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Energy Minimization with One Dot Fuzzy

Initialization for Marine Oil Spill Segmentation
Peng Ren, SeniorMember, IEEE, Min Xu, Yunhua Yu, Fang Chen, Xiangyuan Jiang and Erfu Yang

Abstract—Detecting marine oil spill regions in synthetic aper-
ture radar (SAR) images has always been posed as a segmentation
problem in terms of minimizing a certain energy function(al).
As most energy minimization problems do not have analytical
solutions, minimizing an energy function(al) is usually achieved
in an iterative numerical manner . In this scenario, one key factor
that affects the segmentation accuracy is the initialization for
starting or constraining the numerical iterations. To guarantee
accurate segmentation, a proper initialization that characterizes
the marine oil spill layouts in a SAR image is required. However,
marine oil spill regions are always complicatedly shaped, and it is
inefficient to manually devise precise initializations for capturing
various marine oil spill shapes. In order to address this problem
and render efficient and robust segmentation, we develop a
one dot fuzzy initialization strategy. In contrast to the normal
practice of manually labeling a large amount of pixels (possibly
lines or cycles of pixels subject to strict spatial conditions) as
initialization, our strategy just requires one arbitrary pixel within
a marine oil spill region as the initial dot. The intuition of our
strategy is that the fuzzy connectedness between an arbitrary
initial dot and the rest pixels enables the derivation of a physically
homogeneous region which is consistent for initializing the energy
minimization. In the light of this observation, we develop schemes
for exploiting the one dot derived region to initialize both level
sets for minimizing continuous energy functionals and graph cuts
for minimizing discrete energy functions. Experimental results
validate the robustness of our one dot fuzzy initialization strategy.

Index Terms—Marine oil spill segmentation, energy minimiza-
tion, one dot fuzzy initialization, fuzzy connectedness.

I. INTRODUCTION

In recent decades, marine oil spill accidents have frequently

occurred at different scales and have caused various damages

to the natural environment [1]. Satellite-based synthetic aper-

ture radar (SAR) has the advantage of all-weather and all-time

operation and plays an important role in observing environ-

ment and targets [2][3][4]. SAR also provides an important
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means for monitoring marine oil spills [5][6]. It is vital to

accurately observe the oil spills through SAR images in a

timely manner for the purpose of both damage assessment and

spread control. Therefore, developing intelligent algorithms for

segmenting marine oil spill regions from SAR images has been

an important research topic in the literature of ocean remote

sensing.

In the research literature, the majority of oil spill study

based on SAR data lies in the investigation of the physic

characteristics of oil spills for reflecting different types of

electromagnetic waves. One major physical feature for oil spill

analysis based on SAR data is the non-Bragg scattering phe-

nomenon caused by oil spills. The capillary and short gravity

waves on the ocean surface give rise to Bragg scattering that

is sensed by SAR. On the other hand, marine oil spills damp

out the Bragg scattering, resulting in dark patches in SAR

images. The non-Bragg scattering regions provide indications

for observing oil spills based on SARimages. Recently, more

sophisticated oil and electromagnetic wave relationships have

been explored, and especially the polarimetric characteristics

of oil spills have been comprehensively investigated. In this

regard, Nunziata et al. [7], Buono et al. [8], Bandiera et al.

[9][10], Minchew et al. [11], Collins et al. [12], Brekke et

al. [13] and Espeseth et al. [14] have conducted studies that

represent state of the art oil spill observation research based

on polarimetric SAR data. The polarimetry based strategies

enhance oil spill observations in images through multiple

polarimetric channel analysis such that basic image processing

techniques such as thresholding [15] and K-means clustering

[8] are easily applied to detecting oil spills in the enhanced

representations.

On the other hand, researchers mainly from the image

processing and machine learning community have been work-

ing on developing more sophisticated oil spill segmentation

methods for accurately detecting oil spill regions in SAR

images. In this scenario, oil spill segmentation is formulated in

terms of energy minimization, in which an energy function(al)

measures the segmentation characteristics such as fitness and

similarity with respect to the oil spills. The energy func-

tion(al)s can be roughly classified into continuous functionals

and discrete functions, depending on whether the variables

are continuous or discrete. The two types of energies are

formulated in different forms and require different numerical

computation schemes. Especially, they model images in dif-

ferent perspectives and have their own advantages separately.

Continuous energy minimization characterizes the topological

similarity between the segmentation and image representation

and tends to result in detailed oil spill region contours. Discrete
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energy minimization takes advantage of fast approximation

strategies and renders efficient computation for segmentation.

As continuous and discrete energy minimization methods

have their unique advantages, both of them have been studied

in the oil spill segmentation literature. Mdakane et al. [16]

incorporated a region-based signed pressure force function

into the level set continuous energy functional for detecting

oil slicks from moving vessels. Chen et al. [17] described

how to generalize level set continuous energy miminization

strategies to segment oil spill regions from blury images.

Ren et al. [18] proposed to smooth both image and cost

volume for discrete energy functions, and apply the graph cut

algorithm for obtaining optimal segmentation. In contrast to

state-of-the-art deep learning strategies (e.g. [19]) that require

labelled oil spill images for training a complicated model, the

energy minimization methods directly conduct segmentation

on single SAR observation according to the oil spill intrinsic

characteristics. The availability of oil spill images is not as

easy as that of everyday images taken by ordinary cameras,

and training a segmentation model based on a big amount

(segmented) oil spill images seems an inappropriate mission.

An energy minimization method turns out to be a more suitable

strategy for segmenting oil spill regions in SAR images,

because it straightforwardly operates on one image without

the training procedure.

However, it is observed that the accuracy of energy mini-

mization segmentation heavily relies on the prior knowledge

provided for initializing the energy minimization [20]. In

practice, a considerable number of pixels (possibly lines or

cycles of pixels subject to spatial conditions) are manually

labeled as initialization. For continuous energy minimization,

level set methods are widely used for numerical computation

where level set evolution is commonly initialized by a regular

contour such as a rectangle box (partially) surrounding an ob-

ject. For discrete energy minimization, graph cut methods are

widely used for approximation and the initialization requires

labeling parts of foreground and background pixels separately

for constraining graph cut computation. Though an energy

function(al) initialized by similar initializations can result

in almost identical results for normal object segmentation,

slightly different initializations may lead to totally different

segmented oil spill regions. This is because unlike regularly

formed normal objects, one oil spill region usually manifests

itself in an irregular shape with an arbitrary curved contour.

For example, it has been observed that regular initializations

such as rectangle boxes are not sufficient to characterize the

sophisticatedly shaped oil spills [20]. For instance, Fig. 5(a)

illustrates one marine oil spill SAR image and its manually

segmented oil spill regions. Energy minimization methods

require initializations to follow the shape of an oil spill re-

gion for obtaining accurate segmentation. However, manually

devising precise initializations for guiding segmentation is

inefficient for practical use. In contrast, one common practice

is to manually develop the initial contours or initial labels

through coarse human observation of oil spill regions. The

initializations thus obtained tend to exhibit various forms

and are not reliable for achieving accurate segmentation.

Therefore, the requirement for both the efficiency of devising

an initialization and its reliability for guiding the accurate

segmentation appears to be a paradox. On the other hand,

there are a number of initialization-free solution proposed

for energy minimization (especially for the continuous energy

minimization methods such as level sets). One pioneering

study in the literature is the active contour without edges [21],

which avoids manual initialization by a gradient-free strategy.

Recently, the Otsu’s method, which employs certain thresh-

olding scheme for detecting initial contours, has been broadly

employed for automatically initializing level sets for oil spill

segmentation [16][22]. Though these methods efficiently avoid

manual initializations, their practical implementations do not

always result in acceptable segmentation results, especially in

segmenting irregular shapes such as oil spills.

In order to achieve both efficient and robust initialization

for accurate segmentation, we propose a one dot fuzzy ini-

tialization scheme. Our method just requires an arbitrary pixel

within one marine oil spill region as prior knowledge, which

turns out an efficient scheme. Furthermore, it results in a

consistent region which is reliable for accurate segmentation.

Key to the effectiveness of our strategy is that the fuzzy

connectedness between an arbitrary initial dot and the rest

pixels enables the derivation of a physically homogeneous

region. We exploit the physically homogeneous region as

a consistent initial region for establishing initializations for

both continuous and discrete energy minimization strategies.

Specifically, we use such initialization to drive both the level

set and graph cut computations and achieve consistent and

accurate segmentation results for detecting oil spill regions in

SAR images.

II. ENERGY MINIMIZATION

We describe the continuous and discrete energy minimiza-

tion strategies separately in this section. Specifically, we

describe the constructions of region scalable fitting (RSF)

continuous energy functional and the pairwise graph based

discrete energy function, and then explain how to render

energy minimization via level sets and graph cuts, respectively.

Finally, we give a comparison between the level set and graph

cut image segmentation schemes.

A. Continuous Energy Minimization

In this subsection, we describe the RSF level set method

[23] for continuous energy minimization. The construction of

the RSF energy functional and the minimization of the energy

functional via level sets are presented separately in the image

segmentation scenario.

1) Region Scalable Fitting Energy Functional: For an im-

age I with its pixel intensity at (x, y) denoted as I(x, y), one

level set method employs a level set function ϕ(x, y) as a

segmentation indicator. Geometrically, ϕ manifests itself as

a surface in a three-dimensional space. In numerical compu-

tation, ϕ can be thought of a matrix with the same size as

the image I . For an optimal level set function, ϕ(x, y) ≥ 0
indicates that the pixel I(x, y) is segmented into the marine

oil spill region, otherwise it is segmented into background.

The curve obtained in terms of the intersection between ϕ
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and the zero plane (i.e. ϕ(x, y) = 0) is referred to as the

zero level set of ϕ(x, y), and it indicates the contour of an

oil spill region. RSF is an approach to establishing an energy

functional (i.e. objective function) with respect to ϕ. The RSF

energy functional is defined as follows:

Eϵ(ϕ, q1, q2)=
∑2

i=1λi

∫∫(∫∫

ωiM
ϵ
i

(

ϕ(u, v)
)

dudv
)

dxdy

+ν
∫∫
∣

∣▽Hϵ

(

ϕ (x, y)
)
∣

∣dxdy

(1)

where

ωi = Kσ (x− u, y − v) |I (u, v)− qi (x, y)|
2

(2)

Here Kσ is a nonnegative kernel function and σ is its scale

parameter. Additionally, M ϵ
1 (ϕ) = Hϵ (ϕ), M ϵ

2 (ϕ) = 1 −
Hϵ (ϕ). Hϵ (ϕ) is a smooth Heaviside function where ϵ is a

parameter for smoothing the step change.

Hϵ (ϕ) =
1

2

[

1 +
2

π
arctan

(

ϕ

ϵ

)]

(3)

The derivative of Hϵ (ϕ) is:

δϵ (ϕ) =
∂Hϵ

∂ϕ
=

1

π

ϵ

ϵ2 + ϕ2
. (4)

The integrations in (1) operate over the spatial domain of

the whole image. M ϵ
i controls the integration domain for wi

such that the integration with respect to (u, v) just takes place

within the ϕ ≥ 0 image region if i = 1 or within the ϕ < 0
image region if i = 2. wi measures the fitness between an

image approximation quantity qi (x, y) and the original image

I within the ϕ ≥ 0 region if i = 1 or within the ϕ < 0 region

if i = 2. It is in such a manner that the level set ϕ characterizes

the region scalable fitness between the segmentation and the

image.

To preserve the regularity of the level set function and

maintain a stable level set evolution, it is necessary for the

energy functional to involve a level set regularization term

R (ϕ) as follows:

R (ϕ) =

∫∫

1

2
(|▽ϕ (x, y)− 1|)2 dxdy. (5)

Here more comprehensive regularization schemes such as the

double-well potential [24] can be employed. For simplicity

and without loss of generality, we keep using the distance

regularization (5) in our work. Specifically, we aim to propose

a consistent and efficient initialization strategy for starting the

level set evolution, and the distance regularization is capable

of avoiding the degraded representation and the reinitialization

inefficiency during the level set evolution. Therefore, our

proposed strategy and the distance regularization complements

each other in constructing an overall level set segmentation

framework.

The overall RSF energy functional given by:

EC (ϕ, q1, q2) = Eϵ (ϕ, q1, q2) + ηR (ϕ) (6)

where η is a positive balancing parameter. The energy func-

tional (6) is classified as continuous energy because its vari-

ables are intrinsically continuous.

2) Level Set Evolution for Continuous Energy Minimiza-

tion: The basic idea of the level set method is to formulate the

contour motion as the evolution of a level set function for the

purpose of minimizing the energy functional (6). The functions

q1 and q2 that minimize the energy functional EC (ϕ, q1, q2)
for a fixed ϕ satisfy the following Euler-Lagrange equations:

∫∫

Kσ(x−u, y−v)Mi

(

ϕ(u,v)
)

[I(u,v)−qi(x,y)]dudv=0 (7)

and qi(x, y) is obtained as follows:

qi (x, y) =
Kσ (x, y) ∗

[

Mi

(

ϕ (x, y)
)

I (x, y)
]

Kσ (x, y) ∗Mi

(

ϕ (x, y)
) , i = 1, 2. (8)

The functions q1 and q2 are the weighted averages of the

pixel intensities in a neighborhood of (x, y), and the size of

qi is proportional to the scale parameter σ.

Keeping q1 and q2 fixed, we use the standard gradient decent

method to minimize the energy functional EC (ϕ, q1, q2) with

respect to ϕ, and the required partial derivative is:

∂EC

∂ϕ
= δϵ (ϕ) (λ1e1 − λ2e2)− νδϵ (ϕ) div

(

▽ϕ
|▽ϕ|

)

−η
[

▽2ϕ− div
(

▽ϕ
|▽ϕ|

)] (9)

where e1 and e2 are the functions as follows:

ei (x, y) =

∫∫

ωidudv, i = 1, 2. (10)

The gradient descent update for ϕ is:

ϕt(x, y) = ϕt−1(x, y)− α
∂EC

∂ϕ

∣

∣

∣

∣

t−1

(11)

where α is the learning rate. The convergence of the level set

evolution according to (8) and (11) achieves the minimization

of the RSF energy functional (6). Detailed explanations about

the RSF level sets are referred to [23]. The zero level set of the

converged level set function yields the contour for the marine

oil spill region in one SAR image.

The initial level set function for starting the evolution (11)

plays an important role in accurate segmentation. One widely

accepted initial level set construction strategy is to manually

establish a rectangle box that (partially) surrounds a marine

oil spill region. The manually initialized level set is supposed

to capture the oil spill shapes as much as possible. However,

manual initializations are somewhat subjective and arbitrary

such that appropriateness of the manually initialized level

sets cannot be guaranteed. The evolving iterations in (11)

starting from different initial level sets are likely to converge

to different final level sets, thus resulting in different oil

spill segmentation results. One reason for the segmentation

variation is the approximation applied in the numerical com-

putation. The continuous operators such as divergence are all

approximated by numerical operations in the evolution such

that one small initial difference may lead to considerable

segmentation difference via a series of numerical approxima-

tions. This heavily hinders the level set method from practical

use. The contribution of our work overcomes this inefficiency

by developing one efficient and reliable initialization method

based on just one dot, which will be presented in Section III.
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B. Discrete Energy Minimization

In this subsection, we describe the graph cut method [25] for

discrete energy minimization. The construction of a discrete

energy function and the minimization of the energy function

via graph cuts are presented separately in the image segmen-

tation scenario.

1) Pairwise Energy Function: For an image I , let N be the

set of pixels and N be the set of all pairs of neighboring pixels.

The image segmentation is performed by assigning each pixel

i ∈ N a label li ∈ L with binary value 0 or 1, which indicates

the pixel belonging to ”oil spill regions” or ”background”. The

label set L represents the segmentation.

To measure the disagreement between segmentation and

image at the individual pixel level, a unary potential term is

defined as follows:

Ei(li) = li(ϑ− Ii) + (1− xi)(Ii − ϑ) (12)

where ϑ is an empirical threshold and Ii is the intensity

value at the pixel i. The unary potential favors segmentation

subject to thresholding each individual pixel by ϑ. If the

discrete energy function consists of just the unary potentials,

the segmentation is reduced to basic thresholding segmenta-

tion, which tends to be susceptible to noise. To address this

ineffectiveness, the discrete energy function normally involves

pairwise potentials as follows:

Ei,j(li, lj) = [li(1− lj) + (1− li) · lj ]·

exp[−
(Ii − Ij)

2

σ2
] ·

1

di,j

(13)

where di,j=
√

(xi − xj)
2
+ (yi − yj)

2
represents the distance

between the two pixels, σ is a scaling factor, and (i, j) is a pair

of neighboring pixels included in N . The pairwise potential

favors identical labels for neighboring pixels by assigning zero

penalty. On the other hand, it assigns a pair of distinct labels

a penalty which follows the intensity dissimilarity and spatial

distance between two pixels.

The overall discrete energy function is as follows:

ED(l1, l2, · · · , lN ) =

N
∑

i=1

Ei(li) + γ
∑

{i,j}⊂N

Ei,j(li, lj) (14)

where γ is a positive balaning parameter. The energy (14) is

referred to pairwise energy function, because each individual

potential term takes no more than two label variables. As the

variables in (14) are all discrete with the value 0 or 1, it is

classified into the category of discrete energy. The pairwise

energy function can be thought of a composition of unary

potential terms for penalizing individual disagreements and

pairwise potential terms for smoothing. The unary potentials

and pairwise potentials coplay with each other in the overall

energy function (14). The unary potentials tend to assign

the oil spill label to every pixel with intensity greater than

a threshold and may inevitably encourage segmenting noise

as oil spills. As noisy pixels tend to exhibit considerable

difference from their neighboring pixels, the pairwise poten-

tials avoid the noisy effect of unary potentials by favoring

neighboring pixels with identical labels. On the other hand,

pairwise potentials tend to assign identical labels to all pairs

of pixels. Unary potentials balance the over-smoothing effect

of pairwise potentials by penalizing the disagreement between

segmentation and image intensity for each individual pixel.

In this way, pixels on both sides of an oil boundary are

encouraged to be labeled differently.

Recently, potential terms with orders higher than pairwise

[18][26][27] have been studied for establishing more compli-

cated energy functions. However, these higher order energy

functions are transformed into pairwise energy functions in the

forms similar to (14) for the purpose of practical optimization.

Therefore, for simplicity and without loss of generality, we use

the pairwise energy function (14) in our work for developing

a new initialization scheme.

2) Graph Cuts for Discrete Energy Minimization: Once a

discrete energy function (14) has been established for an image

I , the graph cut algorithm is used for minimizing (14) to obtain

optimal segmentation. To this end, a graph associated with the

image I is established. The graph has N + 2 vertices with N

of them representing N pixels and the rest two representing

two terminals O and B. The terminals O and B represent the

binary segmentation labels oil (i.e. l = 0) and background

(i.e. l = 1), respectively. Each terminal vertex connects to

every pixel vertex through an edge. For an edge connecting

the terminal vertex O and the pixel vertex i, the edge weight

is Ei(0). Similarly, for an edge connecting the terminal vertex

B and the pixel vertex i, the edge weight is Ei(1).
The N pixel vertices interconnect with one another by edges

in the graph. The edge weight between the pixel vertices i and

j are the pairwise potential with identical labels Ei,j(0, 0) or

Ei,j(1, 1). Note that Ei,j(0, 0) or Ei,j(1, 1) have the same value

according to (13).

For a graph characterized by the discrete energy function

(14), the graph cut algorithm is applied and the min-cut, which

disconnects the terminal vertices O and B by cutting off subset

of edges with the minimum cost of edge weights, is obtained.

The pixel vertices still connecting to the terminal vertex O

is segmented into the oil spill region and the pixel vertices

still connecting to the terminal vertex B is segmented into

the background. The graph cut optimization is implemented

in terms of the max-flow/min-cut algorithm which involves a

large load of iterations such as spanning search trees. Further-

more, to render efficient computation in image segmentation,

the reusage of search trees for approximation is exploited to

avoid expensive computational overheads [28]. To guide the

energy minimization process for achieving max-flow/min-cut

that properly follows the image characteristics, certain initial

labels are required as hard labeling constraints. Specifically,

before applying the graph cut algorithm, certain pixels in the

oil region and in the background are manually labeled as

0 and 1, respectively. Specifically, in the graph, one pixel

vertex manually labeled as oil has an extremely big weight

edge to the terminal vertex O and has a zero weight edge

to the terminal vertex B. Therefore, the edge between the

pixel vertex and terminal vertex O can never be cut off in

the graph cut algorithm. Similarly, the pixel vertex manually

labeled as background has an extremely big weight edge to the

terminal vertex B and has a zero weight edge to the terminal
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vertex O. Therefore, the edge between the pixel vertex and

terminal vertex B can never be cut off in the graph cut

algorithm. Finally, the iterative operations for max-flow/min-

cut just operate under the constraint of the initial labels.

Fig. 1 illustrates an example of segmenting a nine pixel

image based on graph cuts with initial labels. Fig. 1(a)

indicates the initial labels for segmentation. The white line

indicates that the two pixels on the top left are manually

labeled as oil. The dash line right-angle indicates that the

three pixels in the bottom right corner are manually labeled

as background. Constrained by the initial labels, the graph is

constructed as illustrated in Fig. 1(b). The thickness of each

edge reflects its weight between each pixel and the labeled

terminals. Zero weight edges are not drawn. Fig. 1(c) indicates

the min-cut obtained according to Fig. 1(b). Fig. 1(d) is the

final segmentation. The shaded area represents the segmented

objective and the blank space represents the background.

(a) Image with initial labels (b) Segmented results

(c) Graph construction

Oil Spill terminal Oil spill terminal

Background terminal

Cut

O

B

(d) Graph cut

Background terminal

O

B

O

B

Fig. 1: An example for graph cuts.

The manually initialized labels are supposed to provide suf-

ficient indication for separating the oil spill and background.

However, manual labels based on human coarse observation

cannot thoroughly consider the discriminative characteristics

between oil and background, and may not always provide suf-

ficient indication for constraining the segmentation. Different

sets of manual initial labels tend to result in different graph cut

segmentation results and some of them are highly inaccurate.

We will describe in Section III how to develop an efficient

one dot initialization scheme which provides consistent and

sufficient initial oil labels for graph cuts.

C. Comparison between Level Sets and Graph Cuts

Level sets perform energy minimization via numerically

solving variational functional equations. On the other hand,

graph cuts take advantage of discrete operations and render

more efficient computation. Level sets use comprehensively

shaped surface for characterizing curves in images and are

generally endowed with more representative power than graph

cuts in depicting irregular regions [29].

The initialization for level sets is to provide a level set

function for starting the iterative evolution. The initialization

for graph cuts is to manually label certain pixels as oil

and background separately, which constrain the optimization

process. Therefore, the initializations for level sets and graph

cuts are intrinsically different. However, in practice, both

initializations are implemented via marking image pixels. We

will show that our new strategy provides a consistent and

robust method for initializing both level sets and graph cuts

for marine oil spill segmentation.

III. ONE DOT FUZZY INITIALIZATION

This section describes a novel one dot fuzzy initialization

strategy. We first explain how to develop an initial region based

on one dot fuzzy connectedness. We then describe how to

initialize level sets and graph cuts based on the initial region

separately. Finally, we discuss the reason for the consistency

of the fuzzy initialization.

A. One Dot Fuzzy Connectedness for Initial Region

Though both the level sets and graph cuts are reasonably

formulated and can achieve state of the art segmentation

performance in various image processing tasks, their accuracy

highly relies on the initialization, especially for segmenting

irregular shapes such as marine oil spill regions. Different

initializations may result in tremendously different marine oil

spill segmentation results. To guarantee accurate segmentation,

it is expected that the initialization consistently follows the

marine oil spill spatial layouts. In the light of this observation,

we propose a one dot fuzzy initialization strategy which

exploits the fuzzy connectedness [30] between pixels and is

capable of establishing consistent initial regions via different

initial dots within one marine oil region.

We commence by computing the fuzzy adjacency ρi,j
between the pixels at (xi, yi) and (xj , yj) as follows:

ρi,j=

{ 1
1+β1di,j

, di,j ≤ 1;

0 , otherwise.
(15)

where β1 is a nonnegative constant.

Then the fuzzy affinity ai,j between the pixels at (xi, yi)
and (xj , yj) is defined as:

ai,j =
ρi,j

1 + β2 |I (xi, yi)− I (xj , yj)|
(16)

where β2 is a nonnegative constant.

Suppose that the one initial dot used as the prior knowledge

within the oil spill region is at (x0, y0) in the SAR image. We

compute the fuzzy connectedness µ(x0,y0)(x, y) of one pixel

at (x, y) with respect to the selected initial dot at (x0, y0) as

follows:

µ(x0,y0) (x, y) = max
p∈P

(

min
(i,j)∈p

ai,j

)

(17)

where P denotes the set of all possible paths between the pixel

at (x0, y0) and the pixel at (x, y), and p denotes an individual

path between the pixel at (x0, y0) and the pixel at (x, y). Here,

a path is a sequence of spatially neighboring pixels, and in (17)

ai,j denotes the fuzzy affinity of a pair of neighboring pixels



IEEE JOURNAL OF OCEANIC ENGINEERING 6

at (xi, yi) and (xj , yj) along the path p. The strength of a

path is the smallest affinity of pairwise pixels along the path.

The operation min in (17) computes the strength of a path

p. The operation max in (17) selects the strongest path for

characterizing the fuzzy connectedness.

The concept of fuzzy connectedness is derived from

the theory of fuzzy sets. In the fuzzy set formulation,

{(x0, y0), (x, y)} is an element in a fuzzy set, and the fuzzy

connectedness µ(x0,y0) (x, y) is its membership function char-

acterizing the 2-ary fuzzy relation. The theory of fuzzy sets

elaborates many characteristics of fuzzy connectedness such

as physical homogeneity, which plays an important role in

our initialization scheme.

The computation of (17) is implemented via dynamic pro-

gramming, which has the optimal substructure property that a

subpath of a strongest path is itself a strongest path.

Suppose (x1, y1) is one spatially neighboring pixel to the

initial dot (x0, y0). The fuzzy connectedness of (x1, y1) with

respect to (x0, y0) is:

µ(x0,y0)(x1, y1) = a0,1 (18)

which forms one starting point for the following computations.

Suppose the pixel at (xi, yi) is one whose fuzzy connected-

ness with respect to the initial dot has not been computed yet

in the dynamic programming but whose neighboring pixels’

connectednesses with respect to the initial dot have already

been computed. Let Ni denote the set of spatially neighboring

pixels of the pixel at (xi, yi). Let iN be one element in

Ni, i.e. iN ∈ Ni. The problem of computing the fuzzy

connectedness (17) is broken down into the following two

simpler subproblems as follows:

i∗N = argmax
iN∈Ni

{

aiN ,i

}

(19)

µ(x0,y0)(xi, yi) = min{µ(x0,y0)(xi∗
N
, yi∗

N
), ai∗

N
,i} (20)

Solving the subproblems (19) and (20) in a recursive manner

results in the dynamic programming solution to (17).

B. One Dot Fuzzy Initial Contour for Level Sets

For an oil spill SAR image and an initial dot at (x0, y0)
within the oil spill region, we define the initial level set

function ϕ0 (x, y) with t = 0 as follows:

ϕ0 (x, y) =

{

+2, µ(x0,y0) (x, y) ≥ θ;
−2, µ(x0,y0) (x, y) < θ.

(21)

where θ is an empirical thresholding parameter. The zero level

set of ϕ0 (x, y) is the initial contour.

We use the initial contour thus obtained to start the level set

evolution. The convergence of evolution yields the final level

set which indicates oil spill regions in terms of the domain

with the level set value greater than zero. One exemplary

flowchart for marine oil spill segmentation based on level sets

with one dot fuzzy initialization is illustrated in Fig. 2. The

white dot indicates the initial dot. The yellow region is the

initial region derived from the initial dot according to fuzzy

connectedness. The white line indicates the initial contour for

level set evolution.

C. One Dot Fuzzy Region for Graph Cuts

For an oil spill SAR image with an initial dot at (x0, y0)
in the oil spill region, we computed the fuzzy connectedness

µ(x0,y0) (x, y). We then assign the initial label l = 0 (i.e.

oil spill) to the pixels satisfying µ(x0,y0) (x, y) ≥ θ. We

refer to the region of pixels obtained by the thresholding

µ(x0,y0) (x, y) ≥ θ as the fuzzy region. The fuzzy region,

which is labeled as oil spill, behaves as the initially labelled

oil spill region for constraining graph cuts.

We use comparatively arbitrary lines of pixels as initial la-

bels for the background because the fuzzy region plays a more

dominating role in constraining the graph cut algorithm. Based

on these initial labels, we operate the graph cut algorithm on

the image and obtain the final segmentation. One exemplary

flowchart for marine oil spill segmentation based on graph cuts

with one dot fuzzy initialization is illustrated in Fig. 3. The red

region is the fuzzy region with respect to the one initial dot.

It is used as the oil spill initial label for graph cuts. The green

dash line is the background initial label which is determined

in a comparatively arbitrary manner.

D. Observations

Both level sets and graph cuts exploit the region

µ(x0,y0) (x, y) ≥ θ for initialization, and we refer to it as the

initial region. One advantage of the initial region is that it is

itself consistent and is not susceptible to the location of the

initial dot within the oil spill region. Specifically, differently

located initial dots derive identical initial regions in terms

of fuzzy connectedness. The reason for the consistency of

initial regions is that fuzzy connectedness comprehensively

characterizes the physical homogeneities of an image. The

fuzzy connectedness characterizes the global relations between

pixels in terms of feature similarity and spatial adjacency.

The initial contour derived via the fuzzy connectedness with

respect to one initial dot thus follows the global spatial layout

of the marine oil spill and is insusceptible to the variation of

initial dot location within the oil spill region. Detailed expla-

nations and theoretical proofs for the physical homogeneities

of fuzzy connectedness can be found in [31]. Therefore, when

we use one dot fuzzy initialization in practice, we do not need

to consider too much about the exact location of the initial dot.

As long as it is located within the oil spill region, it can derive

identical initial regions which form consistent initializations

for energy minimization. This advantage facilitates energy

minimization methods for practical oil spill segmentation.

The term one dot fuzzy initialization implies two underlying

meanings. First, the initial region is derived from the initial dot

in terms of fuzzy connectedness. Second and more important,

the initial dot does not require a precisely arranged location.

Specifically, as long as it is within the oil spill region, its

exact location can be a bit arbitrary, which reflects certain

‘fuzziness’.

IV. EXPERIMENTAL EVALUATIONS

To validate the effectiveness of the proposed initialization

scheme, we test our strategy on SAR images containing differ-

ently shaped marine oil spill regions. We use the SAR images
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Original SAR image
Set one dot within 

the oil spill region

1 2 3

Initial fuzzy region Initial contour

4

Segmentation results

5

Level setsInitialization
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connectedness

Fig. 2: One dot initialization example for continuous energy minimization.

Original SAR image

1

Set one dot within 

the oil spill region

2 3

Initial fuzzy region Initial labels

4

Graph cuts

Segmentation results

5

Initialization

Fuzzy 

connectedness

Fig. 3: One dot initialization example for discrete energy minimization.

with VV polarization obtained from the Northwest Pacific Ac-

tion Plan (NOWPAP) database in our experiments. The images

are C-band SAR images from the ERS-1(European Remote

Sensing Satellite-1) and ERS-2(European Remote Sensing

Satellite-2) satellites. The experiments are implemented by

using Matlab 2016b with an embedded C++ compiler.

NOWPAP was adopted in September 1994 as a part of

the Regional Seas Program of the United Nations Environ-

ment Program (UNEP). The implementation of NOWPAP

contributes to the Global Program of Action (GPA) for the

protection of the marine environment from land-based activ-

ities in the northwest Pacific region. The geographical scope

of NOWPAP covers the marine environment and coastal zones

from about 121 degree E to 143 degree E longitude, and from

approximately 33 degree N to 52 degree N latitude.

In order examine the performance of state of the art methods

and make empirical comparison between our method and

them, we commence by testing two existing initialization-

free methods [21][16] on the SAR data. These methods au-

tomatically determine the initializations without prior manual

labeling and are thus considered to be initialization free. Fig.

4 illustrates the oil spill segmentation results based on the

two initialization-free methods. The first row illustrates the

segmentation results based on the initialization-free method

presented in [21]. The second row illustrates the RSF level set

segmentation results based on the automatic initialization pre-

sented in [16]. Furthermore, to make quantitative experimental

evaluation, we compute the recall (# correctly segmented pixels
# oil spill pixels )

and precision (# correctly segmented pixels
# segmented pixels ) for segmentation

results of alternative comparison methods. The quantitative

experimental evaluations on the segmentation accuracies of

the two initialization-free methods are given in TABLE I. We

observe from Fig. 4 that the initialization-free methods tend

to induce the over-segmentation of oil spills. They segment

more areas rather than true oil spills into the oil class. The

observation is also validated by the quantitative evaluation

in TABLE I, where both methods result in high recalls but

low precisions. Such contrastive results in terms of recall

and precision reflect that the initialization-free methods have

limited capability of guiding accurate oil spill segmentation.

We use the region scalable fitness level set [23] and the

higher order graph cut [26] as baselines for validating the

effectiveness of our method, because they are popular energy

minimization methods with state of the art performance and

also with publicly available code. As our method focuses

on the initialization and does not intervene in the energy

minimization inference procedures, other alternative level set

or graph cut methods can also be tested indiscriminately as

baselines.

Fig. 5 illustrates the segmentation results based on alterna-

tive strategies. To validate the effectiveness of our initialization

scheme for improving level set segmentation accuracy, we

conduct the initializations by using two slightly different

rectangle boxes (illustrated in Figs. 5(b) and (c)) and two

different arbitrary dots within one marine oil spill region

(illustrated in Figs. 5(d) and (e)). The two slightly different

initial contours result in the segmentations with considerable

differences. The one dot fuzzy initialization scheme overcomes

this deficiency because the initial regions derived from the two

different initial dots are quite identical, resulting in consistent

segmented oil regions. Furthermore, the segmentation results

in Figs. 5(d) and (e) derived from one dot fuzzy initialization

are much more accurate than those in Figs. 5(b) and (c) derived

from the initial box contours.

To validate the effectiveness of our initialization scheme for

improving graph cut segmentation accuracy, we conduct the

oil label initializations by using two different small red regions

(illustrated in Figs. 5(g) and (h)) and two different arbitrary

dots within one marine oil spill region (illustrated in Figs. 5(i)

and (j)). To make fair comparisons, we use the same green

dash lines as background label initialization for the four cases.

The two different red regions result in the segmentations with

considerable differences and great inaccuracy. The one dot

fuzzy initialization scheme overcomes this deficiency because
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the two sets of initial oil labels derived from the two different

initial dots separately are quite identical, resulting in consistent

and accurate segmented oil regions in the end.

Figs. 6, 7, 8, 9, 10 and 11 illustrate the experimental results

in the same manner with Figs. 5. All these visual results

qualitatively validate the effectiveness of our initialization

scheme over the manual initializations. TABLE II and TABLE

III provide the quantitative experimental results in terms of

recall and precision.

Compared with the segmentation results of the initialization-

free methods in Fig. 4 and TABLE I, our method is more effec-

tive. Specifically, different from the high contrast between re-

call and precision based on the initialization-free methods, our

method achieves balance between the two metrics with high

accuracies. Therefore, our method is more robust and accurate

than the two initialization-free methods in segmenting oil

spills. Furthermore, it is interesting to observe from TABLEs II

and III that all the one dot fuzzy initializations overwhelmingly

outperform the manual initializations in terms of recall, except

those in Fig. 8 for level sets and those in Fig. 6 for graph

cuts. In these cases, though manual initializations achieve

recalls comparable with the one dot fuzzy initializations, their

precisions are fairly lower. On the other hand, some manual

initializations (especially for graph cuts) achieve slightly better

precisions than the one dot fuzzy initializations. However,

these tiny precision superiorities are traded off by the extreme

low recalls. The high precision results from severe under-

segmentation. For example, the segmentation results based on

manually initialized graph cuts in Figs. 8 (g) and (h) have high

precisions because their segmented regions just cover small

parts of the true oil spill region. However, they do not segment

large parts of the true oil spill region and their recalls are thus

extremely low. Therefore, the overall performance of manual

initialization is inferior to that of the one dot initialization in

terms of both robustness and consistency.

It can be seen from both qualitative and quantitative ex-

perimental evaluation that our one dot fuzzy initialization

has greatly improved the robustness and accuracy of both

the continuous and discrete energy minimization methods for

marine oil segmentation.

V. CONCLUSIONS

In contrast to the existing energy minimization schemes

which require a considerable amount of prior knowledge about

oil spills and background, the one dot fuzzy initialization just

uses one dot as prior knowledge. Therefore, the proposed

scheme does not require an number of pixels manually la-

beled for initializing energy minimization. It thus facilitates

energy minimization methods for practical marine oil spill

segmentation. Furthermore, the one dot fuzzy initialization

exploits the fuzzy connectedness between pixels and yields

a consistent initial region regardless of the dot location within

the oil spill region. Therefore, the segmentation based on

our one dot fuzzy initialization is more robust than those

with subjective manual initializations. We have described how

to use the proposed one dot fuzzy initialization to initialize

both continuous level set energy minimization and discrete

graph cut energy minimization. The experimental results have

validated that both level sets and graph cuts yield robust and

accurate marine oil spill segmentation based on the one dot

fuzzy initialization.

SAR polarimetric features have the potential to discriminate

dark oil spill lookalike areas from true oil spill regions in SAR

images. In our future work, we will extend our method to

processing SAR polarimetric feature maps and develop more

effective oil spill detection schemes.

REFERENCES

[1] P. F. Kingston, “Long-term environmental impact of oil spills,” Spill

Science & Technology Bulletin, vol. 7, no. 1, pp. 53–61, 2002.

[2] D. Velotto, C. Bentes, B. Tings, and S. Lehner, “First comparison of
Sentinel-1 and TerraSAR-X data in the framework of maritime targets
detection: South Italy case,” IEEE Journal of Oceanic Engineering,
vol. 41, no. 4, pp. 993–1006, 2016.

[3] H. Li, J. Wu, W. Perrie, and Y. He, “Wind speed retrieval from hybrid-
pol compact polarization synthetic aperture radar images,” IEEE Journal

of Oceanic Engineering, to appear in 2017.

[4] T. Soukissian, F. Karathanasi, and P. Axaopoulos, “Satellite-based
offshore wind resource assessment in the Mediterranean Sea,” IEEE

Journal of Oceanic Engineering, vol. 42, no. 1, pp. 73–86, 2017.

[5] B. Fiscella, A. Giancaspro, F. Nirchio, P. Pavese, and P. Trivero, “Oil
spill detection using marine SAR images,” International Journal of

Remote Sensing, vol. 21, no. 18, pp. 3561–3566, 2000.

[6] A. H. Solberg, C. Brekke, and P. O. Husoy, “Oil spill detection in
Radarsat and Envisat SAR images,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 45, no. 3, pp. 746–755, 2007.

[7] F. Nunziata, M. Migliaccio, and X. Li, “Sea oil slick observation
using hybrid-polarity SAR architecture,” IEEE Journal of Oceanic

Engineering, vol. 40, no. 2, pp. 426–440, 2015.

[8] A. Buono, F. Nunziata, M. Migliaccio, and X. Li, “Polarimetric analysis
of compact-polarimetry SAR architectures for sea oil slick observation,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10,
pp. 5862–5874, 2016.

[9] F. Bandiera and G. Ricci, “Slicks detection on the sea surface based
upon polarimetric SAR data,” IEEE Geoscience and Remote Sensing

Letters, vol. 2, no. 3, pp. 342–346, 2005.

[10] F. Bandiera, A. Masciullo, and G. Ricci, “A bayesian approach to
oil slicks edge detection based on SAR data,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2901–2909, 2014.

[11] B. Minchew, C. E. Jones, and B. Holt, “Polarimetric analysis of
backscatter from the Deepwater Horizon oil spill using L-band synthetic
aperture radar,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 50, no. 10, pp. 3812–3830, 2012.

[12] M. J. Collins, M. Denbina, B. Minchew, C. E. Jones, and B. Holt,
“On the use of simulated airborne compact polarimetric SAR for
characterizing oil–water mixing of the Deepwater horizon oil spill,”
IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 8, no. 3, pp. 1062–1077, 2015.

[13] C. Brekke, C. E. Jones, S. Skrunes, B. Holt, M. Espeseth, and T. Eltoft,
“Cross-correlation between polarization channels in SAR imagery over
oceanographic features,” IEEE Geoscience and Remote Sensing Letters,
vol. 13, no. 7, pp. 997–1001, 2016.

[14] M. M. Espeseth, S. Skrunes, C. E. Jones, C. Brekke, B. Holt, and
A. P. Doulgeris, “Analysis of evolving oil spills in full-polarimetric and
hybrid-polarity SAR,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 55, no. 7, pp. 4190–4210, 2017.
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(a) (g)(e) (f)(b) (c) (d)

Fig. 4: Marine oil spill segmentation results the initialization-free methods. First row: Segmentations based on Chan et al. [21].

Second row: Segmentations based on Mdakane et al. [16].

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Initial dot

Initial dot

Fig. 5: Marine oil spill segmentation results using level sets and graph cuts separately: (a) and (f) illustrate an original SAR

image and its ground truth segmentation; (b) and (c) illustrate two different initial level set functions (i.e. initial contours

displayed as white boxes overlaid on the SAR images) and their segmented oil spill regions based on level set evolutions; (d)

and (e) illustrate two initial dots (displayed as white solid dots within the oil spill regions) along with their derived initial

contours (displayed as white dash curves overlaid on the SAR images), and their segmented oil spill regions based on level set

evolutions; (g) and (h) illustrate two different sets of initial labels (i.e. red regions for oil and green dash lines for background)

and their segmented oil spill regions based on graph cuts; (i) and (j) illustrate two initial dots (displayed as white solid dots)

along with their derived initial oil labels (displayed as red regions), and their segmented oil spill regions based on graph cuts.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6: Marine oil spill segmentation results using level sets and graph cuts separately. Subfigures are indexed and entitle in

the same ways with Fig. 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Marine oil spill segmentation results using level sets and graph cuts separately. Subfigures are indexed and entitle in

the same ways with Fig. 5.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8: Marine oil spill segmentation results using level sets and graph cuts separately. Subfigures are indexed and entitle in

the same ways with Fig. 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9: Marine oil spill segmentation results using level sets and graph cuts separately. Subfigures are indexed and entitle in

the same ways with Fig. 5.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10: Marine oil spill segmentation results using level sets and graph cuts separately. Subfigures are indexed and entitle in

the same ways with Fig. 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11: Marine oil spill segmentation results using level sets and graph cuts separately. Subfigures are indexed and entitle in

the same ways with Fig. 5.

TABLE I: Marine oil spill segmentation accuracy based on the initialization-free methods.

Methods

Accuracy Image

(a) (b) (c) (d) (e) (f) (g)

Chan et al. [21]
Recall 0.7375 0.8404 0.9416 0.7396 0.8000 0.9883 0.6876

Precision 0.3952 0.5092 0.4096 0.9447 0.3899 0.1533 0.5382

Mdakane et al. [16]
Recall 0.8297 0.8172 0.9151 0.8345 0.8014 0.9421 0.7886

Precision 0.0460 0.0513 0.0467 0.1458 0.0227 0.1557 0.9002
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TABLE II: Marine oil spill segmentation accuracy based on level sets.

Level sets

Accuracy Image

Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Manual initialization

Recall
(b) 0.6517 0.7942 0.8309 0.8506 0.4657 0.4514 0.6208

(c) 0.6651 0.3776 0.8033 0.8195 0.4900 0.7756 0.6077

Precision
(b) 0.3208 0.6494 0.9667 0.9151 0.0660 0.2139 0.6616

(c) 0.3671 0.2462 0.9907 0.9489 0.0619 0.4028 0.7000

One dot fuzzy
initialization

Recall
(d) 0.8219 0.8015 0.8736 0.7669 0.7886 0.9377 0.8075

(e) 0.8219 0.8015 0.8736 0.7669 0.7886 0.9377 0.8075

Precision
(d) 0.9371 0.9229 0.9602 0.9879 0.9452 0.9749 0.9284

(e) 0.9371 0.9229 0.9602 0.9879 0.9452 0.9749 0.9284

TABLE III: Marine oil spill segmentation accuracy based on graph cuts.

Graph cuts

Accuracy Images

Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11

Manual initialization

Recall
(g) 0.1277 0.0987 0.1750 0.0940 0.1686 0.3077 0.2444

(h) 0.1466 0.6541 0.1383 0.1353 0.0657 0.0496 0.4637

Precision
(g) 0.9474 0.7642 0.9969 1.0000 1.0000 0.9959 0.9930

(h) 0.9789 0.9179 1.0000 1.0000 1.0000 1.0000 0.9854

One dot fuzzy
initialization

Recall
(i) 0.6462 0.6151 0.8947 0.7970 0.2686 0.6338 0.7636

(j) 0.6462 0.6151 0.8947 0.7970 0.2686 0.6338 0.7636

Precision
(i) 0.9681 0.9749 0.9679 0.9930 0.9947 0.9852 0.9612

(j) 0.9681 0.9749 0.9679 0.9930 0.9947 0.9852 0.9612


