Estimation of parameters of a diffusion based on discrete time observations
poses a difficult problem due to the lack of a closed form expression for the
likelihood. From a Bayesian computational perspective it can be casted as a
missing data problem where the diffusion bridges in between discrete-time
observations are missing. The computational problem can then be dealt with
using a Markov-chain Monte-Carlo method known as data-augmentation. If unknown
parameters appear in the diffusion coefficient, direct implementation of
data-augmentation results in a Markov chain that is reducible. Furthermore,
data-augmentation requires efficient sampling of diffusion bridges, which can
be difficult, especially in the multidimensional case.
We present a general framework to deal with with these problems that does not
rely on discretisation. The construction generalises previous approaches and
sheds light on the assumptions necessary to make these approaches work. We
define a random-walk type Metropolis-Hastings sampler for updating diffusion
bridges. Our methods are illustrated using guided proposals for sampling
diffusion bridges. These are Markov processes obtained by adding a guiding term
to the drift of the diffusion. We give general guidelines on the construction
of these proposals and introduce a time change and scaling of the guided
proposal that reduces discretisation error. Numerical examples demonstrate the
performance of our methods