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ABSTRACT 

 

The automotive industry is one of the most important economic sectors, and the 

efficiency of its supply chain is crucial for ensuring its profitability. Developing and 

applying techniques to optimize automotive supply chains can lead to favorable 

economic outcomes and customer satisfaction.  In this dissertation, we develop integrated 

models and algorithms for automotive supply chain optimization. Our objective is to 

explore methods that can increase the competitiveness of the automotive supply chain via 

maximizing efficiency and service levels. Based on interactions with an automotive 

industry supplier, we define an automotive supply chain planning problem at a detailed 

operational level while taking into account realistic assumptions such as sequence-

dependent setups on parallel machines, auxiliary resource assignments, and multiple 

types of costs. We model the research problem of interest using mixed-integer linear 

programming.  

Given the problem’s NP-hard complexity, we develop a hybrid metaheuristic 

approach, including a constructive heuristic and an effective encoding-decoding strategy, 

to minimize the total integrated cost of production setups, inventory holding, 

transportation, and production outsourcing. Furthermore, since there are often conflicting 

objectives of interest in automotive supply chains, we investigate simultaneously 

optimizing total cost and customer service level via a multiobjective optimization 

methodology. Finally, we analyze the impact of adding an additional transportation 

mode, which offers a cost vs. delivery time option to the manufacturer, on total integrated 
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cost. Our results demonstrate the promising performance of the proposed solution 

approaches to analyze the integrated cost minimization problem to near optimality in a 

timely manner, lowering the cost of the automotive supply chain. The proposed bicriteria, 

hybrid metaheuristic offers decision makers several options to trade-off cost with service 

level via identified Pareto-optimal solutions. The effect of the available additional 

transportation mode’s lead time is found to be bigger than its cost on the total integrated 

cost measure under study. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

The automotive industry is the largest manufacturing sector in the United States 

(U.S.) in terms of the number of people employed and it also has one of the largest 

employment multiplier effects in the U.S. economy. Growth or contraction of this sector 

has a significant impact on the U.S. Gross Domestic Product (Rightmer 2012). 

Consequently, the competitiveness of the automotive industry is indispensable for 

achieving prosperity. As automotive companies face intense competition, ever-increasing 

customer expectations, unpredictable customer loyalty, and little tolerance for poor 

quality, the industry has developed advanced production systems and excess capacity 

where possible. Furthermore, due to the nature of this industry, companies operate under 

tremendous pressure to carry low inventory levels while still meeting acceptable 

customer service levels (Jacobs et al. 2009). The automotive industry has been focusing 

on its supply chains to increase customer satisfaction with the ultimate aim of generating 

greater levels of productivity, profitability, and competitiveness (Sezen et al. 2012, Singh 

et al. 2005). 

 A supply chain typically consists of suppliers, manufacturing centers, warehouses, 

distribution centers, and retail outlets, as well as raw materials, work-in-process 

inventory, and finished products that flow between the facilities (Figure 1). In practice, it 

is desirable to be efficient and cost-effective across the entire supply chain rather than 
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simply minimizing transportation costs or minimizing inventories in isolation (Simchi-

Levi et al. 2008). In addition to being economically important, the automotive industry is 

one of the most technologically complex industries. Given this high degree of 

technological sophistication, automotive companies have focused on their core 

competencies, one of which is preserving high efficiency. As a result, complex 

automotive supply chain structures have evolved over time. Typically, automotive supply 

chains revolve around original equipment manufacturers (OEM). Competitive pressures 

and mergers have reduced the total number of automotive OEMs to fewer than 20 

companies throughout the globe. Figure 2 shows a general schematic of a typical 

automotive supply chain (Chandra and Grabis 2007).  

 

 

Figure 1. A Typical Supply Chain (Simchi-Levi et al. 2008) 
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Figure 2. A General Schematic of an Automotive Supply Chain (Chandra and Grabis 2007) 

 

 

OEMs assemble vehicles and deliver them to dealers. This assembly is performed 

in a complex network of manufacturing plants. These plants do not merely put together 

vehicles but form a multi-tier manufacturing system including the manufacturing of such 

parts as exterior body panels and engines. The majority of product development work is 

done by OEMs. Consolidation in the automotive industry has also affected the supply 

chain’s supplier tier, which includes the following groups of suppliers: 

 indirect suppliers who manufacture parts sold to direct suppliers (e.g., steel) 

 direct suppliers who manufacture parts sold directly to system integrators or 

OEMs (e.g., tire manufacturers) 

 system integrators who provide complex and often self-engineered modules 

directly to OEMs (e.g., dashboard manufacturers) 
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This classification does not include suppliers of raw materials, which usually are also 

tightly integrated into automotive supply chains by long-term contracts. However, they 

differ from other suppliers because raw materials suppliers are less involved in product 

engineering activities and because many materials can also be purchased in the spot 

market. Each company can be a member of different supplier groups according to the 

product in question. 

Recently, the system integrator tier has undergone a major change in its role in the 

automotive supply chain. A few decades ago, OEMs performed many functions currently 

handled by system integrators. After OEMs outsourced the manufacturing of many parts, 

system integrators initially maintained strong relationships with their parent company. 

Currently, despite numerous obstacles, system integrators supply to multiple OEMs. 

Furthermore, many suppliers for which the automotive industry is not their primary focus 

have joined automotive supply chains as the variety of options offered to customers has 

increased. That is especially true of electronics suppliers (Chandra and Grabis 2007). 

 Although automotive supply chains typically are established around a single 

OEM, pressure to reduce costs has prompted several major companies to form long term 

or temporary alliances, such as the alliance between General Motors Corporation and 

Fiat. These alliances have relatively minor impact on the assembly tier of the supply 

chain although they can affect suppliers upstream in the supply chain. While the 

automotive industry traditionally has had a strong focus on engineering and 

manufacturing, the customer tier has been gaining an ever increasing level of importance. 

Many automotive companies have found themselves in trouble because of their inability 
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to respond to customer preferences. Achieving flexibility without compromising 

efficiency is among the industry’s top priorities. Lean manufacturing coupled with 

automated manufacturing systems are among the main approaches employed to follow 

this priority. The growing focus on the customer tier has also been influenced by mass 

customization, the pairing of mass production efficiency with customer demand for 

customized products. Option-based customization dominates the automotive industry as 

customers can configure vehicles by selecting from a range of available standardized 

options. 

 The distribution tier of the automotive supply chain remains comprised of 

dealerships associated with major automotive manufacturers. OEMs have largely 

abandoned direct sales plans, although they continue expanding their use of the Internet 

as a means to better connect with their customers by providing online vehicle 

configuration capabilities. The European Commission’s competition rules have made it 

possible for dealers to sell products manufactured by multiple companies, although that is 

yet to have a significant impact on vehicle distribution. Sales to repair shops and other 

aftermarket consumers also play an important role, and they can occur at any supply 

chain tier (Chandra and Grabis 2007). 

1.2 Motivation  

In this dissertation, we develop and apply models and algorithms that integrate 

different supply chain functions in the automotive industry. We explore the application of 

mixed-integer linear programming and multi-objective optimization methodologies to a 

realistic, integrated supply chain planning problem. Our overall objective is to investigate 
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methods that ultimately increase the competitiveness of the automotive supply chain via 

exploring the tradeoff between efficiency and service levels. 

The motivation for this research comes from interactions with a Tier-1 automotive 

supplier to several major automobile manufacturers. The primary application of this 

research is the production and transportation of bulk interior parts for automotive OEM 

plants.  An injection molding process is used by the supplier to produce dashboards, door 

panels, and other automotive parts. The finished parts are then transported to several 

distribution centers via full truck loads for supplying OEM plants. We focus on the 

integrated production and transportation planning problem while taking into account 

realistic conditions such as sequence-dependent setups on multiple injection modeling 

machines operating in parallel, auxiliary resource assignments of overhead cranes, and 

multiple types of incurred costs. Since unit loads of finished parts are delivered through 

direct trips from the plant to distribution centers, no vehicle routing is considered in the 

supply chain system under study. 

1.3 Research Contributions 

The first contribution of this dissertation research is in developing a model for 

minimizing the total integrated cost of production setups, inventory holding, outsourcing, 

and transportation in an integrated automotive supply chain. We introduce a model that 

recommends time-phased production, inventory, and shipping decisions. In addition to a 

mathematical model, we provide a heuristic-based solution approach for this problem in 

order to produce solutions for industrial manufacturers in a reasonable amount of time. 
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The second contribution of this research is that we develop a multi-objective 

optimization methodology for integrated automotive supply chains. The two objectives of 

interest in this dissertation are total cost (production set-up, inventory holding, and 

transportation) and customer service level (i.e., maximum percent outsourced parts per 

customer). These two objectives reflect the realistic trade-off that is often encountered by 

automotive industry suppliers. Our goal is to plan for the right levels of production, 

inventory, shipping, and outsourced quantities over the planning horizon that effectively 

trade-off these two conflicting objectives. 

The third contribution of this dissertation is that it extends our mathematical 

model to include additional, realistic modes of transportation (e.g. intermodal). This 

extension will help companies to decide between transportation mode alternatives based 

on their associated cost impacts. Although the extended model is more difficult to solve, 

it could ultimately result in or lower cost operations when effective heuristic methods are 

applied to it.  

1.4 Research Significance 

Very few integrated production and transportation optimization studies have been 

applied to real-world supply chains (Mula et al. 2010). Furthermore, the research studies 

published to date do not focus on integrated supply chain planning in the automotive 

industry. Lastly, we also assert that few (if any) previous research studies present multi-

criteria optimization methodologies for integrated supply chain planning problems. In 

total, we claim the following key points differentiate the dissertation research from 

previously conducted research studies: 
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 we integrate different supply chain functions (production, warehousing, and 

transportation) of a Tier-1 automotive supplier at a detailed level to optimize a 

number of decisions involving multiple part types and multiple customers: 

production quantities on multiple resources (including parallel machines and 

auxiliary resources), inventory levels, and shipping quantities 

 our research incorporates sequence-dependent setup times in the integrated 

model 

 we apply mixed-integer programming and multi-objective optimization 

methodologies to the proposed problem to simultaneously address total cost 

and service level tradeoffs 

 we develop suitable algorithms (such as heuristics/metaheuristics) to solve the 

proposed problem in a timely manner for industry use 

 we interact with industry to formulate our models based on realistic 

assumptions 

1.5 Literature Review 

1.5.1 Integrated Production and Transportation Planning 

A review of mathematical programming models for supply chain production and 

transportation planning is presented by Mula et al. (2010). The authors review a total of 

44 references over the period from 1989 to 2009. The paper presents a taxonomy 

framework based on the following elements: decision level, supply chain structure, 

application, modeling approach, purpose, shared information, limitations, and novelty 
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(Figure 4). The studies reviewed deal with production planning models that consider 

transportation as a resource to distribute products and focus on the tactical and/or 

operational levels of emphasis. However, their possible combinations with aspects of 

strategic decisions are also discussed. The authors conclude that proposed models in the 

literature often are validated by numerical examples more than by actual case studies 

applied to real-world supply chains. While some of the reviewed papers deal with 

applications, such as glass production, steel production, and the chemical industry, none 

involve the automotive industry with its technologically complex nature. Timpe and 

Kallrath (2000) describe a general mixed-integer linear programming model based on a 

time-indexed formulation for complete supply chain management of a multi-site 

production network. While the actual application is taken from the chemical industry, the 

model provides a starting point for many applications in the chemical process industry, 

food, or consumer goods industries. This model captures aspects of continuous 

manufacturing and thus does not apply to the discrete manufacturing of highly variable 

automotive parts. 
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Figure 3. Taxonomy Criteria (Mula et al. 2010) 

 

 One approach in supply chain planning is to integrate different supply chain 

functions (e.g. purchasing, production, distribution, and storage) into a single, monolithic 

model (Park 2005). Rizk et al. (2006) examine a multi-item, dynamic production-

distribution planning problem between a manufacturing location and a DC. 

Transportation costs between the manufacturing location and the distribution center offer 

economies of scale and can be represented by general piecewise linear functions. The 

production system at the manufacturing location is a serial process with a multiple 

parallel machine bottleneck stage and divergent finishing stages. A tight mixed-integer 

programming model of the production process is proposed, as well as three different 

formulations to represent general piecewise linear functions.  

 Next, Rizk et al. (2008) study the flow synchronization problem between a 

manufacturing location and multiple destinations. Multiple products can be shipped from 

the manufacturing location to different locations via multiple transportation modes. These 

transportation modes may have different transportation lead times. The transportation 
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costs structure of the different transportation modes offer economies of scale and can be 

represented by general piecewise linear functions. The authors propose a tight mixed-

integer programming model for integrated planning of production and distribution in the 

network. The solution methods proposed are tested experimentally for realistic problems 

and the advantage of integrated planning over independent but synchronized planning is 

assessed. The models presented by Rizk et al. (2006) and Rizk et al.  (2008) reflect 

aspects found in several process industries including divergent finishing stages, such as 

the pulp and paper industry, the aluminum industry, and the processed food industry. 

However, such models do not reflect important characteristics of the automotive supply 

chain industry, such as sequence-dependent setup times and compatibility constraints. 

1.5.2 Integrated Production and Distribution Scheduling 

Thomas and Griffin (1996) note that there is scarcity in the literature addressing 

supply chain coordination at an operational level. Chen (2004) confirms that there is a 

gap of integrated models at the detailed scheduling level, and that there is a need for fast 

solution algorithms. Chen (2010) reviews existing models that integrate production and 

outbound distribution scheduling and synthesizes existing results on these models. In 

practice, decisions at the aggregate planning level and those at the detailed scheduling 

level often follow a hierarchical relationship. 

Aggregate production-distribution plans on product mix, production and 

transportation capacity availability, and allocation of capacity to products in a given 

planning horizon (i.e. tactical level) are often used as inputs to generate detailed order-

by-order processing and delivery schedules over shorter periods of time (i.e. operational 
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level). The scope of research reviewed includes make-to-order (a.k.a. assemble-to-order, 

build-to-order) business models in which products are custom-made and delivered to 

customers within a very short lead time directly from the factory, such as assembly and 

delivery of personal computers and production and distribution of fashion apparel. 

Consequently, there is little or no finished product inventory in the supply chain such that 

production and outbound distribution are very closely linked and must be scheduled 

jointly to achieve a desired on-time delivery performance at minimum total cost. Other 

supply chain environments include time-sensitive products, such as perishable products 

(e.g. ready-mix concrete paste and industrial adhesive materials). 

1.5.3 Injection Molding Scheduling 

Ghosh Dastidar and Nagi (2005) model an injection molding scheduling problem 

as a mixed-integer program involving parallel work centers, sequence-dependent setup 

times and costs, and multiple capacitated resource constraints for a multi-item, multi-

class of products in a single stage. The authors collaborate with a healthcare injection 

molding company. The objective is to meet customer demands while minimizing total 

inventory holding costs, backlogging costs, and setup costs. The complexity associated 

with the formulation makes it difficult for standard solvers to address industrial-

dimensioned problems in reasonable solution time. The authors propose a two-phase 

work center-based decomposition scheme, dividing large dimensioned problems into 

smaller sub-problems. The computational results for different problem sizes demonstrate 

that this scheme is able to solve industrial-dimensioned problems within reasonable time 

and accuracy. Our proposed research problem is different from the one presented in this 
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paper as we simultaneously optimize transportation decisions while incorporating crane 

assignment decisions in the model. Furthermore, we analyze a more extensive 

experimental problem instance set to reflect realistic conditions in the automotive 

industry. 

1.5.4 Automotive Supply Chain Modeling 

 Limere et al. (2012) introduce a mathematical cost model for evaluating the 

assignment of parts to one of two possible material supply systems: kitting or line 

stocking. Case data from an automotive company in Belgium is used to test the model. 

The results demonstrate that hybrid policies wherein some parts are kitted while others 

will be stocked in bulk at the line are preferred to the exclusive use of either material 

delivery system. The factors influencing the preferred delivery method for individual 

parts are explored. The proposed model is a first attempt to fill a gap in the literature 

related to kitting. Klug (2011) analyzes critical issues in container demand planning for 

the product development phase of a new car model before the start of production. Monte 

Carlo simulation is used to incorporate parameter uncertainty as the study is based on real 

data from a multi-tier inbound transportation network. 

1.5.5 Literature Review Summary 

Our review of the available literature reveals that there is a gap in the literature 

focusing on modeling the automotive supply chain. We could identify only one study that 

applies mixed-integer linear programming to automotive supply chains. However, this 

study does not deal with integrated production and transportation planning, which is the 
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subject of our proposed research problem. Although mixed-integer linear programming is 

applied to the integrated production and transportation planning problem as shown in the 

reviewed studies, none of these models deals with the automotive industry and thus none 

focuses on discrete manufacturing aspects or sequence-dependent setup times. A 

somewhat relevant model to the current research is the one presented by Ghosh Dastidar 

and Nagi (2005). However, the current research problem is different because it 

incorporates transportation and auxiliary resource (i.e., crane) decisions. Very few 

integrated production and transportation optimization studies have been applied to real-

world supply chains (Mula et al. 2010). Furthermore, the research studies published to 

date do not focus on integrated supply chain planning in the automotive industry. The 

current dissertation research attempts to start filling this gap in the related literature. 

1.6 Dissertation Outline 

The rest of this dissertation document is organized as follows. Chapter 2 presents 

the mathematical model and heuristic solution approaches for minimizing the integrated 

cost of the two-stage, automotive supply chain. Next, Chapter 3 provides the heuristic 

solution methodology for the bi-criteria optimization problem of interest, while Chapter 4 

analyzes the two-stage automotive supply chain with heterogeneous transportation. 

Finally, Chapter 5 provides the overall conclusions and future research directions. 
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CHAPTER TWO 

INTEGRATED COST OPTIMIZATION IN A TWO-STAGE, AUTOMOTIVE 

SUPPLY CHAIN 

 

The efficiency of the automotive supply chain is crucial for ensuring the 

competitiveness of the automotive industry, which represents one of the most significant 

manufacturing sectors. We model the integrated production and transportation planning 

problem of a Tier-1 automotive supplier while taking into account realistic conditions 

such as sequence-dependent setups on multiple injection molding machines operating in 

parallel, auxiliary resource assignments of overhead cranes, and multiple types of costs. 

Finished parts go to the integrated supply chain’s second stage, transportation, for 

subsequent delivery by capacitated vehicles to multiple distribution centers for meeting 

predefined due date requirements. We develop a mixed-integer, linear programming 

model of the problem, and then present a hybrid simulated annealing algorithm (HSAA), 

including a constructive heuristic. Our proposed HSAA employs an effective encoding-

decoding strategy to approximately solve the NP-hard problem in a timely manner. 

Computational results demonstrate the promising performance of the proposed solution 

approach. 

2.1 Introduction 

The automotive industry is the largest manufacturing sector in the United States 

(U.S.) in terms of the number of people employed and it also has one of the largest 

employment multiplier effects in the U.S. economy. Growth or contraction of this sector 
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has a significant impact on the U.S. Gross Domestic Product (Rightmer 2012). 

Consequently, the competitiveness of the automotive industry is important for a higher 

standard of living. As automotive companies face intense competition, ever-increasing 

customer expectations, unpredictable customer loyalty, and little tolerance for poor 

quality, the industry has developed advanced production systems and excess capacity 

where possible. Furthermore, due to the nature of this industry, companies operate under 

tremendous pressure to carry low inventory levels while still meeting acceptable 

customer service levels (Jacobs et al. 2009). The automotive industry has been focusing 

on its supply chains to increase customer satisfaction with the ultimate aim of generating 

greater levels of productivity, profitability, and competitiveness (Sezen et al. 2012, Singh 

et al. 2005). 

 A supply chain typically consists of suppliers, manufacturing centers, warehouses, 

distribution centers, and retail outlets, as well as raw materials, work-in-process 

inventory, and finished products that flow between the facilities. In practice, it is 

desirable to be efficient and cost-effective across the entire supply chain rather than 

simply minimizing transportation costs or minimizing inventories in isolation (Simchi-

Levi et al. 2008). In addition to being economically important, the automotive industry is 

one of the most technologically complex industries. More information about recent 

developments in the automotive supply chain is presented by Chandra and Grabis (2007). 

The motivation for this research comes from interactions with a Tier-1 automotive 

supplier to several major automobile manufacturers. The primary application of this 

research is the production and transportation of bulk interior parts for automotive OEM 
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plants. An injection molding process is used by the supplier to produce dashboards, door 

panels, and other automotive parts. The finished parts are then transported to several 

distribution centers for supplying OEM plants. We focus on the integrated production and 

transportation planning problem while taking into account realistic conditions such as 

sequence-dependent setups on multiple injection molding machines operating in parallel, 

auxiliary resource assignments of overhead cranes, and multiple types of incurred costs. 

The research problem deals with multi-period planning for production, inventory, 

and transportation in a two-stage, integrated supply chain system. In the first stage, 

production, different parts must be scheduled on multiple parallel machines according to 

part-machine compatibility restrictions—we seek to determine appropriate part 

production lot sizes. Setups pertaining to tool change vs. color change must be performed 

to allow an injection molding machine to changeover to a different tool or color. Another 

limited resource in the production stage is cranes that are required for machine 

changeovers to a different tool. However, each crane can only serve certain machines due 

to crane-machine compatibility constraints. 

The manufacturing plant’s finished parts warehouse has a limited capacity. 

Finished parts go to the integrated supply chain’s second stage, transportation, for 

subsequent delivery by capacitated vehicles to multiple distribution centers (DCs) to meet 

predefined due date requirements. Transportation occurs via full truck load (TL) and 

transportation cost is fixed from the plant to each DC. As the manufacturer typically 

outsources transportation, we assume that there exist an infinite number of delivery 

vehicles. Each manufactured part is associated with a customer (i.e., DC) and has its own 
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required cycle time, size (i.e., storage space requirement), and demand schedule (i.e., 

quantities and due times at a DC). The supply chain only allows direct deliveries without 

any intermediate stops (i.e., only one customer per trip). Figure 4 shows the supply chain 

system under study. Our motivating research objective is to minimize total cost, which is 

comprised of setup costs, inventory (holding) costs, transportation costs, and outsourcing 

costs. 

 

 

Figure 4. Schematic of the Automotive Supply Chain under Investigation 

 

One approach in supply chain planning is to integrate different supply chain 

functions (e.g. purchasing, production, distribution, and storage) into a single, integrated 

model (Park 2005). Thomas and Griffin (1996) note that there is scarcity in the literature 

addressing supply chain coordination at an operational level. Chen (2004) confirms that 

there is a gap of integrated models at the detailed scheduling level and that there is a need 

for fast solution algorithms. Chen (2010) reviews existing models that integrate 
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production and outbound distribution scheduling in make-to-order supply chains with 

little or no finished product inventory in the supply chain, such as the production and 

distribution of fashion apparel and the assembly and delivery of personal computers.  

Mula et al. (2010) indicate that proposed integrated production and transportation 

planning models in the literature often are validated by numerical examples more than by 

actual case studies applied to real-world supply chains. Mixed-integer linear 

programming is applied to the integrated production and transportation planning problem 

in different contexts, such as continuous manufacturing (Timpe and Kallrath 2000) and 

process industries (Rizk et al. 2006, Rizk et al. 2008). We could not identify any paper 

that models the integrated production and transportation planning problem in the 

automotive industry at a detailed, operational level, reflecting its technological 

complexity, discrete manufacturing aspects, sequence-dependent setup times, and 

compatibility constraints. 

Klug (2011) uses Monte Carlo simulation to analyze critical issues in container 

demand planning for the product development phase of a new car model before the start 

of production. Limere et al. (2012) introduce a mathematical cost model for evaluating 

the assignment of automotive parts to one of two possible material supply systems: 

kitting or line stocking. Zhang et al. (2011) study the trade-offs between inventories, 

production costs, and customer service level in an automobile manufacturing supply 

chain network, but do not model the details that are included in our proposed research 

problem. Although a somewhat relevant model to the current research is the one 

presented by Ghosh Dastidar and Nagi (2005), our proposed research problem is different 
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as we incorporate transportation and auxiliary resource (i.e., crane) decisions. 

Furthermore, we analyze a more extensive experimental problem instance set to reflect 

realistic conditions in the automotive industry. The current research aims to start filling 

the literature gap of integrated automotive supply chain planning at a detailed, 

operational level.  

The rest of this chapter is organized as follows. Section 2.2 formulates a mixed-

integer linear programming (MILP) model that captures various pertinent aspects of the 

problem under study. Due to the problem’s complexity and the associated inability to 

solve large problem instances optimally, a hybrid simulated annealing algorithm is 

developed for industry application in Section 2.3. Then Section 2.4 describes the 

experimental study used to evaluate the proposed solution methodologies. Section 2.5 

overviews the computational results, and Section 2.6 presents the conclusions and future 

research directions.  

2.2 Mixed-Integer Linear Programming Model 

We now present a mathematical programming model for minimizing total cost in 

an integrated, two-stage automotive supply chain. Before presenting the model and its 

associated notation, we first detail the necessary assumptions made in our research study: 

 The number of part types produced by a machine is restricted to one per time 

period.  

 Every machine has a production capacity that cannot be exceeded.  

 Parts are shipped directly to customers or held in inventory for shipping in later 

periods. 
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 Finished part warehouse at the plant has a holding capacity that cannot be 

exceeded.  

 Every transportation vehicle has a capacity bound that cannot be exceeded. 

 A maximum of one machine setup per time period can be performed by a crane. 

 Handling times between machines and finished part warehouse at the plant are 

negligible. 

 All machines have been initially set up before the first time period. 

 There is no plant finished part inventory at the beginning of the planning horizon. 

2.2.1 Notation 

Index Sets 

I  set of machines, indexed by i 

J  set of cranes, indexed by j 

P  set of part types, indexed by p 

W  set of distribution centers, indexed by w 

T  set of time periods, indexed by t 

 

Parameters 

Dt,p,w  demand by distribution center w of part type p in time period t (parts) 

    unit production time (cycle time) of part type p (secs) 

F  length of time period (hours) 

Si,p,p’  changeover time from part type   to part type    on machine i (mins) 

Ep  maximum quantity of parts per unit load of part type p (parts/unit load) 

K  plant finished part warehouse capacity (unit loads) 

G  vehicle capacity (unit loads) 

Hp  unit inventory holding cost of part type p ($/part/period) 

Lw  cost of a vehicle trip from plant to distribution center w ($/trip) 

Mi  cost of downtime on machine i ($/min) 

Np  cost of outsourcing of part type p ($/part) 

Ai,p  equals one if machine i is compatible with part type p, 0 otherwise 

Bj,i  equals one if crane j can serve setup on machine i, 0 otherwise 

Cp,p’  equals one if setup from part type   to part type   requires a crane,  

0 otherwise 
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Decision Variables 

        quantity of part type p transported to distribution center w in time period 

t 

      number of vehicle trips to distribution center w in time period t 

      quantity of finished part inventory of part type p in time period t 

        quantity of part type p processed on machine i in time period t 

        quantity of outsourcing of part type p demanded by distribution center w 

in time period t 

        equals one if machine i processes part type p in time period t, 0 

otherwise 

           equals one if machine i changes over from part type   to part type    in 

time period t, 0 otherwise 

        equals one if crane j serves setup on machine i in time period t, 0 

otherwise 
 

2.2.2 Model 
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      ,          ,         {   } 
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The model’s objective function (1) minimizes total cost, which is composed of 

setup, inventory holding, transportation, and outsourcing cost. Constraint set (2) 

calculates the number of vehicle trips to every distribution center at every time period 

based on truck capacity and unit load volumes, while constraint set (3) computes the 

quantities of outsourcing of every part type demanded by each DC in every time period. 

Next, constraint set (4) ensures the capacity of plant finished part warehouse is not 

exceeded. Constraint sets (5) and (6) conserve the flow of every part type inventory 
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during the first time period and after the first time period, respectively. Next, constraint 

sets (7) and (8) ensure the available capacity of every machine cannot be exceeded during 

the first time period and after the first time period, respectively. 

Constraint set (9) dictates that if a machine changes to a different part type after 

the first time period, a setup is required. Constraint set (10) ensures that every machine 

respects machine-part type matching restrictions. Constraint set (11) limits the number of 

part types produced by a machine to one per time period. Next, constraint set (12) 

enforces that a machine setup requiring a crane (i.e., a tooling changeover) occurs if and 

only if a crane serves the setup. Constraint set (13) dictates that every crane respects 

crane-machine compatibility restrictions. Next, constraint sets (14) and (15) limit the 

number of machine setups per time period to a maximum of one per crane and one per 

machine, respectively. Finally, constraint sets (16) and (17) are non-negativity integer 

and binary value constraints, respectively. 

A number of small problem instances were created and solved to optimality using 

Gurobi to verify the accuracy of the proposed model. For example, one such small 

problem consisted of five machines, three cranes, five part types, four time periods, and a 

single DC. The optimal objective function value obtained by Gurobi version 5.1 was the 

same as that which was produced by manual calculations and therefore, the model was 

deemed to be accurate and valid.  

2.2.3 Complexity 

The current integrated supply chain problem of interest subsumes another known-

to-be NP hard problem, the capacitated lot sizing problem (Florian et al. 1980). The 
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classical capacitated lot sizing problem consists of determining the amount and timing of 

production over a planning horizon. Capacity restrictions constrain the production 

quantity in each period. A fixed setup cost and a linear production cost are specified, and 

there is also an inventory holding cost proportional to the inventory amount and time 

carried. The proposed integrated research problem subsumes the classical capacitated lot-

sizing problem because the former involves additional constraints, such as sequence-

dependent setup times and transportation constraints. 

To illustrate, consider a special case of our research problem, where there is only 

one distribution center that is located in the same plant facility, so there is no 

transportation. Also, the cost of outsourcing is relatively very large, and there is enough 

production capacity to satisfy all of the demand, so the optimal solution to the problem 

dictates that there is no outsourcing (i.e. all demand is satisfied from in-house 

production). At the same time, all setups require no cranes (i.e. all part types need only 

one tooling) and are not sequence dependent (i.e. setup times are determined only by the 

current part type and are not affected by the previous part type on the same machine). 

Furthermore, there are no compatibility restrictions between machines and part types. In 

this special case of our problem, the objective function (1) consists of only two 

components, which are production setup cost and inventory holding cost. Constraint sets 

(2), (9), (10), (12), (13), (14), and (15) are omitted due to the described conditions. 

Furthermore,       is removed from (3) and (16), and        is taken out of (5), (6), and 

(16). Finally,          , and        are removed from (17). Then the remaining model 

reflecting this special case is the capacitated lot sizing problem, which is NP-hard. Since 
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the capacitated lot sizing problem is a special case of our research problem, no algorithm 

exists that can solve the current research problem of interest to optimality in polynomial 

time. Therefore, we propose a heuristic algorithm for achieving near-optimal solutions in 

a timely manner, especially for large problem instances. 

 

2.3 Hybrid Simulated Annealing Algorithm 

The first use of simulated annealing (SA) to solve combinatorial optimization 

problems was introduced by Kirkpatrick et al. (1983). SA is known for its flexibility and 

ability to handle large and complex problems (Jans and Degraeve 2007), and it is a 

memoryless algorithm in that the algorithm does not use any information gathered during 

the search prior to the current iteration. In addition to the current solution, the best 

solution found since the beginning of the search is stored (Talbi 2009). There are four 

components of the proposed hybrid simulated annealing algorithm (HSAA): encoding-

decoding strategy, constructive heuristic starting solution, perturbation schemes, and 

algorithm parameters. We now detail additional required notation and equations, and then 

describe the proposed HSAA for integrated automotive supply chain planning. 

2.3.1 Required HSAA Notation and Equations 

    grand total demand per part type 

    upper bound of number of machine runs required to satisfy grand total 

demand per part type 

   upper bound of number of machine runs  

      lower bound of number of machines needed to satisfy part type time 

period demand 

    part type “fortune” (number of machines compatible with the part type ) 

   matrix of priority lists of part type machine runs over planning horizon  
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iter  HSAA iteration counter 

fbest  minimum total cost achieved throughout the search (corresponding to 

     ) 
         resulting in the least total cost achieved throughout the search 

(corresponding to fbest) 

 ̃      HSAA temperature parameter at iteration iter (e.g. iter=1, 2, 3…etc.) 

 ̃  HSAA parameter used in the cooling schedule 

pr  probability of accepting proposed solution           and fproposed 

rand  a random number between 0 and 1 generated from uniform distribution 

    ̅̅ ̅̅ ̅  maximum number of iterations in HSAA (stopping criterion) 
 

Equation sets (18)-(22) define the first five parameters mentioned above in the 

notation listing. The ceiling operator ⌈ ⌉ produces the smallest integer not less than  . 

The definitions of the remaining parameters are discussed in the following sections. 

   ∑ ∑       
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⌉         pP (21) 
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  pP (22) 

2.3.2 Encoding-Decoding Strategy 

While most steps of the proposed HSAA, including the constructive heuristic, 

work in the encoding space, the decoding step is responsible for generating the values of 

all decision variables and objective function (i.e. total integrated cost) related to a specific 

encoding. We present an effective, indirect encoding method that is motivated by the 
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need to capture all practically possible assignments of part types to machine and crane 

setups flexibly, yet efficiently. The proposed encoding method avoids generating any 

infeasible solutions from perturbation schemes, and it also aims to reduce the search 

space as much as possible. These aspects contribute to the ultimate objective of 

improving the algorithm’s performance. The encoding for the proposed HSAA consists 

of the matrix   that has |T| rows and | |   columns. Each row in   represents a single 

time period and consists of an active tuple of size | | and an inactive tuple of size  . The 

active tuple reflects a priority list. Considering an active tuple, every entry in that active 

tuple represents either a possible part type run or a forced machine idling. A part type run 

or machine idling in the active tuple’s first entry (column) has a higher priority than the 

second entry, and so on. Since every entire row in   is generated to consist of all possible 

part type runs and machine idle periods that could be required to satisfy the total demand 

over the planning horizon, the goal is to activate the best tuple of entries of part types and 

machine idlings in every time period to arrive at the lowest total integrated cost. 

This approach also efficiently prioritizes setups to allow the most effective 

assignment of cranes. Depending on the parameters    and  , an example of the matrix   

for a small problem instance with | |    | |        | |    could be like the one 

shown in Figure 5. In this small instance, there are two runs for part type one, three runs 

for part type two, and one run for part type three. For example, the active tuple in the first 

row (i.e., first time period) prioritizes first a part type two run, then a part type one run. 

Next, a machine is left idle. The inactive tuple has no effect on the decision variable and 

objective function values resulting from the decoding step in a current HSAA iteration. 
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However, due to applied perturbation schemes, some of the current inactive tuple entries 

can belong to active tuples in future iterations and are then decoded accordingly. 

In the proposed HSAA, the decoding step is first responsible for mapping the   

matrix to the corresponding values of all binary decision variables. Our decoding strategy 

divides the original problem into several sub-problems by working on one   matrix entry 

at a time in priority order (i.e., in order of the columns in the   matrix). Given a single 

entry, four machine-part type assignment rules (Figure 6) are applied sequentially that 

attempt to assign the current part type run to a compatible machine at the lowest possible 

cost. This is achieved by trying to minimize the setup cost for both the current part type 

and any remaining part types to be assigned to machines. The values of all binary 

variables are calculated in this step. Since each set of binary variable values relate to a set 

of optimal values for the continuous and integer variables, this optimal set is found by 

solving a reduced MILP model, which is the original MILP model problem with the 

binary variables fixed. Solving the resulting reduced MILP also computes the 

corresponding objective function value (i.e., total integrated cost). The details of 

decoding and objective function evaluation are depicted in Figure 6. 

2.3.3 Constructive Heuristic Starting Solution 

We develop a constructive heuristic to allow the HSAA search process to start 

from a point that is as close as possible to an optimal solution, thus maximizing the 

efficiency of the algorithm. The heuristic is based on the idea of minimizing inventory 

holding costs by attempting to produce the demand of any given time period within the 

same time period (i.e., not too early). A flow chart describing the constructive heuristic 
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for generating the initial   matrix is shown in Figure 7. An example of the constructive 

heuristic and decoding is presented in Appendix A. 

 

Figure 5. An Example Encoding (Matrix of Priority Lists  ) for a Small Instance 

 

 

 

2.3.4 Perturbation Schemes 

At every iteration of the proposed HSAA, the algorithm first generates six 

different neighbors to the current   matrix, and then evaluates all six neighbors to select 

the neighbor with the least corresponding total integrated cost as the proposed neighbor. 

This approach, termed the “best move” strategy, provides the advantage of freeing the 

HSAA’s performance from its possible dependence on the cooling schedule, with the 
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objective of avoiding problems with both converging to a near optimal solution and 

escaping traps of locally optimal solutions (Ishibuchi et al. 1995). The six perturbation 

schemes (PS) employed are described in Table 1, and an example of PS1 is depicted in 

Figure 8. 

 

 

 

Figure 6. Flow Chart of Decoding and Objective Function Evaluation 
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Figure 7. Flow Chart of Generating Starting Matrix of Priority Lists (Initial  ) 

 

 

 

 

Figure 8. An Example of Perturbation Scheme 1 
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Table 1. Perturbation Schemes used in HSAA 

Perturbation Scheme Description 

PS1 In a random row of  (encoding), two terms (values) are randomly 

interchanged (swapped). 

PS2 In a random row of  (encoding), a single term (value) is randomly 

moved (inserted). 

PS3 In a random row of  (encoding), a string of terms (values) is randomly 

moved (inserted). 

PS4 In a random row of  (encoding), a string of terms (values) is randomly 

reversed. 

PS5 In a random row of  (encoding), a string of terms (values) is randomly 

reversed and moved (inserted). 

PS6 In all rows of  (encoding), two random columns of terms (values) are 

interchanged (swapped). 

 

2.3.5 Algorithm Parameters 

Three important parameters in the proposed HSAA are starting temperature, 

cooling schedule (i.e., the rule that defines the temperature at every iteration), and 

stopping criterion. In every iteration of the HSAA, given a current solution (matrix τ), a 

proposed solution is identified from the best of the solutions generated by the six 

perturbation schemes. If the proposed solution has a corresponding lower total cost than 

the current solution, then the proposed solution becomes the current solution in the next 

iteration. Otherwise, a worse solution is accepted with a certain probability, thereby 

allowing the HSAA to escape local optima. This probability depends on how far the 

search process has progressed and how bad the proposed solution is. 

Following the recommended values in the literature and based on some pilot test 

runs, the starting temperature is selected to be 500 and the number of iterations is set 

equal to 500. Since the objective function is evaluated six times in each iteration, the total 
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number of objective function evaluations is 3,000. The cooling schedule is adopted from 

the one presented by Negenman (2001) and forces the probability of accepting a worse 

solution to decrease with each iteration (Equation 23). In this way, as the number of 

iterations increases, the gained proximity to the optimum is not lost. The cooling 

schedule parameter  ̃ should be between 0 and 1 and is selected here to be 0.99 to give 

the algorithm more freedom for escaping local optima. The probability of accepting a 

move with worse objective function (i.e., a higher total cost) is computed according to 

Equation 24. A summary of the proposed HSAA is depicted in Figure 9. 

 ̃      ̃     ̃   (23) 

    

                     

 ̃     
(24) 

2.4 Experimental Study 

An extensive set of problem instances is generated for testing the proposed 

mixed-integer linear programming model and HSAA solution approaches. The problem 

instance set is generated primarily based on data obtained from a leading automotive 

supplier. Furthermore, the experimental factors reflect a wide range of parameter 

combinations that can be encountered by automotive suppliers. We seek to investigate the 

solution approaches’ performance in terms of both solution quality and computation time 

with respect to a variety of realistic factors. Six experimental factors are investigated at a 

number of levels, resulting in 96 different factor combinations (Table 2). For every 

combination of experimental factors, 10 problem instances are generated, resulting in a 

total of 960 instances. The numbers of each type of crane (i.e., small, medium, and large) 

are generated to ensure that every machine is compatible with at least one crane and, if 
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applicable, to be in proportion to the numbers of each type of machine. The details of 

generating the problem instances are depicted in Tables 2 through 6. 

 

 

Figure 9. Flow Chart of the Proposed Hybrid Simulated Annealing Algorithm (HSAA)  
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Table 2. Description of Experimental Design 

Factors Number of 

Levels 

Level Description 

Part type (machine) mix 3 0, 1, 2 

Number of machines (|I|) 2 5, 10 

Number of cranes (|J|) 2 3, 5 

Number of part types (|P|) 2 5, 25 

Number of DCs (|W|) 2 1, 3 

Number of time periods (|T|) 2 4, 16 

Total Combinations 96  
 

 

Table 3. Constituents of Part Type and Machine Mixes 

Part type (machine) mix Small (%) Medium (%) Large (%) 

Mix 0 60 20 20 

Mix 1 20 60 20 

Mix 2 20 20 60 
 

 

Table 4. Other Experimental Parameter Values 

Parameters Values 

Si,p,p’  15, 30, 40, 45, 55 

    Small: DU[10,45], Medium: DU[46,80], Large: DU[81,120] 

Np  Small: DU[10, 40], Medium: DU[41,70], Large: DU[71, 100] 

Hp  Small: DU[1,4], Medium: DU[5,7], Large: DU[8, 10] 

Ep  Small: DU[201, 5000], Medium: DU[51, 200], Large: DU[10,50] 

Mi  Small: DU[10, 40], Medium: DU[41,70], Large: DU[71, 100] 

K  7|I| 

G  10 

Lw  DC1: 100, DC2: 300, DC3: 500 

F  6 

 

Table 5. Experimental Setup Time Values 

S (mins) Tool Change Color Change 

Small machine 40 15 

Medium machine 45 30 

Large machine 55 45 
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Table 6. Details for Generating Experimental Parameters D, A, B, and C 

Parameter Assumptions 

Dt,p,w  DU[65%, 95%] estimated capacity 

 80% chance there is strictly positive demand at a specific time period, of a 

specific part type, by a specific DC 

 Estimated small machine capacity = 
 |      |

           
    

 ,  

|Ismall| = number of small machines, |Psmall|= number of small part types 

 Estimated medium machine capacity =
 |       |

            
    

, 

|Imedium| = number of medium machines, |Pmedium|= number of medium part types 

 Estimated large machine capacity = 
 |      |

           
    

, 

|Ilarge| = number of large machines, |Plarge|= number of large part types  

   

Ai,p  70% chance that a small, medium, or large machine can process a specific 

small part type 

 70% chance a medium or large machine can process a medium part type 

 70% chance a large machine can process a large part type 

 Every part type can be processed by at least one machine 

 

Bj,i  Small cranes are compatible with small machines 

 Medium cranes are compatible with medium machines 

 Large cranes are compatible with large machines 

 

Cp,p’  10% chance that two part types of the same size group (i.e., both are small, 

medium, or large) are the same part type but only different color  

 

2.5 Results and Discussion 

2.5.1 Mixed-integer Linear Programming Model 

The mathematical model is coded in AMPL and all 960 generated problem 

instances are analyzed by Gurobi version 5.1 on an Intel Core i7, 3.4GHz processor, 32 

GB of RAM, 64-bit, Windows 7 workstation. Given the problem’s complexity, a time 

limit is set for running every problem instance. At first, all instances are run with a time 

limit of 20 minutes. Then, the instances that achieved an optimality gap of less than or 
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equal to 10% in 20 minutes are run again with a one hour time limit. Of the 960 

instances, 478 (49.8%) are solved to optimality using the proposed mathematical model. 

The breakdown of the MILP model’s solution performance for every factor level 

is given in Table 7. The most significant factor affecting the performance of the MILP 

model is the number of part types. As the number of part types increases, it becomes 

much more difficult to solve the problem to optimality using the proposed model. The 

lowest average optimality gap (1.1%) is realized at the low level of the number of part 

types factor, while the highest average optimality gap (37.2%) is observed at the high 

level of the same factor. 

 

Table 7. Optimality Gap and Percentages of Instances Solved Optimally with the Proposed MILP 

Model 

Factor Level 

Average 

Optimality  

Gap% 

Min 

Optimality 

Gap% 

Max 

Optimality 

Gap% 

% Frequency of 

Achieving 

Optimum 

Part type (machine) 

mix 
Mix0 15.1% 0.0% 64.0% 55.6% 

Mix1 19.6% 0.0% 79.0% 48.1% 

Mix2 22.7% 0.0% 84.2% 45.6% 

Number of machines 

(|I|) 
5 15.4% 0.0% 62.9% 51.9% 

10 22.9% 0.0% 84.2% 47.7% 

Number of cranes 

(|J|) 
3 19.3% 0.0% 78.7% 49.2% 

5 19.0% 0.0% 84.2% 50.4% 

Number of part types 

(|P|) 
5 1.1% 0.0% 41.7% 94.8% 

25 37.2% 0.0% 84.2% 4.8% 

Number of DCs (|W|) 1 18.4% 0.0% 84.2% 51.7% 

3 19.9% 0.0% 80.5% 47.9% 

Number of time 

periods (|T|) 
4 7.9% 0.0% 41.4% 54.8% 

16 30.4% 0.0% 84.2% 44.8% 

Overall 19.1% 0.0% 84.2% 49.8% 
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2.5.2 Hybrid Simulated Annealing Algorithm 

The proposed HSAA is coded in MATLAB 7.9, and all 960 problem instances are 

solved three times independently, resulting in a total of 2880 instance runs. Every 

instance run is set to run until either reaching the optimal solution (if it was known from 

solving the same instance by the mathematical model) or for 500 iterations (i.e., 3000 

objective function evaluations), whichever occurs first. For an example problem instance 

run, the proposed HSAA’s objective function convergence over 477 iterations and the 

total costs obtained by PS1-6 at every iteration as well as the optimum solution are shown 

in Figure 10. 

We compute a performance ratio (Equation 25) to assess the performance of the 

HSAA for problem instances with known optimal solutions from the MILP model (1434 

instance runs). A summary of the performance ratio values produced by the proposed 

HSAA are listed in Table 8. Regarding the remaining 1446 instance runs with unknown 

optimal solutions, we compute the heuristic ratio (Equation 26) to assess the HSAA 

performance (Table 9). It is observed that as the number of part types increases from 5 to 

25, the average heuristic ratio decreases from 1.270 to 1.119, implying the improving 

performance of the HSAA against the MILP model. A summary of the proposed HSAA’s 

required solution times for 960 instance runs on  an Intel Core i7, 3.4GHz processor, 8GB 

of RAM, 64-bit, Windows 7 workstation is shown in Table 10. In practice, if 

implemented, the HSAA will be run frequently to optimize the daily operations of an 

automotive supplier. Therefore the algorithm’s solution time is required to be reasonable 

(e.g., not more than three hours, according to a local supplier). On average, the algorithm 
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takes only 2444 seconds (41 minutes) to solve an instance. Since the longest solution 

time among all 960 instances equals 9622 seconds (2 hours 40 minutes), we consider the 

HSAA solution times to be acceptable. Furthermore the six HSAA perturbation schemes 

could be run in parallel, thus reducing the solution time significantly.  

 

 

 

                  
             

                    
                                                    (25) 

 

                
             

                          
                                                   (26) 

 

 

 

 

Figure 10. HSAA Objective Function Improvement over Time for an Example Problem Instance 
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Table 8. Performance Ratio and % Frequency of Achieving Optimum by HSAA 

Factor Level 
Average 

PR 

Min 

PR 

Max 

PR 

% Frequency of 

Achieving Optimum 

Part type (machine) mix Mix0 1.026 1.000 1.943 69.9 

 Mix1 1.054 1.000 2.765 71.2 

 Mix2 1.129 1.000 2.681 53.0 

Number of machines (|I|) 5 1.023 1.000 2.526 69.7 

 10 1.113 1.000 2.765 60.1 

Number of cranes (|J|) 3 1.065 1.000 2.526 68.1 

 5 1.068 1.000 2.765 62.3 

Number of part types (|P|) 5 1.067 1.000 2.765 68.4 

 25 1.063 1.000 1.427 0.0 

Number of DCs (|W|) 1 1.093 1.000 2.765 60.5 

 3 1.038 1.000 1.677 70.1 

Number of time periods (|T|) 4 1.029 1.000 2.440 74.1 

 16 1.112 1.000 2.765 54.1 

Overall  1.066 1 2.765 65.1 

 

Table 9. Heuristic Ratio Summary 

Factor Level 
Average 

HR 
Min HR Max HR 

% Frequency of 

Meeting or 

Beating MILP 

Part type (machine) mix Mix0 1.162 0.994 1.547 0.2 

Mix1 1.109 0.398 1.540 2.2 

Mix2 1.115 0.637 2.133 7.9 

Number of machines (|I|) 5 1.078 0.966 1.584 1.3 

10 1.172 0.398 2.133 5.8 

Number of cranes (|J|) 3 1.121 0.762 1.683 3.6 

5 1.133 0.398 2.133 3.8 

Number of part types (|P|) 5 1.270 1.005 2.133 0.0 

25 1.119 0.398 1.584 3.9 

Number of DCs (|W|) 1 1.152 0.637 1.683 1.0 

3 1.103 0.398 2.133 6.1 

Number of time periods (|T|) 4 1.096 0.994 1.305 0.2 

16 1.153 0.398 2.133 6.5 

Overall 1.127 0.398 2.133 3.7 
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Table 10. Summary of HSAA Solution Times 

Factor Level 
Average Solution 

Time (secs) 

Min Solution 

Time (secs) 

Max Solution 

Time (secs) 

Part type (machine) 

mix 
Mix0 2406 1 8945 

Mix1 2427 1 9208 

Mix2 2498 1 9622 

Number of 

machines (|I|) 
5 1790 1 5298 

10 3098 1 9622 

Number of cranes 

(|J|) 
3 2431 1 9622 

5 2456 1 9445 

Number of part 

types (|P|) 
5 258 1  914 

25 4630 1 9622 

Number of DCs 

(|W|) 
1 2445 1 9208 

3 2443 1 9622 

Number of time 

periods (|T|) 
4 1219 1 2978 

16 3669 1 9622 

Overall 2444 1 9622 

 

The HSAA results show promise of providing optimal or near-optimal integrated 

supply chain plans for a Tier-1 automotive supplier. In practice, the supply chain 

planning process occurs over a rolling planning horizon of several days, such as one 

week. Given the frequency of required decision making in practice, the viability of the 

proposed solution method stems from the attractive solution times of 2444 seconds on 

average, which can be improved further by running the six perturbation schemes in 

parallel. It is estimated that this approach will reduce the HSAA solution time by at least 

five times, accounting for the time needed for non-decoding/objective function evaluation 

steps in HSAA. . The developed solution approach can also be embedded in other models 

for other longer-term applications, such as calculations of required production capacity, 

needed finished part warehouse capacity, auxiliary resource capacity, and safety stock 

inventory levels. 
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2.6 Conclusions and Future Research 

In this chapter, we developed a mixed-integer linear programming model to 

optimize the total cost of an integrated production and transportation planning problem 

from the automotive industry. A hybrid simulated annealing algorithm employing a 

constructive heuristic and an effective encoding-decoding strategy was proposed to solve 

the same problem to near optimality in a timely manner suitable for implementation in 

industry. Computational results demonstrate the promising performance of the proposed 

solution approaches. The most significant factor affecting the MILP model’s performance 

is the number of part types—as the number of part types increases, so does the model’s 

required computation time. In contrast with the MILP model, the proposed HSAA’s 

relative performance improves as the number of part types increases. In HSAA, the six 

perturbation schemes can be configured to run in parallel, thus increasing the algorithm’s 

speed and potential effectiveness. Applying HSAA in practice will make approximate 

optimization of realistic problem instances with large numbers of part types possible in a 

timely manner. The developed solution algorithm can be embedded in models for other 

longer-term applications, such as calculations of required capacities.  

In the future, we will develop a multi-objective optimization methodology for 

integrated automotive supply chains. Another research direction is to extend the current 

mathematical model to include multiple modes of transportation in the automotive supply 

chain’s second stage.  
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CHAPTER THREE 

A BI-CRITERIA HYBRID METAHEURISTIC FOR ANALYZING AN 

INTEGRATED AUTOMOTIVE SUPPLY CHAIN 

 

The automotive industry is one of the most important manufacturing sectors in the 

world due to several factors, such as its economic impact and technological complexities. 

While supply chain performance can have a dramatic impact on the automotive industry, 

there are multiple, often conflicting objectives that typically are used to optimize 

performance. We model the tradeoff between cost and service level and present a bi-

criteria heuristic optimization methodology for a two-stage, integrated automotive supply 

chain. Our problem contains sequence-dependent setups on parallel machines and 

auxiliary resource assignments. We minimize the total cost of setups, inventory holding, 

and transportation costs, and the maximum percentage of outsourced parts per customer, 

simultaneously. We use our proposed method to solve a set of problem instances that are 

based on industrial data. Our proposed method generates approximate Pareto (efficient) 

solutions in a timely manner for use in practice. 

3.1 Introduction 

The importance of the automotive industry and its supply chain cannot be 

underestimated due to its economic impact and technological complexities (Chandra and 

Grabis 2007, Jacobs et al. 2009, Rightmer 2012, Sezen et al. 2012, Singh et al. 2005). 

Furthermore, in short-term automotive part order planning, both monetary and 

nonmonetary objectives should be incorporated in the assessment of relevant problems 
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(Volling and Spengler 2011, Volling et al. 2013). This research study is motivated by a 

real-world problem faced by a Tier-1 automotive supplier. As shown in Figure 11, the 

supply chain system under study is focused on the production and transportation of bulk 

automotive plastic parts. Injection molding machines produce center consoles, 

dashboards, door panels, and other automotive parts. In the production stage, one of two 

different types of setups, tool change or color change, is needed to change production to a 

different tool or color, and a crane is used to perform a tool change. There are 

compatibility constraints that relate both cranes to machines and part types to machines. 

In the transportation stage, unit loads of finished parts are transported via full truck loads 

to multiple distribution centers (DCs).  

 

Figure 11. Two-Stage, Automotive Supply Chain System 
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In our previous research, the problem was modeled as a single-objective 

optimization problem, but this current study extends the problem to analyze a bi-

objective optimization problem. We directly model the tradeoff between two objective 

functions: cost (i.e., the summation of production setup costs, inventory holding costs, 

and transportation costs) and service level as measured by the maximum percent of 

outsourced parts per customer. Minimizing the maximum percent outsourced parts per 

customer emulates maximizing customer service levels, which are best met by in-house 

production to ensure the consistency in finished parts quality. These two objectives are 

conflicting as maximizing service level can lead to additional production setups, 

inventory, and/or transportation costs, thereby increasing cost. Applying a multi-objective 

optimization methodology can shed light on the realistic trade-off between these two 

conflicting objectives encountered by automotive suppliers. The goal of this research 

study is to help decision makers plan for the right production, inventory, shipping, and 

outsourcing quantities over their planning horizon via an effective trade-off analysis. 

 Multiobjective optimization is an established research field, and one of the ways 

to classify this research is based on the role of the decision maker in the optimization 

process. There are interactive and non-interactive methods. In interactive methods, the 

decision maker is involved during the optimization process by supplying their 

preferences in real-time. The disadvantage of this approach is that it could be time-

consuming to the decision maker, and it could also stretch the time needed for the 

optimization process. On the other hand, in non-interactive methods, the decision maker 

does not interfere during the optimization process. Once the optimization process is 
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complete, the decision maker gets a set of solutions describing the various possibilities, 

and they choose one of these solutions based on their preferences and the surrounding 

circumstances. In this research, we employ a non-interactive multiobjective optimization 

approach to present the decision maker with a set of options and also to speed up the 

optimization process. 

The rest of this chapter is organized as follows. Section 3.2 reviews the literature 

on multi-objective optimization of mixed-integer linear programming models and multi-

objective metaheuristics. Section 3.3 provides our bi-criteria mathematical model that 

captures the details of the research problem under study. The description of a proposed 

bi-criteria hybrid metaheuristic is outlined in Section 3.4. Finally, Section 3.5 presents 

our experiment results while Section 3.6 presents our conclusions and offers directions 

for future research.  

3.2 Literature Review 

3.2.1  Multi-objective Mixed-Integer Linear Programming 

First, we define the following terminology for a minimization problem as it is 

used extensively in the research problem under study: 

A feasible solution  ̂    (feasible set in decision space) is called efficient 

or Pareto-optimal if there is no other     such that          ̂  . If  ̂ 

is efficient,    ̂  is called a nondominated point. If 

        and            , then    dominates    and 

      dominates     . The set of all efficient solutions  ̂    is denoted 

   and called the efficient set. The set of all non-dominated points  ̂  
   ̂   (feasible set in criterion space), where  ̂    , is denoted    and 

called the non-dominated set (Ehrgott 2005). 
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It is important to distinguish between two types of efficient solutions. In the criterion 

space, supported Pareto points lie on the boundary of the convex hull of feasible set  , 

while non-supported Pareto points are in the interior of the convex hull of feasible set   . 

Supported efficient solutions are optimal solutions of the parameterized single objective 

problem. Non-supported efficient solutions cannot be found by solving the parameterized 

single objective problem. As the number of decision variables increases, the number of 

non-supported efficient solutions grows very quickly as shown in Figure 12 (Visée et al. 

1998). 

 

Figure 12. Number of Supported and Non-Supported Efficient Solutions (Visée et al. 1998) 

 

In multi-objective optimization, a single solution optimizing all objectives 

simultaneously does not exist, in general. Instead, a search is conducted for feasible 

solutions within a set of efficient (Pareto-optimal, non-dominated) solutions. The 

identification of a best compromise solution requires the preferences expressed by the 
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decision maker to be taken into account. The existence of multiple objectives add to the 

difficulty of combinatorial optimization problems so that multi-objective combinatorial 

optimization problems are very hard to solve exactly, even if they are derived from easy 

single objective optimization problems (Alves and Clímaco 2007, Ehrgott and 

Gandibleux 2004). 

It is worth noting that scalarization with weighted sums of objective function 

components does not identify all efficient solutions of a multi-objective discrete 

optimization problem because these types of problems are non-convex. The 

unconstrained multi-objective combinatorial optimization problem is NP complete 

(Ehrgott 2005). In the  -constraint method, constraints on objective values usually make 

the problem NP-hard (Ehrgott 2005). For instance, many bi-criteria scheduling problems 

are NP-hard, making it impossible to find all efficient solutions in polynomial time for 

medium or large sized problems (Nagar et al. 1995). It follows that an active research 

area is developing heuristics and metaheuristics to find efficient solutions of larger bi-

criteria (multi-objective) mixed-integer linear programming problems (Ehrgott and 

Gandibleux 2004). 

3.2.2 Multi-objective Metaheuristics 

The theory behind and application of multi-objective metaheuristics are reviewed 

by Jones et al. (2002). Multi-objective metaheuristics can benefit several application 

areas, such as engineering, operations research, finance, and medicine. Multi-objective 

metaheuristics’ strengths include suitability to integer variable problems and overall 

flexibility. Their disadvantages include an inability to guarantee an exact optimal solution 
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and the need for the modeler to set a large set of parameters. However, in many real-

world, complex problems, there is no conventional method that is guaranteed to find the 

optimal solution. Therefore multi-objective metaheuristics often are considered in this 

case.  

A two-stage, multi-population genetic algorithm (MPGA) is presented by 

Cochran et al.(2003). The MPGA aims to solve parallel machine scheduling problems 

with multiple objectives. In the first stage of the MPGA, the multiple objectives are 

combined into a single objective so that the algorithm can converge quickly to good 

solutions with respect to all objectives.  Solutions of the first stage are then divided into 

several sub-populations, which become the initial populations of the second stage. The 

solutions for each objective are improved within the individual sub-populations while 

another sub-population contains solutions satisfying the combined objective. 

Computational results show that the two-stage MPGA outperforms a benchmark method, 

the multi-objective genetic algorithm, in most test problems with two and three 

objectives.  

The bi-criteria problem of minimizing the total weighted tardiness and total 

distribution costs in an integrated production and distribution environment is studied by 

Cakici et al. (2012). Orders are received by a manufacturer, processed on a single 

production line, and delivered to customers by capacitated vehicles. Each order (job) is 

associated with a customer, weight (priority), processing time, due time, and size (volume 

or storage space required in the transportation unit). The authors develop both a 

mathematical model and several genetic algorithm-based heuristics with dispatching rules 
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to approximate a Pareto-optimal set of solutions. Both the mathematical modeling and 

heuristic solution approaches produce a significant number of non-dominated solutions. 

Typically, a significant fraction of the Pareto super front is composed of new solutions 

produced by heuristics.  

A new multi-objective production planning model of a real world problem which 

is proved to be NP-Complete is presented in (Karimi-Nasab and Konstantaras 2012). The 

problem involves a single product with dynamic, deterministic demand. The authors 

provide a heuristic to explore the feasible solution space and find Pareto-optimal 

solutions in a reasonable amount of time. The performance of the proposed problem-

specific heuristic is verified by comparing it against a multi-objective genetic algorithm 

on a set of randomly generated test instances. As the algorithm is completely adapted to 

the specific problem structure under study, it performs better than the multi-objective 

genetic algorithm, especially for small- and medium-sized instances.  

An innovative multi-objective, evolutionary algorithm (MOEA) to solve a very 

complex network design problem variation, the multi-commodity capacitated network 

design problem (MCNDP), is presented in (Kleeman et al. 2012). The non-dominated 

sorting genetic algorithm (NSGA-II) is selected as the MOEA framework which is 

modified and parallelized to solve the generic MCNDP. A novel initialization procedure 

and mutation method are integrated which result in a reduced search space. Empirical 

results indicate that effective topological Pareto solutions are generated for use in highly 

constrained, communication-based network design. The authors also show that with 
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parallelization, better non-dominated Pareto front solutions can be found more often 

using the M-NSGAII parallel island implementation with restricted migration. 

The gaps in decision-making support based on multi-objective optimization 

(MOO) for build-to-order supply chain management (BTO-SCM) are identified in 

(Afshin Mansouri et al. 2012). Only four of the BTO-SC optimization contributions 

identified use MOO techniques while 17 papers do not use MOO techniques. 

Recommended future research directions include: reformulation of existing optimization 

models from an MOO perspective, developing of scenarios around service-based 

objectives, development of efficient solution tools, considering the interests of each 

supply chain party as a separate objective to account for fair treatment of their 

requirements, and applying the existing methodologies on real-life data sets. Considering 

the computational complexity of the decision models for real-life applications, further 

research is essential to develop efficient algorithms and metaheuristics capable of 

providing good approximations of Pareto-optimal solutions in a short amount of time. 

The authors recommend industrial collaboration to provide the research community with 

real data sets upon which efficient MOO tools can be developed. 

One of the powerful metaheuristic methods is simulated annealing. A 

comprehensive review of simulated annealing-based, single- and multi-objective 

optimization algorithms is presented by Suman and Kumar (2006). The key in simulated 

annealing is probability calculation, which involves building the annealing schedule. 

Computational results and suggestions to improve the performance of simulated 

annealing-based multi-objective algorithms are presented. It is suggested that the 
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performance of SA-based multi-objective algorithms can be improved by combining 

simulated annealing with another algorithm. The contribution of our current research 

focuses on a bi-criteria metaheuristic solution approach for a problem faced by a Tier-1 

automotive supplier. The bi-criteria problem under study reflects a set of realistic 

assumptions, and it has not been solved in the literature to date. 

3.3 Mathematical Model 

We now present a model for the bi-criteria optimization problem of interest as 

motivated by the automotive supply chain.  Assumptions and pertinent notation are 

outlined, followed by the model and a discussion of its constituent parts. 

 

 

3.3.1 Assumptions 

 First, we make the following assumptions in our research analysis: 

 

 The number of part types produced by any machine is restricted to one per time 

period.  

 Every machine has a production capacity that cannot be exceeded.  

 Parts are shipped directly to customers or held in inventory for shipping in later 

periods. 

 The finished part warehouse at the plant has a holding capacity that cannot be 

exceeded.  

 Every transportation vehicle has a capacity that cannot be exceeded. 

 A maximum of one machine setup per time period can be performed by a crane. 

 Handling times between machines and finished part warehouse at the plant are 

negligible. 

 All machines have been initially set up before the first time period. 

 There is no plant finished part inventory at the beginning of the planning horizon. 

 Outsourcing is used to complement in-house production in order to completely 

satisfy demand. 
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3.3.2 Notation 

Objective Functions 

    the first objective function, summation of production setup cost, inventory 

holding cost, and transportation cost 

    the second objective function, maximum percent outsourced parts per 

customer 

 

Index Sets 

I  set of machines, indexed by i 

J  set of cranes, indexed by j 

P  set of part types, indexed by p 

W  set of distribution centers, indexed by w 

T  set of time periods, indexed by t 

 

Parameters 

Dt,p,w  demand at distribution center w of part type p in time period t (parts) 

    unit production time (cycle time) of part type p (secs) 

F  length of time period (hours) 

Si,p,p’  changeover time from part type   to part type    on machine i (mins) 

Ep  quantity of part type p per unit load (parts/unit load) 

K  plant finished part warehouse capacity (unit loads) 

G  vehicle capacity (unit loads) 

Hp  unit inventory holding cost of part type p ($/part/period) 

Lw  cost of a vehicle trip from plant to distribution center w ($/trip) 

Mi  cost of downtime on machine i ($/min) 

Ai,p  1 if machine i is compatible with part type p, 0 otherwise 

Bj,i  1 if crane j can serve setup on machine i, 0 otherwise 

Cp,p’  1 if setup from part type   to part type   requires a crane, 0 otherwise 
 

Decision Variables 

        quantity of part type p transported to distribution center w in time period 

t 

      number of vehicle trips to distribution center w in time period t 

      quantity of finished part inventory of part type p in time period t 

        quantity of part type p processed on machine i in time period t 

        quantity of outsourcing of part type p demanded by distribution center w 

in time period t 

      maximum percent outsourced parts per customer 
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        equals one if machine i processes part type p in time period t, 0 

otherwise 

           equals one if machine i changes over from part type   to part type    in 

time period t, 0 otherwise 

        equals one if crane j serves setup on machine i in time period t, 0 

otherwise 

   

3.3.3 Model 

            ∑ ∑∑ ∑                   

                      

 ∑∑      

      

 ∑ ∑   

   

    

   

 

(27) 

           
      (28) 

subject to 
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∑ ∑             
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  tT,  wW  (30) 

                       tT,  pP,  wW (31) 
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        tT (32) 

     ∑       ∑       

      

 t=1,  pP (33) 

            ∑      

   

 ∑       

   

  tT,  pP,t   (34) 

                 t=1,  iI,  pP (35) 

         ∑                 

         

          tT,  iI,  pP, t   (36) 

                             
 tT,  iI,  pP,    P, 

t        
(37) 
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             tT,  iI,  pP (38) 

∑        

   

  tT,   iI (39) 

∑       ∑ ∑               

               

  tT,   iI, t   (40) 

             tT,   jJ,   iI, t   (41) 

∑        

   

  tT,  jJ, t   (42) 

∑        

   

  tT,  iI, t   (43) 

              pP,  tT (44) 

                             and integer    ,   pP,  wW,  tT (45) 

      ,          ,         {   }    ,    ,  pP,  p’P,  

 tT        

(46) 

 

Objective function (27) minimizes the total cost of production setup, inventory 

holding, and transportation, while objective function (28) minimizes the maximum 

percent outsourced parts per customer. Constraint set (29) calculates the value of 

objective function (28). Constraint set (30) computes the number of vehicle trips to every 

distribution center at every time period, while constraint set (31) calculates the quantities 

of every part type outsourced by every DC in every time period. Next, constraint set (32) 

ensures the capacity of the plant finished part warehouse is not exceeded. Constraint sets 

(33) and (34) conserve the flow of every part type in inventory during the first time 

period, and for all subsequent time periods, respectively. Next, constraint sets (35) and 
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(36) ensure the available capacity of every machine cannot be exceeded during the first 

time period, and after the first time period, respectively.  

Constraint set (37) dictates that if a machine changes over to a different part type 

after the first time period, a setup is required. Constraint set (38) ensures that every 

machine respects machine-part type matching restrictions. Constraint set (39) restricts the 

number of part types produced by any machine to one per time period. Next, constraint 

set (40) enforces that a machine setup requiring a crane (i.e., a tooling changeover) 

occurs if and only if a crane serves the setup. Constraint set (41) dictates that every crane 

respects crane-machine compatibility restrictions. Next, constraint sets (42) and (43) limit 

the number of machine setups per time period to a maximum of one per crane and one 

per machine, respectively. Finally, constraint sets (44), (45), and (46) are non-negativity, 

positive integer, and binary variable type constraints, respectively. 

3.3.4  Problem Complexity 

The problem under study includes the classical capacitated lot sizing problem, 

which is NP-hard, in addition to sequence-dependent setup times, compatibility, and 

transportation constraints. Furthermore, the multiple objectives add to the difficulty of the 

problem. Since there is no algorithm that can solve the current problem to optimality in 

polynomial time, we propose a heuristic optimization methodology for identifying 

approximate Pareto-optimal solutions in a reasonable amount of time. 
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3.4 Bi-criteria Hybrid Metaheuristic 

For the problem under study, we propose a multi-objective hybrid simulated 

annealing algorithm (MOHSAA) which extends the single-criterion metaheuristic 

presented in Chapter 2.  

 

Required MOHSAA Notation and Equations 

 

    grand total demand per part type (47) 

    upper bound of number of machine runs required to satisfy grand total 

demand per part type (48) 

   upper bound of number of machine runs (49) 

      lower bound of number of machines needed to satisfy part type time 

period demand (50) 

    part type “fortune”, number of machines compatible with the part type 

(51) 

   matrix of priority lists of part type machine runs over the planning 

horizon  

iter  MOHSAA iteration counter 

FN  List of nondominated solutions in the objective space achieved 

throughout the search (corresponding to   ) 

    List of efficient solutions in the decision space achieved throughout the 

search (corresponding to FN) 

 ̃      MOHSAA temperature parameter at iteration iter (e.g. iter=1, 2, 3…etc.) 

 ̃  MOHSAA parameter used in the cooling schedule 

pr  probability of accepting proposed solution           and fproposed 

rand  a random number between 0 and 1 generated from uniform distribution 

    ̅̅ ̅̅ ̅  maximum number of iterations in MOHSAA (stopping criterion) 
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The ceiling operator ⌈ ⌉ produces the smallest integer not less than  . An 

overview of MOHSAA is depicted in Figure 13. The pertinent components of the 

proposed MOHSAA are encoding, decoding, constructive heuristic starting solution, 

perturbation scheme, and algorithm parameters. The constructive heuristic starting 

solution is the same as the one presented in Chapter 2 (Figure 14). We employ an 

effective, indirect encoding-decoding strategy to avoid generating any infeasible 

solutions during the algorithm’s search, while keeping a relatively small search space. 

The MOHSAA encoding is the matrix   that has |T| rows and   | | columns. Each row 

in   represents a single time period and consists of an active tuple (i.e. a priority list) of 

size | | and an inactive tuple of size  . Every entry in an active tuple represents either a 

possible part type run or a forced machine idling. The search goal is to activate the right 

tuples of entries of part types and machine idlings in every time period to find new 
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efficient solutions. Activating the best tuple in every row also leads to deactivating   

entries in the same row. The activation-deactivation process is achieved by applying the 

algorithm’s perturbation scheme over iterations. Setups (i.e. crane assignments as 

needed) are also prioritized according to the active tuples in  . Depending on the 

parameters    and  , an example of the matrix   for a small problem instance with 

| |    | |        | |    could be like the one shown in Figure 15.  
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Figure 13. Overview of the Proposed Metaheuristic (MOHSAA) 
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Figure 14. Constructive Heuristic for Generating Initial   

 

Figure 15. A Small Example of   
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Decoding and objective function evaluation occur such that the two objective 

function values are decoded from a given matrix of priority lists (  . In the proposed 

MOHSAA, the decoding step is responsible for mapping the matrix to the corresponding 

values of all binary decision variables. The strategy behind the decoding step is to divide 

the problem into several sub-problems by working on one matrix entry at a time, in 

priority order (i.e., in order of the columns in the matrix). Given a single entry, four 

machine-part type assignment rules are applied sequentially that attempt to assign the 

current part type run to a compatible machine at the lowest possible cost (Figure 16). This 

is achieved by minimizing the setup cost for both the current part type and any remaining 

part types to be assigned to machines. The values of all binary variables are calculated in 

this step.  

Next, objective function evaluation is achieved by solving the resulting mixed-

integer linear program (MILP) from the decoding step to compute the values of the 

decision variables and the corresponding two objective function values. The MILP has a 

single objective, which is to minimize the maximum percent outsourced parts per 

customer (28), and the resulting total cost (  ) is calculated from the identified decision 

variable values accordingly. We model this MILP in AMPL and solve it using CPLEX. 

An absolute MIP gap of 1% is set to speed the solution of the MILP since some variables 

are non-binary, nonnegative integer. To explore the search space, the applied perturbation 

scheme dictates that in a random row of   (encoding), two terms (values) are randomly 

interchanged (swapped), noting that each of these two terms can belong to any column in 

 , and could originally be in any of the active and inactive tuples. 
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Figure 16. Decoding and Bi-objective Evaluation 

 

Following the recommended values in the literature, we conduct some pilot 

testing runs. From these efforts, the starting temperature in the MOHSAA is set to 5000 

and the number of iterations is set equal to 3000. The cooling schedule equation is the 

same as in Chapter 2, but in the current study the cooling schedule parameter ( ̃) is set to 

equal 0.9. Unlike The algorithm in Chapter 2, here there are two separate temperature 

calculations at every iteration, one for each objective function. In order to accept a move 
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in the proposed MOHSAA, both acceptance conditions must be satisfied simultaneously 

as shown in Figure 13. 

In the objective space, given the current point (        
          

 ) in the current 

iteration of the algorithm’s search process, a proposed point (         
           

 ) is 

generated via applying the algorithm’s perturbation scheme. Then comparisons are made 

between the two current objectives and the two proposed objectives. If the proposed 

solution either dominates or is not dominated by the current solution, both probabilities 

are set to one. If the proposed solution is dominated by the current solution, each 

probability is calculated based on how far the algorithm is in the search process (iter 

value) and how much higher the proposed objective function is. Finally, if the proposed 

point is the same as the current point in the objective space, both probabilities are set to 

one. The details of calculating the two probabilities of accepting a move to update the 

current solutions are depicted in Figure 17. 

3.5 Results and Discussion 

Six experimental factors are investigated at a number of levels, resulting in 96 

different factor combinations (Table 11). For every combination of experimental factors, 

10 problem instances are generated, and every instance is independently solved three 

times, resulting in a total of 2880 instance runs.  The numbers of each type of crane (i.e., 

small, medium, and large) are generated to ensure that every machine is compatible with 

at least one crane and, if applicable, to be in proportion to the numbers of machine types. 

The details of generating the 960 test instances are in accordance with conditions 

presented in Chapter 2. 
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Figure 17. Calculation of Two Probabilities of Accepting a Move to Update the Current Solution 
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Table 11. Description of Experimental Design 

Factors 
Number of 

Levels 
Level Description 

Part type (machine) mix 3 0, 1, 2 

Number of machines (|I|) 2 5, 10 

Number of cranes (|J|) 2 3, 5 

Number of part types (|P|) 2 5, 25 

Number of DCs (|W|) 2 1, 3 

Number of time periods (|T|) 2 4, 16 

Total Combinations 96  
 

 

 

The proposed MOHSAA is coded in MATLAB 8.1 and AMPL (CPLEX 11.2), 

and all 2880 problem instance runs  are run on a number of workstations, including an 

Intel Core i7, 3.4GHz processor with 8GB of RAM on a 64-bit, Windows 7 workstation. 

Every instance is set to run for 3000 iterations (i.e., 3000 objective function evaluations). 

Two examples of the feasible and Pareto points obtained for a small and a large instance 

are shown in Figures 18 and 19, respectively. Although the feasible points in Figure 19 

appear more condensed than those in Figure 18, the scale of the x-axis, total cost, in 

Figure 19 is more compact (i.e., in 100,000s). A summary of the results of all 2880 

instance runs analyzed is provided in Tables 12 through 15. From these results, the most 

important experimental factor appears to be the number of part types, which is in line 

with the finding of the single-criterion model of Chapter 2. 

The numbers of efficient (nondominated) solutions obtained by the MOHSAA are 

listed in Table 12, and the solution times (seconds) are listed in Table 13. As the number 

of part types increases, so does the solution time and number of efficient (nondominated) 
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points. This finding is also in line with Section 3.2 (Figure 12), which gives confidence 

that the proposed MOHSAA generates both supported and non-supported efficient 

solutions. In Table 12, it is noted that the measures of the factors Part Type (Machine) 

Mix, Number of Machines, and Number of Cranes are close at their different levels, 

indicating the insignificant effects of these three factors on the number of Pareto-optimal 

points obtained. On average, the proposed MOHSAA takes 1855 seconds (~31 minutes) 

to solve a single instance run, and among all of the 2880 instance runs solved, the longest 

solution time is 8793 seconds (~2 hours, 27 minutes). According to our conversations 

with an automotive industry supplier, the proposed method would be run daily to 

optimize the operations in a planning horizon of several days. Since the results show the 

proposed algorithm’s solution time to be less than three hours in the worst case, it is 

considered suitable for industry use. We are currently in discussions with the supplier to 

deploy our proposed MOHSAA. 
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Figure 18. Feasible and Efficient (Nondominated) Points of a Small Instance 

 

 

Figure 19. Feasible and Efficient (Nondominated) Points of a Large Instance 
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Table 12. Number of Efficient (Nondominated) Solutions by MOHSAA 

Factor Level Mean Median Min Max 

Part type (machine) mix Mix0 16.1 14 1 52 

Mix1 17.8 14 1 63 

Mix2 18.5 14 1 69 

Number of part types (|P|) 5 7.2 7 1 23 

25 27.8 25 5 69 

Number of machines (|I|) 5 17.3 14 1 62 

10 17.7 14 1 69 

Number of cranes (|J|) 3 17.4 14 1 62 

5 17.5 14 1 69 

Number of time periods (|T|) 4 13.3 13 1 32 

16 21.6 18 1 69 

Number of DCs (|W|) 1 16.7 14 1 57 

3 18.3 14 1 69 

Overall  17.5 14 1 69 

 
 

 

Table 13. MOHSAA Solution Times (Seconds) 

Factor Level Mean Median Min Max 

Part type (machine) mix Mix0 1853 955 299 8793 

Mix1 1853 927 306 8226 

Mix2 1858 955 312 8146 

Number of part types (|P|) 5 494 455 299 1026 

25 3215 2608 942 8793 

Number of machines (|I|) 5 1424 909 299 6488 

10 2285 1234 335 8793 

Number of cranes (|J|) 3 1850 956 303 8206 

5 1860 950 299 8793 

Number of time periods (|T|) 4 1038 794 299 2810 

16 2672 1736 377 8793 

Number of DCs (|W|) 1 1841 913 299 8156 

3 1868 962 308 8793 

Overall 1855 953 299 8793 
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Table 14. Lowest (Highest) Cost Nondominated Solutions in $1000s 

Factor Level Mean Median Min Max 

Part type 

(machine) mix 

Mix0 41.7 (176.1) 23.9 (123.6) 0.4 (0.6) 273.2 (647.4) 

Mix1 40.7 (179.0) 22.7 (115.2) 0.5 (2.5) 213.8 (633.4) 

Mix2 36.0 (191.1) 14.7 (98.1) 0.5 (3.3) 175.4 (736.1) 

Number of part 

types (|P|) 

5 37.3 (92.2) 16.0 (48.3) 0.4 (0.6) 213.8 (612.8) 

25 41.7 (271.8) 22.9 (227.4) 0.6 (47.9) 273.2 (736.1) 

Number of 

machines (|I|) 

5 26.8 (135.3) 16.9 (84.1) 0.4 (0.6) 122.5 (424.3) 

10 52.2 (228.7) 30.9 (141.0) 0.9 (2.8) 273.2 (736.1) 

Number of 

cranes (|J|) 

3 38.8 (180.7) 22.2 (111.2) 0.4 (0.6) 213.8 (716.6) 

5 40.1 (183.3) 20.9 (114.0) 0.5 (2.8) 273.2 (736.1) 

Number of time 

periods (|T|) 

4 7.1 (65.8) 5.6 (62.0) 0.4 (0.6) 66.3 (229.2) 

16 71.9 (298.3) 61.0 (282.3) 8.6 (21.4) 273.2 (736.1) 

Number of DCs 

(|W|) 

1 44.4 (176.1) 20.7 (107.6) 0.4 (0.6) 273.2 (736.1) 

3 34.6 (187.9) 22.0 (117.6) 3.4 (3.6) 213.8 (716.6) 

Overall  39.5 (182.0) 21.8 (113.1) 0.4 (0.6) 273.2 (736.1) 

 
 

 

Table 15. Lowest (Highest) Maximum Percent Outsourced Parts per Customer Nondominated 

Solutions 

Factor Level Mean Median Min Max 

Part type (machine) 

mix 

Mix0 14.9 (53.5) 8.8 (62.5) 0.0 (0.0)  57.1 (98.4) 

Mix1 14.6 (48.6) 8.9 (57.9) 0.0 (0.0)  55.3 (98.2) 

Mix2 14.0 (49.6) 8.4 (63.5) 0.0 (0.0)  56.0 (97.6) 

Number of part types 

(|P|) 

5 1.7 (19.0) 0.3 (12.3) 0.0 (0.0)  14.8 (88.0) 

25 27.2 (82.2) 24.8 (85.2) 6.2 (52.8) 57.1 (98.4) 

Number of machines 

(|I|) 

5 18.6 (58.2) 13.7 (73.8) 0.0 (0.0)  57.1 (98.4) 

10 10.3 (43.0) 7.6 (52.8) 0.0 (0.0)  34.6 (93.1) 

Number of cranes 

(|J|) 

3 14.5 (50.5) 9.0 (61.3) 0.0 (0.0)  56.5 (98.2) 

5 14.4 (50.6) 8.5 (61.2) 0.0 (0.0)  57.1 (98.4) 

Number of time 

periods (|T|) 

4 19.7 (56.6) 13.4 (65.0) 0.0 (0.0)  57.1 (98.4) 

16 9.2 (44.6) 8.1 (54.6) 0.0 (0.0)  32.5 (98.2) 

Number of DCs (|W|) 1 14.0 (48.9) 8.8 (59.6) 0.0 (0.0)  57.1 (98.4) 

3 14.9 (52.3) 8.8 (67.3) 0.0 (0.0)  56.5 (98.2) 

Overall  14.5 (50.6) 8.8 (61.2) 0 (0.0)  57.1 (98.4) 
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 Unlike using the single objective optimization approach, here in every instance 

the different Pareto solutions generated by the proposed MOHSAA offer the supply chain 

planner options to trade-off total cost with service level, which are two conflicting 

objectives. The range of such options increases as problem size increases (Tables 14 and 

15). Furthermore, the widest range occurs with increased number of part types. In 

practice, the best solution would be selected from the identified Pareto solutions based on 

the specific circumstances surrounding the decision maker, such as company outsourcing 

policies, contractual agreements with customers, and downtime maintenance plans. In 

addition to the operational, daily use of the proposed MOHSAA, it can also be used as a 

building block for a long-term planning approach. Such long-term applications can deal 

with calculations related to the addition of new resources (e.g. machines) to the plant and 

the determination of safety stock inventory levels. 

 Compared to other methods, our proposed bicriteria hybrid metaheuristic employs 

an effective approach to find a wide range of approximate Pareto-optimal solutions in a 

reasonable amount of time. Our approach avoids the disadvantages of Weighted Sums 

and  -constraint scalarization techniques. The Weighted Sums method combines the 

different objectives into a single objective and vary the weights of the two objectives 

several times. The resulting problems are solved to obtain Pareto-optimal solutions. 

However, this process is time consuming. Furthermore, it is not practical to add two 

functions with different scales and/or units of measure (e.g. $1000s and %) into a single 

function because the function with the larger magnitude will overshadow the other 

function. 
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 This approach finds only supported Pareto-optimal solutions, which is just a small 

percentage of the Pareto-optimal set. The  -constraint method requires setting a grid with 

different right hand side values on the inequality constraint expressing one of the two 

objective functions, while optimizing the other (primary) objective. Setting good values 

for the right hand side of the constraint reflecting the secondary objective function 

presents a difficulty for this method. For example, if a limit of 10% is set on the 

maximum percent of outsourced parts per customer, a specific total cost value can be 

obtained by solving this single objective problem. However, there could a much lower 

total cost solution with maximum percent of outsourced parts per customer of 10.1% and 

this solution will not be identified because of the inequality constraint. Additional 

difficulties with  -constraint method is that it is time consuming to solve the problem 

repeatedly to cover the grid of all values of the right hand side of the constraint for the 

secondary objective. Our proposed MOHSAA avoids the shortcomings of these methods.    

3.6 Conclusions and Future Research 

Utilizing optimization for planning orders in the automotive supply chain can 

have a positive economic impact for companies. Multi-criteria optimization involves 

more than one objective function to be optimized simultaneously. We model a two-stage 

automotive supply chain involving production at a Tier-1 automotive supplier and 

transportation to distribution centers (customers) at a detailed, operational level using a 

bi-criteria, mixed-integer linear programming model. The model examines two 

conflicting objectives: 1) the summation of setup, inventory holding and transportation 

costs and 2) the maximum percent outsourced parts per customer. The model prescribes 
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key decision variables, including production, inventory, shipping, and outsourcing 

quantities over the planning horizon. 

Given the problem’s complexity, we develop a hybrid metaheuristic as a first 

attempt to solve this problem. Our solution approach avoids the disadvantages of other 

multiobjective optimization techniques, such as the need to solve the problem several 

times and the inability to find non-supported Pareto-optimal solutions. Experimental 

results reveal that the proposed MOHSAA is suitable for industry use and offers the 

decision maker (e.g. supply chain planner) options to tradeoff cost and service level. 

Furthermore, as the problem size in terms of the number of part types increases, so do the 

solution time as well as the number and range of efficient (nondominated) solutions. 

Possible directions for future research include extending the current problem to include 

multiple plants in the production stage and investigating different objectives, in addition 

to cost and service level, such as an objective related to sustainability (e.g. CO2 emissions 

minimization). More hybrid metaheuristic solution approaches will be required to solve 

such extended problems. Another direction of future research is comparing the 

performance of the proposed MOHSAA to other metaheuristic optimization techniques, 

such as the Nondominated Sorting Genetic Algorithm II (NSGA-II). 
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CHAPTER FOUR 

OPTIMIZING INTEGRATED COST IN A TWO-STAGE, AUTOMOTIVE 

SUPPLY CHAIN WITH MULTIPLE TRANSPORTATION MODES 

 

As the automotive industry has been striving to increase its efficiency and 

competitiveness, great focus often is placed on opportunities for improving its supply 

chain operations. We study the effect of introducing multiple modes of transportation in 

an industry-motivated production and transportation problem involving short-term 

automotive supply chain planning. We consider multiple, heterogeneous modes of 

transportation that offer a cost vs. delivery time option to the manufacturer. We present a 

mixed-integer linear programming model that captures the availability of multiple 

transportation modes. We then provide a solution approach based on a hybrid simulated 

annealing algorithm that we use to analyze the problem. Computational results 

demonstrate the efficacy of the proposed metaheuristic-based solution approach, given 

the problem’s NP-hard computational complexity. Experimental results demonstrate the 

effect of additional transportation mode lead times compared to cost in the integrated 

supply chain.  

4.1 Introduction 

This research study extends Chapter 2 and deals with optimizing an integrated, 

two-stage automotive supply chain. We study total integrated cost minimization in a real-

world production and transportation planning problem of a Tier-1 automotive supplier 

dealing with short-term automotive part order planning. In previous research on the 
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integrated supply chain’s first stage, production, we model several realistic conditions 

such as sequence-dependent setups on multiple injection molding machines operating in 

parallel, auxiliary resource assignments of overhead cranes, and multiple types of costs. 

The integrated supply chain’s second stage, transportation, consists of capacitated 

vehicles that deliver finished parts to multiple distribution centers (DCs) for meeting 

customers’ predefined due date requirements. Our earlier study assumed transportation 

occurs via full truck load (TL) and that transportation cost is fixed from the plant to each 

DC. The supply chain only allows direct deliveries without any intermediate stops (i.e., 

only one customer per trip) via an unlimited (i.e. infinite) transportation fleet. 

Now, we extend the previous model by allowing multiple modes of transportation 

in the second stage of the integrated supply chain system (Figure 20). An additional mode 

of transportation can be intermodal, which is a combination of two or more transportation 

modes. In our research problem, intermodal can be: plant-truck-rail-truck-distribution 

center. Rail transportation has several advantages as it is fuel efficient and thus 

environmental friendly; it contributes to reducing traffic congestion in the road network 

by reducing the number of trucks on the road and thus preserving the road conditions for 

longer times; and it is also cost competitive.   

While all modes of transportation deliver to the same destinations (DCs), their 

costs and lead times vary. Adding this aspect to the modeled problem helps decision 

makers decide between different transportation alternatives based on their impact on the 

objective function (i.e. total integrated cost). The goal of this research study is to help 

decision makers plan for the right production, inventory, transportation, and outsourcing 



 77 

quantities over the planning horizon by considering the multiple modes of transportation 

simultaneously. 

The rest of this chapter is organized as follows. Section 4.2 reviews some of the 

related literature. Section 4.3 provides a mixed-integer linear programming model that 

captures the details of the current research problem as well as a metaheuristic solution 

method. Section 4.4 presents the numerical experiment results, including a comparison of 

the results from different transportation mode cost and lead time multiples. Conclusions 

and directions for future research are outlined in Section 4.5. 

 

 

Figure 20. The Two-Stage Automotive Supply Chain System with Heterogeneous Transportation 
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4.2 Literature Review 

Production and inter-facility transportation scheduling for process industries is 

studied by de Matta and Miller (2004). The authors develop a dynamic production and 

transportation decision model to simultaneously determine the cost minimizing quantities 

of products an intermediate plant must produce and ship to a finishing plant using 

different transportation modes. Furthermore, the model simultaneously determines the 

cost minimizing quantities of products that the finishing plant must produce to meet its 

customer demands on-time. One of the several benefits of coordinating production and 

transportation decisions is that it helps control the use of expedited transportation options 

through timely shipments of sufficient intermediate product quantities via the normal, 

“less” expensive mode to meet the input requirements of the finishing plant. This 

approach also decreases intermediate product inventory holding costs. 

A general two-stage logistics scheduling with batching and transportation 

problem is presented by Chen and Lee (2008). The problem involves jobs of different 

importance being processed by one first-stage processor and then, in the second stage, the 

completed jobs must be batch-delivered to various pre-specified destinations in one of a 

number of available transportation modes. The objective is to minimize the sum of 

weighted-job delivery time and total transportation cost. The paper provides an overall 

picture of the problem complexity for various cases and problem parameters and gives 

polynomial algorithms for solvable cases. On the other hand, for the most general case, 

an approximation algorithm of performance guarantee is presented. 
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Minimizing the total cost of logistics and carbon emissions in intermodal 

transportation is studied by Zhang et al. (2011). The authors propose an integer 

programming model to illustrate the impact of considering carbon emissions on 

intermodal transportation decisions.  The concept of transportation-oriented scheduling in 

the automotive industry is investigated by Florian et al. (2011) who present a simulation 

model using real scheduling data to demonstrate the potential savings realized by means 

of smoothing and bundling demands in scheduling. The planning approach increases 

utilization and reduces CO2 emissions.  

Integrated optimization of customer and supplier logistics at a leading automotive 

supplier is studied by Yildiz et al. (2010). The authors identify the opportunity for cost 

savings by using a mixed-integer programming model that matches opposite flows from 

and to customers and suppliers. It is assumed that the automotive supplier makes all 

transportation arrangements for its customers and suppliers. The automotive supplier 

utilizes the unused capacity of return trips from their customers by identifying a subset of 

promising customer routes that can be combined with its existing supplier routes through 

cross-docking, to save overall system costs. 

We introduce a model that recommends time-phased production, inventory, and 

shipping decisions. Although some research on optimization models involving production 

scheduling, transportation, and the automotive supplier industry exist in the literature, 

none focus on minimizing the total integrated cost in a two-stage, automotive supply 

chain with heterogeneous transportation at a detailed, operational level. This is the 
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subject of our current research as we seek to fill this gap in the literature that is of 

practical importance to industry. 

4.3 Methodology 

4.3.1 Mixed-integer Linear Programming Model 

The mixed-integer linear programming (MILP) model presented in Chapter 2 is 

extended here to capture the availability of multiple transportation modes. In order to 

develop this extension, some changes in the original model’s index sets, parameters, 

variables, and constraint sets are necessary. The whole MILP model for multiple 

transportation modes is as follows. 

 

Index Sets 

I  set of machines, indexed by i 

J  set of cranes, indexed by j 

P  set of part types, indexed by p 

W  set of distribution centers, indexed by w 

T  set of time periods, indexed by t 

R  set of transportation modes, indexed by r 

 

Parameters 

Dt,p,w  demand by distribution center w of part type p in time period t (parts) 

    unit production time (cycle time) of part type p (secs) 

F  length of time period (hours) 

Si,p,p’  changeover time from part type   to part type    on machine i (mins) 

Ep  maximum quantity of parts per unit load of part type p (parts/unit load) 

K  plant finished part warehouse capacity (unit loads) 

G  vehicle capacity (unit loads) 

Hp  unit inventory holding cost of part type p ($/part/period) 

Lr,w  cost of one trip from plant to distribution center w via transportation 

mode r ($/trip) 

Mi  cost of downtime on machine i ($/min) 

Np  cost of outsourcing of part type p ($/part) 
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Ai,p  equals one if machine i is compatible with part type p, 0 otherwise 

Bj,i  equals one if crane j can serve setup on machine i, 0 otherwise 

Cp,p’  equals one if setup from part type   to part type   requires a crane, 0 

otherwise 

      duration (time periods) of trip to distribution center w via transportation 

mode r 
 

Decision Variables 

          quantity of part type p transported to distribution center w in time period 

t via transportation mode r 

        number of trips to distribution center w via transportation mode r in time 

period t 

      quantity of finished part inventory of part type p in time period t 

        quantity of part type p processed on machine i in time period t 

        quantity of outsourcing of part type p demanded by distribution center w 

in time period t 

        equals one if machine i processes part type p in time period t, 0 

otherwise 

           equals one if machine i changes over from part type   to part type    in 

time period t, 0 otherwise 

        equals one if crane j serves setup on machine i in time period t, 0 

otherwise 
 

        ∑ ∑∑ ∑                   

                      

 ∑∑      

      

 ∑∑ ∑     

   

      

   

 

   

∑∑ ∑         

         

 

 

(52) 

subject to 
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  tT,  rR,  wW  (53) 

                        t=1..    -1,  pP, r=1,  wW (54) 

             ∑               

   

 t=     ..|T|,  pP,  wW (55) 

∑
 

  
   

        tT (56) 
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     ∑       ∑ ∑         

         

 t=1,  pP (57) 

            ∑      

   

 ∑ ∑         

      

  tT,  pP,t   (58) 

                 t=1,  i I,  pP (59) 

         ∑                 

         

          tT,  i I,  pP, t   (60) 

                             
 tT,  i I,  pP,    P, 

t        
(61) 

             tT,  i I,  pP (62) 

∑        

   

  tT,   i I (63) 

∑       ∑ ∑               

               

  tT,   i I, t   (64) 

             tT,   jJ,   i I, t   (65) 

∑        

   

  tT,  jJ, t   (66) 

∑        

   

  tT,  i I, t   (67) 

                                      and integer 
   ,     ,  pP,  wW,  t

T 
(68) 

      ,          ,         {   } 
   ,    ,  pP,  p’P,  

 tT        
(69) 

 

The model’s objective function (52) minimizes total integrated cost, which is 

composed of setup, inventory holding, transportation, and outsourcing cost. Constraint set 

(53) calculates the number of trips to every distribution center at every time period via 

every transportation mode based on transportation capacity and unit load volumes. 
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Constraint sets (54) and (55) compute the quantities of outsourcing required for every 

part type at each DC in the first and all subsequent time periods, respectively. Next, 

constraint set (56) ensures the capacity of the plant’s finished part inventory storage is not 

exceeded. Constraint sets (57) and (58) conserve the flow of every part type during the 

first and subsequent periods, respectively. Next, constraint sets (59) and (60) ensure the 

available capacity of every machine cannot be exceeded during any time period.  

Constraint set (61) dictates that if a machine changes to a different part type after 

the first time period, a setup is required. Constraint set (62) ensures that every machine 

respects machine-part type matching restrictions. Constraint set (63) limits the number of 

part types produced by a machine to one per time period, while constraint set (64) 

enforces that a machine setup requiring a crane (i.e., a tooling changeover) occurs if and 

only if a crane serves the setup. Constraint set (65) dictates that every crane respects 

crane-machine compatibility restrictions, while constraint sets (66) and (67) limit the 

number of machine setups per time period to a maximum of one per crane and one per 

machine, respectively. Finally, constraint sets (68) and (69) are non-negativity, integer, 

and binary value constraints, respectively. To verify the accuracy of the developed 

extended model, a number of problem instances were solved using the original and 

extended models, while keeping the cost and lead time of the second transportation mode 

the same in both models. The two models resulted in the same objective function values, 

verifying the accuracy of the developed model extension. 

Similar to the original MILP model, there is no existing algorithm that can solve 

the current research problem to optimality in polynomial time. Therefore, we propose a 
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hybrid metaheuristic algorithm for achieving near-optimal solutions in a timely manner in 

the next section. 

4.3.2 Hybrid Simulated Annealing Algorithm 

The hybrid simulated annealing algorithm (HSAA) presented in Chapter 2 is 

adapted to solve the extended MILP model outlined in Section 4.3.1. The original 

encoding-decoding strategy is used in the current study, but a necessary decoding 

modification is made to accommodate the multiple modes of transportation. Once the 

matrix of priority lists     is decoded into machine-part type and crane-machine 

assignments, the values of all binary variables become fixed, producing a reduced mixed-

integer linear program (MILP) with the original binary variables becoming input 

parameters in the reduced model. 

The next step is to solve the reduced MILP to finish the decoding and objective 

function evaluation procedure, including solving for the shipping quantities via each 

transportation mode. However, since even the reduced MILP can sometimes need a 

significant amount of time to solve to optimality, we set a time limit of five seconds to 

speed up the algorithm performance. This time limit, multiplied by the number of 

iterations the proposed HSAA search performs, sets an upper bound on the overall 

algorithm’s run time. Nevertheless, the five-second time limit is not reached in most 

cases, and therefore the HSAA often solves single instances quite quickly.  

Moreover, since the required modification involves the decoding stage only and 

the constructive heuristic starting solution works in the encoding space, the latter is used 

here without any changes. Again, the HSAA is coded in MATLAB, while the reduced 
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MILP model is coded in AMPL and solved using CPLEX. According to preliminary 

results from some pilot test runs, the number of iterations is set to equal 3000, and the 

starting temperature equals 5000. Only one perturbation scheme is used: the one resulting 

in the best results in our previous research. This perturbation scheme swaps two terms 

randomly in a random row of the encoding matrix of priority lists. Finally, the cooling 

schedule parameter is set to equal 0.9. 

4.3.3 Experimentation Strategy 

In Chapter 2, we demonstrated the promising performance of the proposed HSAA 

to solve the original problem. Moreover, in contrast with the original MILP model, the 

proposed HSAA’s relative performance improves as the problem size grows.  Building 

on previous research findings, we shift our focus in the current study to analyze the effect 

of availability of multiple transportation modes in the two-stage, automotive supply chain 

system. Three problem instance sets of three sizes that we term “small,” “medium,” and 

“large” are the subject of analysis in the current study. These three problem test instance 

sets are outlined in Table 16. Further details on the generation of test instance data are in 

accordance with the instances analyzed in Chapter 2 to reflect realistic conditions in the 

automotive supply chain. The combinations of five cost and seven lead time multiples 

result in 35 instances per every instance set, and the proposed, adapted HSAA is used to 

solve all instances. The cost and time multiples reflect the different possible longer lead 

times and lower costs of the additional transportation mode (intermodal).  
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Table 16. Description of Problem Test Instance Sets 

Instance Set 

Part type 

(machine) 

mix 

Number 

of part 

types 

(|P|) 

Number 

of 

machines 

(|I|) 

Number 

of cranes 

(|J|) 

Number 

of time 

periods 

(|T|) 

Number 

of DCs 

(|W|) 

1 (large) 2 25 10 5 16 3 

2 (small) 1 5 5 5 16 3 

3 (medium) 0 25 5 3 16 1 

 

 

4.4 Results and Discussion 

Every problem instance is solved using the proposed HSAA five times 

independently, resulting in a total of 525 problem instance runs. Given the problem’s NP-

hard computational complexity, the proposed HSAA can find approximate solutions in a 

timely manner for industry use (3828 seconds, on average). The resulting total integrated 

costs (averages over five runs per instance) are listed in Tables 17 through 19. Figures 21 

through 23 show the variation of total integrated costs across the different cost and lead 

time multiples of the additional transportation mode. 
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Table 17. Total Integrated Costs for the Large Test Instance Set in $1000s 

Cost 

Multiples 

Time Multiples   

 1 2 3 4 5 6 7 

0.1 562.5 468.3 427.6 415.1 418.0 431.9 450.9 
0.3 566.5 470.8 428.7 417.8 419.9 434.8 460.1 
0.5 572.1 474.3 431.2 419.8 421.3 434.9 461.7 
0.7 575.2 475.7 433.8 422.8 422.8 438.4 463.5 
0.9 579.4 478.3 440.6 428.1 423.9 448.1 465.3 

 

 

 

 

 

Figure 21. Results for the Large Instance Set 
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Table 18. Total Integrated Costs for the Small Test Instance Set in $1000s 

Cost 

Multiples 

Time Multiples   

 1 2 3 4 5 6 7 

0.1 81.1 61.3 54.9 54.2 59.1 63.4 70.2 
0.3 84.0 64.3 56.3 56.5 61.5 66.0 70.3 
0.5 86.9 65.9 58.4 60.3 62.6 66.8 70.4 
0.7 89.8 69.7 58.9 61.5 66.3 68.7 71.1 
0.9 92.7 72.5 62.5 62.6 68.3 70.5 71.4 

 

 

 

 

 

Figure 22. Results for the Small Instance Set 

 

 

  



 89 

Table 19. Total Integrated Costs for the Medium Test Instance Set in $1000s 

Cost 

Multiples 

Time Multiples   

 1 2 3 4 5 6 7 

0.1 296.4 254.9 234.4 227.3 226.6 231.9 239.8 

0.3 296.7 255.2 234.7 227.5 226.9 232.1 240.0 

0.5 297.1 255.5 235.0 227.8 227.1 232.4 240.2 

0.7 297.4 255.8 235.3 228.1 227.4 232.8 240.4 

0.9 297.7 256.1 235.5 228.3 227.6 232.8 240.6 

 

 

 

 

 

Figure 23. Results for the Medium Instance Set 

 

From Figures 21 through 23, it is evident that introducing an additional 

transportation mode with a cheaper transportation cost but a longer lead time can have a 

dramatic effect on the total integrated cost. Also, further increasing the lead time multiple 
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reduces the total integrated cost, especially in the large and medium-sized problem 

instance sets. As the lead time multiple increases, there is a larger opportunity for cost 

saving through reducing the more expensive transportation mode as well as storage costs. 

Moreover, as the cost multiple increases, so does the total integrated cost. This is 

expected since increasing the cost multiple has a direct effect on increasing the total 

integrated cost. However, the effect of the lead time multiple is much higher than that of 

the cost multiple. 

Using the low-cost, longer lead-time transportation mode cuts some of the cost of 

the higher-cost transportation mode and also saves some production setup and storage 

costs. The slower mode of transportation allows early production of some part type 

quantities that are demanded at later periods, which saves production setup cost. 

Furthermore, once these parts are produced they are shipped via the slower transportation 

mode and thus the company saves the cost for storing these parts. These cost savings are 

possible because of the synergies identified by applying our proposed solution method to 

minimize the total integrated cost.    

In the case of small-sized instance set (Figure 22), beyond a lead time multiple of 

two, the effect is not as large as in the cases of medium and large-sized sets. Also in all 

instance sets, as the second transportation mode lead time multiple increases beyond four 

or five, the total integrated cost increases. This is explained by the fact that when the lead 

time multiple is so long, there is less opportunity for making use of the less expensive 

second transportation mode over the planning horizon. In other words, although the 

quality (potential inventory holding cost savings per time period) increases, the quantity 
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(how many times these savings can be realized) decreases, and the resulting total 

integrated cost actually increases. Overall, our results indicate that as the problem size 

increases, so does the opportunity for higher cost savings through an additional 

transportation mode with longer lead time. These insights can be used in practice by 

automotive supply chain decision makers towards decreasing the total integrated cost.  

4.5 Conclusions and Future Research 

We present a mixed-integer linear programming model that captures the details of 

a total integrated cost minimization problem in a two-stage, automotive supply chain 

under different transportation options. The multiple transportation options offer different 

lead times at varying costs. The proposed solution approach demonstrates the different 

effects the cost and lead time of an additional transportation mode have on the total 

integrated cost. The insights gained from this research highlight the impact of the 

additional transportation mode lead time on reducing the total integrated cost by reducing 

the inventory holding and transportation costs over the single transportation mode case. 

In future research, the problem can be extended to include additional aspects, such as the 

environmental effects due to CO2 emissions from transportation. 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE RESEARCH 

 

In this dissertation, we introduce a two-stage automotive supply chain 

optimization problem involving production at a Tier-1 automotive supplier and 

transportation to distribution centers (customers) at a detailed, operational level. The 

problem has not been studied in the literature to date. Our research contributes towards 

higher efficiency and service levels in the automotive supply chain, which can have a 

favorable economic outcome for the automotive industry. We develop three mixed-

integer linear programming models to capture the realistic details of our problem, and our 

interactions with a Tier-1 automotive supplier company help to assess the validity of our 

models.  

The first mathematical model reflects the details of the two-stage automotive 

supply chain system under study including its multiple machines, auxiliary resources, 

limited capacities, machine-part type and machine-crane compatibilities, sequence-

dependent setups, production decisions, inventory decisions, and transportation decisions 

via full truck loads. While the objective of the first model is to minimize the total 

integrated cost of production setup, inventory holding, transportation, and outsourcing, 

the second mathematical model has two conflicting objectives instead of just one. The 

first objective is to minimize the total cost of production setup, inventory holding, and 

transportation, and the second objective is to minimize the maximum percent of 

outsourced parts per customer. Finally, the third mathematical model extends the first 
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model by adding the capability of utilizing additional transportation modes in the supply 

chain system’s second stage. The model’s objective function becomes minimizing total 

integrated cost of production setup, inventory holding, outsourcing and transportation 

cost of all transportation modes. The model extension also necessitates modifications of 

capacity and conservation of flow constraints in addition to some decision variables.        

After showing that the first MILP model we develop to analyze the research 

problem under study is NP-hard, we develop a hybrid metaheuristic approach, including a 

constructive heuristic and an effective encoding-decoding strategy, to find near-optimal 

solutions in an acceptable amount of time. Computational results demonstrate the 

promising performance of the proposed solution approaches. The most significant factor 

affecting the MILP model’s performance is the number of part types—as the number of 

part types increases, so does the model’s required computation time. In contrast with the 

MILP model, the proposed HSAA’s relative performance improves as the number of part 

types increases. In HSAA, the six perturbation schemes can be configured to run in 

parallel, thus increasing the algorithm’s speed and potential effectiveness. The best 

performing perturbation schemes are identified, and this insight can be used in the future 

for further performance improvement of HSAA.  

Next, to address the existence of multiple optimization objectives, we develop a 

bi-criteria, mixed-integer linear programming model. The model examines two 

conflicting objectives: 1) the summation of setup, inventory holding and transportation 

costs and 2) the maximum percent outsourced parts per customer. The model prescribes 

key decision variables, including production, inventory, shipping, and outsourcing 
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quantities over the planning horizon.  Given the problem’s complexity, we develop a 

hybrid metaheuristic as a first attempt to solve this problem. Experimental results reveal 

that the proposed MOHSAA is suitable for industry use and offers the decision maker 

(e.g. supply chain planner) options to tradeoff cost and service level. Furthermore, as the 

problem size in terms of the number of part types increases, so do the solution time as 

well as the number and range of efficient (nondominated) solutions.  

Finally, we provide a mixed-integer linear programming model that captures the 

details of a total integrated cost minimization problem in a two-stage, automotive supply 

chain under different transportation options. The multiple transportation options offer 

different lead times at varying costs. The proposed hybrid metaheuristic solution 

approach is used to analyze the different effects that the cost and lead time of the 

additional transportation mode have on the total integrated cost. The insights gained from 

this research highlight the impact of the additional transportation mode lead time on 

reducing the total integrated cost by reducing the production setup, inventory holding and 

transportation costs over the single transportation mode case. 

There are a number of possible future research directions to extend the models 

and algorithms presented in this dissertation. On the models side, possible directions for 

future research include extending the current problem to include multiple plants in the 

production stage and investigating different objectives, in addition to cost and service 

level, such as an objective related to sustainability (e.g. CO2 emissions minimization). 

Another direction for future research is utilizing the current models as building blocks 

towards investigating longer-term applications, such as capacity and safety stock level 
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decision making. On the algorithms side, more hybrid metaheuristic solution approaches 

will be required to solve the extended models. Future research can develop and apply 

other heuristic optimization methodologies to solve the problems under investigation.  
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APPENDIX A 

AN EXAMPLE OF THE CONSTRUCTIVE HEURISTIC AND DECODING 

 

Inputs 

| |    | |    | |    | |     

Tables 20 and 21 list two key input parameters for the example. 

 

Table 20. Demand of Part Types Over the Planning Horizon, D 

Time 

Periods 

Part Types 

1 2 3 4 5 

1 0 409 431 292 135 

2 0 0 457 0 0 

3 356 372 0 250 170 

4 0 417 414 259 164 

 

 
Table 21. Machine-Part Type Compatibility, A 

Machines 
Part Types 

1 2 3 4 5 

1 1 0 1 0 0 

2 0 1 0 0 0 

3 1 1 1 0 0 

4 1 1 1 1 0 

5 0 1 0 1 1 
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Constructive Heuristic Calculations (Tables 22 through26): 

Table 22. Grand Total Demand per Part Type,    

Part Types 

1 2 3 4 5 

356 1198 1302 801 469 

 

 
Table 23. Upper Bound of Number of Machine Runs Required to Satisfy Grand Total Demand 

per Part Type,    

Part Types 

1 2 3 4 5 

1 3 4 3 3 

 

 
  = 10 

 
Table 24. Lower Bound of Number of Machines Needed to Satisfy Part Type Time Period 

Demand,      

Time Periods 
Part Types 

1 2 3 4 5 

1 0 1 1 1 1 

2 0 0 1 0 0 

3 1 1 0 1 1 

4 0 1 1 1 1 

 
 

Table 25. An Example of Part Type “Fortune” (Number of Machines Compatible with Each Part 

Type),    

Part Types 

1 2 3 4 5 

3 4 3 2 1 
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Table 26. Matrix of Priority Lists,  , Resulting From Constructive Heuristic Starting Solution 

5 4 3 2 0 1 2 2 3 3 4 0 0 0 0 

3 0 0 0 0 1 2 2 2 3 3 4 4 5 0 

5 4 1 2 0 2 2 3 3 3 4 0 0 0 0 

5 4 3 2 0 1 2 2 3 3 4 0 0 0 0 

 
 

 

 

 

Decoding (Table 27): 
 

Table 27. Decoded Assignments of Machines to Part Types 

T
im

e 
P

er
io

d
s 

 Machines 

1 2 3 4 5 

1 3 2 0 4 5 

2 3 0 0 0 0 

3 0 2 1 4 5 

4 3 2 0 4 5 
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