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Abstract: Estimation of parameters of a diffusion based on discrete time
observations poses a difficult problem due to the lack of a closed form ex-
pression for the likelihood. From a Bayesian computational perspective it
can be casted as a missing data problem where the diffusion bridges in be-
tween discrete-time observations are missing. The computational problem
can then be dealt with using a Markov-chain Monte-Carlo method known
as data-augmentation. If unknown parameters appear in the diffusion co-
efficient, direct implementation of data-augmentation results in a Markov
chain that is reducible. Furthermore, data-augmentation requires efficient
sampling of diffusion bridges, which can be difficult, especially in the mul-
tidimensional case.

We present a general framework to deal with with these problems that
does not rely on discretisation. The construction generalises previous ap-
proaches and sheds light on the assumptions necessary to make these ap-
proaches work. We define a random-walk type Metropolis-Hastings sampler
for updating diffusion bridges. Our methods are illustrated using guided
proposals for sampling diffusion bridges. These are Markov processes ob-
tained by adding a guiding term to the drift of the diffusion. We give
general guidelines on the construction of these proposals and introduce a
time change and scaling of the guided proposal that reduces discretisation
error. Numerical examples demonstrate the performance of our methods.
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1. Introduction

In this article we discuss a novel approach for estimating an unknown parameter
θ ∈ Θ of the drift and the diffusion coefficient of a diffusion process

dXt = bθ(t,Xt) dt+ σθ(t,Xt) dWt, X0 = u (1.1)

which is observed discretely in time. Here bθ : R×R
d denotes the drift function,

aθ = σθσ
′
θ is the diffusion function, where σθ : R × R

d → R
d×d′

, and W is
a d′-dimensional Wiener process. The observation times will be denoted by
t0 = 0 < t1 < · · · < tn = T and the corresponding observations by xi = Xti .

Estimation of θ in this setting has attracted much attention during the past
decade. Here we restrict attention to estimation within the Bayesian paradigm.
From a theoretical perspective, results on posterior consistency have been proved
in Van der Meulen and Van Zanten (2013) and Gugushvili and Spreij (2012).
The associated computational problem is the object of study here. Two review
articles that include many references on this topic are Van Zanten (2013) and
Sørensen (2004).

The main difficulty in estimation for discretely observed diffusion processes
is the lack of a closed form expression for transition densities, making the likeli-
hood intractable. If the diffusion path is observed continuously, then estimation
becomes easier as for a fully observed diffusion path the likelihood is available in
closed form (and parameters appearing in the diffusion coefficient can be deter-
mined from the quadratic variation of the process). This naturally suggests to
study the computational problem within a missing data framework, treating the
unobserved path segments between two succeeding observation times as missing
data. This setup dates back to at least Pedersen (1995), who used it to obtain
simulated maximum likelihood estimates for θ. Within the Bayesian computa-
tional problem, the resulting Markov-Chain-Monte-Carlo algorithm is known as
data-augmentation and was introduced in this context by Eraker (2001), Elerian,
Chib and Shephard (2001) and Roberts and Stramer (2001). This algorithm is
a special form of the Gibbs sampler which iterates the following steps:

1. draw missing segments, conditional on θ and the observed discrete time
data;

2. draw from the distribution of θ, conditional on the “full data”.

Here, by “full data” we mean the path formed by the drawn segments joined at
the observation times. The algorithm can be initialised by either interpolating
the discrete time data or choosing an initial value for θ. We now discuss tho
major challenges for the outlined algorithm together with various solutions that
have been proposed in the literature.

Challenge 1: generating “good” proposals for the missing segments. The prob-
lem of simulating diffusion bridges has received a lot of attention over the past
15 years. Vastly different techniques have been proposed, including (i) single
site Gibbs updating of the missing segments locally on a discrete grid (Er-
aker (2001)), (ii) independent Metropolis-Hastings steps using as a proposal a
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Laplace approximation to the conditional distribution obtained by Euler approx-
imation (Elerian, Chib and Shephard (2001)), (iii) forward simulated processes
derived from representations of the Brownian bridge in discrete time (Durham
and Gallant (2002)), (iv) coupling arguments (Bladt and Sørensen (2014) and
Bladt and Sørensen (2015)), (v) a constrained sequential Monte Carlo algorithm
with a resampling scheme guided by backward pilots (Lin, Chen and Mykland
(2010)), and (vi) exact simulation (Beskos et al. (2006)).

Delyon and Hu (2006) extended the work of Durham and Gallant (2002)
to a continuous time setup and derived an innovative proposal process taking
the drift of the target diffusion into account. In case the diffusion coefficient
is constant this proposal was proposed earlier in Clark (1990). The basic idea
consists of superimposing an additional term to the drift of the unconditioned
diffusion to guide the process towards the endpoint. Such proposals are termed
guided proposals and have the advantage that only forward simulation of an
SDE is required. More precisely, the drift of the proposal that hits v ∈ R

d at
time T equals b◦(t, x) = λb(t, x)+(v−x)/(T − t), where either λ = 0 or λ = 1 is
chosen. If λ = 0, the guiding term (v− x)/(T − t) matches with the drift of the
SDE for a Brownian bridge, which indeed has drift 0. However, this proposal
has the drawback that it is independent of the drift b of the diffusion. If λ = 1,
the guiding term depends on b and consequently there is a potential mismatch
between the drift and guiding term. In both cases (i.e. λ = 0 and λ = 1) there
can be a substantial mismatch between the proposals and true bridges, rendering
low acceptance rates in an MH-sampler.

In Schauer, Van der Meulen and Van Zanten (2017) a general class of pro-
posal processes for simulating diffusion bridges was introduced. The proposals
in Schauer, Van der Meulen and Van Zanten (2017) do take the drift of the
target diffusion into account, but in a way different from Delyon and Hu (2006).
As a result, these proposals can substantially reduce the mismatch of drift and
guiding term, because they allow for more flexibility in choosing an appropri-
ate guiding term to pull the process towards the endpoint in the right manner.
An example of the advantage of this approach is given in the introduction of
Schauer, Van der Meulen and Van Zanten (2017). General guidelines to exploit
the added flexibility are addressed in this paper.

For implementation purposes, any proposal has to be evaluated on a finite
number of grid points. As the pulling term added to the drift for guided pro-
posals has a singularity near the endpoint, special care is needed in choosing
a discretisation method. More importantly, integrals that appear in the accep-
tance probability of bridges potentially suffer from this problem as well. In this
paper we introduce a time change and scaling of the proposal process that deals
with these problems.

Challenge 2: handling unknown parameters appearing in the diffusion coeffi-
cient. As pointed out by Roberts and Stramer (2001), the data augmentation
algorithm degenerates if θ appears in the diffusion coefficient as the quadratic

variation of the full data
∫ T
0
aθ(t,Xt) dt forces the conditional distribution for

the next iterate for θ to be degenerate at the current value. Hence, iterates of
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θ remain stuck at their initial value. The problem was solved in a discretised
setting by both Chib, Pitt and Shephard (2004) and Golightly and Wilkinson
(2010). Rather than updating θ conditional on the discretised diffusion bridge,
they proposed updating θ conditional on the increments of the Brownian motion
driving the discretised diffusion bridge. This decouples the tight dependence be-
tween θ and the diffusion bridge. However, as Stramer and Bognar (2011) point
out “While the promising GW approach can be applied to a large class of diffu-
sions, it is not yet rigorously justified in the literature.” Put differently, whereas
the GW (=Golightly-Wilkinson) approach works in the discretised setup, it
gives no guarantee that it also works in the limit where the discretisation level
tends to zero.

In the continuous-time framework a solution to the aforementioned problem
was given in Roberts and Stramer (2001) for one-dimensional diffusions. It was
extended to reducible multivariate diffusions (diffusions that can be transformed
to have unit diffusion coefficient) in Beskos et al. (2006) and Sermaidis et al.
(2013). The basic idea is that the laws of the bridge proposals can be under-
stood as parametrised push forwards of the law of an underlying random process
common to all models with different parameters θ. This is naturally the case
for proposals defined as solutions of stochastic differential equations and the
driving Brownian motion can be taken as such an underlying random process.
If X� denotes a missing segment given that the parameter equals θ, the main
idea consists of finding a map g and a process Z such that X� = g(θ, Z). In
a more general set-up, decouplings of similar forms are discussed under the
keyword non-centred parameterisation (Papaspiliopoulos, Roberts and Sköld
(2003)). The process Z will be called the “innovation process” (analogous to
terminology used in Chib, Pitt and Shephard (2004) and Golightly and Wilkin-
son (2010)). Whereas in case σθ = θ the construction is rather easy, in general
proving existence of the map g and process Z is subtle and this forms an impor-
tant topic of this paper. We postpone a detailed discussion to Sections 2 and 3.

A first attempt of finding a non-centred parameterisation in continuous time
in a general setting was undertaken in Fuchs (2013) (in particular section 7.4).
Fuchs (2013) works in the setting of Delyon and Hu (2006), so it is assumed that
the diffusion coefficient σ is invertible and the diffusion is time-homogeneous.
While the results in Fuchs (2013) are formulated in continuous time, the deriva-
tion involves heuristic arguments via the Lebesgue densities of the finite dimen-
sional distributions. A recent work is Papaspiliopoulos, Roberts and Stramer
(2013). In their approach the missing data is initially considered in continuous
time using Delyon and Hu (2006) bridge proposals, but the degeneracy prob-
lem is tackled only after discretisation. An important contribution of this paper
consists of recognising that bridge simulation is key for building data augmenta-
tions algorithms and cancellation of the intractable transition density from the
augmented target.

What is the essential structure behind those different approaches and how can
the underlying transformations be handled in continuous time without resorting
to discretisation? Are these techniques tied to certain proposals, for example the
proposal processes in Delyon and Hu (2006), or are they valid for other proposal
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processes as well? And can conditions such as invertibility of σ be relaxed and is
it essential that the diffusion is time-homogeneous? Part of this paper consists
of answering these questions in a rigorous way. As a result of this, in our setting
it is evident how to replace the independence sampler for Z (which updates
the diffusion bridges) by a random-walk type update on the process Z in a
straightforward way.

1.1. Contribution

In this article we present a general framework for Bayesian estimation of dis-
cretely observed diffusion processes that satisfactory deals with both aforemen-
tioned challenges. Our approach reveals the conditions necessary for obtaining
an irreducible Markov chain that samples from the posterior (after burnin). We
show that the algorithm does not suffer from the degeneracy problem in case un-
known parameters appear in the diffusion coefficient, not even in the continuous
time setup. The procedure can be seen as extension and unification of previous
approaches within a continuous time framework. For example the results of the
rather complicated heuristics in Section 7.4 of Fuchs (2013) appear as a special
case of our work. Specific features of our approach include:

• We use in each data augmentation step “adapted” bridge proposals which
take both the drift and the value of θ at that particular iteration into ac-
count. Hence, at each iteration, the pulling term depends on θ, a feature
which is unavailable using proposals as in Delyon and Hu (2006). Espe-
cially in the multivariate case, the additional freedom in devising good
proposals is crucial for obtaining a feasible MCMC procedure. The pos-
sibility to exploit special features of the drift function to achieve high
acceptance rates makes this approach interesting for practitioners. This is
illustrated with a practical example in Section 7.2.

• We provide specialised algorithms in case the drift is of the form bθ =∑N
i=1 θiϕi for known functions ϕ1, . . . , ϕN (Cf. algorithms 2 and 3).

• The innovation process is defined using the proposal process. As a result,
in our algorithm (Cf. algorithm 1), the innovations actually never need to
be computed. This implies that our method can also cope with the case
where σ is not a square matrix (which is not the case for example in Fuchs
(2013)).

• We illustrate our work using linear guided proposals as introduced in
Schauer, Van der Meulen and Van Zanten (2017) and the proposals intro-
duced in Delyon and Hu (2006). In section 4.4 we give general guidelines
on the construction of these proposals. In section 7.2 we show that not
taking into account the drift of the diffusion can lead to extremely small
acceptance probabilities for bridges.

• Though we derive all our results in a continuous time setup, for implemen-
tation purposes integrals in likelihood ratios and solutions to stochastic
differential equations need to be approximated on a finite grid. As the drift
of our proposal bridges has a singularity near its endpoint, we introduce a
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time change and scaling that allows for numerically accurate discretisation
and evaluation of the likelihood.

The approach with linear guided proposals can be extended to the case of
partially observed diffusions, where for example some components of the diffu-
sion are unobserved. Though the problem becomes much harder, the underlying
structure for constructing an algorithm is the same. For details we refer to Van
der Meulen and Schauer (2016).

1.2. Outline

In Section 2 we clarify the aforementioned difficulties in a toy example. Here,
we set some general notation and introduce some key ideas used throughout.
In section 3 we precisely state our algorithms and introduce the concept of a
feasible proposal. In Section 4 we show that both the proposals from Delyon and
Hu (2006) and Schauer, Van der Meulen and Van Zanten (2017) are feasible. In
Section 4.4 we give guidelines on constructing a guiding term for the proposals
from Schauer, Van der Meulen and Van Zanten (2017). Numerical discretisa-
tion issues and the computational complexity of the proposed algorithms are
discussed in sections 5 and 6 respectively. Numerical examples are given in Sec-
tion 7. We end with a short section on summary and discussion. The appendix
contains a few postponed proofs.

2. A toy problem

In this section we consider a toy example to illustrate some key ideas to solve
the aforementioned problems with a simple data-augmentation algorithm. The
type of reparameterisation introduced shortly is not new, and has appeared for
example in Roberts and Stramer (2001). The goal here is to introduce key ideas
and point out some of its potential shortcomings in more complex problems.
Furthermore, later on we will deal with more difficult cases and this toy exam-
ple allows us to sequentially build up an appropriate framework for that. We
consider the diffusion process

dXt = b(Xt) dt+ θ dWt, X0 = u, t ∈ [0, T ],

where b is a known drift function and θ ∈ Θ an unknown scaling parameter. We
assume θ is equipped with a prior distribution π0(θ) and only one observation
XT = v at time T is available. We aim to draw from the posterior π(θ | XT ).
The diffusion process conditioned on XT = v is a diffusion process itself. Denote
by X� the conditioned diffusion path (Xt, t ∈ (0, T )) (conditional on XT = v).
Suppose we wish to iterate a data-augmentation algorithm and the current
iterate is given by (X�, θ).

Updating X�: For almost all choices of b, there is no direct way of simulating
X�. Instead, one can first generate a proposal bridge X◦ and accept with MH-
acceptance probability. As an easy tractable example we choose to take
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dX◦
t =

v −X◦
t

T − t
dt+ θ dWt, X◦

0 = u (2.1)

where W is a Brownian Motion on [0, T ].
Denote the laws of X◦ and X� (viewed as Borel measures on C([0, T ],Rd))

by P
◦ and P

� respectively. We have

dP�
θ

dP◦
θ

(X◦) =
p̃θ(0, u;T, v)

pθ(0, u;T, v)
Ψθ(X

◦), (2.2)

with

Ψθ(X
◦) = exp

(
θ−2

∫ T

0

b(X◦
s ) dX

◦
s − 1

2
θ−2

∫ T

0

b(X◦
s )

2 ds

)
.

Here, p denotes the transition densities of the process X and p̃(0, u;T, v) =
ϕ(v;u, θ2T ) (the density of theN(u, θ2T )-distribution, evaluated at v). Absolute
continuity is a consequence of Girsanov’s theorem applied to the unconditioned
processes and the abstract Bayes’ formula. Now the MH-step consists of gen-
erating a proposal X◦ and accepting it with probability 1 ∧ (Ψθ(X

◦)/Ψθ(X
�))

(the ratio of transition densities just acts as a proportionality constant here).
Updating θ: As explained in the introduction, taking the missing segment as

missing data yields the Metropolis-Hastings algorithm reducible. To deal with
this problem, note that by equation (2.1), there exists a mapping g such that
X◦ = g(θ,W ). Define the process Z by the relation

X� = g(θ, Z). (2.3)

Now that Z is defined, rather than drawing from the distribution of θ con-
ditional on (X0 = u,XT = v,X�) we will sample from the the distribution of θ
conditional on (X0 = u,XT = v, Z). This means that we augment the discrete
time observations with Z instead of X�. Denote the laws of Z and W by Zθ and
W respectively. Suppose the current iterate is (θ, Z), where Z can be extracted
from θ and X� by means of equation (2.3). The following diagram summarises
the notation introduced:

Process Z
g(θ,·)−→ X� W

g(θ,·)−→ X◦

Measure Zθ P
�
θ W P

◦
θ

(2.4)

For updating θ we propose a value θ◦ from some proposal distribution q(· | θ)
and accept the proposal with probability min(1, A), where

A =
π0(θ

◦)

π0(θ)

pθ◦(0, u;T, v)

pθ(0, u;T, v)

dZθ◦

dZθ
(Z)

q(θ | θ◦)
q(θ◦ | θ) . (2.5)

Here, we have implicitly assumed that Zθ◦ and Zθ are equivalent, which is indeed
the case as we have

dZθ◦

dZθ
(Z) =

dZθ◦

dW
(Z)

/
dZθ

dW
(Z) =

dP�
θ◦

dP◦
θ◦
(g(θ◦, Z))

/
dP�

θ

dP◦
θ

(g(θ, Z))

and thus results from absolute continuity of P�
θ and P

◦
θ. By equation (2.2), we

now get
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dZθ◦

dZθ
(Z) =

pθ(0, u;T, v)

pθ◦(0, u;T, v)

p̃θ◦(0, u;T, v)

p̃θ(0, u;T, v)

Ψθ◦(g(θ◦, Z))

Ψθ(g(θ, Z))
.

Substituting this expression into equation (2.5) yields

A =
π0(θ

◦)

π0(θ)

p̃θ◦(0, u;T, v)

p̃θ(0, u;T, v)

Ψθ◦(g(θ◦, Z))

Ψθ(g(θ, Z))

q(θ | θ◦)
q(θ◦ | θ) (2.6)

and all terms containing the unknown transition density cancel. In Section 4
we will show that cancellation of p from the acceptance probability holds much
more generally.

The feasibility and efficiency of this algorithm is crucially determined by
choice of the transition kernel q and proposal process X◦. We focus on an
appropriate choice ofX◦, though in section 3.3 we give guidelines on appropriate
choice of q if the drift possesses a specific structure with respect to θ.

3. Proposed MCMC algorithms

Our starting point is that under weak assumptions the target diffusion bridge
X� from u at time t = 0 to v at time t = T is characterised as the solution to
the SDE

dX�
t = b�θ(t,X

�
t ) dt+ σθ(t,X

�
t ) dWt, X�

0 = u, t ∈ [0, T ), (3.1)

where
b�θ(t, x) = bθ(t, x) + aθ(t, x)∇x log pθ(t, x;T, v) (3.2)

and a = σσ′. Here the transition density of X is denoted by pθ and pθ(t, x;T, v)
is the density of the process starting in x at time t, ending in v at time T .

3.1. Innovation process

Direct forward simulation of X� is hardly ever possible, as p is intractable.
Instead, we propose to simulate a process X◦ with induced law that is absolutely
continuous with respect to that of X�. More precisely, we assume the proposal
process X◦ satisfies the SDE

dX◦
t = b◦θ(t,X

◦
t ) dt+ σθ(t,X

◦
t ) dWt, X◦

0 = u, t ∈ [0, T ) (3.3)

We now describe a general parametrisation to decouple the dependence be-
tween the latent paths of the diffusion between discrete time observations and
the parameter θ.

The following proposition is key to the definition of the map g. In its state-
ment we refer to the canonical setup on which an exact SDE can be solved,
details are in section V.10 of Rogers and Williams (2000).

Proposition 3.1. Assume

• the SDEs for X◦ and X� are pathwise exact (in the sense of definition
V-9.4 of Rogers and Williams (2000));
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• there exists a strong solution for the SDE for X◦ (in the sense of definition
V.10.9 of Rogers and Williams (2000)) jointly measurable with respect to
starting point, parameter and path W ;

• P
◦ and P

� are absolutely continuous.

Then there exists a map g and a Wiener process W such that X◦ = g(θ,W )
on the canonical setup. Furthermore, there exists a process Z such that X� =
g(θ, Z). The process Z satisfies the SDE

dZt = μθ

(
Zt

)
dt+ dWt (3.4)

where the map μθ satisfies

σθ(t, x)μθ(t, x) = b�θ(t, x)− b◦θ(t, x). (3.5)

Moreover,

dX�
t = b◦θ(t,X

�
t ) dt+ σθ(t,X

�
t ) dZt, X�

0 = u, t ∈ [0, T ). (3.6)

Proof. Denote the law of W by W. Existence of g such that X◦ = g(θ,W ) is
implied by existence of a strong solution for the SDE for X◦. If Y satisfies

dYt = b◦θ(t, Yt) dt+ σθ(t, Yt) dWt, Y0 = u, t ∈ [0, T )

then Y = g(θ,W ). Define

Lθ = exp

(∫ T

0

μθ(t, Yt) dWt −
∫ T

0

μθ(t, Yt)
2 dt

)
and assume for the moment that EWLθ = 1. Define the measure Zθ by dZθ =
Lθ dW. By Girsanov’s theorem, it follows that the process Z defined by equation
(3.4) is a Brownian Motion under the measure Zθ. If we define Y by Y = g(θ, Z)
then

dYt = b◦θ(t, Yt) dt+ σθ(t, Yt) dZt, Y0 = u, t ∈ [0, T )

under Zθ. Plugging (3.4) into this equation shows that

dYt = b�θ(t, Yt) dt+ σθ(t, Yt) dWt, Y0 = u, t ∈ [0, T ).

By pathwise uniqueness Y = X� up to indistinguishability under W (because
W is a Wiener process). Hence, X� = g(θ, Z) and (3.6) follows. We have

dZθ

dW
(·) = dP�

θ

dP◦
θ

(g(θ, ·)) (3.7)

and henceforth existence of μθ such that EWLθ = 1 follows from our assumption
that P�

θ and P
◦
θ are absolutely continuous.

We refer to the process Z as the innovation process corresponding to X� (by
analogy of the terminology of Golightly and Wilkinson (2008) and Chib, Pitt
and Shephard (2004)). Clearly, X� is related to Z just like X◦ is related to W .
Note however that while the law of W does not depend on θ under W, the law
of Z does depend on θ under W.
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In the following we will denote the Radon-Nikodym derivative between P
◦

and P
� by Φ:

Φθ :=
dP�

θ

dP◦
θ

.

3.2. Algorithm

In this section we present an algorithm to sample from the posterior of θ given
the discrete observations D = {X0 = u,Xt1 = x1, . . . , Xtn = xn}. Denote the
prior density on θ by π0 and let q(θ◦ | θ) be the density for proposing θ◦ given
the current value θ. The idea is to define a Metropolis–Hastings sampler on
(θ, Z) instead of (θ,X�) where Z is the innovation process from the previous
section.

More precisely, we construct a Markov chain for (θ, (Zi)1≤i≤n), where each Zi

is an innovation process corresponding to the bridge X�
i connecting observation

xi−1 to xi.

Algorithm 1.

1. Initialisation. Choose a starting value for θ and sample i = 1, . . . , n
Wiener processes Wi and set Zi = Wi.

2. Update Z | (θ,D). Independently, for 1 ≤ i ≤ n do

(a) Sample a Wiener process Z◦
i .

(b) Sample U ∼ U(0, 1). Compute

A1 =
Φθ(g(θ, Z

◦
i ))

Φθ(g(θ, Zi))
.

Set

Zi :=

{
Z◦
i if U ≤ A1

Zi if U > A1

.

3. Update θ | (Z,D).

(a) Sample θ◦ ∼ q(· | θ).
(b) Sample U ∼ U(0, 1). Compute

A2 =
q(θ | θ◦)
q(θ◦ | θ)

π0(θ
◦)

π0(θ)

n∏
i=1

pθ◦(ti−1, xi−1; ti, xi)

pθ(ti−1, xi−1; ti, xi)

Φθ◦(g(θ◦, Zi))

Φθ(g(θ, Zi))

Set

θ :=

{
θ◦ if U ≤ A2

θ if U > A2

.

4. Repeat steps (2) and (3).

Note that in none of these steps we need to compute innovations Z from X�.
This is a consequence of adapting the definition of the innovations to the bridge
proposals being used.



2368 F. van der Meulen and M. Schauer

In step (2) an independent Metropolis-Hastings step is used. Instead, one can
also propose Z◦ based on the current value of Z in the following way

Z◦
t =

√
ρZt +

√
1− ρWt, (3.8)

where ρ ∈ [0, 1) and W is a Wiener process under W that is independent of Z.
In this case

A1 =

(
dZθ

/
dW
)
(Z)(

dZθ

/
dW
)
(Z◦)

dQρ

dQT
ρ

(Z◦, Z),

where Qρ(x, y) = QT
ρ (y, x). Here we use the general formulation of the Metropo-

lis-Hastings algorithm as explained in Tierney (1998). The second term equals
one by symmetry of Q(·, ·). This implies that the acceptance probability in step
2(b) remains the same.

The proposal in (3.8) is an example of a preconditioned Crank-Nicolson
(pCN) scheme (Cf. Cotter et al. (2013) and Beskos et al. (2008)) and seems
to have been introduced first in Neal (1999).

Remark 3.2. Different proposals can be obtained by varying b◦ in (3.3) and it
is clear that the mapping g varies accordingly. A good choice obviously affects
the acceptance probability of step 2 in algorithm 1. However, it affects the ac-
ceptance probability of step 3 as well as this step is a joint update of (θ,X�).
This implies that a proposal θ◦ in step 3 which is “good” (in the sense of being
like a draw from the posterior of θ), may nevertheless be rejected if the map-
ping g is such that g(θ◦, Z) does not resemble a bridge with drift and diffusion
coefficient indexed by θ◦. Ideally, one would take g = gopt, where gopt is defined
by the relation X� = gopt(θ,W ), with W denoting a Wiener process.

Theorem 3.3. Suppose q(θ◦ | θ) is almost everywhere strictly positive on the
support of the prior for θ. Then the chain induced by algorithm 1 is irreducible.

Proof. Step 2 constitutes a step of a MH-sampler with independent proposals.
The expression for A1 follows directly from equation (3.7). The expression for A2

in step 3 follows in exactly the same way as equation (2.6) was established in the
toy-example (Cf. section 2). The remaining observation needed is the following:
As Φθ is the Radon-Nikodym derivative between two equivalent distributions,
it is almost surely strictly positive and finite. Since the transition densities are
strictly positive as well, both A1 and A2 are strictly positive and the result
follows.

At first sight, it may seem that algorithm 1 is not of much practical value.
First of all, the mapping g is unknown. However, as any algorithm derived
in continuous time ultimately has to be approximated by discretisation, we
can choose a discretisation level and compute Y = g(θ, Z) on a fine grid by
discretising the stochastic differential equation

dYt = b◦θ(t, Yt) dt+ σθ(t, Yt) dZt.

Second, it seems impossible to compute the acceptance probabilities in steps
2 and 3 because Φθ depends on p and p explicitly pops up in the formula for
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A2. However, it turns out that for many choices of b◦ the unknown transition
density p only appears as a multiplicative constant in Φθ such that it cancels
the p in the expression for A2. For future reference, we introduce the following
definition.

Definition 3.4. We call a proposal X◦ as defined in equation (3.3) feasible if
b◦θ is such that both A1 and A2 appearing in algorithm 1 do not depend on the
transition density p.

In section 4 we will give examples of classes of feasible proposals.

3.3. Partially conjugate series prior for the drift

In this subsection we study specific cases of algorithm 1 when the drift is of the
form

bϑ(x) =

N∑
i=1

ϑiϕi(x) (3.9)

where ϑ = (ϑ1, . . . , ϑN ) is an unknown parameter and ϕ1, . . . , ϕN are known
functions on R

d. We assume the diffusion coefficient is parametrised by the
parameter γ. We denote the vector of all unknown parameters by θ = (ϑ, γ) and
assume these are assigned independent priors. With slight abuse of notation we
use π0(ϑ) and π0(γ) to denote the priors on ϑ and γ respectively (the argument
in parentheses will clarify which prior is meant). In this case it is convenient
to choose a conjugate Gaussian prior for the coefficients, ϑi ∼ N (0, ξ2i ), for
positive scaling constants ξi. Priors for the drift obtained by specifying a prior
distribution on ϑ were previously considered in Küchler and Sørensen (1997),
Bladt and Sørensen (2014) and Van der Meulen, Schauer and Van Zanten (2014).
Upon completing the square, it follows that the distribution of ϑ conditional on
γ and the full path Y of the diffusion is multivariate normal with mean vector
W−1

γ μγ and covariance matrix W−1
γ . We define for k, � ∈ {1, . . . , d},

μγ [k] =

∫ T

0

ϕk(Yt)
′a−1

γ (Yt) dYt

Σγ [k, �] =

∫ T

0

ϕk(Yt)
′a−1

γ (Yt)ϕ�(Yt) dt

Wγ = Σ+ diag(ξ−2
1 , . . . , ξ−2

N ).

(For a vector x ∈ R
n we denote the i-th element by x[i]. To emphasise the

dependence on Y we sometimes also write μγ(Y ), Wγ(Y ) etc). This leads to a
natural adaptation of algorithm 1 from section 3.2.

Algorithm 2. Steps 1, 2 and 4 as in algorithm 1. Assume that σ is invertible.
Step 3 is given by

3.1 Update γ | (ϑ, Z,D).

(a) Sample γ◦ ∼ q(· | γ).
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(b) Sample U ∼ U(0, 1). Compute

A3 =
q(γ | γ◦)

q(γ◦ | γ)
π0(γ

◦)

π0(γ)

×
n∏

i=1

p(γ◦,ϑ)(ti−1, xi−1; ti, xi)

p(γ,ϑ)(ti−1, xi−1; ti, xi)

Φ(γ◦,ϑ)(g((γ
◦, ϑ), Zi)

Φ(γ,ϑ)(g((γ, ϑ), Zi))

Set

γ :=

{
γ◦ if U ≤ A3

γ if U > A3

.

3.2 Update ϑ | (γ, Z,D).

(a) Compute μg = μγ(g((ϑ, γ), Z)) and Wγ = Wγ(g((ϑ, γ), Z)).

(b) Sample ϑ◦ ∼ N (W−1
γ μγ ,W

−1
γ ).

(c) Compute Z◦ such that g((ϑ◦, γ), Z◦) = g((ϑ, γ), Z). Set ϑ = ϑ◦ and
Z = Z◦.

Note that computation of Z◦ in step 3.2(c) requires invertibility of σ.

Proof. Suppose (ϑ, γ, Z) ∼ π, where π denotes the posterior distribution. Con-
sider the map f : (ϑ, γ, Z) 	→ (ϑ, γ,X�), where X� = g((ϑ, γ), Z). We show that
step 3.2 preserves π. The distribution of (ϑ, γ,X�) is the image measure of the
posterior distribution π of the tuple (ϑ, γ, Z) under f and coincides with the
posterior distribution of (ϑ, γ,X�). Denote the image measure of π under f by
by π ◦ f−1. In steps 3.2(a) and 3.2(b) we apply the mapping f , followed by a
Gibbs step in which we draw ϑ◦ conditional on (γ,X�). The latter preserves
π ◦ f−1. Hence (ϑ◦, γ,X�) ∼ π ◦ f−1. In step 3.2(c) we we compute (ϑ◦, γ, Z◦)
as pre-image of (ϑ◦, γ,X�) under f (this is possible as we assume σ to be in-
vertible). Hence (ϑ◦, γ, Z◦) ∼ π.

A variation of this algorithm is obtained in case the drift is of the form
specified in equation (3.9) and the diffusion coefficient depends on both ϑ and
γ. In this case we can update γ just as in algorithm 2. Updating ϑ can be done
using a random walk type proposal of the form

q(ϑ◦ | ϑ) ∼ N(ϑ, αV ),

with α a positive tuning parameter. Motivated by the covariance matrix of the
prior exploited in the case of partial conjugacy we propose to replace V by
W−1

(ϑ,γ). By this choice, if two components ϑi and ϑj are strongly correlated,

the proposed local random walk proposals have the same correlation structure,
which can improve mixing of the chain.

Algorithm 3. The same algorithm as Algorithm 2 without the invertibility
assumptions and Step 3.2 replaced by

3.2’ Update ϑ | (γ, Z,D).
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(a) Set X� = g(ϑ, Z).

(b) Compute W(ϑ,γ).

(c) Sample ϑ◦ ∼ N (ϑ, α2W−1
(ϑ,γ)).

(d) Compute W(ϑ◦,γ).

(e) Sample U ∼ U(0, 1). Compute

A4 =
|Wϑ◦ |1/2
|Wϑ|1/2

exp

(
− 1

2α2
(ϑ◦ − ϑ)′(Wϑ◦ −Wϑ)(ϑ

◦ − ϑ)

)
× π0(ϑ

◦)

π0(ϑ)

n∏
i=1

p(γ,ϑ◦)(ti−1, xi−1; ti, xi)

p(γ,ϑ)(ti−1, xi−1; ti, xi)

Φ(γ,ϑ◦)(g((γ, ϑ
◦), Zi))

Φ(γ,ϑ)(g((γ, ϑ), Zi))
.

Set

ϑ :=

{
ϑ◦ if U ≤ A4

ϑ if U > A4

.

The following argument gives some guidance in the choice of α. If the target
distribution is a d-dimensional Gaussian distribution Nd(μ,Σ) and the proposal
is of the form ϑ◦ ∼ q(ϑ◦, ϑ) ∼ Nd(ϑ, α

2Σq), then optimal choices for α and

Σq are given by Σq = Σ and α = 2.38/
√
d, cf. Rosenthal (2011). Hence, we

will choose α = 2.38/
√
dim(ϑ), which corresponds to an average acceptance

probability equal to 0.234. Although this procedure will not be optimal for the
examples considered, it provides an automatic choice and avoids tedious pilot
runs.

4. Feasible proposals

In this section we discuss examples of proposals that enable application of al-
gorithm 1. First we discuss the prerequisites for this in general. Trivially, we
should be able to sample a discretised version of the process X◦. This can be
done using a discretisation method for stochastic differential equations, such as
the Euler-discretisation. Secondly, it is required that the assumptions of propo-
sition 3.1 are satisfied. Third, we need our proposal to be feasible in the sense
of definition 3.4. This requires choosing b◦ such that Φθ = dP�

θ/ dP
◦
θ contains

the transition density p solely as a multiplicative factor in the denominator. As
θ is fixed throughout this section, we drop it temporarily from our notation. It
is not too hard to see why p would only show up as a multiplicative factor in
the denominator. Denote the laws of X, X◦ and X� on C[0, t] by P

t, P◦,t and
P
�,t respectively. If t = T we will omit time dependence. We have

dP�,t

dP◦,t (X
◦) =

p(t,X◦
t ;T, v)

p(0, u;T, v)

dPt

dP◦,t (X
◦)

(see for instance the proof of proposition 1 in Schauer, Van der Meulen and
Van Zanten (2017)). Hence p shows up only in the first term on the right-hand-
side. Upon taking the limit t ↑ T of the expectation on the right-hand-side, the
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term p(t,X◦
t ;T, v) may vanish, depending on the precise form of b◦. For the

proposals of sections 4.1 and 4.2 ahead, a formal proof of this can be found in
Delyon and Hu (2006) and Schauer, Van der Meulen and Van Zanten (2017)
respectively. In the following we will sketch the argument for the disappearance
of p(t,X◦

t ;T, v) under t ↑ T .

4.1. Proposals by Delyon and Hu

Delyon and Hu (2006) introduced proposals for which

b◦(t, x) = λb(t, x) +
v − x

T − t
, (4.1)

where λ ∈ {0, 1}. When evaluated for x = X◦
t , the pulling term (v−X◦

t )/(T −t)
forces X◦ to hit v at time T . Sufficient conditions for absolute continuity and ex-
pressions for the likelihood ratio of the laws of X� and X◦ are derived in Delyon
and Hu (2006). However, the proportionality constants in the derived likelihood
ratio are missing. Whereas for generating diffusion bridges using a MH-sampler
these constants are irrelevant, they do matter for step 3 of algorithm 1 (be-
cause the constants depend on θ). In case of a one-dimensional diffusion, the
constant in the Radon-Nikodym derivative is derived in Papaspiliopoulos and
Roberts (2012). The extension to the multivariate case brings no surprises. Here
we consider the case λ = 0. It turns out that the derivative can be obtained by
rewriting the expression obtained from applying Girsanov’s theorem

dP�,t

dP◦,t (X
◦) = exp (Jt(X

◦))× p(t,X◦
t ;T, v)

ϕ(v;X◦
t , (T − t)a(t,X◦

t ))
(4.2)

× 1

p(0, u;T, v)
(2πT )−d/2| det a(t,X◦

t )|−1/2

× exp

(
− 1

2T
(v − u)′a(0, u)−1(v − u)

)
.

Here ϕ(x;μ, a) denotes the value of the normal density with mean μ and variance
a, evaluated at x and the functional Jt is defined by

Jt(X
◦) =

∫ t

0

b(s,X◦
s )

′a−1(s,X◦
s ) dX

◦
s − 1

2

∫ t

0

b(s,X◦
s )

′a−1(s,X◦
s )b(s,X

◦
s ) ds

− 1

2

∫ t

0

(T − s)−1(v −X◦
s )

′ � da−1(s,X◦
s )(v −X◦

s ),

where the �-integral is obtained as the limit of sums where the integrand is
computed at the right limit of each time interval as opposed to the left limit
used in the definition of the Itō integral. It can be shown that all terms are
well-behaved under the limit t ↑ T and that

Φ(X◦) = exp (JT (X
◦))

ϕ(v;u, a(0, u))

p(0, u;T, v)

√∣∣∣∣ det a(0, u)det a(T, v)

∣∣∣∣.
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The term p(t,X◦
t ;T, v) appearing in (4.2) is essentially cancelled by ϕ(v;X◦

t ,
(T − t)a(t,X◦

t )) in the limit. From the expression for Φ we see that the factor
p(0, u; T, v) solely appears as a multiplicative constant in the denominator of
the Radon-Nikodym derivative between the target bridge and proposal bridge.
Therefore, the proposals derived from (4.1) are feasible.

4.2. Guided proposals

In this section we review a flexible class of proposal processes X◦ that was
developed and studied in Schauer, Van der Meulen and Van Zanten (2017). We
will use this framework in the remainder and provide a recap of the relevant
results in this section. For precise statements of these results we refer the reader
to Schauer, Van der Meulen and Van Zanten (2017).

The basic idea is to replace the generally intractable transition density p that
appears in the dynamics of the target bridge (see equations (3.1) and (3.2)) by

the transition density of a diffusion process X̃ for which it is known in closed
form. Assume X̃ satisfies the SDE dX̃t = b̃(t, X̃t) dt+ σ̃(t, X̃t) dWt. Denote the

transition density of X̃ by p̃(s, x;T, v) and set ã = σ̃σ̃′. Define the process X◦

as the solution of the SDE (3.3) with

b◦(t, x) = b(t, x) + a(t, x)∇x log p̃(t, x;T, v). (◦◦)
A process X◦ constructed in this way is referred to as a guided proposal (a
guiding term is superimposed on the drift to ensure the process hits v at time
T ).

We reduce notation by writing p(s, x) for p(s, x;T, v). Define

R(s, x) = log p(s, x), r(s, x) = ∇R(s, x), H(s, x) = −ΔR(s, x), (4.3)

where∇ and Δ denote the gradient and Laplacian with respect to x respectively.
Similarly, write p̃(s, x) instead of p̃(s, x;T, v), etc. In Schauer, Van der Meulen
and Van Zanten (2017) sufficient conditions for absolute continuity of P� and P

◦

are established together with a closed form expression for the Radon-Nikodym
derivative. It turns out that

dP�,t

dP◦,t (X
◦) =

p̃(0, u)

p(0, u)

p(t,X◦
t ;T, v)

p̃(t,X◦
t ;T, v)

exp

(∫ t

0

G(s,X◦
s ) ds

)
,

where G is given by

G(s, x) = (b(s, x)− b̃(s, x))′r̃(s, x)

− 1

2
tr
(
[a(s, x)− ã(s, x)]

[
H̃(s, x)− r̃(s, x)r̃(s, x)′

])
(4.4)

(Cf. proposition 1 in Schauer, Van der Meulen and Van Zanten (2017)). Upon
taking the expectation and the limit t ↑ T it is proved in Schauer, Van der
Meulen and Van Zanten (2017) that

Φ(X◦) =
p̃(0, u)

p(0, u)
exp

(∫ T

0

G(s,X◦
s ) ds

)
. (4.5)
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This time the term p(t,X◦
t ;T, v) is essentially cancelled by p̃(t,X◦

t ;T, v) and
henceforth disappears in the limit. From the expression of Φ we deduce that
guided proposals are feasible.

The class of linear processes,

dX̃t = B̃(t)X̃t dt+ β̃(t) dt+ σ̃(t) dWt, (4.6)

is a flexible class with known transition densities and its induced guided pro-
posals satisfy the conditions for absolute continuity derived in Schauer, Van der
Meulen and Van Zanten (2017) under weak conditions on B̃, β̃ and σ̃. Proposal
processesX◦ derived by choosing a linear process as in (4.6) will be referred to as
linear guided proposals. One key requirement for absolute continuity of X� and
X◦ is that σ̃ is such that ã(T ) = (σ̃σ̃′)(T ) = a(T, v). A particularly simple type

of guiding proposals is obtained upon choosing dX̃t = β̃(t) dt + σ(T, v) dWt.
For this particular choice

b◦(t, x) = b(t, x) +
a(t, x)a(T, v)−1

T − t

(
v − x−

∫ T

t

β̃(s) ds

)
. (4.7)

Depending on the precise form of b and σ it can nevertheless be advantageous
to use guided proposals induced for non-zero B̃. In section 4.4 we discuss several
strategies for choosing the process X̃.

Remark 4.1. For guided proposals, it is easily seen that the process Z appear-
ing in proposition 3.1 satisfies (3.5) with μ(t, x) = σ′(t, x) (r(t, x)− r̃(t, x)).

Remark 4.2. In case b and σ are of the forms b(s, x) = β(s) + B(s)x and

σ(s, x) = σ(s), then we can trivially take b̃ = b and σ̃ = σ. By equation (4.4)
it follows that in this case Ψ ≡ 1. This implies that A2 in algorithm 1 does not
depend on {Zi, i = 1, . . . , n} and simulating diffusion bridges is unnecessary.
That is, step 2 of algorithm 1 can be omitted.

4.3. Drift-independent guided proposals

The proposals with λ = 1 (appearing in equation (4.1)) provided by Delyon
and Hu (2006) are a special case of guided proposals only in case σ is constant.

These are recovered upon choosing b̃ ≡ 0 and σ̃ = σ. Proposals with λ = 0
are a special case when both b and σ are constant and correspond to choosing
b̃ = b and σ̃ = σ. The latter type of proposals enjoys quite some popularity
in the literature, especially when discretised with the multiplicative correction
term added to the diffusion term introduced by Durham and Gallant (2002)
(the resulting discrete time proposal is called the modified diffusion bridge, we
get back to this in section 5). As such proposals are independent of the drift
these can only work satisfactory if the drift in locally constant.

In this article we do not aim to make a formal comparison of guided proposals
and Delyon-Hu proposals. Nevertheless, we wish to remark that for the latter
class of proposals both in case λ = 0 and when λ = 1 the resulting bridges may
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not resemble true bridges. An illuminating example is given in the introductory
section of Schauer, Van der Meulen and Van Zanten (2017) and we refer to that
paper for further discussion on this rather subtle issue. In case the reader is
uncomfortable with the additional freedom for choosing the process X̃, proposals
similar (but not equal to) Delyon-Hu proposals can be obtained by taking dX̃t =
σ(T, v) dWt, where σ(T, v)σ(T, v)

′ = a(T, v). In that case we get proposals with

b◦(t, x) = b(t, x) + a(t, x)a(T, v)−1 v − x

T − t
.

Proposals that ignore the drift completely can be defined by

b◦(t, x) = a(t, x)a(T, v)−1 v − x

T − t
,

We call these drift-independent guided proposals. The acceptance probability for
drift-independent proposals can easily be obtained from (4.5) and equals

Φ(X◦) =
p̃(0, u)

p(0, u)
exp

(∫ T

0

G(s,X◦
s ) ds+

∫ T

0

b(s,X◦
s )

′a−1(s,X◦
s ) dX

◦
s

−1

2

∫ T

0

b(s,X◦
s )

′a−1(s,X◦
s )

[
b(s,X◦

s )+ 2a(s,X◦
s )a(T, v)

−1 v −X◦
s

T − s

]
ds

)
,

where G is computed with b̃ ≡ 0 and ã = a(T, v).

4.4. Choice of guided proposals

In this section we discuss the choice of guided proposals. We propose the fol-
lowing strategies:

1. Linearisation of the drift . In some examples there is a natural point at
which to linearise, as in example 4.3. If this is not the case, one can use a
(weighted) regression, as explained in example 4.4.

2. Solving the dynamical system associated to the SDE . Suppose x(t) satisfies
the deterministic differential equation

dx(t) = b(t, x(t)) dt, x(0) = x0. (4.8)

Then
dX̃t = b(x(t)) dt+ σ̃ dWt. (4.9)

is clearly of the form (4.6) with β̃(t) = b(x(t)), B̃ ≡ 0 and σ̃ = σ(T, v).
This approach is illustrated in example 4.5.

3. Combined approach. Approximate b(t,Xt) with b(t, x(t))+V (t, x(t))(Xt−
x(t)), where V (t, y) is the matrix with elements V (t, y)i,j = ∂bi(t, y) / ∂yj
for y ∈ R

d. This gives linear guided proposals with

β̃(t) = b(t, x(t))− V (t, x(t))x(t) and B̃(t) = V (t, x(t)).

This is closely related to the linear noise approximation of the SDE for X
as used in Whitaker et al. (2017).
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4. Iterative linearisation procedures. A further technique using ideas byWhit-
aker et al. (2017) is obtained by setting β̃(t) = b(t,E

[
X̄�(t)

]
) where X̄�

is a tractable diffusion bridge from u to v (derived for example from a
preliminary linear approximation to X).

We will always have β̃(0) = b(0, u) and β̃(T ) = b(T, v). Linear interpola-
tion gives

β̃(t) = (1− t/T )b(0, u) + (t/T )b(T, v). (4.10)

Example 4.3. Let X be the diffusion process described by the SDE

dXt = (α arctan(Xt) + β) dt+ σ dWt. (4.11)

If α < 0, π
2α < β < −π

2α this process is mean reverting to tan(−β/α). For
x ≈ tan(−β/α)

b(x) ≈ α cos2(−β/α)(x− tan(−β/α)).

So it makes sense to take linear proposals with

B̃ = α cos2(−β/α), β̃ = 1
2α sin(2β/α) and σ̃ = σ.

Example 4.4. Here we consider a simple example in which the dynamics of
a chemical reaction network are approximated by a system of stochastic dif-
ferential equations. Suppose we have four reactions among chemicals A, B and
C:

∅ θ1→ A A
θ2→ B

A+B
θ3→ C 2C

θ4→ ∅

The amount of the chemicals A, B, C at time t can be modelled as a pure
jump Markov process which can subsequently be approximated by the diffusion
process Xt ∈ R

3 which solves the Chemical Langevin Equation (Fuchs (2013),
chapter 4)

dXt = Shθ(Xt) dt+ S diag(
√

hθ(Xt)) dWt (4.12)

driven by a R
4-valued Brownian motion. Here

S =

⎡⎣1 −1 −1 0
0 1 −1 0
0 0 1 −2

⎤⎦
is the stoichiometry matrix of the system. Its elements describe the net effect
of each reaction on each chemical species. Furthermore, hθ(x) = θ ◦ h(x) is
a function describing the hazard for a particular reaction to happen. Here ◦
denotes the Hadamard (or entrywise) product of two vectors and

θ = [θ1, θ2, θ3, θ4]
′ h(x) = [1, x1, x1x2, x3(x3 − 1)/2]′.

We choose B̃ and β̃ to depend on θ (but not on time) so that B̃x+ β̃ approx-
imates bθ(x). While it is possible to take different approximations specifically
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tailored for each bridge segment, it is computationally advantageous to work
with a global approximation to bθ (as we need to evaluate p̃ in the expression
for A2, see also the discussion in section 6). To this end, we replace h by a linear

approximation h̃ which allows for obtaining B̃θ and β̃θ from the equation

B̃θx+ β̃θ = S(θ ◦ h̃(x)).

As the first two components of h(x) are linear, we take h̃1(x) = h1(x) and

h̃2(x) = h2(x). We approximate h3 by h̃3(x) = c3 + u3,1x1 + u3,2x2. Values
for c3, u3,1 and u3,2 are obtained from a weighted linear regression of x1x2

on x1 and x2, with weights proportional to x1x2. Similarly, we take h̃4(x) =
c4 + u4,3x3. Values for c4 and u4,3 are obtained from a weighted linear regres-
sion of 1

2x3(x3 − 1) on x3, with weights proportional to x3(x3 − 1). We take
a weighted regression in this way because for a good proposal the error mat-
ters more if the corresponding dispersion component is small. For σ̃ we choose

σ̃ = S diag

(√
h̃θ(xi)

)
on the segment between times ti−1 and ti.

Note that this approach for constructing B̃ and β̃ can be applied generally
to stochastic differential equations arising from chemical reaction networks.

Example 4.5. The Lotka-Volterra model with multiplicative noise (cf. Khas-
minskii and Klebaner (2001)) is given by the Stratonovich stochastic differential
equation

dXt = (θXt −XtYt) dt+ σXt ◦ dW
(1)
t , X0 = x0

dYt = (−θYt +XtYt) dt+ σYt ◦ dW
(2)
t , Y0 = y0.

(4.13)

By Itō’s formula, (ξt, ηt) = (logXt, log Yt) satisfies

dξt =
(
θ − eηt

)
dt+ σ dW

(1)
t , ξ0 = log x0

dηt =
(
−θ + eξt

)
dt+ σ dW

(2)
t η0 = log y0.

Proposals for a bridge that hits (ξT , ηT ) = (logXT , log YT ) at time T can be
derived from the deterministic dynamical system associated with (4.13). The

deterministic system (x, y) has trajectories xye−
1
θ (x+y) = K with K depending

on x0, y0. The trajectory can be parametrised by

x(z) =
z

2
±
√

z2 − 4Kez/θ, y(z) = z − x(z),

where time is implicit and can be recovered from z by the equation

θ
√

z2 − 4Kez/θ dt = ±dz

(Cf. Steiner and Gander (1999)). We obtain guided proposals for (ξ◦t , η
◦
t ) by

taking B̃ ≡ 0 and β̃(t) = (θ−x(t),−θ+y(t))′. These proposals can subsequently
be transformed to proposals for (X◦

t , Y
◦
t ).
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5. Numerical discretisation of guided proposals

Simulation of X◦ and numerical evaluation of Ψ(X◦) := exp
(∫ T

0
G(s,X◦

s ) ds
)

is numerically cumbersome since the drift of X◦ and the integrand G explode
for s near the endpoint T .

Example 5.1. Suppose σ is constant and we take X̃ = σ dWt. Then we have
r̃(s, x) = ã−1(v− x)/(T − s), where ã = σσ′. Hence the drift of the SDE for X◦

explodes when s ↑ T . Furthermore,

logΨ(X◦) =

∫ T

0

b(s,X◦
s )

′r̃(s,X◦
s ) ds =

∫ T

0

b(s,X◦
s )

′ã−1 v −X◦
s

T − s
ds,

which shows the integrand explodes as well.

In this section we explain how these numerical problems can be dealt with
using a time change and scaling of the proposal process. The purpose is not
solely obtaining a more accurate discretisation scheme for the SDE, but above
all accurate evaluation of the integral appearing in Ψ(X◦).

For the particular example just given Clark (1990) proposed to perform a
time change and scaling of the proposal process to remove the singularities.
Define τC : [0,∞) → [0, T ) by τC(s) = T (1− e−s) and UC

s = es/2(v −X◦
τC(s)).

Then UC satisfies the stochastic differential equation

dUC
s = − T e−s/2b(T (1− e−s), v − e−s/2UC

s ) ds− 1

2
UC
s ds−

√
Tσ dWs,

which behaves like a zero-mean mean-reverting Ornstein-Uhlenbeck process as
s → ∞. Furthermore,

logΨ(X◦) =

∫ ∞

0

e−s/2b(τC(s), v − e−s/2UC
s )′T ã−1UC

s ds

(note that there are some minor typographical errors in Clark (1990)). Clearly,
if b is bounded, this removes the singularity near T , but at the cost of having to
deal with an infinite integration interval. For this reason, we propose a different
time-change and scaling.

The time change and scaling due to Clark (1990) is a special case obtained

from considering the process Us = m(s)
(
v(τ(s))−X◦

τ(s)

)
, where s 	→ τ(s) is

nondecreasing. The choice by Clark (1990) corresponds to τ(s) = T (1 − e−s)
and m(s) = es/2. In the following we denote the time derivatives of m and τ by
ṁ and τ̇ respectively. The time changed process U = (Us, s ∈ [0, T )) satisfies
the stochastic differential equation

dUs =

(
ṁ(s)

m(s)
Us −m(s)τ̇(s)b◦(τ(s), v − Us/m(s))

)
ds

−m(s)
√

τ̇(s)σ(τ(s), v − Us/m(s)) dWs
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Using the setting of example 5.1, we motivate another choice of τ and m for
improving numerical accuracy. For the example, the drift of U is given by

−m(s)τ̇(s)b(τ(s), v − Us/m(s)) +

(
ṁ(s)

m(s)
− τ̇(s)

T − τ(s)

)
Us

and logΨ(X◦) can be expressed in terms of U as follows∫ τ(T )

τ(0)

b(τ(s), v − Us/m(s))ã−1 Us

m(s)

τ̇(s)

T − τ(s)
ds. (5.1)

As shown in Schauer, Van der Meulen and Van Zanten (2017), up to a logarith-
mic term, v −X◦

s ∼
√
T − s for s close to T . Therefore, Us ∼ m(s)

√
T − τ(s)

which implies that the possibly exploding part of the integral in (5.1) satisfies

Us

m(s)

τ̇(s)

T − τ(s)
∼ τ̇(s)√

T − τ(s)
.

To make this constant, we take τ(s) = s(2 − s/T ). Furthermore, we choose
m(s) = 1/(T −s) (see section 5.2 for a justification). With these choice of τ and
m, U satisfies the SDE

dUs = − 2

T
b(τ(s), v − (T − s)Us) ds−

1

T − s
Us ds−

√
2

T

1√
T − s

σ dWs,

with U0 = (v − u)/T . Compared to the original SDE for X◦, we see that an
additional exploding factor appears in the diffusion coefficient. At first sight,
this may seem like we have worsened the numerical problems. Note however
that the integral we wish to evaluate (logΨ(X◦)) behaves much better now. For
s ≈ T , the process U behaves like a mean-zero stationary Ornstein-Uhlenbeck
process, with balanced increased mean-reversion and diffusivity. The process
UC proposed by Clark (1990) behaves like an Ornstein-Uhlenbeck process for
large times as well, and we see that with our choice of τ we speed up time to
run through this process much faster, preventing us from evaluating an integral
over an unbounded integration region.

5.1. Time changing and scaling of linear guided proposals

Based on the motivational derivations of the preceding section, we define a
convenient time change and scaling in this section. To do this, we need a few
more results from Schauer, Van der Meulen and Van Zanten (2017). If X̃ is a
linear process (satisfying equation (4.6)), then

r̃(s, x) = H̃(s)(v(s)− x), (5.2)

where

v(s) = F (s, T )v −
∫ T

s

F (s, z)β̃(z) dz (5.3)
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(r̃ and H̃ are defined in equation (4.3)). Here F (t, s) = F (t)F (s)−1 with F (t)
the fundamental d× d matrix that satisfies

F (t) = I +

∫ t

0

B̃(z)F (z) dz. (5.4)

Define the process U by

Us :=
v(τ(s))−X◦

τ(s)

T − s
. (5.5)

This implies
X◦

τ(s) = v(τ(s))− (T − s)Us =: Γ(s, Us). (5.6)

Lemma 5.2. The time changed and scaled process U = (Us, s ∈ [0, T )) satisfies
the stochastic differential equation

dUs =
2

T
v̇(τ(s)) ds− 2

T
b(τ(s),Γ(s, Us)) ds

+
1

T − s

(
I− 2a(τ(s),Γ(s, Us))J(s)

)
Us ds

−
√

2

T

1√
T − s

σ(τ(s),Γ(s, Us)) dWs, U0 =
v − u

T

(5.7)

where W is a Brownian motion and J defined by

J(s) = H̃(τ(s))(T − τ(s)) (5.8)

satisfies lims↑T ã(s)J(s) = I. Moreover,∫ T

0

G(s,X◦
s ) ds = 2

∫ T

0

(b− b̃)′(τ(s),Γ(s, Us))J(s)Us ds

−
∫ T

0

tr

[
(a− ã)(τ(s),Γ(s, Us))

T − s
J(s) (I− T UsU

′
sJ(s))

]
ds.

If we simulate U on an equidistant grid we can recoverX◦ on a non-equidistant
grid from equation (5.6). This implies X◦ is evaluated on an increasingly finer
grid as s increases to T . In our implementation, all computations are done in
time-changed/scaled domain, and the mapping g is in fact defined by setting
U = g(θ, Z◦), where Z◦ is the driving Brownian Motion for U .

5.2. Motivation for the scaling

Consider the SDE for X̃ as defined in equation (4.6). The corresponding fun-

damental matrix is given in equation (5.4). Define the process X̃� as the pro-

cess X̃, conditioned on X̃T = v. Then X̃� is a linear process itself with drift
b̃�(t, x) = B̃(t)x+ β̃(t)+ ã(t)H̃(t)(v(t)−x) and diffusion coefficient σ̃�(t) = σ(t).
Denote the corresponding fundamental matrix by F �. Hence F � satisfies

d

dt
F �(t) =

(
B̃(t)− ã(t)H̃(t)

)
F �(t), F �(0) = I.
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Theorem 5.3. Fix a nondecreasing differentiable mapping τ : [0, T ] → [0,∞).
If we define the scaling matrix m by m(s) = (T −s)F �(τ(s))−1. then the process
U defined by

Us = m(s)
[
v(τ(s))−X◦

τ(s)

]
(with s 	→ v(s) as defined in equation (5.3)) satisfies the SDE

dUs =

(
− Us

T − s
−mτ̇

[
b(τ,Γ)− b̃(τ,Γ)

+(a(τ,Γ)− ã(τ))H̃(τ)m−1Us

])
ds−m

√
τ̇σ(τ,Γ) dWs,

where Γ ≡ Γ(s, Us) = v(τ(s)) − m(s)−1Us. To lighten the notation we have
written τ , τ̇ and m to denote τ(s), τ̇(s) and m(s) respectively.

The proof is deferred to the appendix (section B).

Corollary 5.4. Let Ūti denote the Euler approximation at time ti of U . If

a(t, x) ≡ a(T, v) = ã and b(t, x) = b̃(t, x) = B̃(t)x+ β̃(t), then

E
[
Uti | Uti−1 = u

]
= E
[
Ūti | Ūti−1 = u

]
.

Proof. In this case

dUs = − Us

T − s
ds−m

√
τ̇σ(τ,Γ) dWs.

Hence

E
[
Uti | Uti−1 = u

]
=

T − ti
T − ti−1

u.

It is easy to see that this coincides with E
[
Ūti | Ūti−1 = u

]
.

This shows that if we use linear guided proposals and use the scaling matrix
m defined in theorem 5.3, then the Euler approximation of the process U has
the correct conditional expectation when X itself is a linear process. Note that
this is not necessarily the case without applying the scaling.

In case β̃ = 0, B̃ = 0 and σ̃(t) = σ̃, we have F �(t) = I/(T − t) and m(s) =
1/(T (T − s))I. This means that we should have m(s) = O(1/(T − s)) for s ≈ T .

5.3. Numerical illustrations

In this section we use simulation to assess the effect of discretisation when using
guided proposals with dynamics

dX◦
t = b(t,X◦

t ) dt+ a(t,X◦
t )r̃(t,X

◦
t ) dt+ σ(t,X◦

t ) dWt (5.9)

(Cf. section 4.2). We consider combinations of drift functions b(x) ≡ 0 and
b(x) − arctan(x) and diffusion functions σ = 1 and σ(x) = 1 + 0.3 sin(3x). We
consider two types of guided proposals X◦:
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1. proposals generated by choosing dX̃t = σ(T, v) dWt which gives pulling
term

r̃(t, x) = σ(T, v)−2(v − x)/(T − t) (BM-pull)

2. proposals generated by choosing dX̃t = −βX̃t dt + σ(T, v) dWt, which
gives pulling term

r̃(t, x) =
2β

σ2(T, v)
e−β(T−t) v − xe−β(T−t)

1− e−2β(T−t)
. (OU-pull)

We aim to compare various discretisation schemes of the SDE (5.9). In all cases,
we use the equidistant grid by imputing m−1 points on [0, T ] for discretisation.
Define h = T/m and set tj = jh, j = 0, . . . ,m. The discretisation schemes
considered are

1. Euler: Euler discretisation of the SDE for X◦.
2. Mdb: The Modified diffusion bridge (Mdb) discretisation introduced in

Durham and Gallant (2002). This discretisation is obtained by applying
Euler discretisation to the SDE for X◦ and adding a correction term to
the diffusion coefficient. This gives the scheme {X̆◦

tj} where

X̆◦
tj+1

= X̆◦
tj + b◦(tj , X̆

◦
tj )(tj+1 − tj) + σ(tj , X̆

◦
tj )

√
T − tj+1

T − tj
(Wtj+1 −Wtj )

(5.10)
3. Euler-U: Euler discretisation of the SDE for U .
4. Euler-V: Euler discretisation of the SDE for the time-changed process

using τ , but without the scaling. This means that we apply Euler discreti-
sation to the SDE

dVs = b◦(τ(s), Vs)τ̇(s) ds+
√
τ̇(s)σ(τ(s), Vs) dWs, V0 = u

where Vs = X◦
τ(s).

The first two of these schemes have gained quite some popularity in the litera-
ture; the third one is what we propose and the fourth one is included to assess
the effect of including a scaling (on top of the time-change).

In the simulation study we are interested in accurate discretisation of the
likelihood given in equation (4.5) which appears in the acceptance probabilities
of the algorithms of Section 3.2 (whether the considered pulling terms are good
choices is of minor importance for that purpose). More precisely, we evaluate the

discretisation of the path-integrals I(X◦) =
∫ T
0
G(s,X◦

s ) ds in case of discreti-

sation of the SDE for X◦, I(V ) =
∫ T
0
G(τ(s), Vs)τ̇(s) ds in case of discretisation

of the SDE for V and I(U) =
∫ T
0
G(τ(s), v(τ(s) − (T − s)Us)τ̇(s) ds in case of

discretisation of the SDE for U .
At the finest discretisation level, we divide [0, T ] into 2L intervals of equal

length. If h = T/2L, then tj = jh, j = 0, . . . , 2L. We start by simulating on the
finest grid. Next we redo the simulation on the grid of length 2L−1 using the
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same Wiener process increments. This can be continued iteratively (until there
are only 2 intervals of equal length). The simulation study was run as follows:

1. Generate the sequence {tj} with h = T/2L.
2. Generate Wiener increments on the generated grid.
3. Simulate a realisation X◦,L of the diffusion bridge with the generated

Wiener increments. Compute and store I(X◦,L).
4. for k=L-1 downto 2

• Coarsen the grid by removing the 2nd, 4th, 6th, etc point from the
grid and aggregate the Wiener-increments. Simulate a realisation
X◦,k of the diffusion bridge with these Wiener increments.

• Compute the error ek = I(X◦,k)− I(X◦,L).
5. Repeat for B times steps 1 up till 4 and compute the Root Mean Squared

Error of all errors using an equal number of grid-points.

We chose L sufficiently large such that the approximation for I is virtually the
same for all discretisation methods. As quadrature rule we used the midpoint
rule, where the integrand is evaluated at the left-point.

In the simulations, we simulated bridges starting in u = 0 at time 0 and
ending in v = 3 at time T = 1. The results of the simulations are in figure 1. By
definition, there is no error in the lower-left panel. From the simulation results
we see that for various combined choices of drift, diffusion coefficient and pulling
term, our approach performs best. We have run simulations with other values
for v, T , b and σ leading qualitatively to the same conclusion.

The beneficial effect of the time change and scaling is further illustrated in
the examples of Sections 7.1 and 7.2.

5.4. Order of convergence

Ideally, one would derive a result on the order of convergence of each of the
discussed discretisation methods for approximating I. We feel that this is out-
side the scope of this paper. As noted in Papaspiliopoulos, Roberts and Stramer
(2013) (page 676): “Quantitative results on the relative efficiency of discretisa-
tion schemes are scarce in the literature.” In case b = 0 and σ is constant (which
is the simplest case to consider), Papaspiliopoulos, Roberts and Stramer (2013)
show that the strong order of convergence of the Euler scheme is O(

√
δ) at T−δ.

This shows that the usual higher O(δ) strong order (which holds for diffusions
with additive noise) is lost due to the exploding behaviour of the drift. Along
similar lines as in Papaspiliopoulos, Roberts and Stramer (2013) one can prove
that the strong order δ is maintained if the time-change and scaling is used.
Admittedly, this is a rather weak result since (i) the case b = 0 and σ constant
is very specific, (ii) the focus is on accurate evaluation of a path integral of
the proposal bridge and not solely the process at specified points. The concept
of strong order is not really needed here: we are interested in almost sure con-
vergence of Euler approximation pathwise. Under local Lipschitz conditions on
the drift and diffusion coefficients, the pathwise convergence rate of the Euler
scheme coincides up to an arbitrarily small ε > 0 with its strong convergence
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Fig 1. log2(RMSE) of I(·) versus log2(nr of segments). Euler: Euler discretisation of the
SDE for X◦. Mdb: The Modified diffusion bridge discretisation introduced in Durham and
Gallant (2002). Euler-U: Euler discretisation of the SDE for U . Euler-V: Euler discretisation
of the SDE for the time-changed process using τ , but without the scaling.

rate 1/2 (Cf. Gyöngy (1998)). We expect the same pathwise convergence rate to
hold for the integrals, when approximated using the proposed time-change and
scaling. In this sense, it is not unexpected that the lower panel in figure 1 shows
lines with slopes close to either 1/2 (Euler, Mdb) or 1 (Euler-V, Euler-U).

6. Computational costs and implementation

In this section we discuss the computational cost of using guided proposals.
For comparison, we add the computational cost of Delyon-Hu type proposals.
Here we only consider the cost of imputation by diffusion bridges (including the
computation of their acceptance probabilities). Let

• K denotes the number of iterations of the data-augmentation algorithm;
• M denotes the number of segments for imputations (soM+1 is the number

of discrete-time observations);
• N denotes the number of Euler-step applied to each segment.



Bayesian estimation for diffusions 2385

Table 1

Overview of computational cost for simulating proposals.∫ T

t
βθ ds exp (sB) Bλ+ λB′ = ã

Delyon-Hu 0 0 0

b̃(t, x) = βθ(t) NMK 0 0

b̃(t, x) = Bx+ βθ(t) NMK N M

b̃(t, x) = Bθx+ βθ(t) NMK NK MK

The computational costs of simulating proposals are summarised in table 1. We
give some elucidation on this table.

1. Applying guided proposals with B̃ ≡ 0 gives minor additional computa-
tions compared to Delyon-Hu type proposals. One merely needs to com-

pute
∫ T
t
βθ(s) ds on the whole augmented grid during all simulations. If β

does not depend on θ this computation needs to be carried out only once
on the whole grid.

2. If B̃ �≡ 0, then simulation of U as defined in equation (5.7) requires eval-
uation of both v̇ and J , where v and J are defined in equations (5.3)

and (5.8) respectively. As v̇(s) = B̃(s)v(s) + β̃(s), evaluating v̇ requires
evaluation of v. This in turn requires evaluation of matrix exponentials.
For evaluating J , we first compute λ as the solution to continuous time
Lyapunov equation Bλ + λB′ = −ã. Using λ we can evaluate J us-
ing

J(s) = z(s)
(
e−B̃θz(s)λe−B̃′

θz(s) − λ
)−1

,

where z(s) = T − τ(s). These functions need to be computed on the

whole augmented grid in each iteration. In case B̃ does not depend on θ,
both J and v̇ can be precomputed on a grid in advance to the MCMC-
algorithm, preventing multiple expensive matrix exponential computa-
tions.

Besides simulation of the proposals, an acceptance probability needs to be
computed. This requires evaluation of certain integrals of the proposal. A poten-
tial disadvantage of Delyon-Hu type proposals is that inverses appear. Moreover,
stochastic integrals need to be approximated.

7. Examples

The source code of the examples is available online.1 It is written in the pro-
gramming language Julia (Bezanson et al. (2012)).

1See https://github.com/mschauer/BayesEstDiffusion.jl.

https://github.com/mschauer/BayesEstDiffusion.jl
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7.1. Example for one-dimensional diffusion

In this section we discuss example 4.3, where we considered the SDE

dXt = (α arctan(Xt) + β) dt+ σ dWt.

Cf. equation (4.11). The goal is twofold: (i) to show that the proposed algorithm
does not deteriorate when increasing the number of imputed points, (ii): to show
that the discretisation scheme of section 5 reduces discretisation error.

We take the diffusion process with dynamics of (4.11). Assume that we ob-
serve X at times points t = 0, 0.3, 0.6 . . . , T = 30 and wish to estimate (α, β, σ).
As true values we took α = −2, β = 0 and σ = 0.75. For generating the discrete
time data we simulated the process on [0, T ] at 400 001 equidistant time points
using the Euler scheme and take a subsample.

For α and β we chose apriori independently a N (0, ξ2)-distribution with
variance ξ2 = 5. For log σ we used an uninformative flat prior. We applied
algorithm 2 with ρ = 0 in (3.8) with random walk proposals for q(σ◦ | σ) of the
form log σ◦ := log σ + u with u ∼ U(−0.1, 0.1).

We initialised the sampler with α = −0.1, β = −0.1 and σ = 2 and varied
the number of imputed points over m = 10, 100 and 1000. Acceptance rates for
proposed bridges were in all cases between 94% and 95% and for σ between 72%
and 73%.

Figures 2 and 3 illustrate the results of running the MCMC chain for 10.000
iterations using m = 10, 100, 1000 imputed points respectively for each bridge
(including endpoints), both with time change and without. Two things stand
out: firstly, increasing the number of imputed points m does not worsen the mix-
ing of the chain and secondly the vastly reduced bias when using discretisation
of U (especially when m is small).

7.2. FitzHugh-Nagumo model

The stochastic FitzHugh-Nagumo model for spike generation in squid axons is
based on a two dimensional diffusion process with drift and diffusion coefficient
parametrised as

b(x) =

[
ϑ1(−x3

1 + x1 − x2 + 1/2)
ϑ2x1 − x2 + ϑ3

]
σ =

[
γ1 0
0 γ2

]
.

The first coordinate X(1) represents the axon membrane potential and X(2) is a
recovery variable. Parameter estimation for the FitzHugh-Nagumo model is dis-
cussed in Jensen et al. (2012) and extensively in the work of Jensen (2014).
In this example we consider three type of proposals: the modified diffusion
bridge (which is of Delyon-Hu type with λ = 0), the modified diffusion bridge
with random-walk type updates on the innovations and guided-proposals with
random-walk type updates on the innovations. In both cases we took ρ = 0.5 in
equation (3.8). We used time-change guided proposals as in (5.5) with σ̃ con-
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Fig 2. Panels comparing different numbers of imputed points (m = 10, 100, 1000). Left: with-
out time change. Right: with time change. Top: first 500 iterates. Middle: iterates 501-10.000.
Bottom: ACF-plots based on iterates 501-10.000.

stant, B̃ ≡ 0 and β̃ as in equation (4.10). This is a simple default choice. We
discretise (5.7) as follows: suppose the current iterate is Us. We have
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Fig 3. Kernel density estimates of the parameters based on iterates 501-10.000. Top: non
time-changed. Bottom: time-changed. The bias from using only a small number of imputed
points (m = 10, red curve) is clearly smaller for the time changed process. For a high number
of imputed points (m = 1000, blue dashed curve) both methods agree.

dUs =
ds

T
(̃b(τ(s))− b(τ(s),Γ(s, Us))) + dRs (7.1)

with dRs = (T −s)−1
(
I−2aJ(s)

)
Us ds−

√
2
T

1√
T−s

σ dWs (where we have used

the relation v̇(s) = β̃(s)). Define

R̄(h) = (T − s)−1
(
I− 2aJ(s)

)
Us −

√
2

T

1√
T − s

σ
Ws+h −Ws

h
.

To obtain an approximation u(s+ h) for Us+h we discretise the ordinary differ-
ential equation

du(s) =

(
1

T
b̃(τ(s))− 1

T
b(τ(s),Γ(s, u(s))) + R̄(h)

)
ds, u(s) = Us

using the Runge-Kutta-4 method with step size h. We propose this discretisation
scheme since by corollary 5.4, E[Rs+h −Rs | Rs] = hE

[
R̄(h) | Rs

]
.

We simulated the process with parameters ϑ1 = 1.4, ϑ2 = 1.5, ϑ3 = 10,
γ1 = 0.25, γ2 = 0.2 on the time interval from 0 to T = 300 using the Euler
scheme with discretisation step 0.0004, starting in [0 1]′, retaining 400 equidis-
tant observations and the starting point. With these parameters this process
presents a challenging estimation problem due to the strong nonlinear dynam-
ics in the drift.
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Fig 4. Trace-plots for ϑ3. Left: with respect to computing time in minutes. Right: with respect
to iterate number. The three different panels correspond to m = 10, m = 25 and m = 100.
“gp-tc” for guided proposals time-changed; “mdb-rw” for random-walk type modified diffusion
bridges; “mdb-rw” for modified diffusion bridges.

We chose independent centred Gaussian priors with variance 50 for the pa-
rameters ϑ1, ϑ2, ϑ3 and a product InvGamma(0.002, 0.002) prior on (γ2

1 , γ
2
2).

We used Metropolis-Hastings steps for updating γi by setting log γ◦
i = log γi+

0.02Zi (i = 1, 2), where Zi ∼ N(0, 1). For j = 1, 2, 3 we took ϑ◦
j = ϑj + νjYj ,

with Yj independent Uniform random variables on [−1, 1], ν1 = ν2 = 0.03 and
ν3 = 0.15.

We estimated the joint posterior of the unobserved path and parameters ϑ,
γ using algorithm 1.

We ran the algorithm for the three different proposals with m = 10 and
m = 25 and m = 100. Each simulation was stopped after 1 hour. The simu-
lations were done on a computer equipped with 4 core Xeon CPU clocked at
3.40GHz with 30 GiB memory. In figure 4 trace-plots with respect to both com-
puting time and iterate number for ϑ3 are shown for the three samplers when
m ∈ {10, 25, 100}. While iterates for the guided-proposals are more costly, the
algorithm with these proposals does reach the stationary region way faster than
the two variants of the modified diffusion bridge, especially when m = 100.
However, solely examining trace-plots for the parameters can be misleading as
illustrated by figure 5. Here, we plotted the average acceptance probability for
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Fig 5. Average acceptance percentages for proposed bridges on segments 100 up to 200. The
three different panels correspond to m = 10, m = 25 and m = 100.

bridge proposals (on a log10-scale) for the segments in between the 99-th and
200-th observations (the picture is representative for all segments). At certain
segments the acceptance probabilities differ by several magnitudes. These seg-
ments correspond precisely to observations during an excursion from the meta-
stable region. In these excursions the diffusion path follows closely the strong
nonlinear drift dynamics, unlike in the meta-stable region. Small acceptance
probabilities manifest themselves in slow convergence of the chain.

In addition we ran the algorithm for a longer time (16 hours) withm = 200. In
this case, we simply used the Euler-approximation for the time-changed guided
proposals. Actually, the Runge-Kutta-4 method is due to the stiffness of the
SDE and only necessary in the case of a few imputed points. Trace-plots for
ϑ3 and γ1 are shown in figure 6. The trace-plot of γ1 against iteration number
clearly shows that the guided proposals chain mixes better. The posterior means
obtained by these methods were then considered to be the “true” posterior mean.
These were used in computing the error values in table 2.

8. Summary and discussion

In this paper we have shown that the bridge proposals of Delyon and Hu
(2006) and Schauer, Van der Meulen and Van Zanten (2017) can be used
in a data-augmentation algorithm that is derived in a continuous time set-
ting. An advantage of the latter type of proposals is that the pulling term
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Fig 6. Trace-plots for ϑ3 and γ1. Left: with respect to computing time in minutes. Right:
with respect to iterate number. In all cases m = 200. “gp-tc” is guided proposals time-
changed; “mdb-rw” is random-walk type modified diffusion bridge; “mdb-rw” is modified dif-
fusion bridge. The initial 735 iterates of ϑ3 are smaller than 6 and not shown.

is adapted to the present value of θ at that particular iteration. The innova-
tions scheme allows for dependent Metropolis-Hastings updating of diffusion
bridges.

Clearly, in any numerical implementation these bridge proposals need to be
discretised. We have shown that this discretisation should be done carefully near
the end point of the bridge. Instead of applying Euler discretisation directly on
the bridge process, we advocate to first time change the bridge process, next
scale it, and subsequently apply Euler discretisation.

All results have been derived under 2 assumptions: (i) the process is fully
observed discretely in time; (ii) the diffusion is uniformly elliptic. In Van der
Meulen and Schauer (2016) it is shown how condition (i) can be relaxed to
assuming that at each discrete time a known linear combination of the com-
ponents of the diffusion is observed with error. Assumption (ii) implies that
our methods as stated here do not apply to hypo-elliptic diffusions. However,
preliminary results indicate that the guided proposals from Schauer, Van der
Meulen and Van Zanten (2017) can be used in this case as well, albeit with some

more carefully chosen auxiliary process X̃ in their construction. This is part of
ongoing research.
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Table 2

Estimation results FitzHugh-Nagumo model based on all iterates (no burn-in was
considered). For each parameter we report its relative error with respect to the posterior
mean obtained from the 16-hour run with m = 200 imputed points using the time-changed
guided proposals. Furthermore, we report the Root Relative Squared Error (RRSE) and the
multivariate Effective Sample Size (mESS) from Vats, Flegal and Jones (2015). K is the

total number of iterations executed within one hour.

m = 10 RRSE ϑ1 ϑ2 ϑ3 γ1 γ2 mESS K

mdb-rw 0.3 0.96 0.95 0.75 0.94 0.94 598.4 88485
gp-tc 0.29 1.03 1.04 0.76 1.02 0.99 333.67 27366
mdb-ind 0.49 0.9 0.88 0.6 1.08 1.05 761.25 88685

m = 25 RRSE ϑ1 ϑ2 ϑ3 γ1 γ2 mESS K

mdb-rw 0.18 0.95 0.94 0.85 1.06 0.96 439.12 47576
gp-tc 0.1 1 1 0.91 1.05 0.99 177.78 12359
mdb-ind 0.42 0.91 0.89 0.65 1.16 1.09 505.77 47006

m = 100 RRSE ϑ1 ϑ2 ϑ3 γ1 γ2 mESS K

mdb-rw 0.2 0.94 0.93 0.84 1.09 0.99 216.48 14259
gp-tc 0.01 0.99 0.98 1.01 1.08 1.01 85.47 3365
mdb-ind 0.39 0.89 0.87 0.68 1.19 1.1 246.4 14441

Appendix A: Proof of Lemma 5.2

For ease of notation we will write τ and τ̇ instead of τ(s) and τ̇(s). If X satisfies
the SDE

dXs = b(s,Xs) ds+ σ(s,Xs) dW̃s

and we are given a smooth function τ = τ(s), τ : [0, T ) → R+ with positive
derivative τ̇ , then

dXτ = τ̇ b(τ,Xτ ) ds+
√
τ̇σ(τ,Xτ ) dWs, (A.1)

where W is a different Brownian motion on the same probability space as W̃ .
Applying this to X◦ (defined in equation (3.3)) gives

dX◦
τ = 2(1− s/T )[b(τ,X◦

τ ) + a(τ,X◦
τ )r̃(τ,X

◦
τ )] ds+

√
2(1− s/T )σ(τ,X◦

τ ) dWs

by Itō’s formula

dUs = d

(
v(τ)−X◦

τ

T − s

)
=

2

T
v̇(τ) ds+

v(τ)

(T − s)2
ds− X◦

τ

(T − s)2
ds

− 2

T
[b(τ,X◦

τ ) + a(τ,X◦
τ )r̃(τ,X

◦
τ )] ds−

√
2/T√
T − s

σ(τ,X◦
τ ) dWs

=
2

T
v̇(τ) ds+

Us

T − s
ds− 2

T
[b(τ,X◦

τ ) + a(τ,X◦
τ )r̃(τ,X

◦
τ )] ds
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−
√

2/T√
T − s

σ(τ,X◦
τ ) dWs.

By equation (5.2),

r̃(τ,X◦
τ ) = H̃(τ)(v(τ)−X◦

τ ) = H̃(τ)(T − s)Us = J(s)
T

T − s
Us.

The result now follows from substituting this expression and using the relation
X◦

τ(s) = Γ(s, Us) (see (5.6)).

The statement on J is a consequence of ã(s)J(s) = H̃(τ(s))(T−τ(s)) together

with limt→T H̃(t)(T − t) = ã−1 (see (Schauer, Van der Meulen and Van Zanten,
2017, Lemma 8)).

The expression for the integral follows upon the substitution s := τ(s) and
using relation (5.2).

Appendix B: Proof of Theorem 5.3

Proof. By straightforward calculus, the process U satisfies a SDE with drift
coefficient

mv̇(τ)τ̇ + ṁm−1Us −mτ̇
[
b(τ,Γ) + a(τ,Γ)H̃(τ)m−1Us

]
and diffusion coefficient as given in the theorem. We can rewrite the drift coef-
ficient using specific properties of m.

For the first term in the drift, note that

b̃(τ,Γ) = B̃(τ)
(
v(τ)−m−1Us

)
+ β̃(τ) = v̇(τ)− B̃(τ)m−1Us,

where we have used the relation v̇(s) = B̃(s)v(s) + β̃(s) at the second equality.
Multiplying by mτ̇ we get

mτ̇v̇(τ) = mτ̇b̃(τ,Γ) +mτ̇B̃(τ)m−1Us. (B.1)

Next, we rewrite the second term appearing in the drift. Using

dA−1/dt = −A−1 (dA/dt)A−1

for an invertible matrix A, we obtain that

ṁm−1 = −(T − s)−1I− τ̇
(
B̃(τ)− ã(τ)H̃(τ)

)
. (B.2)

Substituting (B.1) and (B.2) into the drift and reordering terms shows that
the drift of U equals

− (T − s)−1Us −mτ̇
(
b(τ,Γ)− b̃(τ,Γ)

)
+mτ̇

(
B̃(τ)− a(τ,Γ)H̃(τ)

)
m−1Us − τ̇

(
B̃(τ)− ã(τ)H̃(τ)

)
Us.

This can be simplified to the form given in the theorem by using that

B̃(τ)− ã(τ)H̃(τ) = m
(
B̃(τ)− ã(τ)H̃(τ)

)
m−1

which follows from the defining relation of F �.
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