117 research outputs found

    Evolvable Smartphone-Based Point-of-Care Systems For In-Vitro Diagnostics

    Get PDF
    Recent developments in the life-science -omics disciplines, together with advances in micro and nanoscale technologies offer unprecedented opportunities to tackle some of the major healthcare challenges of our time. Lab-on-Chip technologies coupled with smart-devices in particular, constitute key enablers for the decentralization of many in-vitro medical diagnostics applications to the point-of-care, supporting the advent of a preventive and personalized medicine. Although the technical feasibility and the potential of Lab-on-Chip/smart-device systems is repeatedly demonstrated, direct-to-consumer applications remain scarce. This thesis addresses this limitation. System evolvability is a key enabler to the adoption and long-lasting success of next generation point-of-care systems by favoring the integration of new technologies, streamlining the reengineering efforts for system upgrades and limiting the risk of premature system obsolescence. Among possible implementation strategies, platform-based design stands as a particularly suitable entry point. One necessary condition, is for change-absorbing and change-enabling mechanisms to be incorporated in the platform architecture at initial design-time. Important considerations arise as to where in Lab-on-Chip/smart-device platforms can these mechanisms be integrated, and how to implement them. Our investigation revolves around the silicon-nanowire biological field effect transistor, a promising biosensing technology for the detection of biological analytes at ultra low concentrations. We discuss extensively the sensitivity and instrumentation requirements set by the technology before we present the design and implementation of an evolvable smartphone-based platform capable of interfacing lab-on-chips embedding such sensors. We elaborate on the implementation of various architectural patterns throughout the platform and present how these facilitated the evolution of the system towards one accommodating for electrochemical sensing. Model-based development was undertaken throughout the engineering process. A formal SysML system model fed our evolvability assessment process. We introduce, in particular, a model-based methodology enabling the evaluation of modular scalability: the ability of a system to scale the current value of one of its specification by successively reengineering targeted system modules. The research work presented in this thesis provides a roadmap for the development of evolvable point-of-care systems, including those targeting direct-to-consumer applications. It extends from the early identification of anticipated change, to the assessment of the ability of a system to accommodate for these changes. Our research should thus interest industrials eager not only to disrupt, but also to last in a shifting socio-technical paradigm

    Visualisation of multi-dimensional medical images with application to brain electrical impedance tomography

    Get PDF
    Medical imaging plays an important role in modem medicine. With the increasing complexity and information presented by medical images, visualisation is vital for medical research and clinical applications to interpret the information presented in these images. The aim of this research is to investigate improvements to medical image visualisation, particularly for multi-dimensional medical image datasets. A recently developed medical imaging technique known as Electrical Impedance Tomography (EIT) is presented as a demonstration. To fulfil the aim, three main efforts are included in this work. First, a novel scheme for the processmg of brain EIT data with SPM (Statistical Parametric Mapping) to detect ROI (Regions of Interest) in the data is proposed based on a theoretical analysis. To evaluate the feasibility of this scheme, two types of experiments are carried out: one is implemented with simulated EIT data, and the other is performed with human brain EIT data under visual stimulation. The experimental results demonstrate that: SPM is able to localise the expected ROI in EIT data correctly; and it is reasonable to use the balloon hemodynamic change model to simulate the impedance change during brain function activity. Secondly, to deal with the absence of human morphology information in EIT visualisation, an innovative landmark-based registration scheme is developed to register brain EIT image with a standard anatomical brain atlas. Finally, a new task typology model is derived for task exploration in medical image visualisation, and a task-based system development methodology is proposed for the visualisation of multi-dimensional medical images. As a case study, a prototype visualisation system, named EIT5DVis, has been developed, following this methodology. to visualise five-dimensional brain EIT data. The EIT5DVis system is able to accept visualisation tasks through a graphical user interface; apply appropriate methods to analyse tasks, which include the ROI detection approach and registration scheme mentioned in the preceding paragraphs; and produce various visualisations

    From Molecules to the Masses : Visual Exploration, Analysis, and Communication of Human Physiology

    Get PDF
    Det overordnede målet med denne avhandlingen er tverrfaglig anvendelse av medisinske illustrasjons- og visualiseringsteknikker for å utforske, analysere og formidle aspekter ved fysiologi til publikum med ulik faglig nivå og bakgrunn. Fysiologi beskriver de biologiske prosessene som skjer i levende vesener over tid. Vitenskapen om fysiologi er kompleks, men samtidig kritisk for vår forståelse av hvordan levende organismer fungerer. Fysiologi dekker en stor bredde romlig-temporale skalaer og fordrer behovet for å kombinere og bygge bro mellom basalfagene (biologi, fysikk og kjemi) og medisin. De senere årene har det vært en eksplosjon av nye, avanserte eksperimentelle metoder for å detektere og karakterisere fysiologiske data. Volumet og kompleksiteten til fysiologiske data krever effektive strategier for visualisering for å komplementere dagens standard analyser. Hvilke tilnærminger som benyttes i visualiseringen må nøye balanseres og tilpasses formålet med bruken av dataene, enten dette er for å utforske dataene, analysere disse eller kommunisere og presentere dem. Arbeidet i denne avhandlingen bidrar med ny kunnskap innen teori, empiri, anvendelse og reproduserbarhet av visualiseringsmetoder innen fysiologi. Først i avhandlingen er en rapport som oppsummerer og utforsker dagens kunnskap om muligheter og utfordringer for visualisering innen fysiologi. Motivasjonen for arbeidet er behovet forskere innen visualiseringsfeltet, og forskere i ulike anvendelsesområder, har for en sammensatt oversikt over flerskala visualiseringsoppgaver og teknikker. Ved å bruke søk over et stort spekter av metodiske tilnærminger, er dette den første rapporten i sitt slag som kartlegger visualiseringsmulighetene innen fysiologi. I rapporten er faglitteraturen oppsummert slik at det skal være enkelt å gjøre oppslag innen ulike tema i rom-og-tid-skalaen, samtidig som litteraturen er delt inn i de tre høynivå visualiseringsoppgavene data utforsking, analyse og kommunikasjon. Dette danner et enkelt grunnlag for å navigere i litteraturen i feltet og slik danner rapporten et godt grunnlag for diskusjon og forskningsmuligheter innen feltet visualisering og fysiologi. Basert på arbeidet med rapporten var det særlig to områder som det er ønskelig for oss å fortsette å utforske: (1) utforskende analyse av mangefasetterte fysiologidata for ekspertbrukere, og (2) kommunikasjon av data til både eksperter og ikke-eksperter. Arbeidet vårt av mangefasetterte fysiologidata er oppsummert i to studier i avhandlingen. Hver studie omhandler prosesser som foregår på forskjellige romlig-temporale skalaer og inneholder konkrete eksempler på anvendelse av metodene vurdert av eksperter i feltet. I den første av de to studiene undersøkes konsentrasjonen av molekylære substanser (metabolitter) ut fra data innsamlet med magnetisk resonansspektroskopi (MRS), en avansert biokjemisk teknikk som brukes til å identifisere metabolske forbindelser i levende vev. Selv om MRS kan ha svært høy sensitivitet og spesifisitet i medisinske anvendelser, er analyseresultatene fra denne modaliteten abstrakte og vanskelige å forstå også for medisinskfaglige eksperter i feltet. Vår designstudie som undersøkte oppgavene og kravene til ekspertutforskende analyse av disse dataene førte til utviklingen av SpectraMosaic. Dette er en ny applikasjon som gjør det mulig for domeneeksperter å analysere konsentrasjonen av metabolitter normalisert for en hel kohort, eller etter prøveregion, individ, opptaksdato, eller status på hjernens aktivitetsnivå ved undersøkelsestidspunktet. I den andre studien foreslås en metode for å utføre utforskende analyser av flerdimensjonale fysiologiske data i motsatt ende av den romlig-temporale skalaen, nemlig på populasjonsnivå. En effektiv arbeidsflyt for utforskende dataanalyse må kritisk identifisere interessante mønstre og relasjoner, noe som blir stadig vanskeligere når dimensjonaliteten til dataene øker. Selv om dette delvis kan løses med eksisterende reduksjonsteknikker er det alltid en fare for at subtile mønstre kan gå tapt i reduksjonsprosessen. Isteden presenterer vi i studien DimLift, en iterativ dimensjonsreduksjonsteknikk som muliggjør brukeridentifikasjon av interessante mønstre og relasjoner som kan ligge subtilt i et datasett gjennom dimensjonale bunter. Nøkkelen til denne metoden er brukerens evne til å styre dimensjonalitetsreduksjonen slik at den følger brukerens egne undersøkelseslinjer. For videre å undersøke kommunikasjon til eksperter og ikke-eksperter, studeres i neste arbeid utformingen av visualiseringer for kommunikasjon til publikum med ulike nivåer av ekspertnivå. Det er naturlig å forvente at eksperter innen et emne kan ha ulike preferanser og kriterier for å vurdere en visuell kommunikasjon i forhold til et ikke-ekspertpublikum. Dette påvirker hvor effektivt et bilde kan benyttes til å formidle en gitt scenario. Med utgangspunkt i ulike teknikker innen biomedisinsk illustrasjon og visualisering, gjennomførte vi derfor en utforskende studie av kriteriene som publikum bruker når de evaluerer en biomedisinsk prosessvisualisering målrettet for kommunikasjon. Fra denne studien identifiserte vi muligheter for ytterligere konvergens av biomedisinsk illustrasjon og visualiseringsteknikker for mer målrettet visuell kommunikasjonsdesign. Særlig beskrives i større dybde utviklingen av semantisk konsistente retningslinjer for farging av molekylære scener. Hensikten med slike retningslinjer er å heve den vitenskapelige kompetansen til ikke-ekspertpublikum innen molekyler visualisering, som vil være spesielt relevant for kommunikasjon til befolkningen i forbindelse med folkehelseopplysning. All kode og empiriske funn utviklet i arbeidet med denne avhandlingen er åpen kildekode og tilgjengelig for gjenbruk av det vitenskapelige miljøet og offentligheten. Metodene og funnene presentert i denne avhandlingen danner et grunnlag for tverrfaglig biomedisinsk illustrasjon og visualiseringsforskning, og åpner flere muligheter for fortsatt arbeid med visualisering av fysiologiske prosesser.The overarching theme of this thesis is the cross-disciplinary application of medical illustration and visualization techniques to address challenges in exploring, analyzing, and communicating aspects of physiology to audiences with differing expertise. Describing the myriad biological processes occurring in living beings over time, the science of physiology is complex and critical to our understanding of how life works. It spans many spatio-temporal scales to combine and bridge the basic sciences (biology, physics, and chemistry) to medicine. Recent years have seen an explosion of new and finer-grained experimental and acquisition methods to characterize these data. The volume and complexity of these data necessitate effective visualizations to complement standard analysis practice. Visualization approaches must carefully consider and be adaptable to the user's main task, be it exploratory, analytical, or communication-oriented. This thesis contributes to the areas of theory, empirical findings, methods, applications, and research replicability in visualizing physiology. Our contributions open with a state-of-the-art report exploring the challenges and opportunities in visualization for physiology. This report is motivated by the need for visualization researchers, as well as researchers in various application domains, to have a centralized, multiscale overview of visualization tasks and techniques. Using a mixed-methods search approach, this is the first report of its kind to broadly survey the space of visualization for physiology. Our approach to organizing the literature in this report enables the lookup of topics of interest according to spatio-temporal scale. It further subdivides works according to any combination of three high-level visualization tasks: exploration, analysis, and communication. This provides an easily-navigable foundation for discussion and future research opportunities for audience- and task-appropriate visualization for physiology. From this report, we identify two key areas for continued research that begin narrowly and subsequently broaden in scope: (1) exploratory analysis of multifaceted physiology data for expert users, and (2) communication for experts and non-experts alike. Our investigation of multifaceted physiology data takes place over two studies. Each targets processes occurring at different spatio-temporal scales and includes a case study with experts to assess the applicability of our proposed method. At the molecular scale, we examine data from magnetic resonance spectroscopy (MRS), an advanced biochemical technique used to identify small molecules (metabolites) in living tissue that are indicative of metabolic pathway activity. Although highly sensitive and specific, the output of this modality is abstract and difficult to interpret. Our design study investigating the tasks and requirements for expert exploratory analysis of these data led to SpectraMosaic, a novel application enabling domain researchers to analyze any permutation of metabolites in ratio form for an entire cohort, or by sample region, individual, acquisition date, or brain activity status at the time of acquisition. A second approach considers the exploratory analysis of multidimensional physiological data at the opposite end of the spatio-temporal scale: population. An effective exploratory data analysis workflow critically must identify interesting patterns and relationships, which becomes increasingly difficult as data dimensionality increases. Although this can be partially addressed with existing dimensionality reduction techniques, the nature of these techniques means that subtle patterns may be lost in the process. In this approach, we describe DimLift, an iterative dimensionality reduction technique enabling user identification of interesting patterns and relationships that may lie subtly within a dataset through dimensional bundles. Key to this method is the user's ability to steer the dimensionality reduction technique to follow their own lines of inquiry. Our third question considers the crafting of visualizations for communication to audiences with different levels of expertise. It is natural to expect that experts in a topic may have different preferences and criteria to evaluate a visual communication relative to a non-expert audience. This impacts the success of an image in communicating a given scenario. Drawing from diverse techniques in biomedical illustration and visualization, we conducted an exploratory study of the criteria that audiences use when evaluating a biomedical process visualization targeted for communication. From this study, we identify opportunities for further convergence of biomedical illustration and visualization techniques for more targeted visual communication design. One opportunity that we discuss in greater depth is the development of semantically-consistent guidelines for the coloring of molecular scenes. The intent of such guidelines is to elevate the scientific literacy of non-expert audiences in the context of molecular visualization, which is particularly relevant to public health communication. All application code and empirical findings are open-sourced and available for reuse by the scientific community and public. The methods and findings presented in this thesis contribute to a foundation of cross-disciplinary biomedical illustration and visualization research, opening several opportunities for continued work in visualization for physiology.Doktorgradsavhandlin

    Animating Film Theory

    Get PDF
    Animating Film Theory provides an enriched understanding of the relationship between two of the most unwieldy and unstable organizing concepts in cinema and media studies: animation and film theory. For the most part, animation has been excluded from the purview of film theory. The contributors to this collection consider the reasons for this marginalization while also bringing attention to key historical contributions across a wide range of animation practices, geographic and linguistic terrains, and historical periods. They delve deep into questions of how animation might best be understood, as well as how it relates to concepts such as the still, the moving image, the frame, animism, and utopia. The contributors take on the kinds of theoretical questions that have remained underexplored because, as Karen Beckman argues, scholars of cinema and media studies have allowed themselves to be constrained by too narrow a sense of what cinema is. This collection reanimates and expands film studies by taking the concept of animation seriously. Contributors. Karen Beckman, Suzanne Buchan, Scott Bukatman, Alan Cholodenko, Yuriko Furuhata, Alexander R. Galloway, Oliver Gaycken, Bishnupriya Ghosh, Tom Gunning, Andrew R. Johnston, Hervé Joubert-Laurencin, Gertrud Koch, Thomas LaMarre, Christopher P. Lehman, Esther Leslie, John MacKay, Mihaela Mihailova, Marc Steinberg, Tess Takahash

    Investigation of the feasibility of using focal vibratory stimulation with robotic aided therapy for spasticity rehabilitation in spinal cord injury

    Get PDF
    The occurrence of a traumatic spinal cord injury is in hundreds of thousands of people every year. Survivors are left with loss of many bodily functions, loss of sensation below the point of injury and many more painful and uncomfortable repercussions which interfere with activities of daily living. Over 70% of people with SCI develop spasticity: abnormally increased muscle tone and connected joint stiffness that interfere with residual volitional control of the limbs. Treatments for spasticity include many pharmacological and non-pharmacological techniques, however many of them have severe sideeffects. Evidence suggest the use of vibratory stimulation to relieve repercussions of spasticity, despite not agreeing on the most advantageous protocol. This thesis evaluated effects that focal vibratory stimulation have on the muscle performance. Within two studies, focal muscle vibration is compared against different application conditions such as timing and location. The results suggests that if focal vibrations are applied to the relaxed muscle, the increase in muscle's force is observed. Analysis of the cortical waves indicates minimal cortical involvement in vibratory stimulation modulation. On the other hand, FV applied of the connected tendon/bone imposed to a contraction seems to have a potential to increase muscle's activation. There is evidence that motor cortex is responding to this stimulation to stabilise the muscle in order to perform the contraction. Within clinical trial, focal muscle vibratory stimulation is employed in total of 6 interventional sessions while a joint's spastic exor and extensor muscles were relaxed. Spasticity appears to be reduced as a consequence of the stimulation. Moreover, engaging the joint into robotic-aided therapy increase volitional control of the wrist, according to the analysis of the active range of motion, joint stiffness and kinematic parameters associated to the movement. The measurement and movement facilitation device used in the clinical trial was designed and developed in accordance to the spasticity and spinal cord injury repercussions consideration. The studies conducted for this thesis demonstrated feasibility and potential for the use of focal muscle vibratory stimulation to enhance muscle power in healthy muscles but also relieve consequences of spasticity. Vibrations combined with movement robotic-aided therapy have a prospects to enhance motor control

    Animating Film Theory

    Get PDF
    Animating Film Theory provides an enriched understanding of the relationship between two of the most unwieldy and unstable organizing concepts in cinema and media studies: animation and film theory. For the most part, animation has been excluded from the purview of film theory. The contributors to this collection consider the reasons for this marginalization while also bringing attention to key historical contributions across a wide range of animation practices, geographic and linguistic terrains, and historical periods. They delve deep into questions of how animation might best be understood, as well as how it relates to concepts such as the still, the moving image, the frame, animism, and utopia. The contributors take on the kinds of theoretical questions that have remained underexplored because, as Karen Beckman argues, scholars of cinema and media studies have allowed themselves to be constrained by too narrow a sense of what cinema is. This collection reanimates and expands film studies by taking the concept of animation seriously. Contributors. Karen Beckman, Suzanne Buchan, Scott Bukatman, Alan Cholodenko, Yuriko Furuhata, Alexander R. Galloway, Oliver Gaycken, Bishnupriya Ghosh, Tom Gunning, Andrew R. Johnston, Hervé Joubert-Laurencin, Gertrud Koch, Thomas LaMarre, Christopher P. Lehman, Esther Leslie, John MacKay, Mihaela Mihailova, Marc Steinberg, Tess Takahash

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning

    Parting A Read Sea Of Images: An Exploration Of Field Dependent-Independent Responses To Minimalist, Pictographic And Infographic Data Displays

    Get PDF
    ABSTRACT Western society reflects an âeikoncentric eraâ when contemporary instruction has become image -centered. Textbooks, journals, popular media as well as computer-based and web- based instructional media are filled by pictures that are intended to accomplish learning. Imagery is widely believed to represent an efficient, understandable method for relaying information and clarifying instruction for nearly all learners. However, those who subscribe to the adage âa picture is worth a thousand wordsâ often fail to acknowledge individual differences in visual comprehension and cognition. The field dependent-independent (FDI) cognitive style describes individual learner differences that can thwart visual learning. Information graphics are among the frequently used types of imagery that portray data. There is little empirical evidence to guide their design, and their creation is often based on intuition or opinion. This study researched the ways FDI learners comprehend and aesthetically assess minimalist information graphics, pictograms and infographics. Those participants who represented the most extreme field-dependent or field-independent learners were invited to participate in a two-part study. An instrument named the Comparative Information Graphic Test (CIG-T) was developed for testing comprehension of and perceived aesthetic efficacy, value and preference for minimalist information graphics, pictograms and infographics by FDI learner
    corecore