624 research outputs found

    Energy minimization with one dot fuzzy initialization for marine oil spill segmentation

    Get PDF
    Detecting marine oil spill regions in synthetic aperture radar (SAR) images has always been posed as a segmentation problem in terms of minimizing a certain energy function(al). As most energy minimization problems do not have analytical solutions, minimizing an energy function(al) is usually achieved in an iterative numerical manner. In this scenario, one key factor that affects the segmentation accuracy is the initialization for starting or constraining the numerical iterations. To guarantee accurate segmentation, a proper initialization that characterizes the marine oil spill layouts in a SAR image is required. However, marine oil spill regions are always complicatedly shaped, and it is inefficient to manually devise precise initializations for capturing various marine oil spill shapes. In order to address this problem and render efficient and robust segmentation, we develop a one dot fuzzy initialization strategy. In contrast to the normal practice of manually labeling a large amount of pixels (possibly lines or cycles of pixels subject to strict spatial conditions) as initialization, our strategy just requires one arbitrary pixel within a marine oil spill region as the initial dot. The intuition of our strategy is that the fuzzy connectedness between an arbitrary initial dot and the rest pixels enables the derivation of a physically homogeneous region which is consistent for initializing the energy minimization. In the light of this observation, we develop schemes for exploiting the one dot derived region to initialize both level sets for minimizing continuous energy functionals and graph cuts for minimizing discrete energy functions. Experimental results validate the robustness of our one dot fuzzy initialization strategy

    A goal-driven unsupervised image segmentation method combining graph-based processing and Markov random fields

    Get PDF
    Image segmentation is the process of partitioning a digital image into a set of homogeneous regions (according to some homogeneity criterion) to facilitate a subsequent higher-level analysis. In this context, the present paper proposes an unsupervised and graph-based method of image segmentation, which is driven by an application goal, namely, the generation of image segments associated with a user-defined and application-specific goal. A graph, together with a random grid of source elements, is defined on top of the input image. From each source satisfying a goal-driven predicate, called seed, a propagation algorithm assigns a cost to each pixel on the basis of similarity and topological connectivity, measuring the degree of association with the reference seed. Then, the set of most significant regions is automatically extracted and used to estimate a statistical model for each region. Finally, the segmentation problem is expressed in a Bayesian framework in terms of probabilistic Markov random field (MRF) graphical modeling. An ad hoc energy function is defined based on parametric models, a seed-specific spatial feature, a background-specific potential, and local-contextual information. This energy function is minimized through graph cuts and, more specifically, the alpha-beta swap algorithm, yielding the final goal-driven segmentation based on the maximum a posteriori (MAP) decision rule. The proposed method does not require deep a priori knowledge (e.g., labelled datasets), as it only requires the choice of a goal-driven predicate and a suited parametric model for the data. In the experimental validation with both magnetic resonance (MR) and synthetic aperture radar (SAR) images, the method demonstrates robustness, versatility, and applicability to different domains, thus allowing for further analyses guided by the generated product

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    Remote Sensing Applications in Coastal Environment

    Get PDF
    Coastal regions are susceptible to rapid changes, as they constitute the boundary between the land and the sea. The resilience of a particular segment of coast depends on many factors, including climate change, sea-level changes, natural and technological hazards, extraction of natural resources, population growth, and tourism. Recent research highlights the strong capabilities for remote sensing applications to monitor, inventory, and analyze the coastal environment. This book contains 12 high-quality and innovative scientific papers that explore, evaluate, and implement the use of remote sensing sensors within both natural and built coastal environments

    Boundary tracking and source seeking of oceanic features using autonomous vehicles

    Get PDF
    The thesis concerns the study and the development of boundary tracking and source seeking approaches for autonomous vehicles, specifically for marine autonomous systems. The underlying idea is that the characterization of most environmental features can be posed from either a boundary tracking or a source seeking perspective. The suboptimal sliding mode boundary tracking approach is considered and, as a first contribution, it is extended to the study of three dimensional features. The approach is aimed at controlling the movement of an underwater glider tracking a three-dimensional underwater feature and it is validated in a simulated environment. Subsequently, a source seeking approach based on sliding mode extremum seeking ideas is proposed. This approach is developed for the application to a single surface autonomous vehicle, seeking the source of a static or dynamic two dimensional spatial field. A sufficient condition which guarantees the finite time convergence to a neighbourhood of the source is introduced. Furthermore, a probabilistic learning boundary tracking approach is proposed, aimed at exploiting the available preliminary information relating to the spatial phenomenon of interest in the control strategy. As an additional contribution, the sliding mode boundary tracking approach is experimentally validated in a set of sea-trials with the deployment of a surface autonomous vehicle. Finally, an embedded system implementing the proposed boundary tracking strategy is developed for future installation on board of the autonomous vehicle. This work demonstrates the possibility to perform boundary tracking with a fully autonomous vehicle and to operate marine autonomous systems without remote control or pre-planning. Conclusions are drawn from the results of the research presented in this thesis and directions for future work are identified

    Anisotropic colloids in soft matter environments : particle synthesis and interaction with interfaces

    Get PDF
    We have shown new applications and synthetic routes for polymer colloids in the field of home and personal care products by controlling polymer and/or colloidal architectures. Our initial aim was to develop functional particles that imparted beneficial properties to fibrous substrates and as such our first goal was to develop a method for depositing particles onto such surfaces. Chapter 2 describes the method by which we achieved this goal, namely adding a small amount of a low glass transition polymer to an otherwise non-adhesive polymer to enhance colloidal deposition. Following on from this work we looked into ways in which to impart desirable characteristics from the particles onto fibres. In Chapter 3 we describe how the use of a hydrazide functional monomer in polymer gels can provide a continuing slow release of fragrance molecules that reacts to the environment it is held in such that if the local fragrance concentration is low then more is released. In Chapter 4 we describe the synthesis of highly porous particles with controlled pore sizes and the use of such particles in oil absorption for applications in water-free cleaning systems. The particles are capable of carrying many times their own weight in oil and are shown to be reusable. In Chapter 5 we describe a computational model that predicts the ability of a particle to stabilize emulsions. The model is highly adaptable and can be used to predict the surface activity of almost any particle morphology. Chapter 6 builds on this work and described the synthesis of highly anisotropic polymer particles by templating preexisting structures and explains their surface activity, or lack thereof

    Ambit of Multiphase CFD in Modelling Transport Processes Related to Oil Spill Scenario and Microfluidics

    Get PDF
    During the ‘Deepwater Horizon’ accident in the deep sea in 2010, about 4.9 million barrels of oil was released into the Gulf of Mexico, making the spill one of the worst ocean spills in recent times. To mitigate the ill effects of the event on the environment, subsea injection of dispersants was carried out. Dispersant addition lowers the interfacial tension at oil/water interface and presence of local turbulence enhances the droplet disintegration process. The oil droplets contain a plethora of hydrocarbons which are soluble in water. In deep spill scenarios, droplets spend large amounts of time in water column; hence, the dissolution process of soluble hydrocarbons becomes important. In this study, our focus is to exploit the capabilities of multiphase CFD in developing an integrated numerical model which accounts for various transport processes and hence would effectively guide us in predicting the fate of oil mass. In the initial stages, studies were conducted to understand these transport processes at a very fundamental level where the effect of surfactant, on the dynamics of crude oil, droplet rising in a stagnant column, was investigated. To capture the subsurface dissolution of hydrocarbons from oil droplet, a unique experiment was devised wherein a binary organic mixture, representing a pseudo oil droplet comprising of volatile and non-volatile hydrocarbons, was employed to study the effect of unsteady mass transport on the overall dynamics of the droplet. In the next phase of project, we developed a numerical model, by integrating traditional multiphase CFD models and turbulence models, with a population balance (PB) approach, for predicting the droplet size distribution resulting from the interaction of turbulent oil jets with the surrounding quiescent environment. Apart from the simulations specific to oil spill related situations, the multiphase CFD was also employed to study the fluid flow in micro-channels. The mass transfer mechanisms in micro-channels for immiscible fluids in squeezing and dripping regimes were studied by employing the numerical model, which couples the features of the traditional Volume of fluid method and the Continuous Species transport approach for evaluating the concentration fields inside dispersed and continuous phase
    corecore