90,990 research outputs found

    Energy Efficient Mobile Sink Based Routing Model For Maximizing Lifetime of Wireless Sensor Network

    Get PDF
    Recently, wide adoption of wireless sensor networks (WSNs) has been seen for provision real-time and non-real-time application services. Provisioning these application service requires energy efficient routing design for WSN. Clustering technique is an efficient mechanism that plays a major role in minimizing energy dissipation of WSN. However, the existing model are designed considering minimizing energy consumption of sensor device considering homogenous. However, it incurs energy overhead among cluster head. Further, maximizing coverage time is not considered by exiting clustering approach considering heterogeneous network affecting lifetime performance. For overcoming issues of routing data packets in WSN, mobile sink has been used. Here, the sensor device will transmit packet in multihop fashion to the rendezvous and the mobile sink will move towards rendezvous points (RPs) to collect data, as opposed to all nodes. However, the exiting model designed so far incurs packet delay (latency) and energy (storage) overhead among sensor device. For overcoming research challenges, this work present energy efficient mobile sink based routing model for maximizing lifetime of wireless sensor network. Experiment are conducted to evaluate the performance of proposed model shows significant performance in terms of communication, routing overhead and lifetime of sensor network

    SAFE ROUTING MODEL AND BALANCED LOAD MODEL FOR WIRELESS SENSOR NETWORK

    Get PDF
    Wireless Sensor Networks (WSNs) play a very important role in providing realtime data access for Big Data and Internet. However, the open deployment, energy constraint, and lack of centralized administration make WSNs very vulnerable to various kinds of malicious attacks. In WSNs identifying malicious sensor devices and eliminating their sensed information plays a very important role for mission critical applications. Standard cryptography and authentication schemes cannot be directly used in WSNs because of the resource constraint nature of sensor devices. Thus, energy efficient and low latency methodology is required for minimizing the impact of malicious sensor devices. This paper presents a Secure and Load Balanced Routing (SLBR) scheme for heterogeneous clustered based WSNs. SLBR presents a better trust-based security metric that overcomes the problem when sensors keep oscillating from good to bad state and vice versa, and also SLBR balances load among CH. Thus, aids in achieving better security, packet transmission, and energy efficiency performance. Experiments are conducted to evaluate the performance of proposed SLBR model over existing trust-based routing model namely Exponential Cat Swarm Optimization (ECSO). The result attained shows SLBR model attains better performance than ECSO in terms of energy efficiency (i.e., network lifetime considering first sensor device death and total sensor device death), communication overhead, throughput, packet processing latency, malicious sensor device misclassification rate and identification

    EMEEDP: Enhanced Multi-hop Energy Efficient Distributed Protocol for Heterogeneous Wireless Sensor Network

    Full text link
    In WSN (Wireless Sensor Network) every sensor node sensed the data and transmit it to the CH (Cluster head) or BS (Base Station). Sensors are randomly deployed in unreachable areas, where battery replacement or battery charge is not possible. For this reason, Energy conservation is the important design goal while developing a routing and distributed protocol to increase the lifetime of WSN. In this paper, an enhanced energy efficient distributed protocol for heterogeneous WSN have been reported. EMEEDP is proposed for heterogeneous WSN to increase the lifetime of the network. An efficient algorithm is proposed in the form of flowchart and based on various clustering equation proved that the proposed work accomplishes longer lifetime with improved QOS parameters parallel to MEEP. A WSN implemented and tested using Raspberry Pi devices as a base station, temperature sensors as a node and xively.com as a cloud. Users use data for decision purpose or business purposes from xively.com using internet.Comment: 6 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1409.1412 by other author

    Energy Consumption Rate based Stable Election Protocol (ECRSEP) for WSNs

    Get PDF
    In recent few yearsWireless Sensor Networks (WSNs) have seen an increased interest in various applications like border field security, disaster management and medical applications. So large number of sensor nodes are deployed for such applications, which can work autonomously. Due to small power batteries in WSNs, efficient utilization of battery power is an important factor. Clustering is an efficient technique to extend life time of sensor networks by reducing the energy consumption. In this paper, we propose a new protocol; Energy Consumption Rate based Stable Election Protocol (ECRSEP). Our CH selection scheme is based on the weighted election probabilities of each node according to the Energy Consumption Rate (ECR) of each node. We compare results of our proposed protocol with Low Energy Adaptive Clustering Hierarchy (LEACH), Distributed Energy Efficient Clustering (DEEC), Stable Election Protocol (SEP), and Enhanced SEP(ESEP). Our simulation results show that our proposed protocol, ECRSEP outperforms all these protocols in terms of network stability and network lifetime

    Energy efficient clustering and routing optimization model for maximizing lifetime of wireless sensor network

    Get PDF
    Recently, the wide adoption of WSNs (Wireless-Sensor-Networks) is been seen for provision non-real time and real-time application services such as intelligent transportation and health care monitoring, intelligent transportation etc. Provisioning these services requires energy-efficient WSN. The clustering technique is an efficient mechanism that plays a main role in reducing the energy consumption of WSN. However, the existing model is designed considering reducing energy- consumption of the sensor-device for the homogenous network. However, it incurs energy-overhead (EO) between cluster-head (CH). Further, maximizing coverage time is not considered by the existing clustering approach considering heterogeneous networks affecting lifetime performance. In order to overcome these research challenges, this work presents an energy efficient clustering and routing optimization (EECRO) model adopting cross-layer design for heterogeneous networks. The EECRO uses channel gain information from the physical layer and TDMA based communication is adopted for communication among both intra-cluster and inter-cluster communication. Further, clustering and routing optimization are presented to bring a good trade-off among minimizing the energy of CH, enhancing coverage time and maximizing the lifetime of sensor-network (SN). The experiments are conducted to estimate the performance of EECRO over the existing model. The significant-performance is attained by EECRO over the existing model in terms of minimizing routing and communication overhead and maximizing the lifetime of WSNs

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    AM-DisCNT: Angular Multi-hop DIStance based Circular Network Transmission Protocol for WSNs

    Full text link
    The nodes in wireless sensor networks (WSNs) contain limited energy resources, which are needed to transmit data to base station (BS). Routing protocols are designed to reduce the energy consumption. Clustering algorithms are best in this aspect. Such clustering algorithms increase the stability and lifetime of the network. However, every routing protocol is not suitable for heterogeneous environments. AM-DisCNT is proposed and evaluated as a new energy efficient protocol for wireless sensor networks. AM-DisCNT uses circular deployment for even consumption of energy in entire wireless sensor network. Cluster-head selection is on the basis of energy. Highest energy node becomes CH for that round. Energy is again compared in the next round to check the highest energy node of that round. The simulation results show that AM-DisCNT performs better than the existing heterogeneous protocols on the basis of network lifetime, throughput and stability of the system.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore