217 research outputs found

    Novel Numerical Models of Electrostatic Interactions and Their Application to S-Nitrosothiol Simulations

    Get PDF
    Atom-centered point charge model of the molecular electrostatics remains a major workhorse in the atomistic biomolecular simulations. However, this approximation fails to reproduce anisotropic features of the molecular electrostatic potential (MEP), and the existing methods of the charge derivation are often associated with the numerical instabilities. This work provides an in-depth analysis of these limitations and offers a novel approach to describe electrostatic interactions that paves the way toward efficient next-generation force fields. By analyzing the charge fitting problem from first principles, as an example of the mathematical inverse problem, we show that the numerical instabilities of the charge-fitting problem arise due to the decreasing contribution from the higher multipole moments to the overall MEP. This insight suggests that if the point charges are arranged over the sphere using Lebedev quadrature, the resulting point charge model is able to exactly reproduce multipoles up to a given rank. At the same time, point charge values can be derived without fitting to the MEP, avoiding numerically unstable method of the charge derivation. This approach provides a systematic way to reproduce multipole moments up to any rank within the point charge approximation, which makes this model a computationally efficient analog of the multipolar expansion. Moreover, the proposed charged sphere model can be also used in the multi-site expansions with the expansion centers located at each atom in a molecule. This provides a natural approach to expand the traditional atom-centered point charge approximation to include higher-rank atomic multipoles and to account for the anisotropy of the MEP. We applied the proposed charged sphere model to S-nitrosothiols (RSNOs)—a class of biomolecules that serves to store and transmit nitric oxide, a biologically important signaling molecule. We showed that when the atom-centered charged spheres are optimized together with the Lennard-Jones parameters, the resulting force field can accurately reproduce the anisotropic features of the intermolecular interactions that play a crucial role in the biological regulation of RSNO chemistry. Overall, the developed charge model is a promising approach that can be used in the biomolecular simulations and beyond, e.g. in the multipolar force fields for atomistic and coarse-grained simulations

    1994 NASA-HU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program

    Get PDF
    Since 1964, the National Aeronautics and Space Administration (NASA) has supported a program of summer faculty fellowships for engineering and science educators. In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spend 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society for Engineering Education supervises the programs. Objectives: (1) To further the professional knowledge of qualified engineering and science faculty members; (2) To stimulate and exchange ideas between participants and NASA; (3) To enrich and refresh the research and teaching activities of participants' institutions; (4) To contribute to the research objectives of the NASA center

    Force Field Simulation Based Laser Scan Alignment

    Get PDF

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Parameter estimation with gravitational waves

    Full text link
    The new era of gravitational wave astronomy truly began on September 14, 2015 with the detection of GW150914, the sensational first direct observation of gravitational waves from the inspiral and merger of two black holes by the two Advanced LIGO detectors. In the subsequent first three observing runs of the LIGO/Virgo network, gravitational waves from ∼50\sim 50 compact binary mergers have been announced, with more results to come. The events have mostly been produced by binary black holes, but two binary neutron star mergers have so far been observed, as well as the mergers of two neutron star - black hole systems. Furthermore, gravitational waves emitted by core-collapse supernovae, pulsars and the stochastic gravitational wave background are within the LIGO/Virgo/KAGRA sensitivity band and are likely to be observed in future observation runs. Beyond signal detection, a major challenge has been the development of statistical and computational methodology for estimating the physical waveform parameters and quantifying their uncertainties in order to accurately characterise the emitting system. These methods depend on the sources of the gravitational waves and the gravitational waveform model that is used. This article reviews the main waveform models and parameter estimation methods used to extract physical parameters from gravitational wave signals detected to date by LIGO and Virgo and from those expected to be observed in the future, which will include KAGRA, and how these methods interface with various aspects of LIGO/Virgo/KAGRA science. Also presented are the statistical methods used by LIGO and Virgo to estimate detector noise, test general relativity, and draw conclusions about the rates of compact binary mergers in the universe. Furthermore, a summary of major publicly available gravitational wave parameter estimation software packages is given

    Computational ligand design and analysis in protein complexes using inverse methods, combinatorial search, and accurate solvation modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2006.Vita.Includes bibliographical references (p. 207-230).This thesis presents the development and application of several computational techniques to aid in the design and analysis of small molecules and peptides that bind to protein targets. First, an inverse small-molecule design algorithm is presented that can explore the space of ligands compatible with binding to a target protein using fast combinatorial search methods. The inverse design method was applied to design inhibitors of HIV-1 protease that should be less likely to induce resistance mutations because they fit inside a consensus substrate envelope. Fifteen designed inhibitors were chemically synthesized, and four of the tightest binding compounds to the wild-type protease exhibited broad specificity against a panel of drug resistance mutant proteases in experimental tests. Inverse protein design methods and charge optimization were also applied to improve the binding affinity of a substrate peptide for an inactivated mutant of HIV-1 protease, in an effort to learn more about the thermodynamics and mechanisms of peptide binding. A single mutant peptide calculated to have improved binding electrostatics exhibited greater than 10-fold improved affinity experimentally.(cont.) The second half of this thesis presents an accurate method for evaluating the electrostatic component of solvation and binding in molecular systems, based on curved boundary-element method solutions of the linearized Poisson-Boltzmann equation. Using the presented FFTSVD matrix compression algorithm and other techniques, a full linearized Poisson-Boltzmann equation solver is described that is capable of solving multi-region problems in molecular continuum electrostatics to high precision.Michael Darren Altman.Ph.D
    • …
    corecore