26 research outputs found

    A Unified Specification Framework for Spatiotemporal Communication

    Get PDF
    Traditionally, network communication entailed the delivery of messages to speciļ¬c network addresses. As computers acquired multimedia capabilities, new applications such as video broadcasting dictated the need for real-time quality of service guarantees and delivery to multiple recipients. In light of this, a subtle transition took place as a subset of IP addresses evolved into a group-naming scheme and best-eļ¬€ort delivery became subjugated to temporal constraints. With recent developments in mobile and sensor networks new applications are being considered in which physical locations and even temporal coordinates play a role in identifying the set of desired recipients. Other applications involved in the delivery of spatiotemporal services are pointing to increasingly sophisticated ways in which the name, time, and space dimensions can be engaged in specifying the recipients of a given message. In this paper we explore the extent to which these and other techniques for implicit and explicit speciļ¬cation of the recipient list can be brought under a single uniļ¬ed frame-work. The proposed framework is shown to be expressive enough so as to oļ¬€er precise speciļ¬cations for ex-isting communication mechanisms. More importantly, its analysis suggests novel forms of communication relevant to the emerging areas of spatiotemporal service provision in sensor and mobile networks

    Reliable Mobicast via Face-Aware Routing

    Get PDF
    This paper presents a novel protocol for a spatiotemporal variant of multicast called mobicast, designed to support message delivery in sensor and mobile ad hoc networks. The spatiotemporal character of mobicast relates to the obligation to deliver a message to all the nodes that will be present at time t in some geographic zone Z, where both the location and shape of the delivery zone are a function of time over some interval (tstart, tend). The protocol, called Face-Aware Routing (FAR), exploits ideas adapted from existing applications of face routing to achieve reliable mobicast delivery. The key features of the protocol are a routing strategy, which uses information conļ¬ned solely to a nodeā€™s immediate spatial neighborhood, and a forwarding schedule, which employs only local topological information. Statistical results showing that, in uniformly distributed random disk graphs, the spatial neighborhood size is usually less than 20 suggest that FAR is likely to exhibit a low average memory cost. An estimation formula for the average size of the spatial neighborhood in random network is another analytical result reported in this paper. This paper also includes a novel and low cost distributed algorithm for spatial neighborhood discovery

    Performance Evaluation of Location-Based Geocast Routing Using Directed Flooding Rectangular Forwarding Zone in City VANET

    Get PDF
    Vehicular ad hoc network (VANET) is an application of mobile ad hoc network (MANET) where vehicular nodes are integrated with GPS and other controlling devices to communicate among each other. Because of predefined structure of roads as well as very high moving speed of vehicles, routing becomes an extremely challenging issue in VANET. In literature, authors in research papers related to vehicular communication evaluate mostly the performance of topology or position-based routing protocols. This article implements a geocast approach called directed flooding rectangular forwarding zone in distance-effect routing algorithm for mobility (DREAM), location aided routing (LAR) and zone routing protocol (ZRP) for city vehicular environment. Packet delivery ratio normalized routing load, delay, throughput, dropped packet ratio and bandwidth wastage parameters are evaluated using NS-2.33 integrated with IEEE802.11p and IDM_IM based VanetMobiSim. The impact of mobility on these parameters is also analyzed

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new speciļ¬cation for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    AN ADAPTIVE INFORMATION DISSEMINATION MODEL FOR VANET COMMUNICATION

    Get PDF
    Vehicular ad hoc networks (VANETs) have been envisioned to be useful in road safety and many commercial applications. The growing trend to provide communication among the vehicles on the road has provided the opportunities for developing a variety of applications for VANET. The unique characteristics of VANET bring about new research challenges

    Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives

    Get PDF
    VehicularĀ  Ad Hoc NetworkĀ  (VANET) is emerged as an important research area that providesĀ ubiquitous short-range connectivity among moving vehicles. Ā This network enables efficient traffic safety and infotainment applications. One of the promising applications is video transmission in vehicle-to-vehicle or vehicle-to-infrastructure environments.Ā  But, video streaming over vehicular environment is a daunting task due to high movement of vehicles. This paper presents a survey on state-of-arts of video streaming over VANET. Furthermore, taxonomy of vehicular video transmission is highlighted in this paper with special focus on significant applications and their requirements with challenges, video content sharing, multi-source video streaming and video broadcast services. The comparative study of the paper compares the video streaming schemes based on type of error resilient technique, objective of study, summary of their study, the utilized simulator and the type of video sharing.Ā  Lastly, we discussed the open issues and research directions related to video communication over VANET

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Use case scenarios and preliminary reference model

    Get PDF
    This document provides the starting point for the development of dependability solutions in the HIDENETS project with the following contents: (1) A conceptual framework is defined that contains the relevant terminology, threats and general requirements. This framework is a HIDENETS relevant subset of existing state-of-the-art views in the scientific dependability community. Furthermore, the dependability framework contains a first list of relevant functionalities in the communication and middleware level, which will act as input for the architectural discussions in HIDENETS work packages (WPs) 2 and 3. (2) A set of 17 applications with HIDENETS relevance is identified and their corresponding dependability requirements are derived. These applications belong mostly to the class of car-tocar and car-to-infrastructure services and have been selected due to their different types of dependability needs. (3) The applications have been grouped in six HIDENETS use cases, each consisting of a set of applications. The use cases will be the basis for the development of the dependability solutions in all other WPs. Together with a description of each use-case, application-specific architectural aspects are identified and corresponding failure modes and challenges are listed. (4) The business impact of dependability solutions for these use cases is analysed. (5) A preliminary definition of a HIDENETS reference model is provided, which contains highlevel architectural assumptions. This HIDENETS reference model will be further developed in the course of the HIDENETS projects in close cooperation with the other WPs, which is the reason why the preliminary version also contains a collection of potential contributions from other WPs that shall be developed and investigated in the course of the HIDENETS project. In summary, the identified use-cases and their requirements clearly show the large number of dependability related challenges. First steps towards technical solutions have been made in this report in the preliminary reference model, whereas the other work-packages have started in the meanwhile to develop such solutions further based on 'middleware technology' (WP2), 'communication protocols' (WP3), 'quantitative analysis methodology' (WP4), and 'design and testing methodology' (WP5

    Cooperative & cost-effective network selection: a novel approach to support location-dependent & context-aware service migration in VANETs

    Get PDF
    Vehicular networking has gained considerable interest within the research community and industry. This class of mobile ad hoc network expects to play a vital role in the design and deployment of intelligent transportation systems. The research community expects to launch several innovative applications over Vehicular Ad hoc Networks (VANETs). The automotive industry is supporting the notion of pervasive connectivity by agreeing to equip vehicles with devices required for vehicular ad hoc networking. Equipped with these devices, mobile nodes in VANETs are capable of hosting many types of applications as services for other nodes in the network. These applications or services are classified as safety-critical (failure or unavailability of which may lead to a life threat) and non-safety-critical (failure of which do not lead to a life threat). Safety-critical and non-safety-critical applications need to be supported concurrently within VANETs. This research covers non-safety-critical applications since the research community has overlooked this class of applications. More specifically, this research focuses on VANETs services that are location-dependent. Due to high speed mobility, VANETs are prone to intermittent network connectivity. It is therefore envisioned that location-dependence and intermittent network connectivity are the two major challenges for VANETs to host and operate non-safety-critical VANETs services. The challenges are further exacerbated when the area where the services are to be deployed is unplanned i.e. lacks communication infrastructure and planning. Unplanned areas show irregular vehicular traffic on the road. Either network traffic flows produced by irregular vehicular traffic may lead to VANETs communication channel congestion, or it may leave the communication channel under-utilized. In both cases, this leads to communication bottlenecks within VANETs. This dissertation investigates the shortcomings of location-dependence, intermittent network connectivity and irregular network traffic flows and addresses them by exploiting location-dependent service migration over an integrated network in an efficient and cost-effective manner
    corecore