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In this paper, we consider the problem of scheduling aircraft (plane) landings at an airport.
This problem is one of deciding a landing time for each plane such that each plane lands within
a predetermined time window and that separation criteria between the landing of a plane and
the landing of all successive planes are respected. We present a mixed-integer zero—one formu-
lation of the problem for the single runway case and extend it to the multiple runway case. We
strengthen the linear programming relaxations of these formulations by introducing additional
constraints. Throughout, we discuss how our formulations can be used to model a number of
issues (choice of objective function, precedence restrictions, restricting the number of landings
in a given time period, runway workload balancing) commonly encountered in practice. The
problem is solved optimally using linear programming-based tree search. We also present an
effective heuristic algorithm for the problem. Computational results for both the heuristic and
the optimal algorithm are presented for a number of test problems involving up to 50 planes and

four runways.

In this paper, we consider the problem of schedul-
ing aircraft (plane) landings at an airport. This prob-
lem is one of deciding a landing time on a runway for
each plane in a given set of planes such that each
plane lands within a predetermined time window,
and that separation criteria between the landing of
a plane, and the landing of all successive planes, are
respected.

This paper is organized as follows. In Section 1, we
set the problem in context. In Section 2, we present
a mixed-integer zero—one formulation of the prob-
lem for the single runway case. We then discuss
previous work on the problem in Section 3. In Sec-
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tion 4, we extend the formulation to the multiple
runway case, and, in Section 5, we strengthen the
linear programming (LP) relaxations of these formu-
lations by introducing additional constraints. These
formulations can be solved using LP-based tree
search. An effective heuristic for the problem (for
any number of runways) is presented in Section 6.
Computational results for both the heuristic and the
optimal algorithm for a number of test problems
involving up to 50 planes and four runways are
presented in Section 7.

It is important to note here that, although
throughout this paper we shall typically refer to
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planes landing, the models presented in this paper
are applicable to problems involving just takeoffs
only and to problems involving a mix of landings and
takeoffs on the same runway.

We should also stress here that we are dealing
only with the static case. In other words, we are
dealing with the off-line case where we have com-
plete knowledge of the set of planes that are going to
land. The dynamic, or on-line, case, where decisions
about the landing times for planes must be made as
time passes and the situation changes (planes land,
new planes appear, etc.) is the subject of a separate
paper (BEASLEY et al., 1995).

1. PROBLEM CONTEXT
1.1 Basic Problem

Upon entering within the radar range (radar ho-
rizon) of air traffic control (ATC) at an airport, a
plane requires ATC to assign it a landing time,
sometimes known as the broadcast time, and also, if
more than one runway is in use, assign it a runway
on which to land. The landing time must lie within a
specified time window, bounded by an earliest time
and a latest time, these times being different for
different planes. The earliest time represents the
earliest a plane can land if it flies at its maximum
airspeed. The latest time represents the latest a
plane can land if it flies at its most fuel-efficient
airspeed while also holding (circling) for the maxi-
mum allowable time.

Each plane has a most economical, preferred
speed, referred to as the cruise speed. A plane is said
to be assigned its preferred time, or target time, if it
is required to fly in to land at its cruise speed. If ATC
requires the plane to either slow down, hold, or
speed up, a cost will be incurred. This cost will grow
as the difference between the assigned landing time
and the target landing time grows.

The time between a particular plane landing, and
the landing of any successive plane, must be greater
than a specified minimum (the separation time)
which is dependent upon the planes involved. Sep-
aration times are bounded below by aerodynamic
considerations. A Boeing 747, for example, gener-
ates a great deal of air turbulence (wake vortices)
and a plane flying too close behind could lose aero-
dynamic stability. Indeed a number of aircraft acci-
dents are believed to have been caused by this phe-
nomenon (MULLINS, 1996). For safety reasons,
therefore, landing a Boeing 747 necessitates a (rel-
atively) large time delay before other planes can
land. A light plane, by contrast, generates little air
turbulence and, therefore, landing such a plane ne-
cessitates only a (relatively) small time delay before

other planes can land. Planes taking off impose sim-
ilar restrictions on successive operations.

1.2 Practical Complexities

As we might expect, the practical problem of
scheduling aircraft landings within an ATC environ-
ment is more complex than the basic problem de-
scribed above. Below, we consider a number of these
complexities: control, separation times, latest times,
runway allocation, and objective function, and indi-
cate whether the mixed-integer zero—one formula-
tions presented in this paper can deal with these
complexities.

Control

The mixed-integer zero—one formulations pre-
sented in this paper are decision models. That is,
they relate to making a decision as to the landing
time for each plane to respect separation times at
landing and optimize an appropriate objective. They
leave to one side the associated control problem,
namely, can the planes be flown (controlled) in such
a manner as to enable the solution of the decision
model to be implemented and, if this is possible, how
might the solution to this control problem impact
the costs assumed when solving the decision model?

Plainly the decision model and control problem
are linked. However, as in many operations research
models, we believe that there are benefits to be
gained in separating out these two aspects of the
problem. For example, in the UK, it has been re-
ported that National Air Traffic Services (who oper-
ate ATC for London Heathrow and Gatwick) are
using a mixed-integer model to gain insight into
runway capacity (SIMONS, 1997). Such a strategic
study can, by assuming that the control issue is
solvable, provide an upper bound on runway capac-
ity.

We would also comment here that the common
ATC (ODONI, ROUSSEAU, and WILSON, 1994; MILAN,
1997) practice of scheduling aircraft to land in a
first-come/first-served (FCFS) manner also effec-
tively applies a (trivial) decision model to the prob-
lem while leaving the control problem for later res-
olution. Note too that it is possible to incorporate
some control restrictions (for example, relating to
overtaking or to trajectory segments) in our decision
models in a simple manner (see the discussion of
Additional Restrictions in Section 2.4).

Separation Times

To set mandatory minimum separation times, the
appropriate aviation authorities (e.g., the Federal
Aviation Administration in the USA, the Civil Avi-
ation Authority in the UK) classify planes into a
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small (e.g., three or four) number of classes and
specify the separation that must apply between each
class. Based upon this, a number of papers that have
appeared in the literature have assumed that the
separation time between planes relates just to these
classes. However, in practice, at any particular air-
port, the situation can be much more complex. At
London Heathrow, for example, separation times on
takeoff relate not only to the class of plane but also
to the standard instrument departure route (SID)
that the plane is to follow immediately after takeoff.
The models presented in this paper, by explicitly
allowing separation times to be plane dependent,
cater for such situations.

Latest Times

The latest landing time is set (as indicated above)
based on fuel considerations. A number of papers
that have appeared in the literature assume (some-
what unrealistically) that this latest time is suffi-
ciently large as to be of no consequence. The models
presented in this paper however, by explicitly in-
cluding a finite latest landing time, are more realis-
tic. We present some results in Section 7 to investi-
gate the computational effect upon our algorithm of
a large latest time, as well as to investigate the
ability of our algorithm to detect that the problem is
infeasible if the earliest and latest times are close to
one another.

Runway Allocation

Runway allocation deals with assigning an appro-
priate runway to a plane (if there is more than one
runway available). The models presented in this
paper specifically address the problem of runway
allocation. In particular, these models are applicable
irrespective of whether the runways are being oper-
ated in segregated-mode (only takeoffs or landings)
or mixed-mode (takeoffs and landings mixed). The
mode adopted can be policy dependent. For example,
London Heathrow has two runways that, as a mat-
ter of policy, usually operate in segregated mode.
London Gatwick, by contrast, has a single runway
that (obviously) operates in mixed-mode. One of the
benefits of the models presented in this paper is that
they allow an explicit quantitative comparison to be
made between alternative runway operating policies
within an optimization framework.

Objective Function

In this paper, we shall assume that we are mini-
mizing total cost, where the cost for any plane is
linearly related to deviation from its target time.
Figure 1 illustrates the variation in cost within the
time window of a particular plane. Note here that, in
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Fig. 1. Variation in cost for a plane within its time window.

Figure 1, we have a cost of zero for the plane landing
at its target time. Any cost that the plane actually
incurs in landing at its target time is (from the
decision viewpoint) irrelevant because it is only the
additional (marginal) cost over and above this that
we can influence through an appropriate choice of
landing time.

Note here that the objective function used is re-
lated to the issue of the viewpoint we adopt. If we
are the airport operator, we may be interested in
improving the long-term utilization of finite runway
capacity by better scheduling. If we are an individ-
ual airline, we may be more interested in the indi-
vidual plane costs incurred. In this paper, we implic-
itly assume, through the form of Figure 1, that we
are interested in minimizing total plane costs.

There are a number of additional points to be
made here:

1. Although the cost function shown in Figure 1 is
nonlinear, the fact that it is composed of two
linear portions enables us (see Sections 2.2 and
2.3) to linearize it and formulate the problem
with a linear objective function.

2. The aircraft landing problem is a mixed-integer
problem, hence (effectively) only by adopting a
linearizable objective can such a model be solved
numerically to optimality.

3. We indicate in Section 2.4 how any piecewise
linear cost function that increases monotonically
with respect to deviation from target time can be
incorporated into our models.

4. We indicate in Section 5.4 how a linear formula-
tion of the problem can be given that enables any
(linear or nonlinear) cost function to be repre-
sented provided time can be discretized.

5. The cost function (Figure 1) we have adopted
allows us to distinguish, in cost terms, both be-
tween landing before and after the target time
and between different planes.

6. In some situations, a linear objective is perfectly
reasonable (e.g., if using the models presented in
this paper to land planes as fast as possible, see
Section 2.4; or if using the multiple runway model
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presented in this paper to balance workload be-
tween runways, see Section 4.3).

7. Although a linearizable cost function may not
accurately describe cost, its use within an explicit
optimizing mathematical approach may poten-
tially lead to better decisions than heuristically
solving the problem with a more accurate, but
nonlinear, cost function.

Finally, we would note here that our experience
has been that, in the field of aircraft scheduling, the
issue of which objective function to adopt is the one
that causes by far the most discussion. Arguments
can convincingly be made for many different objec-
tive functions. We believe that different users will,
for perfectly legitimate reasons, use different objec-
tive functions. The challenge for workers in this field
is to develop solution approaches capable of dealing
with a variety of such objectives. We believe that, in
the light of the points made above, this paper rep-
resents a significant contribution toward developing
such approaches.

2. SINGLE RUNWAY FORMULATION

IN THIS SECTION, we present an initial mixed-integer
zero—one formulation of the static single runway
aircraft landing problem.

2.1 Notation
Let

P =the number of planes
E; = the earliest landing time for planei i = 1, . . .,

p)

L, = the latest landing time for planei ¢ =1, ...,
p)

T; = the target (preferred) landing time for plane i
G=1,...,P)

S;;=the required separation time (=0) between
plane i landing and plane j landing (where
plane i lands before planej),i = 1,...,P;j =
1, ...,P;i #j

g; =the penalty cost (=0) per unit of time for land-
ing before the target time 7'; for planei (i = 1,
..., P)

h; =the penalty cost (=0) per unit of time for land-
ing after the target time T, for plane i (i = 1,
..., P)

The time window for the landing of plane i is there-
fore [E;, L;], where E; < T; < L,. The variables are:

x; = the landing time for plane: (i = 1, ..., P)
a; =how soon planei (i = 1, ..., P) lands before T,
B; = how soon planei (i = 1, ..., P) lands after T

I
Nyl

lo Time

Fig. 2. An example of overlapping time windows.

1 if plane i lands before planej (i = 1, ..., P;
8ij= jzl,...,P;i¢j)
0 otherwise

Without significant loss of generality, we shall
henceforth assume that the times E;, L;, and S;; are
integers.

2.2 Constraints

To clarify some of the constraints that will be
given in this section, we provide a diagram (Figure
2), which depicts overlapping time windows for
planes i and j. The first set of constraints are

EinigLi izl,...,P, (1)

which ensure that each plane lands within its time
window. Now, considering pairs (i, j) of planes we
have that

(2)

In words, either plane i must land before plane j
(8;; = 1) or plane j must land before plane i (§; = 1).

It is trivial to see that, for certain pairs (i, j) of
planes, we can immediately decide whether 5,; = 1
or whether §;; = 1. For example, if the time windows
for two planes i and j are [10, 50] and [70, 110],
respectively, then it is clear that plane { must land
first (i.e., that ;; = 1). However, even if we know,
for a pair of planes (i, j), the order in which they
land, it does not mean that the separation constraint
is automatically satisfied.

Continuing the example given above then, if the
separation time S;; = 15, the separation constraint
is automatically satisfied, regardless of when within
their respective time windows ([10,50] and
[70, 110]) planes i and j land. However, if S;; = 25,
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the separation constraint is not automatically satis-
fied, i.e., there exist landing times for i and j (within
their respective time windows) that violate the sep-
aration constraint. Hence we need to define three
sets:

U = the set of pairs (i, j) of planes for which we are
uncertain whether plane i lands before plane j;

V =the set of pairs (i, j) of planes for which ; defi-
nitely lands before j (but for which the separa-
tion constraint is not automatically satisfied);

W= the set of pairs (i, j) of planes for which i defi-
nitely lands before j (and for which the separa-
tion constraint is automatically satisfied).

Then, we can define the set W by
W=[G,)IL;<Ejand L, + S;<E,

i=1,...,P;j=1,...,P;i#jl. (3

In words, i must land before j (L; < E;) and the
separation constraint is automatically satisfied
(L; + S; < E).

We can define the set V by

V=[G )L, <E;and L,+ S,> E;
i=1,...,P;j=1,...,P;i#jl. (4

In words, i must land before j (L; < E;) but the
separation constraint is not automatically satisfied
(L; + S;; > E).

Some thought reveals that the pairs of planes
(z, j) for which uncertainty exists with respect to
which plane lands first must have overlapping time
windows. Hence, we can define the set U as

U=[G,Ni=1,...,P;j=1,...,P;i#J;
E,;<E,<L;orE;,<sL,<L;
orE;<E;,<L;orE;,<L;<L;]. (5

The definition of U means that one of the end points
of the time window of one plane falls within the time
window of the other.

We therefore have the constraint,

8;=1 V(i, ) EWUV. (6)

We need a separation constraint for pairs of planes
in V, and this is

x;=x;+8; Vi, j) €V, (7)

which ensures that a time .S;; must elapse after the
landing of plane i at x; before plane j can land at x;.

We need a separation constraint for pairs of
planes in U, and this is

where M is a large positive constant. There are two
cases to consider here:

a. if §;; = 1, then i lands before j and, from Eq. 2, we
have that 6;; = 0. Therefore, Eq. 8 becomes

x;=x;+ 8y, 9)
ensuring that separation is enforced.

b. if §;; = 0, then j lands before i and, from Eq. 2, we
have that 6;; = 1. Therefore, Eq. 8 becomes

i.e., x; = some large negative number, thereby
ensuring that constraint is effectively inactive.

From the point of view of the LP relaxation of the
problem, we would like M to be as small as possible,
and this can be achieved by replacing M with (L; +
S;; — E;) so that Eq. 8 becomes

x;i=zx;+8S;— L; +S;—E)d; V(i,j)e U, 1A1)
J 4 iy i 17 J Y J

and, making use of Eq. 2, we can rewrite this as

To see that replacing M with (L; + S;; — E;) is valid,
we need to recheck case (b) above. If §;; = 0 (5;; =
1), Eq. 12 becomes, after rearrangement,

Now we always have (x; — L;) < 0 (from Eq. 1), so
Eq. 13 merely says x; = E; + [some value < 0], a
constraint that is always true.

Finally, we need constraints to relate the «;, B;,
and x; variables to each other. The variables «; and
B; and the constraints presented below are neces-
sary simply to ensure that we have a linear objective
function and are:

a, =T, — x; i=1,...,P, (14)
0<asT,-E, i=1,...,P, (15)
Bi=x;,— T, i=1,...,P, (16)
0=<pB=<L,-T, i=1,...,P, (17)
x,=T;,— a; + B, i=1,...,P, (18)

Equations 14 and 15 ensure that «; is at least as big
as zero and the time difference between T'; and x;,
and at most the time difference between T'; and E;
(see Figure 2). Equations 16 and 17 are similar
equations for B3;. Equation 18 relates the landing
time (x;) to the time i lands before («;), or after (8,),
target (T',).

There is one technical subtlety here, namely that
Eqs. 14-18 are not sufficient to uniquely define «;
and B;. To see that this is so, note that, if «; and B;
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satisfy these equations, so too do «; + K and B; + K
for any constant K satisfying 0 < K < min[(T; —
E,) — «a;, (L, — T;) — B;]. The uniqueness of «; and
B; is only guaranteed by the fact that adding K to
both of them increases the objective function (Eq.
19), provided that g, + A, > 0. Hence, in any min-
imum cost solution, at least one of Eqs. 14 and 16
will be satisfied with equality, thereby defining «;
and B; appropriately.

2.3 Objective

We now need only to set up the objective function,
minimize the cost of deviation from the target times
(T,), and this is

P
minimize 2, (g,o; + h;B;). (19)

i=1

The complete formulation (model) of the single run-
way problem is therefore to minimize function 19
subject to Eqs. 1, 2, 6, 7, 12, and 14-18.

This formulation is a mixed-integer zero—one pro-
gram involving 3P continuous variables, at most
P(P — 1) binary (zero—one) variables and at most
[3P + 3P(P — 1)/2] constraints (excluding bounds
on variables). However, as the computational results
given in Section 7 show, the actual size of the prob-
lem (in terms of variables and constraints) can be
much less than this.

2.4 Comment

There are three aspects of the model we should
comment on here, namely: objective function, incor-
porating takeoffs, and additional restrictions. These
are dealt with below.

Objective Function

Note first here that the objective of minimizing
the average landing time, minimize (7, x,)/P,
which is equivalent to minimize 3, «x,, is a special
case of the objective we have adopted above with
T, = E;, and h; = 1. This is because, with these
values and making use of Egs. 15 and 18, we have
that Eq. 19 becomes minimize 3/_; (x; — E;), which
is equivalent to minimize 3F_; x;.

We have chosen to specify the objective (Eq. 19) as
relating to deviation from target times. For example,
if we were using the model in a tactical sense during
the course of a single day’s operations to decide
landing times for planes, then this objective would
seem reasonable. This is because it effectively en-
ables each plane to express a view as to its preferred
target landing time, which is explicitly considered in

arriving at a solution (cf. the FCF'S rule that enables
no such consideration of preferences).

However, it is clear that alternative objectives are
possible. For example, if we were using the model in
a strategic sense to gain some measure of runway
capacity, we might well adopt a minimax objective
such as

minimize max[x]|i =1, ..., P] (20)

to land the last plane as soon as possible. Note here
that this objective is easily linearizable by: adding a
variable Z, 4 (representing the landing time of the
last plane to land); adding constraints Z,,, = x,; i =
1, ..., P; and changing the objective to minimize
Z1,s- Hence, with this objective function, the solu-
tion approach adopted below is applicable. Note too
that we might well, in practice, vary our objective
over time, e.g., in busy periods move from a cost-
based objective (Eq. 19) to a throughput-based ob-
jective (Eq. 20).

With respect to indicating how any piecewise lin-
ear cost function that increases monotonically with
respect to deviation from target time can be incor-
porated into our model, suppose, for ease of illustra-
tion, that we just consider deviations after target
time. If the time interval [T;, L;] contains a single
breakpoint b; (where T; < b; < L;) such that the
incremental penalty cost per unit of time for landing
after b, is H; (= 0), i.e., each unit of time landed
after b, costs h; + H, in total, then this can be
incorporated into the model by introducing variables
0; = 0 where

0i>xi—bii=l,...,P (21)

and adding > ; H,6, to the objective function.

Note here that this is a standard approach for
representing piecewise linear monotonically in-
creasing functions and easily generalizes to more
breakpoints (before or after target). Note too that
this approach can be applied to any nonlinear cost
function that can be approximated by a piecewise
linear monotonic function.

Incorporating Takeoffs

We said before that the model presented in this
paper is applicable to problems involving takeoffs
only and to problems involving a mix of landings and
takeoffs on the same runway. To see that this is so,
reflect that all we have really done is build a model
to decide times for planes to respect time window
constraints and separation time constraints. This is
precisely the situation we have both for takeoffs and
for a mix of landings and takeoffs—just a set of
planes with time windows and separation times,
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where we know, for any particular pair (i, j) of
planes, whether i is landing or taking off, and
whether j is landing or taking off, and so can set the
separation time S;; accordingly.

Additional Restrictions

In any particular situation, there may be addi-
tional restrictions upon what is possible. Such re-
strictions (depending upon their nature) can often be
incorporated into the model we have presented
above.

When considering takeoffs, taxiway restrictions
may impose precedence relations on the order in
which planes may take off. Such precedence rela-
tions are easily incorporated into the model through
setting the §,;; variables appropriately.

When considering landings, precedence relation-
ships relating to the landing sequence may arise.
These would typically be required to ensure that, in
terms of implementing the solution from the deci-
sion model (the control issue, see Section 1.2), a)
“fast” planes do not have to overtake “slow” planes
as they come into land, and b) planes already in a
standard trajectory segment (e.g., see ROBINSON,
DAvVIS, and ISAACSON, 1997) land in the order they
are already in. Again, such precedence relations are
easily incorporated into the model through setting
the §,; variables appropriately.

With respect to restrictions on the number of land-
ings within a given time period (for example because
of gate availability), the situation is more complex,
but such restrictions can be incorporated into the
model. We will illustrate this for just one time period
[¢1, t5] and suppose that we wish at most @ landings
in this time period. Let G be the set of planes such
that

G:[l“:tl, tz]m[Ei, Ll]:/ﬁ@lzl, “ e ,P], (22)

i.e., G is the set of planes that have a possible
landing time within the time period [¢, 5]. Then
(assuming for ease of illustration that all times are
integer), any plane i € G must land in one of the
three time segments [E;, max(E;, ;) — 1], [max-
(E;, t1), min(L;, t5)], and [min(L,, t5) + 1, L;].
Note here that some of these time segments may be
non-existent, e.g., if [£1, 5] = [6, 10] and [E;, L,] =
[2, 7] these segments are [2, 4], [5, 7], and [8, 7].
Hence let

1 if planei lands in time segment

Vi = JjU=1,2,3)
0 otherwise,

where, obviously, v;; is set to zero if the segment is
non-existent. Then we need to add to the model

2 VoS @, (23)
ica
Yat Yet vs=1ViEQG, (24)

x;<[max(E;, t,) — 1]ys + L(1 — vy) Vi EQG,
(25)

max(E;, t1)ye < x; < min(L;, £5)ye + L1 — v;9)
Vie G, (26)

Equation 23 restricts the number of landings in the
specified time period [£4, ¢5] and Eq. 24 ensures that
exactly one of v;;, v;9, and v;5 is one. Equations
25-27 relate the landing time x; to the appropriate
time segment. Note here that, because =,c; v;5 is
the number of landings in the specified time period,
we could, if we wish, add a cost term relating to this
to our objective function. Note too that these con-
straints (Eqs. 23—27) could be applied to any subset
of planes (e.g., we might wish to restrict the number
of planes from a particular airline that land in a
specified time period).

We would comment here that, in restricting land-
ings for reasons such as gate availability, we are
essentially forcing planes to “wait” in the air.
Thought, therefore, needs to be given to the issue of
whether it might not be better to land the planes
and allow them to “wait” on the ground. Finally,
note here that setting @ = 0 ensures that there are
no landings in the specified time period [¢;, ¢,] and
so the constraints given above also enable us to deal
with what are known as blocked intervals and re-
served time slots (ERZBERGER, 1995).

3. PREVIOUS WORK

IN THIS SECTION, we review the work that has been
reported in the literature on the problem of sched-
uling aircraft landings. Readers interested in the
wider problems that occur in the management of air
traffic are referred to BIANCO and ODONI (1993),
Odoni et al. (1994), WINTER and NUSSER (1994).

It is clear that, with the problem of increasing
congestion at airports, the efficient and effective
scheduling of plane takeoffs and landings is an im-
portant one. However, we were surprised to find
that, from the Operations Research viewpoint, rela-
tively little has been written. Moreover, the work
that has been done is widely scattered among inter-
nal reports, conference proceedings, books, and jour-
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nals with the result that it is (in our experience)
difficult to access.

ANDREUSSI, BIANCO, and RICCIARDELLI (1981) re-
ferred to the problem as the aircraft sequencing
problem and presented a paper concerned with de-
veloping a discrete-event simulation model to eval-
uate different sequencing strategies. Computational
results were presented for a number of simulated
scenarios.

DEAR and SHERIF (1989, 1991) discussed both the
static and dynamic aircraft landing problems and
presented a heuristic algorithm for the (single run-
way) dynamic aircraft landing problem based upon a
technique they refer to as constrained position shift-
ing. This involves finding, for a small set of planes,
the best possible positions for them in the landing
queue subject to the constraint that no plane can be
moved more than a pre-specified number of posi-
tions away from the position it had in the landing
queue based on FCFS (see also DEAR, 1976). Com-
putational results were presented for three simu-
lated scenarios involving 500 planes. In Dear (1976)
and Dear and Sherif (1989, 1991), the separation
constraint only applies to successive plane landings.
In other words, if i, j, and %2 land one after each
other such that i lands before j, which lands before
k, then both x; = x; + S;; and x;, = x; + S, are
guaranteed to hold, but it may be thatx, <x; + S,,.
We shall refer to this situation by saying that only
successive separation is enforced. This contrasts
with the problem as we have defined it where sepa-
ration is enforced between all pairs of planes (which
we shall refer to as complete separation). Note here
that, if the triangle inequality S;, < S;; + S, (Vi,
Vk # i, Vj # i, k) holds, then successive separation
is sufficient to ensure complete separation.

PSARAFTIS (1980) incorporated constrained posi-
tion shifting (see Dear, 1976; Dear and Sherif, 1989,
1991) within a dynamic programming recursion
(with successive separation) and considered the sin-
gle-runway static problem. He viewed the aircraft
landing problem as comprising groups of identical
planes waiting to land. This contrasts with the ap-
proach adopted in this paper where (potentially) all
planes are different. Computational results were
presented for a single problem involving three
groups of planes (15 planes in total). The work pre-
sented in Psaraftis (1980) is based on PSARAFTIS
(1978), which also considers the two-runway prob-
lem and (essentially) builds upon the single-runway
solution approach (Psaraftis, 1980) by enumerating
all possible partitions of the groups of planes be-
tween runways. Psaraftis presented computational
results for six two-runway (static) problems involv-

ing up to 15 planes (three groups of planes in all
cases).

BRINTON (1992) presented a depth-first tree
search algorithm based on enumerating all possible
aircraft sequences. Branches in the tree were dis-
carded when the cost of a partially constructed se-
quence exceeded the best-known feasible solution.
His approach can also be extended to include run-
way allocation. For computational reasons, he pro-
posed applying his enumeration algorithm in a heu-
ristic manner via a moving window approach (order
the set of planes, sequence the first F' (unfrozen)
planes, freeze the landing of the first plane in this
ordered set, and repeat).

ABELA et al. (1993) presented a mixed-integer
zero—one formulation of the single-runway aircraft
landing problem together with a heuristic based
upon a genetic algorithm. Computational results
were presented for a number of problems involving
up to 20 planes. In this paper, we present a stronger
formulation of the problem than the one presented
in Abela et al. (1993). Furthermore, we also solve the
multiple-runway case.

VENKATAKRISHNAN, BARNETT, and ODONI (1993)
observed separation times adopted on landing at
Logan Airport, Boston. Using these observed sepa-
ration times, they applied the work of Psaraftis
(1978, 1980), which they modified in a heuristic
manner to take account of earliest/latest times, to
see the improvement that could result from better
sequencing. Milan (1997) considered the problem of
assigning priorities to aircraft waiting to land from a
queuing theory viewpoint.

A number of papers have appeared that view the
aircraft landing problem as a job shop scheduling
problem, as indeed did Psaraftis (1978, 1980). The
runways represent identical machines and the
planes represent jobs. The earliest time associated
with each plane (job) is the ready time (sometimes
called the release time) of the job. Typically such
papers assume the latest time (which we consider
explicitly in this paper) to be sufficiently large to be
of no consequence.

The processing time of a particular job (plane) on
a particular machine (runway) is then dependent
upon just the job following it on the same machine
(successive separation), or all the other jobs that will
follow it on the same machine (complete separation).
This is because the processing time, or, alterna-
tively, the setup time, for a particular job on a par-
ticular machine must be sufficient to ensure that the
following jobs (planes) are not started before the
appropriate separation time has elapsed.

In other words, the problem of scheduling plane
landings can be viewed as either a job shop sched-
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uling problem with release times and sequence-de-
pendent processing times (but zero setup times), or a
job shop scheduling problem with release times and
sequence-dependent setup times (but zero process-
ing times). Typically, papers in the literature have
taken as their objective function the minimization of
the maximum landing time (Eq. 20), in job shop
scheduling terms, the minimization of makespan, so
that the aircraft landing problem is a P/R/E,/seq-
dep/C,, .. job shop scheduling problem, where R is
the number of runways. Note here that, as a conse-
quence of this, the aircraft landing problem is NP-
hard.

BiaNCcO, NICOLETTI, and RICCIARDELLI (1978)
adopted the job shop scheduling view (but with con-
stant separation times) for the single-runway prob-
lem. A branch-and-bound algorithm was presented
but no detailed computational results were given.
BIANCO, RINALDI, and SASSANO (1987), BIANCO et al.
(1988) and BIANCO and BIELLI (1993) adopted the
job shop scheduling view (with successive separa-
tion) for the single-runway problem. They presented
a mixed-integer zero—one formulation of the prob-
lem together with a tree search algorithm based
upon a Lagrangean lower bound, a lower bound de-
rived from scheduling theory and a heuristic proce-
dure. Computational results were presented for a
number of test problems involving up to 15 planes,
and for three larger test problems. Of these three
larger problems, one involved 20 planes, Bianco et
al. (1987, 1988); the other two involved 30 and 44
planes, Bianco et al. (1987), Bianco and Bielli (1993).

For more on the job shop scheduling problem with
sequence-dependent processing/setup times see
LOCKETT and MUHLEMANN (1972), WHITE and WIL-
SON (1977), S0 (1990), GUINET (1991, 1993), SIMCHI-
LEVI and BERMAN (1991), OVACIK and UZSOY (1993,
1994, 1995), JORDAN and DREXL (1995), Low (1995),
RUBIN and RAGATZ (1995), BRUCKER and THIELE
(1996), FRANCA et al. (1996), Lia0 and YU (1996),
VAN DER VEEN and ZHANG (1996), HWANG and SUN
(1997), LEE, BHASKARAN, and PINEDO (1997), LEE
and PINEDO (1997), TAN and NARASIMHAN (1997).

Note here that, if successive separation applies,
then the aircraft landing problem can be viewed as
an open traveling salesman problem (TSP) with
time windows, each city in the TSP being a plane.
The difficulty with this approach lies in represent-
ing the objective function. BIANCO, MINGOZZI, and
RICCIARDELLI (1993) adopted this approach and pre-
sented a dynamic programming algorithm for the
TSP with cumulative costs. Computational results
were presented for the solution of problems involv-
ing up to 35 cities (optimally) and 60 cities (heuris-
tically). This problem is equivalent to the (single-

runway) aircraft landing problem with no time
windows and the objective of minimizing the aver-
age landing time (37, x,/P). BIANCO et al. (1999)
also adopted this approach and presented a dynamic
programming formulation, lower bounds, and two
heuristic algorithms. Computational results were
presented for a number of randomly generated prob-
lems and for two (single-runway) aircraft landing
problems involving 30 and 44 planes.

The TSP problem with cumulative costs is some-
times also called the deliveryman problem. LUCENA
(1990) presented an algorithm for this problem
based upon Lagrangean relaxation and presented
computational results for the (optimal) solution of
problems involving up to 30 cities. FISCHETTI, LA-
PORTE, and MARTELLO (1993) presented an algo-
rithm based upon dual ascent and gave computa-
tional results for the (optimal) solution of problems
involving up to 60 cities. For earlier work on this
problem, see PICARD and QUEYRANNE (1978), FOX et
al. (1980).

As mentioned in Section 2.4, one use of the model
we have developed is to gain some measure of run-
way capacity. Early work on the problem of runway
capacity was given by BLUMSTEIN (1959). More re-
cently, STEWART and SHORTREED (1993) have ex-
plored via simulation the trade-off among risk, sep-
aration, and capacity. For an overview of the work
that has been done relating to runway capacity, see
Odoni, Rousseau, and Wilson (1994).

There are a number of software systems available
to help in airport aircraft management. These sys-
tems include, in part, modules to schedule landings
and takeoffs:

e COMPAS (VOLCKERS 1986, 1987, 1990; PLATZ
and BROKOF, 1994), which takes an initial heu-
ristic schedule and applies an enumeration pro-
cedure designed to eliminate separation-time
conflicts

e MAESTRO (GARCIA, 1990), where the solution
procedure is unclear (cf. Garcia, 1990; Ven-
katakrishnan, Barnett, and Odoni, 1993; Robin-
son, Davis, and Isaacson, 1997)

e OASIS (LJUNGBERG and LUCAS, 1992; LUCAS et
al., 1994), which uses an A*-based (INILSSON,
1980) search procedure.

Probably the most extensive software system cur-
rently existing is CTAS (Center TRACON (terminal
radar approach control) Automation System) devel-
oped at NASA Ames Research Center. CTAS con-
tains two modules addressing the problem consid-
ered in this paper: a) a sequencer and scheduler
module that sequences, using a simple constructive
heuristic based on merging partial sequences,



planes to land at a single runway, and schedules
using the expression: scheduled landing time =
max[scheduled landing time of previous plane +
required separation, earliest possible landing time];
and b) a runway allocation module that allocates
aircraft to runways in a heuristic fashion. See Erz-
berger (1995), LEE and DAVIS (1996), DAVIS et al.
(1997), ISAACSON, DAVIS, and ROBINSON (1997), Rob-
inson et al. (1997), and http:/ /www.ctas.arc.na-
sa.gov / project_description / fast.html.

Finally, we would note here that there is currently
much interest within Europe, and a number of on-
going projects, concerned with improving arrival
and departure sequencing, which is the name by
which the problem is commonly known in Europe
(BEASLEY, 1996b).

4. MULTIPLE RUNWAY FORMULATION

IN THIS SECTION, we extend the formulation of the
single-runway problem to the multiple-runway case.

4.1 Formulation

Most busy international airports have at least two
runways and some have three or more. Thus, in
situations where there is more than one runway to
choose from, we need to determine the appropriate
runway for planes to land on, as well as deciding a
landing time for each plane.

If we have planes landing on different runways,
we have the issue of the separation time required
between such planes to consider. In the USA, for
example (Venkatakrishnan, Barnett, and Odoni,
1993), planes can land simultaneously on parallel
runways provided that their centerlines are more
than F feet apart, where, under visual flight rules,
F = 1200, but under instrument flight rules F =
4300. We shall henceforth assume that the runways
are situated such that:

s;;= the required separation time (0 < s;; < S;;)
between plane i landing and plane j landing
(where plane i lands before plane j and they
land on different runways), i = 1, ..., P;j =
1,...,Pi#j

Essentially, here we have assumed that the separa-
tion time between planes landing on different run-
ways is runway independent. Let:

R =the number of runways
1 if planesi andjland on the same runway
z;= G=1,...,P;j=1,...,P;i #))
0 otherwise
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1 if planei (i =1, ..., P) lands on
Yir= runway r(r = 1, ..., R)
0 otherwise

We then introduce the following constraints into the
formulation of the problem given previously:

R

S yo=1i=1,...,P (28)

r=1

Zij'Zyir+yjr_1 lzl,,P’]:l,,P,
j>i;r=1,...,R. (30)

Equation 28 ensures that each plane lands on ex-
actly one runway whereas Eq. 29 is a symmetry
constraint (if i and j land on the same runway so do
J and 7). Equation 30 ensures that, if there is any
runway r for which y;, and y;, are both one, then we
force z,; to be one (i and j land on the same runway).
If z;; = 0, then Eq. 30 ensures that planes i and j
cannot land on the same runway.

The requirement that the separation time is S;;
for planes landing on the same runway but s;; for
planes landing on different runways can be easily
dealt with. Redefine the sets W and V by replacing
S;;in Egs. 3 and 4 by max(S,;, s;;) and replace S;; in
the separation constraints (Eqs. 7 and 8) by (S;;z;; +
s;{(1 — z;7).

Hence, Eq. 7 becomes

x;=x;+ 8z +s,(1—2y) Vi, j)EV (31
and Eq. 8 becomes

where M can be replaced by (L; + max(S,;, s;;) —
E)) to give

- (Ll + maX(Sij, Sij - EJ)Sﬂ
V(i,j)eU. (33)

4.2 Overview

The complete formulation (model) of the multiple
runway problem is, therefore, to minimize function
19 subject to Egs. 1, 2, 6, 14-18, 2831, and 33. This
formulation is a mixed-integer zero—one program
involving 3P continuous variables, at most [2P(P —
1) + PR] binary (zero—one) variables and at most
[4P + (4 + R)P(P — 1)/2] constraints (excluding
bounds on variables). However, as the computa-
tional results given in Section 7 show, the actual size
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of the problem (in terms of variables and con-
straints) can be much less than this.

4.3 Workload

In some situations with multiple runways, it may
be that the issue of runway workload needs to be
considered (e.g., workload becomes important if dif-
ferent air traffic controllers deal with different run-
ways). Let w;,. (= 0) represent a measure of the
workload involved in landing plane i on runway r.
Then, the amount of work involved for each runway
r is given by 3, w,,y;,. Obviously, therefore, we
could, if we wished, introduce explicit constraints on
the workload allowed on each runway into our
model.

Alternatively, it may be that our objective be-
comes one of balancing workload between runways.
This can be easily formulated. Letting Z ;, repre-
sent the workload on the most lightly loaded run-
way, and Z,, .. represent the workload on the most
heavily loaded runway, we can formulate the prob-
lem of balancing workload by amending the objec-
tive of the multiple-runway model given above to be

minimize Z .« — Z min, (34)

and adding to the model the constraints

P

Zmaxzzwiryirr:]ﬂ"',R (35)
i=1
P

Zmingzwiryir r:]-’""R- (36)
i=1

Equation 35 ensures that Z, . is at least as big as
the largest workload, and Eq. 36 ensures that Z ;.
is at least as small as the smallest workload. Mini-
mizing Z .. — Zin €nsures that we minimize the
difference between these workloads, i.e., the run-
ways are as balanced as possible.

5. STRENGTHENING THE RELAXED FORMULATIONS

ALTHOUGH THE formulations given above for both
the single- and multiple-runway cases are sufficient
to describe the problems, we intend solving them
numerically through the use of LP-based tree
search. This technique involves relaxing the zero—
one variables §,;, y;,, and z,;; to continuous (frac-
tional) variables. If this is done, then there are a
number of additional valid constraints that we can
add to the problem, which are redundant in zero—
one space; but which strengthen (improve) the value
of the LP relaxation in continuous space. In this
section, we discuss how the time windows for each

plane can be tightened, present the additional con-
straints we have developed, and present an alterna-
tive formulation of the problem.

5.1 Time Window Tightening

Let Z;5 be any upper bound on the optimal solu-
tion to the problem. Then, it is possible to limit the
deviation from target for each plane. Specifically, for
plane i, if we assume that all other planes make a
zero contribution to the objective function (Eq. 19)
value, we can update E; using

Ei = maX[Ei, Ti - ZUB/gi] = 1, e ey P, (37)

because, if we land more than Zp/g; time units
before target, we would exceed the upper bound on
the optimal solution. Similarly we have that

Li - min[Li, Ti + ZUB/hi] l - 1, . e ey P, (38)

because, if we land more than Zg/h; time units
after target, we would exceed the upper bound on
the optimal solution.

Using Eqgs. 37 and 38, the time window [E;, L,] for
each plane i (i = 1, ..., P) can be tightened in a
preprocessing step. The benefit of tightening (clos-
ing) the time windows is that (potentially) the sets U
and V can be reduced in size, thereby giving a
smaller problem to solve.

Note here that, if we adopt the minimax objective
(Eq. 20) discussed above, Eqs. 37 and 38 are not
valid. Instead, any upper bound Z ;5 limits the lat-
est time at which any plane can land (see Eq. 20)
and so, in this case, we can update L, using

L;=min[L;, Zw] i=1, ..., P. (39)

5.2 Additional Constraints
Delta Setting

Consider

If (x; — x;) > 0, then plane j lands after plane i (i
lands before j) and, hence, we need to enforce §,; =
1. In the above constraint, the (L, — E;) term is a
scaling factor and represents the maximum value
(x; — x;) can take. This constraint is redundant if
R = 1 (because, in that case, it is dominated by Eq.
12), but not if R = 2.

Delta Sum

Consider the §;; variables. The first plane to land
lands before (P — 1) other planes, the second plane
to land lands before (P — 2) other planes, etc. Thus,
we must have that the §,;; variables sum to (P —
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HD+P-2)+ ---
we have that

+ 1, i.e., to P(P — 1)/2. Hence,

2 E 5ij:

i=1 j=1,#i

PP —1)/2. (41)

Gap Closing

Suppose we have two planes i and j with T; < T,
(i.e., i would prefer to land before j). Then the gap
(T; — T;) between the target times of i and j can only
be closed by a combined movement of (B; + «;) (see
Figure 2). Hence, we have that

=1— ff

J

T V(z J)EU with T,<T,;, (42)
because, if (B; + «;) is insufficient to close the gap,
we must have that i lands before j, i.e., that §,; = 1.

Minimum Deviation

Suppose we have two planes iandj with T; < T;
and (T, — T,) < S;;, i.e,, i would prefer to land
before j but their target tlmes do not satisfy separa-
tion. So, if both planes land on the same runway,
some movement from target (for one or both planes)
must occur.

Assume for the moment that z;; = 1, so both
planes do land on the same runway. Referring to
Figure 2, if §;; = 1 then i lands before j and this
movement must be at least [S;; — (T, — T))]. How-
ever, if j lands before i (5;; = 1) then thls movement
must be at least [(T; — Ti) + S;;1. Hence, we have
that

(o; + By) + (o; + B))

=[S, — (T, — T)s, + [(T; — T;) + S;,18;
(T; = T)), [(T; = T) + S;lH(1 = z;)
V(i,j)eU with T, <T;and (T;— T, <8;

—max{[S; —

(43)

where the term involving (1 — z;;) renders the con-
straint inactive if z;; = 0. Obviously, for the single-
runway situation, this term can be ignored (because,
in that case, i and j must land on the same runway).
A similar constraint can also be derived for planes i
and j with T; < T; and (T; — T)) < s;;.

Order Deciding

Consider the set U. It may contain two overlap-
ping time windows from which we can deduce, using
the separation times, which plane lands first (as-
suming they land on the same runway). For exam-
ple, if the time window for plane i is [10, 50] and the
time window for plane j is [40, 70] then (i, j) € U.

However, if S;; = 15, we can deduce that i can never
land after j (i.e., that §;, = 0) assuming i and j land
on the same runway (i.e., assuming that z;; = 1).
Hence, define

*=[0, )G, j)€EU and E; + S;;> L], (44)

i.e., the set U* contains pairs (i, j) of planes for
which it is impossible for j to land before i (assuming
they land on the same runway). Hence, we have

Obviously, for the single-runway situation, the z;;
term is one (because, in that case, i and j must land
on the same runway).

We can derive a similar constraint for planes that
land on different runways. Define

U** =[(i, ))|(i,j) EU and E; + s; > L,;], (46)
then we have
8;+(1—2z)=<1V(@,j e U** 47)
Number on Runway

The multiple runway formulation of the problem
can be strengthened if we develop a lower bound on
the number of pairs of planes that can land on the
same runway. In other words, a constraint of the
form

P P
> > z;=K, (48)

i=1 j=1,j#i

where K is derived by examining the different ways
of landing P planes on R runways. Suppose m,
planes land on runway 1, m, on runway 2, ..., mp
on runway R. Then,

P
Y 2y

Mwa

=mi(m;— 1) + my(my—1) + -+
=1 j=1,j#i
+ mg(mg— 1) (49)
R
-3 - S w3 m
r=1 r=1

Hence, an appropriate value for K is the optimal
solution value of

R

minimize Y, (m,)?— P (50)

r=1

R

subject to >, m, =P (51)

r=1
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mq, My, ..., mpintegers (=0).

(52)

This is an integer quadratic program that can be
solved (in the worst case) by total enumeration in
O(RPE~1) operations (possible because R is small in
practice). For example, if P = 50 and R = 2, the
optimal solution to the above problem has m, =
my = 25 so that K = 1200.

5.3 Complete Formulation

The complete (strengthened) single/multiple-run-
way formulation (model) is therefore to minimize
function 19 subject to Egs. 1, 2, 6, 14-18, 28-31, 33,
40-43, 45, 47, and 48. Note here that we did develop
a number of other additional constraints that can be
used to strengthen the LP relaxations of the original
formulations of the problem. However, we have only
presented those additional constraints that we
found to be of computational benefit.

5.4 An Alternative Formulation

It is clear that the formulation of the problem
given above is relatively complex. We did experi-
ment with a simpler alternative formulation that
can be easily derived if we discretize time (require
all times, and in particular the landing time, to be
integer). Specifically, define:

C,,,= the cost of plane i landing at time ¢ on runway r
_ |1 if plane i lands at time ¢ on runway r
Xitr=10 otherwise,

then the formulation is

P Li R
minimize Y, >, 2 C.\ X, (53)
i=1 t=E; r=1
subject to (54)
L; R
> > X,=1 i=1,...,P
t=E; r=1
X +X,,<1
i=1,..., P;j=1,...,P;
t#j, r=1,...,R;
(55)
X, +X_ <1

itr JTu

i=1,...,P; j=1,...,P;
t#j;, r=1,...,R; u=1,...,R; u#r;
VtE[E,, L;)]; VTe[E;, LiiN[¢t, ¢t +s;— 1]
(56)
X»n€(0,1)
i=1,...,P; Vte|[E,, L];
r=1,...,R. (57)

Equation 54 ensures that each plane lands exactly
once (at some time on some runway). Equation 55
ensures that, if plane i lands at time ¢ on runway r,
no other plane j (landing in [E;, L;]) can land on
runway r at a time 7, which lies within the time
period [¢, ¢ + S;; — 11, i.e., this is the separation
constraint for planes that land on the same runway.
Equation 56 is the separation constraint for planes
that land on different runways.

This formulation of the problem can be linked to
the previous formulations using the constraints

Li R

x;= > 2 tX, i=1,...,P (58)

t=E; r=1

Li
yir:EXitr L:]-’

t=E;

, P, r=1,...,R. (59

One advantage of this discrete-time formulation of
the problem is that C,,, can be quite general, so we
are not restricted to a linear function for deviations
from target (unlike the continuous-time formula-
tions presented above). One disadvantage of this
discrete time formulation is a relatively large num-
ber of variables and constraints (in particular, Egs.
55 and 56). Moreover, limited computational expe-
rience with the LP relaxation of this formulation
was disappointing, so it was not explored further.

6. HEURISTIC UPPER BOUND AND RESTARTING
6.1 Upper Bound

If we can find an upper bound Z;5 on the optimal
solution to the problem, then we can tighten the
time windows for each plane as indicated above
(Eqgs. 37 and 38). In addition, such an upper bound
can be used to curtail the LP-based tree search. We
used the following heuristic to find an upper bound
(a feasible solution) for the problem:

1. Let A, (r = 1, ..., R) be the ordered set of
planes landing on runway r, where initially A, =
& Vr.
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2. Consider the planes in ascending target (7)) or-
der (ties broken arbitrarily) and, for each such
plane j in turn:

a. compute for each runway r the value of

B, = max[T;, max[x, + S,|Vk €A,],
max[x, + s,lu
=1,...,Ru#r VEEA,]] (60)

this expression gives the best (least cost) time
B, that j can land on runway r, given the
earlier landings on that runway and the ear-
lier landings on all other runways

b. let y be the runway corresponding to B, =
min[B, | r = 1, ..., R] (ties broken arbitrari-
ly). Addj to A, and set x; = B.,.

In words, what we are doing here is adding each

plane in turn to a particular runway (at a partic-

ular landing time) depending upon the best (least

cost) possible landing time for it, given the other

planes landing on the runways.

3. One feature of the above (Steps 1 and 2) is that
we never land before target, always at or after
target. To improve the solution obtained, we, in
this step, recalculate the landing times, but with
the runways for each plane and the landing order
fixed as decided at Steps 1 and 2. This can be
simply done because we have effectively made a
heuristic choice of all the integer variables in our
formulation of the problem, and we need only now
solve the resulting LP to decide an optimal set of
landing times (optimal with respect to the given
heuristic integer choices).

6.2 Restarting

Although the heuristic presented above gave good
results, computational experience indicated that the
LP-based tree search occasionally found an im-
proved feasible solution (upper bound) early in the
tree search. Because the advantage of an improved
feasible solution is that we can tighten the time
windows for each plane, thereby tightening the for-
mulation, it seemed appropriate to restart the prob-
lem each time an improved feasible solution was
found (provided it was found early in the tree
search).

In the computational results presented below, we
restart the problem if we find an improved feasible
solution less than P (the number of planes) seconds
after starting the tree search. Hence our solution
approach is:

1. apply the heuristic to generate an upper bound

Zyg
2. use Zyg to tighten the time windows

3. use tree search to resolve the LP relaxation of the
problem:

a. if an improved feasible solution is found
within P seconds of starting the tree search,
then terminate the tree search, update Zyp
using this improved feasible solution and re-
start the problem (i.e., go to Step 2);

b. otherwise, continue the tree search until nor-
mal termination (when an integer solution will
have been found and proved to be optimal).

Note here that this solution approach means that we
may restart the problem a number of times, each
time with an improved feasible solution.

7. COMPUTATIONAL RESULTS

THE ALGORITHM PRESENTED in this paper was pro-
grammed in FORTRAN and run on a DEC 3000/700
(200 Mhz Alpha chip) for a number of test problems
involving up to 50 planes. To solve the mixed-integer
zero—one formulations of the problem to optimality
using LP-based tree search, we used the CPLEX
software package (CPLEX, 1994). All of the test
problems solved in this paper are publicly available
from OR-Library (BEASLEY, 1990, 1996a), E-mail
the message airlandinfo to o.rlibrary@ic.ac.uk or see
http:/ Imsemga.ms.ic.ac.uk/jeb/orlib/airlandinfo.
html.

Each test problem was solved with an increasing
number of runways until the optimal solution value
dropped to zero (indicating that we had sufficient
runways to enable all planes to land on target). Note
here that, for the multiple-runway case, we assumed
that (s;;) was zero.

Table I shows the computational results. In that
table, we give, for each problem, the number of
planes; the number of runways; the heuristic solu-
tion value and the time taken; the number of re-
starts, the solution value at each restart, and the
time taken up to each restart; CPLEX statistics
(number of variables, number of constraints, and the
LP relaxation value) at the final restart (i.e., at the
initial tree node before branching); and the optimal
solution value, the total number of tree nodes and
the total time taken. All computer times are in DEC
3000/700 seconds. Note here that, in Table I, if the
heuristic gives a solution value of zero, we automat-
ically know that this is the optimal solution (i.e., all
planes land on target).

It is clear from Table I that the heuristic pre-
sented in this paper is able to find good quality
solutions quickly. In addition, good (if not optimal)
feasible solutions are found early in the tree search
for a number of the problems for which an optimal
solution has not been found by the heuristic.
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TABLE I
COMPUTATIONAL RESULTS
Heuristic Tree Search

Number Number Number Solution Value Time at Number of Number of LP Value Number  Total

Problem of of Time of at Each Restart Variables at Constraints at at Final Optimal of Tree Time

Number Planes Runways Value (secs) Restarts Each Restart (secs) Final Restart Final Restart Restart Value Nodes (secs)
1 10 1 optimal 0.1 — — — 68 173 321.16 700 49 0.4
2 optimal 0.1 — — — 90 158 0 90 91 0.6

3 optimal 0.1 — — — — — — 0 — —
2 15 1 1500 0.1 1 1480 1.9 157 412 430.00 1480 454 5.2
2 optimal 0.1 — — — 196 386 0 210 115 1.8

3 optimal 0.1 — — — — — — 0 — —
3 20 1 1380 0.1 1 820 0.6 194 525 449.40 820 42 2.7
2 optimal 0.1 — — — 277 489 0 60 142 3.8

3 optimal 0.2 — — — — — — 0 — —
4 20 1 optimal 0.1 — — — 336 929 924.37 2520 20002 220.4
2 optimal 0.1 — — — 389 870 0 640 193319 1919.9
3 optimal 0.1 — — — 345 837 0 130 39901 2299.2

4 optimal 0.2 — — — — — — 0 — —
5 20 1 5420 0.1 — — — 426 1181 964.83 3100 50745 922.0
2 1070 0.1 — — — 452 1076 0 650 282160 11510.4
3 240 0.1 — — — 361 890 0 170 20035 1655.3

4 optimal 0.2 — — — — — — 0 — —
6 30 1 optimal 0.1 — — — 80 222 5393.25 24442 10806 33.1
2 882 0.1 — — — 630 1266 0 554 25316 1568.1

3 optimal 0.2 — — — — — — 0 — —
7 44 1 optimal 0.1 — — — 174 341 184.00 1550 2192 10.6

2 optimal 0.2 — — — — — — 0 — —
8 50 1 2690 04 7 2480; 2285; 2245; 5.4; 11.3; 16.8; 1318 3785  1547.86 1950 1114 111.9

2080; 2040;  24.3; 29.9;
1990; 1950 41.4;51.2

2 255 0.2 — — — 1562 3154 0 135 9020 3450.6

3 optimal 0.6 — —

_ _ — — 0 — _

To examine the computational effect of the latest
landing time upon the solution procedure, we re-
solved the largest problem shown in Table I (Prob-
lem 8, with R = 1 and 2). To make a more valid
comparison, we set the upper bound Zygz equal to
the optimal solution value shown in Table I and
solved using both the original latest landing time
and with the latest landing time increased by a
factor of 100 (i.e., L; = 100L;). The result was that
increasing the latest landing time by a factor of 100
increased the solution time by only 1.4%. That this
effect is so small is principally due to the explicit
setting of L; via Eq. 38.

To examine the issue of infeasibility, we resolved
the largest problem shown in Table I (Problem 8)
with the earliest landing time as before, but with the
latest landing time L; now equal to E; + 2 and the
target landing time T; now equal to E; + 1. The
result was that the algorithm proved that, for R = 1
and for R = 2 the problems were infeasible in 3.7
and 6.7 seconds, respectively. For R = 3, a feasible
solution was found in 0.2 seconds.

One feature of Table I on which we should com-
ment is the LP value at the final restart. It will be
seen that all the LP values are zero in the case of
multiple runways (R = 2). To see why this is so,
consider Eq. 28 with R = 2. When the integrality
requirement on the y,, is relaxed, each plane i can be
assigned values y,; = y;5 = 1/2. This leads, in Eq.
30, to z;; = 0, satisfied by z,; = 0 and effectively
saying (Egs. 31 and 32) that all separation times are
zero (recall here that s;; = 0 for our test problems).

Because producing an LP lower bound of zero for
the multiple-runway case appears, at first sight, to
be a trivial achievement, the question therefore
arises as to the value of the formulation given in this
paper for the multiple-runway case. We believe that
the multiple-runway formulation we have presented
has merit, not because it produces a good lower
bound at the initial tree node, but because using it in
an LP-based tree search does enable us to solve, to
optimality, multiple runway problems of moderate
size. As far as we are aware this is the first time
such problems have been so solved in the literature.
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8. CONCLUSIONS

IN THIS PAPER, we have presented formulations of
the static aircraft landing problem, for both the sin-
gle- and multiple-runway cases, as mixed-integer
zero—one programs. The LP relaxation of these for-
mulations was strengthened by the introduction of
additional constraints. Computational results were
presented for a number of test problems involving
up to 50 planes and four runways. Throughout this
paper, we have tried to indicate how our formula-
tions can be used to model a number of issues com-
monly encountered in practice, such as choice of
objective function, precedence restrictions, restrict-
ing the number of landings in a given time period,
runway workload balancing. Finally we would com-
ment that we believe the problem of effectively
scheduling aircraft takeoffs and landings is an im-
portant problem that has (for various reasons) not
achieved the prominence it deserves in the Opera-
tions Research literature. We hope that this paper
will help to highlight the problem and encourage
others to work on it.
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