thesis

Fast algorithms for biophysically-constrained inverse problems in medical imaging

Abstract

We present algorithms and software for parameter estimation for forward and inverse tumor growth problems and diffeomorphic image registration. Our methods target the following scenarios: automatic image registration of healthy images to tumor bearing medical images and parameter estimation/calibration of tumor models. This thesis focuses on robust and scalable algorithms for these problems. Although the proposed framework applies to many problems in oncology, we focus on primary brain tumors and in particular low and high-grade gliomas. For the tumor model, the main quantity of interest is the extent of tumor infiltration into the brain, beyond what is visible in imaging. The inverse tumor problem assumes that we have patient images at two (or more) well-separated times so that we can observe the tumor growth. Also, the inverse problem requires that the two images are segmented. But in a clinical setting such information is usually not available. In a typical case, we just have multimodal magnetic resonance images with no segmentation. We address this lack of information by solving a coupled inverse registration and tumor problem. The role of image registration is to find a plausible mapping between the patient's tumor-bearing image and a normal brain (atlas), with known segmentation. Solving this coupled inverse problem has a prohibitive computational cost, especially in 3D. To address this challenge we have developed novel schemes, scaled up to 200K cores. Our main contributions is the design and implementation of fast solvers for these problems. We also study the performance for the tumor parameter estimation and registration solvers and their algorithmic scalability. In particular, we introduce the following novel algorithms: An adjoint formulation for tumor-growth problems with/without mass-effect; The first parallel 3D Newton-Krylov method for large diffeomorphic image registration; A novel parallel semi-Lagrangian algorithm for solving advection equations in image registration and its parallel implementation on shared and distributed memory architectures; and Accelerated FFT (AccFFT), an open-source parallel FFT library for CPU and GPUs scaled up to 131,000 cores with optimized kernels for computing spectral operators. The scientific outcomes of this thesis, has appeared in the proceedings of three ACM/IEEE SCxy conferences (two best student paper finalist, and one ACM SRC gold medal), two journal papers, two papers in review, four papers in preparation (coupling, mass effect, segmentation, and multi-species tumor model), and seven conference presentations.Computational Science, Engineering, and Mathematic

    Similar works