusion

Operating room (OR) scheduling is important, because ORs have the largest cost and revenue
within a hospital, and the demand for surgical services is increasing. Therefore, hospitals must
provide high quality care more effectively with limited resources by developing efficient OR
schedules. In most hospitals, when OR blocks are assigned to surgery groups, there is no
specific mechanism to ensure the availability of downstream resources such as the beds in
ICU and PACU. Because of the unavailability of downstream resources, patients cannot be
sent from ORs to ICU or PACU, causing blockings between every two consecutive stages.
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This leads to numerous negative impacts on the OR peri-operative process performance, such
as increased waiting times, length of stays (LoS), excessive overtime, and overnight shifts,
etc. Therefore, when the MSS is constructed, it is necessary to consider the availability of
downstream resources.

In this chapter, we developed a model called BM to reduce the number of blockings
between two consecutive stages. To minimize blocking, the arrivals, departures, and current
occupancy of the post-op stage were taken into account. Our objective is to assign OR
blocks to surgery groups such that the post-op occupancy does not exceed the number of
available beds in the post-op. Simulation results showed that the BM model outperformed
the PB model proposed by Price et al. (2011), and the studied hospital Base model as well.
Moreover, using BM model, an improvement of 94% in reducing the number of blockings
(over the Base model) can be achieved, meaning that by using BM model, potentially we can
serve more patients. The SPC results showed that the BM model can dampen the variations
in the case times and ICU LoSs. Our work showed that considering downstream resources
in OR department is important and the proposed BM model can effectively improve the
overall performance of the OR department. The BM model can be generalized to any two
consecutive stages across the peri-op process.

The managerial implications of this work is that the interaction of different stages should
be taken into consideration. While OR block scheduling, the intake and discharge flow of the
stages should be considered in order to guarantee that upstream stages can feed downstream
stages on time without overflowing, because overflowing generates blockings between stages,
that lowers the utilization of the whole peri-op process and slows down the patient flow across
the process. Scheduling patient flow across the 3-stage peri-op process can be applied to work
flow scheduling for the s-stage flow shop production in manufacturing, and also smoothing
patient flow in the peri-op process can be applied to no-wait flow shop production.
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Chapter 6

Risk Management in Surgical Case Sequencing by
Balancing Trade-offs Among Inconsistent Objectives

The aim of this chapter is to mark the boundaries of risk management in an operating room
peri-operative process. To this aim, we elaborate risk definition, risk sources, and propose
risk management strategies. We identify uncertain demand, uncertain surgical case time,
and the inconsistencies among objectives as risk sources. We adopt the risk definition as
"the variations in the distributions of OR peri-op process outcomes, their likelihood, and their
subjective values". Finally, we propose balancing trade-offs among inconsistent objectives as
a risk management strategy. OR peri-op process stages are tightly coupled, therefore, risk
sources affect the value flow and patient flow across the OR peri-op process borders. We
identify process utilization (Util) and patient length of stay (LoS) as two major key perfor-
mance indicators (KPIs) driving value flow and patient flow, respectively. By demonstrating
inconsistency between max(Util) and min(LoS), we show that single attribute optimizations
are not suitable to manage risks. Through extensive case studies on OR historical data-set
from the University of Kentucky HealthCare (UKHC), we demonstrate balancing trade-offs
between Util and LoS as a risk mitigating strategy.

6.1 Introduction

The implementation of the mandatory alternative payment model (APM) guarantees savings
for Medicare regardless of participant hospitals ability for reducing spending [109] that shifts
the cost minimization burden from insurers onto the hospital administrators [81]. Surgical
interventions are the primary cause of nearly 70% of hospitals admissions [4] that account
for more than 30% and 40% of a hospital total cost and total revenue, respectively [110].
Operating rooms are also the most expensive cost center in a hospital with an estimated cost
of $36 to $37 per minute in 2014 [81]. Childers and Maggard-Gibbons (2018) point out that
the OR cost structure consists of nearly 56% direct cost, with about 60% being attributed
to labor [81]. Therefore, large cost reductions are possible by reducing overtime hours [111]
which may be achieved by increasing utilization. Thus, operating room utilization (Util) is
of importance in reducing costs and improving hospital financial solvency [112, 111].

An operating room peri-operative process consists of three main stages including pre-
operative, intra-operative, and post-operative where patient preparation is performed in the
pre-op stage, anesthesia and the surgical intervention happens in the intra-op stage, and
post-anesthesia care occurs in the post-up stage. Any disturbance in the patient flow across
the OR peri-op process may result in an extended LoS that consequently increases the cost
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of care. Stey et al. (2015) point out that room and board costs accounted for nearly half
of all costs and were highly correlated with length of stay (LoS ) [112]. Therefore, study-
ing the ORs as an isolated unit may be inefficient, instead modeling surgical interventions
as a peri-operative process has the potential to simultaneously address the ORs and their
upstream and downstream resources [113]. Therefore, Util and LoS are two important key
performance indicators (KPIs) which must be addressed simultaneously. However, studies
show that max(Util) and min(LoS) are two inconsistent objectives meaning improving one
may occur at the cost of worsening the other [114].

From a queueing point of view, the expected waiting time between each pair of sequential
stages is formulated by Equation (6.1) which is known as the Kingman’s formula [115], where
E(W ) is the expected waiting time, U is the utilization of the stage, Ca and Cp are the
coefficient of variation of arrivals to the stage and service times at the stage, respectively, and
µp is the mean service time at the stage.

E(W ) ≈ (
U

1− U
)(
C2
a + C2

p

2
)µp (6.1)

A clear conclusion from the VUT model is the inconsistency between waiting time and the
utilization, because if utilization of the stage tends to 100% (i.e. U = 1) the waiting time will
tend to infinity. The second conclusion from the VUT model is that the variations in arrivals
and service times at the stage directly affect the distributions of the process outcomes. LoS
is the sum of waiting times and service times across the OR peri-op process, therefore, we
can conclude that the objectives of min(LoS) and max(Util) are inconsistent objectives.

As it is schematically shown by Figure 6.1, OR peri-op process stages are tightly coupled,
therefore, any disturbance in any stage may result in blocking or starvation at other stages
that negatively affect Util and LoS across the entire peri-op process. Disturbances across
the peri-op process result in uncertainties in the peri-op process outcomes. Any process with
uncertainties in its outcomes carries some elements of risk [116], and internal or external
variables that reduce the predictability of the outcomes are considered as risk sources [117].

Pre-op Intra-op Post-opAdmission DischargeAdmission Discharge AdmissionDischarge

Length of Stay (LoS)

Figure 6.1: Schematic representation of an OR peri-op process

In an OR peri-op process risk can be defined as "the variations in the distributions of OR
peri-op process outcomes, their likelihood, and their subjective values", therefore, we can con-
sider the variations in arrivals and service times, and the inconsistencies among the objectives
as risk sources. In response to the complex nature of the OR peri-op process and its risks, risk
management would be a value-added function. Risk management in the OR peri-op process
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not only mitigates the negative impacts of risks, but also provides insights into the OR cost
structure which are of importance in capacity planning and futuristic developments.

Risk taking is inherent to decision making [118] which means any decision made under
uncertainty carries some elements of risks. The common practice in OR scheduling is to
optimize the expected value (E(·)) of a loss (reward) function [119, 63, 4], however, two
fundamental shortcomings are associated with optimizing E(·) as follows (i) optimizing E(·)
is considered as a risk-neutral approach which is not capable of addressing the concerns
of risk-averse/risk-seeking decision makers [120], (ii) optimizing E(·) equivalently treats two
outcome distributions with the same E(·) and completely disregards the variablity/symmetry
of the distributions that may result in poor realization. An approach to deal with these
shortcomings is minimizing the variance of the outcomes, however, minimizing variance also
has several mathematical and statistical drawbacks including (i) quadratic nature of variance
that leads to nonlinear optimization models which are computationally difficult to solve for
large instances, and (ii) minimizing variance performs poorly when the underlying random
parameters are non-symmetric [121, 122]. Therefore, managing the risk would be an efficient
alternative approach in order to shift the outcomes of the OR peri-op process toward a less
risky situation.

The first step in risk management is defining the risk measures. A risk measure maps a
set of random variables to a real number [123]. Multiple risk measures have been introduced
over the past decades [124] among which value at risk (VaR) [125] and conditional value at
risk (CVaR) [126, 122] have attracted great attention.

Hereafter, in order to distinguish between vectors and scalars, we use bold font for the vec-
tors. Given K KPIs, let x ∈ RK be the decision vector representing a portfolio of preferences
for for K KPIs where xk ≥ 0, and

∑K
k=1 xk = 1. Let y ∈ Rm denote a random vector repre-

senting the underlying random variables (uncertainties) in the systems with density function
p(y). The loss function f(x,y) is also a random variable with a distribution in R induced by
y. The probability that loss does not exceed a threshold ξ is Ψ(x, ξ) =

∫
f(x,y)≤ξ p(y)dy. For

a fixed x, Ψ(x, ξ) is a function of ξ representing the cumulative function of the loss associated
with x [122, 127]. The assumption is that Ψ(x, ξ) is everywhere continuous with respect to
ξ [122].

Given a specified probability level α ∈ (0, 1) (also known as confidence level), value at
risk (α-VaR) is described by ξα(x) = min{ξ ∈ R; Ψ(x, ξ) ≥ α} which is the lowest value
of ξ that with probability α the loss does not exceed ξ [128]. Despite the popularity of
α-VaR, it has multiple shortcomings that makes it difficult to implement in practice. For
instance α-VaR is not coherent for non-symmetric distributions, and α-VaR optimization is
very difficult for scenario-based problems [123], α-VaR also lacks convexity. On the other
hand, conditional value at risk (α-CVaR) defined by φα(x) = 1

1−α
∫
f(x,y)≥ξα(x) f(x,y)p(y)dy

is a convex function with monotonic first order and second order stochastic dominance [129].
α-CVaR is the expected value of extreme losses in the tail of the loss distribution if the worst
case threshold ξ is crossed. Studies show that portfolios with low α-CVaR also have low
α-VaR, therefore, in the present study we accept α-CVaR as the risk measure.

Surgical case sequencing can affect the distribution of the OR peri-op process outcomes [36],
therefore, efficient sequencing methods can shift the distribution of the outcomes towards a
less risky state in which the outcomes are more predictable. With inconsistencies between
the objectives of max(Util) and min(LoS), the probability of finding a sequence that si-
multaneously optimize both objectives is zero, therefore, seeking optimal solutions is a risky
approach with unpredictable outcomes for either objectives. Instead, we propose balancing
the trade-offs between max(Util) and min(LoS) can serve as a risk mitigating strategy in the
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OR peri-op process. We use the amount of trade-off generated in the system to define the loss
function as f(x, Util, LoS) where x is the vector of decision maker’s preferences portfolio.

We examine the performance of different sequencing methods on the University of Ken-
tucky Healthcare (UKHC) OR historical data in terms of loss expected value E(f), loss
variance σ2(f), and loss conditional value at risk α-CVaR. To this aim, we model the OR
peri-op process as a 3-stage flow shop scheduling problem. In a flow shop scheduling problem
Util and LoS are assessed with maximum completion time (MCT ) and total completion time
(TCT ), respectively [114, 43].

We compare the performance of three simple rules of first come first serve (FCFS), longest
processing time first (LPT ), shortest processing time first (SPT ), and three sequencing meth-
ods including the NEH [130], LR [131], and current and future deviation (CFD) [114] which
are the best known constructive heuristics to minimize MCT , TCT , and the trade-offs be-
tween TCT and MCT , respectively.

The CFD heuristic proposed by Li et al. (2019) [114] is a constructive heuristic to balance
the trade-offs between min(MCT ) and min(TCT ). CFD minimizes the weighted of deviations
i.e. min(βd1 + (1− β)d2) where β ∈ [0, 1] is the wight for min(MCT ), and d1 and d2 are the
normalized deviations for min(MCT ) and min(TCT ), respectively. By varying β in a stepwise
manner i.e. β = 0.0, 0.1, ..., 1.0, we can have a series of functions to serve different objective,
specifically, if β = 0.0, CFD00 is to min(TCT ), if β = 1.0, CFD10 is to min(MCT ), and
finally for 0.1 ≤ β ≤ 0.9, CFD01 to CFD09 are functions minimizing the trade-offs between
min(MCT ) and min(TCT ).

Since objective setting is the most important step in an optimization problem, we prefer
to demonstrate the significance of trade-off balancing as a risk mitigating strategy in the OR
peri-op process and leave addressing the variations in arrivals and service times for a future
study.

Summary

Operating rooms (ORs) are the most important cost and revenue center in a hospital. Studies
show that efficient OR scheduling is able to decrease the cost of care and improve the hospital
financial solvency. Modeling ORs as an isolated unit may lead to poor performance that
increases the cost of care. Therefore, modeling the ORs as a peri-operative (peri-op) process
is necessary. Utilization (Util) and length of stay (LoS) are two key performance indicators
in the OR peri-op process deriving many areas of the systems such as cost and revenue.
However, studies show that the objectives of max(Util) and min(LoS) are inconsistent.

With inconsistencies among objectives, the outcomes of the OR peri-op process are not
predictable which leads the system into a risky state. We accept α-CVaR as the risk measure,
and identify the inconsistencies among objectives as the major risk source, and poor perfor-
mance as the risk consequence. We propose trade-off balancing as a risk mitigating strategy
in the OR peri-op process.

Surgical case sequencing significantly affects the distribution of the outcomes and has
the potential to move the performance of the system towards a less risky situation in which
the outcomes are more predictable. We model the OR peri-op process as a 3-stage flow shop
scheduling problem. Through extensive case studies on the historical data of UKHC, we show
the efficiency and effectiveness of trade-off balancing in mitigating the risks.

The remainder of this chapter is organized as follows: in Section 6.2, we present the
mathematical models of the study. In Section 6.3, we examine the performance of different
sequencing methods on the UKHC ORs historical data. In Section 6.4, we discuss the results
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of the case studies. Finally, in Section 6.5, we draw conclusions and present future research
directions.

6.2 Problem description

In this section, we present the mathematical models to calculating α-CVaR in a 3-stage
permutation flow shop representing the OR peri-op process. We use normalized deviations to
formulate the trade-off in the OR peri-op process. We utilize the amount of trade-off generated
in the system as the indicator of the risk source. We formulate α-CVaR as a function of the
sequence of surgical cases, the portfolio of preferences, and the amount trade-off generated by
the sequence. In an N -job serial process, there are N ! possible sequences i.e. the cardinality of
the decision space is |Ω| = N !. As it was mentioned earlier, in a serial process, the utilization
(Util) and length of stay (LoS)are assessed with maximum completion time (MCT ) and total
completion time (TCT ), respectively. Therefore, hereafter, we use MCT , and TCT as the
equivalents for Util and LoS, respectively.

Notations

N Number of surgical cases

S Number of stages

pn,s Service time of case n at stage s, n = 1, 2, , N , s = 1, 2, , S

P Matrix of serive times, P (n, s) = pn,s

Ω Decision space, |Ω| = N !

π π ∈ Ω, a permutation of N cases

i Index of positions in sequence π, i = 1, 2, ..., N

π(i) Case that occupies position i in sequence π = {π(1), π(2), ..., π(N)}

k Index of attributes, k ∈ {1, 2} = {MCT, TCT}

γk(π,P) A function describing attribute k given π and P

LBk(P) The minimum possible value for attribute k given P

UBk(P) The maximum possible value for attribute k given P

yk(π,P) The normalized deviation of attribute k from its best value given π and P

Given P and π, we can formulate (TCT ) and (MCT ) as follows:

Ci,1 =

i∑
l=1

pπ(l),1

Ci,s = max(Ci−1,s, Ci,s−1) + pπ(i),s

TCT = γ1(π,P) =
N∑
n=1

Ci,S (6.2)

MCT = γ2(π,P) = CN,S (6.3)
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As we mentioned in Section 6.1 the objectives of min(γ1) and min(γ2) are inconsisten-
t [114, 132], therefore, finding a sequence π that simultaneously optimizes both objectives is
impossible. Instead, we formulate the trade-off in the system by utilizing the normalized devi-
ations from the best possible values. Let yk(π,P) = γk(π,P)−LBk

UBk−LBk be the normalized deviation
of attribute k from its best value, where LBk = min

π∈Ω
(γk(π,P)), and LBk = max

π∈Ω
(γk(π,P)).

Assume that yk has a density function p(yk) with mean µk and variance σ2
k. Now, we

consider the case where the decision vector x represents a portfolio of preferences on yk such
that x = (x1, x2) with the following conditions: xk ≥ 0 and x1 + x2 = 1.

Let Y = (y1, y2) denote a random vector representing the normalized deviations. The
distribution of Y is a joint distribution of y1 and y2 and is independent of x with density of
p(Y). Let us define the loss of portfolio x as the sum of normalized deviations on individual
yk scaled by proportion xk. Therefore, the loss is given by equation (6.2).

f(x,Y) = x1
γ1(π,P)− LB1(P)

UB1(P)− LB1(P)
+ x2

γ2(π,P)− LB2(P)

UB2(P)− LB2(P)
⇒

f(x,Y) = [x1y1 + x2y2] = xTY (6.4)

Given mean and variance of yk, we have the vector of means m = (µ1, µ2) and the variance
matrix V(yk). Therefore, we are able to calculate the mean and variance of the loss associated
with portfolio x as follows:

µf(x,Y) = xTm (6.5)

σ2
f(x,Y) = xTVx (6.6)

For each x, the loss f(x,Y) is random variable with a distribution in R induced by the p(Y).
The probability of f(x,Y) not exceeding a given threshold ξ is given by equation (6.7)

Ψ(x, ξ) =

∫
f(x,Y)≤ξ

p(Y)dY (6.7)

As a function of ξ for a fixed x, Ψ(x, ξ) is the cumulative distribution function for the loss
associated with x. This random variable is fundamental in defining α-VaR and α-CVaR in the
OR peri-op process. The α-VaR and α-CVaR values for the loss random variable associated
with x and any specified probability level α ∈ (0, 1) will be denoted by ξα(x) and φα(x) as
follows:

ξα(x) = min{ξ ∈ R; Ψ(x, ξ) ≥ α} (6.8)

φα(x) =
1

1− α

∫
f(x,Y)≥ξα(x)

f(x,Y)p(Y)dY (6.9)

Rockafellar and Uryasev [122] characterized ξα(x) and φα(x) in terms of a function
Fα(x, ξ) given by equation (6.10) and showed that Fα(x, ξ) is convex and continuously d-
ifferentiable.

Fα(x, ξ) = ξ +
1

1− α

∫
Y∈Rm

[f(x,Y)− ξ]+p(Y)dY (6.10)

where [t]+ = max(t, 0).
The α-CVaR of the loss associated with any x can be determined by φα(x) = min

ξ∈R
(Fα(x, ξ)).

The integral in equation (6.10) can be approximated in by sampling the probability distri-
bution of Y according to its density p(Y). If the sampling generates a collection of vec-
tors Y1,Y2, ...,YQ, then the corresponding approximation can be written by equation 6.11.
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∼
Fα(x, ξ) in convex and piecewise linear with respect to ξ [122], and it can be minimized by
linear programming.

∼
Fα(x, ξ) = ξ +

1

Q(1− α)

Q∑
q=1

[f(x,Yq)− ξ]+ (6.11)

In order to systematically evaluate the performance of sequencing methods in the OR
peri-op process, we define three objective functions covering average loss (i.e. min(µf(x,Y)),

variance of loss (i.e. min(σ2
f(x,Y)), and α-CVaR of loss (i.e. min(

∼
Fα(x, ξ))).

Problem (P.1) is a linear function of x that minimizes the average value of loss associ-
ated with portfolio x. Constraints 6.13 imposes that the proportion of yk in portfolio x is
nonnegative. Constraints 6.14 imposes that the sum of proportions in portfolio x is equal 1.

(P.1)

min(µf(x,Y)) = xTm (6.12)

s.t. x1, x2 ≥ 0 (6.13)
x1 + x2 = 1 (6.14)

Problem (P.2) is a quadratic function of x that minimizes the variance of loss associated
with portfolio x subject to the linear constraints (6.13) and (6.14).

(P.2)

min(σ2
f(x,Y)) = xTVx (6.15)

s.t. (6.13), (6.14) (6.16)

Problem (P.3) is a linear function of x and ξ that minimizes the α-CVaR of loss associated
with portfolio x for a given probability level α ∈ (0, 1) subject to the linear constraints (6.13)
and (6.14)..

(P.3)

min(
∼
Fα(x, ξ)) = ξ +

1

Q(1− α)

Q∑
q=1

[xTYq − ξ]+ (6.17)

s.t. (6.13), (6.14) (6.18)

Given the NP -completeness of the problem [133, 134] it is not possible to optimally solve
min(MCT ) and min(TCT ) in a reasonable computation time. Instead, we review the perfor-
mance of 16 scheduling methods including FCFS, LPT , SPT , NEH, LR, and CFD(β) with
(β = 0.00 : 0.10, ..., 1.0) in terms of P.1, P.2, and P.3 on the historical data. In section 6.3,
we provide the details of the case studies.

6.3 Case studies

We examine the performance several sequencing methods including FCFS, LPT , SPT ,
NEH, LR, and CFD(β). Historical data of 260 days per year, for 5 years are used in this
case study (Q = 1300 samples in total). Let q = 1, 2, ..., Q be the index of samples, and Pq

be the service times matrix of surgical cases in sample q. Let πh be the sequence generated
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by method h ∈ H = {1, 2, ..., 16} = {FCFS, SPT,LPT,NEH,LR,CFD00, ..., CFD10},
therefore, we have the normalized deviation of attribute k generated by method h from its
possible best value as yh,k,q(πh, Pq) =

γk(πh,Pq)−LBk,q
UBk,q−LBk,q . Where UBk,q = max

h∈H
(γk(πh, Pq)), and

LBk,q = min
h∈H

(γk(πh, Pq)).

Let ANDk,h =
∑Q
q=1 yh,k,q
Q be the average normalized deviation of attribute k generated by

method h over all Q samples. After calculating ANDk,h for all sequencing methods, we use
the condition of Pareto dominance to assess if some methods are dominated by others. For
minimization problems, if x[k]

A and x[k]
B ∈ RK are two vectors that measure a positive attribute

k such as the utility of decisions A and B, respectively, decision A dominates decision B if
the following conditions are satisfied:

x
[k]
A ≤ x

[k]
B , ∀ k ∈ {1, 2, ..,K} (6.19)

x
[k]
A < x

[k]
B , ∃ k ∈ {1, 2, ..,K} (6.20)

Equation 7.14 states that decision A is not worse than decision B in any dimension, while
equation 7.15 states that decision A is better than decision B at least in one dimension.
Pareto optimal outcomes cannot be improved without sacrificing of at least one objective.

6.4 Results and Discussions

Figure 6.2 shows ANDk,h for all 16 methods. It can be clearly observed that the simples
rules of FCFS, SPT , and LPT are dominated by the other methods. Therefore, we e-
liminate the dominated methods from H, thus, we recalculate UBk,q = max

h∈H
(γk(πh, Pq)),

LBk,q = min
h∈H

(γk(πh, Pq)), and yh,k,q(πh, Pq) =
γk(πh,Pq)−LBk,q
UBk,q−LBk,q with h ∈ H = {1, 2, ..., 13} =

{NEH,LR,CFD00, ..., CFD10}. The reason for eliminating the dominated methods is that
the dominated methods enlarge the value of UBk − LBk which may be misleading in calcu-
lating the normalized deviations.
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Loss expected value(P.1)

Using recalculated yh,k,q for non-dominated methods, we calculate the expected value of loss
associated with method h for different portfolios x = (x1, x2) as shown by Table 6.1. CFD02
generates the minimum amount of expected loss of 0.0512, and as it is shown by figure 6.3
it is less sensitive to the portfolio x. NEH and LR generated the expected loss of 0.5000
and 0.4984, respectively, and it is observed that they are highly sensitive to the portfolio x
with associated expected loss ranging from 0 to 1 for NEH, 0.0032 to 0.9935 for LR. It is
also observed that CFD10 and CFD00 perform poorly comparable to those of NEH and LR.
Therefore, we can conclude that the single attribute optimizations are not able to address
different decision maker’s preference portfolios even for the expected value of loss.

Table 6.1: Expected loss of 13 scheduling methods with different portfolios

Portfolio Method

(x1, x2) NEH LR CFD00 CFD01 CFD02 CFD03 CFD04 CFD05 CFD06 CFD07 CFD08 CFD09 CFD10

(0.0,1.0) 1.0000 0.0032 0.0012 0.0180 0.0325 0.0499 0.0820 0.0999 0.1465 0.1573 0.1733 0.1941 0.6144

(0.1,0.9) 0.9000 0.1022 0.0654 0.0249 0.0362 0.0511 0.0797 0.0952 0.1356 0.1446 0.1582 0.1760 0.5530

(0.2,0.8) 0.8000 0.2013 0.1297 0.0319 0.0400 0.0523 0.0773 0.0905 0.1246 0.1319 0.1431 0.1579 0.4915

(0.3,07) 0.7000 0.3003 0.1939 0.0388 0.0437 0.0535 0.0750 0.0858 0.1137 0.1192 0.1280 0.1398 0.4301

(0.4,0.6) 0.6000 0.3993 0.2581 0.0457 0.0474 0.0547 0.0727 0.0811 0.1028 0.1065 0.1129 0.1217 0.3687

(0.5,0.5) 0.5000 0.4984 0.3224 0.0527 0.0512 0.0559 0.0703 0.0764 0.0919 0.0938 0.0979 0.1035 0.3072

(0.6,0.4) 0.4000 0.5974 0.3866 0.0596 0.0549 0.0571 0.0680 0.0717 0.0810 0.0811 0.0828 0.0854 0.2458

(0.7,0.3) 0.3000 0.6964 0.4508 0.0666 0.0587 0.0583 0.0656 0.0669 0.0701 0.0684 0.0677 0.0673 0.1843

(0.8,0.2) 0.2000 0.7955 0.5151 0.0735 0.0624 0.0595 0.0633 0.0622 0.0591 0.0557 0.0526 0.0492 0.1229

(0.9,0.1) 0.1000 0.8945 0.5793 0.0804 0.0661 0.0607 0.0609 0.0575 0.0482 0.0430 0.0375 0.0311 0.0615

(1.0,0.0) 0.0000 0.9935 0.6436 0.0874 0.0699 0.0619 0.0586 0.0528 0.0373 0.0303 0.0225 0.0130 0.0000

Overall 0.5000 0.4984 0.3224 0.0527 0.0512 0.0559 0.0703 0.0764 0.0919 0.0938 0.0979 0.1035 0.3072

1.00.90.80.70.60.50.40.30.20.10

1.0

0.8

0.6

0.4

0.2

0.0

L
os
s

CFD07
CFD08
CFD09
CFD10

NEH
LR
CFD00
CFD01
CFD02
CFD03
CFD04
CFD05
CFD06

x1

Figure 6.3: Loss expected value of the sequencing methods for different portfolios
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Loss variance(P.2)

Table 6.2 shows the loss standard deviations generated by the studied sequencing methods
for different portfolios x. It is observed that CFD03 generates the minimum loss standard
deviation over all portfolios with the value of 0.0355. As shown by figure 6.4, although
NEH, LR show lower loss variance in each portfolio their variance is the two highest over all
portfolios (within groups).

Table 6.2: Loss standard deviation of the scheduling methods with different portfolios

Portfolio

(x1, x2)

Method

NEH LR CFD00 CFD01 CFD02 CFD03 CFD04 CFD05 CFD06 CFD07 CFD08 CFD09 CFD10

(0.0,1.0) 0.0000 0.0026 0.0040 0.0104 0.0158 0.0200 0.0251 0.0342 0.0389 0.0356 0.0381 0.0421 0.0429

(0.1,0.9) 0.0000 0.0043 0.0341 0.0123 0.0158 0.0192 0.0232 0.0306 0.0346 0.0318 0.0341 0.0378 0.0386

(0.2,0.8) 0.0000 0.0073 0.0677 0.0173 0.0180 0.0202 0.0227 0.0281 0.0310 0.0285 0.0303 0.0336 0.0343

(0.3,07) 0.0000 0.0104 0.1014 0.0234 0.0216 0.0226 0.0238 0.0270 0.0282 0.0259 0.0269 0.0295 0.0300

(0.4,0.6) 0.0000 0.0136 0.1350 0.0300 0.0262 0.0261 0.0262 0.0273 0.0265 0.0242 0.0241 0.0257 0.0257

(0.5,0.5) 0.0000 0.0169 0.1687 0.0369 0.0312 0.0303 0.0297 0.0291 0.0261 0.0236 0.0221 0.0223 0.0215

(0.6,0.4) 0.0000 0.0202 0.2024 0.0438 0.0366 0.0349 0.0339 0.0320 0.0271 0.0242 0.0211 0.0194 0.0172

(0.7,0.3) 0.0000 0.0235 0.2361 0.0508 0.0421 0.0398 0.0386 0.0359 0.0292 0.0259 0.0212 0.0173 0.0129

(0.8,0.2) 0.0000 0.0268 0.2698 0.0578 0.0477 0.0449 0.0437 0.0405 0.0324 0.0286 0.0225 0.0164 0.0086

(0.9,0.1) 0.0000 0.0301 0.3034 0.0649 0.0534 0.0502 0.0489 0.0455 0.0363 0.0319 0.0248 0.0167 0.0044

(1.0,0.0) 0.0000 0.0334 0.3371 0.0720 0.0592 0.0556 0.0543 0.0508 0.0407 0.0357 0.0277 0.0184 0.0006

Overall 0.3162 0.3138 0.2847 0.0485 0.0384 0.0355 0.0361 0.0384 0.0473 0.0496 0.0549 0.0632 0.1959

0.350.300.250.200.150.100.050.00

1.0

0.8

0.6

0.4

0.2

0.0

Loss standard deviation

L
os

s 
ex

p
ec

te
d

 v
al

u
e

CFD07
CFD08
CFD09
CFD10

NEH
LR
CFD00
CFD01
CFD02
CFD03
CFD04
CFD05
CFD06

Figure 6.4: Loss average and standard deviation frontiers, each point shows a portfolio

As it is shown by Table 6.1, Table 6.2, and Figure 6.4, there are trade-offs among the
results of P.1 and P.2 (i.e. min(µf(x,Y )) and min(σ2

f(x,Y )), which means minimizing loss
expected value does not necessarily lead to minimizing loss variance. Therefore, there is
trade-offs between the first order and the second order effects of loss in the OR peri-op
process.

Figure 6.5 shows the expected value and standard deviation of the sequencing methods
over all portfolios. Single attribute optimization methods including NEH, LR, CFD00,

73



0.350.300.250.200.150.100.050.00

0.5

0.4

0.3

0.2

0.1

0.0

Loss standard deviation

L
os

s 
ex

p
ec

te
d

 v
al

u
e

CFD07

CFD08

CFD09

CFD10

NEH

LR

CFD00

CFD01

CFD02

CFD03

CFD04

CFD05

CFD06

Figure 6.5: Scheduling methods loss average and standard deviation over all portfolio

and CFD10, are clearly dominated by trade-off balancing methods. It is observed that
CFD02 and CFD03 are the only two non-dominated methods in terms of both loss expected
value and standard deviation. The Pareto frontiers of CFD02 and CFD03 are shown by
figure 6.6. CFD03 shows a fairly stable performance on loss expected value for different
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Figure 6.6: Loss expected value and standard deviation frontiers of non-dominated methods,
each point shows a portfolio

portfolios (from left to right x = (0.0, 1.0), (0.1, 0.9), ..., (1.0, 0.0)), whereas its performance
on loss standard deviation degrades. CFD02 seems to be more sensitive to x in terms of
both loss expected value and standard deviations. However, CFD02 dominates CFD03 for
the first seven portfolios (i.e. x = (0.0, 1.0), (0.1, 0.9), ..., (0.7, 0.3), whereas CFD03 dominates
CFD02 for the last three portfolios (i.e. x = (0.8, 0.2), (0.9, 0.1), (1.0, 0.0). Therefore, finding
a method that is dominant in the first order and second order of loss is necessary. As it
was mentioned earlier, if a method has a lower CVaR, it dominates other methods in the
stochastic first order and the second order. In subsection 6.4, we compare the performance
of the sequencing methods in terms of CVaR.
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Conditional value at risk (P.3)

The results of our study in subsections 6.4 and 6.4 showed that there are two sources of trade-
offs in an OR peri-op process including (i) inconsistency between the objectives of max(Util)
and min(LoS), (ii) inconsistency between the first order (expected value) and the second order
(variance) of loss. To address (i), we propose to utilize trade-off balancing as the objective
function, and to address (ii) as mentioned earlier, we utilize minimizing conditional value at
risk i.e. min(α-CVaR) described by P.3 in section 6.2. Pflug [129] proved that CVaR is a
coherent risk measure with monotonic first and second order stochastic dominance properties.

As shown in Table 6.3, we calculate α-CVaR at three common probability levels of α ∈
{0.90, 0.95, 0.99}. We also calculate the range of α-CVaR at each probability level denoted
by Max−Min in Table 6.3. Max−Min measures the sensitivity of methods to portfolios
thus the smaller Max −Min the less sensitive the method. Methods with small values of
Max−Min are able to address a wider range of managerial preferences. It is observed that
single attribute scheduling methods including NEH,LR,CFD00, CFD10 have the highest
α-CVaR, and are highly sensitive to both the probability level α and the portfolio x.

At α = 0.90 and α = 0.95, CFD03 dominates other sequencing methods, whereas, at
α = 0.99, CFD02 dominates other sequencing methods. CFD03 has 0.90-CVaR= 0.0603 and
0.95-CVaR= 0.0683 which means in the 10% and 5% of the worst outcomes the expected
value of loss is 0.0603 and 0.0683, respectively. In the 1% of the worst outcomes, CFD02
has the expected value of loss of 0.0850. As it is shown by figure 6.7d and figure 6.7a
to figure 6.7c, CFD03 and CFD02 are sensitive to neither the probability level α nor the
portfolio of preferences x in terms of α-CVaR.

It is also seen that all the bi-objective trade-off functions (i.e. CFD01, ...,CFD09) intersect
at portfolio x = (0.5, 0.5) with fairly similar α-CVaR, therefore, equal preference for Util and
LoS provides the decision maker with a desirable flexibility on the sequencing method in
terms of α-CVaR.

Overall evaluation

In subsection 6.4, we demonstrated α-CVaR and trade-off balancing as the proper approach
for surgical case sequencing in an OR peri-op process. According to the adopted risk definition
”the variations in the distributions of OR peri-op process outcomes, their likelihood, and their
subjective values”, a risk mitigating strategy not only must move the outcomes of the system
towards a more predictable region but also must result in acceptable subjective values for the
objectives. Table 6.4 shows the performance of CFD03 (with minimum 0.95-CVaR), NEH
(the best method max(Util)), and LR (the best method to min(LoS)) in terms of average loss,
value at risk (VaR), conditional value at risk (CVaR), and average normalized deviations for
MCT and TCT (i.e. ANDk). The arguments for other probability level is similar, therefore,
are omitted for the sake of brevity.

It is observed that CFD03 (i.e. the best method for min(CV aR) at α = 0.95) not only has
the minimum value of CVaR with small variations for different portfolios, but also provides
small and uniform variations for ANDk. CFD03 generates only 3.2% and 1.9% deviations
from the best possible values of MCT and TCT , respectively. Therefore, we conclude that
trade-off balancing can provide the decision maker with a powerful tool to move the outcomes
of the OR peri-op process towards a less risky point with acceptable subjective values.
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Table 6.3: α-CVaR of sequencing methods at α ∈ {0.90, 0.95, 0.99}

α
x Sequencing method

(x1, x2) NEH LR CFD00 CFD01 CFD02 CFD03 CFD04 CFD05 CFD06 CFD07 CFD08 CFD09 CFD10

0.90

(0.0,1.0) 0.5481 0.0037 0.0043 0.0147 0.0244 0.0343 0.0496 0.0667 0.0967 0.0970 0.1042 0.1173 0.3453
(0.1,0.9) 0.4933 0.0759 0.0705 0.0219 0.0281 0.0359 0.0489 0.0630 0.0889 0.0888 0.0950 0.1063 0.3108
(0.2,0.8) 0.4385 0.1504 0.1399 0.0318 0.0348 0.0399 0.0506 0.0605 0.0816 0.0811 0.0860 0.0953 0.2763
(0.3,0.7) 0.3837 0.2249 0.2093 0.0425 0.0427 0.0456 0.0540 0.0601 0.0750 0.0741 0.0776 0.0844 0.2417
(0.4,0.6) 0.3289 0.2995 0.2787 0.0534 0.0510 0.0520 0.0583 0.0613 0.0700 0.0683 0.0699 0.0738 0.2072
(0.5,0.5) 0.2741 0.3740 0.3481 0.0644 0.0595 0.0586 0.0631 0.0635 0.0665 0.0639 0.0632 0.0636 0.1727
(0.6,0.4) 0.2193 0.4486 0.4175 0.0754 0.0682 0.0655 0.0683 0.0667 0.0647 0.0610 0.0579 0.0541 0.1382
(0.7,0.3) 0.1644 0.5231 0.4869 0.0864 0.0769 0.0724 0.0737 0.0704 0.0641 0.0591 0.0537 0.0457 0.1036
(0.8,0.2) 0.1096 0.5977 0.5563 0.0974 0.0857 0.0795 0.0792 0.0746 0.0642 0.0578 0.0502 0.0389 0.0691
(0.9,0.1) 0.0548 0.6722 0.6257 0.1085 0.0946 0.0865 0.0847 0.0790 0.0647 0.0570 0.0474 0.0334 0.0346
(1.0,0.0) 0.0000 0.7468 0.6951 0.1195 0.1034 0.0936 0.0903 0.0836 0.0655 0.0564 0.0449 0.0286 0.0002
Overall 0.2741 0.3743 0.3484 0.0651 0.0609 0.0603 0.0655 0.0681 0.0729 0.0695 0.0682 0.0674 0.1727
Max-Min 0.5481 0.7431 0.6908 0.1049 0.0790 0.0593 0.0414 0.0235 0.0326 0.0407 0.0593 0.0887 0.3452

0.95

(0.0,1.0) 0.5794 0.0044 0.0061 0.0167 0.0272 0.0374 0.0536 0.0725 0.1055 0.1068 0.1127 0.1271 0.3664
(0.1,0.9) 0.5215 0.0793 0.0750 0.0248 0.0315 0.0387 0.0527 0.0684 0.0970 0.0976 0.1028 0.1150 0.3297
(0.2,0.8) 0.4635 0.1571 0.1483 0.0364 0.0391 0.0438 0.0546 0.0656 0.0890 0.0886 0.0930 0.1031 0.2931
(0.3,0.7) 0.4056 0.2350 0.2216 0.0484 0.0481 0.0505 0.0590 0.0648 0.0817 0.0804 0.0836 0.0914 0.2564
(0.4,0.6) 0.3477 0.3128 0.2950 0.0608 0.0576 0.0581 0.0647 0.0669 0.0759 0.0739 0.0752 0.0799 0.2198
(0.5,0.5) 0.2897 0.3907 0.3684 0.0734 0.0674 0.0662 0.0710 0.0705 0.0728 0.0699 0.0686 0.0689 0.1832
(0.6,0.4) 0.2318 0.4686 0.4418 0.0861 0.0774 0.0744 0.0775 0.0752 0.0717 0.0676 0.0638 0.0589 0.1465
(0.7,0.3) 0.1738 0.5465 0.5153 0.0989 0.0875 0.0828 0.0842 0.0806 0.0721 0.0666 0.0600 0.0503 0.1099
(0.8,0.2) 0.1159 0.6244 0.5887 0.1116 0.0976 0.0912 0.0909 0.0864 0.0731 0.0665 0.0573 0.0436 0.0733
(0.9,0.1) 0.0579 0.7023 0.6622 0.1243 0.1078 0.0997 0.0978 0.0922 0.0747 0.0665 0.0554 0.0385 0.0367
(1.0,0.0) 0.0000 0.7801 0.7356 0.1370 0.1180 0.1082 0.1047 0.0982 0.0765 0.0670 0.0538 0.0342 0.0003
Overall 0.2897 0.3910 0.3689 0.0744 0.0690 0.0683 0.0737 0.0765 0.0809 0.0774 0.0751 0.0737 0.1832
Max-Min 0.5794 0.7758 0.7295 0.1203 0.0907 0.0708 0.0520 0.0334 0.0338 0.0404 0.0589 0.0929 0.3661

0.99

(0.0,1.0) 0.6534 0.0060 0.0099 0.0224 0.0338 0.0422 0.0637 0.0857 0.1231 0.1287 0.1300 0.1516 0.4146
(0.1,0.9) 0.5880 0.0877 0.0842 0.0312 0.0386 0.0446 0.0604 0.0796 0.1126 0.1183 0.1185 0.1372 0.3731
(0.2,0.8) 0.5227 0.1736 0.1658 0.0448 0.0474 0.0519 0.0606 0.0748 0.1027 0.1088 0.1079 0.1231 0.3317
(0.3,0.7) 0.4574 0.2595 0.2480 0.0604 0.0589 0.0619 0.0679 0.0724 0.0938 0.0996 0.0976 0.1091 0.2902
(0.4,0.6) 0.3920 0.3455 0.3302 0.0763 0.0710 0.0725 0.0771 0.0763 0.0882 0.0910 0.0882 0.0953 0.2487
(0.5,0.5) 0.3267 0.4314 0.4123 0.0926 0.0830 0.0832 0.0869 0.0846 0.0852 0.0838 0.0798 0.0821 0.2073
(0.6,0.4) 0.2614 0.5174 0.4945 0.1091 0.0952 0.0939 0.0973 0.0933 0.0854 0.0801 0.0737 0.0702 0.1658
(0.7,0.3) 0.1960 0.6033 0.5767 0.1255 0.1078 0.1050 0.1079 0.1023 0.0880 0.0790 0.0718 0.0607 0.1244
(0.8,0.2) 0.1307 0.6893 0.6588 0.1419 0.1204 0.1163 0.1187 0.1113 0.0919 0.0801 0.0715 0.0549 0.0829
(0.9,0.1) 0.0653 0.7752 0.7410 0.1584 0.1331 0.1277 0.1296 0.1204 0.0964 0.0824 0.0724 0.0502 0.0415
(1.0,0.0) 0.0000 0.8612 0.8231 0.1748 0.1459 0.1391 0.1404 0.1295 0.1014 0.0853 0.0738 0.0463 0.0015
Overall 0.3267 0.4318 0.4131 0.0943 0.0850 0.0853 0.0919 0.0937 0.0971 0.0943 0.0896 0.0892 0.2074
Max-Min 0.6534 0.8552 0.8132 0.1524 0.1121 0.0969 0.0800 0.0571 0.0379 0.0496 0.0585 0.1054 0.4131

6.5 Conclusion

In this chapter, we addressed two fundamental issues associated with surgical case sequencing
in an operating room peri-operative process including (i) inconsistency between two key per-
formance indicators of utilization (Util) and length of stay (LoS), (ii) inconsistency between
the first order and the second order of loss (i.e. expected value and variance, respectively).
To address (i) we demonstrated that balancing trade-offs as the objective function is superior
to the single attribute optimizations of max(Util) and min(LoS). To address (ii), we showed
that optimizing conditional value at risk (CVaR) can provide the first order and the second
order dominance.

By modeling the OR peri-op process as a 3-stage serial process, we elaborated the risk
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Figure 6.7: α-CVaR of sequencing methods

Table 6.4: Performance of selected sequencing methods at α = 0.95

Portfolio

x

Mehtod

CFD03 NEH LR

(x1, x2) f(x,Y) VaR CVaRAND1AND2 f(x,Y) VaR CVaRAND1AND2 f(x,Y) VaR CVaRAND1AND2

(0.0,1.0) 0.0194 0.03330.0374 0.0327 0.0194 0.3983 0.53720.5794 0.0000 0.3983 0.0013 0.00340.0044 0.5379 0.0013

(0.1,0.9) 0.0207 0.03470.0387 0.0327 0.0194 0.3585 0.48350.5215 0.0000 0.3983 0.0549 0.07430.0793 0.5379 0.0013

(0.2,0.8) 0.0220 0.03810.0438 0.0327 0.0194 0.3187 0.42970.4635 0.0000 0.3983 0.1086 0.14720.1571 0.5379 0.0013

(0.3,0.7) 0.0234 0.04400.0505 0.0327 0.0194 0.2788 0.37600.4056 0.0000 0.3983 0.1622 0.22010.2350 0.5379 0.0013

(0.4,0.6) 0.0247 0.04960.0581 0.0327 0.0194 0.2390 0.32230.3477 0.0000 0.3983 0.2159 0.29320.3128 0.5379 0.0013

(0.5,0.5) 0.0260 0.05600.0662 0.0327 0.0194 0.1992 0.26860.2897 0.0000 0.3983 0.2696 0.36640.3907 0.5379 0.0013

(0.6,0.4) 0.0274 0.06240.0744 0.0327 0.0194 0.1593 0.21490.2318 0.0000 0.3983 0.3232 0.43960.4686 0.5379 0.0013

(0.7,0.3) 0.0287 0.06810.0828 0.0327 0.0194 0.1195 0.16120.1738 0.0000 0.3983 0.3769 0.51280.5465 0.5379 0.0013

(0.8,0.2) 0.0300 0.07480.0912 0.0327 0.0194 0.0797 0.10740.1159 0.0000 0.3983 0.4305 0.58590.6244 0.5379 0.0013

(0.9,0.1) 0.0314 0.08120.0997 0.0327 0.0194 0.0398 0.05370.0579 0.0000 0.3983 0.4842 0.65910.7023 0.5379 0.0013

(1.0,0.0) 0.0327 0.08800.1082 0.0327 0.0194 0.0000 0.00000.0000 0.0000 0.3983 0.5379 0.73230.7801 0.5379 0.0013

Overall 0.0260 0.05730.0683 0.0327 0.0194 0.1992 0.26860.2897 0.0000 0.3983 0.2696 0.36680.3910 0.5379 0.0013

max- min 0.0134 0.05470.0708 - - 0.3983 0.53720.5794 - - 0.5366 0.72890.7758 - -

sources, risk consequences, and proposed risk mitigating strategies. Inconsistency between
objectives and inconsistency between the first order and the second order of outcomes were
identified as the risk sources. High fluctuations in the outcomes values are the risk sequences.
Finally, trade-off balancing was proposed as the risk mitigating strategy that leads the out-
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come of the OR peri-op process towards a less risky state. Trade-off balancing is capable of
reflecting the decision maker’s preferences into the objective function by which the decision
maker has a powerful yet flexible tool to shift the outcomes of the OR peri-op process to-
wards a more predictable state with average (0.95-CVaR) of 6.8%, and acceptable subjective
values for key performance indicators with only 3.27% and 1.94% deviations from the optimal
solutions to max(Util) and min(LoS), respectively.
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Chapter 7

Trade-off Balancing for Sustainable Production
Scheduling: A Metric-Based Approach

Production scheduling involves operational level decision making at the shop floor that cov-
ers not only the manufacturing stage of the product life-cycle but also the use stage of the
processes. Despite the substantial research in sustainable manufacturing, a holistic model
for sustainable production scheduling is virtually absent. To address this gap, this chapter
presents a metric-based model to systematically and holistically evaluate the sustainability of
the production schedules. To this aim, we first perform an extensive literature review to iden-
tify the fundamental performance metrics in production scheduling. Second, we asses those
metrics with respect to the triple bottom lines (TBL) including economic, environmental,
and social pillars. Third, we show the inconsistencies among the fundamental performance
metrics and consequently among the objectives defined in the TBL. Finally, we propose a
generic model for production scheduling for sustainability based on balancing the trade-offs
among the inconsistent objectives. The efficiency and effectiveness of the proposed model is
demonstrated using a comprehensive case study. Balancing trade-offs among the fundamen-
tal performance metrics not only provides a sustainable schedule but also results in a better
control over the production scheduling fundamental performance metrics.

7.1 Introduction

Trade-off balancing in production scheduling is important for sustainable manufacturing, be-
cause sustainable manufacturing can be regarded as an optimization problem with many
inconsistent objectives. Elkington (1998) [135] introduced the triple bottom line (TBL) in-
cluding economic, environmental, and social pillars to holistically evaluate the performance of
a production firm. Considering all three pillars of the TBL, an obvious observation is that the
objectives defined in the pillars are not consistent with each other, for example, a production
plant may demonstrate excellent monetary profit (i.e. economic pillar) but at the cost of wa-
ter/air pollution (i.e. environmental pillar). That is, sustainable production scheduling can
be seen as an approach to balancing the trade-offs among the inconsistent objectives defined
in the TBL.

United State Environmental Agency [136] defines sustainable manufacturing as follows:
"Sustainable manufacturing is the creation of manufactured products through economically-
sound processes that minimize negative environmental impacts while conserving energy and
natural resources. Sustainable manufacturing also enhances employee, community and product
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safety". We can conclude that sustainable manufacturing is able to address all three pillars
of TBL.

Jawahir et al. (2015) [137] expressed that sustainable manufacturing must address the
TBL at product, process, and system levels. Sustainable manufacturing must also cover all
four stages of the product life-cycle including: pre-manufacturing, manufacturing, use, and
post-use [138]. Therefore, sustainable manufacturing can serve as a technological tool for the
transition from the Linear Economy to the Circular Economy [139].

Production scheduling is an operational level decision made at the shop floor that falls
into the manufacturing stage of the product life-cycle; it also covers the use stage of the
processes [140]. Production scheduling sequences a set of jobs on one or multiple machines
in order to optimize a given objective [141, 142]. The common objectives for production
scheduling are minimization of maximum completion time (MCT ), total completion time
(TCT ), flow time mean and variance, and tardiness/earliness [143]. Although production
scheduling with regard to single pillars of TBL such as greenhouse gas emission [144], energy
consumption [145, 146, 147], and labor cost [148] have been reported, there is no report on
production scheduling with regard to all three pillars of TBL [149]. Therefore, developing an
approach to holistically evaluate production scheduling sustainability is necessary.

Currently, we do not have a holistic evaluation scheme that can balance trade-offs not
only among inconsistent performance metrics, but also among different pillars of the TBL.
The closest work to the sustainable production scheduling evaluation is the work proposed by
Badurdeen et al. (2015) [150] for evaluating process sustainability. They proposed a four-level
hierarchical structure called ProcSI (Process Sustainability Index) that segregates the overall
process sustainability into individual process-level quantifiable metrics. ProcSI includes four
levels of ProcSI, clusters, sub-clusters, and individual metrics. Their work provided detailed
structures for each level. Since different metrics are measured with different units (e.g. cost
($), energy (Kw), etc.), a normalization scheme is adopted to normalize individual metrics
into a 0 to 10 scale. After normalization, a weighting scheme is developed to balance the
normalized values according to their relative importance (preference) or level of impact. Once
the weights are assigned, the normalized values are aggregated to calculate the scores for sub-
clusters, clusters, and ProcSI. The aggregation follows a bottom-up approach. However,
ProcSI is merely focused on evaluating the sustainability of the process and it does not have
any consideration of the production schedule.

In this chapter, we propose a generic model for balancing trade-offs among inconsistent
objectives defined in the TBL for production scheduling problem. Analogous to inconsistent
objectives of the TBL, inconsistencies exist among objectives in production scheduling[151].
We hypothesize that balancing trade-offs among inconsistent objectives of production schedul-
ing can result in a sustainable schedule. We model trade-off balancing as a function of z = f(·),
which is generally applicable to min(·) or max(·) problems at the low (metrics) level, but also
consistent at the high (sub-cluster, cluster) levels. We show that balancing trade-offs among
production scheduling objectives (e.g. MCT, TCT, etc.) can indirectly balance the trade-offs
among the TBL inconsistent objectives resulting in a sustainable schedule. Contributions of
this chapter are as follows:

• We provide a comprehensive list of fundamental production scheduling performance
metrics that drive multiple areas of the system performance.

• We propose a generic model that attributes the fundamental production scheduling per-
formance metrics with the three pillars of TBL. Production scheduling sustainability
index (PSSI) is proposed to systematically evaluate the sustainability of the produc-
tion schedules. PSSI offers a flexible optimization model that is able to address: (i)
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the decision maker preferences, (ii) inconsistencies among objectives, (iii) sustainability
at the higher level of decision making, and (iv) better control over the production at
the lower level.

• Through extensive case studies we show that decision making must be with regard to
both sustainability and the process control.

The remainder of this chapter is organized as follows: in Section 7.2, we provide a com-
prehensive literature review for practices in production scheduling for sustainability, in Sec-
tion 7.3, we develop the proposed mathematical model for production scheduling for sustain-
ability, in Section 7.4, we present extensive case studies, followed by results and discussions.
Finally, in Section 7.5, we draw conclusions and future research directions.

7.2 Literature review

In this section, we provide a comprehensive literature review on sustainability practices in
production scheduling. For detailed literature on production scheduling, and sustainable
manufacturing readers are referred to [143, 149], and [152], respectively. The objective of this
section is to systematically review the production scheduling objectives, and establish a bridge
between them and the objectives defined in the TBL. To this aim, at the end of this section,
we categorize the production scheduling objectives into three clusters of (i) Economic-oriented
scheduling, (ii) Environmental-oriented scheduling, and (iii) Social-oriented scheduling. Each
cluster is then divided into several sub-clusters, and subsequently, each sub-cluster is divided
into multiple measurable performance metrics.

Economic-oriented scheduling

In this subsection, we review recent papers with economic-oriented objectives. We identi-
fy four types of economic performance indicators for production scheduling including: (i)
production cost, (ii) energy cost, (iii) labor cost, and (iv) inventory cost.

Production cost

Let Cn be the completion time of job n ∈ {1, 2, ..., N}, maximum completion time; MCT =
max(C1, C2, ..., CN ) is the time elapsed from the start-time of the first job to the finish-
time of the last job. Thus, minimizing MCT i.e. min(MCT ) is equivalent to maximizing
the production system utilization i.e. max(Util) [143]. Utilization is the ratio between the
actual output of a given resource and the potential output if that resource was fully utilized. A
production system with a utilization less than %100, theoretically has the potential to increase
its production output without any recurring and/or capital cost. Production scheduling with
the objective of min(MCT ) has been extensively studied, and numerous methods have been
proposed for different production environments such as flow shop [153, 154], job shop [155],
and continuous manufacturing [156].

Tardiness and earliness costs are other metrics affecting the production cost [157]. Ear-
liness costs may occur if job n is completed earlier than its due date (dn), the earliness of
a job is defined as En = max(dn − Cn, 0) [143]. Earliness costs could result from deterio-
ration of the final products or from the need for an extended time/capacity for holding the
inventory [158]. Tardiness costs occur if job n is finished after its due date, and includes ex-
pedited delivery costs, lost customer, contract penalties, etc. [159, 157]. Tardiness is defined
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as Tn = max(Cn − dn, 0) [143]. If both tardiness and earliness are considered, the objective
function can be defined as by equation 7.1.

min(z) =
N∑
n=1

(En + Tn) =
N∑
n=1

|Cn − dn| (7.1)

In many production systems products are produced in batches with a common due date
d [160, 161, 162], therefore, the objective of minimizing earliness and tardiness can be rewritten
by equation 7.2. It is worth mentionimg that in this way earliness and tardiness are equally
penalized.

dn = d
∀n

⇒ min(z) =
N∑
n=1

|Cn − d| (7.2)

For a special cease where the common due date d is equal to the average completion time,
i.e. d = ACT = TCT

N , it has been shown than min(z) =
∑N

n=1|Cn −ACT | is equivalent

to minimizing completion time variance (CTV ) where CTV =
∑N
n=1(Cn−ACT )2

N . Therefore,
min(CTV ) can serve as an alternative objective function to minimize tardiness and earliness
around a common due date [163, 90, 91].

Energy cost

%31 of primary energy consumption is consumed by the manufacturing industry [159], and
utility companies have step-wise pricing policies in which the power costs are significantly
higher if the demand exceeds a base load. Therefore, considering a system-wide approach
for energy efficiency in production scheduling is necessary to attain sustainable manufac-
turing [164]. Production power must be managed with respect to three main components
including: (i) idle energy consumption, (ii) power peak [165], and (iii) inventory handling
power consumption.

Minimizing idle energy consumption is equivalent to minimizing machines idle time which
is addressed by min(MCT ). Some papers also proposed an "ON-OFF" strategy for shutting
the non-bottleneck machines down while idle [166, 167, 168], however, the latter seems to be
impractical in many production systems [169]. Power peak management has been addressed
by varying the machines speeds in order to shift production load to the off-peak period-
s [170], however, varying machines speed is not practical in many situations that the quality
of products is a function of the machine speed (e.g. roughness of machined parts).

The power consumed for inventory handling is directly related to the inventory level in-
curred during the period of schedule. Total completion time TCT =

∑
Cn gives an indication

of the inventory level in the system during the period of schedule [143], therefore, min(TCT )
can minimize the inventory level, and consequently, the power required for inventory handling.

Another factor affecting the energy costs is the energy-efficiency of the machines, therefore,
developing energy-efficient machines has been the subjects of multiple studies [171, 172]. How-
ever, machine selection and layout design falls into a higher level of production management
known as production planing, and requires a significant capital [144]. Thus, energy-efficient
production scheduling is more practical and fits the purpose of this chapter.
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Labor cost

Labor wages are higher in the overtime hours [148], therefore, finishing the production in the
regular hours results in a lower labor cost. min(MCT ) can finish the production in a shorter
time period, thus resultimg in a lower labor overtime cost.

Inventory handling requires staffed hours e.g. for transportation, security, etc., therefore,
reducing the inventory level can result in a lower inventory handling cost. As it was mentioned
earlier min(TCT ) can reduce the inventory level, thus, resulting in a lower inventory handling
labor cost.

Inventory cost

Inventory costs refers to all costs of holding an inventory including opportunity cost of the
inventory monetary value, infrastructure cost, insurance, depreciation cost, taxes, etc. [173].
As mentioned earlier, min(TCT ) is directly associated with minimizing the inventory level,
and consequently the inventory cost.

Environment-oriented scheduling

Energy consumption and greenhouse gas emissions are the most studied environmental indica-
tors in production scheduling [149]. As it discussed in 7.2, energy consumption is a function
of machines state, power peak, and processing speed [174]. Greenhouse gas emission has
been studied by multiple works [175, 176, 144]. Since fossil fuels are the primary source of
energy generation, managing energy consumption significantly reduces greenhouse gas emis-
sions [144]. Most studies calculated the greenhouse gas emissions as a function of energy
consumption [149]. Therefore, all the discussion in 7.2 applies here as well.

Social-oriented scheduling

Average completion time; ACT = TCT
N also known as flow time is the average time that a

job spends in the system. For a fixed number of jobs (N), minimizing average completion
time; min(ACT ) is equivalent to min(TCT ), and as discussed earlier has been subjected to
an extensive study. Attractiveness of min(ACT ) is that it is equivalent to minimizing waiting
time, which is of importance for customers [92]. Minimizing waiting time can help the society
to have access to products/services with the minimum waiting time. Therefore, we conclude
that min(TCT ) can also serve social-oriented scheduling objectives.

Completion time variance; CTV =
∑N
n=1(Cn−ACT )2

N is another performance metric which
has been the subject of numerous studies in production scheduling [177, 89, 163, 94]. In
service-oriented production systems such as hospital, call centers, etc. it is important to pro-
vide customers a uniform service (in terms of waiting time or completion time) [92], therefore,
min(CTV ) also can serve social-oriented scheduling objectives. min(CTV ) and min(TCT )
are possibly inconsistent objectives, and balancing trade-off between them is required.

Summary

The metrics used for production scheduling to achieve different goals are summarized in
Table 7.1 based on their impacts on different pillars of TBL. We deliberately kept these
metrics generic, so that, practitioners may use/modify them according to different production
environment such as flow shop, job shop, single/multiple machines, etc. MCT , TCT , and
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CTV were identified as the most fundamental metrics for production scheduling. As it is
shown by Table 7.1 some of these metrics are simultaneously evaluated in multiple TBL
pillars.

Table 7.1: Metric-based hierarchical decomposition for sustainable production scheduling

Cluster Sub-cluster Metric

Economic-oriented
scheduling

Production cost MCT
CTV

Energy cost MCT
TCT

Labor cost MCT
TCT

Inventory cost TCT

Environmental-oriented
scheduling

Energy consumption MCT
TCT

Greenhouse gas emissions MCT
TCT

Social-oriented
scheduling

Waiting time TCT
Waiting time variance CTV

TCT : Total completion time, MCT : Maximum completion time, CTV : Completion time variance

As mentioned earlier min(MCT ), min(TCT ), and min(CTV ) are inconsistent objectives
which means optimizing one may result in worsening the others. Therefore, a production
schedule that simultaneously optimize all objectives is infeasible.

7.3 Problem formulation

This section presents the mathematical formulations of the proposed models. In order to
develop a comprehensive Production Scheduling Sustainability Index (PSSI), we propose
a top to bottom decomposition followed by a bottom to top aggregation scheme. At the
decomposition phase, we divide PSSI into three clusters covering the three pillars of the TBL
including economy, environment, and society. Each cluster is then divided into sub-clusters.
Each sub-cluster covers a specific area of impact of its cluster. Accordingly, each sub-cluster
is then divided to individual metrics that specifically measure a single performance indicator.
Once the top-bottom structure is developed and all the individual metrics are measured, a
bottom-up aggregation approach including normalization and weighting is utilized to calculate
PSSI.

Notations

i Index of clusters, i ∈ {1, 2, 3}

Ji Number of sub-clusters in cluster i

ji Index of sub-clusters in cluster i, ji ∈ {1, 2, ..., Ji}

k Index of the individual metrics, k ∈ {1, 2, 3} with k = 1 for TCT , k = 2 forMCT ,
and k = 3 for CTV .

h Index of production scheduling alternatives, h ∈ H = {1, 2, ...,H}
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x
[k]
h The value of metric k for production schedule h

D
[k]
h Normalized deviation of metric k for production schedule h

M
[k]
h,i,j Sustainability score of h for metric k in sub-cluster j of cluster i.

Let i ∈ {1, 2, 3} denote the index of clusters; with 1 for economic, 2 for environmental,
and 3 for social pillars of the the TBL. Ji is the number of sub-clusters in each cluster,
therefore, ji ∈ {1, 2, ..., Ji} denotes sub-cluster j in cluster i. Let k ∈ {1, 2, 3} denote the
index of the individual metrics, with k = 1 for TCT , k = 2 for MCT , and k = 3 for CTV .

Given production schedule h ∈ H = {1, 2, ...,H}, where H is a set of alternative produc-
tion schedules, x[k]

h is the value of metric k for production schedule h. Because individual met-
ric could be in different scales/units, we define the normalized deviation from the best possible

value as D[k]
h =

x
[k]
h −LB(x

[k]
h )

UB(x
[k]
h )−LB(x

[k]
h )

, where UB(x
[k]
h ) = max

h∈H
(x

[k]
h ), and LB(x

[k]
h ) = min

h∈H
(x

[k]
h ). In

the minimization sense, D[k]
h is the degree of closeness between x[k]

h and its best value LB(x
[k]
h ).

At the metric level, we use M [k]
h,i,j = 10(1 − D[k]

h ) to calculate the sustainability score of

production schedule h for metric k. M [k]
h,i,j ∈ [0, 10] normalizes each metric to a scale of 0 to

10, where 0 is the worst performance and 10 is the best performance in terms of sustainability.
M

[k]
h,i,j attributes the sustainability of an individual metric to its normalized deviation. For

example, as shown in Table 7.1 waiting time variance is directly affected by CTV ; therefore,
a production schedule with LB(x

[3]
h ) generates the highest sustainability score for the waiting

time variance.
Once the top-bottom structure is developed and all the individual metrics are measured,

a bottom-up aggregation approach by equations 7.3 to 7.8 is utilized to calculate PSSI. E-
quation 7.3 is the aggregation of individual metrics sustainability score to the Sub-cluster
Sustainability Score (SSS), where ωk,i,j ∈ [0, 1] is the weight assigned to the metric k of
sub-cluster j in cluster i. Equation 7.4 imposes that the sum of all weights must be equal 1.
Equation 7.5 is the aggregation of sub-cluster sustainability scores to the Cluster Sustainabil-
ity Score (CSS), where ωi,j is the weight of sub-cluster j in cluster i. Equation 7.6 indicates
that the sum of sub-cluster weights must be 1. Equation 7.7 aggregates cluster sustainability
scores into the Production Scheduling Sustainability Index PSSI, where, ωi is the weight of
cluster i. Equation 7.8 indicates that the sum of cluster weights is equal to 1.

SSSh,i,j =
∑K

k=1 ωi,j,kM
[k]
h,i,j (7.3)∑K

k=1 ωi,j,k = 1 (7.4)

CSSh,i =
∑Ji

j=1 ωi,jSSSh,i,j (7.5)∑Ji
j=1 ωi,j = 1 (7.6)

PSSIh =
∑3

i=1 ωiCSSh,i (7.7)∑3
i=1 ωi = 1 (7.8)

7.4 Case study

The PSSI model is demonstrated here by evaluating the sustainability performance of dif-
ferent scheduling methods in a permutation flow shop. Flow shop scheduling problem arises
where a set of jobs on one or multiple machines must be sequenced in order to optimize a
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given objective function. Permutation flow shop is a special type of flow shop in which the
processing order of jobs is identical on all machines. Permutation flow shop has been the
subject of a massive body of literature [143].

Notations

N Number of jobs

n Job index, n=1, 2, ..., N

M Number of machines

m Machine index, m=1, 2, ..., M

Ψ Decision space, |Ψ| = N !

π π ∈ Ψ, a permutation of N jobs

MCT Maximum completion time

TCT Total completion time

ACT Average completion time

CTV Completion time variance

The following formulations provide the mathematical descriptions of MCT , TCT and
CTV in an N -job, M -machine permutation flow shop. Cn,m is the completion time of job n
on machine m. MCT is the completion time of the last job on the last machine and is shown
by equation 7.9. TCT is the sum of completion times of all jobs on the last machine and is
presented by equation 7.10. Completion times variance is calculated by equation 7.12.

MCT = CN,M (7.9)

TCT =
∑N

n=1Cn,M (7.10)
ACT = TCT/N (7.11)

CTV = 1
N

∑N
n=1(Cn,M −ACT )2 (7.12)

Given an instance with N jobs, there are N ! different possible sequences. Let π ∈
{1, 2, ..., N !} denote a sequence of N jobs, as mentioned earlier, the normalized deviation

of metric k generated by sequence π can be defined as D[k]
π = x

[k]
π −LB(x[k])

UB(x[k])−LB(x[k])
, with k = 1

for min(TCT ), k = 2 for min(MCT ), k = 3 for min(CTV ), and x[k]
π is the performance of

sequence π on metric k. UB(x[k]) and LB(x[k]) are the worst (maximum) and the best (min-
imum) values for metric k in the instance, respectively. Let ωk be as the decision maker’s
preference to metric k and Ω = [ω1, ω2, ω3], we propose a trade-off function represented by
equation 7.13.

z
[Ω]
π =

∑3
k=1 ωkD

[k]
π (7.13)∑3

k=1 ωk = 1,

Equation 7.13 explicitly integrates the decision maker’s preference into the trade-off func-
tion by assigning a weight (ωk) to each metric. With dynamics in production, decision makers’
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preferences might change as the process reveals its performance over the time. min(z) is pre-
cisely equivalent to minimizing the deviations from an ideal but infeasible point at which all
the objectives are at their optimum values.

To show the inconsistencies among objectives of min(TCT ), min(MCT ), and min(CTV ),
and to verify the effectiveness of balancing trade-offs among inconsistent objectives, we carry
out a series of case studies. The number of jobs N changes from N = 5, ..., 10, resulting
in six choices, number of machines M changes from 3 to 19 (M = 2l + 1, l = 1, 2, ..., 9),
yielding nine choices. This configuration results in 54 combinations. For each combination,
100 instances are randomly generated. The processing times are randomly drawn from a
uniform distribution in [1,99]. Therefore, in total we have 5400 instances. Given ωk changing
from [0.0: 0.1: 1.0], we have 66 combinations of three weights with

∑3
k=1 ωk = 1, i.e. Ω ∈

{Ω1,Ω2, ...,Ω66}. The 66 minimization functions of min(z[Ω]
π ) cover the three single-objective

minimizations of min(TCT ), min(MCT ) and min(CTV ) with a weight equal to [1, 0, 0], [0,
1, 0], and [0, 0, 1], respectively. Since the number of jobs is relatively small (N ≤ 10), we are
able to use enumeration/optimization to find UB(x[k]) and LB(x[k]) for all k as well as z[Ω]

π

for each weight.

Inconsistencies among objectives

Figure 7.1 clearly shows that single optimization of min(TCT ), min(MCT ), and min(CTV )
are inconsistent with each other, since there is no single point that yields the best value for
all three objectives. In order to statistically confirm the inconsistency among min(TCT ),
min(MCT ), and min(CTV ), we perform Spearman’s rank correlation analyses for the se-
quences generating min(TCT ), min(MCT ), and min(CTV ). Table 7.2 shows the Spear-
man’s rank correlation coefficient (ρ) between sequences. Small values of (ρ) confirms that
the sequences generating minimum values for single objectives are not significantly correlated.

Table 7.2: Spearman’s ρ among sequence for scheduling objectives

TCT vs. MCT TCT vs. CTV MCT vs. CTV
Spearman’s ρ 0.0823 0.2336 0.0528

Pareto dominance

In the case of multi-objective optimization with inconsistent objectives, Pareto dominance
is useful for decision making [178, 114]. For minimization problems, if x[k]

A and x
[k]
B ∈ RK

are two vectors that measure a positive attribute k such as the utility of decision A and B,
respectively, decision A dominates decision B if the following conditions are satisfied:

x
[k]
A ≤ x

[k]
B , ∀ k ∈ {1, 2, ..,K} (7.14)

x
[k]
A < x

[k]
B , ∃ k ∈ {1, 2, ..,K} (7.15)

Equation 7.14 states that decision A is not worse than decision B in any dimension, while
equation 7.15 states that decision A is better than decision B at least in one dimension.
Pareto optimal outcome cannot be improved without sacrificing of at least one objective.
Pareto dominant solutions are shown in figures 7.1 by red markers, each cross shows the data
point obtained from one weight. It is observed that there is no Pareto-optimal solution when
all three objectives are taken into consideration.
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a. TCT vs. MCT b. TCT vs. CTV

c. MCT vs. CTV d. TCT vs. MCT vs. CTV

Figure 7.1: Scatter plots of normalized deviations of 66 weights, Pareto-dominant solution
are shown by red markers

Production scheduling sustainability

In order to demonstrate the efficiency and effectiveness of trade-off balancing to achieving
a sustainable production schedule, we perform the scheduling with respect to 66 trade-off
functions as described earlier. As shown by table 7.3, we consider a special case for calculating
PSSI in which equal weights are assigned to all metrics in each sub-cluster, and equal weights
for clusters as well. The equal weights assignment means that all aspects of TBL have the
same importance for the decision maker.

Table 7.3: PSSI weight assignment

PSSI

Weight(ωi) Cluster Weight(ωi,j) Sub-cluster Weight(ωi,j,k) Metric

0.333
Economic-oriented

scheduling

0.25 Production cost
0.5 MCT
0.5 CTV

0.25 Energy cost
0.5 MCT
0.5 TCT

0.25 Labor cost
0.5 MCT
0.5 TCT

0.25 Inventory cost 1 TCT

0.333
Environmental-oriented

scheduling

0.5 Energy consumption
0.5 MCT
0.5 TCT

0.5
Greenhouse gas

emission
0.5 MCT
0.5 TCT

0.333
Social-oriented
scheduling

0.5 Waiting time 1 TCT
0.5 Waiting time variance 1 CTV
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Results and discussion

In this subsection, we statistically present the results of our case study in terms of production
sustainability indices, sustainability scores at sub-cluster level, and fundamental performance
metrics of TCT ,MCT , and CTV . Using equal weights presented by Table 7.3, we can rewrite
equations 7.3 to 7.8 as follows:

PSSIπ = 10[0.5(1−D[1]
π ) + 0.292(1−D[2]

π ) + 0.208(1−D[3]
π )]⇒

PSSIπ = 10[1− (0.5D[1]
π + 0.292D[2]

π + 0.208D[3]
π )︸ ︷︷ ︸

=z
[0.5,0.292,0.208]
π ≈z[0.5,0.3,0.2]

π

] (7.16)

As it is shown by equation 7.16 production scheduling with maximizing PSSI i.e. max
π∈Ψ

(PSSI)

as the objective function is equivalent to min
π∈Ψ

(z
[0.5,0.3,0.2]
π ). Therefore, depending on the weight

assignment for PSSI, scheduling for sustainable production always leads to a trade-off func-
tion among the fundamental performance metrics of TCT , MCT , and CTV . It is worth
mentioning that the weight assignments may change over time as the production system
reveals its nature or due to production/market needs, therefore, a different weight for the
trade-off function will be used. The contribution of the PSSI model is twofold: (i) At a
higher level, PSSI evaluates the sustainability of the production schedules in terms a quan-
tifiable value (ii) At the lower level, PSSI provides insight to the system performance in
terms of the fundamental performance metrics. These two contributions together provide a
comprehensive control over the production performance.

Table 7.4 shows the statistics of sustainability index for the 66 studied trade-off func-
tions (i.e. min(z[Ω])). It is observed that single objective objective functions of min(TCT ),
min(MCT ), and min(CTV ) (i.e. min(z[1,0,0]), min(z[0,1,0]), and min(z[0,0,1]), respectively) are
outperformed by min(z[0.5,0.3,0.2]) in terms of sustainability index. min(z[0.5,0.3,0.2]) has not
only the highest average sustainability index of 9.06 but also the minimum standard deviation
of 0.48. In terms of the fundamental performance metrics as it is shown by Table 7.5 single
objective functions generate no deviation on their intended metric but very large deviations
on the others. On the other hand min(z[0.5,0.3,0.2]) generate small and uniform deviations on
all three metrics which provides a better control over the system performance, which means
a stable compromise among the inconsistent objectives is achieved.

In order to further discuss the performance of production scheduling objective func-
tions, we narrow our discussion to four production scheduling alternatives of min(z[1,0,0]),
min(z[0,1,0]), min(z[0,0,1]), min(z[0.5,0.3,0.2]) which hereafter we name min(TCT ), min(MCT ),
min(CTV ), and min(TO), respectively. It is worth reminding that min(z[0.5,0.3,0.2]) is equiv-
alent to maximizing PSSI i.e. max(PSSI).

Production scheduling Sustainability

In this subsection, we compare the performance of the aforementioned production scheduling
alternatives including min(TCT ), min(MCT ), min(CTV ), and min(TO) in terms of sustain-
ability index (PSSI) and the fundamental performance metrics of TCT , MCT , and CTV .

Table 7.6 shows the PSSI for the studied production scheduling alternatives. min(z) has
the greatest average and also has the smallest standard deviation. t-tests revealed that the
performance of min(z) is significantly different compared to the other production scheduling
alternatives.
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Table 7.4: PSSI statistics of trade-off functions (min(z[Ω]))
HHH

HHHPSSI
Ω (1,0,0) (0,1,0) (0,0,1) (0.9,0.1,0) (0.8,0.2,0) (0.7,0.3,0) (0.6,0.4,0) (0.5,0.5,0) (0.4,0.6,0) (0.3,0.7,0) (0.2,0.8,0)

Ave 8.52 8.69 7.04 8.72 8.87 8.96 9.00 9.01 9.00 8.97 8.93

Std 0.74 0.67 1.26 0.68 0.62 0.57 0.52 0.51 0.52 0.54 0.57

Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Min 5.36 5.44 2.61 5.58 5.67 5.86 6.21 6.48 6.23 5.70 5.64
HH

HHHHPSSI
Ω (0.1,0.9,0) (0.9,0,0.1) (0.8,0,0.2) (0,7,0,0.3) (0.6,0,0.4) (0.5,0,0.5) (0.4,0,0.6) (0.3,0,0.7) (0.2,0,0.8) (0.1,0,0.9) (0,0.1,0.9)

Ave 8.87 8.63 8.74 8.83 8.87 8.80 8.61 8.29 7.88 7.46 7.30

Std 0.61 0.71 0.68 0.64 0.62 0.68 0.81 1.00 1.18 1.26 1.24

Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Min 5.64 5.57 5.57 5.70 5.50 5.03 4.78 3.86 3.10 2.67 2.79
HHH

HHHPSSI
Ω (0,0.2,0.8) (0,0.3,0.7) (0,0.4,0.6) (0,0.5,0.5) (0,0.6,0.4) (0,0.7,0.3) (0,0.8,0.2) (0,0.9,0.1) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.3,0.6)

Ave 7.55 7.79 8.00 8.18 8.33 8.46 8.57 8.64 7.73 7.97 8.18

Std 1.21 1.15 1.07 0.98 0.91 0.83 0.76 0.71 1.21 1.12 1.03

Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Min 3.10 3.57 3.86 4.46 4.66 4.84 5.21 5.25 3.10 3.86 3.86
HH

HHHHPSSI
Ω (0.1,0.4,0.5) (0.1,0.5,0.4) (0.1,0.6,0.3) (0.1,0.7,0.2) (0.1,0.8,0.1) (0.2,0.1,0.7) (0.2,0.2,0.6) (0.2,0.3,0.5) (0.2,0.4,0.4) (0.2,0.5,0.3) (0.2,0.6,0.2)

Ave 8.36 8.51 8.63 8.73 8.82 8.15 8.35 8.53 8.67 8.78 8.78

Std 0.93 0.85 0.76 0.70 0.64 1.07 0.96 0.87 0.78 0.69 0.63

Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Min 4.66 4.69 5.27 5.49 5.64 3.86 3.86 4.66 4.86 5.46 5.49
HHH

HHHPSSI
Ω (0.2,0.7,0.1) (0.3,0.1,0.6) (0.3,0.2,0.5) (0.3,0.3,0.4) (0.3,0.4,0.3) (0.4,0.3,0.3) (0.3,0.5,0.2) (0.3,0.6,0.1) (0.4,0.1,0.5) (0.4,0.2,0.4) (0.4,0.4,0.2)

Ave 8.92 8.52 8.67 8.81 8.91 9.00 8.97 8.98 8.80 8.92 9.03

Std 0.59 0.88 0.79 0.69 0.62 0.54 0.56 0.54 0.70 0.61 0.51

Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Min 5.64 4.58 4.69 5.32 5.49 5.87 5.64 5.64 4.91 5.55 6.04
HH

HHHHPSSI
Ω (0.4,0.5,0.1) (0.5,0.1,0,4) (0.5,0.2,0.3) (0.5,0.3,0.2) (0.5,0.4,0.1) (0.6,0.1,0.3) (0.6,0.2,0.2) (0.6,0.3,0.1) (0.7,0.1,0.2) (0.7,0.2,0.1) (0.8,0.1,0.1)

Ave 9.02 8.96 9.04 9.06 9.04 8.98 9.02 9.02 8.92 8.95 8.83

Std 0.51 0.56 0.50 0.48 0.49 0.55 0.51 0.51 0.60 0.57 0.65

Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Min 6.23 5.95 6.46 6.65 6.52 5.70 6.04 5.86 5.67 5.67 5.67

Figure7.2 shows the Pareto frontiers of sustainability index mean and standard deviation
for the studied production scheduling alternatives where min(TO) dominates the others.
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Figure 7.2: PSSI Pareto frontier

Process capability indices, Cp and Cpk, are used to further compare the sustainability
of different production scheduling alternatives. Process capability index is the measure of
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Table 7.5: Normalized deviation statistics of trade-off functions (min(z[Ω]))
Ω (1,0,0) (0,1,0) (0,0,1) (0.9,0.1,0) (0.8,0.2,0) (0.7,0.3,0)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.000 0.245 0.368 0.187 0.000 0.180 0.489 0.176 0.000 0.003 0.185 0.347 0.012 0.133 0.328 0.026 0.092 0.310
Std 0.000 0.164 0.165 0.133 0.000 0.134 0.194 0.135 0.000 0.007 0.150 0.163 0.019 0.129 0.163 0.033 0.102 0.160
Max 0.000 1.000 0.932 0.870 0.000 0.751 0.985 1.000 0.000 0.080 0.982 0.932 0.171 0.982 0.925 0.345 0.874 0.938
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.6,0.4,0) (0.5,0.5,0) (0.4,0.6,0)) (0.3,0.7,0) (0.2,0.8,0) (0.1,0.9,0)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.043 0.060 0.292 0.062 0.037 0.274 0.080 0.022 0.257 0.100 0.011 0.238 0.119 0.005 0.223 0.139 0.001 0.207
Std 0.049 0.074 0.157 0.063 0.052 0.156 0.077 0.035 0.153 0.091 0.021 0.149 0.104 0.011 0.147 0.116 0.004 0.144
Max 0.514 0.628 0.938 0.580 0.443 0.938 0.652 0.416 0.938 0.858 0.219 0.879 0.868 0.127 0.879 0.868 0.054 0.870
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.9,0,0.1) (0.8,0,0.2) (0.7,0,0.3) (0.6,0,0.4) (0.5,0,0.5) (0.4,0,0.6)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.001 0.221 0.344 0.007 0.197 0.313 0.020 0.172 0.275 0.052 0.145 0.216 0.106 0.123 0.150 0.178 0.107 0.092
Std 0.004 0.159 0.164 0.014 0.153 0.162 0.031 0.147 0.157 0.063 0.135 0.138 0.103 0.124 0.113 0.145 0.105 0.084
Max 0.052 0.982 0.930 0.177 0.920 0.930 0.248 0.920 0.910 0.445 0.920 0.881 0.711 0.920 0.716 0.853 0.853 0.529
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.3,0,0.7) (0.2,0,0.8) (0.1,0,0.9) (0,0.1,0.9) (0,0.2,0.8) (0,0.3,0.7)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.263 0.103 0.046 0.348 0.119 0.017 0.423 0.145 0.004 0.458 0.138 0.002 0.424 0.107 0.007 0.389 0.080 0.016
Std 0.179 0.094 0.052 0.200 0.105 0.027 0.201 0.121 0.009 0.196 0.121 0.005 0.199 0.105 0.015 0.197 0.089 0.028
Max 0.927 0.769 0.342 0.985 0.857 0.204 0.985 1.000 0.090 0.985 0.926 0.063 0.985 0.857 0.145 0.985 0.769 0.253
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0,0.4,0.6) (0,0.5,0.5) (0,0.6,0.4) (0,0.7,0.3) (0,0.8,0.2) (0,0.9,0.1)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.355 0.057 0.029 0.323 0.039 0.044 0.294 0.025 0.061 0.266 0.014 0.082 0.238 0.006 0.107 0.216 0.001 0.131
Std 0.192 0.070 0.042 0.183 0.053 0.057 0.175 0.040 0.070 0.167 0.027 0.086 0.156 0.014 0.104 0.147 0.005 0.116
Max 0.985 0.548 0.486 0.951 0.399 0.518 0.951 0.399 0.556 0.951 0.231 0.751 0.951 0.132 0.751 0.951 0.060 0.751
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.1,0.4,0.5) (0.1,0.5,0.4) (0.1,0.6,0.3)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.389 0.106 0.010 0.354 0.076 0.021 0.320 0.052 0.035 0.286 0.033 0.053 0.257 0.020 0.073 0.229 0.010 0.097
Std 0.201 0.104 0.019 0.195 0.084 0.033 0.187 0.066 0.047 0.176 0.047 0.064 0.167 0.034 0.077 0.155 0.020 0.094
Max 0.985 0.857 0.149 0.985 0.769 0.295 0.985 0.548 0.486 0.935 0.399 0.518 0.924 0.364 0.615 0.878 0.181 0.751
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.1,0.7,0.2) (0.1,0.8,0.1) (0.2,0.1,0.7) (0.2,0.2,0.6) (0.2,0.3,0.5) (0.2,0.4,0.4)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.200 0.003 0.125 0.170 0.001 0.159 0.313 0.079 0.029 0.281 0.051 0.045 0.249 0.031 0.066 0.219 0.018 0.089
Std 0.144 0.009 0.111 0.130 0.003 0.123 0.191 0.082 0.040 0.179 0.061 0.055 0.169 0.044 0.070 0.157 0.030 0.087
Max 0.878 0.085 0.751 0.868 0.042 0.751 0.985 0.769 0.291 0.935 0.548 0.486 0.927 0.399 0.518 0.875 0.364 0.642
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.2,0.5,0.3) (0.2,0.6,0.2) (0.2,0.7,0.1) (0.3,0.1,0.6) (0.3,0.2,0.5) (0.3,0.3,0.4)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.189 0.009 0.118 0.162 0.004 0.151 0.133 0.003 0.194 0.233 0.064 0.062 0.205 0.039 0.084 0.177 0.023 0.111
Std 0.143 0.017 0.104 0.129 0.010 0.119 0.114 0.008 0.136 0.167 0.070 0.066 0.157 0.051 0.081 0.141 0.036 0.098
Max 0.875 0.169 0.751 0.875 0.091 0.751 0.868 0.112 0.789 0.927 0.480 0.518 0.891 0.439 0.541 0.875 0.360 0.642
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.3,0.4,0.3) (0.4,0.3,0.3) (0.3,0.5,0.2) (0.3,0.6,0.1) (0.4,0.1,0.5) (0.4,0.2,0.4)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.150 0.014 0.144 0.112 0.027 0.173 0.125 0.010 0.182 0.107 0.010 0.217 0.156 0.065 0.111 0.134 0.041 0.139
Std 0.127 0.024 0.114 0.105 0.044 0.125 0.110 0.019 0.130 0.099 0.018 0.145 0.135 0.079 0.095 0.121 0.058 0.109
Max 0.875 0.223 0.751 0.826 0.482 0.751 0.868 0.220 0.751 0.868 0.220 0.879 0.839 0.682 0.612 0.860 0.548 0.642
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.4,0.4,0.2) (0.4,0.5,0.1) (0.5,0.1,0.4) (0.5,0.2,0.3) (0.5,0.3,0.2) (0.5,0.4,0.1)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.094 0.022 0.210 0.085 0.021 0.237 0.088 0.083 0.176 0.073 0.057 0.207 0.065 0.045 0.236 0.062 0.039 0.257
Std 0.092 0.037 0.142 0.082 0.034 0.150 0.090 0.100 0.125 0.077 0.079 0.139 0.070 0.064 0.149 0.065 0.056 0.154
Max 0.741 0.482 0.879 0.654 0.416 0.938 0.740 0.874 0.754 0.654 0.682 0.879 0.654 0.653 0.938 0.580 0.482 0.938
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ω (0.6,0.1,0.3) (0.6,0.2,0.2) (0.6,0.3,0.1) (0.7,0.1,0.2) (0.7,0.2,0.1) (0.8,0.1,0.1)
D[k] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3] D[1] D[2] D[3]

Ave 0.040 0.109 0.241 0.038 0.083 0.262 0.039 0.068 0.279 0.018 0.134 0.287 0.021 0.109 0.300 0.008 0.160 0.321
Std 0.051 0.120 0.149 0.047 0.100 0.155 0.047 0.086 0.157 0.027 0.132 0.159 0.029 0.118 0.160 0.014 0.143 0.162
Max 0.431 0.920 0.880 0.526 0.874 0.893 0.386 0.874 0.938 0.218 0.920 0.910 0.261 0.920 0.925 0.127 0.920 0.910
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 7.6: PSSI for alternative production schedules

PSSI(Ave) PSSI(Std)
p-value, t-test

against min(TO)

min(TCT ) 8.52 0.74 0.000

min(MCT ) 8.69 0.67 0.000

min(CTV ) 7.04 1.27 0.000

min(TO) 9.06 0.48 -

the process capability to produce outputs that fall between the specification limits. Given µ
and σ as the mean and standard deviation of the process outputs, Cp = (USL−LSL)

6σ is the
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process capability index that measures if the process is capable of producing outputs that are
centered around the center-line of the specification limits, LSL and USL denote lower and
upper specification limits respectively. Cpk = min[USL−µ3σ , µ−LSL3σ ] is a performance indicator
that measures if the mean value of process outputs falls between the specification limits [179].
Given LSL and USL, greater values of Cp and Cpk imply that a process generate outputs
which are more centered with smaller variations.

To perform process capability analyses, we first need to define the specification limits
of PSSI. Generally, a sustainability score of 8-10 indicates an excellent sustainability sta-
tus [150], therefore, in this case study we consider (LSL,USL) = (8.50, 10). Table 7.8 shows
Cp, Cpk, and the percentage of results being less than LSL for the alternative production
schedules. It is observed that min(TO) outperforms all other productions scheduling alterna-
tives. The outputs of min(TO) not only centered around the average value but also provide
greater values of Cpk that means the process is better under control in terms of sustainability
index. In order to further evaluate the capability of the production scheduling alternatives,
we have provided the percentage of observations that fall bellow the lower specification limits
(i.e. % < LSL) in Table 7.8. Lower values of % < LSL demonstrate that a process has
greater capability relative to the lower specification limit. We use % < USL to evaluate the
capability of solutions, because the greater PSSI the more sustainable production schedule.
Therefore, those observations that fall below the LSL show large deviations from the excellent
sustainability status. Only 11.76% of min(TO) outputs fall below 8.5. As it is graphically
shown by Figure 7.3, the distributions of sustainability index of min(TO) has a negative
skewness which means that the mass of distribution is concentrated close to the maximum
value of 10. min(CTV ) has the worst sustainability status with PSSI = 7.04, Cp = 0.20,
and Cpk = −0.39 which mean that the output of the production schedule are highly scat-
tered away from the average value. Single objective production scheduling alternatives poorly
perform with high percentage of observation below LSL.

Table 7.7: PSSI capabilities indices for alternative production schedules

Cp Cpk % < LSL

min(TCT ) 0.35 0.01 49.00

min(MCT ) 0.38 0.10 38.65

min(CTV ) 0.20 -0.39 87.76

min(TO) 0.53 0.40 11.76

Sustainability at sub-cluster level

A summary of observations and a comparison of the results for the application of PSSI for the
studied production scheduling alternatives is presented here. Table 7.8 shows the statistics of
sustainability scores at sub-cluster level. It is observed that even though min(TO) generates
the highest value of PSSI, it does not necessarily generates the highest sustainability score
for each sub-cluster. That is because some of sub-clusters are driven by a single metric (e.g.
waiting time is driven only by TCT ) and the weighting approach plays a big role on the
contribution of each metric on the final PSSI value. As it is graphically shown by Figure 7.4
min(TO) has the largest area compared to the other alternative schedules. min(CTV ) has
the smallest area in Figure 7.4 with the lowest score in all sub-clusters but the waiting time
variance, therefore, min(CTV ) can be seen as the least sustainable scheduling alternative
with PSSI of 7.04.
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Figure 7.3: PSSI process capability charts for alternative production schedules

Table 7.8: Statistics of sustainability scores at sub-cluster level

Production

Cost

Energy

Cost

Labor

Cost

Inventory

Cost

Energy

Consumption

Greenhouse gas

Emissions
Waiting Time

Waiting Time

Variance

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

min(TCT ) 8.16 0.82 8.78 0.82 8.78 0.82 10.00 0.00 8.78 0.82 8.78 0.82 10.00 0.00 6.32 1.65

min(MCT ) 8.16 0.84 9.06 0.67 9.06 0.67 8.13 1.33 9.06 0.67 9.06 0.67 8.13 1.33 8.20 1.34

min(CTV ) 7.55 0.97 6.67 1.51 6.67 1.51 5.11 1.94 6.67 1.51 6.67 1.51 5.11 1.94 10.00 0.00

min(TO) 8.50 0.77 9.45 0.43 9.45 0.43 9.35 0.70 9.45 0.43 9.45 0.43 9.35 0.70 7.64 1.49

µ: Average, σ: Standard Deviation

Figure 7.4: Sustainability scores at sub-cluster level

Figure 7.5 shows the Pareto frontiers of sustainability scores average and standard devi-
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ation at the sub-cluster level. It is observed that although min(TO) dominates all the other
alternatives at PSSI level, it does not necessarily needs the dominance at the sub-cluster
level. In fact the PSSI model provides the best compromise among the inconsistent objec-
tives that leads to the best outcome at the higher level, and also provides the decision maker
with a desirable flexibility at the lower levels. These two together are effective tools for the
decision maker to ensure the stability of the overall performance while being able to hedge
against the inconsistencies at the lower levels.
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Figure 7.5: Sub-cluster sustainability score Pareto frontier

Fundamental performance metrics

In order to evaluate the performance of production schedule alternatives in terms of the fun-
damental performance metrics of TCT , MCT , and CTV , we perform a series of statistical
analyses including statistical process control (SPC) and process capabilities analysis. Ta-
ble 7.9 presents the summary of SPC charts (i.e. x̄-R charts) for the studied production
schedule alternatives. For the sake of brevity the SPC charts are not presented.

As it is shown by table 7.9 single objective production scheduling alternatives of min(TCT ),
min(MCT ), and min(CTV ) generate no deviations on their intended objective but very large
deviations on the others. Furthermore, single objective production scheduling alternatives
generate lower PSSI compared to min(TO). On the other hand min(TO) not only provide
the two best PSSI, respectively, but also small and uniform deviations on the fundamental
performance metrics.

As it was discussed earlier, the first step in trade-off balancing is to establish an "ideal
point", the coordinates of the ideal point are given by the optimum values of all objectives. It
is obvious with inconsistent objectives the ideal point is not feasible to achieve, therefore, the
ideal point is only a point of reference. The second step is to establish an "anti-ideal" point.
The coordinates of the anti-ideal point are given by the worst values of all objectives. The
objective of trade-off balancing is to find the closest efficient solution to the ideal-point. To
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Table 7.9: Average performance and control limits of fundamental performance metrics

min(TCT ) min(MCT ) min(CTV ) min(TO)

x-LCL

TCT 0.000 0.151 0.442 0.045

MCT 0.203 0.000 0.142 0.027

CTV 0.327 0.147 0.000 0.199

PSSI 8.32 8.50 6.72 8.92

x̄

TCT 0.000 0.187 0.490 0.065

MCT 0.245 0.000 0.176 0.045

CTV 0.368 0.180 0.000 0.236

PSSI 8.52 8.69 7.04 9.06

x-UCL

TCT 0.000 0.223 0.537 0.084

MCT 0.287 0.000 0.211 0.062

CTV 0.410 0.213 0.000 0.272

PSSI 8.71 8.87 7.36 9.19

R-LCL

TCT 0.000 0.383 0.504 0.209

MCT 0.446 0.000 0.366 0.190

CTV 0.441 0.348 0.000 0.385

PSSI 2.07 1.95 3.43 1.41

R

TCT 0.000 0.603 0.796 0.329

MCT 0.702 0.000 0.576 0.299

CTV 0.695 0.548 0.000 0.606

PSSI 3.27 3.08 5.40 2.22

R-UCL

TCT 0.000 0.823 1.085 0.449

MCT 0.958 0.000 0.786 0.408

CTV 0.949 0.748 0.000 0.828

PSSI 4.46 4.20 7.36 3.03

*LCL: Lower control limit, UCL: Upper control limit

x̄: Average, R: Variation range

measure the distances between a solution and the ideal point, a family of distance functions
are introduced as follows: Lp(ω, k) = [

∑3
k=1(wkD

[k])p]1/p, where wk is the preference of the
decision maker for metric k [40]. When p = 1, L1 measures the longest distance (geometrically
speaking) between solution and the ideal point. Let assume that all three fundamental metrics
have the same importance for the decision maker, that is, L1 =

∑3
k=1D

[k]

3 . Table 7.10 shows
the SPC statistics of L1 for the studied alternatives.

It is observed that min(TO) generates the minimum average L1 of 0.115 with the tightest
bounds of [0.099, 0.131]. Therefore, it can be concluded that minimizing the trade-offs among
the fundamental production scheduling performance indicators of TCT ,MCT , and CTV not
only results in a sustainable production schedule but also provides a better control over the
system performance at the metric level.

In addition to SPC analyses, we perform process capabilities analyses for the fundamental
performance metrics. In order to perform capability analyses, we first need to define the
specification limits of each performance indicator. Equations 7.17 and 7.18 represent the
LSL and USL of performance indictor k using the performance of min(To) (because it has
min(L1,h). This definition not only provides a tight specification limits with only one standard
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Table 7.10: L1 average performance and control limits

min(TCT ) min(MCT ) min(CTV ) min(TO)

x-LCL 0.178 0.107 0.196 0.099

x̄ 0.204 0.122 0.222 0.115

x-UCL 0.231 0.138 0.248 0.131

R-LCL 0.276 0.162 0.276 0.171

R 0.435 0.256 0.435 0.270

R-USL 0.593 0.349 0.594 0.368

std 0.098 0.056 0.100 0.060

*std: standard deviation

deviation but also drives the specification limits towards 0 which is desirable for minimizing
the deviation from the best value for each performance indicator. Table 7.11 shows the
specification limits used in this study.

LSL[k] = max[0, µ
[k]
min(TO) − σ

[k]
min(TO)] (7.17)

USL[k] = µ
[k]
min(TO) + σ

[k]
min(TO) (7.18)

Table 7.11: Specification limits of performance indicators

min(TO) Specification limits

µ σ LSL USL

TCT 0.065 0.070 0.000 0.135

MCT 0.045 0.064 0.000 0.109

CTV 0.236 0.149 0.087 0.385

min(TO) = min(TO[0.5,0.3,0.2])

Given the specification limits shown in table 7.11, we calculate Cp and Cpk of the fun-
damental performance metrics for each scheduling alternative. The results of the capability
analyses are shown by table 7.12.

Table 7.12: Capability results for the scheduling alternatives

min(TCT ) min(MCT ) min(CTV ) min(TO)

Cp

TCT inf 0.17 0.12 0.32

MCT 0.11 inf 0.14 0.29

CTV 0.32 0.37 -inf 0.34

Cpk

TCT inf -0.13 -0.62 0.31

MCT -0.28 inf -0.17 0.23

CTV 0.04 0.23 -inf 0.34

% > USL

TCT 0.00 65.33 96.83 15.49

MCT 79.72 0.00 69.13 15.56

CTV 45.81 6.09 100.00 15.24

It is observed that the single objective optimizations poorly perform in terms of Cp and
Cpk throughout all three fundamental metrics. min(TO) exhibits a uniform and acceptable
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performance. The outputs of min(TO) not only centered around the average value but also
provide greater values of Cpk that means the process is better under control. In order to
further evaluate the capability of different solutions, we have provided the percentage of
observations that fall above the upper specification limits (i.e. % > USL) in table 7.12.
Lower values of % > USL demonstrate that a process has greater capability relative to the
upper specification limit. We use % > USL to evaluate the capability of solutions, because in
a minimization problem the objective is to minimize the deviations from the minimum possible
value. Therefore, those observations that fall above the USL show large deviations from the
best solution and are of extreme importance in decision making. Although single objective
function show a very heterogeneous performance on different metrics i.e. no deviation on their
intended objectives but very large percentage of outputs above USL for the others. On the
other hand min(TO) evenly perform with roughly %15.50 above USL for all three metrics.

7.5 Conclusion

Production scheduling is an operational level of decision making that covers not only the
manufacturing stage of the product life-cycle but also the use stage of the processes life-
cycle. Our comprehensive literature review showed that a systematic model for evaluating
the sustainability of a production schedule with respect to all aspects of triple bottom line
(TBL) is virtually absent. To fill this gap, in this chapter, we proposed a quantitative yet
generic sustainability evaluation scheme for production scheduling. Our proposed Produc-
tion Scheduling Sustainability Index (PSSI) is a hierarchical procedure that decomposes
the objectives defined in TBL into three clusters of (i) Economic-oriented scheduling, (ii)
Environment-oriented scheduling, and (iii) social-oriented scheduling. Each cluster is then
decomposed into multiple sub-clusters each covering a specific area of impact in the pro-
duction. Finally, each sub-cluster is divided into multiple measurable fundamental metrics.
Once the fundamental metrics are measured an aggregation procedure including, normal-
ization and weighting is adopted to calculate PSSI. The weighting scheme can reflect the
decision maker’s preferences according to the policies, regulations, and/or market necessities.

Through an extensive literature review, maximum completion time (MCT ), total com-
pletion time (TCT ), and completion time variance (CTV ) were identified as the most funda-
mental performance metrics that drive many other aspects of the production. We statistically
showed that the objectives of min(TCT ), min(MCT ), and min(CTV ) are inconsistent, that
is, a schedule optimizing all metrics is infeasible. We proposed a trade-off balancing scheme in
order to minimize the distance between the production scheduling performance and an ideal
yet infeasible point at which all the fundamental performance metrics are at their optimum
values. We then utilized the normalized deviation of each metric from its best possible value
to construct the sustainability scores at metric-level of PSSI.

In order to evaluate the efficiency and effectiveness of the proposed models, a compre-
hensive case study on a permutation flow shop scheduling problem was performed. Multiple
production scheduling alternative were compared in terms of sustainability index and the
fundamental performance metrics as well. Our results showed that scheduling for sustain-
ability (i.e. max(PSSI)) outperforms all the studied production scheduling alternatives with
maximum average and minimum standard deviation of PSSI. It was observed that although
max(PSSI) results in the best and tightest bounds for PSSI, it allows larger variation ranges
for the fundamental metrics which provide a less sensitive schedule.

Our future studies will be in two directions including: (i) Since the weighting scheme can
dramatically affect the skewness of PSSI distribution, further studies are required to find the
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most suited weighting scheme for production scheduling sustainability. (ii) Considering the
NP -completeness of most production scheduling problems, it is extremely time consuming
to determine optimum schedules for a large number of jobs. Therefore, developing heuristics
is necessary for the large scale problems. Our next step will be on developing a heuristic for
balancing trade-offs among min(TCT ), min(MCT ), and min(CTV ).
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation addresses an open challenge in the field of operating room planning and
scheduling: inconsistencies among objectives at different levels of decision making process
including strategic in long-term, tactical in medium-term, and operational in short-term.
We proposed balancing trade-offs as an alternative objective function to address this gap.
Table 8.1 presents the summary of this dissertation conclusions.

In Chapter 2, at the strategic level, we identified throughput and total cost as the funda-
mental performance measures driving many other areas of the system. We demonstrated the
inconsistency between the objectives of maximizing throughput and minimizing total cost.
A bi-level chance-constrained objective function was proposed to simultaneously address the
inconsistency between objectives and variations in patient arrivals (demand) and surgical case
times as disturbances blurring the decision space. We introduced two thresholds TL and γ
as the tolerable deviations from the optima of overtime and throughput. Using TL and γ,
we provide OR managers a flexible tools to manage the number of patients in the waiting list
within the financial means of the hospital. We compared the results of the proposed models
with those of single-attribute models. The bi-level model outperformed the single attribute
models by increasing the throughput by 50.84% with only 3.18% increase in the total cost.
SPC results showed that the results of the bi-level objective function is better under control
compared to those of the single-attribute objective functions.

In Chapter 3, at the tactical level, we identified surgery properties (i.e., priority and
type), OR utilization, load distribution, and total cost as managerial concerns. Traditional
bin-packing problem with LPT as the initial sequence is commonly used to assign patients
to ORs with the objective of maximizing utilization. However, the traditional bin-packing
is only capable of addressing OR utilization among the aforementioned managerial concerns.
To fill this gap, we proposed a novel algorithm called PTD to form the initial sequence for
the bin-packing model. The results showed that PTD successfully addressed the surgery
priorities by scheduling surgeries with high priorities in the head of the sequence. PTD also
improved utilization by 10.4% compared to LPT . A metric called smoothness index (SI)
was proposed to evaluate the evenness of load distribution among ORs. PTD outperformed
LPT by 23% improvement in load distribution. The PTD algorithm provides a powerful
tool to manage the priority of surgeries, reducing the number of setups and turnovers, while
increasing the utilization of the system.

In Chapter 4, at the operational level, patient flow mean (PtF ) and patient flow variance
(PtFV ) were identified as two key performance indicator affecting the outcomes of the OR
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peri-operative process. min(PtF ) and min(PtFV ) are of importance for different stakeholders
in the OR peri-operative process. By modeling OR as a single-machine production system,
we analytically proved the inconsistencies of min(PtF ) and min(PtFV ), thus, any scheduling
method generates some levels of trade-offs in the systems. We proposed a minimizing trade-
off function as the alternative objective function. By proving the conditions of optimality,
a novel heuristic was proposed to find the optimal schedule in O(n log n). The performance
of the proposed model was compared with those of single-attribute and existing bi-criteria
models. The proposed models strictly dominated other studied models. The proposed model
on average generated the minimum loss among the studied models with loss average and
standard deviation of (0.1767,0.0232) compared to (0.2537,0.1480) and (0.2600,0.1521) those
of min(PtF ) and min(PtFV ). Minimizing trade-offs between min(PtF ) and min(PtFV )
shifted the outcome of the OR peri-operative process towards a more predictable state at
which the outcomes are also at the minimum distance from their optima.

In Chapter 5, a mixed integer linear programming called BM was proposed in order
to minimize blockings between ORs and the downstream resources of ICUs and PACUs.
The proposed BM model considers the availability of the dowunstream resources before
assigning patients to ORs. This function synchronize the ORs outflow with that of the
downstream resources such that after performing a surgery in an OR, there is always a
downstream unit available to host the patient. Therefore, the expensive OR times are not
used for recovery purposes. The BM model not only synchronizes ORs with the downstream
resources, but also balances the daily occupancy of downstream units throughout the planning
horizon. We compared the performance of the BM model with an existing model that we
called PB, and also with the studied hospital base model. The results showed that the BM
model outperformed the PB and the base model by 85% and 94%, respectively, in terms
of the number of blockings. By evenly distributing the workload among ORs and among
the weekdays, the BM model provided on average a capacity buffer of at least 5.7 units in
the downstream stages. This capacity buffer mitigates the negative impacts of variations in
demand/case times, or it can be used to treat more patients. The results demonstrated the
necessity of considering the availability of the downstream resources while assigning patients to
ORs as opposed to the traditional approach of maximizing the ORs utilization and assuming
that the downstream resources abound.

In Chapter 6, the operational risk management in the OR peri-operative context was
studied. Risk definition, risk sources, and risk consequences were meticulously elaborated.
Risk was defined as “the variations on the distributions of OR peri-operative process out-
comes, their likelihood, and their subjective values”. Variations in demand and case times,
and the inconsistencies among objectives were identified as the risk sources. Unpredictabil-
ity of outcomes and their deviations from the optima were identified as risk consequences.
Finally, balancing trade-offs was proposed as a risk mitigating strategy. The impacts of this
risk mitigating strategy was studied in a surgical case sequencing problem as the test bed in
which total completion time (TCT ) and maximum completion time (MCT ) were identified
as the key performance indicators. It is worth mentioning that min(MCT ) and min(TCT )
are inconsistent objectives. NEH and LR are the best known heuristics to min(MCT ) and
min(TCT ), respectively. The performance of the NEH and LR were compared with those
of CFD(α) the best known heuristic to minimize the trade-offs between min(MCT ) and
min(TCT ). Conditional value at risk, i.e., α-CVaR was used to quantify the risk. The results
showed that CFD(0.2) outperformed the NEH and LR in terms of loss average with average
loss of 5.12% compared to 50% and 49.8% those of the NEH and LR, respectively. CFD(0.3)
outperformed the NEH and LR in terms of loss standard deviation with value of 3.5% com-
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pared to 31.6% and 31.3% those of the NEH and LR, respectively. CFD(0.3) outperformed
the NEH and LR in terms of α-CVaR with average value of 6.03% compared to 27.41% and
37.43% those of the NEH and LR, respectively. Trade-off balancing is capable of reflecting
the decision maker’s preferences into the objective function by which the decision maker has
a powerful yet flexible tool to shift the outcomes of the OR peri-op process towards a more
predictable state with average (0.95-CVaR) of 6.8%, and acceptable subjective values for key
performance indicators with only 3.27% and 1.94% deviations from the optimal solutions to
min(MCT ) and min(TCT ), respectively.

In Chapter 7, we addressed the managerial concerns defined in the triple bottom line
(TBL) including economic, environmental, and social aspect of the production. Through ex-
tensive literature review, TCT , MCT , and completion time variance (CTV ) were identified
as the fundamental performance measures driving different aspects of TBL during implemen-
tation of the production schedules. We showed the inconsistencies among the objectives of
min(TCT ), min(MCT ), and min(CTV ). Therefore, any schedule generates some levels of
trade-offs. We proposed a decomposition structure based on the normalized deviations to link
the fundamental performance measures with the objectives defined in the TBL. The decom-
position structure was followed by am aggregation procedure involving weighting to convert
the normalized deviation into a sustainability score that holistically evaluate the sustainability
performance of the production schedules. The proposed production scheduling sustainability
index (PSSI) outperformed the single-attribute models with PSSI = 9.06 compared to com-
pared to 8.52, 8.69, and 7.04, those of min(TCT ), min(MCT ) and min(CTV ), respectively.
The PSSI model not only generates schedules with the highest sustainability scores, but also
shift the performance of the system in terms of the fundamental performance measures to-
wards a more controllable state. We deliberately kept the PSSI model as generic as possible
such that any practitioner would be able to modify the model with regard to the constraints
of their production systems, i.e., job shop, flow shop, and OR peri-op process as well.

Balancing trade-offs is a flexible yet powerful tool for operating room managers to address
different stakeholders’ preferences, multiple levels of decision making process, inconsistent
objectives, and mitigating risks of non-realization.
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Table 8.1: Summary of Conclusions

C
h
ap

ter

Problem Existing Models Proposed Models Difference Influence

2
Variations in
demand and
case times

Newsvendor
Model, Chance
constrained
programming

Bi-level
Chance-
constrained
models

Outperforming the Newsvendor model by
50.84% in terms of throughput with only
3.18% increase in the total cost.

- Elaborating the relationship between To-
tal Cost and Throughput
- Introducing thresholds as a managerial
tool to manage inconsistent objectives.

3

Surgery prior-
ities, surgery
types, and
total cost

Bin-Packing
with LPT
as the initial
sequence

Bin-Packing
with PTD
as the initial
sequence

Increasing OR utilization by 10.4%,
-Providing a schedule which is insensitive
to setup cost
- Evenly distributing the workloads among
ORs

The PTD algorithm provides a powerful
tool to manage the priority of surgeries, re-
ducing the number of setups and turnover-
s, while increasing the utilization of the
system.

4

Inconsistency
between pa-
tient flow mean
and variance

min(PtF ),
min(PtFV ),
min(bi-criteria)

Trade-off bal-
ancing model

Dominating the single-attribute and bi-
criteria models
- Resulting in minimum loss of (0.1767,
0.0232) compared to (0.2537,0.1480) and
(0.2600,0.1521) those of min(PtFV) and
min(PtF)

- Elaborating the relationship between pa-
tient flow mean and variance.
- Providing a tool to simultaneously ad-
dress conflicting interests.

5 Blockings
between stages

PB model,
Hospital base
model

BM model

- Outperforming PB and the base models
in terms of number of blockings by 85%
and 94% respectively.
- Evenly distributing the workload
throughout the week. Less weekend shift.
Providing capacity for roughly 250 more
patients.

Demonstrating the relationship between
the OR utilization and downstream re-
sources availability.

6

Variations in
demand and
case times,
and inconsis-
tencies among
objectives

LR, NEH

Trade-off bal-
ancing models
CFD(α) with
α-CVaR as the
risk measure

- Outperforming NEH and LR in terms
of Loss average with average loss of 5.12%
compared to 50% and 49.8% those ofNEH
and LR.
- Outperforming NEH and LR in terms
of Loss standard deviation with value of
3.5% compared to 31.6% and 31.3% those
of NEH and LR.
- Outperforming NEH and LR in terms of
α-CVaR with average value of 6.03% com-
pared to 27.41% and 37.43% those ofNEH
and LR.

- Providing a quantitative risk measure in
OR peri-op process.
- Marking the boundaries of Risk in OR
peri-op process.
- Shifting the outcomes of the peri-op pro-
cess toward a state with CVaR of 6.8% and
only 3.27% and 1.94% deviations from the
optima of Util and LoS.

7

Inconsistencies
among objec-
tives defined
in the triple
bottom lines

min(TCT ),
min(MCT ),
min(CTV )

min(TO)
PSSI model

- Dominating single-attribute models in
terms of fundamental performance metric-
s with average value of L1 of 0.115 com-
pared to 0.204, 0.122, and 0.222 those of
min(TCT ), min(MCT ) and min(CTV ),
respectively.
- Outperforming single-atribute models in
terms of sustainability index with average
value of 9.06 compared to 8.52, 8.69, and
7.04 those of min(TCT ), min(MCT ) and
min(CTV ), respectively.

- Defining production scheduling sustain-
ability index (PSSI) for the first time.
- Bridging the fundamental performance
indicators with the objectives defined in
the TBL.
- Providing managerial guidelines to simul-
taneously address sustainability and pro-
cess control concerns.
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8.2 Direction for future works

OR schedules drive the peri-operative process performance, and disturbances (e.g., emergen-
cies, overruns, cancelations) negatively affect the performance of the peri-operative process by
decreasing the predictability of the outcomes. We propose mitigating the uncertainty through
the application of scheduling and adaptive control mechanisms grounded control theory as
shown by Figure 8.1, and illustrated by Equation(8.1) and Equation(8.2) as a linear time vari-
ant system. Where A, B, C, D, D1, and D2 are the state-space matrices. t ≥ 0, x(t) ∈ Rn
is the state, x(0) ∈ Rn is the initial conditions, u(t) ∈ Rm is the control, y(t) ∈ Rk is the
measured performance, and d(t) ∈ Rq is the unmeasured disturbance.

ẋ(t) = Ax(t) + Bu(t) + D1d(t) (8.1)
y(t) = Cx(t) + Du(t) + D2d(t) (8.2)
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Figure 8.1: Adaptive control structure for OR planning and scheduling

The objective of this proposed approach is to design the control u such that the negative
impacts of the disturbance d is minimized or eliminated.
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Appendix A

Appendices

A.1 Proof of Lemma 3

min(TCT ) and min(TADC) are inconsistent objectives

Proof by contradiction: Assume that there exists a sequence σ with assignment matrix
X that simultaneously minimizes TCT and TADC. Therefore, Equations (A.1) and (A.2)
hold.

LB1(P) = min
σ∈Ω

(γ1(σ,P)) = W1XP (A.1)

LB2(P) = min
σ∈Ω

(γ2(σ,P)) = W2XP (A.2)

We can rewrite equations (A.1) and (A.2) into equation(A.3).

(W1 + W2)XP = LB1(P) + LB2(P) (A.3)

Let P = [p1, p2, p3]T be the processing times of three jobs, since Wk is sequence-independent,
Equations (A.1) and (A.2) are rewritten into matrix form as follows:3

2
1


T x11 x12 x13

x21 x22 x23

x31 x32 x33


p1

p2

p3

 =
[
LB1(P)

]
(A.4)

0
2
2


T x11 x12 x13

x21 x22 x23

x31 x32 x33


p1

p2

p3

 =
[
LB2(P)

]
(A.5)

Summation of Equation(A.4) and Equation(A.5) yields Equation(A.6):3
4
3


T x11 x12 x13

x21 x22 x23

x31 x32 x33


p1

p2

p3

 =
[
LB1(P) + LB2(P)

]
(A.6)

Without loss of generality assume p1 = p2 < p3;
By SPT rule; LB1(P) = 3p1 + 2p2 + p3, and by Algorithm 2; LB2(P) = 2p1 + 2p2, therefore,
the right hand side of Equation(A.6) is [LB1(P)+LB2(P)] = [5p1 +4p2 +p3]. We can rewrite
Equation(A.6) in the equation form as:
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3p1(x11 + x12 + x13) + 4p2(x21 + x22 + x23) + 3p3(x31 + x32 + x33) = 5p1 + 4p2 + p3

n∑
i=1

xj,i = 1⇒ 3p1 + 4p2 + 3p3 = 5p1 + 4p2 + p3 ⇒ p1 = p3

p1 = p3 ⇒⇐ p1 < p3 (A.7)

By Equation(A.7) min
σ∈Ω

(γ1(σ,P)) and min
σ∈Ω

(γ2(σ,P)) are consistent if p1 = p3 which contra-

dicts with the assumption p1 < p3, thus Lemma 3 is proved. min
σ∈Ω

(γ1(σ,P)) and min
σ∈Ω

(γ2(σ,P))

are consistent if and only if p1 = p2 = ..., pn which is trivial.

A.2 Proof of Lemma 4

+
σZ(P); the optimal solution to min(Z(α,σ,P)) is V -shaped.

If σ is the optimal sequence to min
σ∈Ω

(Z(α,σ,P)) and is NOT V -shaped, then there are

three consecutive jobs (i, j, k) such that pj > pi and pj > pk, as depicted in Figure 4.1. Let
σ = {σ(1), σ(2), ..., σ(n)} be a sequence and σ′ the sequence obtained from σ by exchanging
σ(i) and σ(i+ 1), then

δ = Z(α,σ,P)− Z(α,σ′,P) = (pσ(i) − pσ(i+1))(
α

R1
+

(1− α)(2i− n− 1)

R2
) (A.8)

We prove that σ cannot be the optimal sequence to min
σ∈Ω

(Z(α,σ,P)) because exchanging

either i and j or j and k will result in a smaller Z(α,P). Let σ′ be the sequence generated
by exchanging jobs i and j. Similarly, let σ′′ be the sequence generated by exchanging jobs
j and k. We need to prove the followings:

I. Z(α,σ,P)− Z(α,σ′,P) < 0⇒ Z(α,σ,P)− Z(α,σ′′,P) > 0

II. Z(α,σ,P)− Z(α,σ′′,P) < 0⇒ Z(α,σ,P)− Z(α,σ′,P) > 0

Proof for II. is similar to the proof for I., therefore, we only prove I.. Assume that job i is in
position e in σ;

By assumption Z(α,σ,P)− Z(α,σ′,P) < 0⇒

(pi − pj)︸ ︷︷ ︸
<0

(
α

R1
+

(1− α)(2e− n− 1)

R2
) < 0

=⇒ α

R1
+

(1− α)(2e− n− 1)

R2
> 0

(A.9)

Z(α,σ,P)− Z(α,σ′′,P) = (pj − pk)︸ ︷︷ ︸
>0

(
α

R1
+

(1− α)(2e− n− 1)

R2︸ ︷︷ ︸
>0 byA.9

+
2(1− α)

R2︸ ︷︷ ︸
>0

)

=⇒ Z(α,σ,P)− Z(α,σ′′,P) > 0

(A.10)

Equation A.10 clearly states that σ′′ is strictly better than σ, therefore, the optimal sequence
to min

σ∈Ω
(Z(α,σ,P)) must be V -shaped.

Copyright© Amin Abedini, 2019.
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