4,436 research outputs found

    Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals

    Get PDF
    Estimation of parameters of a diffusion based on discrete time observations poses a difficult problem due to the lack of a closed form expression for the likelihood. From a Bayesian computational perspective it can be casted as a missing data problem where the diffusion bridges in between discrete-time observations are missing. The computational problem can then be dealt with using a Markov-chain Monte-Carlo method known as data-augmentation. If unknown parameters appear in the diffusion coefficient, direct implementation of data-augmentation results in a Markov chain that is reducible. Furthermore, data-augmentation requires efficient sampling of diffusion bridges, which can be difficult, especially in the multidimensional case. We present a general framework to deal with with these problems that does not rely on discretisation. The construction generalises previous approaches and sheds light on the assumptions necessary to make these approaches work. We define a random-walk type Metropolis-Hastings sampler for updating diffusion bridges. Our methods are illustrated using guided proposals for sampling diffusion bridges. These are Markov processes obtained by adding a guiding term to the drift of the diffusion. We give general guidelines on the construction of these proposals and introduce a time change and scaling of the guided proposal that reduces discretisation error. Numerical examples demonstrate the performance of our methods

    Stochastic Methods for Zero Energy Quantum Scattering

    Get PDF
    We investigate the use of stochastic methods for zero energy quantum scattering based on a path integral approach. With the application to the scattering of a projectile from a nuclear many body target in mind, we use the potential scattering of a particle as a test for the accuracy and efficiency of several methods. To be able to deal with complex potentials, we introduce a path sampling action and a modified scattering observable. The approaches considered are the random walk, where the points of a path are sequentially generated, and the Langevin algorithm, which updates an entire path. Several improvements are investigated. A cluster algorithm for dealing with scattering problems is finally proposed, which shows the best accuracy and stability.Comment: 40 pages LaTeX, 1 Postscript file containig 20 figures; execute main.tex file, which automatically will include other file

    Hamiltonian Monte Carlo Without Detailed Balance

    Full text link
    We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate a greater than factor of two improvement in mixing time on three test problems. We release the source code as Python and MATLAB packages.Comment: Accepted conference submission to ICML 2014 and also featured in a special edition of JMLR. Since updated to include additional literature citation

    Tuning the generalized Hybrid Monte Carlo algorithm

    Get PDF
    We discuss the analytic computation of autocorrelation functions for the generalized Hybrid Monte Carlo algorithm applied to free field theory and compare the results with numerical results for the O(4)O(4) spin model in two dimensions. We explain how the dynamical critical exponent zz for some operators may be reduced from two to one by tuning the amount of randomness introduced by the updating procedure, and why critical slowing down is not a problem for other operators.Comment: 4 pages, to be published in the Proceedings of Lattice 95, uuencoded PostScript fil

    Wormhole Hamiltonian Monte Carlo

    Full text link
    In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create \emph{wormholes} connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to rediscovering those previously identified, we employ a novel mode searching algorithm that explores a \emph{residual energy} function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function

    A New Technique for Sampling Multi-Modal Distributions

    Get PDF
    In this paper we demonstrate that multi-modal Probability Distribution Functions (PDFs) may be efficiently sampled using an algorithm originally developed for numerical integrations by Monte-Carlo methods. This algorithm can be used to generate an input PDF which can be used as an independence sampler in a Metropolis-Hastings chain to sample otherwise troublesome distributions.Some examples in one two and five dimensions are worked out.Comment: One ps figure; submitted to "Journal of Computational Physics
    corecore