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XV energies for long-range interactions (0 to -1 kJmol-1) in NMA, from HF and B3LYP 

wavefunctions..………………………………………………………………………………………………………………………………...|80|S4| 

Figure S4: 
AB

XV energies for all 528 interactions in TriGly, from both HF and B3LYP wavefunctions.....|80|S5| 

Figure S5: 
AB

XV energies for medium-range interactions (-1 to -60 kJmol-1) in TriGly, for HF and B3LYP 

wavefunctions..…………………………………………………………………………………………………………………………..…….|80|S5| 
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Figure S6: 
AB

XV energies for long-range interactions (0 to -1 kJmol-1) in TriGly, for HF and B3LYP 

wavefunctions..………………………..……………………………………………………………………………………………………….|80|S5| 

Figure S7: 
AB

XV energies for all 276 interactions in the alloxan dimer, from HF and B3LYP 

wavefunctions…………………………..……………………………………………………………………………………………………...|80|S6| 

Figure S8: 
AB

XV energies for medium-range interactions (-1 to -60 kJmol-1) in the alloxan dimer, from HF 

and B3LYP wavefunctions..………………………………………………………………………………...………………………….….|80|S6| 

Figure S9: 
AB

XV energies for long-range interactions (0 to -1 kJmol-1) in the alloxan dimer, from HF and 

B3LYP wavefunctions..…………………………………………………………………………………………..………………...……….|80|S6| 

Paper 3 

Figure 1: Schematic Ramachandran plot indicating the positions of β-turns (marked as β), right-handed 

helices (α), and left-handed helices (Lα). Trajectories across the φ (fixed ψ) and ψ (fixed φ) torsional angles 

are indicated in green. The exact positions of the trajectories will vary slightly depending on the global 

minimum φ/ψ angles for each system (Gly, Ile and Val). The crossing-point of the green trajectories indicates 

the φ/ψ angles of the global minimum. The area of the Ramachandran plot is shaded according to various 

degrees of energetic stability: very favourable (dark blue), favourable (blue), slightly favourable (light blue), 

slightly unfavourable (white), unfavourable (orange) and very unfavourable 

(red)……………………………………………………………………………………………………………………………………………….….|81|5| 

Figure 2: Topological atoms occurring in the global energy minimum of the isoleucine dipeptide (Ile) with 

atom generically labelled. The dihedral angles φ and ψ are marked by a purple and green arrow, respectively. 

The atoms are space-filling: they do not overlap and leave no gaps between them. Note that not all methylene 

or methyl hydrogen atoms are labelled in order to avoid cluttering the figure. This emblematic figure was 

generated by the in-house program IRIS, which is based on previously published algorithms. The following 

fragmentation will prove to make sense later in this article: CH3|C(=O)-N(H)|CαHR|C(=O)-N(H)|CH3 , where 

each fragment is flanked by two vertical bars and consists of 4,4,15,4 and 4 atoms, respectively, totalling 31 

atoms…………………………………………………………………………………………………………………………………………………|81|7| 

Figure 3: 
Mol

IQAE  scanned across φ (top) and ψ (bottom), for the Gly (solid), Val (small dash) and Ile (large 

dashed) systems. All φ energies are relative to the optimised global minima at φ = -81.9⁰, -84.4⁰ and -84.1⁰ 

and all ψ energies are relative to the optimised global minima at ψ =+69.8⁰, +83.7⁰ and +82.5⁰, respectively. 

The relevant energy maxima discussed in the main text are marked here for convenience. The brown area in 

the φ scan marks a region of high confluence between Gly, Val, Ile where the influence of the side chain is 

minimal. The navy areas in the φ and ψ scans mark regions where an extra maximum appears due to the 

presence of a side chain. The orange areas in the ψ scan mark regions where no new maxima appear but 

existing maxima are shifted………………………………….…………………………………………………………………………...|81|13| 

Figure 4: Conformations of Val at each of the maximum energy torsion angles of φ = -15⁰, φ = +165⁰, ψ = -

120⁰ and ψ = +15⁰ shown in Figure 3. Note that the backbone geometries also refer to the energy maxima in 

Ile and Gly, with the exception of the ψ = -75⁰ energy maximum unique for Gly……………………………..…...|81|14| 

Figure 5: Breakdown of 
Mol

IQAE  energies (green) for the φ scan into 
Mol

clV  (purple), 
Mol

intraE  (orange) and 
Mol

xcV  

(turquoise) components for (a) Gly, (b) Val and (c) Ile...……………………………………………………..…….|81|17| 
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Figure 6: Breakdown of 
Mol

IQAE  energies (green) into 
Mol

clV  (purple), 
Mol

intraE  (orange) and 
Mol

XCV  (turquoise) 

components for (a) Gly, (b) Val and (c) Ile, for the ψ scan..………………………………………………………………....|81|18| 

Figure 7: Conformations of Val illustrating the presence of (top) a 1,5 cyclic intramolecular hydrogen bond 

containing Ni…Hi+1-Ni+1 (orange) for ψ = 0⁰ and  (bottom) a 1,7 hydrogen-bonded ring containing Oi-1…Hi+1-

Ni+1 (orange) for ψ = +60⁰. These intramolecular hydrogen bonds are responsible for the molecular steric 

destabilisation seen in Figure 6……..…………………………………………………………………………………………......…...|81|19| 

Figure 8: Breakdown of 
Mol

IQAE  energies (green) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 
Caps

IQAE  

(light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) components for 

(a) Gly, (b) Val and (c) Ile, for the φ scan…………………………………………………………………………………..……….|81|22| 

Figure 9: Breakdown of 
Mol

IQAE  energies (green) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 
Caps

IQAE  

(light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) components for 

(a) Gly, (b) Val and (c) Ile, for the ψ scan…………………………………………………………………………………………...|81|23| 

Figure 10: Val with φ = -15⁰ (top left) and φ = +165⁰ (top right) with key atomic basins depicted and the φ 

angles marked in yellow. 
A

IQAE  atomic energies for the φ scan (Bottom) for Valine with only atoms with 

significant energy fluctuations plotted. Traditional element colours are used for lines and symbols to 

distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

Symbols are indicative of the subscript of the element indicating their position in the molecule. 
Mol

IQAE  energy 

is given in green. Orange circles depict most destabilised atoms in each barrier 

region…..……………………………………………………………………………………………………………………………………….....|81|26| 

Figure 11: Val with ψ = -120⁰ (top left) and ψ = +15⁰ (top right) with key atomic basins depicted and the ψ 

angles marked in yellow. 
A

IQAE  atomic energies for the ψ scan (Bottom) for Valine with only atoms with 

significant energy fluctuations plotted. Traditional element colours are used for lines and symbols to 

distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

Symbols are indicative of the subscript of the element indicating their position in the molecule. 
Mol

IQAE  energy 

is given in green. Orange circles depict most destabilised atoms in each barrier region………………………|81|28| 

Figure S1: Breakdown of 
Mol

intraE  energies (orange) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 

Caps

IQAE  (light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) 

components for (a) Gly, (b) Val and (c) Ile, for the φ scan………………………………………………………...…………|81|S2| 

Figure S2: Breakdown of 
Mol

clV  energies (purple) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 

Caps

IQAE  (light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) 

components for (a) Gly, (b) Val and (c) Ile, for the φ scan..…………………………………………………………….……|81|S3| 

Figure S3: Breakdown of 
Mol

xcV  energies (turquoise) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 

Caps

IQAE  (light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) 

components for (a) Gly, (b) Val and (c) Ile, for the φ scan..…………………………………………………………….……|81|S4| 
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Figure S4: Breakdown of 
Mol

intraE  energies (orange) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 

Caps

IQAE  (light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) 

components for (a) Gly, (b) Val and (c) Ile, for the ψ scan..…………………………………………………………….……|81|S5| 

Figure S5: Breakdown of 
Mol

clV  energies (purple) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 

Caps

IQAE  (light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) 

components for (a) Gly, (b) Val and (c) Ile, for the ψ scan..…………………………………………………………….……|81|S6| 

Figure S6: Breakdown of 
Mol

xcV  energies (turquoise) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 

Caps

IQAE  (light green), 
(CH)

IQAE 
(grey), 

αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) 

components for (a) Gly, (b) Val and (c) Ile, for the ψ scan..…………………………………………………………………|81|S7| 

Figure S7: Relative 
A

IQAE  total atomic energies for the scan across φ for Gly (top) and Ile (bottom). Only the 

highest energetically fluctuating atoms are plotted. Element colours are used for plot lines to distinguish 

element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 

A

IQAE  energy is given by a single thick dark orange line. Generic atom labels are used in the legend and 

correspond to Figure 2 in the main text..……………………………………………………………………………………...….…|81|S8| 

Figure S8: Relative 
A

IQAE  total atomic energies for the scan across ψ for Gly (top) and Ile (bottom). Only the 

highest energetically fluctuating atoms are plotted. Element colours are used for plot lines to distinguish 

element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 

A

IQAE  energy is given by a single thick dark orange line. Generic atom labels are used in the legend and 

correspond to Figure 2 in the main text…..……………………………………………………………………….…………..……|81|S9| 

Figure S9: Relative 
A

intraE  total atomic energies for the scan across φ for Gly (top), Val (middle) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are used for plot lines 

to distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

The molecular 
A

intraE  energy is given by a single thick dark orange line. Generic atom labels are used in the 

legend and correspond to Figure 2 in the main text………………………………………………………………………….|81|S10| 

Figure S10: Relative 
AA'

clV  total atomic energies for the scan across φ for Gly (top), Val (middle) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are used for plot lines 

to distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

The molecular 
AA'

clV  energy is given by a single thick dark purple line. Generic atom labels are used in the 

legend and correspond to Figure 2 in the main text..……………………………………………………………….….....…|81|S11| 

Figure S11: Relative 
AA'

xcV ’ total atomic energies for the scan across ψ for Gly (top), Val (middle) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are used for plot lines 

to distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 
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The molecular 
AA'

clV  energy is given by a single thick dark purple line. Generic atom labels are used in the 

legend and correspond to Figure 2 in the main text...…………………………………………………………………..……|81|S12| 

Figure S12: Relative 
A

intraE  total atomic energies for the scan across ψ for Gly (top), Val (middle) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are used for plot lines 

to distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

The molecular 
A

intraE  energy is given by a single thick dark orange line. Generic atom labels are used in the 

legend and correspond to Figure 2 in the main text……….…………………………………………………………………|81|S13| 

Figure S13: Relative 
AA'

clV ’ total atomic energies for the scan across ψ for Gly (top), Val (middle) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are used for plot lines 

to distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

The molecular 
AA'

clV  energy is given by a single thick dark purple line. Generic atom labels are used in the 

legend and correspond to Figure 2 in the main text……….…………………………………………………………………|81|S14| 

Figure S14: Relative 
AA'

xcV ’ total atomic energies for the scan across ψ for Gly (top), Val (middle) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are used for plot lines 

to distinguish element type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). 

The molecular 
AA'

clV  energy is given by a single thick dark purple line. Generic atom labels are used in the 

legend and correspond to Figure 2 in the main text……….…………………………………………………………………|81|S15| 

Paper 4 

Figure 1: Topological atoms in a conformation of N-methylacetamide (NMA)…………………………….…|82|195-3| 

Figure 2: Summary of kriging method at the heart of FFLUX. Atomic energies (intra-atomic, inter-atomic, or 

total sum) of a given topological atom (right panel, output) are mapped onto the features {fk}, which describe 

the nuclear geometry of the environment surrounding this given atom. The kriging parameter θk and pk are 

optimized (see main text)………………………………………..………………………………………………..……….………...|82|195-6| 

Figure 3: GAIA protocol used to develop kriging models for FFLUX………………………………………………|82|195-8| 

Figure 4: Set of 4000 distorted methanol samples as generated from the in-house program TYCHE through 

sampling of the normal modes at a temperature of 450 K…………………………………...……………………….|82|195-10| 

Figure 5: Methanol S-curves showing the absolute errors for each of the three modelling approaches, each 

tested on the same 500 test set samples……………………………………………………………………………………..|82|195-10| 

Figure 6: Breakdown of atomic energy errors per atom for methanol. All energies are in kJ mol−1.|82|195-11| 

Figure 7: Set of 4000 distorted NMA samples as generated from TYCHE through sampling of the normal 

modes at 450 K………………………………………………………………………………………………………………………….|82|195-11| 

Figure 8: NMA S-curves showing the absolute errors for each of the three modelling approaches, each tested 

on the same 500 test set samples…………………………………………………………………...…………………………..|82|195-11| 

Figure 9: Breakdown of atomic energy errors per atom for NMA. Energies are in kJ mol−1………..…|82|195-12| 

Figure 10: Set of 4000 distorted capped glycine samples generated from TYCHE through sampling of the 

normal modes at 450 K…………………………………………………………………………………….………………………..|82|195-12| 

Figure 11: Capped glycine S-curves showing the absolute errors for each of the three modelling approaches, 

each tested on the same 500 test set samples……………………………………………………………………………..|82|195-13| 
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Figure 12: Breakdown of atomic energy errors per atom for capped glycine. Energies are in kJ 

mol−1………………………………………………………………………………………………………………………………………...|82|195-13| 

Figure 13: Set of 3000 training samples and 500 test set samples, with randomly assigned sample numbers 

(x-axis), plotted against their molecular energies (y-axis) for Gly. The Rogue Test Point 1 (RTP1) is encircled 

green, RTP2 orange, and the Test Point TP1 black…………………………………………………………………..…..|82|195-15| 

Figure S1: Atomic energy range versus MAE for methanol……………………………………………………………..….|82|S3| 

Figure S2: MAE % atomic energy errors per atom for methanol…………………………………………….…………..|82|S3| 

Figure S3: Atomic energy range versus MAE for NMA..………………………………………………….…………………...|82|S5| 

Figure S4: MAE % atomic energy errors per atom for NMA..………………………………………………………………|82|S5| 

Figure S5: Atomic energy range versus MAE for capped glycine……………………………………………………..….|82|S8| 

Figure S6: MAE % atomic energy errors per atom for capped glycine…………………………………………...…....|82|S8| 

Paper 5 

Figure 1: The six weakly bound complexes studied in this work ammonia…benzene (top left), 

methane…benzene (top middle), stacked-benzene (C2h) dimer (top right), HCN…benzene complex (bottom 

left), water…benzene complex (bottom middle) and T benzene (C2v) dimer (bottom right). Visualisation of 

the atomic basins of the topological atoms is made possible by a finite-element 

algorithm……………..…………………………………………………………………………………………………………………………….|83|3| 

Figure 2: Wireframe images of 16 sample geometries of the ammonia…benzene complex (top left), 

HCN…benzene (top right), methane…benzene (middle left), water…benzene (middle right), stacked-benzene 

(C2h) dimer complex (bottom left) and T benzene (C2v) dimer complex (bottom right). The intermolecular 

interaction line (upon which rotation occurs) lies between the centre of the benzene ring, and the nearest 

atom of the second monomer, except for those where the monomers form an acute angle as a complex, where 

instead the nearest atoms are used to define the intermolecular interaction line (appended in yellow). In the 

latter systems, the off-centre pivot causes a displacement-like effect in the figure (colour figure online)|83|4| 

Figure 3: S-curves displaying the absolute error for a given system geometry (
system

IQAE ) defined in Eq. (3) 

for the six weakly bound complexes: ammonia…benzene (blue), water…benzene (red), HCN…benzene 

(green), methane…benzene complex (orange), stacked benzene dimer (purple) and T-shaped benzene dimer 

(turquoise) (colour figure online)………………………………………………………………………………………………….........|83|7| 

Figure 4: S-curves displaying the prediction error of the total intra-atomic energy (top) and total interatomic 

energy (bottom) for the six weakly bound complexes…………………………………………………………………….…….|83|8| 

Paper 6 

Figure 1: A representation of the topological atoms in Leucine, which is capped both at the N-terminus and 

the C-terminus by a peptide bond. The nuclear configuration is taken from a (Leu)5 conformer geometry-

optimised at HF/6-31+G(d,p) level of theory…………………………………………………………………………………|84|1306| 

Figure 2: (A) Penta-Gly, (B) Penta-Ala, (C) Penta-Ser, (D) Penta-Thr, (E) Penta-Cys, (F) Penta-Val, (G) Penta-

Leu and (H) Penta-Ile configurations (suspected as local energy minima but not confirmed through frequency 

calculations)………………………………………………………………………………………………………………………………...|84|1310| 

Figure 3: Penta-Ala system. Highlighted atoms represent the central atoms under study………………..|84|1311| 
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Paper 7 

Figure 1: Oxygen-oxygen radial distribution function for multipolar simulated water, compared to 

experiment.  Orange, green, and blue shading are regions of the first, second, and third solvation shells of a 

water molecule in liquid water respectively, and can be compared to the equivalently coloured radii of Fig. S1 

(in SM), a 9 Å system snapshot, with solvation shells and QCT bond paths and critical points 

displayed..…………………………………………………………………………………………………………….…………...……………….|85|2| 

Figure 2: Mean time (left), averaged over 10 spheres for each given radius, required to calculate IQA 

properties and the number (right) of molecules for each sphere size. Error bars represent ±1 standard 

deviation……………………………………………………………………………………………………………………………………………|85|3| 

Figure 3: (a), (c) and (e) display the total energy, self-energy, and interaction energy, respectively, of the 

central water molecule in each sphere.  Error bars represent total integration error for the molecule (i.e. the 

sum of the three absolute atomic integration errors).  (b), (d) and (f) display the mean absolute difference in 

total energy, self-energy, and interaction energy respectively, of the central water molecule between 

consecutive sphere sizes, across all spheres. Error bars represent ±1 standard deviation. 

………………………………………………………………………………………………………………………………………………………….|85|4| 

Figure 4: (a) Total dipole moment of central water molecule for each cluster. The low dipole magnitude of 

Cluster 7 is a result of the cluster’s unusually long-ranged ‘accepting’ type hydrogen bonds, and unusually 

angled ‘donating’ type hydrogen bonds (b) Mean absolute difference in the magnitude of the dipole moment 

between consecutive cluster sizes, across all clusters. Error bars represent ±1 standard deviation...….….|85|6| 

Figure S1. Critical points (bond, ring and cage) of a 9 Å water cluster. Atom sizes vary to indicate depth. The 

atomic basin of the central oxygen atom is shaded red, while the atomic basins of the central hydrogen atoms 

are shaded grey. The concentric circles are two-dimensional representations of cluster radius, to help guide 

the eye. Orange represents the end of the first solvation shell, green represents the end of the second 

solvation shell, blue represents the end of the third solvation shell, and purple represents the limit of the 9 Å 

cluster size……………………………………………………………………………………………………………………………………….|85|S4| 

Figure S2. Mean change in total IQA molecular energy of a water monomer inside a water cluster (relative to 

the isolated monomer’s energy, which is set to zero). Error bars represent ±1 standard deviation……....|85|S5| 

Figure S3. Total energy of the central water molecule in each flexible-water sphere.  Flex 1, Flex 3, and Flex 5 

were taken by distorting clusters 1, 3, and 5 from the original set of ten (rigid-body clusters), 

respectively……………………………………………………………………………………………………………………………………...|85|S6|   

Figure S4. The mean absolute difference in total energy of the central water molecule between consecutive 

sphere sizes, across all flexible-water spheres. Error bars represent ±1 standard deviation...………………|85|S6| 

Figure S5. Mean absolute difference in the magnitude of the molecular XCV  and clV  between consecutive 

cluster sizes, across all clusters. Error bars represent ±1 standard deviation……………………………….……...|85|S7| 

Figure S6. Mean oxygen IQA self-energy. Error bars represent ±1 standard deviation………………….……..|85|S8| 

Figure S7. Mean hydrogen IQA self-energy.  Error bars represent ±1 standard deviation………………........|85|S8| 

Figure S8. Mean oxygen IQA interaction energy. Error bars represent ±1 standard deviation……….…….|85|S9| 

Figure S9. Mean hydrogen IQA interaction energy. Error bars represent ±1 standard deviation……........|85|S9| 

Figure S10. Mean oxygen IQA exchange-correlation energy.  Error bars represent ±1 standard 

deviation………………………………………………………………………………………………………………………………………..|85|S10| 

Figure S11. Mean hydrogen IQA exchange-correlation energy.  Error bars represent ±1 standard 

deviation………………………………………………………………………………………………………………………………………..|85|S11| 
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Figure S12. Mean oxygen IQA classical electrostatic energy.  Error bars represent ±1 standard 

deviation………………………………………………………………………………………………………………………………………..|85|S11| 

Figure S13. Mean hydrogen IQA classical electrostatic energy. Error bars represent ±1 standard 

deviation………………………………………………………………………………………………………………………………………..|85|S11| 

Figure S14. Deflection of the molecular dipole moment. Blue represents that absolute deflection with respect 

to the initial vector, while orange represents the deflection in the z-axis (i.e. out of the HOH plane). Error bars 

represent ±1 standard deviation……………………………………………………………………………………………………..|85|S12| 

Figure S15. Mean magnitude of the dipole moment of the central oxygen atom.  Error bars represent ±1 

standard deviation……………………………………………………………………………………………………………………….....|85|S13| 

Figure S16. Mean magnitude of the dipole moment of the hydrogen atoms of the central molecule.  Error 

bars represent ±1 standard 

deviation………………………………………………………………………………………………|85|S13| 

Figure S17. (a) Magnitude of the quadrupole moment of central water molecule for each cluster. (b) Mean 

absolute difference in the effective moment of the quadrupole moment between consecutive cluster sizes, 

across all clusters. Error bars represent ±1 standard deviation………………………………………………………...|85|S14| 

Figure S18. Mean magnitude of the quadrupole moment of the oxygen atom of the central molecule.  Error 

bars represent ±1 standard 

deviation………………………………………………………………………………………………|85|S14| 

Figure S19. Mean magnitude of the quadrupole moment of the hydrogen atoms of the central molecule.  

Error bars represent ±1 standard deviation……………………………………………………………………………………..|85|S19| 

Paper 8 

Figure 1: S-curves for the 100, 300, 500, T500 and TE500 water models described using the three energies 

given in Eqn. 1 (
A

intraE , 
AA'

clV  and 
AA'

xV ). The label “T” stands for the tighter scrubbing threshold of 0.00005 

Hartrees, while “TE” stands for this tight model using single total atomic energies,
A

IQAE ……………….…..|86|12| 

Figure 2: SP1 (left), +15.05 kJmol-1), SP2 (middle, +47.97 kJmol-1) and SP3 (right, +126.18 kJmol-1) water 

geometries. Bond distances are in Å, and bond angles in degrees.………………………………………………..……..|86|14| 

Figure 3: T500 molecular model geometry optimisation trajectory steps with SP1 (blue), SP2 (red) and SP3 

(green) starting points: a) Set 1 (0 K and 1 fs timestep) truncated at 500 steps where the energy fluctuation is 

< 0.0001 kJmol-1 and b) Set 3 (GC and 1 fs timestep) with no truncation. The x-axis marks the timestep 

number. In the left panels, the y-axes denote molecular energy; in the right panels the y-axes denote ΔE 

(current energy – previous energy). All energies are in kJmol-1…………………..………………………………...…….|86|18| 

Figure 4: (a) Aggregated plot of the molecular energy evolution in time for each of the 2000 starting 

geometry considered, using the T500 model, (b) Magnified energies at the final step of the 0 K optimisation, 

(c) Distribution of final energies at 1,000th timestep……………………………………………………………………...…...|86|25| 

Figure 5: Single-energy optimised water geometries using the individual 
A

intraE , 
AA'

xV  and 
AA'

clV  energies. 

Initialisation geometry is the QM minimum, and the optimisations are performed using the T500 model with 
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FFLUX: TOWARDS A FORCE FIELD BASED ON INTERACTING QUANTUM ATOMS AND 

KRIGING 

 

      Force fields have been an integral part of computational chemistry for decades, providing 

invaluable insight and facilitating the better understanding of biomolecular system behaviour. 

Despite the many benefits of a force field, there continue to be deficiencies as a result of the 

classical architecture they are based upon. Some deficiencies, such as a point charge electrostatic 

description instead of a multipole moment description, have been addressed over time, permitted 

by the ever-increasing computational power available. However, whilst incorporating such 

significant improvements has improved force field accuracy, many still fail to describe several 

chemical effects including polarisation, non-covalent interactions and secondary/tertiary 

structural effects. Furthermore, force fields often fail to provide consistency when compared with 

other force fields. In other words, no force field is reliably performing more accurately than 

others, when applied to a variety of related problems.  

      The work presented herein develops a next-generation force field entitled FFLUX, which 

features a novel architecture very different to any other force field. FFLUX is designed to capture 

the relationship between geometry and energy through a machine learning method known as 

kriging. Instead of a series of parameterised potentials, FFLUX uses a collection of atomic energy 

kriging models to make energy predictions. The energies describing atoms within FFLUX are 

obtained from the Interacting Quantum Atoms (IQA) energy partitioning approach, which in turn 

derives the energies from the electron density and nuclear charges of topological atoms described 

by Quantum Chemical Topology (QCT). IQA energies are shown to provide a unique insight into 

the relationship between geometry and energy, allowing the identification of explicit atoms and 

energies contributing towards torsional barriers within various systems. The IQA energies can be 

modelled to within 2.6% accuracy, as shown for a series of small systems including weakly bound 

complexes. The energies also allow an interpretation of how an atom feels its surrounding 

environment through intra-atomic, covalent and electrostatic energetic descriptions, which 

typically are seen to converge within a ~7 - 8 Å horizon radius around an atom or small system. 

These energy convergence results are particularly relevant to tackling the transferability theme 

within force field development. Where energies are seen to converge, a proximity limit on the 

geometrical description needed for a transferable energy model is defined. Finally, the FFLUX 

force field is validated through successfully optimising distorted geometries of a series of small 

molecules, to near-ab initio accuracy.  

Peter I. Maxwell 

March 2017 
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1. Introduction and Methods 

1.1 Background 
       

      Today, computation enables a chemist to gain a unique insight into chemical systems and 

reactions in a way that facilitates a better understanding of experimental results. As such, the 

relationship between computation and experiment, in chemistry, has never been so intertwined. 

Furthermore, we have now reached the unusual paradox of computation relying on validation 

through experiment, yet also, remarkably, being used for the refinement of experimental data, 

such as the role of force fields in crystallographic refinement.  

      Computational methods have been employed in a variety of fields, perhaps most notably in the 

pharmaceutical and medical industries due to the cost saving potential computation permits over 

experiment. Importantly, for the work presented in this thesis, computational chemistry and 

biochemistry have been at the forefront of force field (FF) development, allowing molecular 

dynamics (MD) simulations, geometry optimisations and drug docking techniques to be 

performed. A classical molecular mechanics force field (MMFF) is comprised of a set of 

mathematical functions accompanied by generalised parameters. MMFFs use these functions and 

parameters to give an energetic description of molecular systems. Today, a number of force fields 

are in regular use, with varying success. For example, within a typical FF comparison study to 

predict the structure of an undecamer1 (an oligomer with eleven subunits), the CHARMM2,3 FF 

predicted an outstandingly stable α-helical structure, the OPLS-AA4 FF predicted an “almost totally 

disordered peptide1” with some conformations resembling β-hairpin-like structures, and the third 

FF, AMBER99SB5, predicted a combination of both some α-helical structure and some β-hairpin-

resembling regions. Only AMBER99SB’s results were considered qualitatively correct for the 310-

helical structure, as independently verified by NMR-analysis. This comparison is just one of many 

reviews which present and compare the results of various FFs available, each offering new insight 

and (in)validation but, overall, lacking a general consensus towards which is best. 

      Force fields may be parameterised using quantum mechanical data, experimental or a 

combination of both.  Quantum mechanical (QM) methods (also known as ab initio methods) such 

as DFT, MØller-Plesset 2 (MP2) and coupled cluster with single and double excitations (CCSD) 

offer highly accurate calculations upon systems, but are inherently limited by system size. More 

accurate levels of theory, such as MP2 and CCSD, scale poorly6 (O(N5) and O(N6), respectively). 

Experimental data is only as accurate as the instrument recording it. For larger systems with 

thousands to millions of atoms (proteins, material assemblies, etc.), quantum mechanical 

calculations are impossible within reasonable timescales. Instead, molecular mechanics force 

fields, which offer an approximate solution, but are much more computationally feasible, are 

employed. MMFFs are less accurate because of the approximations and assumptions made in the 

design of the potentials and parameter sets. For example, MMFFs may be parameterised to be 

atomistic or to represent a group of atoms as a single fragment. Each atom or fragment is assigned 
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a generalised parameter, suitable for the type of systems being studied (amino acids, 

oligopeptides, etc.). A description of classical MMFFs is given later in Section 1.2. 

      In today’s pharmaceutical and medicinal industries, it is necessary to study biologically-

relevant systems in order to develop more advanced and fruitful medicines. Hence, much research 

focuses on the development or improvement of these force fields where, aforementioned, 

uncertainty remains over their reliability and accuracy. Hence, an important question arises: Is 

there an attractive alternative solution? 

      Amongst other factors, capturing the relationship between atomic energy and geometry is vital 

to the success of a force field. Whether through efficient atom typing or through accurate 

mathematical descriptions, this relationship represents the core of the problem. Unfortunately, it 

is not a simple problem. Observing the intrinsic behaviour of atoms in amino acids (oxygen, 

nitrogen, carbon, hydrogen, etc.) is not enough to represent the secondary structure behaviour in 

an oligopeptide or small protein, where long-range interactions can cause turns and folds that 

would be impossible to predict from intrinsic effects alone. The same is also true for a system’s 

tertiary structure. Despite being almost entirely composed of identical elements, secondary and 

tertiary structure requires knowledgeable atoms in a carefully designed force field. Under these 

circumstances, ‘knowledgeable’ regards an atom’s awareness of its position in a system. 

      The aim of this body of work is to present my contribution towards the development of a novel 

quantum mechanical (QM) topological force field (known as FFLUX). FFLUX is capable of 

providing the user with a wealth of information about a system arising from the relationship 

between two key components: (1) geometry, and (2) the energy arising from subatomic matter. 

Instead of using potentials, as in classical force field architecture, FFLUX uses machine learning to 

capture the energetic behaviour of knowledgeable atoms, enabling predictions to be made on a 

system’s energy using atomic models. As a result, FFLUX allows near-ab initio accuracy on a 

similar timescale to molecular mechanic force fields. 
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1.2 Force Field Methodology 
 

      A force field computes the potential energy of a system through the evaluation of a number of 

mathematical functions using associated parameters. The parameters for each function may be 

obtained from experiment or highly-accurate quantum mechanical computational calculations. 

Obtaining such parameters is known as the parameterisation step. Typically, force fields have a 

target set of molecules they are designed to be used with, for example macromolecular systems 

(AMOEBA7,8, AMBER9, CHARMM2,3 and GROMOS10)  or  hydrocarbons (MM211 and OPLS-AA12,13). 

As such, similar target systems are used to parameterise the force field. In this section, a brief 

description of the architecture behind current classical force fields is presented, concluded with a 

discussion on its limitations. 

      Classical force fields are based on a general summative formalism separating a system’s 

potential energy (U) into bonded and non-bonded contributions, as shown in Equation (1.2.1). 

Tot Bonded Non bonded

atoms atoms

U U U     (1.2.1)              
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     (1.2.3) 

The bonded potential energy is composed of pairwise bond stretches (AB), angle bends (ABC), 

torsional potentials (ABCD) and cross terms (x, y) where x and y may represent any of the former 

three components. The non-bonded potential energy is composed of pairwise electrostatic and 

Lennard-Jones dispersion (collecting van der Waals dispersion and Pauli Repulsion) terms. Each 

component forming Equations (1.2.2) and (1.2.3) may be obtained through a series of 

expansions and potentials that will now be described.   

 

Bonded Potentials 

 

      The bond-stretch (Equation 1.2.4) and angle bend (Equation 1.2.5) potentials are obtained 

using Taylor expansions about equilibrium reference positions (eq) using the parameters rAB 

(bond stretch) or θABC, (angles), respectively: 
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 (1.2.5) 

where rAB is the distance of the bond between atoms A and B and θABC is the angle made by atoms 

A, B and C. An equilibrium reference value (a constant) is denoted by ‘eq’ and appended to the 

property of interest. When the first non-zero term of the Taylor series is reached, the equation is 

truncated recovering Hooke’s Law. Hooke’s Law introduces the force constant, k, portraying a 

constant relationship between A and B (or A, B and C for angles). Both k and the equilibrium 

reference values are constants obtained from a set of data used to parameterise the force field. 

The parameterisation step of a force field will be discussed further, later in this section. 

Equation’s (1.2.6) and (1.2.7) present Hooke’s Law formulae for bond stretching and angle 

bending. 
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When rAB deviates significantly from req,AB, higher order Taylor expansions must be included in 

order to correct the poorly estimated values otherwise recovered. In distorted molecules it is 

common for up to the quadratic 4th power to be calculated, particularly for angle bends which 

typically involve a larger range of motion. Thus, Equations (2.1.8) and (2.1.9) are obtained for 

the bond and angle potentials, respectively: 
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       The torsional potential describing the dihedral angle rotations is different to the bond and 

angle potentials as it is periodic in nature. Hence, a Taylor expansion from an equilibrium value is 

not adequate here. Instead, a Fourier series is used as follows: 

(1.2.10)  
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where {j} indicates the periodicity, Vj,ABCD represents the amplitude and Ψj,ABCD the phase angle 

between two planes defined by atoms ABC and BCD, respectively. Commonly, systems such as 

dipeptides are used to parameterise such torsional potentials2,4,14-16.  

      So far, each contribution (bond, angle and torsion) has been described, as if they were 

exclusive events, which is incorrect. For example, consider a simple water monomer: if the H-O-H 

angle should be reduced below the equilibrium value, the H…H internuclear distance, rHH, would 

also be reduced, eventually inducing repulsion between the hydrogen atoms. The monomer’s 

response to the increasing repulsion would be to relieve the strain by expanding the two O-H 

covalent bonds. Thus, through this example, the angle and bond stretch motions are shown to be 

concerted. To visualise the coupling of torsion with, for example bond stretching, it is useful to 

consider a small example molecule such as ethane. When the H-C-C-H dihedral angle is 60⁰ 

(staggered conformation), all bonds lengths will have their equilibrium values. Rotating the 

molecule to have a dihedral angle of 0⁰ (eclipsed conformation), the central C-C bond and the six 

C-H bonds will again elongate to relieve the strain in the molecule induced by the hydrogen atoms 

becoming closer in proximity in the eclipsed conformation.  

      In order for a force field to account for these coupled motions within molecules, additional 

potentials, known as cross-term potentials, are added. Cross-terms may couple any combination 

of the bond, angle and torsional contributions, indicated by the x,y notation of the final term in 

Equation (1.2.2). An example of a cross-term potential used to couple bond and angular motion is 

given in Equation (1.2.11). 

(1.2.11) 

Further examples of bond-torsion and angle-torsion cross-terms can be seen in Equations 

(1.2.12) and (1.2.13).  
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Non-bonded Potentials 

 

      Moving on to the non-bonded terms (see Equation (1.2.3)), again each contribution will be 

addressed in turn.  Firstly, the electrostatic potential is obtained using Coulomb’s Law: 

 (1.2.14) 
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where ε0 is the permittivity of free space and εr is the relative dielectric constant of the medium 

that the atoms are present in. The partial atomic charges of atoms A and B are represented by qA 

and qB respectively. Describing an atom using a single partial charge, q, is an approach known as 

the point charge description. The point charge description assumes that an atom’s electrostatic 

behaviour may be summarised and described by a single partial charge derived from the electron 

density within that atom. Partial charges may be assigned using a number of different charge 

datasets obtained using a variety of methods, for example, Mulliken17 population analysis, 

Restrained Electrostatic Potential (RESP)18 or the Atoms In Molecules (AIM)19 approach. Each 

method uses a different partitioning approach to assign the atomic partial charges within a 

system. 

      The Lennard-Jones potential models the interplay of attractive Van der Waal’s forces and the 

Pauli repulsion between two atoms. The Van der Waal (VdW) force is an umbrella term 

accounting for the attractive forces (Keesom, Debye and London dispersion) seen between some 

molecules. Keesom forces, also known as frozen electrostatics forces, result from dipole-dipole 

interactions. Debye forces, also known as polarisation, result from induced dipole-dipole 

interactions. London dispersion forces result from the correlated movement of electrons giving 

rise to instantaneous atomic and molecular moments, orientated to be attractive (instantaneous 

dipole-instantaneous dipole interactions). The attractive behaviour is represented in the equation 

by a -1/r6 factor, which is well founded in literature. Again, r represents the internuclear distance 

between atoms A and B. The second contribution, the Pauli repulsion, is an unrelated effect that 

gives rise to repulsive behaviour. Strictly, Pauli repulsion is not a force itself, instead is an effect 

mimicking the Pauli exclusion principle. A 1/r12 factor is commonly used for the Pauli repulsion, 

however, the choice of the power is flexible and determined by the ability to give a good general 

description of the energy. In fact, the value of each power has been the subject of a number of 

publications20-23, some which offer better alternatives dependent on the medium that the molecule 

is being modelled in. The standard Lennard-Jones potential is given as: 

(1.2.15) 

where ε is the well-depth and σ the internuclear separation when the interatomic potential is 

equal to zero between atoms A and B. Once more, the parameter values can be obtained from 

experimental data or highly accurate computational calculations.  

      The calculation of the electrostatic energy from atomic charges has been a key topic for 

discussion in force field development for a number of years24. The dispute concerns the 

limitations of the point charge approach described in Equation (1.2.14) which is considered to be 

inaccurate. The inaccuracy stems from point charges failing to capture the anisotropic nature of 

features such as π-interactions and lone-pairs. Instead of a point charge approach, a multipole 

moment expansion approach may be used. Electrostatic multipole moments describe the 
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anisotropic nature of the charge distribution for an atomic basin through various multipolar 

‘ranks’ of moments, whereby each additional rank captures an increasing amount of information 

regarding the deviation from an isotropic charge distribution. To clarify further, the zeroth rank 

(the monopole) corresponds to the isotropic atomic charge, and every higher rank (dipole, 

quadrupole, etc.) iteratively adds further information to account for anisotropy. Like point 

charges, the electrostatic interaction between two atoms may be described using electrostatic 

multipole moments. Some equations associated with multipole moments are presented later in 

Section 1.3. 

      Multipole moments are now becoming more common in modern force fields; however, they 

have been accompanied by their own drawbacks. Originally, there were concerns they offered no 

improvement in accuracy with regards to a system’s energy, a point that has since been 

discredited. More significantly, there were concerns over the additional cost involved in their 

computation. Decades ago, when multipole moments were first proposed, computational cost was 

indeed a valid limiting factor, however, with modern technology and the advanced nature of most 

research institutions’ facilities, they are now no longer a significant restriction. In fact, the 

computation of the multipole moments, for which the full mathematical details are described 

elsewhere25-27, already benefit from being able to be pre-computed using 3D integrals over single 

atomic basins, independent from geometry and instead of a 6D Coulomb integral across two 3D 

atomic basins. In brief, the precomputation is made possible because of the addition theorems 

allowing the expression 1/ | ( ' ) | r r R  (where | ( ' ) | r r R is the distance between two electron 

densities at positions r and (r’ + R), respectively) to be factorised into simpler expressions 

depending on r, r’ or R only28. Computation of the electrostatic energy via a 6D integral will be 

commented on further in Section 1.4. 

      A foremost concern with modern day force fields, beyond that of the use of point charges, is the 

inconsistency across those currently available. There are many useful reports in the literature 

comparing the performance of a selection of force fields on common benchmarking systems. Some 

of these reports show where force fields do appear consistent29-31, however, many observe 

significant differences1,32-39. As a result, a user is expected to choose the most relevant force field 

based on their system in hand and intuition. This task is made more difficult when there are 

multiple force fields designed for similar systems, for example, in 2002, Guillot40 reports on a total 

46 water models, similar to Cisneros41 et al., who in 2016, reports on 36 water models, some 

incorporating the multipole moments mentioned above42-44. 

      Another important factor in force field development is how a force field accounts for secondary 

structure effects and non-covalent interactions, such as dispersion and hydrogen bonding 

interactions. Beyond the Lennard-Jones potential given in Equation (1.2.15), classical force fields 

will either add a specific function to induce stability between defined atoms45-49, or parameters 

will be reweighted50-53 to physically achieve a stabilising effect through pre-existing functions. 

Despite some success, this type of continuous force field modification is not sustainable, and at 
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times can cause a deterioration of some previously reported results at the expense of the 

improvement of others50, regardless of whether or not this is alluded to in the more recent 

reports. For such modifications, force fields should re-perform benchmark experiments to be 

transparent on the knock-on effects the modification(s) may cause on previously obtained results. 

These modifications are generally considered to be a refinement of one of the most influential of 

steps defining the accuracy of a force field: the parameterisation step. Furthermore, the systems 

used to parameterise each force field will vary depending on that force fields scope. However, 

even when many force fields use similar parameters, which can be common for bonded 

potentials54, it is known that: 

“small parameter differences can affect a force fields ability to reproduced experimental 

thermodynamic and computer QM data, each of the force fields most likely does best at reproducing 

the particular data for which its partial charges were parameterised”54. 

Therefore, it’s expected that each force field should perform reasonably different to one another. 

However, with no force field currently being regarded as considerably better than the alternatives 

available, it inspires further development of both current and future force fields to fill that void. 

      As previously stated, the above description of typical molecular force field architecture is 

purposely kept brief because the body of work presented here uses a novel design very different 

to that given above. The relevant theories behind the FFLUX force field will now be described in 

turn, in Sections 1.3 to 1.6, with the final architecture culminating in Section 1.7. Finally, some 

information on the implementation of FFLUX atomic models into the computational program 

DL_POLY is described in Section 1.8.  

  

 

 

 

 

 

 

 

 

 

 



33 
 

1.3 Quantum Chemical Topology (QCT) 
 

      Quantum Chemical Topology (QCT)55 was coined in 2003 by Popelier as an umbrella 

framework collecting the well-known earlier work of the Quantum Theory of Atoms In Molecules 

(QTAIM)56 with other topological analyses of scalar functions beyond that of the electron density 

(used in QTAIM). For example, other scalar function analyses under the QCT umbrella include: the 

Laplacian (∇2ρ)57,58, the electrostatic potential59, Electron Localisability Indicator (ELI)60, Localised 

Orbital Locator (LOL)61, the virial field62, the magnetically induced current distribution63, the total 

energy64 and the intracule density65, with each analysis allowing further chemical insight to be 

drawn about a system. 

      The definition of an atom is not a trivial one. Each branch of science speaks about an atom 

differently, for example, in physics, the constituents forming an atom are widely reported, 

whereas in chemistry it is the energetic changes induced by interactions that are of greater 

interest. Often atoms are investigated through theoretical approaches to avoid the additional 

uncertainties introduced by experiment (methodology accuracy, equipment efficiency, human 

error, etc.). In mathematics, topology is the study of properties in space that remain conserved 

after undergoing a deformation. Within QCT, topological atoms (ΩA) are defined using the 

molecular electron density as the conserved property and an atom’s changing shape as the 

deformation. The analysis of a changing internal property, such as electron density, avoids the 

need for a reference property to assess changes, thus, also obeying Occam’s razor. 

      Topological atoms are well-defined, malleable volumes that exhaust molecular space, leaving 

no region of a molecule unaccounted for66. In other words, every portion of electron density in a 

molecule belongs to a given topological atom. As such, any molecular property derived from an 

exhaustive partitioning approach (e.g. atomic energies) will have no ‘missing’ contributions. 

Hence, results do not need to be appended or scaled by additional factors in order to mimic a 

missing contribution, instead everything is accounted for. Such is a great advantage of QCT and 

the use of topological atoms. 

      Next, the route to obtaining topological atoms must be described. Like QTAIM, QCT uses ab 

initio wavefunctions as a source of chemical information. The partitioning of a molecule into 

topological atoms is performed using a gradient vector field, which in turn, is composed from a full 

collection of gradient paths67. Gradient paths are trajectories of steepest ascent through a three-

dimensional function of choice, here the electron density, ρ. A gradient path of electron density is 

represented by: 

 ( )
x y z

  


  
   

  
r i j k   (1.3.16) 
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where, for example, 
dx


 indicates the change in the electron density along the x-axis.  The unit 

vectors i, j and k maintain the x-, y- and z-axis directionality. The second derivative of the gradient 

paths allows the identification of minima, maxima and saddle points in the electron density, each 

depicting a variety of Critical Point (CP). Figure 1.3.1 gives an example of CPs illustrated on the 

HCN molecule.  

 

Figure 1.3.1: (Left) Electron density contour plot of HC≡N superimposed to its gradient vector field. Bond 

Critical Points (BCPs) are denoted by black squares, Nuclear Attractors (NAs) by black circles. Image taken 

directly from Chapter 2: On Quantum Chemical Topology by Paul L. A. Popelier68. (Right) Topological atoms of 

HC≡N (hydrogen – white, carbon – yellow and nitrogen – blue). Image generated using in-house molecular 

visualisation suite IRIS. 

      Due to the three-dimensionality of the problem, one will obtain 9 derivatives of the form 

for the curvature of ρ at any point in space. The Hessian matrix of the electron density is given in 

Equation (1.3.17): 

2 2 2

2

2 2 2

2

2 2 2

2

x x y x z

Hessian
y x y y z

z x z y z

  

  

  

   
 
    

 
   

  
     

   
 
      

 (1.3.17) 

  

Thus, the diagonal of the Hessian matrix can be extracted as: 
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x y
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 (1.3.18) 

where λx, λy and λz represent the eigenvalues and (λx, λy, λz) the local curvature of the electron 

density at any point. A typical CP takes one of three forms: Bond Critical Points (BCPs), Ring 

Critical Points (RCPs) or Cage Critical Points (CCPs). A fourth type occurs, a Nuclear Attractor 

(NA), when each non-zero eigenvalue is negative indicating a maximum in ρ in every direction. 

CPs are labelled with the (ω,σ) notation, where: ω indicates the rank of a CP and is equal to the 

number of non-zero eigenvalues at the CP (between 0 and 3), and σ indicates the signature, which 

is the sum of the signs of the eigenvalues. The four CP types may be summarised as follows: 

(3,-3) – Nuclear Attractor (NA) - caused by a maximum in ρ in every direction.  On some rare 

occasions, a Non-Nuclear Attractor (NNA) may be located away from a nucleus in compressed 

systems but both are collectively denoted nuclear critical points (NCPs). 

(3,-1) – Bond Critical Point (BCP) - caused by a maximum in ρ in two directions and a minimum in 

ρ in one and occurs between two nuclei considered to be bonded. 

(3,1) – Ring Critical Point (RCP) –caused by a maximum in ρ in one direction and a minimum in ρ 

in two, and is caused by being bounded by nuclei (or NAs), allowing only the out-of-plane 

direction to have a negative slope. 

(3,3) – Cage Critical Point (CCP) –caused by a minimum in ρ in all three directions, as a result of 

complete enclosure by nuclei (or NAs)  in all planes. 

The formalism of each CP type is summarised in Table 1.3.1. 

 

Critical Point (CP) Type Acronym λ1 λ2 λ3 (ω,σ) 

Nucleus NA - - - (3,-3) 

Bond BCP - - + (3,-1) 

Ring RCP - + + (3,1) 

Cage CCP + + + (3,3) 

Table 1.3.1: Table of Critical Point (CP) types with their respective acronyms and (ω,σ) notation. 

 

      The role of critical points in computational chemistry has often been disputed69-71. At the 

centre of the dispute is the interpretation of what the presence of a CP means to a chemist: does a 
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CP always dictate a source of stability and therefore indicate a bond? Can the neighbouring region 

of a CP also indicative bonding behaviour? Etc. These are questions not directly assessed in this 

thesis but are ongoing as discussions in the field. 

      After critical points are located, the Inter-atomic Surfaces (IASs) are generated. IASs are the 

non-overlapping surface boundaries of a topological atom. IASs are defined using the flux of the 

vector field; a point where flux is equal to zero locates an IAS point. Figure 1.3.1 illustrates the 

HCN molecule as an example. The IAS lines are those seen separating the atoms on the 2D contour 

plot. On the 3D molecular plot, they are the surfaces of the topological atoms. Once an IAS is 

generated, the conformational space enclosed is known as an atomic basin (or an atom), Ω. 

      One caveat in the definition of IASs is when an atom is not completely enclosed by other atoms. 

Instead, for example, the atom is at the edge of a molecule. A useful analogy is to think of a country 

on a globe. Taking a simple view (ignoring politics), when that country is land-locked, the borders 

are clear and well-defined. Whereas when a country is next to a sea or an ocean, a decision on the 

exact border location must be made considering the geography of land versus sea in that region. 

Just like a non-landlocked countries border, an unbound topological atom requires a boundary 

decision to be made using a ρ threshold. The ρ threshold provides a cut-off, when the electron 

density drops below this threshold the boundary of the atom is placed. Typical ρ cut-offs are 0.001 

a.u. or below, but ultimately may be defined by the user. 

      Interatomic surfaces are necessary in order to calculate a finite atomic volume. In turn, having 

a finite volume allows an average number of electrons to be calculated through an integration of 

the electron density over the atomic basin, as shown in Equation (1.3.19): 

( ) ( )N d


   r r  (1.3.19) 

where N(Ω) is the total electron population of an atom, in a given atomic basin. From the electron 

population, the net atomic charge, q(Ω), can also be calculated, shown in Equation (1.3.20): 

( ) ( )q Z N     (1.3.20) 

where ZΩ represents the nuclear charge of the atom. For example, a neutral atom (q(Ω) = 0) would 

have the same total electron population as the nuclear charge. Having a greater electron 

population than nuclear charge would induce a negative charge on the overall atom. Likewise a 

reduced electron population would induce a positive charge on the overall atom.  

      By following the first principles approach described so far, QCT provides accurate, rigorously-

defined ab initio values for atomic charges. Of course, this is only a description of QCT partial 

atomic charges, other approaches to calculating partial charges are available in the field, such as: 

Mulliken17 population analysis, Restrained Electrostatic Potential (RESP)72, and Löwdin73 to name 

a few. However, in charge set comparison reports, the QCT charges have been shown to give 

favourable descriptions74-76. Some favourable descriptions of the QCT charges result from them 
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naturally incorporating polarisation effects, due to their direct derivation from the electron 

density. Hence, any further application of the charges (described shortly), already incorporate 

polarisation at a fundamental level. 

      From the QCT charges, the electrostatic energy may be calculated. The calculation of 

electrostatic energy has been a topic of great interest in the field, and a driving force in the 

development of the FFLUX force field. A recent review by Cardamone28 describes the superiority 

of using an anisotropic description of the electron density, through a multipolar expansion 

approach, to calculate an atom’s monopole (atomic charge), dipole and quadrupole moments, over 

that of a simpler point charge approach. Historically, point charges were inserted into a simple 

Coulomb potential (see Equation (1.2.14)) and were commonplace in earlier force fields. 

However, with greater accuracy and realism provided by multipole moments, force fields are 

gradually but continuously updating to incorporate their usage77,78. Despite this, some research 

still continues in the search for the perfect point charge set.  

      In order to briefly discuss a multipolar approach to describing the electrostatic interaction 

energy, 
AB

clV , between two atoms (A and B), we must first present the equation to obtain 
AB

clV  

from the electron density directly: 

AB 1 2
cl 1 2

12

( ) ( )

A B

tot totV d d
r

 

 

  
r r

r r  (1.3.21) 

where ρtot(r) is the total charge density (nuclear charge density minus the electron density, ρ(r)), 

and r12 the distance between two infinitesimal fragments of charge density. The latter 1/r12 

expression can be replaced by a series expansion involving spherical harmonics, given in 

Equation (1.3.22): 

1 2

0 012

1
( ) ( )

A B

A B A B A A B B
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l l m m l m l m

l l m l m l

T R R
r

 

   

   r r  (1.3.22) 

where Rlm(r) is a regular spherical harmonic dependent on an mth component of a rank l atomic 

multipole moment. In short, l is equal to 0, 1, 2, …, m, referring to the mono-, di-, …, mth-pole. T is 

an interaction tensor with a dependence on both orientation and internuclear distance. 

Substituting Equation (1.3.22) into Equation (1.3.21) leads to: 

AB

cl A B A B A A B B

A B A B

l l m m l m l m

l l m m

V T Q Q  (1.3.23) 

with Qlm representing an atomic multipole moment, defined as: 

r (r) (r)lm tot lmQ d R


    (1.3.24) 

and is obtained through a three dimensional integration over the atomic volume of a topological 

atom. To clarify the relationship between Equations (1.2.14) and (1.3.23), if the interaction 
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tensor T was replaced by 1/r12 and the monopole moments (essentially the atomic charges) 

inserted into Equation (1.3.23), one would recover Equation (1.2.14). 

      The interaction rank, L, may be calculated from the rank, l, of two multipole moments by: 

1A BL l l     (1.3.25) 

L is also equivalent to the inverse power, 1/RL, behaviour of an interatomic electrostatic 

interaction. L = 5 is known to provide an acceptable electrostatic description of a system, and 

requires the monopole (l=0), dipole (l=1), quadrupole (l=2), octopole (l=3) and hexadecupole 

(l=4) moments per atom to be calculated. Thus, L = 5 results in 1 + 3 + 5 + 7 + 9 = 25 multipole 

moments in total, per atom79.  

     A further limitation to those discussed in terms of force field development at the end of Section 

1.2, is the requirement for the potential to converge. The convergence of the expansion in 

Equation (1.3.23) has been a topic of significant research28,79-84 within the Popelier group, where 

thresholds have been investigated and classified. Overall, four distinct advantages are disclosed 

regarding the QCT multipolar approach: (1) they are more compact than Cartesian multipole 

moments, (2) offer good convergence at short-range, (3) are devoid of penetration effects due to 

the non-overlapping nature of the partitioning, therefore avoiding the need for damping functions, 

and (4) they already incorporate polarisation. For a more detailed description on the use of 

multipole moments to obtain an electrostatic description of a molecule a perspective by 

Cardamone28 is recommended. 
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1.4 Interacting Quantum Atoms (IQA) 
 

      The Interacting Quantum Atoms (IQA) approach is an energy partitioning theory first 

introduced by the authors Blanco85 et al. in 2005. IQA falls under the QCT umbrella and was 

inspired by initial work on the partitioning of the intra- and inter-molecular Coulomb energy by 

Popelier86 in 2001. However, IQA goes beyond such work by providing a theoretical framework 

for the evaluation of each energy component necessary to recover the total molecular energy. To 

do so, IQA uses electron density matrices (first and second-order) and separates the contributions 

into one- (A) and two-atom (AB) terms. The use of one- and two-atom energy terms is particularly 

useful for the general chemist who already envisages a molecule through atoms and interactions, 

thus allowing IQA to be easily interpreted by a wide audience. The derivation of energies from the 

electron density gives a theoretical grounding to the approach, adding to the reliability and, as we 

will later see through its applications, general reputation as a powerful and respected theory with 

a point-of-reference-type position within the field. 

      Like QCT/QTAIM, IQA uses real space-defined topological atoms and the information within 

the molecular wavefunction as a basis for the partitioning. Therefore, the requirement of arbitrary 

references and approximations is, again, made obsolete. However, IQA is not restricted to using 

the partitioning elements originally introduced by Bader, instead IQA’s partitioning uses an 

arrangement of energy terms in the spirit of McWeeny’s Theory of Electronic Separability (TES)87, 

(a Hilbert-space approximate energy partitioning using orthogonal interacting electron groups, 

where Hilbert-space indicates a partitioning in the space of basis functions). 

      The IQA approach follows a one- and two-electron density matrix partitioning of the electron 

density into one- and two-atom summative energies85. From the many-electron wavefunction e , 

the partitioning begins by constructing the first-order (non-diagonal) and second-order 

(diagonal) density matrices85: 

*

1 2(1;1') (1, , ) (1', 2, , )d d
ee e e e e NN N N    x x  (1.4.26) 

*

2 3

1
(1,2) ( 1) (1, , ) (1, , )d d

2 ee e e e e e NN N N N     x x  (1.4.27) 

where Ne is the number of electrons, xn are vectors including spatial and spin coordinates 1,2,…,n 

(also within e ). The expectation value of the electronic wavefunction within the Coulomb 

Hamiltonian scheme may be obtained using these density matrices: 

 
1

1 1 1 12 1 2 ee

1ˆ ˆˆ| | (1;1')d (1;2) d d
2

eE H h r h V    

  

      x x x  (1.4.28) 
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where  represents the one-atom operator used to obtain the kinetic energy ( ) and the nuclear 

attraction ( enV ). As described earlier, the interelectronic repulsion ( eeV ) is obtained from the r12-1 

term.  

      Next, the internuclear repulsion (
nnV ) may be defined as: 

nn

1 1

2 2

A B
AB

nn

A B A B A AB

Z Z
V V

r 

    (1.4.29) 

where Z is the atomic charge. Summing Equations (1.4.28) and (1.4.29) results in the Born-

Oppenheimer molecular energy being recovered: nntot eE E V  . In  

      At this point, the Virial Theorem would be defined by using only the first-order density matrix 

to calculate the monoelectronic properties, via: 

 1 1 1(1;1') (1;1') (1;1') (1')A A
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  (1.4.31)  

Here, an atomic basin step function is used where (1)  if 1r  , else (0) . 

However, the Virial Theorem approach would restrict the application to only equilibrium 

geometries with single-atom integrated energies. Instead, the drive of IQA is to be applied to any 

geometry (equilibrium or non-equilibrium), and to incorporate two-atom specific energies via six-

dimensional integrations. 

      The IQA approach begins by partitioning a system’s (molecular) energy, 
system

IQAE , into a series of 

atomic energies, 
A

IQAE , each composed of separate intra-atomic, 
A

intraE , and interatomic, 
AB

interV , 

energies, as follows: 

system A A AB

IQA IQA intra inter

1

2A A A B A

E E E V


      (1.4.32) 

      The intra-atomic and interatomic energies can also be further partitioned into a number of 

energy contribution types, which will be introduced shortly. However, at this point, it is useful to 

introduce the general notation for some of the later formulae of the theory. Within the formulae of 

ĥ T̂
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the IQA, some energy types will be calculated that have both an intra-atomic and an interatomic 

contribution. Collectively, the intra-atomic and interatomic contributions may be summed to give 

the total atomic value for that energy type. For such energies (introduced shortly), the following 

general notation applies: 

A AA AB

B A

1

2
i i iV V V



    (1.4.33) 

where AV  denotes the total atomic quantity, AAV  the intra-atomic (one-atom only) contribution 

and ABV  the interatomic (two-atom or pairwise, sometimes also known as diatomic) contribution 

from atoms A and B. The subscript ‘i’ is generic and is substituted with the relevant label for the 

type of energy being calculated. Note that it is necessary to divide the interatomic energy 

contribution by two, attributing half of the energy to atom A and half to atom B, to prevent double-

counting of the energy in the overall summation of the system energy. 

      In an alternative arrangement, pairwise interaction energies of atom A are collected into a 

single term AA’, where A’ represents the remainder of the system (not including A itself). Here,

'
B A

AB AA


 , allowing Equation (1.4.33) to become: 

A AA AA'1

2
i i iV V V   (1.4.34) 

Equation (1.4.34) does not form part of the original formalism of IQA, but includes quantities 

available in the computational package AIMAll88, which will feature in the research and be later 

described in Section 1.7 and Appendix A. The calculation of the AA’ energy is an accurate 

analytical route, whereas the calculation of each AB energy is numerical, more expensive 

(involving the six dimensional integration for each interacting pair of atoms), and slightly less 

accurate. Hence, a small discrepancy (≌) occurs when comparing the summed values from both 

routes due to their separate mathematical approaches. The analytical route takes the form: 

AA' A AA1

2
V V V   (1.4.35) 

illustrating that the total atomic (A) and intra-atomic (AA) contributions are calculated initially, 

later allowing the interatomic (AA’) contribution to be computed as the difference. As a result, 

substituting the AB energies with the AA’ energies in Equation (1.4.32) enables 
system

IQAE  to be 

calculated closer to that of the ab initio energy, 
system

WFNE . 

      Returning to IQA’s central architecture, the intra-atomic energy (sometimes called the ‘self’ or 

‘net’ energy) is composed of three contributions: 
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A A AA AA

intra en eeE T V V    (1.4.36) 

where 
AT  is the kinetic energy,  

AA

enV  is the electron-nucleus attractive potential energy and 
AA

eeV  

is the electron-electron repulsive potential energy. The first two terms are obtained from the one-

atom   operator term (earlier introduced in Equation (1.4.28)).  
AT  is obtained through: 

A 2

1 1 1 1'

1
(1;1') |

2
A

T d  



   x  (1.4.37) 

and 
AA

enV  through, 

 

A

AA A

en 1

1A

(1)
V Z d

r





   x        (1.4.38) 

where ρ(1) is the “diagonal” of ρ1(1;1’), and r1A is the distance between an electron and the 

nucleus of atom A. ZA, as before, is the nuclear charge of atom A. 

      The final component, 
AA

eeV , requires the second-order density matrix (given in Equation 

(1.4.27)), and can be extracted from Equation (1.4.28) as: 

2
ee 1 2

12

(1,2)
i j

i j

V d d
r

 

 

  x x  (1.4.39) 

where I = j = A in the case of the intra-atomic electron-electron potential energy contribution. 

Note that here we omit the ‘½’ factor included in Equation (1.4.28) because we have chosen to 

follow the original89 definition of the two-electron density matrix given in Equation (1.4.27). In 

Blanco85 et al.’s paper, the ½ is not present in the two-electron density matrix, instead is present 

in their definition of 
AA

eeV  in Equation (1.4.39). However, this route seems counterintuitive and 

introduces unnecessary confusion later in summation of the IQA formulae.   

      Next we move onto the interatomic energy and its components. Each interatomic energy has 

already been introduced in some form, but their equations are slightly altered to represent the 

interaction between two atoms instead of those within a single atom. The interatomic energy is 

given as: 

AB AB AB AB AB

inter en ne ee nnV V V V V     (1.4.40) 

and is composed of 4 energies: (1) the attractive electron-nucleus potential energy, 
AB

enV , the 

attractive nucleus-electron potential energy, 
AB

neV , the repulsive electron-electron potential 

energy, 
AB

eeV and (4) the repulsive nucleus-nucleus energy, 
AB

nnV . A rearrangement of Equation 

ĥ
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(1.4.38), ensuring the nuclear charge (ZA) and the atomic basin integration act over different 

atoms (A and B), allows the electron-nucleus potential energy to be defined for the interatomic 

contribution. The electron-electron interatomic contribution is obtained using Equation (1.4.39) 

with I = A and j = B, where B ≠ A. The nuclear repulsion has already been defined in Equation 

(1.4.29). 

       The above description completes the basic IQA partitioning. However, for added chemical 

insight, the repulsive electron-electron potential energy may be partitioned further to reveal the 

ionic-like and covalent-like character of the energy. This step is rarely taken for the intra-atomic 

energies where little is understood as to what these individual energies would represent. Instead, 

more interest is typically given to the partitioning of the interatomic energies in order to better 

understand the origin (covalent-like, ionic-like, mix of both) of the (de)stabilisation. The 

interatomic electron-electron energy partitioning is given in Equation (1.4.41): 

AB AB AB AB

ee Coul exch corrV V V V    (1.4.41) 

resulting in Coulombic, exchange and correlation contributions, respectively. This is made 

possible since the fine structure of ρ2(1,2) exists as: 

 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 2 2( , ) ( ) ( ) ( , ) ( , ) ( , )corr coul exch corr             r r r r r r r r r r

                     (1.4.42) 

Substituting Equation (1.4.41) into Equation (1.4.40) allows a rearrangement of 
AB

interV  to be 

presented: 

AB AB
cl XC

AB AB AB AB AB AB AB AB AB

inter en ne nn Coul exch corr cl XC

V V

V V V V V V V V V       
 (1.4.43) 

where the first four terms may be collected into a single, ionic-like, classical electrostatic energy, 

AB

clV  (analogous to that described in Section 1.3), and a covalent-like exchange-correlation term,

AB

XCV . These energies (
AB

clV  and 
AB

XCV ) are important in the characterisation of an interatomic 

interaction and in determining the source of stability. Therefore, are also useful in the 

understanding of chemical reactions and barrier heights. 

      Finally, given the above derivation of the IQA approach, the key IQA partitioning formula may 

be presented as:  

system A A AA' A AA' AA' AA'

IQA IQA intra inter intra cl exch corr

1 1 1 1
( ) ( )

2 2 2 2A A A

ApproachA ApproachB ApproachC

E E E V E V V V          (1.4.44) 
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where each ‘Approach’ is indicative of an independent route to recovering the system energy, 

system

IQAE . Each approach enables a controllable (dial-like) level of chemical insight to be included in 

an analysis. Equation (1.4.44) will also be critical in the design of FFLUX (seen later in Section 

1.7). 

      To complete this section, two final topics must be discussed: limitations and applications. Li 

and Parr90 concluded that if  then the second-order reduced density 

matrix “preserves the physical meaning of all energy contributions”85. Blanco et al. then used the 

2 2(1,2) (1,2)AB BA   requirement for the two-atom partitioning, where it is defined as being 

restricted to Coulomb and exchange terms only, excluding correlation, as in accordance with 

McWeeny’s scheme (note that the AA

2 (1,2)  one-atom component does include correlation). As 

such, the theory suffices for a Hartree-Fock (HF) description (which also excludes correlation). 

However, neither perturbation theory nor Density Functional Theory (DFT) are IQA-compatible 

either through: (i) computational expense (MP2), or (ii) not providing a well-defined second-

order density matrix (DFT). For example, performing the IQA partitioning on a DFT wavefunction 

would not accurately recover the ab initio system energy, instead giving a large energy 

discrepancy between 
system

IQAE  and 
system

WFNE  as the result of an incomplete exchange energy 

contribution, XV . Until recently, this remained a limitation to IQA; IQA was limited to accurately 

operating on HF, Complete Active Space (CAS), Full Configuration Interaction (FCI), Configuration 

Interaction with single and double excitations (CISD) and coupled Cluster with single and double 

excitations (CCSD) wavefunctions only. With many of those levels of theory impractical for 

systems larger than a handful of atoms, it meant the most common IQA analyses would be 

performed at HF level. However, it did not always deter users applying IQA to e.g. MP2 and B3LYP 

wavefunctions91-96 in the hope that useful information would still be obtained even if a system’s 

energy would be incompletely recovered. 

      To expand IQA beyond the practical limits described above, a collaboration project97 (subject of 

Section 3) with an author (Dr. T. Keith) of the IQA-enabled software AIMAll, allowed a pseudo-

solution to be proposed. The solution required the atomic exchange-correlation energy, 
A

XCV , to 

be first calculated from the explicit exchange-correlation functional for that functional theory (in 

the exampled case B3LYP). For B3LYP, this took the form: 

A,B3LYP LSDA HF B88 LYP VWN

xc 0 x 0 x x c c(1 ) (1 )x c cV a E a E a E a E a E         (1.4.45) 

“where a0 = 0.20, ax = 0.72 and ac = 0.81, and ExLSDA is the Local Spin Density Approximation (LSDA) 

standard local exchange functional, while ExHF is the HF exchange energy, and ΔExB88 is Becke’s 

gradient correction to the Becke-88 exchange functional, EcLYP  is Lee, Yang and Parr’s correlation 

A B A B        
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functional, and EcVWN is the Vosko-Wilk-Nusair local density approximation to the correlation 

functional97”.  

      The incorporation of Equation (1.4.45) allowed the electron-electron potential energy to be 

calculated correctly via: 

A A A

ee XC clV V V   (1.4.46) 

allowing the correct atomic energy to be calculated, 
A

IQAE , and, in turn, the correct system energy, 

system

IQAE . However, the partitioning of the atomic exchange-correlation energy into intra- and 

interatomic energies is ambiguous. Hence, we proposed to calculate the interatomic contribution 

using the pure Hartree-Fock exchange equation only, but using Kohn-Sham (KS) orbitals instead 

of HF orbitals97.  The pure HF exchange, given as: 

AB

X,HF(B3LYP) 1 2

, 12

( ) ( ) ( ) ( )KS KS KS KS

i j j i

i j A B

V d d
r

   
 

1 2 1 2r r r r
r r  (1.4.47) 

was used to calculate the interatomic exchange-correlation energy. Notably there is only an 

exchange contribution (no correlation). Using Equation (1.4.47), Equation (1.4.48) was 

proposed to complete the exchange-correlation partitioning of the energy in a system: 

AA A AA'

XC, amalgam XC, B3LYP X,HF (B3LYP)

1

2
V V V   (1.4.48) 

where 
A

XC,B3LYPV  is the correct atomic exchange-correlation energy (calculated from the explicit 

functional), and 
AA'

X,HF (B3LYP)V is the interatomic exchange energy obtained through the HF 

exchange equation with KS orbitals, and 
AA

XC,amalgamV the remaining exchange-correlation energy, 

attributed to the intra-atomic contribution. The name ‘amalgam’ refers to the fact that this energy 

is obtained from an amalgamated approach. Paper 2 (Section 3) is a publication describing the 

development of this approach, successfully applying it to a variety of systems of interest, and 

providing the first, correct, application of this B3LYP-IQA approach. Note that the approach 

defined above was also used for the incorporation of the M06-2X functional level (using the M06-

2X atomic exchange-correlation functional) since it is known to perform well in systems where 

dispersion is particularly important. An example of such systems and the use of the M06-2X-IQA 

method forms part of Paper 5 (Section 6). 

      Other approaches, similar to that given above, have also been proposed to extend IQA beyond 

its original limitations e.g. to DFT level through a scalar argument98, incorporating electron 

correlation via coupled-cluster Lagrangian densities99,100, or to MP2 level via the correct 

generation and storage of the expensive two-particle density matrix101. IQA has been used in a 

variety of investigations, for example, regarding bonding94,102-108, steric repulsion92,109,110 and 
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binding energies103, hyperconjugation111, charge transfer112, delocalisation indices (DIs)113 and the 

relationship between exchange and molecular structure114, and has often been presented as a 

reliable, accepted approach. IQA has also featured in some rarer but useful direct 

comparisons109,115,116 with other non-IQA partitioning methods, such as Natural Energy 

Decomposition Analysis (NEDA)117 and Natural Bond Orbital (NBO)118. 

      At the beginning of the herein research, there were two key pieces of software capable of 

performing the IQA calculations: the AIMAll suite (commercial) and PROMOLDEN (non-

commercial). PROMOLDEN is a piece of software developed and used by the Oviedo group 

(authors of the IQA approach). However, preliminary benchmarking experiments were completed 

(see Appendix A) and AIMAll was concluded to produce more accurate results, be 

computationally faster and be more user-friendly (in 2013). Hence, AIMAll was chosen to be used 

further in the development of FFLUX. Sections 1.7 and Appendix A provide more information on 

the AIMAll suite and on this decision, respectively. 

      A final note regards the variety of alternative notation used within IQA literature, including 

some of the publications presented later. During the course of IQA’s history, a variety of names 

have been used for, for example, the intra-atomic energy. For consistency, below lists a short 

summary of the notation used within many papers, with the first notation matching the preferred 

notation used above: 

 
system Molec MolE E E   

 intra self netE E E   

 cl class elecV V V   

 X exchV V  

Note also that some definitions of an atom’s energy ( A A AA'

IQA intra inter

1

2
E E V  ) do not always 

explicitly include the ½ factor, instead assuming it is incorporated in the definition of the 

interatomic energy, 
AA'

interV .  
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1.5 Sampling  
 

      Force fields require parameterisation, whether through the use of experimental data or 

computational data. The data used within such parameterisation steps can otherwise be known as 

the sample points. The type of sample points selected will dictate the scope of the force field. Here, 

‘type’ refers to the classification of molecules, for example alcohols, carbohydrates, lipids, amino 

acids, etc. In the development of FFLUX, the scope is biomolecules, in particular proteins. Hence, it 

is natural for FFLUX to commonly use amino acids (and their derivatives) within its 

parameterisation procedure. Parallel to the scope, the sampling must equip the force field with the 

capability to make a sensible and accurate prediction for a given geometry of a system. More 

specifically, the geometrical range of the sampling has to be broad enough to account for any 

geometry that the force field may one day be presented with. 

      To date, three sampling procedures have been investigated in the development of FFLUX: (1) 

snapshots from a molecular dynamics simulation119, (2) normal mode (NM) sampling120, and (3) a 

hybrid PDB/NM approach121, where PDB stands for Protein Data Bank. Without providing further 

details, the PDB is a repository of structural information of large biomolecules. The first approach, 

MD snapshots, would be counter-intuitive given our goal of developing FFLUX as an independent 

force field. A reliance on another force field for FFLUX’s sampling and parameterisation step 

would unnecessarily limit it to the behaviour and quality of the original force field used in the MD. 

Thus, sampling using the samples produced by a MD trajectory is avoided where possible, but are 

useful for comparative purposes or when giving QCT analyses of widely-accepted systems. 

      The second option, normal modes sampling, remains the prime sampling procedure used in the 

development of FFLUX. In brief, normal modes sampling samples the internal molecular motions 

of a molecule, traditionally around equilibrium conformations, but also now generalised121 to be 

possible on non-equilibrium conformations, and outputs a variety of geometries permitted by 

such vibrational motions. The third approach, PDB/NM hybrid sampling, combines the use of gas 

phase samples generated by normal modes sampling with an ensemble of known structures from 

the PDB. Both the second and third approaches are considered suitable121 for FFLUX. The PDB/NM 

sampling investigation illustrated that the introduction of the PDB samples increased the sampled 

range of dihedral angles. However, it was discovered that it is the bond stretch sampling that 

proves to be the accuracy-determining factor within the parameterisation procedure. The 

PDB/NM ensured no areas of the Ramachandran plot were left un-sampled (in the case studies of 

lysine and alanine), with no significant cost to the accuracy of the electrostatic atomic multipole 

moment models121. 

      Other than the single PDB/NM investigation, normal mode sampling has been at the forefront 

of the sampling for FFLUX. Normal mode sampling takes advantage of being able to evaluate the 

frequency ( 3 6featN N  ) of each normal mode of motion of a molecule, from a diagonalization 

of the mass-weighted Hessian, H. Combining this with a mass-weighted force vector, F, allows a 
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series of harmonic equations of motion to be obtained, suitable for the distortion of a molecule in 

conformational space. Distorting a molecular seed, within the evaluated accessible conformation 

space, creates a sample pool of vibrated geometries for FFLUX’s parameterisation. A ‘seed’ is a 

molecular geometry, either an equilibrium or non-equilibrium geometry, upon which the 

sampling of conformational space takes place, resulting in a potential energy landscape of new 

geometries being generated. Note, this landscape is a well if the seed is an equilibrium geometry. 

      Before giving the computational details of the sampling procedure, a description of the 

reference frame used to define the geometry of a molecule in FFLUX is provided. 

 

1.5.1 The Atomic Local Frame (ALF) 

 

       Later, when addressing the machine learning step, a geometrical description of an atom in its 

given surroundings will be necessary. The geometrical description of an atom in an environment 

can be described using a local axis system. Using a local axis system, internal coordinates of each 

atom relative to its neighbouring atoms may be determined. These internal coordinates may also 

be referred to as an atom’s geometrical features, fk. In machine learning literature, features are 

inputs that are mapped to a property of choice in order to build a model. For our systems, each 

atom will have 3N-6 internal coordinates (or features), Nfeat, describing it. 

      In order to obtain the internal coordinates, we introduce a local axis frame used to define each 

atom relative to one another. The frame used in FFLUX is known as the Atomic Local Frame (ALF) 

and is illustrated in Figure 1.5.2. 

 

Figure 1.5.2: The Atomic Local Frame (ALF) composing the local axis system (black) used in FFLUX, 

illustrated upon a carbonyl carbon in N-methylacetamide (NMA). Image taken directly from literature by M. J. 

L. Mills, J. Chem. Theory Comput., 2014, 10, 3840-385679.  
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Given an atom A, Cahn-Ingold-Prelog (CIP) rules are used to find the highest priority neighbouring 

atom, B, to atom A. The path created between atoms A and B positions the x-axis, and the 

internuclear distance is denoted RAX. In Figure 1.5.2 this is the oxygen atom relative to the 

carbonyl carbon atom (which is denoted Ω instead of A). From atom A (or Ω), the path to the 

second highest priority neighbouring atom, C, is denoted RAY (RΩxy in Fig. 1.5.2), and defines the XY 

plane. From the xy plane, the y-axis may be formed perpendicular to the x-axis. RAX and RAY make up 

the first two ALF coordinates. The third coordinate is the angle created between atoms X-A-Y, χXAY. 

A right-handed coordinate system is defined by positioning the z-axis orthogonal to the XY plane. 

All other atoms may now be described relative to the position of atom A, using three polar 

coordinates: RAK, θAK and ØAK. As a result, this gives us N atoms, minus the three atoms defined by 

the CIP rules, giving N - 3. For every non-ALF atom, a set of three descriptors (RAK, θAK and ØAK) is 

added giving 3(N - 3). Finally, adding the initial three ALF coordinates (RAX, RAY and χXAY) gives us 

the 3(N - 3) + 3 = 3N - 6 internal feature description, Nfeat. In a later section (Section 1.6) we will 

see how the features are used to map with an atomic property. As a result, Nfeat also represents the 

dimensionality of the system. Thus, when a molecule is greater than 3 atoms, the dimensionality 

becomes greater than three dimensions, making it difficult to visualise. 

 

1.5.2 Normal Mode Sampling – EROS/TYCHE 

 

      The normal modes sampling procedure in FFLUX is completed by an in-house program called 

TYCHE, which has a legacy version known as EROS. TYCHE incorporates the majority of the 

algorithm of EROS but, in the final step, takes a different route to generate a slightly different set 

of samples (described later). Both EROS and TYCHE are suitable for the sampling procedure 

within FFLUX and have been used within this body of work. Hence, both EROS and TYCHE will be 

described in turn, beginning with the general algorithm present in both programs, followed by the 

additional procedure completed by TYCHE. For the general algorithm, the notation ‘EROS/TYCHE’ 

will be used. The usage of ‘TYCHE’ will indicate a TYCHE-only modification. 

      EROS/TYCHE generates molecular samples by performing a normal modes sampling 

procedure upon one or more input seeds. Below summarises the generation of normal modes, a 

more thorough description may be found in the original literature by Ochterski in Ref122. To begin, 

a transformation from mass-weighted Cartesian coordinates, q, to the aforementioned Nfeat 

internal coordinates, s, uses a 3N x 3N transformation matrix, D, satisfying: 

𝐬 = 𝐃𝐪 (1.5.2.49) 

The first six columns of D are composed of orthonormal vectors (di) of the global translational and 

rotational molecular modes. For our purposes to distort using the vibrational modes, the 

translational and rotational modes are equal to zero. The remaining 3N-6 basis vectors, Nfeat, 
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require a Gram-Schmidt orthonormalisation procedure transform them to become mutually 

orthogonal and normalised. 

      Next, the mass-weighted Cartesian Hessian, Hq, may be converted to an internal coordinate 

basis through: 

𝐃⊤𝐇𝐪𝐃 = 𝐇𝐬 (1.5.2.50) 

Then, diagonalising Hs allows us to obtain the frequencies of the molecular normal modes: 

𝐄−𝟏𝐇𝐬𝐄 = 𝐈𝛌 (1.5.2.51) 

where I is the identity matrix and 𝐄 are the eigenvectors of Hs. The obtained eigenvalues are the 

3N diagonal elements (Iλ)ii = λi and are used in the calculation of the mode frequencies through: 

2 24

i
iv

c




          1,...,3i N   (1.5.2.52) 

where c comprises the speed of light and a conversion from atomic units to cm-1. Again, the first 

six frequencies will correspond to the global translational and rotational degrees of freedom, thus 

are equivalent to zero for our coordinate basis. 

      A simple harmonic oscillator expression provides the amplitude, Ai, of the ith normal mode: 

2 i
i

i

E
A

k
  (1.5.2.53) 

where ki is the force constant of the ith mode of motion and Ei the energy available to it. These 

quantities (Ai and vi) enable the modes of motion to be evolved, in discrete time, to mimic the 

vibrations of a system.  

      The total thermal energy available to a system is given by the standard equipartition of energy: 

/ 2feat BE N k T   (1.5.2.54) 

where kB is the Boltzmann constant and T the temperature. One solution is to set / 2k BE k T  

(static), but this is restrictive and does not account for the dynamical fluctuation of energy 

between each degree of freedom in the system. A microcanonical ensemble can be obtained by 

working with the total thermal energy made available to the system, / 2feat BN k T , so that: 

(3 6) (0,1)
2

B
i

k T
E N u   (1.5.2.55) 

where u(0,1) is a random number selected from the uniform distribution of (0,1), and Nfeat has 

been replaced by 3N-6. Following this type of energy allocation, a rescaling of all energies is 

necessary to ensure the total energy remains constant throughout the sampling: 
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(3 6) (0,1)
2

B
i

i

k T
E N u   (1.5.2.56) 

      Equations (1.5.2.55) and (1.5.2.56) are the key equations used within the EROS program. 

Such an approach allows some much higher energy samples to be generated, particularly if the 

thermal energy of a system (which is user-defined) becomes allocated to only certain degrees of 

freedom, rather than being more equally distributed throughout all. As a result, the potential 

energy well generated by EROS around an equilibrium input seed will have a large depth and a 

relatively steep system energy gradient. As a safeguard, a user-defined constraint parameter is 

included to omit any unrealistic structures. The safeguard ensures that the evolution of the 

valance coordinates (bond stretches and angles) are restricted to within a given domain. The 

constraint parameter, c, operates via: 

1

eq eqc b b cb    (1.5.2.57) 

where b is the bond length or angle generated, and beq is the equilibrium value. Typically c is 

maximally set to 1.20 (indicating ±20%). The value 1.20 matches the maximum stretch factor of a 

bond recognised in the Graphical User Interface (GUI) of the computational suite Gaussian09123 

(GUI known as GAUSSVIEW). For clarity, in GAUSSVIEW, if two atoms are separated by an 

internuclear distance greater than 1.20 x sum of the two atomic Van der Waals radii, then no 

visible bond will be illustrated.  

      Despite 1.20 being the recommended maximum value, in-house (unpublished) investigations 

have shown that typical MD simulations of both gas phase and microsolvated amino acids, over 

many timesteps and at room temperature and pressure, indicate that a constraint parameter of 

1.10 is more realistic for such systems (in the described conditions). However, for much smaller 

systems, such as a water molecule, 1.20 is more in-keeping with literature observing the possible 

vibrations instrumentally. In some further in-house investigations, it was found that the 

fluctuation of the constraint parameter correlated with the quality of the machine learned atomic 

models (described in the next section), such that a larger threshold degraded the model accuracy 

through demanding a greater range of data be modelled. Understandably, as the potential well 

increases in depth, both the geometric and resulting property value ranges are also going to 

increase accordingly, creating a more difficult task to model. 

      Recently, the decision was taken to restructure the input parameters used by EROS in order to 

have a more physical understanding and place less reliance on user intuition. It was also decided 

as a result of observing a small energy gap that would typically be produced between the seed 

geometry’s energy and the lowest energy sample geometry. Hence, the next version, TYCHE, was 

developed to address four concerns: (1) changing of the user-defined energy input parameter to 

instead use temperature, (2) a change in the route that which the energy was allocated to the 

vibrational normal modes to encourage a more even distribution of the energy, (3) as a result of 

addressing (2), reduce the reliance of the well on the value of the constraint threshold, and (4) 
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generate more sample geometries energetically closer to the seed system. Within TYCHE, 

Equations (1.5.2.49) to (1.5.2.57) remain valid and incorporated, however the method now 

proceeds as described. 

      In TYCHE, the thermal energy in Equation (1.5.2.58) is subject to a stochastic Gaussian 

fluctuation distributed throughout the system. Here, the temperature is user defined. The typical 

temperature used in this work is 298 Kelvin (unless otherwise stated). A canonical ensemble is 

sampled using: 

(0,1) (1,1)
2

B
i

k T
E u N  (1.5.2.58) 

With N(1,1) representing a second random number, taken from a Gaussian distribution with an 

expectation number and standard deviation of unity. Using Equation (1.5.2.58) in place of 

Equations (1.5.2.55) and (1.5.2.56) prompts three changes: 

1. The canonical ensemble is sampled instead of the microcanonical ensemble 

2. N(1,1) is a random number selected using a “Gaussian distribution with expectation value 

and standard deviation of unity”124, limiting the height of the potential well that may be 

accessed in the sample generation 

3. Instead of the uniform random variate (u(0,1)) scaling molecular energy distribution (as 

in Equation (1.5.2.56)), here it allows the temperature, T, to be modified so that lower T 

values than the defined value to be adopted (≤ T). The approach forces a better local 

sampling of the seed geometry (u(0,1)  0), whilst still being capable to reach the new 

N(1,1)-regulated well height (u(0,1)  1) 

      Overall, the TYCHE approach is considered to produce more realistic sample geometries by 

ensuring a more even partitioning of the thermal energy into all normal modes. Instead of a 

maximal input energy being provided, as in the EROS input, the sampling temperature, T, is 

defined by the user. The more intuitive use of the temperature parameter fits with its common use 

in the field of simulation. Finally, the safeguard given in Equation (1.5.2.57) is maintained in 

TYCHE (with a value of 1.20), again as a final guarantee that no obscure very high energy samples 

are generated. 

      The final point to discuss in the EROS/TYCHE sampling procedure is how time is discretised 

throughout. After the frequency, vi, is obtain through Equation (1.5.2.52), the time period may be 

calculated as Ti = 1/vi. The discrete time, Δti, is obtained by dividing the time period, Ti, by a user-

defined parameter ncycle, such that: Δti = Ti / ncycle. In TYCHE, ncycle steps is the number of dynamical 

steps allowed to sample each frequency motion before the energy is perturbed by the Gaussian – 

distributed number N(1,1). In EROS, ncycle is equal to 1 and no Gaussian-distributed energy 

perturbation occurs. Since the frequency of each normal mode varies greatly, it is beneficial to 

have a timestep parameterised for each to ensure an expansive conformational sampling.  
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Figure 1.5.2.3: Example sample wells generated for the N-methylacetamide molecule (NMA) using EROS and 

TYCHE in-house normal mode sampling programs. Each point represents a sample generated with that molecular 

energy. EROS (orange) uses 1,10 bond stretch and angle parameter, and TYCHE uses 300 Kelvin (green) and 1000 

Kelvin (blue), respectively. N.B. the optimised QM point is hidden behind the lowest blue point. 

 

      Figure 1.5.2.3 illustrates some example energy wells generated by EROS and TYCHE using a 

variety of input parameters. In order for TYCHE to produce samples as energetically distorted as 

EROS, the temperature must be increased above 298 K. Overall EROS samples a well with height 

~152 kJmol-1, TYCHE_300K to ~84 kJmol-1 and TYCHE_1000K to ~222 kJmol-1. It is also noted that 

the seed geometry is hidden behind the lowest blue point on the plot, supporting TYCHE’s ability 

to generate samples energetically much closer to the seed system. There is a small gap between 

EROS and the seed (~7 kJmol-1), which was an initial concern within the sampling protocol. 

However, in-house testing has shown that the small gap has no such influence on the degradation 

of neither the model quality, nor its application in a geometry optimisation capacity.  

      To make contact with literature, Figure 1.5.2.4 renders the 1.10 stretch factor onto a bond and 

angle stretch sampling range reported by Maple125 et al. within their force field (QMFF), 

parameterised for amides, peptides and related compounds. Given the comparatively large 

sampling range of EROS compared to TYCHE at 300 Kelvin, and by encompassing of all the bond 

stretch range and the majority of the angle range of Maple’s125 sampling, the 1.10 bond and angle 

stretch factor parameter within EROS appears comparable.  

 



54 
 

 

Figure 1.5.2.4: C-N and O-C-N sampled in the QMFF force field by Maple125 et al. Figures taken directly from 

Maple125 et al., J. Comput. Chem., 1998, 19, 430, with added red annotation lines indicating the range 

encompassed by EROS’s 1.10 stretch factor. 

 

      Now that the in-house sampling procedure has been described, the next in-house procedure to 

describe is that of the kriging machine learning procedure. Details of which are given in the next 

section. 
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1.6 Kriging Machine Learning 
 

      Now that samples have been generated, a local axis frame to define atomic positions relative to 

one another has been described, and the theory behind the QCT-IQA atomic properties detailed, 

the next step is to show how all three factors can be brought together to create an atomic model 

within FFLUX. The in-house program FEREBUS compiles these three factors into a single machine 

learning protocol using an algorithm known as Kriging. 

      Kriging (alternatively known as Gaussian Process Regression) has its roots in geostatistics 

where it was used to predict the location of precious materials after being trained using the known 

location of said materials126. The approach is named after the original work of Krige127, later 

developed by Matheron128. Within FFLUX, we follow the form proposed by Jones129 and Jones130 et 

al.. Kriging’s role in FFLUX is to map atomic properties (multipole moments or IQA energies) 

against the geometrical features, and is completed using the in-house software FEREBUS. Early 

examples of success are available in the literature, where the atomic property modelled is the 

multipolar moments131,132. With the exception of one example where kinetic energy, TA, is 

kriged133, the investigations within this thesis are the first where IQA energies have been 

modelled. This was a necessary step in the development of FFLUX and the results are later 

reported in Sections 5 and 6. 

      Figure 1.6.5 combines the components outlined above and introduces the key function used to 

map the features and properties: 

 

Figure 1.6.5: Summary of kriging machine learning applied to  sampled triglycine system (top left) with 

geometrical features {fk} is partitioned into topological atoms (top right) with accompanying atomic energies 

influenced by the environment surrounding the atom.  Kriging equation (bottom) mapping the features to the 

atomic energies using optimisable parameters θk and pk, and fixed parameters μ and wj. Image taken directly 

from literature comprising Section 5 by Maxwell134 et al., Theor. Chem. Acc., 135:195. 
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where F is the feature vector that collects all Nfeat features fk. Nex is the number of training samples 

used in the training of the model, μ is the mean of the property being trained and wj is the kriging 

‘weight’. Note that the equation given in Figure 1.6.5 is taken directly from Section 5 where only 

a brief explanation of the kriging approach is given with notation relevant to our application, for 

example, using geometrical features hence the choice of ‘f’ and ‘F’. Presented herein is a general 

description kriging, where the input and output variables are given the notation of ‘xi’ and ‘y’ 

instead of ‘fj’ and ‘f’ (and ‘x*’ instead of ‘F’)’, respectively. This is in order to better make contact 

with the original literature reporting a QCT application of kriging131 which has often been referred 

to in later publications. 

      Until now kriging’s role has been qualitatively spoken about, to be more specific: kriging 

estimates the value of an output (y) through a distance-weighted average of the known values of 

the outputs as trained through a set of inputs (xi). Each input, xi, is a column vector point in k-

dimensional space. For ease, xi and the nout outputs, y, may be represented as row vectors via a 

transpose indicated by (‘) as: 

1 2[ , ,..., ]'i i i i

kx x xx  (1.6.59) 

1 2[ , ,..., ] '
outny y yy  (1.6.60) 

where every input is used, in order, to dictate a single output.  

      Kriging is a linear least-squares type estimator, where the general mapping between inputs 

and outputs can be denoted as: 

( ) ( ) ( ) ( )i i i i

k k

k
kriging

y f      x x x x  (1.6.61) 

where βk is a coefficient to be evaluated and ε is an error term normally distributed with zero 

mean. In the case that is kriging, the equation can be altered to that on the right-hand side, 

whereby the role of ε allows the βk coefficient to instead become a single constant term μ. 

      For a well-conditioned function, two points that are close in conformational training space 

should predict geometrically similar output points. Formally, this is achieved through a Nex x Nex 

symmetric correlation matrix R, composed of Nex training points, comprised of xi and y. Each entry 

xi and xj are correlated entries in row i and column j respectively: 

1

[ ( ), ( ) exp[ | | ]
feat

k

N

pi j i j

ij k k k

k

cor   


   R x x x x  (1.6.62) 

where 
k  ( 0 ) expresses the relationship of each input in feature dimension k, to the change in 

the output y, and 
kp ( 1 2kp  ) depicts the smoothness of the function. Both 

k  and 
kp  are variables 

that must be optimised. Equation (1.6.62) may also be referred to as the kernel function. 
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      As two points in k-dimensional space approach an inter-point distance of infinity, the 

correlation approaches zero. Dropping the k-subscript denoting conformational space gives   and 

p .   and p must be optimised to “minimize the mean squared error of prediction of the kriging 

estimator131”. Computationally, this is achieved by maximising a likelihood function L, which takes 

the form: 

1

1 2

22 2 2

1 ( ) '( )( )
exp

2
(2 ) ( ) | |

ex exN N

y y
L

 


 

   
  

 

1 1R

R

 (1.6.63) 

where σ2 is the variance and 1 is a column vector of 1’s. The formula is derived from the 

description of a Gaussian process. However, for the purposes of this work it is favourable to 

instead work using the natural logarithm of L: 

1
2

2

1 ( ) '( )( )
ln ln( ) ln(| |)

2 2 2

exN y y
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1 1R
R  (1.6.64) 

When Equation (1.6.64) is set to zero and subsequently differentiated with respect to μ and σ, in 

turn, it allows the global expressions for μ and σ ( ̂  and ̂ ) that maximise the value of 

Equation (1.6.64) to be obtained: 
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 (1.6.65)  

and  
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( 1 ) ( 1 )R

(1.6.66) 

respectively, where ‘^’ denotes the global (or average) value. Thus, substituting Equations 

(1.6.65) and (1.6.66) into Equation (1.6.64), gives the maximised log-likelihood function, 

rearranged as: 

2 1
ˆln ln( ) ln(| |)

2 2

exN
L    R  (1.6.67) 

reliant only on   and p . The optimisation of these variables is achieved using an algorithm 

entitled Particle Swarm Optimisation (PSO). The PSO algorithm will be addressed following the 

completion of the remaining kriging description. Alternatively, p may be fixed to a set value 

(typically p  = 2) in order to significantly reduce the complexity of the optimisation and 

consequently speed up the model generation. Fixing p  incurs a slight cost where model accuracy 

is sacrificed, however, this is often found to be minimal and outweighed by the computationally 

more efficient p  = 2 choice. 



58 
 

      With Equation (1.6.67) maximised, ̂  obtained in Equation (1.6.65), is equivalent to the 

in Equation (1.6.61), allowing a prediction of a new point (x*) to be made via: 

1

ˆ ˆ( *) ( * )
exN

i

i

i

y a 


   x x x  (1.6.68) 

where ia and ( * )i x x  are the ith elements of the vectors 
1 ˆ( ) 1a R y  and r, respectively. 

Vector r is calculated via:  

1 2{ [ ( *), ( )], [ ( *), ( )],..., [ ( *), ( )]}'nr cor cor cor      x x x x x x  (1.6.69) 

for which the individual components may be calculated through Equation (1.6.62). 

      The prediction of a test point y at any given point x* may be obtained using Equation (1.6.68), 

also known as the kriging master equation. 

      A model’s kriging landscape passes through every training point exactly, where the mean 

squared error of prediction (s2) is zero: 
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 (1.6.70) 

As such, requesting a model to predict the value of a training point should give exactly the same 

value as that input value used to train the model. This is known as a ‘null’ test of the model, and 

may be used to ensure the model construction has no faults. For every other output prediction, 

kriging will use the model (which incorporates the information of every input training point) to 

make a single prediction on an output point. In FEREBUS, we set aside a subset of sample points, 

from the same sample pool as the training set samples (from EROS or TYCHE), to be used as a test 

set for the evaluation of the accuracy of a model. The test set contains the exact same information 

(features, property values, sample number, etc.) as the training set, however, only the features are 

passed to the model at the validation stage. The model is then used to make a prediction on the 

property value which may be compared to the known (‘true’) value in order to calculate an 

associated error, Δ. The handling of the obtained error(s) will be elaborated on in Section 1.7. 

This concludes the kriging algorithm implemented in the in-house program FEREBUS. 

      After a model has been developed and validated, it is important to rationalise the cause of any 

high errors. To do so a couple of factors must be considered: 

1. How smooth is the surface of the property being kriged? If it is undulant it may be 

necessary to refine it, for example, by including additional, or better quality, training 

points in order to better capture the behaviour of the energy surface. Ideally, the energy 

surface of a particular energy component is smooth. However, when there are many 
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contributing energies composing a total energy, the amount of partitioning will play a 

role. An energy that is made up of many contributing energies, such as a molecule’s 

energy, will be difficult to capture within a single functional. It will be even more difficult 

to generalise this function to other systems, evidenced by the shortcomings of many 

classical force fields. Kriging’s robustness of modelling any data surface is the reason it 

was chosen to begin with.  

2. Are the test points outside the domain of applicability (DOA)? The domain of applicability 

is defined by the region of conformational space in which the training is performed and a 

prediction may be interpolated from135. Attempting to predict a point outside of this 

region will cause the model to either make an extrapolation to the prediction point or, if 

far from the training range, instead give the average value of the model as the predicted 

value. Both solutions have the potential of causing a large error on the prediction. 

      In order to address these concerns, it is necessary to consider them in the model building 

process by ensuring: (1) only accurate input data is used within the training procedure, reducing 

the chance of any pre-existing data errors deteriorating the quality of the kriging model, and (2) 

enough training examples are included as considered computationally feasible, given any time 

constraints. Theoretically, a kriging model should get better the more training points are included 

within it. 

      On a final note, in this body of work only kriging is considered for the machine learning step. In 

the past Neural Nets (NNs) have been employed for modelling multipole moments136 and 

potential energy surfaces (PESs)137, however, they were observed to be inferior compared to 

kriging since: 

 NNs suffer from ‘over training’, creating a noise-like error if too many points are included 

in the model. These extra points can cause the generality of a network model to 

deteriorate. 

 NNs, depending on the number of hidden nodes, are computationally expensive when 

modelling a problem with many dimensions138. 

 

1.6.1 Particle Swarm Optimisation (PSO) 

 

      Particle Swarm Optimisation139 is an algorithm employed for the optimisation of the   and p

kriging parameters. The   and p  values are determined, in space, whereby they maximise the 

logL function in Equation (1.6.64). PSO, as the name suggests, uses a swarm of particles which 

converge upon an optimal solution. PSO is inspired by the actions of a flock of birds or school of 

fish. For example, in the case of birds, all the birds in a flock have a social draw to the bird with 

best feeding position (the global best position). However, each bird will look for a new, better 

feeding position en route to the already known best position, offering the opportunity for a new 
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best position to be found. As such, the birds’ knowledge is iterative in nature, always being aware 

of a new best feeding position. Mimicking this behaviour, PSO uses ‘particles’ in place of birds, the 

feeding positions are the solutions to a parameter of choice (in our case   and p ), and the best 

feeding position is the global best optimal solution known so far. 

      The PSO algorithm follows an 8-step process described below: 

1. Particles are randomly initialised (both position and velocity) in space. A Sobol140 

sequence may be used to initialise the particles so that they populate all available 

dimensions in space uniformly. 

2. The objective function is evaluated for each particle. 

3. Particle solutions are saved. 

4. The global best solution is allocated to the particle with the current best position. 

5. The particle positions and velocities are incremented. New positions and velocities are 

determined based on the particles own experiences (cognitive learning) and the social 

behaviour of the swarm of particles (social learning), whereby the global best solution 

provides the general direction of the particle. Kennedy and Eberhart’s139 original settings 

are used, including the inertia weight factor141. 

6. Personal and global best positions are updated and saved. 

7. Steps 5 and 6 are repeated until the swarm has converged on a single global best solution 

for more than 20 consecutive iterations. 

8. The final value is that of the global best solution. 

      For our purposes the dimensions of space are restricted to that given in the kriging description 

(10 0   and 1 2p  , where  is typically very close to zero, thus is assigned an upper 

boundary of 10). 

      Accompanying the PSO approach are some considerations: (1) when a particle hits a boundary, 

a decision must be made on its re-positioning within the space (boundary conditions), (2) if the 

initial particle positions are poorly chosen, some areas of space may never be explored and, hence, 

some solutions never considered, (3) the weighting of the socially known global best solution 

must be carefully chosen so the iterative steps are not too large towards the current best solution, 

(4) a decision must be made on the number of initial particles, and (5) in many dimensions the 

optimal solution can be computationally expensive to locate. Within the model building process, 

the PSO optimisation of   (and possibly p ) is the most computationally expensive step. 
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1.7 FFLUX and the GAIA Protocol 
 

      FFLUX does not operate within the traditional force field framework described in Section 1.2. 

Instead of accounting for a system’s energy through bonded and non-bonded contributions, 

FFLUX uses the atomic energies obtained through the IQA framework. Despite FFLUX having a 

novel architecture, sharing the same purpose as other FFs allows for some comparison of the 

frameworks involved. Table 1.7.2 shows an approximate comparison of the classical FF and 

FFLUX frameworks. 

Classical FFs FFLUX 

Bonded/Non-bonded classification 

QCT Topological atoms  

with IQA-partitioned energies 

Standard potentials and parameters 

mimicking basic geometric effects 

(e.g. Morse potential) 

Kriged IQA energies 

(atomic models incorporating a function 

with only two* optimised parameters) 

Point charges Multipole moments 

Samples  for parameterisation obtained 

from experiment or computation 

Samples obtained via a normal modes 

sampling procedure 

Extra potentials added to correct for 

standard potentials missing contributions 

or under/over-stabilising interactions 

Not required  

(the electron density accounts for all 

observable effects) 

Table 1.7.2: Framework comparison between classical FFs and FFLUX. *One if p is fixed. 

 

      FFLUX sees a system from a purely topological perspective, that is, a collection of topological 

atoms aware of their local environment via a local axis frame (features) with accompanying 
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atomic energies derived from the electron density and nuclear charges. Modelling the atomic 

energies with respect to geometrical changes allows FFLUX to offer a gradient-like description of 

the system energy, gradually changing with the geometrical environment.  

      There are also a couple of common themes to the development of both FF frameworks such as: 

1. Transferability: Transferability is the ability to use a smaller and computationally 

cheaper set of data, in place of a much larger and expensive set. Typically this 

influences the parameterisation domain, whereby suitable ‘small’ fragments must be 

obtained as appropriate representatives for the larger unobtainable (or much more 

expensive) system of interest. If chemistry was simple, a ‘cut and paste’ approach 

would be suitable for this, however, chemistry is far from simple and requires a 

significant amount of investigation to determine what a transferable fragment should 

consist of. 

2. Atom Typing: Atom typing follows on from transferability. Atom typing involves the 

classification of the transferable fragment in a manner that allows it to be selected 

when required. In other words, the atom type is the label of the transferable 

fragment. The simplest example of atom typing is the periodic table which separates 

atoms into elements based on their atomic number and mass. In force field 

development142-145, atom typing must consider many contributions towards the 

classification (phase/excitation/hybridisation state/non-bonded state/molecule    

type/etc.) and usually results in a long list of atom types with many variations for a 

single element. A poor combination of atom types will have a deteriorative effect on a 

force field146. 

      The strategy behind FFLUX was published147 in 2015 under a previous name: QCTFF. The 

publication depicts the original (IQA) energies that FFLUX was constructed to incorporate. Since 

then, the energies have been explored further and the framework expanded134 for increased 

control for the user. As shown earlier, the IQA energies may be arranged in a variety of 

arrangements, each accurately recovering the total system energy. Recalling Equation (1.4.44): 

system A A AA' A AA' AA' AA'

IQA IQA intra inter intra cl exch corr

1 1 1 1
( ) ( )

2 2 2 2A A A

ApproachA ApproachB ApproachC

E E E V E V V V          (1.4.44) 

shows how: (Approach A) a single term (
A

IQAE ) is sufficient to model an atom’s energy, (Approach 

B) two terms may be used to model an atom’s energy (
A

intraE +
AA'

inter

1

2
V ), or (Approach C) four terms 

may be used (
A

intraE +
AA'

cl

1

2
V +

AA'

exch

1

2
V +

AA'

corr

1

2
V ). Note that exchange and correlation may be combined 

(subscript ‘XC’) depending on the level of theory and the capacity to therefore include a 
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correlation contribution. An additive approach benefits FFLUX by allowing a ‘dial-like’ control for 

the user. Should chemical insight in the atomic interactions not be a priority, approach A can be 

used also enabling faster computation. However, if chemical insight is considered important, 

approach C should be used. An intermediate option is also available through approach B. The 

accuracy of each approach is later detailed in Paper 4 (Section 5). 

      GAIA is the lynchpin of FFLUX. GAIA is an in-house perl script comprised of ~3000 lines of 

instructions designed to automate the majority of FFLUX’s procedures along a pipeline-like 

pathway. GAIA ensures the output of one program becomes the input to the next, performing any 

necessary file handling and manipulation in between. In total, 5 key milestones form the GAIA 

path, each with appropriate sub-steps detailing the tasks composing each milestone. The GAIA 

path is presented in Figure 1.7.6, where a key is used to distinguish between an input step 

(purple), action or file handling step (blue), an in-house software calculation (orange) and an 

external software calculation (green). Previously reported variations147,148 of GAIA (then known as 

PIPELINE) presented the tailored pathway for use with atomic multipole moments only.  Figure 

1.7.6 is purposely kept general, enabling the property to be either multipole moments or IQA 

energies.       

 

Figure 1.7.6: GAIA protocol used to develop kriging models for FFLUX. Image taken directly from literature 
comprising Section 4 by Maxwell134 et al. Theor. Chem. Acc., 135:195. 
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      Some programs have already been introduced in previous sections, for example, EROS/TYCHE 

(Section 1.5) and FEREBUS (Section 1.6).  However, we will now describe the actions performed 

by each program along with the file manipulation steps involved between them. 

GAIA Milestone 1: 

      The first step in GAIA is to take a seed geometry (can be an equilibrium or non-equilibrium 

geometry) and generate a set of sample geometries capturing the neighbouring PES of the seed. 

The sample set should have enough samples to train a model, whilst having sufficient extra 

samples to later test the model with. The in-house sampling program, either EROS or TYCHE, is 

used to generate the samples. EROS requires two key user-defined input parameters: (1) bond 

and angle stretch constraint factors, c (typically between 1.10 and 1.20), and (2) input energy, E 

(hundreds of kJmol-1). Alternatively, TYCHE may be used, also requiring two key user-defined 

input parameters: (1) temperature for the sampling to be performed at, T (typically 298 K), and 

(2) ncycles, the number of samples to generate before the energy is perturbed by the Gaussian-

distributed value. Both programs will generate a specified number of samples, in .gjf (Gaussian Job 

Format, GJF) format, upon which single-point energy calculations may be performed in the next 

milestone. 

GAIA Milestone 2: 

      The second step of GAIA protocol is to take all the sample .gjf’s generated by the sampling 

program, reformat the header line which dictates the level of theory desired for the later 

Gaussian09123 calculation, then randomly shuffle them to ensure there is no correlation between 

sample file name and system geometry. Both sampling programs are designed to already avoid 

this, however, for peace-of-mind the shuffling is still performed. The re-formatted and shuffled 

sample set geometries are submitted to the commercial software Gaussian09123 for single-point 

energy calculations to be performed (obtaining the ab initio system energy) and the respective 

molecular wavefunctions to be printed into wavefunction (.wfn) files. 

GAIA Milestone 3: 

      The third step of the GAIA protocol is to take the wavefunction files and, using the commercial 

software AIMAll88, perform the QCT and IQA partitioning analyses described earlier. A variety of 

AIMAll parameters may be user-defined that influence this step, and are detailed in the README 

of the software package. Note, a variety of AIMAll versions are used and reported accordingly in 

each section. The multipole moments may be calculated with little computational expense for 

medium-sized (hundreds of atoms) molecular systems, however, the much more computationally 

expensive IQA analysis limits the molecular system size possible to much smaller systems (tens of 

atoms). The common user-defined parameters that will feature in this thesis are summarised in 

Table 1.7.3. 
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Parameter Title Action 

encomp Energy Components Number of IQA energies to calculate 

iasmesh 
Interatomic Surface 

Mesh 

Controls the target spacing between adjacent 

IAS paths, influencing the atomic integration 

accuracy. 

boaq 
Basin Outer Angular 

Quadrature 

The outer angular basin quadrature, 

influencing the atomic integration accuracy. 

usetwoe Use TwoE program 

Use the TwoE program for the calculation of 

eeV  components. 

B3LYP/M062X 

keyword 

Wavefunction 

appendage 

Flags to AIMAll to follow the appropriate 

B3LYP/M06-2X exchange-correlation 

algorithm 

Table 1.7.3: Summary of common AIMAll input parameters and their purpose. 

Each of these parameters are designed with a command line operation of the program, 

alternatively, the program may be used on a desktop computer where a GUI may be used to 

appropriately select the desired options. 

      Finally, upon completion of the AIMAll calculations, the output files (various formats: .int, .sum, 

.mpg, etc.) are compiled and sorted by topological atom label. 

GAIA Milestone 4: 

      Following the manipulation of the AIMAll output files, the desired property data must be 

extracted and re-compiled, building the necessary input files for the machine learning step. The 

milestone of this menu in the GAIA protocol regards the machine learning of the atomic 

properties, through the kriging algorithm implemented in the in-house software FEREBUS. 

      Before the FEREBUS input files are generated, each atom has a ‘RAW’ file generated listing the 

atomic coordinates together with: the property data (multipole moments or IQA energies, the 

integration error, L(Ω), and the number of that sample.  The RAW file is then subject to a process 

called scrubbing. Scrubbing is the filtering of the RAW files, resulting in the removal of any sample 

with an integration error exceeding a user-defined threshold (typically 0.001 Hartrees). After each 

atomic RAW file is scrubbed, a loop over each RAW file is performed to remove remaining atomic 

samples composing the same molecular sample of a scrubbed atom. For example, if sample 0010 

is removed from the N1 RAW file, all other atoms composing sample 0010 will be removed from 

their respective atomic RAW files. This step ensures that the exact same samples populate the 

RAW file for every atom. Such an action will ensure that whole molecular samples are trained for 
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and used making predictions upon, not just fragments of samples. This allows predictions upon 

the atomic properties for an entire molecule, so that, when summed, they may be compared to ab 

initio molecular energies.  

      Next, the RAW files are converted into training set files. Training set files have the same format 

as the RAW file except the atomic coordinates have been converted into the 3N-6 features 

(defined using the ALF) described earlier. In the training set file, each line represents a sample.  

Lines 1 to x are the training points, x being the number of training samples desired. The next y 

number of lines are set aside as the test set samples, to be later used for the validation of the 

model. One extra input file (FINPUT.txt) is used to input the user-defined parameters described in 

Section 1.6. Finally, the kriging machine learning is performed and the atomic models are 

generated by the FEREBUS software. 

GAIA Milestone 5: 

      The last step of the GAIA protocol is to validate the accuracy of the kriging models using the 

test set of samples. The models are used to predict the atomic property values from the 

geometrical features of the test set samples. Each predicted property value is compared to the 

known ‘true’ value and a difference calculated, 
system

IQAE . 

      Much of this thesis focuses on the training for, and prediction of, the IQA atomic energies (
A

IQAE

,
A

intraE , 
AA'

interV , 
AA'

clV  and 
AA'

XCV ). Three possible combinations of these energies (approaches A, B and 

C, described earlier) allow the full molecular energy of a system to be accounted for. As such, in 

order to obtain the error on the prediction of a full system’s energy, a prediction must be made for 

every atomic energy modelled and for every atom within the system, and summed. A few 

equations are now presented detailing the notation for each error. 

      The difference between the predicted atomic property, 
A

Y,PredE , and true value of that atomic 

property,  
A

Y,ActE , are summed across each energy model (energy type denoted Y, up to n models), 

and then across each atom (denoted A) to obtain the system energy error for a predicted sample. 

The absolute value of this error is then taken to obtain the absolute system energy error, 
system

IQAE , 

given in Equation (1.7.71): 

3
system A A

IQA Y,Act Y,Pred

A Y

[ ]
atomsN n

E E E


     (1.7.71)  

The number of models, n, used to describe an atom can be either 1, 2 or 3 according to the three 

possible IQA energy combinations A, B and C. ‘Act’ is short for actual and ‘Pred’ is short for 

predicted, referring to the origin of the energy value (calculation or via modelling). Each sample’s 
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system

IQAE  error may be illustrated on a single plot known as an S-curve. S-curves have become 

synonymous with the Popelier group over recent years, and are used to easily represent and 

compare the quality of kriging models. On an S-curve, the x-axis denotes the absolute system 

energy error (
system

IQAE ), and the y-axis denotes the number of test points represented as a 

percentage. For example, if we had 500 test points, a point would appear at every 100% / 500 = 

0.2 % on the y-axis. The 
system

IQAE  values are ordered from lowest to highest, and plotted 

accordingly. The end result is a figure with the pattern of the plotted points resembling the shape 

of an ‘S’.  

      It is also useful to attribute a single error with a model or group of models. Such an error may 

then be assumed to be the noise on a prediction made using that model. The Mean Absolute Error 

(MAE) is used as such an error measure. To calculate the MAE for a modelled system, the 

prediction errors, 
system

IQAE , obtained for every test point must be summed and divided by the 

number of test points, Ntest, as follows: 

system system

MAE IQA,

1

1 testN

M

Mtest

E E
N 

    (1.7.72) 

where M represents the sample number, up to a maximum of Ntest samples. In other words, the 

system

MAEE  represents the average ± error on a prediction. 

      In the same way that the sampling procedure produces samples with a range of system 

energies, the partitioned IQA atomic energies will also be seen to fluctuate within a range 

(typically ~hundreds of kJmol-1). The range observed for each IQA atomic energy fluctuates with 

three main factors: (1) the type of energy in question, (2) the effect the sampling has on said 

energy, and (3) the atom type and position within the system. The normal modes sampling will 

cause some energy ranges to be large and some to be much smaller. As a result, it could be 

considered unfair to compare MAEs of drastically differently models, whether they regard 

different atom types or different energy types. Hence, in order to compare atomic model errors it 

is also useful to represent the error as a percentage of the sampling range of that specific property. 

The MAE% error may be defined as: 

i

TestSet TestSet

MAX MIN

% MAEE
MAE

E E





 (1.7.73) 

where MAX and MIN refer to the actual maximum and actual minimum energies present within a 

given energies test set. Equation (1.7.73) is intentionally kept general by the inclusion of ‘i’, 

where i may represent either ‘system’ for the MAE% of the 
system

IQAE  error, or ‘A’ for the MAE% of 
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an atomic energy error, for example 
A

IQAE  (or 
A

intraE , AA'

inter

1

2
V , AA'

XC

1

2
V or AA'

cl

1

2
V ). 

Accordingly, the subscript MAE only indicates that the MAEs of the energy type in question are 

inputted, hence, why the subscript is not generalised to accommodate the energy type. 

      This concludes the description of the GAIA protocol used in the development of kriging models 

within FFLUX. Section 11, which details the direction of future work, includes a discussion of the 

next version of GAIA which will be capable of modelling and combining both long-range multipole 

moments and IQA energies using a single protocol. It will be important for both to be carefully 

modelled for the proper description of the tertiary structure of larger systems. 
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1.8 Geometry Optimisation 
 

      To date, much of the literature regarding the development of FFLUX has addressed the 

development of the GAIA protocol and the validation of the atomic models generated by it. Paper 8 

(Section 9) of this thesis presents the first application of the atomic energy models in the field of 

geometry optimisation. Geometry optimisation (or geometry relaxation) was chosen as the most 

suitable validation test for the proof-of-concept of the FFLUX force field because there is a known 

‘correct answer’ available, the optimised ab initio geometry (also referred to as the QM minimum). 

A successful geometry optimisation of a system, using FFLUX models, would correctly recover 

both the energy and geometry of the seed system. For the examples presented in this thesis, the 

seed is the QM minimum (equilibrium) geometry enabling such an ideal comparison to be made. 

To clarify an earlier point, the seed (original configuration being sampled around) is never 

included in a kriging model, thus, this test does not act as a null-like test of a kriging model.  

      In order to validate FFLUX using geometry optimisation, a computational package 

incorporating geometry optimisation algorithms was identified: DL_POLY149 (v4.05). DL_POLY is a 

molecular dynamics (MD) simulation package which incorporates two simple geometry 

optimisation algorithms: (1) Zero Kelvin optimisation (0 K) and (2) Conjugate Gradients 

optimisation (CG). Either may be performed as part a minimisation protocol before a molecular 

dynamics simulation is performed. As such, the optimisation algorithms are basic since they are 

not designed to be the main application of the package. However, they are suitable for our 

preliminary investigations. It is hoped that the DL_POLY package will also be used in future work 

regarding a molecular dynamics simulation using the FFLUX force field. 

      Each geometry optimisation algorithm will now be described in turn, detailing the concepts 

they are built upon and their respective performance differences: 

Zero Kelvin (0 K) 

      A system is minimised by performing a low temperature molecular dynamics simulation where 

the simulation temperature is capped at 10 Kelvin (in spite of the 0 Kelvin name). The computed 

forces and velocities are calculated at each timestep (evaluated from the energies predicted by the 

atomic kriging models) and are used to simulate the progression of the system towards the 

modelled minimum geometry. The forces and velocities are dynamically scaled after each 

timestep in the optimisation, ensuring they remain thermostatically controlled. 
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Figure 1.8.7: The zero Kelvin gradient descent approach, where xn denotes the nth optimisation step. Image 

created using the MATLAB program with an algorithm originally created by O. Alexandrov in 2004. 

      DL_POLY’s implementation of the algorithm does not include a stopping criterion, instead a 

finite number of steps that the ‘simulation’ will run for is user-defined in the input file. Typically 

the system will optimise within a few hundred timesteps but will continue making minute (10-6 Å 

atomic displacements) system changes until the finite number of steps is reached. As a result, the 

algorithm is computationally expensive, however, the diagnostic advantages and additional 

exploration of the potential energy surface described using only the forces derived from the 

kriging models allows further validation of the model quality. 

Conjugate Gradients (CG) 

      The concept behind conjugate gradients optimisation is to follow a single search direction until 

the energy cannot be further minimised in that direction, then a new search direction is followed 

at a conjugate to the current direction: 

1

1 1

T

i i
i i iT

i i

g g
s g s

g g


 

    (1.8.74) 

where si and si-1 are the current and previous search directions, and gi and gi-1 are the current and 

previous gradients, exampling the Fletcher-Reeves150 method. The CG method iterates between 

following a given search direction for a given number of adaptive steps, then computing the new 

conjugate direction and step size until a final geometry is reached. A final geometry is reached 

when any search direction causes a rise in system energy and whereby a convergence criterion is 

satisfied. The convergence criterion is satisfied when the current and previous geometries differ 

by less than a given threshold value. In DL_POLY, there are three options for the CG convergence 

criterion: (1) distance (bond lengths), (2) system energy, and (3) atomic force. In a more advanced 
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optimisation algorithm, multiple criteria would need to be satisfied to signal the convergence of 

the optimisation. Here, each criterion may have a user-defined value in the input file which the 

optimisation will continue until that criterion is met (by all atoms) or the calculation ends by not 

satisfying the criterion after x timesteps, where x may also be user-defined. In our applications the 

distance threshold is typically used, indicating that the geometry (bonds) of the system have 

sufficiently converged to within a given threshold.  

 

Figure 1.8.8: The conjugate gradients method. Image taken directly from “An Introduction to the Conjugate 

Gradient Method Without the Agonizing Pain” by J. R. Shewchuk, 1994151. 

      Throughout the optimisation, the system will take adaptive step-sizes (much fewer than in the 

0 K method), allowing a faster optimisation compared to 0 K. An extensive user manual is 

available for DL_POLY which is recommended for further details regarding the optimisation 

algorithms and general program capabilities. 

DL_POLY 

      In order for DL_POLY to incorporate the models generated by the GAIA protocol, additional 

modules were implemented within DL_POLY’s code. The modules are purposely designed to be as 

self-contained as possible in order to avoid altering DL_POLY’s core code, but enable DL_POLY to 

compute the atomic forces from the predicted energies obtained from a kriging model. Before the 

forces may be computed, it is necessary to convert the features defined in the ALF frame into a 

global Cartesian frame using the chain-rule. This may be completed by: 

** *

*
1

ˆ ˆ( ) ( )featN

k

ki k i

xy x y x

a x a 


 


  
  (1.8.75)  
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where 
*

kx  denotes the k-dimensional feature space frame and i the global coordinate acting on a 

global Cartesian frame a, for the atom Ω. 

      GAIA’s advantageous choice of atomic energy descriptions (approaches A to C, see Section 1.7) 

which describe the energy of an atom, is supported within the altered DL_POLY program. In other 

words, DL_POLY is capable of using any energy model (or combination of models) to predict the 

energy of a given geometry. At every step of an optimisation, DL_POLY will compute the forces 

acting upon an atom using each energy model describing it. The use of AA’ IQA energies makes the 

calculation of the IQA atomic forces much simpler compared to the forces required by the long-

range electrostatic energy when described through atomic multipole moments79. The atomic force 

exerted upon an atom Ω (or A), by the total atomic energy, IQAE , is equal to the first derivative of 

the energy, such that: 

IQA

i

i

E
F










 


 (1.8.76) 

where, again, i is the global coordinate acting on an atom Ω, within a global frame α. When more 

than one atomic energy is used to describe an atom the equation becomes: 

' ' '

intra inter intra cl XC1 1 1

2 2 2

IQA

i

i i i i i i

E E V E V V
F

     

     



     

         
             

           
 (1.8.77) 

dependent on the number of energies being used to describe the total atomic energy. 

      The force acting upon the entire system may be obtained, like in IQA, through the summation of 

forces across all atoms, Ω, in the system: 
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  (1.8.78) 

      The computation of the above forces enables a geometry optimisation algorithm to 

incrementally relax the geometry of the system, according to the guidance provided by the atomic 

forces, until a given end point (0 K) or convergence criteria (CG) is reached. 

      This concludes the description of all the methods used within this thesis. Some of the methods 

(IQA theory compatibility, IQA kriging, optimisation using IQA, etc.) were developed as a result of 

the work presented in later sections. Each section details the investigations and results that led to 

the development of such methods. Presented in the next section, is a note detailing the 

organisation of the thesis, briefly describing how each section tackles a fundamental element 

within the development of FFLUX. The section also indicates the contribution of the authors 

towards each body of work. Finally, each results section is accompanied by a preface elaborating 

on the brief descriptions given in Section 1.9.  
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1.9 A Note on the Organisation of the Thesis and Author Contributions 

 

      The goal of this PhD required a number of topics to be investigated, each addressing and 

aiming to better understand core aspects within the development of a force field entitled FFLUX. 

Whilst each sub-body of work is self-contained, they share the same goal: towards the 

development of FFLUX. Initial work, in Paper 1 (Section 2), investigated the suitability of using 

the Interacting Quantum Atoms (IQA) approach as an energy framework for FFLUX to be based 

upon. This work was followed by extending IQA’s applicability to a commonly used level of theory 

(Density Functional Theory (DFT)), in Paper 2 (Section 3). Following the encouraging results 

from Papers 1 and 2, Paper 3 (Section 4) utilises the IQA extension developed in Paper 2 and 

completes a second torsional analysis, this time on dipeptide systems which often feature in force 

field validation literature. Each investigation within Papers 1 - 3 (Sections 2 - 4) allows a better 

understanding of the IQA energy framework, from which all later work can build upon. 

      Papers 4 and 5 (Sections 5 and 6) both address the next step in the development of FFLUX: 

the core architecture. After the initial works of Papers 1 – 3, suitable IQA atomic energies were 

selected to be incorporated into the core energy framework of FFLUX. The work within Papers 4 

and 5 was completed to investigate coupling machine learning with these IQA energies, providing 

the first (and second) investigation(s) of such an approach in the literature. Each paper validates 

the approach upon different systems, and via different model-building approaches. Paper 4 

investigates modelling the IQA energies and compares the errors when the molecule is 

represented using different IQA energy descriptions (see Equation (1.4.44)). Paper 5 expands the 

approach of Paper 4, this time modelling the energies of weakly bound complex systems, where it 

was also necessary to introduce a novel sampling procedure in order to effectively model systems 

comprising of more than one molecule. Both works were necessary to provide proof-of-concept 

that the energy models generated would be of sufficient accuracy for the aspirations of FFLUX. 

Combining machine learning with QCT parameters was not novel; the Popelier group had 

previously published work on the machine learning of multipole electrostatic moments using the 

machine learning method kriging. However, the application to IQA energies, which represented a 

molecule’s total molecular energy including the electrostatic contribution, brought new challenges 

and fulfilled a large gap in the construction of FFLUX. 

      After successfully modelling the IQA energies, the next step in the development of FFLUX was 

to investigate the extent of geometrical data required by the machine learning to build 

transferable models. To accomplish this, Papers 6 and 7 (Sections 7 and 8) investigate the 

convergence of IQA energies in two system types of interest: oligopeptides and water clusters. 

Determining the geometric limits necessary for energy convergence allows the relationship 

between geometry and energy fluctuation to be better understood, in turn enabling future model 

building to better informed. The information uncovered in these publications, along with 

others133,142,152, can be used in the design of transferable models. 
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      The findings in Papers 1 - 7 (Sections 2 – 8) allowed the architecture of FFLUX to be carefully 

designed incorporating existing in-house and external software packages previously developed 

and used by the Popelier group. The work involved liaising with the authors of each package to 

design parameters suitable for operating with IQA energies and a protocol allowing them to work 

cooperatively within FFLUX. Together they are streamlined into a process called the GAIA 

protocol.  

      The research culminates in Paper 8 (Section 9) where FFLUX’s kriging models are first used 

within a geometry optimisation context. Paper 8 is split into two analyses: (Part I) the first is a 

detailed optimisation analysis of the water monomer, comparing the optimisation performance of 

a variety of kriging models, initialised both inside and outside of the trained conformational space, 

and (Part II) the second is an optimisation analysis of a series of small molecules, where energy 

trajectories of thousands of optimisations from distorted points are analysed. Together, Parts I 

and II represent the latest tool in the validation of the FFLUX force field. 

      Throughout the PhD, multiple topics were studied simultaneously. The papers (chapters) are 

arranged in a logical order, not necessarily chronological. At the beginning of each section, a 

preface elaborates on the scope of the work contained in that section, reiterating its position 

within the general goal of the PhD. Further to the results chapters, Appendix A documents some 

internal benchmarking calculations justifying the choice of the AIMAll software within the GAIA 

protocol of FFLUX. In addition to the force field research, a separate publication was achieved 

through collaboration. In this collaboration, data was generated to compare with another research 

groups’ approach to predicting hydrogen bond acceptance. The work was performed as a 

digression to the force field development and, subsequently, is included in Appendix B reflecting 

this distinction. 

 

Author Contributions 

 

Paper 1 (Section 2) - On the Physical Origin of the Two Torsional Energy Barriers in Biphenyl 

P. I. Maxwell, J. C. R. Thacker, P. L. A. Popelier 

To be Submitted 

      Within this work, PIM carried out all calculations and completed the energy analysis of atomic 

energy trends. JCRT developed the computational program ANANKE and performed the force 

analysis (validating PIM’s energetic analysis). The manuscript was co-written by PIM (Figures, 

Tables, Methods, Results and Discussions, Conclusions) and PLAP (Introduction and IQA methods 

– based upon extensive notes by PIM). 
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Paper 2 (Section 3) - Extension of the Interacting Quantum Atoms (IQA) Approach to B3LYP Level 

Density Functional Theory (DFT) 

P. Maxwell, Á. M. Pendás, P. L. A. Popelier 

Phys. Chem. Chem. Phys., 2016, 18, 20986-21000. 

      Within this work, PIM, PLAP and AIMAll author T. Keith decided upon the strategy behind the 

IQA-B3LYP algorithm which was subsequently implemented into the AIMAll program by T. Keith. 

The results presented in the paper were calculated and analysed by PIM with some extra 

theoretical clarifications being contributed to the discussion section by ÁMP. The publication was 

firstly written by PIM, with some discussion points contributed by ÁMP. PLAP provided 

substantial feedback resulting in the improvement of the manuscript through iterative drafting 

and co-analysis sessions with PIM. 

 

Paper 3 (Section 4) - Unfavourable Regions in the Ramachandran plot: Is it Really Steric 

Hindrance? The Interacting Quantum Atoms (IQA) Perspective 

P. I. Maxwell, P. L. A. Popelier 

Submitted (J. Chem. Theory Comput.) 

      All the calculations, initial data analysis and compilation of results were performed by PIM. The 

manuscript was initially written by PIM and completed through co-editing sessions with PLAP. 

Throughout the investigation, PIM and PLAP held discussions to jointly observe and identify 

trends in the data and, later, to separate the material into main body and supplementary texts. 

 

Paper 4 (Section 5) - The Prediction of Topologically Partitioned Intra-atomic and Inter-atomic 

Energies by the Machine Learning Method Kriging 

P. Maxwell, N. di Pasquale, S. Cardamone, P. L. A. Popelier 

Theor. Chem. Acc., 2016,135:195. 

      All calculations and models built using the GAIA protocol were performed and generated by 

PIM, using software developed by NdP (FEREBUS) and SC (TYCHE). PIM assisted the tailoring of 

the GAIA protocol for the IQA investigation. The manuscript was written by PIM, with a sampling 

background section contributed by SC, and some final editing by PLAP. Throughout, PLAP 

supported the project offering continued guidance on all aspects, including the development of 

both TYCHE and FEREBUS programs. 
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Paper 5 (Section 6) - Accurate prediction of the energetics of weakly bound complexes using the 

machine learning method kriging 

P. I. Maxwell, P. L. A. Popelier 

Struct. Chem., 2017, DOI: 10.1007/s11224-017-0928-9. 

      In this paper, TJH (acknowledged) completed some preliminary work on the complex sampling 

procedure within his thesis. PIM carried out all calculations and analysed the resulting data, 

compiling them into the results presented. Historically (Paper 2), PIM and PLAP were also 

involved in the expansion of IQA to M06-2X-functional wavefunctions. The manuscript was 

written by PIM with some final editing by PLAP. 

 

Paper 6 (Section 7) - Transferable Atoms: An Intra-atomic Perspective Through the Study of 

Homogeneous Oligopeptides 

P. Maxwell, P. L. A. Popelier 

Mol. Phys., 2016, 114:7-8, 1304-1316 

      In this publication, PIM performed all the calculations, data analysis and compilation of the 

results. The manuscript was written by PIM with final editing being completed by PLAP. 

 

Paper 7 (Section 8) - The Long-range Convergence of the Energetic Properties of the Water 

Monomer in Bulk Water at Room Temperature 

S. Davies*, P. Maxwell*, P. L. A. Popelier 

*Joint first authors 

Under Review (Phys. Rev. Lett.)  

      Within this study, SD obtained the cluster snapshots from MD simulations, including 

developing code to assist the process. PIM managed and carried out all of the calculations and 

performed the analysis on the convergence of the IQA energies. SD carried out the analysis on the 

convergence of the multipole moments. The paper was co-written, through an iterative process, 

by SD and PIM, followed by some final editing by PLAP. 
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Paper 8 (Section 9) - Geometry Optimization with Machine Trained Topological Atoms 

F. Zielinski, P. I. Maxwell, T. Fletcher, N. di Pasquale, S. Cardamone, S. Davie, M. Mills,     P. L. A. 

Popelier 

To be Submitted 

      All calculations, model generation, optimisations and analyses presented were completed by FZ 

and PIM. However, the research addresses the first working application of FFLUX models and in 

doing so was made possible using the programs and knowledge developed by a number of 

authors, whose significant contribution(s) are as follows: 

 ZF made the necessary programming changes to DL_POLY enabling it to operate using 

atomic forces calculated from the IQA kriging models. ZF wrote a number of scripts to 

simplify the generation of inputs and extraction of results from outputs, additionally 

allowing the output data to be aggregated and visualised graphically. ZF also performed 

some optimisation runs. 

 PIM proposed the strategy of using IQA atomic energy models to perform a geometry 

optimisation (with PLAP). PIM designed the architecture of how the atomic energies 

should be modelled, as an adjustment of GAIA, and how they may be collectively used to 

represent a molecular system. Together, ZF and PIM decided upon how atomic forces 

should be calculated from the energy models. PIM also generated all kriging models, 

performed optimisations on a variety of case examples and analysed the resulting data. 

 TF optimised the GAIA protocol enabling the models to be generated as efficiently as 

possible. TF also performed many studies on atomic transferability. 

 NdP developed the kriging algorithm with FEREBUS making the models as accurate and 

computationally efficient as possible. 

 SC developed the sampling protocol within EROS and TYCHE allowing the models to be 

parameterised using realistic training data. 

 SD investigated the optimisation of the interaction of electrostatic multipole moments 

and contributed insight towards understanding the importance of the kriging parameters 

and the intelligent selection of training features. 

 MM was involved in the development of the ALF and of the atomic force equations 

necessary for the interaction and incorporation of electrostatic multipole moments. Such 

equations proved a source of information when determining the equations operating on 

the IQA energies used in this study. 

 PLAP guided the research throughout and pioneered the FFLUX force field from 

conception to first application (presented here), offering invaluable support towards the 

development of every component within GAIA and DL_POLY. 

      To address the writing of the manuscript, ZF, PIM, TF and PLAP co-wrote the introductory and 

Part (I) sections of the manuscript, each contributing individual text contributions corresponding 
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to the protocols developed and analyses performed by each. The text was initially compiled by 

PIM and ZF, subsequently edited by PLAP, then, a final edit performed again by PIM. During the 

final edit of PIM, Part (II)’s results section was written by PIM and appended to the final 

manuscript for the purposes of this thesis. 
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2. Paper 1 - On the Physical Origin of the Two Torsional 

Energy Barriers in Biphenyl 

          P. I. Maxwell, J. C. R. Thacker, P. L. A. Popelier 

Status: To be Submitted 

 

Preface 
 

     Prior to the research presented within this thesis, the majority of the work surrounding the 

development of FFLUX (then known as QCTFF) concentrated on successfully testing and 

modelling the long-range electrostatic interaction energy recovered through the use of multipole 

moments. The steps involved took time but were achieved successfully. In order to go beyond the 

electrostatic contribution, it was necessary to determine a suitable energy partitioning approach 

capable of accounting for the non-electrostatic contribution of a system.  

      The first paper of this thesis aims to better understand the insight and capacity that the 

Interacting Quantum Atoms (IQA) energy partitioning approach allows. Based on the outcome of 

the research, and if IQA performs well, the partitioning could be considered to account for the 

non-electrostatic energy contribution within FFLUX. These considerations are presented through 

other research topics forming Papers 3 and 4 (Sections 4 and 5). The research presented in this 

paper also acts as an example of a typical IQA analysis, whereby the interactions within a system 

wish to be better understood. 

      The cause of the two torsional barriers in the biphenyl system, which has often been disputed 

in the literature90, 154-156, was chosen as the basis for the investigation. Whilst also understanding 

the IQA partitioning better with FFLUX in mind, the application to biphenyl would offer an 

insightful view into the causes of the planar and perpendicular barriers which continue to be of 

general interest in the field. Importantly, the investigation would also show how the IQA-

partitioned energies fluctuate and change, allowing an interpretation of chemical effects such as 

steric congestion. 
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Abstract 

Biphenyl is a prototype molecule important for the understanding of stereoelectronic effects. 

In the gas phase it has an equilibrium central torsion angle of ~45o, and shows both a planar 

and a perpendicular torsional energy barrier. The textbook explanation for the planar 

torsional barrier is steric hindrance between the two ortho-hydrogens. Here we show that 

this explanation is incompatible with a modern and rigorous theory of chemical structure and 

bonding called Quantum Chemical Topology (QCT). This parameter-free, orbital-free and 

reference-state-free theory defines atoms as non-overlapping regions in 3D space. QCT 

partitions molecular energy into three primary energy contributions: the intra-atomic energy 

(
intraE ) and two interatomic potential energies covering electrostatics and exchange-

correlation (
clV and

XCV ). The planar barrier now results from the intra-atomic destabilisation 

of atoms near the central torsion angle. Surprisingly, QCT shows that there is a stabilising 

interaction between the ortho-hydrogens, actually countering the energy barrier. On the 

other hand, the perpendicular barrier results from destruction of conjugation between the 

phenyl rings, however countered by intra-atomic stabilisation due to reduced steric 

congestion. 

 

Introduction 

      Quantum chemistry has developed into a powerful first principles science, able to make 

predictions on the energy and geometry of molecular systems, independent of experiment. 

While using less and less computing time, sophisticated algorithms deliver increasingly 

accurate chemical information in full agreement with experiment. This is true for gas phase 

energies and geometries of molecules of ever increasing size. However, quantum chemistry is 

mailto:paul.popelier@manchester.ac.uk
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less conclusive in settling questions on the interpretation of observed phenomena such as 

torsional energy barriers, whether obtained by computation or experiment. 

      In 2008, Johansson and Olsen built on previous computational studies1-4 to carry out the 

highest-level ab initio calculations to date, which attempted to reconcile the computational 

and experimental torsional energy barriers and equilibrium angle of biphenyl in the gas 

phase5. Their best estimate for the central torsion angle at equilibrium was 45.8o, which lies 

just outside the experimental interval6 of 44.4  1.2o, already established in 1985. The best 

calculated values to date5 for the planar and perpendicular torsional barriers are 8.0 kJmol-1 

and 8.3 kJmol-1, respectively. Experimentally determined torsional barriers7 appear to have 

settled in 1985 on 6.0  2.1 kJmol-1 and 6.5  2.0 kJmol-1 for the 0o and 90o barriers, 

respectively. Again, the best computed values are near the edge of experimental uncertainty 

interval. In spite of this encouraging near-agreement, the interpretation of these torsional 

barriers, in terms of back-of-the-envelope chemical insight, has remained controversial. The 

reason for this continuing discussion is the same as that fuelling the debate on the origin of 

the torsional barrier in ethane8,9, which is that, here as well, experiment does not falsify 

conflicting and co-existing interpretations. This is why a way forward may be Occam’s razor, 

which supports the interpretation with the smallest number of assumptions. One approach 

that offers such a minimal interpretation is Quantum Chemical Topology (QCT)10,11, which is 

parameter-free, orbital-free, and reference-state-free. It is very important to explain carefully 

and in full why this is so because we use these properties as a justification for QCT’s 

interpretation of the rotation barriers in biphenyl. 

       We start with QCT’s first hallmark: parameter-free atomic partitioning. QCT defines an 

atom in a molecule (or in any piece of matter such as a molecular cluster or crystal) starting 

from the electron density ρ. The key to achieve this atomic partitioning is simply the gradient 

of , which traces12 paths of steepest ascent in . The vast majority of these paths terminate 

at a nucleus and the subspace that such a bundle of paths occupies constitutes the 

(topological) atom. Figure 1 shows the QCT partitioning of the equilibrium geometry of 

biphenyl. No parameter was involved to obtain these atoms.  
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Figure 1: Quantum topological representation of biphenyl at equilibrium. The non-

overlapping topological atoms are bounded by interatomic surfaces at the inside of biphenyl 

and by a constant electron density envelope of 0.001 a.u. at the outside. This picture was 

generated by the in-house code IRIS13. 

 
 
      It is clear that there are no gaps between the atoms and that they do not overlap. Within 

the interior of the molecule the atoms are separated by so-called interatomic surfaces14, 

while at the outside they are capped by a 3D envelope of constant electron density, just for 

visual purposes. However, in the condensed matter state, topological atoms are completely 

bounded by interatomic surfaces. A final feature to point out is that each point in 3D space 

(within the molecular envelope) is assigned to a topological atom. This means that each bit of 

electron density belongs to an atom; no portions of space are unassigned. Consequently, 

each portion of space adds to the total molecular energy an energy contribution that can be 

associated with an atom. This assertion follows from the mathematical link (through volume 

integrals) between energy and electron density (see below).  

         We now explain the second hallmark of QCT: how and why topological atoms are 

defined in an orbital-free manner. The electron density is an attractive starting point for an 

atomic partitioning because the electron density can be obtained in very different ways. 

Three familiar classes of methods exist: orbital methods, grid-based methods, and diffraction 

experiments. In this work we follow the first class and obtain wave functions expanded in 

terms of Gaussian Basis functions15. A partitioning decision in real space does not suffer from 

possible instabilities arising in a partitioning in the so-called Hilbert space of basis functions 

(e.g. Gaussians). However, the most important feature of the topological atom in the current 

context is that the kinetic energy of a topological atom is well-defined16,17. In other words, 

arbitrary subspaces have ill-defined kinetic energies. In the original formulation of QCT, the 

topological atom has its own virial theorem18, which is a relationship between kinetic and 

potential energy. As a result, the potential energy of an atom could be obtained from its 

kinetic energy alone. The condition for this scheme to work was that a molecule had to be at 
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equilibrium, i.e. all forces operating on the nuclei should vanish. However, in 2001, it became 

possible19 to calculate routinely the potential energy of an atom residing within a non-

equilibrium molecular geometry. This advance also enabled the calculation of the Coulomb-

like potential energy between atoms, again for any molecular geometry. With the additional 

calculation of interatomic exchange energy20 the analysis of torsional barriers became 

possible21 in terms of a complete topological energy partitioning22. 

        Building on the 2001 approach, Blanco et al. proposed23 a new algorithm in 2005 for the 

computation of the three fundamental types of energy contributions that underpin this work 

on biphenyl. This led to a series of papers under the umbrella of Interacting Quantum Atoms 

(IQA), reformulating hydrogen bonding24, stereo-electronic effects25 and bonding in diatomic 

molecules26. An extensive comparison27 with alternative non-QCT methods showed that IQA 

(and hence QCT) gives a less distorted image of chemical phenomena, leading to smaller 

deformation and interaction energies, thus better preserving the atomic identity from the 

energetic point of view. This is a very important conclusion because it shows that the QCT 

atoms are appealing fragments, quantitatively expressing what chemists expect from atoms.  

          The third and final QCT hallmark is its reference-state-free nature. Indeed, QCT analyses 

a single wavefunction to gain insight in the system at hand, without ever invoking a reference 

state. One example is a wavefunction that has not been anti-symmetrised and thereby 

violates the Pauli principle. Another example is a promolecule, which is a simple 

superposition of free atoms, lacking any hybridisation. Such states are typically artificial in 

that they cannot be realised in nature, and may require further parameters to be set. 

Secondly, at the level of the electron density itself, the gradient at the heart of QCT 

partitioning does not invoke a reference electron density either. In fact, the molecular 

electron density acts as its own reference because the gradient is essentially an internal 

difference. In other words, the pattern that the gradient creates results from an inspection of 

the electron density relative to itself.  

 

Methods  

Topological energy partitioning 

     For more mathematical details of the topological energy partitioning the reader is referred 

to references 19 and 23. The first-order reduced density matrix 1 and the second-order 

reduced density matrix 2 are the basic quantities one needs to define the three primary 

energy contributions: the total intra-atomic energy intraE , the interatomic electrostatic energy 

clV , and the interatomic exchange energy XV . The rotation barriers in biphenyl are 
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completely explained by the interplay of these three primary energy contributions. Both  

reduced density matrices extract the only information needed from the electronic many-body 

wave function , by integrating over electronic coordinates, both spatial and spin. The first-

order reduced density matrix, 1, does this by integration over all electrons except one,  

*

1 1 2 1 2( , ) ( , ,..., ) ( , ,..., )N NN d     r r x x x x x x         (1) 

where xi refers to the four (3 spatial and 1 spin) coordinates of electron i , N is the total 

number of electrons and dτ’ is a shorthand for summation of the spins of all electrons and 

integration over the spatial coordinates of all electrons but one. The subscript “1” can be 

dropped at the left-hand side because the remaining 3D coordinate r refers to any one 

electron. Note that the electron density ρ(r) can be regarded as the “diagonal” of 1(r,r’). The 

prime serves the purpose of allowing the one-electron Laplacian to operate on  alone (and 

not on *), after which the prime is deleted. This action defines the atomic kinetic energy of 

a given atom A, denoted TA, which is the first contribution to the intra-atomic energy 
intraE  of 

A,    

A 2

1

1
( , ) |

2
A

T d 




   r r
r r r         (2) 

In order to complete the intra-atomic energy (sometimes called self-energy19), one needs to 

add intra-atomic potential energy, which needs the diagonal of 2,    

*

2 1 2 1 2 1 2

1
( , ) ( 1) '' ( , ,..., ) ( , ,..., )

2
N NN N d    r r x x x x x x        (3) 

where now we do not need primed variables and dτ’’ is a shorthand for summation of the 

spins of all electrons and integration over the spatial coordinates of all electrons but two. 

Note that the factor ½ is sometimes omitted23, which leads to unnecessary confusion had one 

stuck with the original definition28 that we adopt here. We can now define the electron-

electron repulsion energy,  

2 1 2
1 2

12

( , )
i j

i j

eeV d d
r

 

 

  
r r

r r        (4)    

This equation covers both the intra-atomic (I = j = A) and interatomic case (i = A  j = B). 

Only the electron-nucleus attraction energy AA

enV  is needed to fully complete the intra-atomic 

energy intraE  of atom A,  

AA

en

1

( )

A

A

A

V Z d
r





  
r

r          (5) 
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where r1A is the distance between an electron and the nucleus of atom A, so that we can 

finally write 

A A AA AA

intra ee enE T V V            (6) 

      We now prepare the definition of the second primary energy contribution, denoted AB

clV , 

which is the quantum mechanical equivalent of the classical electrostatic (or Coulomb) 

interaction between two charged objects, in this case atoms A and B. In order to calculate 

AB

clV one needs to know the fine-structure of 2 (see Equation 3), as well as the classical 

nucleus-nucleus repulsion, 

AB

nn
A B

AB

Z Z
V

r
        (7) 

where ZA and ZB are the nuclear charges of the respective nuclei, and one also needs the 

generalisation of the electron-nucleus  attraction (Equation 5), where now the electrons from 

atom A interact with the nucleus of atom B (instead of the same atom A), 

AB

en 1

1

( )

A

B

B

V Z d
r





  
r

r          (8) 

and rAB the distance between them. It should be pointed out that the order of subscripts 

matters because in general AB AB

en neV V . The fine-structure of 2 consists of three terms, 

2 1 2 2 2 2 1 2 1 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , ) ( , ) ( , )Coul X corr corr             r r r r r r r r r r          (9) 

where the first term on the right hand side refers to the quantum-mechanically uncorrelated 

Coulomb-like pair density, the second term to the Fock-Dirac exchange (which is dominant, 

associated with the Fermi hole and the only correlation incorporated in the Hartree-Fock 

ansatz), while the third term refers to electron correlation and is at least an order of 

magnitude smaller23,29 than the second term, and associated with the Coulomb hole. This last 

term is connected to the familiar electron correlation, which is absent in this work because it 

suffices to work at Hartree-Fock level. Note that the literature again lists conflicting versions 

of Equation 9, introducing30 a factor ½ or not23,31.  

      One can associate a potential energy with each of the three terms in Equation 9, or    

1 2 1 2 1 2 1 2

1 2 1 2 1 2

ee Coul X corr

1 2 1 1 2 1 2 1 2 1 2
1 2 1 2 1 2

12 12 12

( ) ( ) ( , ) ( , ) ( , )corr

V V V V

d d d d d d
r r r

    

       

     

  

       
r r r r r r r r

r r r r r r
     

(10) 

Combining all electrostatic contributions, now involving the nuclei, we can then define AB

clV  

as 
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AB AB AB AB AB

cl Coul en ne nnV V V V V             (11) 

      It is clear from this equation that AB

clV covers all four possibilities: electron-electron, 

electron-nucleus, nucleus-electron and nucleus-nucleus, but ignores exchange-correlation 

between electrons. In this sense this contribution is sometimes referred to as the “classical” 

electrostatic interaction (
clV ) because it excludes pure quantum effects. In this work the 

exchange-correlation contribution is confined to exchange only, and is given by 1 2

XV    in 

Equation 10. This important contribution is part of 
intraE  (as AA

XV ), and constitutes the third 

primary energy distribution 
XV  (as AB

XV  ). We then combine AB

XV  and AB

clV  into another 

useful potential energy quantity entitled AB

interV ,  

AB AB AB

inter X clV V V           (12) 

which describes the complete interaction between two different atoms A and B. One more 

useful equation needs to be added, defining the total QCT energy of a single atom A,
A

IQAE , as 

the sum of its intra-atomic energy and the full interatomic potential energy involving all 

atoms other than A with which atom A interacts; 

 Mol A A AB A A

IQA IQA intra inter intra inter

A A B A A

E E E V E V


 
     

 
            (13) 

ANANKE 

      ANANKE is an in-house program developed to systematically rank the behaviour of 

partitioned energies with respect to that of the molecule’s total energy in a given interval of 

the PES. To do so, ANANKE divides the PES (recovered by the summation of all partitioned 

energies) into segments bound by minima and maxima and calculates the atomic forces from 

the atomic energies at various points within this segment. The atomic force at each point may 

be compared to the molecular force through a force ratio expression. Alternatively, the 

behaviour of an energy across a defined segment may also be summarised by using a linear 

regression relationship between the molecular energy and the partitioned energy in that 

segment. Likewise, a linear regression description would then be used to describe the 

molecular energy within the segment, and again through a ratio, to compare the forces. 

Force ratios allow the behaviour of each energy to be ranked relative to the molecular 

energy, enabling a unique insight into how each energies behaviour changes relative to that 

of the whole molecule. The equations within ANANKE will now be described in more detail. 

      The total number of energy contributions ( A

intraE , AB

clV  and AB

XV ), N, in a molecule can be 

obtained through the following relationship: 
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2N n  (14) 

where n is the number of atoms within a system. Next, we derive the linear regression 

coefficients.  

      In general, a force, F, is calculated by taking the first derivative of an energy E, at any point 

i: 

i i

d
F E

dq
   (15) 

The molecular force at a point i on the PES, Fi
Mol, is obtained from a summation of the atomic 

forces, Fi
Atomic, acting upon each atom, n: 

( )
n

Mol Mol Atomic

i i i

i

d
F E F q

dq
    (16) 

where, Fi
Atomic, is itself a summation of the forces acting upon each energy being used to 

describe an atom: 

 
3

A AB AB

intra, cl, X,

1

1 1

2 2

Atomic

i i i i

d d d
F E V V

dq dq dq

 
   

 
  (17) 

      The force ratio, ki, is used to relate any given force (single energy, total atomic or 

molecular) to that of the molecular force, Fi, and is defined as: 

i
i Mol

i

F
k

F
  (18) 

     ki may also be obtained for a set of data points, m, by obtaining the linear regression 

relationship between the two energies, taking the form: 

translated translated

Mol i
i translated translated

Mol Mol

k





E E

E E
 (19) 

where: 

1 1 1 2 2 2

1 2

( ) , ( ) , , ( )

( ) , ( ) , , ( )

translated

i m m m

translated

Mol Mol Mol Mol Mol Mol m Mol

E x E E x E E x E

E x E E x E E x E

     

     

E

E
 (20) 

Using the above relationship, each energy contribution can be compared relative to the 

behaviour of the entire molecule’s energy. The following rules apply to the values obtained 

for ki: 

 ki > 0 reflects a positive contribution in the direction of the molecular force.  

 ki < 0 reflects a negative contribution in the direction of the molecular force. 

 ki = 1 identifies the energy has an equal magnitude in the same direction of the 

molecular force.  
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Ranking the energies, by sorting their force contributions highest to lowest, allows 

individual atomic and interaction energies to be highlighted as fluctuating in a manner that 

matches a portion of the PES. Within a molecule, the segments described earlier correspond 

to energy barriers about a change within the molecule (in our case the torsional barriers). 

Thus, a ranked list of forces allows atomic energy behaviour matching (and opposing) an 

energy barrier (e.g. torsional) to be depicted. The ANANKE method allows important chemical 

insight to be obtained with such a ranked list of force constants, where values ki ≥ 1 mimic 

the overall behaviour of the molecule, within that barrier region. 

A second benefit of ANANKE is the ability to quantify the energies considered as 

background, within a segment, as a percentage of the total number of N energies in the 

molecule. Background refers to the energies that individually have negligible force ratios. 

However, it should be noted that when many background energies are summed with other 

background energies, there is a possibility of those energies amounting to a non-negligible 

contribution towards the molecular energy.  

 

Computational details 

    The data set consists of 12 biphenyl configurations, including the equilibrium geometry 

with central torsion angle (C2-C1-C1’-C2’) at 47.6⁰, and 11 geometries fully optimised (under 

D2 symmetry or 3 mutually orthogonal two-fold rotation axes) except for the central torsion 

angle, which was parametrically fixed at values between 0⁰ (D2h symmetry used) and 90⁰ 

(D2d), with 10⁰ increments. All geometries were optimized and wavefunctions obtained at 

RHF/6-311++G(d,p) level, using the tight optimization option within the program 

GAUSSIAN09. No symmetry was used in the atomistic energy partitioning carried out by the 

atomic partitioning computer program AIMAll32. All atomic properties require numerical 

quadrature in order to complete the integration over the volumes that the topological atoms 

occupy. This computationally expensive process introduces a numerical error that we have 

carefully monitored in order to guarantee the robustness of the atomic energies at the basis 

of our interpretation. One stringent way of checking the quality of the atomic integration is 

summing all intra- and interatomic energy contributions and measuring the deviation from 

the original non-partitioned molecular energy. From Table S1 it is clear that the absolute 

values of the energy deviation is always below 0.5 kJmol-1 for any of the 11 configurations, 

which is 4% or 9% of the planar or perpendicular torsional energy barrier, respectively. The 

energy deviation range from -0.48 to +0.38 kJmol-1 and the mean unsigned error is 0.24 

kJmol-1.  
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      The geometric relaxation of the whole molecule, allowed during the torsion rotation, 

induces changes in internuclear distances and energy contributions AB

interV , AB

XV  and AB

clV . 

Table S2 monitors the respective ranges (i.e. difference between maximum and minimum 

values encountered) of these changes. As expected, the CC distance ranges decrease in the 

sequence of bonds C1-C1’, C1-C2, C2-C3 and C3-C4 as one moves away from the central 

torsion angle. Similarly, the C2-H2 distance range is dramatically larger than those of C3-H3 

and C4-H4, again given proximity of C2-H2 to the torsion angle. The three energy ranges are 

perhaps surprisingly large for the CC bonds compared to the magnitude of the overall energy 

barrier.  

      At the planar configuration, the sum of the overall intra-atomic energy (orange circle in 

Figure 2) and the overall interatomic energy (purple triangle) is +33.34 – 19.64 = 13.70 kJmol-

1. Similarly, at the perpendicular barrier the total energy can be recovered via -2.52 + 7.76 = 

5.24 kJmol-1. 

 

Results and Discussion 

    The wavefunction at the basis of our analysis is of sufficiently quality to re-interpret the 

nature of the torsional energy barriers. The fully optimized minimum energy geometry shows 

a value of 47.6⁰ for the central CCCC torsion angle, with a planar barrier of 13.7 kJmol-1 and a 

perpendicular barrier of 5.2 kJmol-1. The molecular torsional energy profile is plotted in black 

in Figure S1 of the Supplementary Information (SI). The definitions of the various QCT energy 

contributions are given in the Methods section, which also reports the computational details. 

There we also show that when all the atomically partitioned energies are added they very 

well reproduce the original un-partitioned energy. 

      A coarse-grained QCT partitioning offers the first insight in the very different nature of the 

planar and perpendicular energy barrier. Figure 2 shows the overall intra-atomic energy 

summed over all atoms (including all symmetrically equivalent atoms), A

intra

A

E , and the 

overall interatomic (potential) energy summed over all possible atom-atom pairs, 

AB

inter

A B A

V


 . This figure shows how the overall intra-atomic energy decreases monotonically 

from the planar configuration towards the equilibrium geometry and then stays more or less 

stationary beyond this point. This means that, overall, atoms start from a rather congested 

situation at the planar configuration and gradually relax (i.e. stabilise) towards the 

equilibrium geometry, after which their energetic stabilisation stagnates. The second profile 

(overall interatomic potential energy) in Figure 2 almost mirrors the previous one, where the 
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former now increases monotonically from its lowest point at the planar configuration, and 

again (almost) stagnates beyond the equilibrium geometry. The two profiles compensate 

each other but the intra-atomic energy wins out at the planar conformation, while the 

interatomic energy wins out at the perpendicular barrier. This proves that the two energy 

barriers are each other’s opposite in character. In other words, the planar barrier is caused by 

the dominance of the intra-atomic destabilisation while the perpendicular barrier results 

from the dominance of the interatomic destabilisation.  

 

 

Figure 2: A first breakdown of energy into overall intra- and interatomic contributions. 

Profiles of the overall intra-atomic energy (summed over all atoms) (red circles) and the 

overall interatomic energy (summed over all atoms) (blue triangles). All energies are relative 

to the equilibrium geometry.  

 
        Before analysing the overall intra-atomic energy profile at atomistic resolution, Figure S2 

shows the breakdown of the overall intra-atomic energy, into its three components: kinetic 

energy, electron-electron repulsion energy and electron-nucleus attraction energy (see 

Equation 6, for one atom). The kinetic energy barely varies with the central torsion angle, by 

only a few kJmol-1 compared to the kinetic energy at the equilibrium geometry. However, the 

electron-electron repulsion and electron-nucleus attraction energies vary much more, and 

almost cancel each other, the latter one dominating. Their profiles are more than an order of 

magnitude larger than that of kinetic energy. In summary, at the planar energy barrier the 

overall electron-nucleus energy contributions destabilise the atoms more than the electron-

electron repulsion do, compared to the equilibrium geometry. At the perpendicular barrier 
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the opposite is true. This conclusion is chemically not intuitive because a typical chemist does 

not think in terms of the three energy components discussed above. This is why it is best to 

bundle the three components into a single intra-atomic energy and aim to make sense of this 

energy’s behaviour in a chemically intuitive way. We will see that steric congestion provides 

an intuitive interpretation, but this becomes only clear at the level of individual atoms. 

      The next question is to what extent each individual atom contributes to the two profiles in 

Figure 2, starting with the overall intra-atomic energy. Because of molecular symmetry, only 

about a quarter of the atoms need to be monitored. Indeed this symmetry is at least that of 

the group D2, which contains four symmetry elements. Figure 3 shows how the intra-atomic 

energy of C1, C2, C3, C4, H2, H3 and H4 varies with the central torsion angle. The multiplicity of 

these atom types is taken into account in Figure 3. For example, C2 represents C2’, and hence 

its energy contribution is multiplied by four, the same is true for C3 and C3’ and H2 and H2’, 

while C1 only represents C1’ and hence the multiplicity is two.  
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Figure 3: Variation at atomic resolution in: (A) the intra-atomic energies, (B) the interatomic 

(potential) energies, and (C) the total atomic energies. (A) Intra-atomic energies A

intraE , (B) 

Interatomic energies A

interV  and (C) total atomic energies 
A

IQAE , relative to the values at the 

equilibrium geometry, of the atom types C1, C2, C3, C4, H2, H3 and H4 plotted against the 
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torsion angle. Carbons are black and hydrogens light grey. Each energy profile is multiplied by 

the number of occurrences of the atom types according to the molecular symmetry.  The red 

line highlights the path of the H2 atoms. 

 
     A first important observation following from Figure 3A is the large differences in 

magnitude between the various atom types: the profiles of C4, H3 and H4 are negligible, while 

those of the bay atom H2 and the central atom C1 are dominant, each in their own way. 

Secondly, all non-negligible energy profiles have qualitatively the same shape as the overall 

summed intra-energy of Figure 2, except that of C1. Indeed, the contribution of C1 to the 

overall intra-atomic energy stabilises the system (by 15.3 kJmol-1 at 0⁰) at the lower torsion 

angles but reduces stability (by 8.1 kJmol-1 at 90⁰) at torsion angles larger than that of the 

energy minimum. Thirdly, the profiles decrease in magnitude for atoms further away from 

the central torsion. Indeed, the three carbon profiles (C2, C3 and C4) gradually decrease in 

amplitude as the carbons move away from C1.  

      The behaviour of an intra-atomic energy profile can be understood by linking it to the 

atomic volume (Figure S3). The outer boundary of an atom typically coincides with the 0.001 

au electron density envelope because this boundary can be taken as the practical edge of a 

hydrocarbon molecule33. Figure S3 (which plots the data of Table S3) shows that the volume 

of H2 increases from its minimum value at the planar geometry towards the perpendicular 

geometry. This atom keeps expanding while its intra-atomic energy decreases until, at the 

end of its trajectory (90o), it is larger 8% larger than at the start (0o). In other words, atom H2 

starts in a congested environment that destabilises it. As the torsion angle increases the 

atoms around H2 recede, the congestion eases and the atom H2 stabilises until it reaches its 

lowest intra-atomic energy at 90o. The C1 atom follows the same principle but in the opposite 

direction: at 0o it has the largest volume and shrinks as the biphenyl moves towards its 

perpendicular configuration. The shrinking of the C1 atoms again corresponds to a congestion 

process in its immediate environment. This congestion is dominated by the fluctuation of the 

C1-C2 interaction in which the bond shortens with increasing torsional angle, allowing this 

atom to stabilise itself. The alternative competing bond is the C1-C1’ which follows has its 

shortest distance in the equilibrium geometry and elongates with torsional increase or 

decrease. As a final technical remark, Figure S3 establishes that the analysis is independent of 

the 0.001 au value since the alternative values of 0.002 au and 0.0004 au lead to the same 

interpretation. The observations made here are directly in line with those identified by 

Dillen34 whereby internuclear distance, atomic volume and A

intraE  are all interlinked. 
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      The next question is to what extent each individual atom contributes to the second profile 

in Figure 2, that of the overall interatomic potential energy or AB

inter

A B A

V


 . Now this quantity 

is dissected atom by atom. The shorthand notation A AB

inter inter

B A

V V


 (used in Equation 13) is 

convenient to denote the (potential) energy that a given atom A experiences while 

interacting with all other atoms in biphenyl but itself. Figure 3B shows how this energy 

behaves for each of the symmetrically unique atoms (i.e. atom types). 

       First it is clear that H2 and C1 are again dominant, but even more so when contrasted with 

their dominance relative to other atoms in Figure 3A. In Figure 3B the profiles of not only C4, 

H3 and H4 are negligible, but also those of C2 and C3. Again, as before in Figure 3A, the profiles 

of C1 and H2 mirror each other, and H2 dominates C1 once more. Hence, H2 determines the 

behaviour of the overall interatomic energy profile in Figure 2. Secondly, the amplitude of the 

energy profile is larger for small torsion angles, near the planar configuration. This 

observation is explained by the general 1/R dependence of this type of energy, where R is an 

internuclear distance. Indeed, the internuclear distances between a given atom A and all its 

neighbours are smaller for small torsion angles.  

     From the dominance of H2 in both the intra-atomic energy, A

intraE , and the interatomic 

energy, A

interV , one might conclude that this atom controls the molecular barrier. However, 

this is not the case because both types of energy contributions of H2 largely compensate each 

other. Figure 3C shows the profiles of A A

inter intraV E for all symmetry-unique atoms. The red 

energy pathway highlights the extent of the cancellation between the intra-atomic and 

interatomic energies for the H2 atoms. The C2 and C3 atoms constitute the largest part of the 

planar barrier but are offset by the opposing contribution of C1. The perpendicular barrier is 

largely caused by the C1 contribution alone.  

      In order to scrutinise the textbook interpretation of “clashing ortho-hydrogens” the 

interatomic energy 2 2H H

interV
  needs to be analysed in more detail. Figure S5 shows that 2 2H H

clV
 is 

negligible compared to   2 2H H

XV
 , which is expected for non-polar molecules. Figure S6 

highlights the relationship between 
XV  for the H2-H2’, C2-H2’ and C2-C2’ interactions. Recently 

a relationship between the existence of a bond critical point (BCP) between two nuclei and 

their 
XV value has been established35. If the latter has a high absolute value then it is likely 

that there is a BCP between them. Figure S7 makes clear that 2 2H H

XV
 values are indeed the 

highest in the set of all HH

XV values. A full description of how to read the plot is reported 
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shortly. Indeed, a BCP emerges between H2-H2’ as soon as the central torsion angle falls 

below 30⁰ (28⁰ to be exact). Figure 4 shows the complete situation in which a BCP also 

appears between H6 and H6’.  

 
 
 
 
 
 

 
 

0⁰ 90⁰ 

Figure 4: Molecular graphs and critical points of the biphenyl configuration at the planar and 

perpendicular energy barrier. The green points mark the BCPs and the red points the ring 

critical points. BCPs appear between the ortho hydrogens in the planar configuration. 

 

      Continuing further in the analysis of interacting atoms, Figure 3B can be expanded upon 

by highlighting the highest energy fluctuations between atom pairs in the molecule. Figure 5 

illustrates these interactions through the unpartitioned 
interV . The energetic behaviour of 

these individual interactions is seen to mimic both that of the molecule in Figure 2 and of the 

overall atoms in Figure 3B. This makes sense considering they are the most energetically 

fluctuating interactions, which naturally will constitute a large portion of the observed atomic 

and molecular interaction energy fluctuation. H2’s involvement in forming the most stabilising 

interactions at the planar barrier, again highlight its role in explaining the barrier height. This 

raises an interesting counter-view, the traditional “clashing ortho-hydrogens”. In truth, the 

clashing behaviour is observed through the action of the 2H

intraE component. However, the 

stabilising effect is almost of the same magnitude, primarily due to H2’s involvement in the 

H2-H2’ and C2-H2’ interactions. This cancelation is clearly illustrated in Figure 3C (red path). 

This is an important result and may come as a surprise to many readers, especially 

considering it addresses the origin of steric hindrance and hydrogen-hydrogen interactions36. 

Should steric be attributed to an interaction as suggested through the use of NBO in 
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literature by Badenhoop and Weinhold37?  Should it be an atomic property as suggested from 

the results observed here? Or thirdly, can it be attributed to both, for example if AB

interV was to 

be repulsive in nature? To aid this discussion, an example situation can be considered. If the 

attractive exchange nature of the H2-H2’ interaction was overlooked, the planar barrier would 

be ~22.03 kJ/mol higher. This would result in the steric behaviour being attributed to both 

destabilising 
'

2 2H H

interV  and 2H

intraE . Instead, and as seen in the analysis here, 
'

2 2H H

interV  is seen to 

have a stabilising effect (directly due to exchange), quantitatively leaving the destabilising 

2H

intraE component reflecting the steric nature. Hence, the third suggestion presents an 

accurate, but compromising, result.  

 

Figure 5: The variation in interatomic (potential) energies for key diatomic interactions C1-C1’, 

C2-C2’, C2-H2’ and H2-H2’. Relative to the values at the equilibrium geometry, plotted against 

the torsion angle. Carbon-carbon interactions are black, carbon-hydrogen interactions are 

grey and hydrogen-hydrogen interactions white. Each energy profile is multiplied by the 

number of occurrences of the diatomic interaction according to the molecular symmetry.  

 

      In addressing the perpendicular barrier, again the H2 atoms play a role in elevating the 

barrier height. This arises through a lack of interaction stability, an element observed through 

the energy path of the same C2-H2’ and H2-H2’ interactions. Once again, these atoms show 

cancelling behaviour through the 2H

intraE  component which counteracts almost all of the 

instability. However, the dominant atom principally dictating the perpendicular barrier height 

still remains the C1 atom, in particular the 1C

intraE  and 1 1C C '

interV components. 
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      In order to validate the highest atomic contributors and their corresponding atomic 

energy components, an analytical force comparison was employed through the use of the in-

house ANANKE program. ANANKE calculated the total number of unique partitioned energies 

in the biphenyl system to be 484 unique energies. The cut-off analysis for the biphenyl 

energies can be seen in Figure S8. Here, 0.1 or 10% was determined to be the divergence 

point, and as a result, enables the recording of only the key energies. The 10% threshold 

corresponds to 414 background energies in the biphenyl system, 85.5% of the total 484 

energies. The background, non-background and total energy PES can be seen plotted against 

the dihedral angle in Fig. S9. Qualitatively it can be seen that the background energy traces 

the total energy. The ranking of the key energies force ratio (ki) contributions can be seen in 

Table S5, representing the planar (segment 1) and perpendicular (segment 2) barriers 

respectively. The results agree with that observed in Figure’s 3 and 5, identifying the 

significance of 2H

intraE and 1C

intraE both contributing (ki > 0) and dampening (ki < 0) each barrier. 

Within biphenyl, the supremacy of the role of 
XV over that of 

XV is also highlighted from the 

key contributions and the presence of an electrostatic component only featuring once as a 

key interaction for either barrier. 

     One final point from the analysis is drawn from Figure 6. Figure 6 details the logarithmic 

behaviour of the 
XV  for all C-C interactions, across all 11 torsional conformations. As a result, 

each interaction has 11 points representing it. This allows the ‘tracking’ of the interaction in 

relation to all other C-C interactions in the system. Analogous figures can be found in the SI 

detailing the same behaviour for all C-H interactions (Fig. S10) and all H-H interactions (recall 

Fig. S7), followed by a single snapshot of all the interactions in the global minimum structure 

(Fig. S11). The monotonic logarithmic behaviour of the exchange energy is evident in each of 

these plots, with the classifications of interactions (1,n) generally following this behaviour 

(see black circles). These classifications use the notation 1,n where 1 and n represent atoms 

that are separated by n-1 covalent bonds. The structural covalent backbone is seen in the 1,2 

interactions in the upper-left most quadrant in the figure. The scale prevents any obvious 

fluctuations to be easily identified but these have previously been observed in Table S2.  
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Figure 6: Logarithmic relation between CC

XV  and internuclear distance for each dihedral 

angle. All diatomic carbon-carbon interactions are included and encircled by interaction type. 

Each unique diatomic interaction has 11 points representing the 11 dihedral angles in the 

rotation and their value in each. C2-C2’ (encircled red) and C4-C4’ (encircled orange) 

interactions are highlighted as indicated on the inset molecule. 

 

      Most interestingly from Figure 6 is the behaviour of the 1,8 C4-C4’ interactions (encircled 

orange, also highlighted in inset diagram). In the planar geometry, a much stronger exchange 

interaction is formed between the atoms, giving it the same magnitude of stability as 

commonly seen in the 1,5 interaction category. This stability is lost as the torsional rotation 

takes place to eventually form the perpendicular geometry, where it indicates a stability 

expected for a 1,8 interaction, and in-keeping with the typical monotonic behaviour. This 

distinctive behaviour is also present for the 1,9 C4-H4’ and 1,10 H4-H4’ interactions in the SI 

figures. It suggests a nature of increased aromaticity or conjugation in the system in the 

planar geometry. A measure of aromaticity (index, Ɵ) based on electron-delocalization was 

presented by Matta and Hernández-Trujillo38, which reported the slight reduction of intra-

ring aromaticity in planar biphenyl (Ɵ = 0.959) compared to equilibrium biphenyl (Ɵ = 0.963). 

The nature of the relaxation of the molecule will force the C4 and C4’ atoms to be slightly 

physically more separated from each other and yet the increase in exchange is seen, directly 
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contradicting the general behaviour of diatomic exchange. However, it is known that 

aromatic compounds do not exhibit the monotonic relationship linking exchange and 

internuclear distance, thus adding weight to this reasoning. The role of the additional BCP’s 

between H2-H2’ interactions and the subsequent RCP’s formed in the planar geometry could 

be adding extra capability for electron delocalisation across the structure. Given there is no 

additional evidence available in this study, the reasoning remains inconclusive and should be 

monitored in the study of comparable systems. Albeit, the effect remains small, it has the 

potential to become more ubiquitous than expected and perhaps compiling a chain of planar-

arranged molecules could amount to a non-negligible effect. 

 

 
Conclusion 
 
     A quantitative description of the nature of each torsion barrier in biphenyl has been 

described. The torsion barrier was recovered accurately using the energy partitioning scheme 

to within minimal error (< 0.5 kJmol-1). Initially, the barriers were described from the 

perspective of molecular intra-atomic energy and interaction energy. Each barrier resulted as 

a complementary balance of both energies, with the destabilisation of the molecular intra-

atomic energy winning out at the planar barrier, and the destabilisation of the interaction 

energy at the perpendicular. At atomic level, the energies of the C2 and C3 atoms are the 

source of the planar barrier, counteracted partially from the energy of the C1 atoms. In 

opposition, the perpendicular barrier is dominated by the C1 atoms minimally counteracted 

by the energetics of the remaining carbon atoms. A surprising result was the lack of 

contribution the clashing ortho-hydrogens were observed to have. An atomic steric 

destabilisation of the molecule was identified through the 2

int ra

HE component but was almost 

entirely cancelled with the increased stabilisation provided from the 2H

interV  (and 

predominantly 2H

XV ). This was reversed for the perpendicular barrier. This provided clarity on 

how steric reasoning can be attributed to either an atomic or an interaction component. 

However, the use of the ‘steric’ terminology should be used with caution, and when used 

describing intra-atomic energy or exchange energy; should be understood as a 

destabilisation, since these energies are always stabilising (negative) in nature. 

      As described, the 2 2H H

interV interaction was seen to be dominated by a fluctuation in the 

exchange energy where the planar geometry was observed to be the most stable geometry 

from the perspective of this energy alone, accompanied with the C2-H2’ and C1-C1’ 

interactions. BCP’s were observed between the ortho-hydrogens in the geometries of 28⁰ and 
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lower. Adding to this observation, the terminal ends of the molecule (C4/H4) were seen to 

experience unusually strong (but still minimal) exchange interactions in the planar geometry. 

This suggested a stronger delocalisation of electron density (or increase of aromaticity) across 

the molecule, inviting potential further research to identify if this could become a more 

significant effect in larger planar arranged molecules. 

     A final note was the successful coherence between the performance of the ANANKE 

program and human observations derived from the analysis in the figures. This offers a 

promising, computationally inexpensive and chemically useful interpretation of the energy 

partitioning and that will allow the investigation of larger molecules without the need for 

exponentially more time-consuming manual analysis of the atomic pairwise energies. It will 

also be implemented to shed new light on other chemical phenomena. 
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Figures  
 
 

 

Figure S1. IQA (blue) and ab initio (black) molecular energies (relative to the minimum 

geometry at 47.6⁰) obtained for biphenyl geometry-optimized except for the central torsion 

angle, which was parametrically fixed at values between 0⁰ and 90⁰, sampled every 10⁰. 
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Figure S2. Breakdown of the overall intra-atomic energy, intra ( )A AA AA

A ee en

A A

E T V V     

into its three components in order: kinetic energy, electron-electron repulsion energy and 

electron-nucleus attraction energy. All energies are relative to those at the equilibrium 

geometry. 
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Figure S3. Relation between the intra-atomic energy (in kJmol-1) and volume (in a.u. and for 

0.001 a.u. constant electron density) of the two atoms (C1 and H2) that change most 

dramatically with a varying central torsion angle. 
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Figure S4. Relation between the atomic volume (for 0.001 a.u. constant electron density 

envelope) and dihedral angle in the molecule.  

 

 

 

Figure S5. Decomposition of 2 2

inter

H HV

(triangles) into 2 2

exch

H HV


(solid circles) and 2 2

elec

H HV


(dotted 

circles), all plotted relative to the equilibrium geometry. 
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Figure S6. Relation between VX
AB in local interactions (to the torsion region) to internuclear 

distance. Carbon-carbon interactions are black, carbon-hydrogen interactions grey and 

hydrogen-hydrogen interactions white. Each energy profile features one example of the 

interaction, so multiplicity in the symmetry of the molecule is not accounted for.  

 

 

Figure S7. Logarithmic plot of VX
HH energies versus distance for each dihedral angle. Key 

interactions are encircled in red as indicated on the biphenyl molecule. 
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Figure S8. Shows the background force-ratio plotted against the cut-off used to define the 

‘background’ IQA terms. 

 

Figure S9. Shows the background energy, non-background energy and total energy PES 

plotted against the dihedral angle.. 
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Figure S10. Logarithmic plot of VX
CH energies versus distance for each dihedral angle. Key 

interactions are encircled in red as indicated on the biphenyl molecule. 

 

 

Figure S11. Logarithmic plot of VX
AB energies versus distance for equilibrium biphenyl.  
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Tables 
 
 

Dihedral Angle 
(degrees) 

ΔE  
(kJmol-1) 

0 -0.27 

10 -0.36 

20 0.23 

30 -0.48 

40 0.32 

47.6 0.38 

50 0.09 

60 0.29 

70 -0.10 

80 -0.05 

90 0.03 
 

Table S1. Energy deviation (ΔE) between the total molecular energy and the energy obtained 

by summing all mono- and diatomic energy contributions. The absolute value of this error 

never exceeds 0.5 kJmol-1, which is 4 % or 9% of the planar or perpendicular torsional energy 

barrier respectively. 

 

 

 Type Range 

Interaction  Distance Vinter
AB Vexch

AB Velec
AB 

C1-C1' 1,2 0.0093 5.8 9.7 2.7 

C1-C2 1,2 0.0054 5.1 5.4 5.7 

C2-C3 1,2 0.0020 2.3 2.7 5.4 

C3-C4 1,2 0.0016 0.4 0.4 5.3 

C2-H2 1,2 0.0039 1.3 0.1 1.2 

C3-H3 1,2 0.0001 0.1 0.04 0.2 

C4-H4 1,2 0.0003 1.5 0.7 0.1 

C1-C2' 1,3 0.0206 1.8 0.8 0.5 

C1-C3 1,3 0.0148 0.7 0.5 0.2 

Table S2. Distance and interatomic energy ranges of all unique 1,2 interactions by molecular 

symmetry, and alongside two backbone 1,3 interactions. Distances are given in Angstroms 

and energies in kJmol-1. 

       



9 

 

 

 
  C1                                                                                                                                          H2  

Dihedral 
Angle 

0.0004 au 0.001 au 0.002 au  0.0004 au 0.001 au 0.002 au 

0 82.87 72.92 64.67  58.80 45.66 36.07 

10 82.58 72.78 64.56  59.11 45.85 36.19 
20 81.83 72.24 64.28  59.96 46.38 36.48 
30 80.71 71.60 63.91  61.23 47.13 36.92 
40 79.49 70.93 63.58  62.72 47.98 37.38 
47 78.44 70.39 63.38  63.91 48.56 37.57 
50 78.13 70.26 63.32  64.21 48.70 37.61 
60 77.12 69.95 63.32  65.32 49.23 37.65 

70 76.23 69.67 63.45  66.04 49.37 37.56 
80 75.38 69.53 63.66  66.33 49.32 37.43 
90 75.14 69.42 63.73  66.38 49.35 37.38 

 
Table S3. Dependence of the volumes of atom types C1 and H2 on the central dihedral angle. 

Volumes for three possible outer boundaries of the topological atoms are given, 

corresponding to the 0.0004, 0.001 and 0.002 au constant electron density envelopes of the 

whole molecule. 

 
Dihedral Angle Volume(0.001) Volume(0.002) Volume(0.0004) 

0 1454.52 1205.68 1801.78 

10 1455.26 1205.52 1802.39 

20 1456.59 1206.87 1803.83 

30 1458.48 1208.60 1807.13 

40 1461.37 1210.74 1810.85 

47.5 1463.30 1211.84 1813.70 

50 1463.92 1212.19 1814.68 

60 1466.61 1213.31 1818.62 

70 1468.15 1213.91 1822.13 

80 1469.23 1214.21 1824.04 

90 1469.50 1214.00 1824.75 

Table S4. Relation between molecular volume and dihedral angle at three (0.001, 0.002 and 

0.0004) electron density envelope cut-offs. 
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Segment 1 Segment 2 

Energy Component Force Ratio ki Energy Component  Force Ratio ki 

H2 Intra 2.78 Vxc C1-C1' 2.94 

Vxc C1-C2 1.31 C1 intra 2.72 

C2 Intra 1.26 Vxc C2-H2' 2.61 

C3 Intra 0.55 Vxc C2-C3 2.18 

Vxc C1-H2' 0.54 Vxc H2-H2' 1.00 

Vxc C1-C2' 0.46 Vxc C2-C2' 0.83 

Vcl C2-H2 -0.48 Vxc C3-C4 -0.75 

Vxc C2-H2' -0.55 Vxc C1-H2' -0.77 

Vxc C2-C3 -0.70 C2 intra -0.80 

Vxc H2-H2' -1.74 Vxc C1-C2' -0.81 

C1 Intra -2.26 Vcl C1-C1' -0.82 

  H2 Intra -1.67 

  Vxc C1-C2 -4.59 

Table S5. Summary of non-background partitioned energy contributions to the planar barrier 

(segment 1) and perpendicular barrier (segment 2) in biphenyl through an analysis of the 

force ratio ki using the in-house program ANANKE. 
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Approach to B3LYP Level Density Functional Theory (DFT) 

P. Maxwell, Á. M. Pendás, P. L. A. Popelier 

Status: Published   

Phys. Chem. Chem. Phys., 2016, 18, 20986-21000. 

 

Preface 
 

            After completing the work in Paper 1 (Section 2), the energy partitioning provided by IQA 

was considered a good fit for the development of FFLUX. However, at the time of publication, IQA 

was limited to operating on Hartree-Fock (HF), Complete Active Space (CAS), Full Configuration 

Interaction (FCI), Configuration Interaction with single and double excitations (CISD) and coupled 

Cluster with single and double excitations (CCSD) wavefunctions only. The problem stemmed 

from post-HF approaches either not providing a well-defined second order density matrix which 

may be used to accurately calculate the intra- and intermolecular exchange-correlation energies of 

an atom (Density Functional Theory (DFT)), or the calculation of the second order density matrix 

being computationally too expensive (perturbation theory). For future work within FFLUX, IQA’s 

theory level compatibility had to be expanded.  

      This paper addresses the theory restrictions within IQA and details the development of an 

alternative route to practically recover the ab initio energy of a system using a B3LYP 

wavefunction. The proposed route involves calculating the atomic exchange-correlation 
A

XCV

energy using the explicit B3LYP exchange-correlation functional, and then introducing a practical 

workaround in order to calculate the partitioned intra- and interatomic exchange-correlation 

contributions. The strategic approach presented herein for B3LYP, was also implemented for the 

M06-2X functional in order to offer compatibility with a dispersion-mimicking functional. Despite 

the M06-2X functional not being commented upon within this paper, the application of the M06-

2X-IQA approach is used later in Paper 5 (Section 6). 
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Extension of the interacting quantum atoms (IQA)
approach to B3LYP level density functional theory
(DFT)†

Peter Maxwell,ab Ángel Martı́n Pendásc and Paul L. A. Popelier*ab

An interaction between two atoms, bonded or non-bonded, consists of interatomic contributions:

electrostatic energy, exchange energy and electronic correlation energy. Together with the intra-atomic

energy of an atom, these contributions are the basic components of the Interacting Quantum Atom (IQA)

energy decomposition scheme. Here, we investigate IQA’s proper use in conjunction with an explicit

implementation of the B3LYP functional. The recovery of the total molecular energy from the IQA

components is emphasised, for the first time. A systematic study of three model systems of biological

relevance, N-methylacetamide (NMA), the doubly capped tripeptide GlyGlyGly and an alloxan dimer,

shows the stabilization effect of B3LYP on most of the interatomic exchange energies (VAB
X ) compared to

their Hartree–Fock values. Diagrams of exchange energies versus interatomic distance show the clustering

of interactions, one cluster for each 1,n (n = 1 to 6 where the atoms are separated by n � 1 bonds). The

positioning of some VAB
X values outside their expected cluster marks interesting interactions.

1. Introduction

The spatial localization and partitioning of properties of matter
is central to Chemistry. Fortunately, matter (at ambient condi-
tions, and excluding metallic systems) allows itself to be described
in terms of local features and behaviour, as well as recurring
motifs. Indeed, molecular assemblies consist of molecules, which
in turn consist of functional groups and largely transferable atoms
(e.g. ref. 1–3). This locality and transferability enables Chemistry
to classify, systematize and eventually explain and predict the
phenomena it observes.

There are various alternatives to obtain this local informa-
tion theoretically and computationally, most popularly by
energy and electronic charge. Amongst the most used partition-
ing schemes are the ‘‘energy decomposition analysis’’ (EDA),4,5

its variant the natural energy decomposition analysis (NEDA),6

the natural bond orbital (NBO) analysis7 or Quantum Chemical
Topology (QCT),8 which amongst its various segments incorpo-
rates the Quantum Theory of Atoms in Molecules (QTAIM)9 and
Interacting Quantum Atoms (IQA).10 The latter approach is

conceptually the most minimal of all energy partitioning
schemes. IQA is parameter-free although computationally the
most expensive method. However, very recently, IQA has gained
popularity through its implementation in the efficient computer
program AIMAll.11 The IQA method is the subject of this paper,
particularly, its use within the context of density functional
theory (DFT). We also note again that IQA can operate on non-
equilibrium geometries, and can thus go beyond the original
QTAIM atomic energies, which are only valid at a stationary
point (e.g. an equilibrium geometry).

QCT is a branch of theoretical chemistry that yields a wealth
of calculated chemical information from the wavefunction of a
molecule, molecular assembly, metallic system or ionic crystal.
It uses the (mathematical) language of dynamical systems
(e.g. attractor, critical point, separatrix, basin, gradient path)
to obtain chemical insight and then ideally make predictions. It
defines the so-called topological atom, which is a finite-volume
object with a shape, which is specifically determined by the
total system that this atom is part of topological atoms do not
overlap nor leave gaps: they collectively exhaust space and their
properties are additive. In other words, there is no need for
corrections due to topological atoms intersecting, or leaving a
gap between them (resulting in electron density not belonging
to any one atom).

Each topological atom contributes its own intra-atomic
energy to the total system’s energy.10 In addition to this
contribution, and more importantly for this study, IQA also
provides all inter-atomic energy contributions. When summed,
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the intra-atomic and inter-atomic energies (whether attractive
or repulsive) account for the complete energy of a molecule or
molecular complex. Being able to recover this complete energy
is very important but has been ignored in some recent publica-
tions applying IQA. A more detailed description of the IQA
approach can be found in the Theoretical background section.

IQA has been used to study various bonding patterns such
as halogen bonding,12 hydrogen bonding,13,14 interelectronic
exchange between electronegative atoms,15 interactions of Zn(II)
complexes,16 interactions between organoselenium molecules
and diiodine17 and the interactions within halogentrinitro-
methanes.18 In addition to interaction studies, investigations
addressing steric repulsion and binding energies have been
reported19–23 including IQA’s interpretation of chemical pheno-
mena such as hyperconjugation.24 Finally, charge transfer,
chemical potentials and the nature of functional groups,3 as
well as the relationship between electronic exchange energy
and molecular structure25 have also been reported. Outside of
aiding chemical interpretations, IQA has also been used in
more technical studies, for example, detailing the relationship
between various density partitions, atomic charge and the
delocalization index26 but also in rare and direct comparisons20

with non-IQA methods such as EDA and NBO.
A practical limitation of IQA is its potential incompatibility

with quantum mechanical methods that solve the Schrödinger
equation. Currently, the application of IQA is limited to the
following methods: Hartree–Fock (HF), several multiconfigura-
tional expansions including Complete Active Space (CAS),
Configuration Interaction with single and double excitations
(CISD), and Full Configuration Interaction (FCI), together with
Coupled Cluster with single and double excitations (CCSD).
Neither perturbation theory nor standard density functional
theory (DFT) methods provide well-defined a second-order
reduced density matrix, and hence IQA cannot be applied
to them. As a consequence, simply adding all IQA energy
contributions for a B3LYP wavefunction, for example, does
not at all return the original ab initio energy of the molecule
or molecular system. However, this fact has not always pre-
vented work18,19,27–30 featuring alternative theory levels such as
MP2 or B3LYP from being published. The aim of the current
investigation is to identify and clarify what the inter-atomic
exchange values represent, and whether they are a cause for
concern. This aim will be reached for the most popular density
functional to date: B3LYP.31 Being able to recover the total
molecular energy from its IQA energy components is important
in force field design because energy cannot be spuriously
created or suddenly go missing. In this sense, the recent
extension of IQA to B3LYP wavefunctions benefits the develop-
ment of the QCTFF force field.32

In using the B3LYP functional, the Kohn–Sham (KS) second-
order density matrix must be estimated from the first-order density
matrix and will therefore only be approximate (or ‘‘fictitious’’33).
This fact causes the exchange energy contribution to be incom-
plete, coming from the use of the KS orbitals for both the intra-
atomic and inter-atomic contribution. Overall, here we will
explicitly address the interpretation of the interatomic exchange

energy produced by an IQA partitioning of a B3LYP wavefunc-
tion, compared with that of a Hartree–Fock (HF) wavefunction,
for the same molecule.

Note that IQA is not the only method that has identified the
use of KS orbitals as a concern before. The same concern
surfaces in the calculation and interpretation of delocalization
indices (DIs), also denoted d(A,B). A delocalization index repre-
sents the number of electrons delocalized (i.e. exchanged or
shared) between atoms A and B. Hence, it is not surprising that
there is a relationship between d(A,B) and the interatomic
exchange energy between A and B. Indeed, using a binomial
Taylor expansion one can prove34,35 that the interatomic
exchange energy is approximately equal to minus d(A,B) divided
by twice the internuclear distance. Thus, a large value for d(A,B)
corresponds to a large absolute value for the interatomic
exchange energy, and hence energetic stabilization. In 2002,
Poater et al.36 reported the significance of having to use
DFT-KS orbitals within a HF-formalism in order to obtain a
numerical value at DFT level. They produced d(A,B) values
obtained from a HF treatment of a DFT wavefunction in order
to gain useful chemical insight. However, as electron correlation
was not fully considered, their values were consistently over-
estimated. Both d(A,B) and the interatomic exchange–correlation
energies can provide valuable information of chemical signifi-
cance for polyatomic molecules.25,37,38

We will present a direct comparison of the exchange energies
calculated from a HF wavefunction and calculated from a HF
treatment of a B3LYP wavefunction, both at exactly the same
molecular geometry. In order to examine a range of both
intramolecular and intermolecular interactions between atoms,
the following biologically relevant molecules are used as case
studies: (i) N-methylacetamide (NMA), which serves as a well-
studied prototype system for the ubiquitous peptide bond, (ii)
triglycine (GlyGlyGly, with a peptide-bond cap at both termini)
(TriGly), which is of relevance to the construction of our peptide
force field QCTFF given the recent finding39 that single amino
acids are not sufficiently transferable towards proteins, and (iii)
an alloxan dimer (Cambridge Structural Database (CSD) identi-
fier ALOXAN), which is a remarkable crystal (for a reason
explained just below) featuring upfront in an important review40

on intermolecular interactions.

2. Theoretical background
2.1 Interacting quantum atoms (IQA)

Fig. 1 shows an example of a molecular system being parti-
tioned into topological atoms. The picture shows a realm of
atoms appearing as malleable boxes, or even ‘‘bubbles’’, nego-
tiating energies and charges between them, and thereby form-
ing a stable quantum system. As the nuclear positions change,
so do these atoms’ shapes and properties. It is clear that the
topological atoms exhaust space: no overlap and no gaps.
A remarkable property of crystalline alloxan (or pyrimidine-
2,4,5,6-tetraone) is that hydrogen bonds do not appear in the
crystal in spite of the two acidic NH entities for each molecule.
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Instead, crystalline alloxan features40 an array of short, almost
orthogonal intermolecular CQO� � �CQO contacts with distances
of about 2.8 Å and CQO� � �C angles in the range between 1551 and
1631. Two atomic interaction lines, each with a corresponding
bond critical point, appear between the two monomeric units.

The IQA approach10 follows the traditional QTAIM9 formalism
by partitioning a molecule into topological atoms. The IQA ener-
gies are calculated through the use of the first-order density matrix
(non-diagonal) and the second-order (diagonal) density matrix,
which allow the complete calculation of the Born–Oppenheimer
energy of a molecule. To start, the intra-atomic and inter-atomic
energies are given in eqn (1),

EIQA ¼
X
A

EA
IQA ¼

X
A

EA
intra þ

1

2

X
A

X
BaA

VAB
inter (1)

where EIQA represents the molecular energy as obtained from an
IQA partitioning, while EA

IQA is the full atomic energy of atom A,
EA

intra is the intra-atomic energy of atom A (or ‘‘self-energy’’), while
V AB

inter represents the interatomic interaction energy between
atom A and B. The intra-atomic contribution, EA

intra, is further
partitioned into:

E A
intra = T A + V AA

ee + V AA
en (2)

The intra-atomic energy comprises of the kinetic energy of the
electrons (T A), the electron–electron repulsive potential energy
(V AA

ee ) and the electron–nucleus attractive potential energy (V AA
en)

within atom A.
The inter-atomic energy can be subdivided to give

V AB
inter = V AB

nn + V AB
en + V AB

ne + V AB
ee (3)

The inter-atomic energy comprises of the sum of four potential
energies: the nucleus–nucleus repulsive energy (V AB

nn), electron–
nucleus attractive energy (V AB

en), nucleus–electron attractive

energy (V AB
ne) and the electron–electron repulsive (V AB

ee ) energy.
The final energy can be divided further into a Coulombic (V AB

Coul)
and an exchange–correlation (V AB

XC) contribution according to
eqn (4),

V AB
ee = V AB

Coul + V AB
X + V AB

corr = V AB
Coul + V AB

XC (4)

Here V AB
XC is a combination of exchange (V AB

X ) and correlation
(V AB

corr) potential energies.
The calculation of the electron–electron potential VAB

ee

requires integration over atomic volumes of the second-order
density matrix, which is computationally very expensive because
of the evaluation of a six-dimensional integral, that is, three
dimensions for each atom. The VAB

ee energy can be expressed
according to Görling–Levy theory41 using perturbation theory
as follows:

VAB
ee ¼

ð
OA

ð
OB

r ~r1ð Þr ~r2ð Þ
~r1 �~r2k k d

3r1d
3r2

�
ð
OA

ð
OB

r ~r1;~r2ð Þj j2

~r1 �~r2k k d
3r1d

3r2 þ VAB
corr

(5)

The Coulombic term can be expressed as a functional of the
electron density (first term of eqn (5)). However, the contribu-
tions from the exchange (second term) or correlation (third term)
functions are more difficult as their analytical form remains
unknown.15 Moreover, for DFT functionals such as B3LYP, the
exchange term uses components from both the first-order and
second-order density matrices.15 For these cases, the Kohn–
Sham42 second-order density matrix can be estimated from the
first-order matrix, but will remain only approximate and differs
from any analytical solution. Very recently, (dynamic electronic)
correlation was incorporated43 in IQA using closed shell coupled
cluster theory. Compared to the exchange or Coulombic energies
it is a minor quantity, at least for simple systems such as H2, N2,
CO and H2O.

Returning to the conventional HF-compatible IQA, a rear-
rangement of the inter-atomic energies allows an electrostatic
contribution and a covalent contribution to be separated and
defined:

V AB
elec = V AB

nn + V AB
en + V AB

ne + V AB
Coul (6)

V AB
XC = V AB

X + V AB
corr (7)

where V AB
elec (or V AB

cl ) is the electrostatic contribution to the
overall inter-atomic interaction energy between atoms A and B.
The remaining exchange–correlation energy V AB

XC, acts as a
measurement of covalency between two atoms derived from
the combination of inter-electron dependency and the Pauli
Exclusion Principle. A final equation summarizes how inter-
actions can then be typically analyzed through the combination
of the electrostatic and covalent contributions to an interaction:

V AB
inter = V AB

elec + V AB
XC (8)

At this point the brief review of the traditional IQA approach
concludes. We will now address how both the traditional and

Fig. 1 A representation of the topological atoms in the alloxan dimer. The
configuration is directly taken from the Cambridge Structural Database,
without geometry optimization, and a single-point energy conformation
was obtained at B3LYP/6-31+G(d,p) level.
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the B3LYP-compatible IQA partitioning have been implemented
into the computer program AIMAll.11,44

First, a technical note is in place here. AIMAll slightly
expands the IQA formalism explained above by additionally
calculating so-called AA0 inter-atomic energies. Here, A0 repre-
sents every other atom in the system with the exclusion of atom
A itself. Hence, A0 is equivalent to a summation over all atoms B
that are not equal to A,

X
B

VAB
inter � VAA0

inter (9)

Note that recovering the total interaction energy within a

molecule, which is formally
P
AB

VAB
inter, is more accurately calculated

using VAA0
inter as an intermediate quantity rather than

P
B

VAB
inter,

where V AB
inter is individually calculated for each atom pair.

In theory, summing over B or working with the A 0 route
should produce equal results but typically there are small
differences in the energy values due to the nature of
their separate calculation and associated errors (i.e. by grid
quadrature or semi-analytical integration). In AIMAll, each of
the interaction energy subcomponents (i.e. V AB

en , V AB
ne or V AB

ee ,
see eqn (3)) can also be calculated in ‘‘AA 0 mode’’. AIMAll
uses the AA 0 energies in the calculation of the total mole-
cular energy instead of the summation over every interatomic
AB interaction. Using AA 0 energies has two advantages: (1) a
faster complete calculation of the IQA molecular energy parti-
tioning albeit with reduced chemical insight, and (2) a more
accurate recovery of the ab initio energy.

Now we come to the actual incorporation of the explicit
B3LYP functional into an IQA energy analysis. The strategy
should be made clear upfront. The overall goal is to recover the
total energy when using B3LYP, which has been glossed over
in the literature so far. This goal is reached in this work by
using the explicit functional only within a single atom, i.e. for
the total atomic energy only. We will show that the functional
cannot be used for an interatomic energy. Thus we have
no choice but to adopt the Hartree–Fock-like expression for
interatomic exchange energy but then using Kohn–Sham
orbitals.

In the development of the B3LYP extension of IQA it is
convenient to define energy contributions as total atomic energies,

VA
comp ¼ VAA

comp þ VAA0
comp (10)

where ‘‘comp’’ can be XC, ne, en, nn or Coul. The quantity V A
comp

should not be confused with the previously defined intra-atomic
energy (or ‘‘self-energy’’). This extra symbol is motivated by a future
need (see below) to gather intra- and inter-atomic energy contribu-
tion, of a nature specified by ‘‘comp’’.

In previous versions of AIMAll, a B3LYP wavefunction would
be treated identically to a HF wavefunction, which leads to a
huge discrepancy between the total molecular energy and a
summation of the various IQA energy components. In the older
versions of AIMAll, both the intra-atomic and inter-atomic

exchange energy is calculated from the HF exchange energy
equation only:

EHF
X ¼ �1

2

X
i; j

ðð
ci
� r1ð Þcj

� r1ð Þ
1

r12
ci r2ð Þcj r2ð Þdr1dr2 (11)

instead of from the (explicit) B3LYP exchange–correlation
functional:45

EB3LYP
XC = (1� a0)ELSDA

X + a0EHF
X + aXDEB88

X + aCELYP
C + (1� aC)EVWN

C

(12)

where a0 = 0.20, aX = 0.72 and aC = 0.81, and ELSDA
X is the Local

Spin Density Approximation (LSDA) standard local exchange
functional, while EHF

X is the HF exchange energy, and DEB88
X is

Becke’s gradient correction to the Becke-88 exchange func-
tional, ELYP

C is Lee, Yang and Parr’s correlation functional,
and EVWN

C is the Vosko–Wilk–Nusair local density approxi-
mation to the correlation functional. A ‘‘pseudo-DFT/B3LYP’’
compatible algorithm has quite recently been implemented in
AIMAll in order to accurately recover a molecule’s total ab initio
energy. The qualifier ‘‘pseudo’’ refers to the ambiguity in the
calculation of both interatomic and intra-atomic exchange.
However, as explained below, a reasonable choice will be made
to cope with this ambiguity.

Without extra thought or treatment, the introduction of a
functional produces incorrect intra-atomic V AA

XC and inter-
atomic V AB

XC energies (leading to incorrect V AA
ee and V AB

ee energies).
As a result the total energy of the molecule is incorrectly
calculated and one obtains a large energetic discrepancy. In
order to obtain a correct result, the exchange–correlation func-
tional needs to be explicitly incorporated. In a later AIMAll
version (14.04.17 ref. 11), the total atomic exchange–correlation
energy denoted VA

XC (see eqn (10)) for the B3LYP functional was
implemented. This implementation now allows the well-
defined and correct calculation of the total V A

XC component of
V A

ee for an atom A:

V A
ee = V A

XC + V A
elec (13)

In turn, the correct calculation of V A
ee allows the complete

recovery of an atomic energy E A
IQA (see eqn (1)). When summing

over all atoms, the ab initio energy is recovered from an IQA
partitioning. It is important to keep in mind that, even with this
implementation, standard functionals are constructed to
include the interacting part of the kinetic energy, such that
the atomic electron–electron repulsion in eqn (13) is inevitably
contaminated by the residual kinetic energy term.

Interatomic exchange energies are chemically meaningful
and therefore one must be able to calculate them, again in a
DFT context. The division of the total atomic exchange–correlation

into intra- (VAA
XC) and inter- (VAA0

XC or V AB
XC) components is actually

ambiguous. This ambiguity limits the correct extraction of intera-
tomic terms but a reasonable choice or decision can be made. An
‘‘amalgamated’’ approach has been introduced to tackle this
remaining limitation. This approach involves first calculating the

inter-atomic exchange–correlation contribution (VAA0
XC or V AB

XC) via
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the pure Hartree–Fock exchange equation only, but by inserting KS
orbitals instead of HF orbitals,

VAB
X;HFðB3LYPÞ ¼ �

X
i;j

ð
A

ð
B

cKS
i r1ð Þ cKS

j r2ð Þ cKS
j r1ð Þ cKS

i r2ð Þ
r12

dr1dr2

(14)

Note that the subscript X (rather than XC) emphasizes that,
formally, we extract only the exchange part from the exchange–
correlation energy, using the HF framework.

Secondly, this approach calculates the intra-atomic exchange–
correlation energy from the well-defined total atomic exchange–
correlation, VA

XC,B3LYP, and the HF-defined inter-atomic exchange,

VAA0
X;HFðB3LYPÞ, or

VAA
XC;amalgam ¼ VA

XC;B3LYP �
1

2
VAA0

X;HFðB3LYPÞ (15)

where V A
XC,B3LYP is obtained by performing a three-dimensional

integration over the volume of atom A, of E B3LYP
XC defined in

eqn (12). The calculation of VA
XC,B3LYP is possible because the

E B3LYP
XC functional obviously only depends on the electron density.

It is pivotal to appreciate the difference in treatment between
inter- and intra-atomic exchange–correlation energies. Eqn (14)
cannot be rewritten as a function of electron densities, and thus
the B3LYP (which is a function of the electron density) cannot be
introduced here. Thus, no interatomic exchange(–correlation)
energy can be calculated from a 6D integral such as that in
eqn (14) but then with the functional appearing in the integrand.

We also point out that a private communication with Dr
Keith shows that VA

XC,B3LYP is a transferable quantity as demon-
strated from a series of tests he conducted on H� � �H inter-
actions in normal alkanes.

Finally, we note that in this proposed scheme, V AB
X,HF(B3LYP) =

V BA
X,HF(B3LYP), and that the total molecular exchange–correlation

energy can be recovered as follows,X
A

VA
XC;B3LYP ¼ Emolec

XC;B3LYP (16)

The recovery of the total molecular energy from the intra- and
inter-atomic contributions is made explicit in the following
equation,

Emolec
IQA;B3LYP ¼

X
A

EA
IQA;B3LYP

¼
X
A

TA þ 1

2
VA

en þ
1

2
VA

ne þ
1

2
VAA0

nn

�

þ VAA
Coul þ VAA

XC;amalgam þ
1

2
VAA0

Coul þ
1

2
VAA0

XC;HFðB3LYPÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VA
ee;B3LYP

3
7775

(17)

where the quantity on the left hand side represents the mole-
cular energy as recovered from the B3LYP-IQA analysis, which
is to be compared with the original (unpartitioned) energy of
the B3LYP wave function.

In this investigation we will analyse the effect of only using
the HF-defined exchange equation (eqn (11)) in the calculation
of interatomic exchange energies derived from KS orbitals. Note
that, with the exception of the total atomic B3LYP exchange–
correlation functional energy, V A

XC, all other intra-atomic
and inter-atomic exchange–correlation energies are calculated
incorporating only the HF exchange component without corre-
lation. The appropriate notation will be applied throughout the
analysis to maintain clarity. Subscript ‘XC’ is used for the total
atomic exchange–correlation energy (V A

XC) along with the hybrid
intra-atomic exchange–correlation energy (V AA

XC), and subscript

‘X’ is used for the inter-atomic exchange energy (V AB
X or VAA0

X ).

2.2 Computational methods

The program GaussView generates sensible geometries for
NMA and TriGly, which were subsequently geometry-optimized
with the GAUSSIAN0946 program, in order to obtain a local
energy minimum for NMA at HF/6-311G(d,p), and for TriGly at
HF/6-31+G(d,p) level. The latter level of theory has been recom-
mended47 before for its favourable balance between accuracy
and computational demand. Note that no frequency calculations
were carried out because this work does not depend on the
confirmation of molecular geometries being true minima. Sub-
sequent wavefunctions and ab initio energies were calculated at
HF, B3LYP and MP2 levels of theory (with the respective basis
set) without re-optimization of the geometry. Note that the MP2
wavefunction did not feature in any IQA energy partitioning but
was only used to obtain net atomic charges, necessary for proper
quantifying of polarity (see Discussion, Section 4). The latter
served in a discussion of bond polarity quantified at HF versus
post-HF level. We emphasize that the molecular geometries were
those obtained at HF level, and that they were never re-optimized
at B3LYP or MP2 level, in order to guarantee a direct comparison
of energy components. The geometry of the alloxan dimer was
obtained directly from the CSD, without geometry optimization,
and the corresponding wavefunctions were again calculated at
HF, B3LYP and MP2 levels (with 6-31+G(d,p)).

The extensive analysis of NMA and TriGly is preceded by a
succinct analysis of H2 and LiH, at HF, B3LYP and full CI level using
6-311G(d,p). The latter level of theory is computationally extremely
expensive and hence only possible for the smallest of molecules.
Yet, this analysis is useful in setting the scene while making contact
with the most advanced non-DFT post-Hartree–Fock method.

The AIMAll11,44 software package (both versions 13.10.19
and 14.04.17) was used to perform the QTAIM analysis and the
IQA partitioning calculations for the HF and B3LYP wavefunc-
tions. AIMAll (v 13.10.19) was used for the IQA partitioning of
the HF and B3LYP wavefunctions, via a HF-only IQA algorithm,
to investigate and compare the VAB

X values. The B3LYP wave-
functions were then analysed using AIMAll (v 14.04.17) to check
if molecular energy is recovered when using the implementa-
tion of the B3LYP atomic exchange–correlation functional (V A

XC)
in the IQA algorithm. Note that both versions produce the same
inter-atomic VAB

X,B3LYP values since both follow the HF exchange-
only algorithm.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Ja

nu
ar

y 
20

16
. D

ow
nl

oa
de

d 
on

 0
7/

05
/2

01
7 

10
:2

4:
45

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c5cp07021j


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 20986--21000 | 20991

AIMAll was also used to calculate QTAIM atomic charges. All
default parameters (e.g. ‘‘auto’’ quadrature grids ‘‘Boaq’’ and
‘‘Briaq’’) were used within AIMAll, except the encomp parameter
(short for ‘‘Energy Components’’), which was set to ‘‘4’’ in order
to carry out a full IQA partitioning calculation.

AIMStudio, which is a component of the AIMAll package,
and in-house software called IRIS were used for visualiza-
tion.48,49 Within AIMStudio, all default settings were used.
Some non-default settings for IRIS were employed, i.e. wire-
frame for the surface and altered transparency.

Throughout the analysis no interaction energy has been
doubly counted. Within the AIMAll format, all interaction
energies are split into V AB and V BA, referring to any subscript
(e.g. elec, inter, XC, X), and V AB � V BA. Simply adding V AB

X and
V BA

X gives the total exchange energy between atoms A and B, or
V AB

X,tot. For clarity, and to condense the data, only the V AB
X,tot

interaction will be reported in the figures. In line with the IQA
formalism, V AB

X,tot will simply be reported as V AB
X . For each

system a table will be presented containing the quantitative
analysis of the interaction energies. Within each table, the
analysis is divided into sub-sections according to which inter-
atomic exchange energy is more stable, V AB

X,HF or V AB
X,B3LYP, where

the subscript identifies the nature of the wavefunction used.
Within each sub-section, maximum and mean difference per-
centages between the HF and B3LYP interatomic exchange
energies will be presented. The total number of interaction
cases for each 1,n interaction type within each sub-section is
also included. Percentages were chosen for the analysis to allow
a transferable measure that can be analysed, irrespectively of
the magnitude of the energy value in question. Across the
analysis, the interatomic exchange energies span a range of
10�6 kJ mol�1 to just over 103 kJ mol�1.

3. Results
3.1 Materials

Before the extensive analysis of NMA and TriGly, the scene is
set with a brief analysis of H2 and LiH. NMA and TriGly are
studied to investigate intra-molecular interactions in small and
medium-sized systems. The alloxan dimer system adds another
dimension by including intermolecular interactions. Fig. 2
shows the three systems; note that TriGly has 17 H atoms
and 22 non-H atoms, while the alloxan dimer has 4 H atoms
and 20 non-H atoms. Through individually analyzing every
interaction in each of the three systems we aim to rationalize
the difference between interatomic HF exchange energies, VAB

X,HF

, and interatomic energies obtained from a HF-treatment of a
B3LYP wavefunction, denoted VAB

X,B3LYP.

3.2 IQA molecular energy (EIQA) vs. ab initio (EWFN)

Recent versions of the AIMAll program (version 14.04.17 and
later) include the implementation of the explicit B3LYP
exchange functional into the IQA partitioning. As a result, the
IQA energies accurately recover the ab initio molecular energy
(typically within o1 kJ mol�1). Table 1 shows the IQA energy

recovery of each system, when using the incorrect HF exchange
(AIMAll version 13.10.19) and then the correct B3LYP exchange
(14.04.17).

Clearly, the ab initio energy of each molecular system is not
recovered for B3LYP wavefunctions in AIMAll version 13.10.19
because the values for DE run in the thousands of kJ mol�1. The
DE values are also seen to grow with system size. This growing
error is due to the increasing number of VA

ee energies being
incorrectly calculated, which we expect to be more dramatic for
non-hydrogen atoms. Alloxan has 3 non-hydrogen atoms more
than TriGly (in spite of having fewer atoms in total), which
probably explains why its energy error is larger than that
of TriGly.

When the explicit B3LYP VA
XC functional is used in the IQA

partitioning, the ab initio molecular energy is accurately recovered.

Fig. 2 N-Methylacetamide (NMA) (top), TriGly (bottom left) and the
alloxan dimer (bottom right). Green dots represent bond critical points
(BCPs) and red dots represent ring critical points (RCPs). Images were
produced using AIMStudio.

Table 1 IQA molecular energy (EIQA), ab initio energy (EWFN) and IQA
residual error (DE) of NMA, TriGly and the alloxan dimer, at HF and B3LYP
theory levels, using AIMAll versions 13.10.19 and 14.04.17. All energies are
in kJ mol�1. Note that, in the case of B3LYP, EIQA (from AIMAll version
14.04.17) is the same energy as the left hand side of eqn (17) or Emolec

IQA,B3LYP

System
Theory level (and
AIMAll version)

Energy

EWFN EIQA

DE = EIQA
� EWFN

NMA
HF (v13.10.19) �648691.11 �648691.03 �0.07
B3LYP (v13.10.19) �652690.04 �648588.54 �4101.50
B3LYP (v14.04.17) �652690.04 �652689.85 �0.19

TriGly
HF (v13.10.19) �2277500.00 �2277500.95 0.95
B3LYP (v13.10.19) �2290953.80 �2277187.25 �13766.55
B3LYP (v14.04.17) �2290953.80 �2290953.39 �0.41

Alloxan dimer
HF (v13.10.19) �2946006.19 �2946010.03 3.84
B3LYP (v13.10.19) �2961934.04 �2945606.78 �16327.26
B3LYP (v14.04.17) �2961934.04 �2961933.37 �0.67
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For TriGly and the alloxan dimer, the B3LYP recovery error is
much smaller than that of HF. An pitiable IQA energy recovery of
B3.8 kJ mol�1 was observed for the alloxan dimer, which is
caused by poor integration errors (L(O) values) for 7 of the 8
carbon atoms in the dimer (see Table S1, ESI†). Extra integra-
tions with non-default quadrature grids show that V AB

X values
are numerically stable, even when L(O) is quite large. Hence we
deduce that another energy component, most likely the intra-
atomic energy, is sensitive to the magnitude of L(O). Next, the
breakdown of the interatomic exchange energies, V AB

X , will be
investigated for each system.

3.3 Interatomic exchange energies V AB
X

Fig. S1–S9 (ESI†) contrast the HF and B3LYP HF-calculated
V AB

X energies for each interatomic interaction, together with the
V AB

X,HF = V AB
X,B3LYP bisector. The figures are grouped into a triplet

for each molecular system. Within the grouped figures, the first
figure always incorporates all interatomic interactions in the
system (66, 528 and 276 for NMA, TriGly and alloxan, respec-
tively). Typically, the first figures of each triplet are dominated
by the strongly covalent backbone interactions within the
molecule, corresponding to V AB

X energies in the region of
hundreds of kJ mol�1. The second figure of each triplet only
identifies V AB

X energies within the range of �60 to �1 kJ mol�1

(‘medium-range’). The third figure of each triplet only identifies
V AB

X energies within the range of�1 to 0 kJ mol�1 (‘long-range’).
These two energy ranges can be loosely translated to strong and
weak interatomic interactions. Finally, Fig. 4 and 7 show a
direct overlay of |V AB

X | values obtained at both HF and B3LYP
level for the interactions in TriGly and the alloxan dimer, respec-
tively. Fig. 6 is identical to Fig. S9 of the ESI,† and is shown in the
main text for convenience and also due to its importance.

3.3.1 Small molecules and full CI. Table 2 compares three
wave functions, in terms of interatomic exchange energy VXC

(in kJ mol�1) and bond order d, at Hartree–Fock (HF), B3LYP
and full CI (FCI) level of theory, using the same basis set of
6-311G(d,p) for all (which is also used for NMA below).

In general, the results are in line with previously obtained
insight. VXC scales proportionally with d, as expected. In cova-
lent systems (such as H2), the Coulomb correlation localizes the
electrons in the atomic basins, which means that d decreases
and that the HF wavefunction is too delocalized. This is a
general phenomenon that will be clearly and repeatedly recovered
in NMA and TriGly. This exaggerated delocalization by HF is why

the |VXC| value of H2 is considerably smaller at the FCI level. In
ionic molecules, such as LiH, the situation is reversed (although
now the effect is much less pronounced). Here the mean field
solution (i.e. HF) returns very well localized ions, while electron
correlation transforms them somewhat back into neutral systems.
This effect makes both d and |VXC| increase. The effect of electron
correlation on ions is to change their electron density just a little.
B3LYP captures this effect nicely, and the B3LYP and FCI results
are in very good agreement.

In particular, dHH must be equal to 1, exactly (1.000000),
both at the HF and B3LYP levels. This value does only depend
on the one-determinant structure of the (pseudo)-wavefunction.
This also explains why B3LYP fails to provide a good VXC value.
Note that this means that other energy components are greatly
affected by this inadequacy (kinetic, electron–nucleus, etc.)
because the total B3LYP energy is close to the FCI one. The
change in VXC from HF to B3LYP is small since the real change
caused by electron correlation in this system (as opposed to
that found in LiH) is not in the electron density, but in the
second-order density matrix. The HF, B3LYP, and FCI densities
in H2 are quite similar but it is the pair behavior that is different.
This can only be taken into account using a multi-determinant
expansion, which provides smaller d and |VXC| values.

3.3.2 NMA. NMA contains 12 atoms and hence (12 � 1) �
12/2 = 66 unique interatomic interactions. NMA features regu-
larly in biochemistry as a small and computationally inexpensive
system that contains a peptide bond. NMA’s interactions span a
range of interaction types from 1,2 to 1,6. To elaborate on this
notation, a 1,2 interaction consists of two neighbouring atoms
separated by a single ‘typical’ covalent chemical bond; a 1,3
interaction is separated by two bonds, a 1,4 interaction is
separated by three bonds, while an 1,n interaction is separated
by n � 1 bonds. Thus, NMA serves as a good example for a small
variety of interaction ranges encompassing the so-called bonded
(1,2; 1,3 and 1,4 interactions) and non-bonded interactions
(1,5 and higher).

Fig. S1–S3 (ESI†) compare the HF and B3LYP V AB
X values in

NMA, along with a bisector. The V AB
X energies are distributed

both above and below the bisector, indicating that increased
stability may occur at either HF or B3LYP level. Fig. S1 (ESI†)
shows all 66 interactions, and at this grand scale, a clear
stabilization is perceived for only 3 interactions, which are all
1,2. To see more detail, Fig. S2 and S3 (ESI†) zoom in on smaller
energy windows, which are �60 to �1 kJ mol�1 and �1 to
0 kJ mol�1, respectively. Fig. S2 (ESI†) shows the vast majority
of 1,3 and 1,4 interactions. Energies are scattered around the
bisector, with almost twice as many data points in the |V AB

X,B3LYP| 4
|V AB

X,HF| half (which is hard to see, but clear from Table 3 below).
In Fig. S3 (ESI†), which shows only three 1,4 interactions and

all 1,5 and 1,6 interactions, most data points now appear below
the bisector, which means that B3LYP stabilizes these inter-
actions compared to HF. This stabilization trend can also be
seen as a ‘shift’ in the data points, in going from HF to B3LYP.
This analysis benefits from more quantitative information
about the distribution of the VAB

X values at either side of the
bisector. This information is provided in Table 3, which groups

Table 2 A comparison between Hartree–Fock (HF), B3LYP and full CI (FCI)
wavefunctions in terms of interatomic exchange energy VXC (in kJ mol�1)
and bond order d. The molecules were geometry optimized only at HF level
using at 6-311G(d,p) and the geometry kept constant for all three levels of
theory. Note that VXC is actually VX for HF, and VX,HF(B3LYP) for B3LYP

Molecule Measure HF B3LYP FCI

H2 VHH
XC �690.22 �687.08 �624.57

dHH 1.00 1.00 0.85

LiH VLiH
XC �92.14 �102.13 �103.02

dLiH 0.19 0.22 0.21
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the V AB
X values according to which side of the bisector they lie,

i.e. either |V AB
X,HF| 4 |V AB

X,B3LYP| (upper half in Fig. S1–S3, ESI†) or
|V AB

X,B3LYP| 4 |V AB
X,HF| (lower half).

Table 3 shows only percentages, which characterize the
degree to which the introduction of B3LYP changes the HF
V AB

X values. To understand how these percentages (maximum
and mean) were calculated, it is instructive to focus on the 4
example interactions (N1–H8, N1–C9, N1–C2 and C2–O3)
marked in red in Table S2 (ESI†). These interactions also appear
in Fig. S1 (ESI†) where they lie in the |V AB

X,B3LYP| 4 |V AB
X,HF|

region, that is, in the lower half, below the bisector. Table S2
(ESI†) makes clear that the largest relative energy shift, going
from HF to B3LYP, is �111.8 kJ mol�1 (for N1–C2). Note that
negative differences correspond to a stabilization caused by
B3LYP. All B3LYP energies in this paper are always referred to
HF, so it makes sense to work with the ratio of this energy
difference to the original HF. Converting this ratio to a percen-
tage, we define 100 � |V AB

X,B3LYP � V AB
X,HF|/V AB

X,HF as the ‘‘absolute
difference percentage’’. The absolute difference percentage asso-
ciated with C2–O3 then appears as 15.2% in Table 3 under the
1,2 entry referring to 4 interactions with |V AB

X,B3LYP| 4 |V AB
X,HF|.

Table 3 also lists the mean difference percentage (i.e. 9.6%),
where the mean represents an average over these 4 interactions.

Table 3 shows that the interactions predominately stabilized
by B3LYP are the 1,4 interactions and higher. The 1,2 and 1,3
interactions are mostly destabilized by B3LYP, in a ratio of
about 2 to 1. Secondly, when |V AB

X,B3LYP| 4 |V AB
X,HF|, the mean

difference percentage increases monotonically with n in 1,n
over the whole range of n. However, when |V AB

X,HF| 4 |V AB
X,B3LYP|,

there is no apparent trend linking difference percentage to
the interaction type.

Fig. 3 shows the shift in V AB
X energies in going from HF to

B3LYP for all 66 interactions in NMA. The logarithmic energy
scale brings out the shift in terms of energy ratios. Fig. 3
confirms, at a glance, that the larger n in an 1,n interaction,
the more pronounced the relative energy stabilization caused
by B3LYP. This effect is consistent with the behaviour of the
mean difference percentage in Table 3, for the stabilizing half
on the right of this table. This effect may also be related to the
fact that B3LYP is not an asymptotically correct functional, so it
behaves pathologically at long-range.

It is pleasing to see that VAB
X energies broadly fall apart into

non-overlapping clusters, each cluster corresponding to an 1,n
interaction, where n = 2, 3, 4, 5 or 6. The gap between the 1,2
cluster and the 1,3 cluster is particularly pronounced, while the
1,3 and 1,4 clusters are contiguous. The overall behaviour of
V AB

X energies as a function of internuclear distance is such
is that the lowest values occur at the largest distances.
The descending line in black captures this behaviour coarsely,
with a correlation coefficient r2 of 0.85, referring to the B3LYP
data only. This broadly respectable correlation does not
attempt to spot any non-linearity in the data, nor does it detect
a fine structure emerging by grouping VAB

X values per inter-
action pair AB.

Closer inspection of the clusters reveals some energetic
anomalies, that is, interactions appearing in unexpected clusters.
For example, four 1,5 interactions (green) turn up far outside
their cluster. Fig. 3 marks these as O3–H12, O3–H11, O3–H10 and
H5–H8. The first two interactions of this set appear near the
overall (B3LYP) correlation line (in black). Hence they are not
anomalous in terms of how a VAB

X energy varies with A� � �B
distance. On the other hand, O3–H10 is anomalous, not just by
connectivity ‘‘distance’’ (i.e. 1,5) but by actual (geometrical)
distance. Indeed, this interaction is curiously strong for its
relatively large internuclear distance. The reason for this
observation is not clear. Inspired by earlier work25 that showed
that V H–H

X values are anomalously large when part of a planar
H–C–C–H arrangement in alkanes, it is tempting to invoke the
near-planarity of the H10–C9–N1–C2–O3 fragment (where the
H10–C9–N1–C2 dihedral angle is �1631 (off by only 171 from
1801) and the C9–N1–C2–O3 dihedral angle is 41). Finally, note
that V N1–O3

X is the strongest interaction in the 1,3 cluster, quite
far to the right of the black line. This enhanced delocalization
across the C–N peptide bond to the oxygen is reminiscent of the
resonance canonical imparting double bond character to the
CN interaction.

3.3.3 TriGly (GlyGlyGly). There are 528 interatomic inter-
actions in this oligopeptide (Fig. 2) ranging up to 1,15 interaction

Table 3 Stabilization and destabilization of V AB
X energies in going from HF

to B3LYP for all 66 interatomic interactions in NMA. Maximum and mean
absolute difference percentage (between and HF and B3LYP) sorted by
interaction type ‘‘1,n’’ and by whether |V AB

X,HF| 4 |V AB
X,B3LYP| or |V AB

X,B3LYP| 4 |V AB
X,HF

|

|V AB
X,HF| 4 |V AB

X,B3LYP| |V AB
X,B3LYP| 4 |V AB

X,HF|

Destabilization caused by B3LYP Stabilization caused by B3LYP

1,n Maximum Mean
No.
interactions Maximum Mean

No.
interactions

1,2 1.4 1.1 7 15.2 9.6 4
1,3 14.4 6.4 12 54.8 19.9 6
1,4 2.8 2.8 1 62.4 28.9 15
1,5 0.0 0.0 0 57.8 34.8 12
1,6 16.1 10.5 2 358.1 103.8 7

Fig. 3 Logarithmic plot of |VAB
X | versus interatomic distance for all 66 NMA

interactions at HF/6-311G(d,p) and B3LYP/6-311G(d,p) level of theory.
Interaction types ‘‘1,n’’ have been encircled where possible, showing the
clustering as well as the outliers.
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types. Ignoring a hydrogen atom each time, NMA occurs four
times in GlyGlyGly, which therefore marks a major upscaling in
the size of our analysis, while also establishing links between the
NMA and GlyGlyGly.

Fig. S4–S6 (ESI†) again compare the HF and B3LYP VAB
X

values, but now in TriGly (counterpart of Fig. S1–S3, ESI†).
Fig. S4 (ESI†) shows all 528 interactions, and at this grand scale,
clear stabilization materializes for only a dozen or so interac-
tions, which are all 1,2. Fig. S5 (ESI†) (�60 to �1 kJ mol�1)
shows the vast majority of 1,3 and 1,4 interactions, along with
about a third of the 1,5 interactions. Energies are scattered
around the bisector, with 2.6 times as many data points in the
|V AB

X,B3LYP| 4 |V AB
X,HF| half. Fig. S6 (ESI†) repeatedly shows a larger

shift towards stabilization by B3LYP. The interactions from 1,4
to 1,8 follow trends identical to those observed for NMA, with
greater stability favoured in the B3LYP wavefunction.

Table 4 shows that the interactions that B3LYP predomi-
nately stabilizes, are the 1,4 interactions and higher, as before
for NMA, but this effect tails off at 1,13 and even reverts at 1,14.
When lumped together, the 1,2 and 1,3 interactions are neither
stabilized nor destabilized by B3LYP. In other words, 46 inter-
actions are less stable under B3LYP while 40 are more so. As in
the case of NMA, the mean difference percentage increases
monotonically with n (in 1,n) up to 1,8 interactions, again when
|V AB

X,B3LYP| 4 |V AB
X,HF|. Thus, in TriGly, the range of the mono-

tonic trend observed up to the 1,6 interactions in NMA, is
extended to 1,8. However, at this point, the mean difference
percentage decreases (but not monotonically) until the 1,15
interactions are reached. When |V AB

X,HF| 4 |V AB
X,B3LYP|, there is

still (as for NMA) no apparent trend linking difference percen-
tage to the interaction type, throughout the whole range of
interactions.

On a technical note, such large difference percentages for
long-range 1,n interactions could be a cause for concern in the

analysis above. However, the reliability of the values for VX

should not be called into question, as we now explain. Table S3
(ESI†) shows how a variation in the outer angular integration
grid (within AIMAll) affects the VX energies for the very high 1,n
interactions for two example interactions in TriGly: C22� � �H27
(1,14) and H24� � �H28 (1,15). A change in the outer angular
quadrature integration grid changes the integration error L(O)
calculated for each atom. A computationally less expensive grid,
for example, ‘Low (Lebedev)’ will typically50 result in a higher
absolute L(O) value for a given atom, compared to that of ‘Sky
High (Lebedev)’. Table S3 (ESI†) shows that the variation of the
integration grid does cause a significant change in L(O) but
importantly VX remains very stable throughout. Such small
changes in the values of VX, compared to that of L(O), allow
us to trust the VX values, even for very high n in 1,n. This
stability of VX suggests that a large L(O) error affects another
IQA energy component more, presumably E A

intra.
Fig. 4 shows the effect on V AB

X energies of introducing
B3LYP, compared to the original HF values, for all 528 interac-
tions in TriGly computed at the HF/6-31+G(d,p) and B3LYP/6-
31+G(d,p) level of theory. As in Fig. 3, it again makes sense to
express the overall behaviour of V AB

X energies as a function of
internuclear distance in a coarse, linear way. However, here we
draw two lines, one for HF and one for B3LYP, instead of the
single black line in Fig. 3. The descending line in black
captures this behaviour, admittedly coarsely, with a correlation
coefficient r2 of 0.91 for both HF and B3LYP. It is clear that the
cloud of B3LYP energies (in red) occurs right of the cloud of HF
energies (in blue), which means that most interatomic inter-
actions are indeed more stable at B3LYP level. It is interesting
to again analyze anomalies in the same manner as in Fig. 3.
It is best to truncate the analysis at 1,6 interactions because
energies of about 1 J mol�1 or less are not really significant
(unless hundreds of them are considered as a group and their
energies simply added, as allowed by the additive nature of VX).

Fig. 5 shows again the broad behaviour seen before in NMA
(Fig. 3): the further two atoms are apart, the less they exchange
(i.e. reduced delocalization). In other words, well separated

Table 4 Stabilization and destabilization of V AB
X energies in going from HF to

B3LYP for all 528 interatomic interactions in TriGly. Maximum and mean
absolute difference percentage (between and HF and B3LYP) sorted by inter-
action type ‘‘1,n’’ and by whether |V AB

X,HF| 4 |V AB
X,B3LYP| or |V AB

X,B3LYP| 4 |V AB
X,HF|

|V AB
X,HF| 4 |V AB

X,B3LYP| |V AB
X,B3LYP| 4 |V AB

X,HF|

Destabilization caused by B3LYP Stabilization caused by B3LYP

1,n Maximum Mean
No.
interactions Maximum Mean

No.
interactions

1,2 1.5 1.2 12 15.2 7.7 20
1,3 15.2 8.9 34 63.0 23.3 20
1,4 2.9 1.9 4 72.9 27.6 59
1,5 0.0 0.0 0 94.2 41.7 60
1,6 0.0 0.0 0 206.1 70.9 60
1,7 0.0 0.0 0 194.1 99.8 49

1,8 0.0 0.0 0 452.1 147.8 43
1,9 12.2 12.2 1 383.9 114.5 42
1,10 0.0 0.0 0 295.8 100.5 33
1,11 4.8 4.8 1 183.0 75.7 26
1,12 33.8 25.5 3 119.3 53.3 23
1,13 25.6 19.3 2 228.9 76.7 14
1,14 64.2 43.2 4 248.4 82.4 9
1,15 67.6 40.3 7 144.1 75.8 2

Fig. 4 Logarithmic plot of V AB
X versus interatomic distance for all 528

TriGly interactions at the HF/6-31+G(d,p) and B3LYP/6-31+G(d,p) level of
theory.
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atoms have a small V AB
X energy. This behaviour is typical for

saturated systems, such as this tripeptide, which lacks aromatic
amino acids or other extensive electronically delocalized frag-
ments. Secondly, as seen in NMA, the various 1,n interactions
do cluster as well, albeit with more overlap compared to NMA.
The most substantial overlap takes place between the 1,5
(green) and 1,4 (red) cluster. Such overlap is not surprising
because TriGly is a more complex system, which contains a
wider variety of interactions than found in NMA. In particular,
because TriGly is curled (see inset) there are many instances
where the actual (geometrical) distance is smaller than the
distance based on bond connectivity (i.e. labelled by 1,n). This
mismatch between geometrical and connectivity-based dis-
tance shows itself in 1,6 interactions where, for example, the
H10� � �H19 distance is only 2.68 Å. The corresponding V AB

X

(B3LYP) energy is a respectable 0.4 kJ mol�1, whereas the mean
V AB

X energy of all 1,6 interactions is at least an order of
magnitude smaller.

The next set of interactions of interest is the same as in
NMA: chemically meaningful quantities such as V AB

X are antici-
pated to be transferable. We expect the N� � �O interactions
associated with the peptide bond to be very similar in energy
value. QCT is known for providing highly transferable proper-
ties. Indeed, the V N� � �O

X energy averaged across all four
peptide bonds in TriGly and the one peptide bond in NMA, is
�113.4 kJ mol�1 with a standard deviation of only 1.0 kJ mol�1

at B3LYP level. The standard deviation at HF level is only
0.2 kJ mol�1, which is a remarkable testimony of transferability.
As expected, the VN� � �O

X energies again (see NMA, Fig. 3) appear
at the strong end of the 1,3 cluster (Fig. 5, at the extreme right
of blue data points, marked as ‘‘OQC–N group’’). Finally, we
mention that the 1,5 interaction H5� � �O8 also appears at the
strong extreme of the 1,5 cluster, but energetically this inter-
action is less anomalous than any O� � �N interaction because
V H5� � �O8

X lies very near the black line. In contrast, the 1,6
interaction O8� � �O14 lies quite a bit off the black line, and

marks an unusually strong stabilization of about 6 kJ mol�1 by
‘‘through-space’’ oxygen� � �oxygen delocalization. This observa-
tion sets the scene for exploring another type of interaction that
received a great deal of attention in the last decade, called the
n - p* interaction.

TriGly is an ideal system to make contact with the research
theme of Raines and co-workers on so-called n - p* interac-
tions in proteins.51 The interaction occurs between protein
backbone amides, and is characterized as arising from the
delocalization of a lone pair of electrons (n, in fact, the p-rich
lone pair) of an amide oxygen, to an antibonding orbital (p*) of
the subsequent carbonyl group. This research group has ele-
vated this type of interaction to one that may be as important as
hydrogen bonding, which they characterize as an ns - s*
interaction. Here, there is an s-rich lone pair of an amide
oxygen delocalizing with the antibonding s* orbital of the
N–H bond of an amide bond, but now four amino residues
further down the protein backbone. Although the n - p*
interaction can continuously get stronger, Raines et al. propose
that the interaction should unmistakably take place if the
distance d between OB and CC in CAQOB� � �CCQOD is smaller
than 3.2 Å, and if the angle y, defined as OB� � �CCQOD, lies
between 991 and 1191. Note that the quantum mechanical
interpretation of Raines et al. is couched in the language of
Natural Bond Analysis (NBO),7 which suffers from practical
issues of computational stability and lack of transparency.
However, IQA is alternative candidate to express delocalization
effects but now in an orbital invariant way, as well as computa-
tionally stable and transparently. In TriGly, the CAQOB� � �CCQOD

system that comes nearest to obeying those geometrical criteria is
C6QO8� � �C2QO14, where the distance d is 3.4 Å and y is 871. It
turns out that that the V C2� � �O8

X energy is 2.8 kJ mol�1. This energy
is close to a value quoted by Raines et al., still in kcal mol�1, and
amounting to 0.5 in that energy unit, obtained after an NBO
analysis of an a helix. Having said this, the 1,5 interaction C2� � �O8
(marked in Fig. 5), occupies a rather unremarkable place in the
green cluster or with respect to the black line. A likely reason
is that the C6QO8� � �C2QO14 fragment falls out of the range
proposed by Raines et al., strictly speaking.

3.3.4 Alloxan dimer. This system is the first example of a
van der Waals complex, which is of interest to the current
analysis because of its surprising total lack of hydrogen bond as
discovered by Bolton52 in its stable crystalline structure. How-
ever, Dunitz and Schweizer ask if alloxan is really a ‘‘proble-
matic’’ structure53 although it has been regarded as such for
about 40 years. They write that ‘‘It (‘‘alloxan’’ red.) is held together
mainly by whatever factors contribute to the cohesive energies. . . the
CQQQO� � �CQQQO type of interaction would seem to play an important
part’’. Unpublished work from our lab shows that the electro-
statics between topological atoms plays an important role in the
stability of the complex. Here we only discuss the exchange
energy component. The investigation of the intermolecular
interactions allows us to compare with the intra-molecular
interactions, and present a complete analysis of the V AB

X energies.
The alloxan monomer is a heterocyclic planar system.

Within each alloxan monomer, intramolecular interactions

Fig. 5 Logarithmic plot of |V AB
X | versus interatomic distance for TriGly

interactions up to 1,6, at HF/6-31+G(d,p) and B3LYP/6-31+G(d,p) level of
theory. Key outlying VX values have been labelled in both the plot and the
inset molecule image. The black line shows the overall correlation of the
B3LYP energies, with a correlation coefficient r2 of 0.91.
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only reach to the maximum value of 1,6. When added to the
intermolecular interactions, a total interaction count of 24 �
(24 � 1) = 276 is obtained, in the knowledge that each alloxan
monomer consists of 12 atoms. In the current work, only one of
the two known alloxan dimer crystal orientations53 was inves-
tigated (see Fig. 2), the other being a dimer held by bifurcated
hydrogen bonds. For the purpose of this analysis, a single
dimer arrangement is sufficient. The monomers are roughly
T-shaped (with a tilt), with two carbonyl groups of one mono-
mer pointing towards the plane of the other monomer, approxi-
mately bisecting this plane.

Fig. S7–S9 (ESI†) again compare the HF and B3LYP
V AB

X values, but now in alloxan. Fig. S7 (ESI†) shows all 276
interactions, and at this grand scale, clear stabilization materi-
alizes for only a dozen or so interactions, which are all 1,2. The
introduction of B3LYP renders the strongest interactions stron-
ger. Fig. S8 (ESI†) (�60 to �1 kJ mol�1) shows the vast majority
of 1,3 and all but one of the 1,4 interactions, along with very few
1,5 interactions, as well as up to a quarter of inter-alloxan
interactions. Energies are scattered around the bisector, with
about 10 times as many data points in the |V AB

X,B3LYP| 4 |V AB
X,HF|

half. Fig. S9 (ESI†) repeatedly shows a larger shift towards
stabilization by B3LYP. The interactions from 1,4 to 1,8 follow
trends identical to those observed for NMA, with greater

stability favoured in the B3LYP wavefunction. Fig. 6 (which is
identical to Fig. S9, ESI†) covers the range 0 to �1 kJ mol�1,
which corresponds to 1,5; 1,6 and the inter-alloxan interac-
tions. Here, 83% interactions are stabilized by B3LYP. Table 5
confirms this observation and quantifies the number of inter-
actions in either the |V AB

X,B3LYP| 4 |V AB
X,HF| half or the |V AB

X,B3LYP| o
|VAB

X,HF| half.
The predominately stabilizing trend caused by B3LYP also

appears in purely intermolecular (i.e. alloxan� � �alloxan) inter-
actions. In total, there are 144 of these interactions, which
amounts to 52% of the complete total of 276 interactions.
Table 5 shows these intermolecular interactions as a separate
entry. There are now 27 cases for which |V AB

X,HF| 4 |V AB
X,B3LYP|

and 117 for which |V AB
X,B3LYP| 4 |V AB

X,HF|. The distribution of
cases over these two stabilization regimes can be rationalized
as follows. From the TriGly data we learnt that interactions are
more stable at HF level if they are (very) long range (or 1,2 and
1,3 but this very short range is not relevant here). Hence, we
expect the average internuclear distance for the 27 cases to be
large. Indeed, it turns out to be 6.5 Å as shown in Table S6
(ESI†). The value of 6.5 Å falls in between 6.3 Å and 6.8 Å, which
are the respective average internuclear distances for 1,8 and 1,9
interactions in TriGly.

Fig. 7 demonstrates the energetic stability that B3LYP brings
to the vast majority of interactions in the alloxan dimer: the red
cloud (B3LYP) is indeed predominately shifted to the right
compared to the blue cloud (HF). This figure is the counterpart
of Fig. 4, and again shows two lines, one for HF and one
for B3LYP, with almost identical correlation coefficients r2 of
0.85 and 0.84, respectively. Note that the x-axis is logarithmic
hence |V AB

X | must be used. It is clear that the shift becomes
more pronounced as the interatomic distance increases and the
exchange energy decreases. The shift is more pronounced here
than in TriGly (see Fig. 4).

Finally, Fig. 8 shows again the broad behaviour seen before
in NMA and TriGly (Fig. 3 and 5) but now for the alloxan dimer.
The black line represents the overall relationship between
V AB

X and internuclear distance. The corresponding correlation
coefficient r2 is 0.84. This time the clusters represents the
exchange energy patterns of the alloxan monomers only, and show
again minimal overlap. Four intramolecular O� � �O interactions
stand out by their unusual strength: O7� � �O8, O7� � �O12 in one
alloxan, and O19� � �O2O, O19� � �O24 in the other. The average

Fig. 6 V AB
X energies for long-range interactions (0 to �1 kJ mol�1) in the

alloxan dimer, from both HF and B3LYP wavefunctions. Note that this
figure is repeated in the ESI† as Fig. S9 because there it is part of a triplet of
plots on alloxan.

Table 5 Stabilization and destabilization of V AB
X energies in going from HF to B3LYP for all 276 interatomic interactions in alloxan. Maximum and mean

absolute difference percentage (between and HF and B3LYP) sorted by interaction type ‘‘1,n’’ and by whether |VAB
X,HF| 4 |V AB

X,B3LYP| or |V AB
X,B3LYP| 4 |V AB

X,HF|.
Just over half of the interactions (144 in total) are of intermolecular nature

|V AB
X,HF| 4 |V AB

X,B3LYP| |V AB
X,B3LYP| 4 |V AB

X,HF|

Destabilization caused by B3LYP Stabilization caused by B3LYP

1,n Maximum Mean No. interactions Maximum Mean No. interactions

1,2 0.3 0.2 4 16.0 12.0 20
1,3 21.2 9.4 14 56.0 26.6 22
1,4 0.0 0.0 0 76.3 38.3 42
1,5 0.0 0.0 0 107.3 77.4 24
1,6 0.0 0.0 0 206.7 136.2 6
Intermolecular 259.4 89.7 27 225.0 74.0 117
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V OO
X B3LYP energy is �30.8 kJ mol�1 with a pleasingly small

standard deviation of 0.9 kJ mol�1 (original data in Table S5, ESI†).
These four O� � �O interactions appear outside of their 1,4 cluster.
This observation is reminiscent of that made in TriGly where the
1,6 interaction O8� � �O14 appeared far outside its cluster.

Fig. 8 also marks inter-alloxan interactions (in grey-brown)
having values of |VX,B3LYP| 4 0.01 kJ mol�1. These intermole-
cular interactions mainly populate the weaker end of the energy
spectrum: they start in the utmost left region, which is weaker
than the intramolecular 1,6 interactions (flat disk), and extend
over the 1,5 interactions (green disk) well into the 1,4 inter-
actions (red disk). In fact, two intermolecular interactions even
outdo the 1,4 interactions in terms of strength: O7� � �N17 and
O12� � �C14 (marked in Fig. 8, and ignoring the 4 intramolecular
O� � �O interactions outside the 1,4 disk). They are the strongest
intermolecular interactions, and remarkably correspond to
the two interatomic interaction lines found between the

two monomers. The O12� � �C14 interaction materialises between
two CQO groups, and can hence be linked to Dunitz and
Schweizer’s comment on the important role of CQO� � �CQO
type interactions played in the stability of the crystal. However, a
convincing argument on the stability of the alloxan dimer can
only be made when considering all IQA energy contributions.

4. Discussion

The interatomic exchange energy results provide several points
to consider more deeply. These points will be addressed in
turn, starting with a brief comment on the comparison between
delocalization indices and VAB

X .
A systematic increase in energetic stability is seen between

pairwise 1,4 bonded interactions and higher non-bonded inter-
actions. This trend was observed unequivocally until B1,14
interactions. However, interactions of 1,6 and higher, in gen-
eral, had interatomic exchange energies that fell below the
integration error of the atoms involved, eventually reaching
values as little as B1 � 10�6 kJ mol�1 in magnitude. Such
interactions would be considered negligible for any application.
Hence, up to B1,6 interactions, served as an appropriate cut-off
for interaction types.

A comparison can be made between the V AB
X results pre-

sented and the trend previously observed in measuring pair-
wise electron delocalization, via the delocalization index (DI).
The consistent overestimation of DI values, which has been
observed before, matches the current results for non-bonded
interactions (1,5 and higher). This overestimation provides
evidence that some Coulomb electron–electron correlation
(which is included in the one-electron density) is partly included
in the pairwise exchange results, despite the HF-formalism not
directly addressing it. This is a well-known phenomenon, which
allows a simple explanation in terms of the different behaviour of
Kohn–Sham and Hartree–Fock orbitals. KS orbitals are more
localized compared to HF orbitals, which is common in largely
covalent interactions. This increased localization leads to smaller
DIs. Because exchange energies are proportional to DIs, they will
be smaller as well (in absolute value). The opposite will be true
when KS orbitals become more strongly delocalized than their HF
counterparts. In any case, the exact behaviour will never fully be
included without the electron-pair density being defined within
the HF-formalism.

The 1,2 and 1,3 interactions are neither stabilized nor
destabilized by B3LYP. To rationalize this fact, it helps to
consider work of Poater et al.36 regarding a similar analysis
on d(A,B) rather than on our VAB

X values. From their study of
ethane and diborane, one concludes that d(A,B) values of the
1,2 and 1,3 interactions involved can either increase or
decrease. Given the proportionality between |V AB

X | and d(A,B),
mentioned in the Introduction, we can conclude that the
results of Poater et al. support our own findings, stated at the
beginning of this paragraph. From this parallel behaviour of
d(A,B) and V AB

X results, we conclude that some first-order
density correlation must also being included in V AB

X .

Fig. 7 Logarithmic plot of V AB
X versus interatomic distance for all 276

interactions in the alloxan dimer at HF/6-31+G(d,p) and B3LYP/
6-31+G(d,p) level of theory.

Fig. 8 Logarithmic plot of |V AB
X | versus interatomic distance for alloxan

interactions with |VX,B3LYP| 4 0.01 kJ mol�1, at HF/6-31+G(d,p) and B3LYP/
6-31+G(d,p) level of theory. Interaction types ‘‘1,n’’ have been encircled
where possible, showing the clustering as well as the outliers. Bracketed
interaction labels indicate the interaction also forms an AIL. The black line
shows the overall correlation of the B3LYP energies, with a correlation
coefficient r2 of 0.84.
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A more detailed analysis is also possible that allows for a
physicochemical interpretation of the systematic differences
found in our data beyond the general discussion already
presented. Tables S2, S4 and S5 (ESI†) gather all the (1,n) n =
2,3,4 pairs for NMA, TriGly and the alloxan dimer, respectively,
listing their V AB

X,HF and V AB
X,B3LYP values, their difference, and

absolute difference percentages. In order to shed some light on
them we take into account the major factors that influence V AB

X .
We will use orbital arguments, which are easier to grasp,
although fully orbital invariant insights may also be given. At
the HF or KS levels,

VAB
X ¼ �

X
i;j

ð
A

ð
B

ci r1ð Þcj r2ð Þcj r1ð Þci r2ð Þ
r12

dr1dr2 (18)

So the first, and probably most important factor in determining
V AB

X , is the degree of delocalization of the orbitals involved in a
given AB interaction. It is easy to understand from eqn (18) that
only orbitals delocalized between atoms A and B will contribute
non-negligibly to VAB

X . Inclusion of electron correlation effects,
even at DFT level, tend to localize orbitals involved in direct
covalent links, and to delocalize their long-range tails. For a
given AB pair, other factors involve the size of the topological
atoms, and the amount of electron charge contained in them.
For instance, it is clear that in 1,2 interactions, a shift in the
position of the inter-atomic surface (separating A and B) towards
the ideal mid-partition will increase V AB

X . In summary, homo-
polarity works in favour of covalency. Conversely, heteropolarity
works against covalency. Similarly, V AB

X is usually dominated by
the diagonal i = j term in eqn (18), the so-called self-interaction
contributions, which behave like products of densities. An
increase in the electron population of an atom will necessarily
increase these self-interaction terms, adding to a larger V AB

X .
There are other effects that the above expression (only valid for
single-determinant expansions) will never capture. There are
other effects that the above expression (only valid for single-
determinant expansions) will never capture. At any standard HF
or KS DFT level, a hydrogen molecule will be described by one
Slater (pseudo)determinant consisting of a doubly occupied
totally symmetric sg orbital, independently of the internuclear
distance. Its DI will be exactly equal to 1, and its V AB

X value will be
very large, not vanishing at dissociation. This is the well-known
single determinant dissociation problem of H2 rephrased in
terms of DI’s or V AB

X ’s. A proper wavefunction correlated method,
as simple as a CAS[2,2] calculation, will mix at least two
determinants, leading to a destructive interference that will
make V AB

X vanish at the large distance limit. We will now show
how a combination of these effects rationalizes our findings.

It is useful to introduce net atomic charges (denoted q) into
this discussion. Tables S7–S9 (ESI†) provide the net charges of
all atoms in NMA, TriGly and the alloxan dimer, respectively.
These data show that B3LYP produces net accurate charges that
are very close to those generated by MP2, which models
correlation effects independently from DFT.

As noticed above, our data favour a clearly biased distribu-
tion for 1,4 and higher interactions. When |V AB

X,B3LYP| 4 |V AB
X,HF|,

the sum of the net charge on A and on B at the B3LYP level (i.e.
q(A) + q(B)) is lower than the sum at the HF level across all 1,n
interaction types. In other words, the total electron population
contained in the B3LYP (topological) atoms is larger. This is in
agreement with the comments on the role of self-interaction
posed in the above paragraph, and larger atomic electron
populations will be, in general, accompanied by larger |V
AB
X,B3LYP| values, particularly when the implied extra electrons
are delocalized between A and B, such that the product
ci

2(r1)ci
2(r2) contributes significantly to VX (see eqn (18) and

recall that we integrate electron 1 over A and electron 2 over B).
Almost all the exceptions to this rule may also be rationalized.
For instance, in the C2–C10 interaction in the alloxan dimer,
q(A) + q(B) at B3LYP is lower, because these carbon atoms
participate in very polar CQO interactions at the HF level.
However, |V AB

X,B3LYP| o |V AB
X,HF|. In this case, the smaller net

charge of the B3LYP carbon atoms is due to electrons provided
by the neighbouring carbonylic oxygens, which do not affect the
electrons participating in the C2–C10 interaction. The latter are
still much more delocalized at the HF than at the B3LYP level,
giving rise to a larger VX in the former case, as the following
paragraph explains.

Similarly, across all 3 systems, all the 1,2 bonded interac-
tions that showed increased stability at the HF level were C–H
or C–C interactions. In the case of C–H, the larger HF exchange
stems from a spurious polarization giving rise to negatively
charged hydrogen atoms, caused by a too delocalized C–H
bonding orbital. However, B3LYP recovers the correct polarity
by shifting the interatomic surface (or equivalently localizing
the bonding orbital) and thereby decreasing the exchange. In
the case of C–C, we face the well-known fact that too delocalized
HF orbitals lead to exaggerated covalency, counteracted again
by localization in the DFT description. We should add that it is
a general phenomenon that inclusion of electron correlation
considerably decreases both the DI and the exchange–correlation
energy in 1,2 homoatomic bonds.

An analysis of the 1,3 interactions along the previous lines
also explains the stability of the interactions at each level of
theory. The 1,3 interactions that are more stable at HF, con-
sisted of a wider variety of elements (or types of topological
atoms, e.g. C� � �N, C� � �O, N� � �H) across the three case studies.
Typically, at HF level these interactions typically exhibit a lower
sum (not absolute value) of the net charge on A and on B. In
some interactions (e.g. N� � �H), the polarity of the H atoms
involved, changed according to whether the HF or B3LYP
wavefunction was used. At HF, a number of H atoms had
exaggerated charges and were often anionic. Some of these
atoms exhibited a change in polarity, becoming cationic at
B3LYP. The previous anion–anion behaviour would lead to an
increase in the |VAB

X | at HF level. The small number of 1,4 cases
that exhibited greater stability at HF were solely due to a
decreased sum, q(A) + q(B), at this level. Typically, these cases
were limited to N–H, N–N and H–H.

We should add, in passing, that obtaining intermolecular
exchange contributions from KS orbitals is not new, because
it is actually a standard procedure in the SAPT-DFT method
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originally proposed by Williams and Chabalowski,54 and later
improved by Hesselmann and Jansen.55 This method has
become an accurate, yet cheaper alternative to the very expen-
sive symmetry-adapted perturbation-theory calculations.

Overall, this analysis validates the current expansion of IQA
to B3LYP level of theory without reason for concern, in spite of
the absence of an explicit second order reduced density matrix.

5. Conclusion

To the best of our knowledge, this study is the first to calculate
and study interatomic exchange energies V AB

X by using an explicit
density functional, in this case that of B3LYP. As such, the IQA
energy decomposition has been satisfactorily extended to DFT.
Indeed, we recover the original (unpartitioned) energy of the
system from the IQA energy contributions. The correct version
(14.04.17 and higher), of the computer program AIMAll contains
a pseudo-DFT IQA algorithm that makes this recovery possible
within B0.7 kJ mol�1 of the original ab initio B3LYP energy.

We studied the influence of B3LYP on V AB
X , compared with

the HF values, for three systems of biochemical interest:
N-methylacetamide (NMA), doubly capped tripeptide GlyGlyGly
(TriGly) and an alloxan dimer. Over the three systems, a grand
total of 870 V AB

X energies for interactions ranging up to 1,15
interactions were carefully analyzed. The 1,6 and higher inter-
actions, with V AB

X energies corresponding to B0.01 kJ mol�1,
were disregarded because they are negligible. The introduction
of B3LYP invariably stabilized 1,4 and higher interactions,
showing a consistent energy shift towards increased exchange
energy, in terms of absolute value. Such a shift in stability is
almost always due to an decrease in the sum of net atomic
charges (q(A) + q(B)) caused by the use of Kohn–Sham orbitals.

However, for 1,2 and 1,3 bonded interactions, the V AB
X

energies were not always shifted in the same direction, i.e.
sometimes the HF energies were more stable than the B3LYP
energies. The exchange stability for each 1,2 interactions can be
understood by considering a combination of the (de)localiza-
tion of the KS or HF orbitals, the position of the interatomic
surface and the sum of net atomic charges (inferring polarity)
of the involved atoms. Through the orbital description, DFT
methods have some correlation incorporated, resulting in more
localized orbitals than HF. Only C–C and C–H interactions are
the 1,2 interactions with greater V AB

X energies using HF orbitals
(over KS orbitals). Here, HF over-delocalized their atomic
orbitals leading to greater exchange in the interaction. Con-
trastingly, the increased heteropolarity, experienced by some of
the 1,2 interactions (e.g. N–H, N–C, C–O) through a HF orbital
description, counteracts the lower sum of net atomic charges,
leading to less interatomic exchange at HF but more so at
B3LYP. All remaining 1,2 interactions had a reduced sum of net
charges at B3LYP, resulting in greater interatomic exchange
stability. The 1,3 interactions can be explained similarly to
those of the 1,2 interactions.

Plots of V AB
X versus internuclear distance shows that the vast

majority of interactions emerge in well-defined clusters, each

associated with a bond-connectivity 1,n. Similar A� � �B pairs
yield very similar V AB

X values, a hallmark of high transferability.
Some anomalously strong interactions occur, shedding new
light on patterns of exchange stability beyond that of the
traditional covalent bonds.

In keeping with previous views and work on delocalization
indices, HF-like B3LYP interatomic exchange energies (V AB

X )
also provide chemically relevant values, but now energies. This
realization occurs despite only first-order (and not electron-
pair) electron density correlation being accounted for. Overall,
the extension of IQA to B3LYP can thus be justified.
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ATOM L (Ω) / kJmol-1

o20 0.156
c15 0.278
c13 1.852
c1 -2.125

h23 0.084
c14 -3.095
o12 0.353
h11 0.083
h16 0.093
n17 -0.487
n21 0.321
o24 0.125
o19 0.141
n5 0.115
c22 -1.305
o18 0.140
c3 -1.658
h4 0.062
c10 -1.342
n9 -0.178
o6 0.090
c2 -3.685
o7 0.135
o8 0.114

Table S1. Integration errors (L(Ω)) for the alloxan dimer system calculated using the HF wave function. 

The 7 carbons (out of a maximum of 8) that have large integration errors are marked in red.
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Interaction 1,n VX,HF / kJ/mol VX,B3LYP / kJ/mol ΔVX (B3LYP-HF) |%|
C4_H6 2 -741.176 -730.439 10.737 1.4
C4_H7 2 -743.571 -732.969 10.602 1.4
C4_H5 2 -751.265 -740.814 10.451 1.4

C9_H11 2 -733.722 -724.806 8.916 1.2
C9_H12 2 -736.765 -727.880 8.885 1.2
C9_H10 2 -740.246 -734.030 6.216 0.8
C2_C4 2 -759.252 -756.563 2.689 0.4
N1_H8 2 -675.847 -687.391 -11.545 1.7
N1_C9 2 -695.964 -761.652 -65.689 9.4
N1_C2 2 -733.292 -845.108 -111.816 15.2
C2_O3 2 -918.069 -1043.280 -125.212 12.0
N1_O3 3 -120.468 -111.981 8.487 7.0
N1_H10 3 -30.907 -26.442 4.465 14.4
N1_H12 3 -28.805 -24.743 4.063 14.1
N1_H11 3 -26.935 -23.241 3.694 13.7

H10_H12 3 -14.415 -13.638 0.777 5.4
H10_H11 3 -13.330 -12.662 0.668 5.0

H5_H6 3 -14.610 -13.981 0.629 4.3
H5_H7 3 -13.990 -13.474 0.516 3.7

H11_H12 3 -13.381 -12.880 0.501 3.7
H6_H7 3 -14.100 -13.663 0.437 3.1
C2_H5 3 -12.984 -12.730 0.253 1.9
C2_H6 3 -17.221 -17.185 0.036 0.2
N1_C4 3 -38.578 -38.676 -0.098 0.3
C2_H7 3 -15.004 -15.113 -0.110 0.7
C2_H8 3 -4.711 -6.109 -1.399 29.7
H8_C9 3 -5.123 -6.589 -1.465 28.6
O3_C4 3 -47.910 -50.335 -2.425 5.1
C2_C9 3 -4.877 -7.548 -2.671 54.8
N1_H5 4 -7.624 -7.411 0.213 2.8

H8_H12 4 -0.252 -0.256 -0.004 1.7
H8_H10 4 -0.913 -1.102 -0.189 20.7
H8_H11 4 -1.083 -1.279 -0.196 18.1
C2_H10 4 -1.044 -1.460 -0.416 39.9
N1_H7 4 -2.105 -2.524 -0.419 19.9
N1_H6 4 -2.140 -2.637 -0.497 23.2
C2_H11 4 -0.879 -1.381 -0.502 57.2
O3_H7 4 -6.316 -6.891 -0.575 9.1
O3_H6 4 -4.400 -4.993 -0.592 13.5
C4_H8 4 -2.666 -3.321 -0.655 24.6
C4_C9 4 -1.422 -2.127 -0.704 49.5

C2_H12 4 -1.131 -1.838 -0.706 62.4
O3_H5 4 -3.097 -3.963 -0.865 27.9
O3_H8 4 -2.611 -3.698 -1.086 41.6
O3_C9 4 -13.047 -16.163 -3.116 23.9

Table S2. The exchange energies calculated at HF and B3LYP level for all 66 interatomic interactions in 
NMA. Shading highlights the interactions for which |VX,HF

AB| > |VX,B3LYP
AB|. Entries marked in red are used 

in the main text to discuss the example of calculating a percentage (utmost right column, |%|). The 
energy in green refers to the N…O interaction associated with the peptide bonds.
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Figure S1. VX
AB energies for all 66 interactions in NMA, from HF and B3LYP wavefunctions.

Figure S2. VX
AB energies for medium-range interactions (-1 to -60 kJmol-1) in NMA, from HF and B3LYP 

wavefunctions.

Figure S3. VX
AB energies for long-range interactions (0 to -1 kJmol-1) in NMA, from HF and B3LYP 

wavefunctions.
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Figure S4. VX
AB energies for all 528 interactions in TriGly, from both HF and B3LYP wavefunctions.

Figure S5. VX
AB energies for medium-range interactions (-1 to -60 kJmol-1) in TriGly, for HF and B3LYP 

wavefunctions.

Figure S6. VX
AB energies for long-range interactions (0 to -1 kJmol-1) in TriGly, for HF and B3LYP 

wavefunctions.
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Figure S7. VX
AB energies for all 276 interactions in the alloxan dimer, from HF and B3LYP wavefunctions.

Figure S8. VX
AB energies for medium-range interactions (-1 to -60 kJmol-1) in the alloxan dimer, from HF 

and B3LYP wavefunctions.

Figure S9. VX
AB energies for long-range interactions (0 to -1 kJmol-1) in the alloxan dimer, from HF and 

B3LYP wavefunctions.
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(A,B) Boaq grid VX(A,B) / kJmol-1 L(Ω) A / kJmol-1 L(Ω) B / kJmol-1

  
C22_H27 Skyhigh -6.93E-06 -0.2758 0.1675
 veryhigh -6.91E-06 -0.1906 0.1557
 medium -6.89E-06 -0.1875 0.1488
 low -7.03E-06 -0.7195 0.1741
 auto -6.91E-06 -0.1906 0.1557

  
H24_H28 Skyhigh -4.97E-05 0.0994 0.1016
 veryhigh -4.98E-05 0.1028 0.1030
 medium -4.97E-05 0.1052 0.1014
 low -4.97E-05 0.0981 0.1075
 auto -4.98E-05 0.1028 0.1030

Table S3. Integration errors L(Ω) and corresponding Vx
AB energies calculated from five “outer angular” 

quadrature settings for two long-range interatomic interactions in TriGly: C22…H27 (1,14) and H23…H28 

(1,15). All energies and integrations errors are in kJmol-1.     
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Interaction 1,n VX,HF / kJ/mol VX,B3LYP / kJ/mol ΔVX (B3LYP-HF) |%|
H11_C15 2 -718.111 -707.345 10.766 1.5
C7_H16 2 -717.106 -706.835 10.271 1.4
C1_H5 2 -716.059 -706.319 9.740 1.4

H12_C15 2 -722.949 -713.466 9.483 1.3
C22_H32 2 -739.023 -729.908 9.115 1.2
C22_H25 2 -737.576 -728.595 8.981 1.2
C22_H24 2 -738.545 -729.711 8.834 1.2
C7_H17 2 -722.452 -713.669 8.782 1.2
C1_H4 2 -725.254 -717.753 7.501 1.0

C21_H27 2 -726.255 -718.901 7.354 1.0
C21_H33 2 -732.965 -725.863 7.102 1.0
C21_H28 2 -732.187 -727.780 4.407 0.6

C1_C2 2 -769.455 -774.591 -5.136 0.7
C22_C29 2 -792.726 -799.220 -6.494 0.8
N13_H19 2 -651.966 -659.569 -7.603 1.2
N20_H26 2 -651.848 -659.626 -7.778 1.2
C15_C18 2 -771.750 -779.557 -7.807 1.0

C6_C7 2 -770.986 -779.411 -8.425 1.1
N3_H10 2 -652.333 -662.159 -9.826 1.5
N9_H23 2 -642.046 -652.180 -10.134 1.6
N13_C15 2 -689.410 -747.143 -57.733 8.4

C7_N9 2 -696.471 -755.032 -58.561 8.4
C1_N3 2 -690.396 -749.521 -59.126 8.6

N20_C21 2 -684.412 -748.199 -63.787 9.3
C18_N20 2 -735.265 -840.287 -105.022 14.3

N3_C6 2 -713.698 -819.671 -105.973 14.8
C6_O8 2 -884.345 -992.693 -108.348 12.3

C2_N13 2 -713.683 -822.115 -108.432 15.2
N9_C29 2 -711.604 -820.053 -108.448 15.2
C2_O14 2 -880.945 -989.995 -109.049 12.4

C18_O31 2 -870.645 -980.148 -109.503 12.6
C29_O30 2 -865.326 -975.202 -109.876 12.7
N9_O30 3 -120.818 -112.938 7.880 6.5

N13_O14 3 -120.830 -113.704 7.126 5.9
N3_O8 3 -120.862 -113.743 7.119 5.9

N20_O31 3 -120.964 -114.790 6.174 5.1
N9_H17 3 -32.377 -27.446 4.931 15.2

N20_H33 3 -32.762 -27.928 4.833 14.8
H12_N13 3 -32.242 -27.411 4.832 15.0
N20_H28 3 -34.903 -30.111 4.791 13.7

N3_H4 3 -34.221 -29.555 4.665 13.6
N20_H27 3 -29.227 -25.030 4.197 14.4
H11_N13 3 -28.821 -24.733 4.087 14.2
N9_H16 3 -28.454 -24.403 4.051 14.2
N3_H5 3 -26.607 -23.082 3.526 13.3
C2_N3 3 -40.335 -36.869 3.466 8.6
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C6_N9 3 -39.461 -36.588 2.873 7.3
N13_C18 3 -39.175 -36.673 2.501 6.4
H28_H33 3 -15.056 -13.286 1.771 11.8
H24_H32 3 -15.752 -14.153 1.599 10.1
H27_H28 3 -14.425 -12.838 1.587 11.0
H27_H33 3 -13.159 -11.805 1.354 10.3
H24_H25 3 -14.881 -13.537 1.344 9.0
H11_H12 3 -12.500 -11.294 1.206 9.6
H16_H17 3 -12.630 -11.445 1.185 9.4

H4_H5 3 -12.774 -11.592 1.183 9.3
H24_C29 3 -19.939 -18.790 1.149 5.8
H25_H32 3 -13.462 -12.321 1.142 8.5
C29_H32 3 -18.677 -17.589 1.089 5.8

C2_H4 3 -17.584 -16.526 1.058 6.0
C6_H17 3 -15.760 -14.775 0.985 6.3

H12_C18 3 -15.208 -14.356 0.852 5.6
H25_C29 3 -13.556 -13.099 0.457 3.4
C6_H16 3 -13.674 -13.285 0.389 2.8

H11_C18 3 -13.297 -12.980 0.317 2.4
C2_H5 3 -11.532 -11.279 0.253 2.2

C2_H11 3 -0.995 -1.623 -0.627 63.0
N9_C22 3 -34.695 -35.486 -0.790 2.3

C15_N20 3 -33.392 -34.245 -0.853 2.6
C1_N13 3 -31.098 -32.036 -0.938 3.0

C18_H26 3 -4.122 -5.125 -1.003 24.3
C2_H19 3 -3.942 -4.945 -1.003 25.4

C15_H19 3 -4.414 -5.435 -1.022 23.1
C6_H10 3 -3.952 -4.975 -1.023 25.9
N3_C7 3 -32.603 -33.629 -1.026 3.1

C7_H23 3 -4.390 -5.416 -1.027 23.4
C21_H26 3 -4.455 -5.534 -1.079 24.2
C1_H10 3 -4.619 -5.733 -1.114 24.1
C1_C6 3 -4.353 -6.455 -2.102 48.3

C7_C29 3 -4.361 -6.521 -2.160 49.5
C2_C15 3 -4.393 -6.617 -2.224 50.6

C18_C21 3 -4.573 -6.813 -2.240 49.0
C1_O14 3 -44.797 -47.192 -2.395 5.3

C22_O30 3 -46.347 -48.942 -2.595 5.6
C15_O31 3 -45.246 -47.945 -2.699 6.0

C7_O8 3 -44.650 -47.524 -2.874 6.4
H12_N20 4 -7.675 -7.456 0.219 2.9
N3_N13 4 -15.723 -15.541 0.182 1.2
N3_H17 4 -7.584 -7.449 0.135 1.8

H26_H33 4 -0.265 -0.260 0.004 1.7
C2_H10 4 -0.294 -0.311 -0.017 5.7
H4_N13 4 -5.175 -5.212 -0.036 0.7
N9_H24 4 -4.984 -5.049 -0.065 1.3

H12_H19 4 -0.574 -0.643 -0.069 12.1
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H17_H23 4 -0.569 -0.644 -0.075 13.1
H16_H23 4 -0.556 -0.635 -0.079 14.2
H11_H19 4 -0.580 -0.662 -0.082 14.1
H5_N13 4 -1.695 -1.814 -0.118 7.0

H26_H27 4 -0.960 -1.119 -0.160 16.6
H5_H10 4 -0.885 -1.052 -0.167 18.9
N9_H25 4 -2.102 -2.285 -0.183 8.7

H26_H28 4 -1.109 -1.318 -0.209 18.9
N3_H16 4 -1.702 -1.912 -0.210 12.4

H11_N20 4 -1.755 -1.979 -0.224 12.8
H4_H10 4 -1.180 -1.411 -0.231 19.6
N9_H32 4 -3.691 -3.930 -0.239 6.5
C6_C29 4 -0.892 -1.217 -0.326 36.5
C2_C18 4 -0.890 -1.221 -0.330 37.1

N13_N20 4 -6.339 -6.731 -0.392 6.2
N3_N9 4 -5.880 -6.285 -0.405 6.9
H4_C6 4 -0.996 -1.407 -0.411 41.2

C18_H28 4 -1.098 -1.526 -0.428 39.0
C1_H19 4 -1.467 -1.896 -0.429 29.3
H5_C6 4 -0.862 -1.339 -0.477 55.3

C15_H26 4 -1.919 -2.419 -0.500 26.0
C18_H27 4 -0.985 -1.508 -0.522 53.0
C7_H10 4 -1.904 -2.438 -0.534 28.1
C1_C15 4 -1.109 -1.649 -0.541 48.8

C22_H23 4 -1.912 -2.464 -0.552 28.9
C1_C7 4 -1.121 -1.683 -0.562 50.1

C7_C22 4 -1.168 -1.732 -0.564 48.3
H11_O31 4 -8.800 -9.370 -0.570 6.5
C15_C21 4 -1.119 -1.689 -0.570 51.0
H16_C29 4 -0.975 -1.582 -0.606 62.2
O8_H16 4 -8.747 -9.362 -0.615 7.0
H17_C29 4 -1.067 -1.701 -0.635 59.5
H12_O31 4 -2.832 -3.485 -0.653 23.0
O8_H17 4 -2.883 -3.540 -0.657 22.8
C2_H12 4 -1.075 -1.741 -0.666 61.9

N13_O31 4 -9.218 -9.904 -0.686 7.4
O8_N9 4 -9.397 -10.103 -0.707 7.5

H5_O14 4 -8.778 -9.489 -0.711 8.1
N3_O14 4 -4.725 -5.443 -0.718 15.2

H25_O30 4 -9.880 -10.648 -0.768 7.8
C18_H33 4 -1.247 -2.017 -0.770 61.8

C2_C6 4 -1.077 -1.862 -0.785 72.9
H4_O14 4 -3.271 -4.088 -0.816 25.0
C6_H23 4 -1.995 -2.902 -0.907 45.5

H23_O30 4 -2.346 -3.261 -0.915 39.0
H26_O31 4 -2.454 -3.410 -0.956 39.0
C18_H19 4 -2.076 -3.049 -0.972 46.8
O14_H19 4 -2.439 -3.433 -0.994 40.7
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O30_H32 4 -3.659 -4.656 -0.997 27.3
H24_O30 4 -3.728 -4.735 -1.007 27.0
O8_H10 4 -2.458 -3.487 -1.029 41.9
C1_O8 4 -9.589 -11.859 -2.270 23.7

C21_O31 4 -10.704 -13.563 -2.859 26.7
O14_C15 4 -11.420 -14.488 -3.068 26.9
C7_O30 4 -11.438 -14.580 -3.142 27.5

Table S4. Exchange energies, calculated at HF and B3LYP level, for all 1,2;  1,3 and 1,4 interatomic 

bonded interactions within the TriGly molecule. Shading highlights the interactions for which |VX,HF
AB| > 

|VX,B3LYP
AB|. The absolute percentage difference in the right column is defined as 100x|VX,B3LYP

AB - VX,HF
AB|/ 

VX,HF
AB. The energies in green refer to the N…O interactions associated with the peptide bonds.

Interaction 1,n VX,HF / kJ/mol VX,B3LYP / kJ/mol ΔVX (B3LYP-HF) |%|
C14_C22 2 -714.979 -712.994 1.985 0.3
C14_C15 2 -715.573 -713.815 1.758 0.2
C2_C3 2 -717.598 -716.504 1.094 0.2
C2_C10 2 -717.301 -716.286 1.015 0.1
N21_H23 2 -578.468 -602.430 -23.962 4.1
H16_N17 2 -570.838 -595.129 -24.291 4.3
H4_N5 2 -567.464 -593.320 -25.856 4.6
N9_H11 2 -565.124 -591.553 -26.428 4.7
C2_O7 2 -1051.237 -1118.391 -67.153 6.4
C14_O19 2 -1044.126 -1115.165 -71.039 6.8
C15_N17 2 -681.594 -780.008 -98.414 14.4
C3_N5 2 -689.331 -787.782 -98.451 14.3
N21_C22 2 -681.729 -781.409 -99.680 14.6
N9_C10 2 -698.908 -798.786 -99.878 14.3
C3_O8 2 -934.665 -1035.430 -100.764 10.8
C15_O20 2 -926.025 -1029.098 -103.073 11.1
C22_O24 2 -924.183 -1027.307 -103.124 11.2
C10_O12 2 -908.238 -1014.537 -106.298 11.7
C13_N21 2 -645.059 -765.743 -120.684 18.7
C13_N17 2 -656.126 -777.349 -121.223 18.5
C1_N5 2 -648.080 -769.414 -121.334 18.7
C1_N9 2 -636.802 -758.355 -121.552 19.1



12

C1_O6 2 -861.856 -994.267 -132.412 15.4
C13_O18 2 -848.753 -983.124 -134.371 15.8
N5_N9 3 -69.981 -55.151 14.830 21.2
N17_N21 3 -69.090 -54.455 14.635 21.2
O6_N9 3 -111.647 -97.643 14.004 12.5
N5_O6 3 -111.538 -97.908 13.630 12.2
O18_N21 3 -111.896 -98.286 13.610 12.2
N17_O18 3 -110.779 -97.608 13.170 11.9
N17_O20 3 -121.832 -112.892 8.940 7.3
N21_O24 3 -123.099 -114.488 8.611 7.0
N5_O8 3 -123.340 -114.894 8.446 6.8
N9_O12 3 -122.139 -113.893 8.246 6.8
C2_N5 3 -32.591 -31.369 1.222 3.7
C14_N17 3 -31.516 -30.393 1.123 3.6
C14_N21 3 -30.849 -29.883 0.967 3.1
C2_N9 3 -31.651 -30.845 0.806 2.5
O7_C10 3 -47.464 -48.026 -0.562 1.2
O19_C22 3 -46.553 -47.454 -0.901 1.9
C15_H16 3 -2.874 -3.845 -0.971 33.8
C3_H4 3 -2.887 -3.880 -0.993 34.4
C10_H11 3 -2.933 -3.955 -1.022 34.8
C22_H23 3 -2.979 -4.004 -1.026 34.4
C15_O19 3 -45.475 -46.550 -1.075 2.4
C1_H11 3 -2.612 -3.801 -1.189 45.5
C1_H4 3 -2.694 -3.897 -1.203 44.6
C13_H23 3 -2.779 -3.990 -1.211 43.6
C13_H16 3 -2.787 -4.014 -1.226 44.0
C3_O7 3 -44.946 -46.299 -1.353 3.0
C15_C22 3 -12.881 -14.322 -1.441 11.2
C2_O8 3 -41.630 -43.113 -1.482 3.6
C3_C10 3 -12.833 -14.392 -1.559 12.1
C14_O20 3 -40.270 -41.849 -1.579 3.9
C13_C22 3 -3.082 -4.787 -1.706 55.3
C13_C15 3 -3.161 -4.909 -1.748 55.3
C1_C3 3 -3.132 -4.883 -1.751 55.9
C1_C10 3 -3.129 -4.881 -1.752 56.0
C14_O24 3 -39.413 -41.183 -1.771 4.5
C2_O12 3 -39.660 -41.447 -1.787 4.5
H16_N21 4 -1.305 -1.558 -0.253 19.4
H4_N9 4 -1.292 -1.553 -0.261 20.2
N5_H11 4 -1.283 -1.547 -0.264 20.6
N17_H23 4 -1.338 -1.612 -0.274 20.5
C2_H11 4 -1.014 -1.333 -0.320 31.6
C14_H16 4 -1.042 -1.365 -0.322 30.9
C2_H4 4 -1.047 -1.371 -0.324 30.9
C14_H23 4 -1.061 -1.399 -0.338 31.8
N17_C22 4 -2.567 -2.985 -0.418 16.3
N5_C10 4 -2.594 -3.036 -0.441 17.0
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C15_N21 4 -2.485 -2.928 -0.443 17.8
C3_N9 4 -2.572 -3.024 -0.452 17.6
C3_O12 4 -1.890 -2.383 -0.493 26.1
C13_C14 4 -0.770 -1.267 -0.498 64.7
C15_O24 4 -1.906 -2.408 -0.501 26.3
O20_C22 4 -1.927 -2.442 -0.515 26.7
C1_C2 4 -0.773 -1.291 -0.517 66.9
O8_C10 4 -1.954 -2.486 -0.532 27.2
H16_O18 4 -2.372 -3.253 -0.881 37.2
H4_O6 4 -2.330 -3.213 -0.883 37.9
O6_H11 4 -2.318 -3.207 -0.889 38.3
O18_H23 4 -2.484 -3.432 -0.948 38.2
N17_O19 4 -3.743 -4.806 -1.063 28.4
O19_N21 4 -3.750 -4.839 -1.088 29.0
N5_O7 4 -3.886 -5.012 -1.126 29.0
O7_N9 4 -4.093 -5.331 -1.238 30.3
H11_O12 4 -3.196 -4.576 -1.380 43.2
H16_O20 4 -3.394 -4.828 -1.434 42.2
H4_O8 4 -3.341 -4.811 -1.471 44.0
H23_O24 4 -3.578 -5.139 -1.561 43.6
C15_O18 4 -2.423 -4.141 -1.718 70.9
C1_O12 4 -2.371 -4.115 -1.744 73.6
O18_C22 4 -2.441 -4.207 -1.766 72.3
C3_O6 4 -2.543 -4.387 -1.844 72.5
C13_O24 4 -2.538 -4.438 -1.900 74.8
C1_O8 4 -2.591 -4.540 -1.949 75.2
O6_C10 4 -2.723 -4.728 -2.005 73.6
C13_O20 4 -2.642 -4.658 -2.017 76.3
O7_O12 4 -25.716 -29.513 -3.797 14.8
O19_O24 4 -26.805 -31.146 -4.340 16.2
O19_O20 4 -26.866 -31.221 -4.356 16.2
O7_O8 4 -26.997 -31.427 -4.431 16.4

Table S5. Exchange energies, calculated at HF and B3LYP level, for all 1,2;  1,3 and 1,4 interatomic 

bonded interactions within the alloxan dimer. Shading highlights the interactions for which |VX,HF
AB| > 

|VX,B3LYP
AB|. The absolute percentage difference in the right column is defined as 100x|VX,B3LYP

AB - VX,HF
AB|/ 

VX,HF
AB. The energy in green refers to the intramolecular O…O interactions in the alloxan monomers.
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1,n Average Internuclear Distance

1,2 1.28

1,3 2.30

1,4 3.13

1,5 4.20

1,6 5.11

Inter (all) 5.49

Inter |VX,HF
AB| > |VX,B3LYP

AB| 6.51

Inter |VX,B3LYP
AB| > |VX,HF

AB| 5.25

Table S6. Average internuclear distances (in Å) for all type of interactions in the alloxan dimer.   
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Table S7. Net atomic charges q (QTAIM or QCT) for all 12 atoms in NMA calculated at MP2, HF and B3LYP 

level.   

q

Atom MP2 HF B3LYP
c2 1.5427 1.7760 1.4678
c4 -0.0169 0.1147 0.0041
c9 0.4052 0.6050 0.3824

h10 0.0055 -0.0324 0.0030
h11 0.0468 0.0216 0.0462
h12 0.0084 -0.0266 0.0079
h5 -0.0135 -0.0471 -0.0167
h6 0.0260 -0.0002 0.0228
h7 0.0352 0.0111 0.0321
h8 0.3890 0.4020 0.3688
n1 -1.2362 -1.4658 -1.1376
o3 -1.1923 -1.3581 -1.1808
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q

Atom MP2 HF B3LYP
c1 0.4926 0.6833 0.4659

c15 0.5008 0.6907 0.4726
c18 1.4854 1.7338 1.4435
c2 1.4912 1.7356 1.4519

c21 0.5060 0.6922 0.4652
c22 0.0739 0.2082 0.0643
c29 1.4946 1.7283 1.4528
c6 1.4826 1.7255 1.4427
c7 0.5027 0.7001 0.4741

h10 0.4323 0.4487 0.4193
h11 0.0580 0.0372 0.0635
h12 -0.0019 -0.0323 0.0039
h16 0.0582 0.0398 0.0637
h17 -0.0082 -0.0395 -0.0031
h19 0.4297 0.4448 0.4169
h23 0.4430 0.4601 0.4309
h24 -0.0091 -0.0381 -0.0033
h25 0.0387 0.0170 0.0427
h26 0.4362 0.4501 0.4246
h27 0.0413 0.0136 0.0474
h28 -0.0025 -0.0409 0.0021
h32 0.0053 -0.0211 0.0105
h33 0.0001 -0.0373 0.0062
h4 -0.0051 -0.0392 -0.0017
h5 0.0820 0.0679 0.0866

n13 -1.3462 -1.5652 -1.2709
n20 -1.3475 -1.5691 -1.2754
n3 -1.3473 -1.5700 -1.2740
n9 -1.3477 -1.5702 -1.2724

o14 -1.1450 -1.3262 -1.1488
o30 -1.1820 -1.3564 -1.1827
o31 -1.1696 -1.3485 -1.1719
o8 -1.1419 -1.3237 -1.1467

Table S8. Net atomic charges q (QTAIM or QCT) for all 33 atoms in TriGly calculated at MP2, HF and 

B3LYP level.
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q

Atom MP2 HF B3LYP
c1 2.0009 2.4046 1.9147

c10 1.5421 1.8125 1.5051
c13 1.9939 2.4011 1.9057
c14 1.1283 1.2638 1.1152
c15 1.5589 1.8271 1.5247
c2 1.1092 1.2362 1.0943

c22 1.5496 1.8154 1.5157
c3 1.5487 1.8223 1.5145

h11 0.5122 0.5467 0.5029
h16 0.5063 0.5390 0.4967
h23 0.4979 0.5303 0.4873
h4 0.5097 0.5439 0.5003

n17 -1.3523 -1.6104 -1.2605
n21 -1.3709 -1.6245 -1.2786
n5 -1.3641 -1.6222 -1.2719
n9 -1.3656 -1.6246 -1.2728

o12 -1.1558 -1.3286 -1.1561
o18 -1.1857 -1.3559 -1.1794
o19 -1.0679 -1.1924 -1.0645
o20 -1.1246 -1.2927 -1.1275
o24 -1.1320 -1.2991 -1.1356
o6 -1.1575 -1.3315 -1.1526
o7 -1.0679 -1.1845 -1.0623
o8 -1.1124 -1.2790 -1.1150

Table S9. Net atomic charges q (QTAIM or QCT) for all 24 atoms in the alloxan dimer calculated at MP2, 

HF and B3LYP level.
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Preface 
 

      This paper details a further example of the IQA partitioning being applied to a class of 

biologically important systems: amino acids. Like the biphenyl investigation, the IQA approach is 

used to investigate the cause of dihedral energy behaviour in three dipeptides (Gly, Val and Ile).  

Two excursions along φ and ψ paths in the Ramachandran plots are undertaken. In the first 

excursion, the ψ angle is fixed and the φ angle incremented by 15⁰ between the interval -180⁰ ≤ φ 

≤ +180⁰. In the second excursion, the φ angle is fixed and the ψ angle incremented by 15⁰ between 

the interval -180⁰ ≤ ψ ≤ +180⁰. Both paths enable various regions of the Ramachandran plots to be 

sampled, allowing an interesting investigation to see how molecular, (functional) group and 

atomic IQA energies fluctuate according to the given fixed φ and ψ angles. The investigation was 

completed for two purposes: (1) in order to better understand the torsional energy barriers 

causing the minima and maxima regions of a Ramachandran plot, and (2) to use IQA in a study of 

the biologically important amino acids, who’s particular energy behaviour will later need to be 

captured by FFLUX. 
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Abstract 

      Accurate description of the intrinsic preferences of amino acids is important to consider 

when developing a biomolecular force field. In this study, we use a modern energy 

partitioning approach called Interacting Quantum Atoms (IQA) to inspect the cause of the φ 

and ψ torsional preferences of three dipeptides (Gly, Val and Ile). Repeating energy trends at 

each of the molecular, functional group and atomic levels are observed across both (1) the 

three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is 

surprisingly electrostatic destabilisation that causes the high-energy regions in the 

Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At 

the functional group and atomic levels, the importance of key peptide atoms (Oi-1, Ci, Ni, Ni+1) 

and some sidechain hydrogen atoms (Hγ) are identified as responsible for the destabilisation 

seen in the energetically disfavoured Ramachandran regions. Consistently, the Oi-1 atoms are 

particularly important for the explanation of dipeptide intrinsic behaviour, where 

electrostatic and steric destabilisation unusually complement one another. The findings 

suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the 

intrinsic behaviour, more so than the sidechain atoms.  
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1. Introduction 

      Since the original schematic published1 in 1963 by Ramachandran et al., few efforts have 

advanced the understanding of the commonly denoted ‘forbidden’ and ‘accepted’ regions of 

the Ramachandran φ/ψ plot. Subsequent work by Mandel et al.2 allowed an advanced 

representation of the Ramachandran φ/ψ plot to be depicted, detailing the locations of 

specific hard-sphere repulsions. Much more recently, we note that Mandel’s plot is still used 

in undergraduate biochemistry textbooks3. Hence, despite the passing of almost half a 

century, the hard-sphere repulsion models have been accepted and incorporated in the 

development of many modern-day molecular force fields. Perhaps regrettably, the 

development of these force fields focused more on successfully parameterizing torsional 

angles rather than on understanding the quantum mechanical nature of the interactions 

between the atoms involved. We believe that such a greater understanding is an important 

step towards simplifying the parameterization task, and especially, putting it on a firmer 

footing. In other words, the re-parameterisation of conventional force fields typically creates 

new terms for experimentally observed structural effects. However, a method that directly 

partitions quantum mechanical information has a better chance of capturing all effects from 

the outset, and without extra corrections. 

      The conformational propensity of the 20 natural amino acids relies on three factors: 

intrinsic behaviour, amino acid sequence and chemical environment4. Understanding the 

combined influence of all three aspects on a molecular system requires each factor’s 

individual behaviour to be understood first.  

       Addressing the first factor, that of intrinsic behaviour, many studies have shown that it 

causes an amino acid to show preferences in φ/ψ space4-10. One way of investigating intrinsic 

behaviour is through the use of coil libraries. Coil libraries contain sequences of amino acids 

that form neither α-helical or β-sheet conformations observed in experimental X-ray crystal 

structures. However, the conformations collected are always influenced by the surrounding 

protein structure since they are simply extracted from the initial complete protein. Hence, 

the individual amino acids are possibly biased by the tertiary structure of a protein. Also, they 

are still biased by being inside a sequence of amino acids. However, it is also known that 

observing isolated dipeptide structures are not representative of the amino acids behaviour 

in oligopeptide chains11. Note, as a brief aside, that the often used but actually confusing 

name “dipeptide” refers to a single amino acid, flanked by a peptide bond at both termini. 

Here we must ask, at what point does an oligopeptide become a sequence, resulting in the 

peptide’s behaviour being a result of sequential effects, rather than of the intrinsic 

behavioural effects of its amino acids? Could it be that only the presence of intramolecular 



3 
 

stabilisation should be associated with the intrinsic behaviour?  Despite some investigations 

of single amino acids poorly replicating their behaviour in larger systems, there are also many 

reports identifying the importance of their study11-14. 

      The second factor is that of sequencing effects. As the name suggests, this is the effect of 

having a sequence of amino acids, that is, an oligopeptide. The formation of α-helices, β-

sheets and loops result from the specific sequence of amino acids in a chain. The α-helices, β-

sheets and loops are regularly occurring oligopeptide structural arrangements allowing amino 

acids to be packed closer together, typically through hydrogen bonding across different 

amino acids in the sequence. The formation of such secondary structure landmarks still rely 

partly on intrinsic propensity, but one could argue are dominated by the interatomic 

interactions formed between the sidechain and backbone atoms of neighbouring amino acids 

in a sequence. Capturing the behaviour of oligopeptide sequences still remains a non-trivial 

task. A good example is given in a study by Best et al.15, which recently reported the helical 

character induced upon tri-, tetra- and penta-Ala oligopeptides by many common force fields: 

GROMOS (53a6) ~13.1%, CHARMM27 (with CMAP) ~57.5%, AMBER03 ~62.3 %, AMBER99 

~94.2% and AMBER94 ~97.6%. The experimental value each force field was striving to 

achieve was ~20%. The helicity was excessive for all force fields other than GROMOS. Such is 

the motivation for many studies determining new or improved torsional potentials in all 

conventional force fields16-23.  

        The third factor, chemical environment, is perhaps the most difficult to investigate due 

to the computational expense. Chemical environment behaviour may be investigated through 

observing the influence of multiple sequences on a defined central sequence. However, 

chemical environment may also be an investigation of solvation effects. Both introduce many 

new intermolecular bonds to consider, and scale the system size dramatically.  

      Today we use quantum mechanical methods to investigate the first factor: intrinsic 

behaviour. In order to exclusively observe the intrinsic behaviour, so-called dipeptides have 

been chosen as a first point of investigation. We isolate the intrinsic behaviour through 

eliminating (i) sequencing effects by working with the single amino acid blocked (or ‘capped’) 

with an acetyl group (-COCH3) and an amide group (-NHCH3), and (ii) chemical environment 

through working in vacuo. The additional benefit of vacuum conditions, other than 

computational cost, is that they are important for the study of amino acids in the 

hydrophobic core of folded proteins typically inaccessible to solvents24. Working with gas 

phase ab initio data is also in accordance with most force field development25-30. Our 

investigation aims to validate (or contrast, were appropriate) the long-standing interpretation 

of the regions in the Ramachandran plot. To do this we will use the Interacting Quantum 
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Atoms (IQA) energy partitioning method, an approach that falls under the “umbrella” 

approach of Quantum Chemical Topology (QCT), a name first coined31 in 2003. The IQA 

method allows the calculation of atomic energies, which together account for the full 

molecular energy. The atomic energies can be classified into both intra- and inter-atomic 

components, and also by energy type e.g. electrostatic, exchange, correlation etc. 

Strategically chosen excursions through φ/ψ conformational space are used to obtain system 

conformations representing multiple regions of the Ramachandran plot. Three systems are 

investigated: glycine (Gly), valine (Val) and isoleucine (Ile), representing a gradual increase in 

the number of atoms making up the aliphatic residues, going from –NH-CαH2-CO- (in Gly) over 

-NH-CαH(CβH(CH3)2)-CO- (in Val) to -NH-CαH(CβH(CH3)(CH2CH3))-CO- (in Ile). 

      The investigation will allow us to identify the key atoms, both single and group thereof, 

that are responsible for both high- and low-energy regions in the respective Ramachandran 

plots, along with any global trends that consistently appear across the three systems 

investigated. The existence of global trends at the atomic level will indicate transferability32,33 

within the systems, a key cornerstone of many force fields and a topic we have previously 

reported on for oligopeptide chains34.  
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Figure 1. Schematic Ramachandran plot indicating the positions of β-turns (marked as β), 

right-handed helices (α), and left-handed helices (Lα). Trajectories across the φ (fixed ψ) and 

ψ (fixed φ) torsional angles are indicated in green. The exact positions of the trajectories will 

vary slightly depending on the global minimum φ/ψ angles for each system (Gly, Ile and Val). 

The crossing-point of the green trajectories indicates the φ/ψ angles of the global minimum. 

The area of the Ramachandran plot is shaded according to various degrees of energetic 

stability: very favourable (dark blue), favourable (blue), slightly favourable (light blue), slightly 

unfavourable (white), unfavourable (orange) and very unfavourable (red). 

2. Methods  

2.1 Dataset Generation 

      The optimised geometries of the global energy minima of glycine (Gly) dipeptide, valine 

(Val) dipeptide and isoleucine (Ile) dipeptide were taken from our previous work35. The angle 

φ is defined as the Ci-1 - Ni - Cα - Ci dihedral, and ψ as Ni - Cα - Ci - Ni+1. Figure 2 shows these 

two angles and the nuclei involved in defining them. The generic notation used here will be 

explained in the next section. For each system in turn, the φ and ψ dihedral angles were 

rotated by 15⁰ increments between -180⁰ and +180⁰,  resulting in 24 = [180 - (-180)]/15  

geometries, additional to the global minimum. First, the ψ dihedral angle of the global 

minimum was frozen, while the φ angle was rotated by the increment angle over the full 

range (-180⁰ ≤ φ ≤ +180⁰) using the GAUSSVIEW package. Once all 24 additional geometries 

for φ were obtained, collectively known as the phi (φ) scan, the procedure was repeated but 

now freezing the global minimum’s φ angle and incrementing the ψ angle over the full range 

(-180⁰ ≤ ψ ≤ +180⁰), generating the psi (ψ) scan. The 48 additional geometries (24 for each of 
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the two scans in total), were then relaxed through geometry optimisation but keeping both 

the φ and ψ dihedral angles frozen. Note that the residues were also optimised and not kept 

rigid relative to φ or ψ. The program GAUSSIAN0936 was used to perform the geometry 

optimisation, single-point energy calculations and printing of the wavefunction for 

subsequent QCT analysis, for each geometry. The optimisations and calculations were also 

performed at B3LYP/apc-1 level37, which is the same level of theory with which the optimised 

coordinates were originally obtained. In total, 6 (=2x3) sets of geometries were obtained, 

arising from two scans carried out on each of the three capped amino acids, each set 

consisting of 25 (=24+1) geometries. In summary, the overall analysis of all systems is based 

on 147=6x25-3 IQA-partitioned wave functions, where we corrected for the fact that the 

three global minima are used for both φ and ψ. 

 

 

 

 

 

 

 

 

 

 



7 
 

 

Figure 2. Topological atoms occurring in the global energy minimum of the isoleucine 

dipeptide (Ile) with atom generically labelled. The dihedral angles φ and ψ are marked by a 

purple and green arrow, respectively. The atoms are space-filling: they do not overlap and 

leave no gaps between them. Note that not all methylene or methyl hydrogen atoms are 

labelled in order to avoid cluttering the figure. This emblematic figure was generated by the 

in-house program IRIS, which is based on previously published38,39 algorithms. The following 

fragmentation will prove to make sense later in this article: CH3|C(=O)-N(H)|CαHR|C(=O)-

N(H)|CH3 , where each fragment is flanked by two vertical bars and consists of 4,4,15,4 and 4 

atoms, respectively, totalling 31 atoms. 

 

 

      After the ab initio calculations described above, the IQA energy partitioning calculations 

were performed using the AIMAll program40 (version 16.01.09). The non-default settings 

requested in AIMAll for the IQA calculations were: the “TwoE” program for the calculation of 

intra-atomic electron-electron repulsion energies was turned off (-usetwoe=0), the target 

spacing between interatomic surface paths was improved from fine to very fine to ensure 

accurate atomic integrations (-iasmesh=veryfine), and atomic IQA energies were requested (-

encomp=3). The IQA energy partitioning is outlined in Section 2.3, which provides only the 

relevant equations. In order to gauge the accuracy of AIMALL’s energy partitioning, the IQA 

molecular energies were compared to the ab initio energies obtained from GAUSSIAN09. The 
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discrepancy between this (unpartitioned) ab initio molecular energy and the IQA-

reconstructed molecular energy is referred to as the IQA recovery error. For some geometries 

of higher energy, the obtained IQA recovery error was considered to be too high (1 kJmol-1 < 

IQA recovery error < 1.5 kJmol-1). Hence, the IQA energies for these geometries were 

recalculated using stricter conditions for the basin outer angular quadrature (-

boaq=skyhigh_leb instead of the default –boaq=auto) in order to obtain better atomic 

integration accuracy. The best IQA energies, as determined by the IQA recovery error, were 

incorporated into the final dataset and will be reported in the Results section. 

 

2.2 Generic Notation 

      Figure 2 illustrates the notation followed throughout this article. A generic notation is 

useful in the current study because it allows atoms that are present in all three amino acids 

to be identified using a single atom label and, thus, easily compared across the three amino 

acids. This notation is more concise than that of the unique atomic labels assigned by 

GAUSSVIEW, which naturally change with varying system size. The standard residue subscript 

labels are used, namely α, β, γ and δ, and each is assigned to the covalently bonded atoms 

forming the residue. Both the carbonyl and amino groups at either side of the Cα are labelled 

with label ‘i’, which refers to the central residue as a subscript. Either side of these groups, 

the adjacent carbonyl and amino groups are labelled as ‘i-1’ and ‘i+1’, respectively. So, an 

increasing index refers to a move towards the NHCH3 terminus (by convention on the right), 

while a decreasing index refers to moving in the opposite direction, towards the acetyl 

C(=O)CH3 terminus (on the left).  

 

2.3 The Interacting Quantum Atoms (IQA) Approach 

      Interacting Quantum Atoms (IQA)41 is a topological approach that sits alongside the 

Quantum Theory of Atoms in Molecules (QTAIM)42-44 and the Electron Localization Function 

(ELF)45 under the collective header of Quantum Chemical Topology (QCT)46,47. All three share 

the central idea of using the gradient vector field to extract chemical information from a 

system. QTAIM and IQA both share the presence of topological atoms. Topological atoms, 

such as those seen in Figure 2 for isoleucine dipeptide, are finite-volume three-dimensional 

fragments of space representing a single atomic basin, determined by the gradient paths of a 

systems electron density. These atomic basins (i.e. atoms) are well-defined even when 

molecules are compressed (short range van der Waals complexes), and they are space-filling 
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(i.e. non-overlapping and gapless). The latter feature ensures that in an analysis of properties 

derived from the electron density (such as atomic energies) no part of the system is 

unaccounted for. This hallmark is an important advantage48 of QCT, particularly when 

applications are expanded to interactions between ligands and proteins49 where currently 

classically standardized van der Waals radii are used leaving areas of space unattributed to 

either the ligand or protein. The previously entitled QCTFF (Quantum Chemical Topological 

Force Field)50, but recently renamed to FFLUX51, is a force field currently being developed 

with topological atoms at its heart. FFLUX features a novel design, unlike the classical designs 

used in other popular force fields such as AMBER and CHARMM. FFLUX maps geometrical 

change to a change in atomic energy through a machine learning method known as kriging52. 

Two recent publications50,53 describe its architecture and the process of model building in 

detail. FFLUX uses four primary energies to describe a molecule (or any system). The energies 

are obtained via the IQA energy partitioning, and include the intra-atomic energy, the 

classical electrostatic energy, the exchange energy and the correlation energy. Each will be 

introduced in turn and described through the following equations. 

      IQA partitions a molecule’s energy,
Mol

IQAE , into a sum of atomic energies, 
A

IQAE , which in 

turn are composed of intra-atomic and inter-atomic energy components: 

Mol A A AB A AB

IQA IQA intra inter intra inter

1 1

2 2A A A B A A B A

E E E V E V
 

 
     

 
             (1) 

where A and B represent atoms, the superscript denotes the atoms the energy is associated 

with and the subscript denotes the type of energy, a format that applies to all subsequent 

equations. 

      The intra-atomic energy can be divided into its kinetic, T, and potential, V, energy 

contributions as follows: 

A A AA AA

intra ee enE T V V    (2) 

where TA represents the kinetic energy of atom A, 
AA

eeV  is the (repulsive) potential energy 

between the electrons within atom A, and 
AA

eeV  is the (attractive) potential energy between 

the electrons and nucleus of atom A.  

      Similarly, the interatomic energy can be divided into its potential energy contributions 

(there is no kinetic contribution this time): 

 AB AB AB AB AB

inter nn en ne eeV V V V V         (3) 
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where 
AB

enV , 
AB

neV  and 
AB

eeV  follow the same format as described earlier. This time the 

superscript and subscript ordering playing a more important role. For example, 
AB

enV  refers to 

the electrons of A and the nucleus of B. Additionally, 
AB

nnV  is the (repulsive) potential energy 

between the nuclei of A and B. The first three terms are bracketed to illustrate their 

connection to forming the “classical” electrostatic energy. To complete the electrostatic 

energy, 
AB

eeV  must be expanded to: 

AB AB AB AB

ee Coul x corrV V V V     (4) 

Here, ‘Coul’ refers to the Coulombic interaction between the electrons, ‘x’ represents the 

exchange energy, and ‘corr’ the correlation energy. Now that the Coulombic energy has been 

separated from 
AB

eeV , the classical electrostatic energy can be represented as: 

 AB AB AB AB AB

cl nn en ne CoulV V V V V      (5) 

allowing the interatomic interaction energy to be rearranged to 

AB AB AB AB AB AB

inter cl x corr cl xcV V V V V V       (6) 

This arrangement is intuitive: the classical electrostatic energy can be identified separately 

from the exchange and correlation energies, which together, can be thought of as the 

covalent contribution within an interaction. In order to maximise the overlap with the 

literature, we followed here the standard IQA notation although it could be made more 

uniform and streamlined.  

        A recent FFLUX publication53 introduced the use of interatomic energies designated by 

AA’ instead of AB. Here A’ represents every other atom in the molecular system except A. 

Thus, the notation AA’ denotes the interatomic energy between an atom A and its 

surrounding environment A’, such that 

'AA AB

A A B A

V V


   (7) 

The energies in Eqn. (7) are only approximately equivalent because they use two separate 

algorithms for calculation, one analytical and one numerical, naturally resulting in some 

minor differences between the values. 

      In this investigation we will also study the IQA energies at the molecular level, as well as at 

the atomic level and at (functional) group level (more precisely, at the level of a meaningful 

collection of atoms). In order to define the ‘molecular energies’, we observe that: 
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Mol A

i i

A

E E         (8) 

where ‘i’ may be substituted for the IQA energy type of choice (i.e. intra, cl, xc and IQA, note 

that E may be replaced by V depending on its subscript) and the molecular energy is obtained 

from a simple summation of the energy over every atom A. As a result, a hierarchical search 

for chemical insight can be carried out whereby firstly the potential energy surface (PES) is 

observed (
Mol

IQAE ), next the various energy types at the molecular level (
Mol

iE ), at the 

(functional) group level (
G

iE ) (where G is any meaningful collection of atoms), and finally the 

various energy types at the atomic level (
A

iE ).  

         The IQA approach has been used to study many different chemical systems such as the 

interactions of Zn(II) complexes54, organoselenium molecules55, halogen-trinitromethanes56, 

halogen bonding57,58 and hydrogen bonding59,60. IQA has also been used to shed light on 

chemical phenomena such as steric repulsion61-63, hyperconjugation64, reactions65 and 

transferability34. The broad applicability of IQA, and its well-defined and robust quantitative 

nature make it ideal for the current investigation. We note that IQA does not suffer from a list 

of conceptual and numerical problems plaguing the older and more traditional energy 

decomposition analysis (EDA), the many variants of which have recently been reviewed and 

critically discussed66.  

          The final point to highlight regards IQA’s compatibility limitations, in particular the lack 

of affordable correlation. Until recently, IQA was incompatible at theory levels other than 

Hartree-Fock (HF), full configuration interaction (FCI), configuration interaction with single 

and double excitations (CISD), and complete active space (CAS). This is due to perturbation 

theory remaining computationally very expensive even for small systems, and standard 

Density Functional Theory (DFT) not providing a well-defined second-order reduced density 

matrix. However, recent developments have managed to expand IQA’s application to include 

at least some correlation through B3LYP67-69 and M06-2X level DFT, and the direct correlation 

through coupled cluster with single and double excitations (CCSD)70,71 level. In 2016, MPn-IQA 

(n=2,3 or 4) also became possible72. The inclusion of correlation is anticipated to have 

important consequences in the investigation of systems driven by dispersion energy. For 

further details on the expansion of IQA, the reader is directed to the respective references. 

Accordingly, for a more complete description of the IQA approach, the original paper of 

Blanco et al. 41 should be consulted. 

 



12 
 

3. Results and Discussion 

3.1 Preliminary analysis 

      The aforementioned IQA recovery error is due to the integration error, L(Ω), that 

accompanies each atomic integration. For our systems, the mean absolute IQA recovery 

errors for the φ scans were 0.39, 0.60 and 0.95 kJmol-1 for Gly, Val and Ile, respectively. For 

the ψ scans, they were 0.35, 0.58 and 0.57 kJmol-1, respectively. With observed relative 

energy barriers of up to ~64 kJmol-1 and mean absolute IQA recovery errors of up to 0.95 

kJmol-1, the maximum percentage error of the values becomes (0.95/64)*100 = 1.5 %. We 

conclude that all effects seen and discussed are far above integration noise. The PES with the 

highest energy range (Ile-φ) also has the highest mean absolute IQA recovery error. Larger 

atomic integration errors are typically observed for atoms in more complex geometries, for 

example, in molecules energetically far from the global energy minimum or in molecules with 

unusual topology. 

 

3.2 Analysis at Molecular Level 

          Figure 3 plots the 
Mol

IQAE  PESs for each system, and for both the φ and ψ scans. The 

coloured regions depict the similarity between Gly and Val/Ile energies: (1) brown indicates 

confluence between all three dipeptides, (2) navy indicates the appearance of an additional 

maximum in Val/Ile, not seen for Gly, and (3) orange indicates a change in position of a 

maximum seen for all three dipeptides. The first point to note is the similarity between the 

Val and Ile PESs throughout both scans. Using the Pearson correlation coefficient r, where r = 

1 indicates a perfectly correlated dataset, values of r = 0.996 and r = 0.997 are obtained 

between the Val and Ile PESs within the φ and ψ scans, respectively. The striking similarity 

between the profile of Val and Ile is not surprising given that their side chains only differ by a 

methylene group. In contrast, the PES of Gly is less correlated to that of Val, for example, 

with r = 0.857 and r = 0.833 for the φ and ψ scans, respectively. However, in the φ scan, it is 

clear that the common backbone structure between Gly and Val/Ile is accountable for the 

molecular barrier interval of -150⁰ ≤ φ ≤ +15⁰ (brown area in Figure 3, panel φ) where very 

similar PESs are observed across all three systems. Outside of this interval, we deduce that 

the sidechain must influence the PES and cause the maximal φ torsional barrier at +165⁰ for 

Val and Ile, which is absent in Gly (navy area in Figure 3, panel φ). In the ψ scans, the Gly and 

Val/Ile PESs are less correlated according to r, and indeed turn out to be more different 

visually. The additional local maximum at ψ = +15⁰ (navy area in Figure 3, panel ψ), and the 

translation of the maximum barrier in ψ, from -75⁰ in Gly, to -120⁰ (in Val/Ile)(orange area in 

Figure 3, panel ψ) suggests a broader influence of the sidechain throughout the dihedral 
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angles. In summary, the sidechain influences the energy profile more in ψ than in φ, because 

the former lacks the brown area of high energy profile confluence. To aid the interpretation 

of Figure 3, Figure 4 shows the molecular graphs of the two energy maxima in φ scan (-

15⁰and +165⁰), and two energy maxima in the ψ scan (-120⁰ and +15⁰). 

 

 

 

Figure 3. 
Mol

IQAE  scanned across φ (top) and ψ (bottom), for the Gly (solid), Val (small dash) and 

Ile (large dashed) systems. All φ energies are relative to the optimised global minima at φ = -

81.9⁰, -84.4⁰ and -84.1⁰ and all ψ energies are relative to the optimised global minima at ψ 

=+69.8⁰, +83.7⁰ and +82.5⁰, respectively. The relevant energy maxima discussed in the main 

text are marked here for convenience. The brown area in the φ scan marks a region of high 

confluence between Gly, Val, Ile where the influence of the side chain is minimal. The navy 

areas in the φ and ψ scans mark regions where an extra maximum appears due to the 

presence of a side chain. The orange areas in the ψ scan mark regions where no new maxima 

appear but existing maxima are shifted.  
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Figure 4. Conformations of Val at each of the maximum energy torsion angles of φ = -15⁰, φ = 

+165⁰, ψ = -120⁰ and ψ = +15⁰ shown in Figure 3. Note that the backbone geometries also 

refer to the energy maxima in Ile and Gly, with the exception of the ψ = -75⁰ energy 

maximum unique for Gly. 

 

 

     So far, we have presented an unpartitioned perspective based on geometrical differences 

between Gly, Val and Ile, allowing us to comment on the general influence of the sidechain 

(and its size) on the molecular energy. The current literature states that the barrier at φ = 

+165⁰ is a result of the β-branching on the residue causing hard-sphere steric clashes73 

between Oi-1 and Cβ (at B3LYP/ANO-L-VDZP level), whereas the barrier at ψ = -120⁰ relates to 

clashes74 between Cβ and Ni+1. However, around ψ = +15⁰, where our earlier observations 

would suggest a sidechain-related destabilisation, the literature reports the region as being 

“sterically allowed”74. This region will be investigated further later. Finally, the barrier at φ = -

15⁰, which occurs in all three systems, is reportedly due to two sets of backbone clashes, one 
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between Oi-1 and Ci
2, and a second74 between Oi-1 and Ni+1. Figure 4 is meant to help in 

visualising the atomic clashes mentioned above but a careful inspection may leave the 

impression that a more thorough atomic analysis, in the spirit of topological atoms, is 

needed. 

      To this point we only commented on the general regions where one expects the sidechain 

atoms to influence (navy/orange in Figure 3), or not (brown), the molecular energies, given 

the structural differences between Gly and Val/Ile. To comment further on the agreement 

between literature and the IQA perspective, it is necessary to partition the molecule into 

fragments. The IQA interpretation for the causes of the observed maxima (and minima) will 

now be investigated, for each system, at three partitioning levels: molecular, functional group 

(or collections of atoms) and atomic (i.e. single atom). 

       We now analyse the overall trends of the molecular IQA energies (relative to the global 

minimum) illustrated for the φ and ψ scans in Figures 5 and 6, respectively. These figures 

show, for each of the three systems, the profile of each IQA molecular energy contribution to 

Mol

IQAE , that is 
Mol

clV ,
Mol

intraE  and 
Mol

xcV (see Eqn. 8). For convenience, 
Mol

IQAE  is plotted again for 

each system, repeating what was already shown in Figure 3. It is clear that the energy scale 

between Figure 3 and Figure 5 (or Figure 6) differs by about an order of magnitude. This scale 

difference explains why the energy barriers look less pronounced at the scale of hundreds of 

kJmol-1, which is necessary though to show the behaviour of the three types of molecular 

energy contributions to the total molecular energy. The difference in energy scales also 

suggest immediately that substantial energy cancellation must take place. Indeed, 
Mol

clV and

Mol

intraE  broadly mirror each other, at either side of the zero energy line, and thereby more or 

less cancel each other. Meanwhile, 
Mol

xcV acts as a spectator since the absolute magnitude of 

its values stays of the order of tens of kJmol-1 (peaking at 41 kJmol-1). 

         We learn that the cause of the PES barriers is consistent across the φ scan for each of 

the three systems: the classical electrostatic energy 
Mol

clV  (purple) is destabilised in the 

barrier regions, relative to the global minimum. Correspondingly, the height of the barriers at 

0⁰ and +165⁰ (Val/Ile only) is dampened through stabilisation of 
Mol

intraE  (orange) and 
Mol

xcV

(turquoise). It is important to note that 
Mol

clV is always negative (attractive) across all systems 

and for all φ/ψ combinations. Thus, the positive relative energies should be interpreted as a 

destabilisation (i.e. a lack of stabilisation) with respect to the global minimum rather than as a 
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repulsive energy. Both 
Mol

intraE  and 
Mol

xcV  energies are also always negative in value, and should 

thus not be mistaken to be repulsive energies either. 
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Figure 5. Breakdown of 
Mol

IQAE  energies (green) for the φ scan into 
Mol

clV  (purple), 
Mol

intraE  

(orange) and 
Mol

xcV  (turquoise) components for (a) Gly, (b) Val and (c) Ile.  
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Figure 6. Breakdown of 
Mol

IQAE  energies (green) into 
Mol

clV  (purple), 
Mol

intraE  (orange) and 
Mol

XCV  

(turquoise) components for (a) Gly, (b) Val and (c) Ile, for the ψ scan.  

      Within the ψ scan, the destabilisation of 
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clV  is again the cause of the barrier within the 
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destabilising in the navy region. The fluctuations result from the formation of two 

intramolecular hydrogen bonds causing sterically destabilising 1,5 (ψ = -15⁰) and 1,7 (ψ = 

+60⁰) intramolecular rings in the backbones of the dipeptides. The hydrogen bonds involve 

the Ni…Hi+1-Ni+1 atoms (1,5 ring) and the Oi-1…Hi+1-Ni+1 atoms (1,7 ring), and are illustrated in 

Figure 7 for the Val system at conformations ψ = 0⁰ (top) and ψ = +60⁰ (bottom). 

Accompanying the destabilising intra-atomic energy is a stabilisation of the electrostatic 

energy within these atoms, which is expected during the formation of a hydrogen bond.  

 

            

 

 

Figure 7. Conformations of Val illustrating the presence of (top) a 1,5 cyclic intramolecular 

hydrogen bond containing Ni…Hi+1-Ni+1 (orange) for ψ = 0⁰ and  (bottom) a 1,7 hydrogen-

bonded ring containing Oi-1…Hi+1-Ni+1 (orange) for ψ = +60⁰. These intramolecular hydrogen 

bonds are responsible for the molecular steric destabilisation seen in Figure 6.  

       The fact that
Mol

clV causes its own high-energy regions is interesting, surprising and 

perhaps even controversial. To explain why, it is necessary to refer to a recent study 

completed within our group where fluctuations in intraE  were observed to mimic a 

ψ = 0⁰

⁰ 

 
φ=+15 

ψ = +60⁰ 
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Buckingham-type potential and hence significantly contribute towards steric hindrance75. As a 

result, the behaviour of intraE can be viewed as a measure of the steric hindrance. 

Unpublished results (involving an oligopeptide intra-atomic energy analysis) have also shown 

that intraE  often correlates with the atomic volume of an atom: where energy is stabilised, the 

atomic volume increases. Thus, the general stabilisation of 
Mol

intraE  across the PES should be 

interpreted as due to expanding atoms (i.e. relaxing) when the backbone is extending itself. 

Such extension occurs when φ or ψ values move towards -1800 or 1800, that is, further away 

from the global minimum. To be more specific, of the 49 (=24 + 24 + 1) conformations (see 

Section 2.1) studied for each dipeptide, only 4 are sterically destabilised relative to the global 

minimum (deducible from Figure 6, Val/Ile orange curve). At this minimum there is an 

electrostatically stabilising intramolecular hydrogen bond, which explains why 
Mol

clE  stabilises 

at nearby torsional angles (Figure 6, Val/Ile purple curve at ψ=00 and ψ=600). From this 

reasoning, we can initially conclude that it is generally not steric hindrance (through hard-

sphere clashes) causing the molecule to be less stable in many regions of the Ramachandran 

plot. Instead, the high energies are caused by a lack of electrostatic stability. 

       Figures 5 and 6 also show how Gly is more electrostatically destabilised than Val and Ile 

for many dihedral angles (both φ and ψ) on the PES. However, the greater electrostatic 

destabilisation is also accompanied by a greater 
Mol

intraE  stabilisation, resulting in Val and Ile 

having the higher relative 
Mol

IQAE , and therefore barriers, at such φ/ψ angles. Hence, IQA 

confirms that Gly has more conformational freedom than other amino acids, which is 

expressed through greater relative stabilisation via 
Mol

intraE . These results are another example 

of the prominent relationship between intraE and clV energies: as one becomes stabilised, the 

other becomes typically destabilised. This counterbalancing effect is elaborated upon in our 

recent work76 on large water clusters. 

 

3.3 Analysis at (Functional) Group Level 

         Next we observe the functional group behaviour. As mentioned in the caption of Figure 

1 the following partition will prove useful: CH3|C(=O)-N(H)|CαHR|C(=O)-N(H)|CH3. We 

introduce the following notation to describe these fragments: (i) the methyl groups are 

combined and this collection of 8 atoms is called “Caps”, (ii) the peptide group at the C-

terminus (i.e. left, involving  the Oi-1 - Ci-1 - Ni - Hi ) is called “Pep-“, (iii) the peptide group at 

the N-terminus (i.e. right, involving  the Oi - Ci - Ni+1 - Hi+1 ) is called “Pep+“, (iv) the pivotal Cα 



21 
 

atom (and one Hα (for Ile/Val) or two Hα (for Gly) atoms bonded to it) is called (CH)α, and 

finally (v) the sidechain atoms (full chain for Val/Ile only, called “Sidechain”). The energies 

associated with the five atom groups defined above are denoted respectively: 
Pep-

IQAE , 
Pep+ 

IQAE , 

Caps

IQAE , 
(CH)

IQAE   and 
Sidechain

IQAE . We then sum the 
A

IQAE contribution of each atom forming these 

given groups to recover the respective group energies. We additionally sum (a) the two 

peptide groups denoted
Peps

IQAE 
and (b) the caps and α-atoms into a single term denoted 

αCaps,(CH)

IQAE . This grouping offers an even coarser point of view: peptides, α-pivot and 

sidechains or 
Peps

IQAE 
, αCaps,(CH)

IQAE and 
Sidechain

IQAE . Figures 8 and 9 plot the functional group 

analysis for the φ and ψ scans, respectively. 
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Figure 8. Breakdown of 
Mol

IQAE  energies (green) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE

(red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light 

blue) components for (a) Gly, (b) Val and (c) Ile, for the φ scan. 
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Figure 9. Breakdown of 
Mol

IQAE  energies (green) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE

(red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light 

blue) components for (a) Gly, (b) Val and (c) Ile, for the ψ scan. 
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      Figures 8 and 9 illustrate a few interesting points. Firstly, through the newly available 

functional group energy profiles we can now establish a high degree of transferability, that is, 

a high similarity between the various energy profiles in both φ and ψ scans. This analysis 

allows us to dissect the consistency in the molecular energy trends seen in Figures 5 and 6. 

Secondly, the α-atoms fluctuate very little across φ and ψ scans within ±15 kJmol-1. These 

atoms are at the pivot point of the dihedral rotations and link the backbone to the sidechain. 

One would expect them to be energetically sensitive but this is not the case. Thirdly, regions 

within the φ and ψ scans can be attributed to certain functional groups. As a remarkable 

example we see that the peptide groups only are responsible for the barriers in the φ scan 

within an interval approximately stretching from the global minimum to φ = -15⁰. Outside of 

this interval the barrier results from both the peptide groups and the sidechain atoms. Within 

the ψ scan, again only the peptide groups are responsible for the barrier right of the global 

minimum (ψ > +75⁰) in all systems (allowing for discrepancies up to ~5 kJmol-1). For glycine, 

this remarkable match extends from ψ = -180⁰ to ψ = -45⁰. Again, outside these areas, the α-

atoms and the sidechain (for Val/Ile) atoms make significant contributions towards the 

barrier seen at ψ = +15⁰. Collectively, the barriers at φ = +165⁰ and ψ = +15⁰ result from 

important sidechain contributions, confirming our earlier hypothesis on the rationale behind 

each of these maxima for Val and Ile. 

      The behaviour of each functional group energy ( intraE , clV  and xcV ), composing the total 

energy of the fragment ( IQAE ) may be seen in the Supplementary Information in Figures S1 

and S3 for φ, and Figures S4 to S6 for ψ. From these plots, it is clear that the peptide groups 

experience very large electrostatic and steric fluctuations across both φ and ψ scans. The 

remaining atom groups fluctuate less dramatically, both electrostatically and sterically. As a 

result, 
Mol

intraE  and 
Mol

clV PESs are accurately (remarkably within a few kJmol-1) described by 

profiles of the 8 peptide atoms alone where: φ < -60⁰ and φ > +150⁰, and -105⁰ < ψ < -15⁰ 

and ψ > +30⁰.  However, since 
Pep

intraE 
 and 

Pep±

clV  cancel to a large degree, their combined 

contribution to IQAE  is much lower and of a comparable magnitude to that of the other 

group intraE  and clV contributions and that of 
Pep±

xcV .  

       In summary and broadly speaking, the molecular intra-atomic and electrostatics are 

remarkably well described by the peptide atoms alone. However, such remarkable behaviour 

is lost upon summation because of cancellation and concomitant intricate interplay leading to 
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energy magnitudes similar to those of the remaining atomic groups (
Mol

intraE  and 
Mol

clV ) and 

exchange energy in general ( xcV ).    

      Figure S3 shows how xcV  is dominated by only one peptide group (Pep-), which is 

significantly stabilised throughout each system and in φ scan. Figure S6 shows the same 

effect for the ψ scan, although not so pronounced. For clarity, Pep- corresponds to the 

peptide group with Oi-1 forming a hydrogen bond with the Hi+1-Ni+1 atoms (see bottom panel 

of Figure 7). 

 

 

3.4 Analysis at Atomic Level 

      As a result of the group partitioning, molecular behaviour has been localised to, for 

example, peptide atoms for certain torsional intervals. The energy profiles have also been 

rationalised by their electrostatic, steric and exchange origins. Next, we take our analysis one 

partitioning step further and observe the energies at the atomic level. At the atomic level we 

aim to isolate individual atoms causing the barriers observed within the φ/ψ scans. So far, we 

have learnt about the consistency of the molecular and group energy profiles across each 

system. At the more-refined atomic level we also now expect to see this consistency. 

      Figures 10 and 11 plot the 
A

IQAE  energy profiles for key atoms in the Val φ and ψ scans, 

respectively. Figures S7 and S8 plot the same type of information for the remaining two 

systems: Gly and Ile. Here, we only report the Val results because it is clear that the atomic 

trends are very similar throughout each system, within each scan. To clarify, where backbone 

atomic destabilisation is observed within Gly, is it equally present within Val. In addition, by 

comparing Figures 10 and 11 to Figures S7 and S8, it is clear the Val and Ile plots are almost 

identical for every torsional angle. Hence, we focus on the general trends using Val as the 

example.  
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Figure 10. Val with φ = -15⁰ (top left) and φ = +165⁰ (top right) with key atomic basins 

depicted and the φ angles marked in yellow. 
A

IQAE  atomic energies for the φ scan (Bottom) 

for Valine with only atoms with significant energy fluctuations plotted. Traditional element 

colours are used for lines and symbols to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). Symbols are indicative of the 

subscript of the element indicating their position in the molecule. 
Mol

IQAE  energy is given in 

green. Orange circles depict most destabilised atoms in each barrier region. 
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      In Figures 10 and 11 we plot only the key atoms with energy fluctuations greater than ±10 

kJmol-1. Many sidechain and methyl-cap atoms fell below this threshold and are hence not 

included in these figures. In fact, very few sidechain atoms fluctuate with any significant 

energy deviations, except for two Hϒ atoms. In addition, the Cα atoms also fluctuate very little 

(< ±8 kJmol-1) but are included in the plot to demonstrate this key point. In the group analysis, 

we already established a lack of energy fluctuation for Cα atoms but we reiterate this 

surprising result considering Cα’s key bridging role. The Oi-1 atoms are the most perturbed 

atoms across all six torsional scans, indicating their importance to the overall molecular 

stability. In contrast to the destabilising behaviour of the Oi-1 atoms, the vicinal Ci-1 atoms 

significantly stabilise throughout. Within the φ scan of Figure 10, we also see Ni becoming the 

most destabilised atom when -90⁰ < φ < 0⁰ and. In the ψ scan of Figure 11, Ni starts to match 

Oi-1 in terms of destabilisation magnitude in the vicinity of the ψ = -120⁰ barrier. We learn 

that the Oi-1 and Ni atoms dominate the destabilisation within each system, across both scans. 

Many of the remaining atoms fluctuate with some preference towards stabilisation or 

destabilisation, or oscillate around the zero-energy line (given by the global minimum). 
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Figure 11. Val with ψ = -120⁰ (top left) and ψ = +15⁰ (top right) with key atomic basins 

depicted and the ψ angles marked in yellow. 
A

IQAE  atomic energies for the ψ scan (Bottom) 

for Valine with only atoms with significant energy fluctuations plotted. Traditional element 

colours are used for lines and symbols to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). Symbols are indicative of the 

subscript of the element indicating their position in the molecule. 
Mol

IQAE  energy is given in 

green. Orange circles depict most destabilised atoms in each barrier region. 
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      Figures 10 and 11 also plot the atomic basins for the most destabilising atoms present at 

the barriers at φ = -15⁰, φ= +165⁰, and ψ = -120⁰, ψ = +15⁰, respectively. The literature 

reasoning behind each barrier will now be further compared with the IQA-based reasoning. 

Both Mandel et al.2 and Ho et al.74 state that the clash between Oi-1 and Ni+1 contributes to 

the barrier at φ = -15⁰. The 
A

IQAE  analysis shown in Figure 10 confirms this because the 

largest destabilising (i.e. positive energy) contributors to this barrier are indeed Oi-1 and Ni+1. 

However, Mandel et al.2 quotes the clash between Oi-1 and Ci as an extra contributor to this 

barrier, which we cannot confirm because the positive 
A

IQAE  for Ci is an order of magnitude 

smaller than that of Ni+1.  

      We now analyse the barrier at φ = +165⁰ in a similar way. Ho et al.74 suggest that a clash 

between Oi-1 and Cβ causes this barrier. Our analysis confirms that Oi-1 is indeed a major factor 

of destabilisation (large positive 
A

IQAE value) but Cβ is not at all (in fact, because it is always 

smaller than 4 kJmol-1 is not even shown in Figure 10). However, if our analysis is forced to 

point out destabilising atoms from the side chain then one Hβ and one Hϒ atom emerge. 

Much more significant destabilisation originates from Ni and Ci. We are now in a position to 

refine our earlier observation in the molecular energy analysis (see Section 3.2). Although the 

sidechain causes the φ = +165⁰ barrier, it results from three peptide atoms (Oi-1, Ci and Ni) 

being destabilised alongside two sidechain hydrogen atoms but not sidechain carbons.  

      Within the ψ scans, we do not see the reported74 clash between Ni+1 and Cβ when ψ = -

120⁰. Instead, we observe that Ni and Oi-1 are most destabilised alongside Hα (see Figure 11). 

Moreover, the suggested Ni+1 is actually stabilising at ψ = -120⁰, according to our findings. For 

the ψ = +15⁰ barrier, which is known to be sterically allowed but without specific clashing 

atoms identified, we discover that the sidechain (within Val/Ile) is destabilised through Hϒ. 

Indeed, in Figure 11 we see a clear peak at ψ = +15⁰ for Hϒ. In addition to Hϒ being 

destabilised, Hα and Oi-1 are also destabilising when ψ = +15⁰.  

      Overall, some of our atomic interpretations of energy barriers are quite different to those 

in previous literature. However, our energies are more complete than those represented by, 

for example, the hard-sphere model, which only considers the steric-like behaviour of an 

atom. To better understand the nature of the destabilisation of each atom, it is necessary to 

observe the causal energies (
A

intraE , 
AA'

clV  and 
AA'

xcV ) composing 
A

IQAE . The Supplementary 

Information reports each of these three atomic energy profiles in Figures S9 to S11 for the φ 

scan, and again in Figures S12 to S14 for the ψ scan. Collectively, Figures S9 to S14 allow us to 
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identify the source of destabilisation for every atom known to be significantly destabilised 

(through 
A

IQAE ) at the barrier peaks. The results are summarised in Table 1. 

 

Barrier Atom Origin of Destabilisation 

Φ = -15⁰ 

Oi-1 

Ni+1 

Steric 

Electrostatic 

Φ = +165⁰ 

Oi-1 

Ni 

Ci 

Hβ and Hϒ* 

Steric and Electrostatic 

Electrostatic and Exchange 

Steric and Electrostatic 

Steric 

Ψ = -120⁰ 
Oi-1 

Ni 

Steric and Electrostatic 

Electrostatic 

Ψ = +15⁰ 

Oi-1 

Hα 

Hϒ 

Electrostatic and Exchange 

Steric and Exchange 

Steric 

 

* Their atomic basins are not drawn in Figure 10 but collectively contribute around the 

barrier. 

Table 1. Summary of depicted atomic basins and their origin of destabilisation.  

 

 

         We note an unusual result for two cases: Oi-1 (φ = +165⁰ and Ψ = -120⁰) and Ci (φ = 

+165⁰), where we observe the anomalous combination of both significantly destabilising 

steric (intra-atomic) and destabilising electrostatic energies. For Oi-1 in particular, the 

anomalous lack of cancellation causes the atom to be the most destabilised (through 
A

IQAE ) 

atom across each of all 6 torsional scans.  

        Energy profile consistency has been identified within both the molecular energy analysis 

and the (functional) group analysis. When a system is partitioned, consistency of energy 

trends is commonly known as ‘transferability’, which is a key topic in force field design. If 

atomic energies (group or single atoms) are identified as being consistent across systems, 

then such atomic energies are said to be transferable. Categorising such transferable atoms 

should become a significant topic within computational chemistry itself. 
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      Finally, we comment further on the transferable energy trends. Some weak trends occur 

in the backbone atoms when comparing Gly with Val/Ile but they are strengthened when 

comparing Val and Ile. Within the atomic analysis, Gly and Val atomic energies are similar to 

within 8 kJmol-1 (whilst -165⁰ < ϕ < +15⁰) and within 9 kJmol-1 (across all ψ angles). The Val 

and Ile atomic energies are even closer, within 5 kJmol-1 (whilst -165⁰ < ϕ < +165⁰) and within 

3 kJmol-1 (when ψ < 0⁰ and ψ > 0⁰). The minimal energy discrepancies across Gly, Val and Ile 

corroborate fragment transferability, which force field developers need in their atom typing. 

The results presented also support some of our other work34 on IQA and transferability.  

 

    

4. Conclusions   

      In this study, three dipeptides (Gly, Val and Ile) were investigated to gain a better 

understanding of the intrinsic behaviour of amino acids at three successive levels of detail: 

molecular, (functional) group and atomic. The topological energy partitioning method called 

IQA provided four types of energy to achieve this goal: intra-atomic (self) energy ( intraE ), 

electrostatic energy ( clV ), exchange(-correlation) energy ( xcV ) and the sum of all three ( IQAE

). We determined the causes of the high-energy regions at relevant combinations of φ/ψ in 

the Ramachandran plots.  

      At the molecular level, a destabilisation of the electrostatic energy is the cause of the 

barrier regions across both φ and ψ scans, and across each dipeptide system. However, each 

electrostatic barrier is dampened by counter-stabilisation from 
Mol

intraE  and 
Mol

xcV . Electrostatics 

dictating the barriers is an unexpected conclusion given the prevailing view that steric 

hindrance can explain the Ramachandran regions.  

         At group level, the peptide groups are consistently the cause of the barriers at φ = -15⁰ 

and ψ = -120⁰, with the barriers at φ = +165⁰ and at ψ = +15⁰ arising as the result of both the 

peptides and sidechain groups becoming destabilised, cooperatively.  

       At the atomic level (A), the aforementioned group trends were reflected in destabilised 

A

IQAE energies for key peptide atoms (Oi-1, Ci, Ni and Ni+1) and some sidechain hydrogen atoms 

(Hβ and Hγ).  

      The origin of the atomic destabilisation was also clarified through the analysis of the 
A

intraE , 

AA'

clV  and 
AA'

xcV  energies (A’ is the atomic environment of A), confirming some steric 

destabilisation within the Oi-1, Ci, Hα and sidechain Hγ and Hβ atoms at barrier peaks. 
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Surprisingly and interestingly, the energies of the sidechain carbon atoms (Cβ, Cϒ, Cδ), and 

more importantly Cα, remained relatively unperturbed throughout.  

      Finally, some very promising results regarding transferability were observed where 

absolute values of atomic energies are smaller than 9 kJmol-1 between Gly and Val/Ile, and 

smaller than 5 kJmol-1 between Val and Ile, for the majority of torsional angles across both φ/ 

ψ scans.  
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Figures S1 to S6. Breakdown of 
Mol

intraE , 
Mol

clV  and 
Mol

xcV  energies (orange) into fragment 

energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE (red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 

Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) components for (a) Gly, (b) Val and (c) Ile, for the φ 

(S1 to S3) and ψ (S4 to S6) scans. Figures S7 and S8. Relative 
A

IQAE  total atomic energies for 

the scan across φ (S7) and ψ (S8) for Gly (top) and Ile (bottom). Only the highest energetically 

fluctuating atoms are plotted. Element colours are used for plot lines to distinguish element 

type: carbons (dark grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). The 

molecular 
A

IQAE  energy is given by a single thick dark orange line. Generic atom labels are 

used in the legend and correspond to Figure 2 in the main text. Figures S9 to S14. Relative 
A

intraE , 
A

clV  and 
A

xcV  total atomic energies for the scan across φ (S9 to S11) and ψ (S12 to S14) 

for Gly (top), Val (middle) and Ile (bottom). Only the highest energetically fluctuating atoms 

are plotted. Element colours are used for plot lines to distinguish element type: carbons (dark 

grey), hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 
A

intraE  , 
A

clV  and 

A

xcV  energies are given by a single thick dark orange, purple or turquoise line, respectively. 

Generic atom labels are used in the legend and correspond to Figure 2 in the main text.  
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Figure S1. Breakdown of 
Mol

intraE  energies (orange) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE

(red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light 

blue) components for (a) Gly, (b) Val and (c) Ile, for the φ scan. 
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Figure S2. Breakdown of 
Mol

clV  energies (purple) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE

(red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light 

blue) components for (a) Gly, (b) Val and (c) Ile, for the φ scan. 

-50

0

50

100

150

200

250

-180 -120 -60 0 60 120 180

Pep+

Pep-

Caps

(CHH)α

Caps,(CHH)α

Peps±

Molecule

GLY

-50

0

50

100

150

200

250

300

-180 -120 -60 0 60 120 180

Pep+

Pep-

Caps

(CH)α

Caps,(CH)
α
Peps±

Sidechain

Molecule

VAL

-100

-50

0

50

100

150

200

250

-180 -120 -60 0 60 120 180

Pep+

Pep-

Caps

(CH)α

Caps,(CH)
α
Peps±

Sidechain

Molecule

ILE



4 
 

 

Figure S3. Breakdown of 
Mol

xcV  energies (turquoise) into fragment energies: 
Pep+

IQAE  (blue), 

Pep - 

IQAE (red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) components for (a) Gly, (b) Val and (c) Ile, for the φ scan. 
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Figure S4. Breakdown of 
Mol

intraE  energies (orange) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE

(red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light 

blue) components for (a) Gly, (b) Val and (c) Ile, for the ψ scan. 
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Figure S5. Breakdown of 
Mol

clV  energies (purple) into fragment energies: 
Pep+

IQAE  (blue), 
Pep - 

IQAE

(red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light 

blue) components for (a) Gly, (b) Val and (c) Ile, for the ψ scan. 
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Figure S6. Breakdown of 
Mol

xcV  energies (turquoise) into fragment energies: 
Pep+

IQAE  (blue), 

Pep - 

IQAE (red), 
Caps

IQAE  (light green), 
(CH)

IQAE  (grey), αCaps,(CH)

IQAE  (black), 
Peps

IQAE 
 (brown) and 

sidechain

IQAE  (light blue) components for (a) Gly, (b) Val and (c) Ile, for the ψ scan. 
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Figure S7. Relative 
A

IQAE  total atomic energies for the scan across φ for Gly (top) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are 

used for plot lines to distinguish element type: carbons (dark grey), hydrogens (light grey), 

nitrogen (blue) and oxygen (red). The molecular 
A

IQAE  energy is given by a single thick dark 

orange line. Generic atom labels are used in the legend and correspond to Figure 2 in the 

main text.  

-40

-30

-20

-10

0

10

20

30

40

50

60

-180 -120 -60 0 60 120 180

Ci
Ci-1
Cα
Hα
Hα
Hi
Hi+1
Hm+1
Hm+1
Ni
Ni+1
Oi
Oi-1
Molec

GLY

-30

-20

-10

0

10

20

30

40

50

60

70

-180 -120 -60 0 60 120 180

Cα

Ci

Ci-1

Hi

Hα

Hβ

Hi+1

Hm+1

Hm+1

Ni

Ni+1

Oi

Oi-1

Molec

ILE



9 
 

 

Figure S8. Relative 
A

IQAE  total atomic energies for the scan across ψ for Gly (top) and Ile 

(bottom). Only the highest energetically fluctuating atoms are plotted. Element colours are 

used for plot lines to distinguish element type: carbons (dark grey), hydrogens (light grey), 

nitrogen (blue) and oxygen (red). The molecular 
A

IQAE  energy is given by a single thick dark 

orange line. Generic atom labels are used in the legend and correspond to Figure 2 in the 

main text.  
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Figure S9. Relative 
A

intraE  total atomic energies for the scan across φ for Gly (top), Val (middle) 

and Ile (bottom). Only the highest energetically fluctuating atoms are plotted. Element 

colours are used for plot lines to distinguish element type: carbons (dark grey), hydrogens 

(light grey), nitrogen (blue) and oxygen (red). The molecular 
A

intraE  energy is given by a single 

thick dark orange line. Generic atom labels are used in the legend and correspond to Figure 2 

in the main text.  

-200

-150

-100

-50

0

50

-180 -120 -60 0 60 120 180

GLY

Ci

Ci-1

Cα

Hα

Hα

Hi+1

Hm+1

Hm+1

Ni

Ni+1

Oi

Oi-1

Molec

-170

-120

-70

-20

30

80

-180 -120 -60 0 60 120 180

VAL

Ci

Ci-1

Cα

Hα

Hi+1

Hm+1

Ni

Ni+1

Oi

Oi-1

Molec

-170

-120

-70

-20

30

80

-180 -120 -60 0 60 120 180

ILE

Ci

Ci-1

Cα

Hα

Hβ

Hi+1

Hm+1

Ni

Ni+1

Oi

Oi-1

Molec



11 
 

 

Figure S10. Relative 
AA'

clV  total atomic energies for the scan across φ for Gly (top), Val 

(middle) and Ile (bottom). Only the highest energetically fluctuating atoms are plotted. 

Element colours are used for plot lines to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 
AA'

clV  energy is given 

by a single thick dark purple line. Generic atom labels are used in the legend and correspond 

to Figure 2 in the main text. 
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Figure S11. Relative 
AA'

xcV ’ total atomic energies for the scan across ψ for Gly (top), Val 

(middle) and Ile (bottom). Only the highest energetically fluctuating atoms are plotted. 

Element colours are used for plot lines to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 
AA'

clV  energy is given 

by a single thick dark purple line. Generic atom labels are used in the legend and correspond 

to Figure 2 in the main text. 
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Figure S12. Relative 
A

intraE  total atomic energies for the scan across ψ for Gly (top), Val 

(middle) and Ile (bottom). Only the highest energetically fluctuating atoms are plotted. 

Element colours are used for plot lines to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 
A

intraE  energy is given 

by a single thick dark orange line. Generic atom labels are used in the legend and correspond 

to Figure 2 in the main text.  
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Figure S13. Relative 
AA'

clV ’ total atomic energies for the scan across ψ for Gly (top), Val 

(middle) and Ile (bottom). Only the highest energetically fluctuating atoms are plotted. 

Element colours are used for plot lines to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 
AA'

clV  energy is given 

by a single thick dark purple line. Generic atom labels are used in the legend and correspond 

to Figure 2 in the main text. 
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Figure S14. Relative 
AA'

xcV ’ total atomic energies for the scan across ψ for Gly (top), Val 

(middle) and Ile (bottom). Only the highest energetically fluctuating atoms are plotted. 

Element colours are used for plot lines to distinguish element type: carbons (dark grey), 

hydrogens (light grey), nitrogen (blue) and oxygen (red). The molecular 
AA'

clV  energy is given 

by a single thick dark purple line. Generic atom labels are used in the legend and correspond 

to Figure 2 in the main text. 
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Preface 
 

            Following the success of the IQA case studies and theory extensions presented in Papers 1-3 

(Sections 2 - 4), the IQA energies were considered suitable to form the basis of the FFLUX 

framework. The next step in the development of FFLUX was to investigate the capacity for our 

kriging machine learning algorithm to model the IQA energies. Earlier success in modelling the 

multipole moments suggested this would be possible, however, to what accuracy was yet to be 

determined.  

      The research in Paper 4 (Section 5) presents the GAIA protocol tailored to the machine 

learning of IQA energy models (eventually becoming the GAIA protocol described in Section 1.7). 

Again, three biologically important molecules of increasing size were used as case studies: 

methanol (sidechain of Serine), N-methylacetamide (methyl-capped peptide bond) and glycine 

(key amino acid). Using GAIA, an atom’s energy was modelled using three descriptions: (1) kriging 

only the total atomic energy, , (2) kriging the intra- and interatomic energies,  and 
AA'

interV

, and (3) kriging the intra-atomic energy alongside the classical electrostatic and exchange-

correlation energies, , 
AA'

clV and
AA'

XCV , respectively. The first application of the IQA energies 

within the GAIA protocol also enabled the effect of the normal modes sampling procedure 

(TYCHE) on IQA energies to be investigated. Furthermore, it also permits their conversion into 

energy model errors to be observed and understood. Finally, some useful considerations 

regarding atom typing and the cancellation of errors would be discussed as a result of the data 

generated. 
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1 Introduction

There is a consensus that traditional force fields, which 
are instrumental in the vast majority of modern molecu-
lar simulations, need further improvement. Their limiting 
accuracy is regularly pointed out in the literature, as a cause 
for discrepancies between a given force field’s predictions 
and experimental results. Indeed, if the sampling during 
the simulation is adequate, then only the potential can be 
blamed if predictions fail to be trustworthy. In order to 
improve their energy prediction, popular force fields such 
as AMBER and CHARMM have been modified on several 
occasions. Fairly recent modifications were extensively 
tested [1] in 2011 with the most powerful dedicated molec-
ular simulation hardware in the world. The four force fields 
tested in this protein folding work were Amber ff03, Amber 
ff99SB*-ILDN, CHARMM27 and CHAMRMM22*. It 
was found that the folding mechanism and the properties 
of the unfolded state depended substantially on the choice 
of force field. Another extensive and more recent study [2] 
concluded, from a millisecond of simulations on intrinsi-
cally disordered proteins, that eight well-known force fields 
generate unexpectedly huge differences in chain dimension, 
hydrogen bonding and secondary structure content. In fact, 
discrepancies are so serious that changing the force field 
has a stronger effect on secondary structure content than 
changing the entire peptide sequence. Such comparisons 
are quite rare but precious because they clearly demon-
strate, while eliminating any sampling issues or hardware 

Abstract The construction of a novel protein force field 
called FFLUX, which uses topological atoms, is founded 
on high-rank and fully polarizable multipolar electrostatics. 
The machine learning method kriging successfully predicts 
multipole moments of a given atom with as only input the 
nuclear coordinates of the atoms surrounding this given 
atom. Thus, trained kriging models accurately capture the 
polarizable multipolar electrostatics of amino acids. Here 
we show that successful kriging models can also be con-
structed for non-electrostatic energy contributions. As a 
result, the full potential energy surface of the (molecular) 
system trained for can be predicted by the corresponding 
set of atomic kriging models. In particular, we report on the 
performance of kriging models for each atom’s (A) (1) total 
atomic energy (EA

IQA), (2) intra-atomic energy (EA
intra) (both 

kinetic and potential energy), (3) exchange energy (VAA
′

XC
) 

and (4) electrostatic energy (VAA
′

cl
) of atom A with the rest 

of the system (A′), and (5) interatomic energy (VAA
′

inter
). The 

total molecular energy can be reconstructed from the krig-
ing predictions of these atomic energies. For the three case 
studies investigated (i.e. methanol, N-methylacetamide 
and peptide-capped glycine), the molecular energies were 
produced with mean absolute errors under 0.4, 0.8 and 
1.1 kJ mol−1, respectively.
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limitations, that much more work needs to be done. The 
question is which type of work.

Over the last decade our strategy has been to re-examine 
and challenge the core architecture of classical force fields. 
The type of work that accompanies such a bold strategy 
can be characterized as arduous, and above all, system-
atic. At the outset of this long term project, the ubiquitous 
atomic point charges (one on each nucleus) were replaced 
by nucleus-centred atomic multipole moments. This step 
is shared by other next-generation force fields such as 
AMOEBA [3], XED [4], SIBFA [5] and ACKS2 [6] and 
is driven by a clearly justified desire towards increasingly 
accurate electrostatics [7, 8].

The current approach embraces so-called topologi-
cal atoms as the “entity of information” from which any 
system (molecular or ionic) is built. Much work has been 
carried out [9–17] in order to obtain a deep understand-
ing of the convergence behaviour and accuracy of the 
electrostatic interaction between topological atoms, as 
well as the electrostatic potential they generate. Topologi-
cal atoms are defined by the quantum theory of atoms in 
molecules (QTAIM) [18–21] as finite-volume fragments 
in real 3D space. As quantum atoms [20, 22], topological 
atoms are deeply rooted in quantum mechanics [23]. These 
atoms result from a parameter-free partitioning of the elec-
tron density, introducing sharp boundaries whose shape 
responds to any variation in nuclear geometry. The finite 
size of topological atoms prevents penetration effects and 
the associated correction in the form of damping functions. 
Topological multipolar electrostatics proved to be success-
ful in the description of electrostatic interaction in proteins 
[24].

The next step in the construction of a topological force 
field is the inclusion of electrostatic polarization. In prin-
ciple, the multipole moments of any given atom are influ-
enced by all the atoms surrounding it, but this influence 
typically decreases the further away the surrounding atoms 
are. In order to be able to handle the full complexity of this 
influence, we invoked machine learning early on. Initially 
we used neural networks [25] and applied it to water clus-
ters [26]. In 2009 it turned out [27] that a completely dif-
ferent machine learning method called kriging performed 
more accurately than neural networks. Although kriging 
was computationally more expensive, it coped better with 
the larger number of molecules surrounding the atom of 
interest. Kriging [28], which is also known as Gaussian 
regression analysis [29], originates in geostatistics but has 
been used in very different application areas, including the 
prediction [30] of atomic properties when inside molecules.

The essence of our kriging approach is the establishment 
of a direct mapping between an atomic multipole moment 
(output) and the nuclear coordinates (input) of the sur-
rounding atoms. This mapping is obtained after training to a 

training set of (molecular or cluster) geometries, and is able 
to make a prediction to a previously unseen geometry of 
the surrounding molecules. For this purpose we take advan-
tage of the renowned interpolative power of kriging. More-
over, when using kriging models in an extrapolative way, 
the model returns the average value of the atomic property 
of interest observed over the training set. Finally, it must be 
pointed out that a kriging model is not returning an atomic 
polarizability but the atomic multipole moment itself, after 
the polarization process is complete. This strategy has an 
important advantage when the kriging models are used dur-
ing a molecular dynamics simulation: the atomic moments 
do not need to be computed (typically iteratively) from the 
polarizabilities. Instead, the multipole moments are pre-
dicted “on the fly”, directly from the nuclear coordinates of 
the surroundings at any given time step.

Most attention has been devoted to modelling the elec-
trostatic interaction at long-range by means of kriged 
atomic multipole moments. As this procedure is understood 
and works well [31–37], the next step is how to combine 
this electrostatic energy with the non-electrostatic energy 
contributions. Preliminary and unpublished work expressed 
the latter in the traditional manner, i.e. with Hooke-like 
potentials reinforced with anharmonic extensions. The 
parameterization of these potentials, in the presence of 
kriged electrostatics, turned out to be inadequate. For this 
reason, a more satisfactory and elegant alternative strategy 
was carried out, which is to combine kriged electrostat-
ics with kriged non-electrostatics. In this streamlined pro-
cedure the machine learning method is trained for energy 
quantities that are obtained from the same topological 
energy partitioning [38] that yields the atomic multipole 
moments. In 2014, the atomic kinetic energy was suc-
cessfully kriged [39] as the first non-electrostatic energy 
contribution. That work presented proof-of-concept based 
on four molecules of increasing complexity (methanol, 
N-methylacetamide, glycine and triglycine). For all atoms 
tested, the mean atomic kinetic energy errors fell below 
1.5 kJ mol−1, and far below this value in most cases.

In the current article, we go further and deliver proof-of-
concept for the kriging of non-electrostatic atomic energy 
contributions. For that purpose we have adopted the inter-
acting quantum atoms (IQA) scheme proposed by Blanco 
et al. [40]. This is a topological energy partitioning scheme, 
inspired by early work [11] on atom–atom partitioning of 
intramolecular and intermolecular Coulomb energy. In 
IQA, the kinetic energy is subsumed in the intra-atomic 
energy (or sometimes called “self energy”), which also 
contains the potential energy of the electrons interacting 
with themselves and with the nucleus, both within a given 
atom. This intra-atomic energy plays a pivotal role in ste-
reo-electronic effects, including intermolecular Pauli-like 
repulsion. Furthermore, IQA can calculate the electrostatic 
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interaction between two atoms that are so close that their 
multipolar expansion diverges. The IQA method achieves 
this goal by using a variant of the six-dimensional volume 
integration (over two atoms) proposed in Ref. [11], which 
avoids the multipolar expansion altogether. Similarly, IQA 
does not multipole-expand the (inter-atomic) exchange 
energy, although this can be done [15]. However, this route 
is not followed by our topological force field. This energy 
contribution expresses covalent bonding energy. Within 
the Hartree–Fock ansatz, these three energy contributions 
(self, Coulomb and exchange) complete an IQA partition-
ing. However, post-Hartree–Fock methods introduce a 
fourth (non-vanishing) contribution that is associated with 
electron correlation. In the current work, we use a version 
of IQA [41] that is compatible with DFT with an eye on 
including electron correlation effects. We invoke the use of 
DFT level with the largest of systems studied here, capped 
glycine.

Three molecules were chosen here for this proof-of-con-
cept investigation: methanol, N-methylacetamide (NMA) 
and glycine, which is capped by a peptide bond both at 
its C and N terminus. These systems were chosen to rep-
resent a progressive sequence of molecular complexity, 
while being relevant to biomolecular modelling: methanol 
features as the side residue in the amino acid serine, NMA 
is the smallest system modelling a peptide bond, while 
capped glycine represents an amino acid in an oligopeptide. 
This work is the first report of combining machine learning 
with a full topological energy partitioning.

2  Methodological background

2.1  The interacting quantum atoms (IQA) approach

Figure 1 shows examples of topological atoms appearing 
in N-methylacetamide, which were generated by in-house 
software [42, 43]. QTAIM essentially defines a topological 
atom as a three-dimensional subspace determined by the 
bundle of gradient paths (of a system’s electron density) 
that are attracted to the atom’s nucleus. This partitioning 
idea also features in other topological approaches [44], such 
as that in connection with the electron localization function 
(ELF). The topological energy partitioning method IQA is 
a third approach that uses the central idea of the so-called 
gradient vector field to extract chemical information from 
a system. Quantum chemical topology (QCT) [45] is a col-
lective name to gather all topological approaches (10 so far, 
see Box 8.1 in Ref. [20]) that share the abovementioned 
central idea. The acronym QCT resurfaces in QCTFF, the 
force field under construction here [22], which uses topo-
logical atoms. The new name for QCTFF is FFLUX, for 
which a very recent and accessible perspective [46] can be 

consulted. We also note here that it has been shown before 
[47] that atom types that can be computed using the atomic 
properties of topological atoms in amino acids.

It is clear from Fig. 1 that QCT partitions a molecule 
into well-defined non-overlapping atoms [48]. Moreover, 
these topological atoms do not show any gaps between 
them; in other words, they partition space exhaustively. It is 
important to pause and briefly discuss the full consequence 
of this property. Exhaustive partitioning infers that each 
point in space belongs to a topological atom: all space is 
accounted for. In principle, this property must have reper-
cussions [49] for docking studies, as will become clear 
when QCT starts being used at this larger molecular scale. 
Classical drug design (e.g. [50]) thinks of both ligand and 
the protein’s active site as bounded by artificial surfaces 
(e.g. solvent accessible surface) based on standard van der 
Waals radii and an image of overlapping hard spheres. This 
view necessarily introduces “gaps of open space”, which 
belong neither to the ligand nor to the protein. However, 
quantum mechanically we know that electron density 
resides in those gaps, no matter how small or thin they are. 
Electron density generates an electrostatic potential, and 
hence, also generates electrostatic interaction energy con-
tributions. If a gap is not accounted for, then energy will 
be missing, which interferes with the energy balance dur-
ing the docking process. However, if there is no gap, as in 
QCT, then all energy is properly accounted for.

In brief, IQA quantitatively describes the total energy of 
an atom, even if the system is not at a stationary point in the 
potential energy surface. In other words, unlike in orthodox 
QTAIM, there is no need to invoke the atomic virial theorem 

Fig. 1  Topological atoms in a conformation of N-methylacetamide 
(NMA)
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[20, 51], the application of which is restricted to stationary 
points (such as equilibrium geometries). This total energy 
is comprised of the energy associated with the atom itself 
(intra-atomic), and with energy resulting from the interaction 
between the atoms (interatomic). We will explain each type 
of energy in turn, beginning with the decomposition of the 
molecular energy, EIQA

molec, into the atomic energies, one for 
each atom A, denoted EA

IQA, followed by its breakdown into 
intra-atomic (or ‘self’) and interatomic interaction energies,

where EA
intra and VAB

inter are the intra-atomic (of atom A) and 
inter-atomic (between atoms A and B) energies, respectively. 
The intra-atomic energy can be further partitioned,

where TA is the kinetic energy of the electrons associated with  
atom A, VAA

ee is the (repulsive) electron–electron poten-
tial energy, and VAA

en is the (attractive) electron–nuclear  
potential energy. Together, these three energies comprise the 
intra-atomic energy possessed by a single atom.

The interatomic energy attributed to a pair of atoms can 
also be further partitioned,

where VAB
en, VAB

ne and VAB
ee were described above but now  

with the ordering of the subscript components being allied 
to the ordering of the atoms in the superscript. For exam-
ple, subscript ‘en’ and superscript ‘AB’ refers to the elec-
trons of atom A and the nucleus of atom B. In addition to 
the electronic energy components, VAB

nn is the repulsive 
nucleus–nucleus potential energy.

The electron–electron energy VAB
ee can be even further 

partitioned to give the components in Eq. (4),

where VAB
Coul represents the Coulombic interaction between 

the electrons in atoms A and B. VX
AB represents the inter-

electron exchange potential energy and VAB
corr the inter-elec-

tron correlation potential energy. Combining the brack-
eted terms in Eq. (3) with the Coulomb energy only, leads 
to the total electrostatic energy between two atoms, or  
VAB

elec, which is often written as VAB
cl because of the  

“classical” nature of the electrostatic potential energy (devoid 
from any purely quantum mechanical exchange energy),
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(2)EA
intra = TA

+ VAA
ee + VAA
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(3)VAB
inter =

(

VAB
nn + VAB

en + VAB
ne

)

+ VAB
ee

(4)VAB
ee = VAB

Coul + VAB
X + VAB

corr

(5)
VAB
cl =

(

VAB
nn + VAB

en + VAB
ne

)

+ VAB
Coul

We have extensively studied this energy VAB
cl in terms 

of its multipolar convergence behaviour. The quantity  
VAB

cl incorporates the widely reported electrostatic  
multipole moments’ contribution of the long-ranged elec-
trostatic energy, in addition to the short-range electro-
static contribution obtained from IQA. Equation (3) can be 
rewritten as Eq. (6). This is done by first substituting the 
bracketed expression by VAB

cl − VAB
Coul, as obtained from 

Eq. (5), and then by substituting VAB
ee using Eq. (4), such 

that after cancellation of VAB
Coul we obtain,

The new expression separates the interatomic energy 
into the interplay of ionic-like (VAB

cl ), covalent (VX
AB) and 

correlation (VAB
corr) energies. Note that it is often convenient 

to combine exchange and correlation in one term. These 
three energies along with the intra-atomic energy compose 
the four primary energies that FFLUX is built upon.

Until recently [41] the inclusion of any computa-
tionally affordable correlation energy has been lacking 
because IQA is incompatible with both perturbation the-
ory and density functional theory (DFT) methods. Indeed, 
the methods that are compatible with the original IQA 
(i.e. full configuration interaction (FCI), complete active 
space (CAS), configuration interaction with single and 
double excitations (CISD) or coupled cluster with single 
and double excitations (CCSD) levels of theory) demand 
much greater computational expense. Neither perturbation 
theory nor standard DFT methods provide a well-defined 
second-order reduced density matrix, and hence IQA can-
not be straightforwardly applied to them. Together with 
Dr TA Keith, the main author of the QCT computer pro-
gram AIMAll [52], a DFT-based IQA method that incor-
porates at least some correlation was validated [41] by our 
group. The solution involved incorporating the explicit 
B3LYP atomic exchange functional in order to correctly 
calculate an atom’s total atomic exchange, thereby recov-
ering the ab initio energy of the whole molecule. How-
ever, the fact that the functional cannot be used to calcu-
late interatomic exchange (see Ref. [41] for details) led us 
to calculate the interatomic component using the Hartree–
Fock-like expression but then with Kohn–Sham orbit-
als inserted. The remaining intra-atomic exchange–cor-
relation is then calculated as the difference between the 
atomic exchange–correlation directly obtained from the 
B3LYP functional and the Hartree–Fock-like interatomic 
exchange.

In this investigation, we will again make use AIMALL. 
This program is able to return a useful quantity, denoted 
VAA′

inter, which is defined as follows:

(6)VAB
inter = VAB

cl + VAB
X + VAB

corr = VAB
cl + VAB

XC

(7)
VAA

′

inter =

∑

B �=A

VAB
inter
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where A′ represents every atom other than atom A. Note 
that Eq. (7) defines the atom-centred interatomic energy 
contribution VAA′

inter. In other words, it summarizes how an 
atom interacts in full with all other atoms. Note that the 
quantity VAA′

inter is obtained computationally cheaper than by 
summing over the individual pair-wise atomic contributions 
VAB

inter. However, the computational advantage of VAA′

inter is off-
set by a reduction in the chemical insight that we obtain 
from being able to inspect each atom pair individually. 
This loss occurs over and above that caused by lumping 
together the electrostatic, exchange or correlation energy 
contributions (see Eq. 6). Instead, the interaction energy is 
defined in terms of a given atom A experiencing the entire 
surrounding molecular environment. Equally, VAA′

inter can be 
decomposed into VAA′

cl  and VAA′

X  components, much like the 
pair-wise AB energies. For our current purpose, we are sat-
isfied with this formulation in spite of the reduced chemical 
insight it gives because our prime motivation is to predict 
atomic energies, and not to predict chemical insight.

Returning to the IQA formalism, we obtain Eq. (8), 
which expresses three ways (“approaches”) to break up 
the molecular energy into atomic contributions. Approach 
A was already present in Eq. (1) while substituting VAA′

inter  
of Eq. (7) into Eq. (1) leads to Approach B. Finally, 
Approach C follows from Eq. (6) and now applying the 
idea behind Eq. (7) to VAB

cl  and VXC
AB, yielding

which is the key equation for the analysis in this paper. 
Note that VAA′

inter is always halved when used in Eq. (8), 
attributing half of the energy to a single atom A, in order 
to prevent double-counting of the interatomic energy in 
the molecule.

We aim for a greater understanding of both the quan-
titative nature of these five types of energy (EA

IQA, EA
intra, 

VAA′

inter , V
AA′

XC  and VAA′

cl ) and their suitability in FFLUX after 
being kriged. As suggested in Eq. (8), the molecular energy 
can be recovered through three different approaches, each 
incorporating the use of different IQA energies. Approach 
A uses only the total atomic energy of an atom, denoted 
EA

IQA. The atomic energy EA
IQA is a sum of the intra- and 

inter-atomic energy and hence expresses their result-
ing “trade-off” by the single quantity that it is. This final 
energy, EA

IQA, suffices by itself for FFLUX being able to 
predict the structure and dynamics of a system, because 
the latter only depend on the total atomic energy, not its 
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breakdown. Approach B exposes the separation of the 
intra-atomic and interatomic energies for insight into how 
an atom itself experiences the environment it is in. Finally, 
Approach C takes the separation one step further, using the 
individual exchange and electrostatic energies in the intera-
tomic description of an atom.

In order to clarify the strategy for the complete treat-
ment of energy contributions in FFLUX a comment about 
VAB
corr in Eq. (4) is necessary. This energy contribution cov-

ers dynamic correlation and hence dispersion. Our pre-
ferred route is to treat VAB

corr in exactly the same way as VAB
cl  

and VAB
X . This approach, for which proof-of-concept has 

been reached in our lab, will guarantee a seemless inte-
gration of dispersion in the FFLUX ansatz. This strategy 
will thereby avoid the typical problems (e.g. the need for 
damping functions) that alternative dispersion methods 
introduce.

For a more exhaustive description of the IQA partition-
ing scheme including additional formulae, its capabilities 
and previous applications, we refer to the original literature 
[40, 53–58].

2.2  Kriging (Gaussian regression analysis)

As a machine learning method, kriging has its roots in geo-
statistics where it has been used to predict the location of 
precious material after being taught these locations [28]. 
Within FFLUX, kriging is used to map geometrical change 
within a molecule, obtained from nuclear coordinates, to 
a corresponding atomic property, which can be an IQA 
energy or atomic multipole moment. The atomic property 
is the machine learning output and the coordinates are the 
input. Although the full details are given elsewhere [33, 34] 
we explain here how these coordinates are constructed. It 
is advantageous that the coordinates are internal in nature 
(so only 3N − 6 for a nonlinear N-atom system). On each 
nucleus we install a so-called atomic local frame (ALF), 
which enables the definition of a polar angle and an azi-
muthal angle to describe the position of each nucleus in 
the system, except for the three nuclei required in defin-
ing the ALF. The distance between the ALF’s origin and 
the nucleus completes the triplet of (spherical polar) coor-
dinates for a given nucleus in the system (other than that 
on which the ALF is installed). Machine learning language 
calls these coordinates features, as they are the input vari-
ables to kriging in this case. Finally we note that the first 
three features of the vector of 3N − 6 features (necessary 
to describe unambiguously a molecular geometry) consists 
of (1) the distance between the origin and the first nucleus, 
which fixes the ALF’s x-axis, (2) the distance between the 
origin and the second nucleus (fixing the ALF’s xy-plane), 
and (3) the angle suspended by the first nucleus, the origin 
and the second nucleus.
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Before introducing the mathematics involved, it is useful 
to understand the kriging procedure qualitatively. Before a 
kriging model can predict a quantity, it must first be trained 
for using a number of molecular geometries with corre-
sponding atomic properties. These data form the training 
set while the test set will consist of data that do not belong 
to the training set. The external character of the test set 
makes the assessment of the kriging predictions meaning-
ful, because predictions of the training set data would be 
exact anyway (with the type of kriging used here). The 
molecular geometries used to build each set are obtained 
from sampling a molecular energy well that surrounds an 
energy minimum. The details of this sampling are given 
below, in Sect. 2.3.

Figure 2 summarizes the kriging approach, showing the 
key formula that maps the input (left panel, features) to the 
output (right panel, atomic energies). The feature vector F 
collects all Nfeat features fk, which have been detailed above. 
Note that Nfeat is the dimensionality of the feature space in 
which all Nex molecular geometries are expressed. In the 
formula of Fig. 2, Nex is the number of training examples, 
μ represents the mean of the observed value (also known 
as a constant “background” value) while wi is the kriging 
“weight” (obtained from the so-called correlation matrix 
[33]). Note that the name weight should not conjure up 
an image of arbitrary adjustments because each weight is 
computed exactly as explained in Ref. [33].

Again, instead of giving the full mathematical details 
[33, 59] of the kriging procedure, we here explain the crux 
in words. Imagine a coin being tossed a number of times 

and the outcomes recorded. If the coin is fair, then the 
parameter, which governs the outcomes and which is called 
th, is exactly 0.5 for tossing a head. This parameter is analo-
gous to parameters θk and pk in the formula of Fig. 2. Now 
suppose that we observe a statistical bias towards the out-
come of “heads up”. We can then ask to what the extent the 
coin is biased. In other words, given the observations made 
th differs from 0.5. In fact, one can find the value of the 
parameter th such that the likelihood is maximal of again 
observing the outcomes that were observed. For exam-
ple, one could find that th = 2/3 is this value. Similarly, 
when this idea is applied to the kriging problem at hand, 
the so-called likelihood function is maximized against the 
observed data, which are the atomic energies. This proce-
dure then returns the optimal values of the parameters θk 
and pk. The technical details of this optimization are com-
plex and extensively researched in our laboratory [59]. The 
next paragraph provides a very brief summary. With regard 
to using the key kriging formula in Fig. 2 (after training), 
previously unseen features F = {fk} are inserted, returning 
the atomic property f(F). It is clear that the argument of the 
exponential is a distance function, which is not necessarily 
Euclidean (i.e. pk �= 2).

In terms of the optimization procedure, first the concen-
trated log-likelihood is calculated analytically. The function 
is then maximized by a different machine learning method 
because this cannot be achieved analytically. We have suc-
cessfully used particle swarm optimization (PSO), the 
mathematical details of which can be found in Ref. [60]. 
The optimization of the parameters θk and pk via PSO is the 
most computationally expensive step in the overall kriging 
process. However, optimizing these parameters allows the 
user to obtain the highest possible concentrated log-like-
lihood function, ensuring that the best possible model is 
obtained. The time for the PSO optimization is proportional 
to the number of geometries in the training set and the 
number of atoms in the molecule. The result is an analyti-
cal formula (see Fig. 2) linking the geometrical features of 
a molecule and the atomic property of choice. For a more 
comprehensive description of the kriging protocol, the 
reader is invited to refer to our previous publications [33, 
35–37, 59, 61].

2.3  Sampling of distorted geometries

The selection of training examples with which to construct 
a kriging model is of great importance. The geometries of 
the training set should be representative of the physically 
realistic regions of conformational space. This represen-
tation ensures that predictions corresponding to relevant 
molecular geometries are always made in areas of con-
formational space that have been trained for in the krig-
ing model. Conventional methods will use some form of 

Fig. 2  Summary of kriging method at the heart of FFLUX. Atomic 
energies (intra-atomic, inter-atomic, or total sum) of a given topo-
logical atom (right panel, output) are mapped onto the features {fk}, 
which describe the nuclear geometry of the environment surrounding 
this given atom. The kriging parameter θk and pk are optimized (see 
main text)
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molecular mechanics, parameterized by a classical force 
field, to generate the training geometries. However, it has 
been shown that molecular mechanics does not necessarily 
sample the relevant areas of conformational space over the 
course of a typical trajectory [62–64].

Our approach attempts to locally approximate the ab ini-
tio molecular potential energy surface about a “seeding” 
conformation, which in this work is the global energetic 
minimum of the molecule. Whilst more than one seeding 
conformation can be used, granting a greater exploration of 
the potential energy surface, we found that for the molecules 
considered in this work, the Boltzmann weight of the global 
minimum exceeded 0.75 in all cases. By evaluating the first- 
and second-order spatial derivatives of the potential energy 
(Jacobian and Hessian, respectively) at the seeding geom-
etry, one can construct an approximate local potential energy 
surface through a Taylor expansion. The dynamics on this 
local approximation to the potential energy surface are then 
governed by a set of harmonic equations of motion, referred 
to as the molecular normal modes [65].

Here we outline the major features of our methodology, 
whilst a more thorough description of is given elsewhere 
[66, 67]. For an N-atom molecular system, we can define a 
3 N × 3 N transformation matrix, D, that converts a mass-
weighted Cartesian state vector, q, to an internal coordinate 
state vector, s. Given D, we can transform the mass-weighted 
Cartesian Hessian, Hq, to an internal coordinate basis through

The frequencies of the molecular normal modes are then 
given by diagonalising Hs

where E correspond to the eigenvectors of Hs, I is the identity 
matrix, and the eigenvalues of Hs are given by the 3 N diago-
nal elements (Iλ)ii = λi. The ith normal mode frequency, νi, 
is related to the ith eigenvalue through the expression

where c is a conversion factor incorporating the speed of light 
and a conversion from atomic units to reciprocal centimetres. 
Six of these normal mode frequencies are equal to zero in an 
internal coordinate basis, corresponding to the global transla-
tional and global rotational degrees of freedom of the molec-
ular system.

The amplitude of vibration of the ith normal mode, Ai, 
is given by the standard expression for a simple harmonic 
oscillator,

(9)D
THqD = Hs

(10)E
−1HsE = Iλ

(11)νi =

√

λi

4π2c2

(12)Ai =

√

2Ei

ki

where ki is the force constant of the ith normal mode (cal-
culable from νi), and Ei is the energy available to it. Each 
normal mode is allocated an amount of energy given by a 
standard equipartition, Ei = kBT/2, where kB is the Boltz-
mann constant and T is the temperature at which the sim-
ulation is performed. To allow for a little more flexibility, 
each of the Ei is subjected to a stochastic Gaussian fluctua-
tion. Given the amplitude and frequency of the oscillator, 
each normal mode can evolved in discrete time.

The final matter requiring discussion is how time is dis-
cretized for our equations of motion. Given the frequency 
of the oscillator, we can compute its time period, Ti = 1/νi. 
We choose a discrete timestep, �ti, such that for each time 
period, Ti = �tincycle, where ncycle is a user-defined param-
eter. After every ncycle timesteps, we also perturb the energy 
available to each normal mode by a new Gaussian-distrib-
uted number. To reduce the correlation between samples, a 
final user-defined parameter, nout is also defined. We define 
nout to correspond to the number of discrete timesteps that 
we allow to pass before outputting a sample to the training 
set. For the work conducted here, we set ncycle = 10 and 
nout = 100.

3  Computational methods

3.1  The GAIA protocol

Three molecules (methanol, NMA and peptide-capped 
glycine) have been selected as case examples. Initially, the 
methanol and NMA molecules were generated in Gauss-
View and optimized to a minimum energy geometry using 
the Gaussian 09 program, at HF/6-31+G(d,p) level of the-
ory. Single-point energy calculations were performed on 
the resulting structures, outputting the respective molecular 
wavefunction and Hessian of the potential energy, calcu-
lated at the same level. For the capped glycine molecule, 
we selected the global minimum conformation from the 
nine known energetic minima described in a previous pub-
lication [68]. For glycine, the calculations were performed 
at B3LYP/apc-1 [69] level of theory, in-keeping with the 
level of theory used in previous research [68]. Working at 
B3LYP level complements a recent publication [41] that 
validates the extension of the IQA approach to the B3LYP 
density functional. Prior to such work, the typical IQA par-
titioning restrictions demanded a well-defined second-order 
density matrix, thus ruling out correlation-inclusive and 
approximate Hamiltonian theories, including the density 
functional theory (DFT) functionals [40, 70–72].

After obtaining the molecular wavefunctions, the pro-
cess of sampling, performing the energy partitioning and 
building the kriging models was achieved using the in-
house pipeline software, known as the GAIA protocol. The 
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GAIA protocol is outlined in Fig. 3, which displays the 
sequence of steps, flowing left to right, starting with devel-
opment of sample geometries and terminating with analys-
ing the models.

GAIA automates the passing of information between two 
in-house Fortran 90 programs (TYCHE and FEREBUS—
orange boxes in Fig. 3) and two commercially available 
programs (GAUSSIAN09 [73] and AIMAll [52]—green 
boxes). The output data from one step subsequently forms 
the input for the following step, until a seeding geometry (or 
set of seeding geometries) has been converted into a fully 
trained kriging model. Each program’s role within GAIA 
can be summarized in a few lines:

1. TYCHE: distorts an input seed geometry, using the 
molecular normal modes, to create a broad range of 
sample geometries that collectively describe a local 
patch on the molecular potential energy surface (around 
the seed).

2. Gaussian 09 [73]: performs single-point energy cal-
culations and outputs the wavefunction of each mol-
ecule.

3. AIMAll [52] (version 15.09.12): starts from the wave-
function of a molecule to obtain the IQA energy parti-
tion values: EA

IQA, EA
intra, V

AA′

inter, V
AA′

XC  and VAA′

cl .

4. FEREBUS: uses a training set of molecular geometries 
to build kriging models of atomic energy (any of the 
five types above). FEREBUS then validates each model 
by predicting a test set and comparing the models’ pre-
dicted value to the known true value.

The GAIA protocol outlined here is a slight deviation 
to that reported [22] before for the parameterization pro-
cedure of FFLUX. The deviation is a result of the current 
exclusion of atomic multipole moments but incorporation 
of the IQA atomic energy components instead. Thus, Fig. 3 
represents the protocol tailored to this investigation only.

A set of 4000 initial samples were generated for each 
molecule by TYCHE from the distortion of a single energy 
minimum, at a user-defined temperature of 450 K. After 
single-point energy calculations and wavefunctions were 
obtained from Gaussian 09 for every sample, IQA energy 
contributions were obtained from AIMAll (with default 
quadrature and integration grid options). We set to the 
value of 3 the AIMAll parameter ‘-encomp’ referring to 
the IQA energies to be computed. As soon as one atom 
attains a Lagrangian integration error, L(Ω), greater than 
the user-defined threshold of 0.001 Hartree, then this atom 
is removed from the training set, as well as all remaining 
atoms of the molecular geometry in which the offending 

Fig. 3  GAIA protocol used 
to develop kriging models for 
FFLUX
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atom occurred. This process is known as scrubbing in 
GAIA. Scrubbing ensures that samples with “noisy” atomic 
energies (i.e. large L(Ω) value) are excluded from the 
development of the model. From the samples remaining in 
the pool after scrubbing, 500 are set aside as the test set 
and the remaining number of samples (to the nearest hun-
dred) are used for the training set. The resulting training 
sets were 3400, 3300 and 3000 for methanol, NMA and 
capped glycine, respectively. These training sets were then 
employed to generate kriging models for each molecule 
using the in-house program FEREBUS. The kriging param-
eter, pk, was optimized in the development of all the mod-
els. The settings in FEREBUS were as follows: noisy krig-
ing was not requested, tolerance set to 10−9, convergence 
to 200 and the swarm-specifier to “dynamic”. Finally, so-
called S-curves are produced to illustrate the energies errors 
on each molecular model. The development and meaning 
of an S-curve is described in the next section.

3.2  Energy error analysis

As announced earlier, each molecule will be modelled 
using three approaches, resulting in a tiered level of chemi-
cal information being incorporated into the molecular 
models:

•	 Approach A: Modelling the molecule using only the 
total unpartitioned atomic energy, EA

IQA.
•	 Approach B: Modelling the molecule using the intra-

atomic (EA
intra) and interatomic (VAA′

inter) atomic energies.
•	 Approach C: Modelling the molecule using the intra-

atomic energy (EA
intra) and the two key interatomic ener-

gies: exchange–correlation (VAA′

XC ) and classical electro-
static (VAA′

cl ).

Approach A provides the fastest (computationally) 
and simplest model of a molecule, at the atomic level. 
Approach B offers a chemically intuitive separation of the 
intra-atomic and overall interatomic energies and provides 
models for both. Approach C offers the highest level of 
chemical detail (in this investigation), separating the inter-
atomic interaction energy into the covalent-like exchange 
and ionic-like electrostatic components, and again returns 
models for each.

Moving on to the analysis of the models, we should 
reintroduce how S-curves can be used to fully convey 
the quality of a kriging model. The S-curve is a cumula-
tive distribution function (up to 100 %) of absolute energy 
errors for each test point within the test set. An S-curve 
plots the absolute (energy) error over the whole molecule 
(x-axis) versus the test set data point (i.e. molecular geom-
etry) (y-axis) as represented as a percentage (100 %/500 
data points = 0.2 % per data point). Thus, each test set 

molecular geometry point corresponds to one point on the 
S-curve. In order to plot the total molecular energy error 
(x-axis), it must be calculated the generalized expression 
appearing in Eq. (13),

where ‘Y’ is a general notation representing any of five pos-
sible IQA energy contributions (EA

IQA, EA
intra, V

AA′

inter, V
AA′

XC  and 
VAA′

cl ), and n is the number of atomic energies being used to 
describe an atom (or the total atomic model). In this work n 
can be one, two or three only (hence the upper limit n ≤ 3 in 
Eq. 13). The value of n depends on the modelling approach. 
In particular, for approach A we have that n = 1 (EA

IQA), for 
approach B n = 2 (EA

intra and VAA′

inter) and approach C leads 
to n = 3 (EA

intra, V
AA′

XC  and VAA′

cl ). Before summing over the 
atoms, counted by index A, a sum over n atomic energies 
must take place in order to obtain the atomic model. When 
a model is tested, the predictions of the model can be aver-
aged and compared to the average value of the true values. 
As a result, a model can be said to, on average, slightly 
over- or under-predict as determined by a positive or nega-
tive difference between the averaged predicted and true val-
ues. Therefore, summing over these energy models allows 
for a cancellation of such errors across the models in two 
possible ways: (1) across the atomic energies that together 
constitute a single atom, which is atomic cancellation, and 
(2) across the atomic models that together constitute the 
molecule, molecular cancellation. The value obtained for 
�EMolec

IQA , as plotted on the S-curve x-axis, represents the 
final error for the molecular energy.

The mean absolute error (MAE) for the molecular model 
is calculated according to Eq. (14). The MAE can be used 
as a simple measure of the model quality and can be calcu-
lated for a single energy model or for a collection of mod-
els (such as the resulting molecular model, see Eq. 13),

where the sum runs over the Ntest = 500 molecular geom-
etries of the test set (of methanol, NMA or glycine).

A final measure, the MAE percentage error, MAE%, 
can also be calculated by dividing the MAE by the size of 
the energy well range of the test set. This error is given in 
Eq. (15),

where ‘MAX’ refers to the highest molecular energy in the 
test set, and ‘MIN’ to the lowest. Note that the Electronic 

(13)�EMolec
IQA =

∣
∣
∣
∣
∣

Natoms∑

A

n≤3∑

Y

[EA
Y ,Act − EA

Y ,Pred]

∣
∣
∣
∣
∣

(14)�EMolec
MAE =

1

Ntest

Ntest∑

M=1

�EMolec
IQA,M

(15)MAE% =

�EMolec
MAE

ETestSet
MAX − ETestSet

MIN
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Supplementary Material reports atomic MAE% values, 
which are defined in Eq. S1 there, by simply replacing 
�EMolec

MAE  by �EAtom
MAE . Converting the error into a percentage 

allows a transferable measure, independent of the energy 
range of the sampling well, thereby making the MAEs from 
different molecules more comparable. The MAEs can also 
be used to compare the quality of individual atomic energy 
models (also in Eq. 15), which individually may experience 
a broad variety of energy ranges.

Finally, this work shows, for the first time, S-curves of 
the complete molecular energy (�EMolec

IQA ) rather than only 
the multipolar electrostatic energy or later the kinetic energy. 
Because multipole moments are not used in this work all 
atoms can interact with each other electrostatically (with-
out concerns about possible divergence). In other words, the 
complete electrostatic interaction is subject to kriging here, 
for the first time, covering all 1,2; 1,3 and 1,4 interactions.

4  Results

4.1  Methanol

The 4000 samples (i.e. molecular geometries) generated by 
TYCHE (see Fig. 4) were subject to scrubbing in GAIA, 
followed by 500 samples then set aside as the test set. 
After rounding down to the nearest hundred, 3400 samples 
remained and formed the training set. These 3400 training 
set samples sampled an energy well with an energy range 
of ~115 kJ mol−1.

Figure 5 plots the S-curves for methanol for each of the 
three modelling approaches (A = EA

IQA, B = EA
intra and VAA′

inter, 
C = EA

intra, V
AA′

XC  and VAA′

cl ).
It is clear that over 95 % of the test set geometries 

have �EMolec
MAE  energy errors below 1 kJ mol−1, across all 

modelling approaches. Such a low error is a pleasing result 
and an encouraging start to this analysis. An analysis of 
each molecular model (i.e. approach) is given in Table 1. 
Interestingly, the simplest model, approach A, performs 
the best out of the three approaches with a MAE% error of 
0.3 %. Approaches B and C perform very similarly with an 
MAE% error of 0.4 % each, respectively.

Notably, the maximum absolute error observed for 
approach B is 2.3 kJ mol−1, larger than that for approach 
C, which returns 1.7 kJ mol−1. One would expect that the 
most chemically insightful approach, which is C, is the one 
that accumulates the highest error. This presumption fol-
lows from the fact that approach C (which has 18 models, 
or 3 energies for each of the 6 atoms) has 6 additional mod-
els compared to approach B (with 12 models, or 2 energies 
for each of the 6 atoms), and the extra models accrue addi-
tional kriging errors with each model. This matter will be 
discussed in Sect. 5.2.

At the atomic level, Fig. 6 shows the MAEs for each 
atomic energy type (EA

IQA, EA
intra, V

AA′

inter, V
AA′

XC  and VAA′

cl ) for 
each atom in methanol. At first glance, carbon influences 
the accuracy of the model. In general, C1 has the highest 
MAEs and is therefore the least accurately modelled atom 
overall. Following C1, O2 has the next highest errors, fol-
lowed by the methyl hydrogens (H3/4/5), and finally the 
most accurately modelled atom, the alcoholic hydrogen 
H6. In assessing how the IQA atomic energy types com-
pare, the story is also clear. Without exception, the follow-
ing order appears, starting with the least accurate: EA

intra & 
VAA′

cl  < VAA′

inter < EA
IQA < VAA′

XC . The errors for all energies for 
any atom never exceed 0.8 kJ mol−1. The interplay between 
these energies will be discussed in the Sect. 5.

Only looking at the MAE ignores the range of energy 
that a particular energy has been subjected to in the sam-
pling stage. The MAE percentage error (MAE%) makes the 

Fig. 4  Set of 4000 distorted methanol samples as generated from the 
in-house program TYCHE through sampling of the normal modes at 
a temperature of 450 K

Fig. 5  Methanol S-curves showing the absolute errors for each of the 
three modelling approaches, each tested on the same 500 test set sam-
ples
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MAEs more comparable when assessing the difficulty for 
the kriging engine. The MAE percentage errors, along with 
the MAEs and energy ranges, are tabulated in Table S1 in the 
Electronic Supplementary Material. Approach A corresponds 
to S1 (a), approach B to S1 (b) and approach C to S1 (c). The 
analysis for the EA

intra model [used in both approaches B and 
C and given in S1 (b)] is not repeated in S1 (c), as the same 
model is used for each approach. Figure S1 plots MAE ver-
sus atomic energy range in order to observe any correlation 
between them. Some weak correlation can be seen, but noth-
ing strong enough to validate such a relationship.

4.2  NMA

The NMA models were trained using 3300 training set 
samples (Fig. 7), sampling an energy well with an energy 
range of ~84 kJ mol−1.

Figure 8 plots the S-curve for each NMA molecular 
model.

In Fig. 8, almost 95 % of the all test set samples have 
the EIQA

Molec energy correctly predicted within 2.5 kJ mol−1 
(across all models). This time there is a clearer separation of 

the S-curve models, with again approach A (EA
IQA) being the 

best modelled of the 3 approaches. Interestingly and unex-

pectedly, approach C (EA
intra, V

AA′

XC  and VAA′

cl ) performs better 

than approach B (EA
intra and VAA′

inter) for the NMA system. Given 
this result, we must now consider whether the dual-cancel-
lation (atomic and molecular) allowed in Eq. (13), prevents 

Table 1  Quantitative analysis of the methanol models

All energies are given in kJ mol−1. MAE% represents the MAE error with respect to the energy range of the test set

Fig. 6  Breakdown of atomic energy errors per atom for methanol. 
All energies are in kJ mol−1

Fig. 7  Set of 4000 distorted NMA samples as generated from 
TYCHE through sampling of the normal modes at 450 K

Fig. 8  NMA S-curves showing the absolute errors for each of the 
three modelling approaches, each tested on the same 500 test set sam-
ples
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a straightforward correlation between the number of atomic 
models composing a molecular model and the quality of the 
molecular model. Glycine will further aid our understanding 
of this, and the topic will be discussed further in the Sect. 5.

The MAE percentage errors for approaches A, B and C 
are 0.6, 1.3 and 0.9 %, respectively (see Table 2). Again, 
this is a pleasing result considering the molecular complex-
ity has risen from (3 × 6) − 6 = 12 geometrical features 
for methanol, to (3 × 12) − 6 = 30 features for NMA. 
While the number of geometrical features increased by a 
factor 2.5, the errors for approaches A and C barely dou-
bled. This favourable behaviour stimulates a further upscal-
ing of features. With the S-curves being less entangled for 
NMA, the maximum absolute error falls in line with the 
shape and position of the respective S-curve.

Figure 9 is the counterpart of Fig. 6, this time for NMA. 
Here, we can further confirm that the atomic energy MAEs 
appear directly related to both the element and energy type 
being modelled. Initially, the atoms forming NMA can be 
immediately separated into their elements for the carbon, 
oxygen and hydrogen atoms, but the nitrogen atoms have 
very similar errors to the methyl carbons. In NMA, the MAEs 
also separate the atoms into atom types for carbon (car-
bonyl carbon and methyl-cap carbons are easily distinguish-
able). In fact, the oxygen is also modelled so well it is close 
to being indistinguishable from the hydrogens. Following 
this, the same trend in energy prediction accuracy is present 
in NMA as it was in methanol, that is, the sequence EA

intra & 
VAA′

cl  < VAA′

inter < EA
IQA < VAA′

XC  (most accurate) remains valid.
The MAE percentage errors, MAEs and energy ranges 

are all reported for each atom in Table S2. Figure S3 once 
more confirms the weak correlation between MAE and 
energy range, this time for NMA. Figure S4 is analogous to 
Fig. 9, but plotting MAE% instead of MAE. In going from 
MAE to MAE%, the range of the energy is now incorpo-
rated. As we can see in Figure S4, the trend previously 
identified for the MAE (EA

intra & VAA′

cl  < VAA′

inter < EA
IQA < VAA′

XC ) 
is no longer true, and no clear trend is seen.

4.3  Glycine (Gly)

The capped glycine models were trained using 3000 train-
ing set samples (Fig. 10), sampling an energy range of 
~163 kJ mol−1.

Figure 11 shows the S-curve for glycine.

Table 2  Quantitative analysis of the NMA models

All energies are given in kJ mol−1. MAE% represents the MAE error with respect to the energy range of the test set

Fig. 9  Breakdown of atomic energy errors per atom for NMA. Ener-
gies are in kJ mol−1

Fig. 10  Set of 4000 distorted capped glycine samples generated from 
TYCHE through sampling of the normal modes at 450 K
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The inset glycine conformation in Fig. 11 is the global min-
imum identified by TYCHE as forming ~75 % of the Boltz-
mann distribution when all 9 energy minima were used as 
seeds. The predominance of the global minimum determined 
our choice to sample only around this conformation. Almost 
95 % of the all test set samples have the EIQA

Molec energy cor-
rectly predicted within ~2.9 kJ mol−1 (across all models). The 
S-curves show a resemblance to those in Fig. 5 but shifted 
to a higher prediction error. Here, there is no longer a clear 
separation of the S-curves for modelling approaches B and 
C. Approach A (EA

IQA) still has the lowest errors of the three 
approaches. Surprisingly approaches B (EA

intra and VAA′

inter) and 
C (EA

intra, V
AA′

XC  and VAA′

cl ) is that they again result in the same 
MAEs of 1.1 kJ mol−1. These data are presented in Table 3.

The MAE percentage errors for approaches A, B and C 
are 0.6, 0.9 and 0.9 %, respectively (see Table 3). Again, 
this is a very pleasing result considering the molecular 
complexity has once more risen from (3 × 12) − 6 = 30 

geometrical features for NMA, to (3 × 19) − 6 = 51 fea-
tures for glycine. In spite of a near doubling of the number 
of geometrical features, there is little change in the MAEs 
going from NMA to glycine.

Figure 12 reconfirms the trends identified in Fig. 6 
and Fig. 9. Indeed, MAEs are related to the element 
being modelled and IQA energy type, with atom typing 
appearing even more evident. Within the carbons, three 
types are present but only two classes are distinguish-
able: CC=O > Cα ≡ Cmethyl. Once more, the nitrogen atoms 
are fairly indistinguishable from the latter class of car-
bons. This time, the amino hydrogens (H5 and H11) also 
appear with slightly higher errors than seen for the ali-
phatic hydrogens. When looking at the trends in the ener-
gies themselves, the trends previously seen for methanol 
and NMA are once more observed in Gly, where EA

intra & 
VAA′

cl  < VAA′

inter < EA
IQA < VAA′

XC  (most accurate). A direct com-
parison of the errors on the atoms present in both NMA and 
Gly will be given in the Sect. 5.

Table S3 and the corresponding plots of Figures S5 and 
S6 are analogous to Table S2 and Figures S3 and S4, this 
time for glycine. The same observation of a weak correla-
tion between energy range and MAE for each IQA energy 
type is made in Figure S5. Figure S6 displays the MAE% 
values for capped glycine. It is clear that 13 out 19 atoms 
show EA

IQA standing out as the least accurate energy to 
model. For previous systems this majority trend was not 
seen. However, this conclusion can be rationalized by 
remembering that EA

IQA is the total atomic energy, and hence 
influenced by every type of energy change within the atom. 
Hence, it would be reasonable for it to be the most sensitive 
when the energy is considered relative to the energy range.

5  Discussion

The discussion is divided into four subsections covering 
key topics that have either been postulated at the beginning 

Fig. 11  Capped glycine S-curves showing the absolute errors for 
each of the three modelling approaches, each tested on the same 500 
test set samples

Table 3  Quantitative analysis of the capped glycine models

All energies are given in kJ mol−1. MAE% represents the MAE error 
with respect to the energy range of the test set

Fig. 12  Breakdown of atomic energy errors per atom for capped gly-
cine. Energies are in kJ mol−1
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of the research or have arisen during the analysis of the 
results. The first two subsections each correspond to an 
objective.

5.1  Feasibility of modelling IQA energies

The first objective of this investigation is to assess the suit-
ability and quality of modelling the five IQA energies that 
can be used in the formulation of FFLUX. In short, we 
have successfully kriged models and made good molecular 
energy predictions using three possible combinations of the 
IQA energies, making them all suitable for use in FFLUX. 
The resulting molecular models having excellent errors, of 
less than ±0.4, 1.3 and 0.7 kJ mol−1 for methanol, NMA 
and Gly, respectively. Qualitatively speaking, Figs. 5, 8 and 
11 display behaviour analogous to previous S-curves in pre-
vious literature [31, 39], leading to an overall successful 
prediction of both multipolar electrostatic and non-electro-
static energetics.

In order to quantitatively compare the quality of the 
results, we need to draw on a previous paper [39] where 
a component of EA

intra, namely the kinetic energy TA, was 
kriged for every atom in a similar set of systems (methanol, 
NMA, glycine and triglycine). We decided to compare our 
results with the kinetic energy results, only for methanol 
and NMA, because their training set sizes match best. In 
that work [39], MAEs for the atomic kinetic energy were 
obtained of 0.8 kJ mol−1 (0.1 %) and 0.7 kJ mol−1 (0.3 %) 
for a methanol–carbon and the carbonyl–carbon in NMA, 
respectively. In our work, we have presented differing 
training set sizes (3400 and 3300 for methanol and NMA, 
respectively), but it is still useful to compare the results. 
For EA

intra we obtain MAEs of 0.7 kJ mol−1 (0.3 %) and 
1.5 kJ mol−1 (0.4 %), respectively, and for VAA′

inter we have 
MAEs of 0.5 kJ mol−1 (0.3 %) and 1.0 kJ mol−1 (0.2 %) 
for the equivalent atoms, respectively. Hence, despite our 
training sets being larger, the MAE errors remain slightly 
higher than those observed for the kinetic energy. This con-
firms an initial suspicion that the summative nature of both 
EA

intra and VAA′

inter results in a more complicated kriging prob-
lem than an example of the subcomponents (TA) forming 
these energies. However, our overall similar performance is 
still very promising given that we have the complete energy 
of an atom A (and thus a molecule when summing over 
A) being modelled with comparable errors, albeit using 
larger training sets. Another advantage of this investigation 
is the ability to krige only one, two or three energies, yet 
still capturing the energetic behaviour of the whole mol-
ecule. Hence, this design saves substantial computational 
time by not needing to krige every individual IQA atomic 
energy (TA, VAA

en, VAA
ee, V

AA′

en , VAA′

ne , VAA′

nn  and VAA′

ee  ) (should 
Vee still remain unpartitioned). It is also noted that across 
all atoms in all three systems investigated here, the MAE 

error never exceeded 1.5 kJ mol−1 (with the majority under 
1 kJ mol−1), or a MAE percentage error over 1.4 %, for any 
energy.

Another measure of quality to loosely compare 
our results with are the previously kriged electrostatic 
multipole moments, which describe the classical electro-
static interaction energy for 1,4 and higher order interac-
tions [33]. Here, the notation ‘1,4’ describes the interaction 
between atoms separated by 3 covalent bonds. A 1,5 inter-
action has 4 separating covalent bonds, and so on. For 1,4 
and higher interactions (i.e. 1, n > 4) in a capped histidine 
system (29 atoms), the MAE for the intramolecular electro-
static energy calculated through kriged multipole moments, 
was 2.5 kJ mol−1. In our investigation VAA′

cl  and VAA′

inter never 
exceed an MAE of 1.4 kJ mol−1. Is this MAE respectable 
compared to the multipolar electrostatic energy error? Yes, 
because VAA′

cl  (and VAA′

inter too) accounts for all electrostatic 
interactions and the multipolar electrostatic analysis only 
for 1,4 and higher interactions (due to convergence limita-
tions). Admittedly, a training set of only 600 training set 
geometries [33] was used for the latter analysis.

Finally, we point out that we are currently investigating 
a potential reduction in the number of training set samples 
needed to obtain suitably accurate atomic and molecular 
models. This research is focussed on the selective building 
of training sets, and a variety of approaches are currently 
being investigated to achieve this.

5.2  Cancellation of errors

A second objective of the current investigation is to observe 
to what extent any cancellation of errors takes place within 
the summative combination of kriging models described 
in Eq. 9. As previously described, this approach offers 
the potential to benefit from the fortuitous cancellation of 
errors, but also equally the unfortunate accumulation of 
errors as a result of the machine learning. In particular, an 
atomic energy component may be, on average, predicted 
to be more stable than the true energy (i.e. overestimated). 
Another atomic energy component may be, on average, 
predicted to be less stable than the true energy (i.e. under-
estimated). As a result, the summative combination of both 
an over- and underestimated result allows for some can-
cellation, resulting in an overall energy prediction being 
more accurate, when only these two energies are consid-
ered. Accumulating these cancellations further across many 
energy models and across many atoms increases this effect 
dramatically.

Despite the cancellation appearing to rely on chance, 
since there is no control for the over- or underestimation 
of the energy models, the prediction of the kriging models 
will always be consistent, i.e. the same geometrical features 
are used to map all atomic energies within a single atom, 
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and each atom’s geometrical features are related to every 
other atom in the molecule. Hence, if one energy is overes-
timated and the another is underestimated with those iden-
tical or related features, then this same interplay between 
the kriging models will always be present. Naturally, the 
opposite can also occur where, for example, two overesti-
mating models result in a summed higher total error instead 
of cancelling. However, from the results in Figs. 6, 9 and 
12, it is evident that the summative energies (EA

IQA and 
EAA′

inter ) generally have lower errors than by simply summing 
the absolute errors of the components that make up these 
energies (EA

intra + EAA′

inter and VAA′

XC+ VAA′

cl , respectively). Evi-
dence of the molecular cancellation (described in Sect. 3.2) 
can also be seen, given that atomic MAE often are between 
0.5 and 1.5 kJ mol−1, but the resulting molecular MAE is 
always ≤1 kJ mol−1 (for NMA).

5.3  S‑curve analysis

The MAEs (and MAE percentage errors) of the total EIQA
Molec 

molecular energy, as given in Tables 1, 2 and 3 for each 
respective molecule, are arguably the most important val-
ues obtained in this investigation. Therefore, these val-
ues are representative of an overall quality check for this 
investigation. Through averaging the MAE of the three 
approaches (A, B and C) for each molecule, we obtain 
a single MAE error for each molecule: 0.3 kJ mol−1 
(methanol), 0.7 kJ mol−1 (NMA) and 0.9 kJ mol−1 (Gly). 
These <1 kJ mol−1 results become more impressive when 
the total energy for each system is compared: metha-
nol has a molecular energy of ~302,000 kJ mol−1, NMA 
~648,700 kJ mol−1 and Gly ~1,191,500 kJ mol−1.

Of the three approaches, approach A consistently is the 
most accurate for each molecule. This is a result of the min-
imal approach incorporating only a single model per atom 
in the molecule. However, the performance of approaches 
B and C were less distinguishable or predictable. Either 
approach was capable of being slightly more accurate than 
the other. However, the molecular error when calculated 
using either approach B or C was always within 0.3 kJ mol−1 
of one another. In conclusion, we consider all three routes as 
suitable candidates for modelling the molecular energy, each 
incorporating a different level of chemical insight.

One further point to note in the analysis of our S-curves, 
are the “rogue points” present near the 100 % ceiling of the 
plots. Few rogue points occur for approach B in methanol, 
but more noticeably for approaches B and, in particular, 
approach A for Gly. These points are considered rogue due 
to the large gap that appears separating these points from 
the almost continuous S-like shape of the plot. Figure 13 
(on capped glycine) sheds lights on how rogue points arise.

In Fig. 13, the glycine geometries that passed GAIA’s 
scrubbing procedure are plotted according to their 

molecular energies and separated according to which set 
they belong to, that is, the training set in blue or the test 
set in red. The information shown in Fig. 13 is essentially a 
one-dimensional distribution of molecular energies (y-axis) 
but spread out in two dimensions by introducing an x-axis 
that merely counts the 3000 training set samples and the 
500 test set samples. The test set remains identical for all 
three modelling approaches.

A large vertical gap between the blue points in Fig. 13 
indicates a lack of training points in that energy region. 
On the other hand, continuous lines indicate a high density 
of points, covering well the corresponding energy region. 
The point in the test set at −1,198,412.1 kJ mol−1 (encir-
cled green in Fig. 13) is the geometry corresponding to 
the maximum predicted error (8.9 kJ mol−1) seen in the 
S-curve of approach A (utmost right point in the red curve 
in Fig. 11), denoted RTP1 (Rogue Test Point 1). The point 
in the test set at −1,198,406.7 kJ mol−1 (encircled orange 
in Fig. 13) is the geometry corresponding to the maximum 
error (7.9 kJ mol−1) seen in the S-curve of approach B 
(utmost right point in blue curve in Fig. 11), denoted RTP2. 
Both these molecular energies appear to be reasonably 
well sampled in the training set, with nearby (blue) points 
of −1,198,412.5 and −1,198,406.9 kJ mol−1. Unusually, 
there was no problem for approaches B and C in predict-
ing the molecular energy for RTP1, with errors of 3.4 and 
1.3 kJ mol−1, respectively. Similarly, for RTP2, errors of 
1.1 and 3.1 kJ mol−1 were obtained for approaches A and 
C. This suggests that it is generally not a lack of training 
geometries that are causing the large rogue errors. Instead 
it could be any one (or combination) of the following three 
effects: (1) the potential energy surface around these points 
is undulant (in general for the molecule, or for a particu-
lar IQA energy) and the training geometries included are 
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Fig. 13  Set of 3000 training samples and 500 test set samples, with 
randomly assigned sample numbers (x-axis), plotted against their 
molecular energies (y-axis) for Gly. The Rogue Test Point 1 (RTP1) is 
encircled green, RTP2 orange, and the Test Point TP1 black
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not enough to fully capture this landscape adequately, (2) 
the test points are outside of the domain of applicability, 
defined as the region of conformational space that can be 
interpolated by the training points of the kriging model. In 
other words, points lying outside of the domain of appli-
cability correspond to points that lie outside of the train-
ing set, and so the kriging model is required to perform an 
extrapolation to make a prediction [74], (3) when summing 
across models, the balance of accumulating errors results in 
reduced cancellation of errors. All these reasons would also 
be supported by working with the higher-energy geometries 
where there are fewer samples in the training set, compared 
to those closer to the energy of the seed minimum.

Another measure that is useful when analysing the 
cause of a poor prediction within FEREBUS is the mean 
signed error (MSE) (or mean signed deviation, MSD). In 
statistics, the MSE is a measure of how close a predicted 
value matches the true quantity. Having a high MSE for a 
particular prediction indicates that the model is not well 
trained for in that region, and is a hallmark of working out-
side the domain of applicability. Taking glycine’s approach 
A as an example, the C12 atom stands out as an atom with 
a particularly poor EA

IQA prediction for RTP1 (an error of 
5.2 kJ mol−1). C12 also has an MSE approximately five 
times the average across all of the test geometries. Some of 
the other atoms in glycine also indicate a slightly increased 
difficulty in predicting EA

IQA for this test geometry, but 
not to the same degree as for C12. Hence, it can be con-
cluded that C12 is the source of the error for RTP1, due to 
the model operating outside of its domain of applicability. 
Evidently, as approaches B and C perform well in predict-
ing this molecular energy, this MSE explanation either is 
irrelevant when using EA

intra, V
AA′

inter, V
AA′

cl , and/or VAA′

XC , or the 
effect is dampened by the cancellation of errors. This type 
of analysis can be applied to any rogue point on an S-curve.

In contrast, the point at −1,198,380.1 kJ mol−1 (encir-
cled black in Fig. 13) in the test set (TP1) (which is not 
a rogue point), appears to be the least well sampled in the 
training set, but the predicted errors for this sample are 
0.3 kJ mol−1 (approach A), 2.4 kJ mol−1 (approach B) and 
2.0 kJ mol−1 (approach C), thus, not near the maximal 
points on each of the S-curves. The unexpectedly good pre-
diction of TP1 is credited to kriging’s impressive interpola-
tion between two largely spaced training points.

5.4  Evidence for atom typing

Figures 6, 9 and 12 illustrated the ‘difficulty’ of modelling 
each atomic energy, according to the MAE. From this anal-
ysis, we learned that atoms belonging to a particular func-
tional group had a MAE that distinguished some from oth-
ers, independently of the IQA energies being used for this 
observation. Across our three systems, the carbonyl carbons 

were the most difficult atoms to model, with a maximum 
MAE value of ~1.2–1.3 kJ mol−1, in both NMA and Gly. 
The carbonyl carbon was followed by similar maximum 
MAEs values for the α-carbon, the amino nitrogens and 
methyl carbons of ~0.5 kJ mol−1, in methanol, NMA and 
Gly. The oxygens were easily distinguishable with a much 
lower maximum MAE of around 0.1 kJ mol−1, followed 
by the consistently very accurately modelled hydrogens 
with maximal MAEs of <0.1 kJ mol−1. It is interesting to 
note that the N1 atom in NMA, resulted in similar errors 
to that of the corresponding atoms N4 and N10 in Gly. The 
same is true of the NMA atoms carbonylic C2 (with C6 
and C8 in Gly) and O3 (with O7 and O9 in Gly), within 
±0.2 kJ mol−1. Hence, with atoms having comparable 
MAEs across multiple molecules, there is some basic evi-
dence of atom typing. However, it is not a rule that can be 
used in distinguishing all present functional groups, as evi-
denced by the difficulty in distinguishing α-carbon, methyl 
carbon and the amino nitrogen groups, using only the 
MAEs. It would be interesting to see which further trends 
are observed when a broader range of functional groups are 
studied.

The discussion above is not the first time atom typing 
has been considered within the study of an energy partition-
ing. A recent article by Patrikeev et al. [75]. investigated 
the performance of several density functionals in their eval-
uation of both Kohn–Sham and correlation kinetic energies 
of topological atoms, and also commented on discrimi-
nating atom types through such atomic descriptors. Initial 
findings for the Kohn–Sham energies indicated a strong 
link between some of the tested functionals and the atomic 
number (or element) of an atom. A further finding in the 
assessment of correlation kinetic energies allowed aromatic 
and aliphatic hydrogens to be separated. It should also be 
reiterated that IQA within DFT is a little tricky since the 
Kohn–Sham approach does not lead to exact correlated 
reduced density matrices [76].

6  A note on dispersion and transferability

The only type of energy contribution that is lacking in the 
current kriging treatment of all IQA energy contributions 
is that associated with dispersion. Admittedly, the current 
treatment includes electron correlation, but because we 
used B3LYP this electron correlation does not cover disper-
sion effects. However, soon-to-be-published work of our 
group successfully kriges the IQA intra-atomic, EA

intra, and 
interatomic, VAA′

inter, energies at the M06-2X/aug-cc-pVDZ 
level of theory. This functional describes (or mimics) 
some mid-range dispersion effects, but the ultimate goal 
of FFLUX is to invoke a post-Hartree–Fock method (non-
DFT) to cover dispersion properly.
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A second note concerns the transferability of the 
obtained model with respect to an exchange–correlation 
functional other than B3LYP. The only other exchange–
correlation functionals implemented in the program AIM-
ALL are LSDA and M06-2X. The current investigation has 
not been mirrored using any other functional from which 
we could directly compare transferability results. However, 
there is potential for transferability to be considered in the 
aforementioned work to be published, where M06-2X was 
used. Like in the current work, IQA atomic energy predic-
tions made for multiple different systems could be com-
pared. Some understanding of the transferability of another 
exchange–correlation functional can come from earlier 
work [77] from our laboratory in which the electrostatic 
energy, obtained through atomic multipole moments, was 
kriged at three levels of theory, namely HF, B3LYP and 
M06-2X. From that work, one would expect that M06-2X 
will perform similarly to B3LYP.

7  Conclusion

The development of the novel force field FFLUX now 
moves beyond its machine learning treatment of multipo-
lar electrostatics. We demonstrate that short-range non-
multipolar electrostatics can now also be kriged success-
fully. Moreover, (non-multipolar) exchange energies as 
well as intra-atomic energies (beyond just the kinetic 
energy) are now also kriged with promising energy errors. 
As a result, chemical bonding and stereo-electronic effects 
are now, by way of principle, incorporated in FFLUX. This 
achievement is realized within the context of the methodol-
ogy of interacting quantum atoms (IQA).

Three approaches (A, B, and C), incorporating five 
IQA atomic energies (EA

IQA, EA
intra, V

AA′

inter, V
AA′

XC  and VAA′

cl ), 
were successfully used to develop molecular models offer-
ing control in balancing accuracy and chemical insight. 
The most accurate and least expensive molecular model 
(approach A) was built using the total atomic energy EA

IQA, 
with MAEs of ±0.3, 0.4 and 0.6 kJ mol−1 for methanol, 
NMA and capped glycine, respectively. Interestingly, the 
more insightful formalisms involving the intra- and inter-
atomic components (approach B), and the interatomic 
exchange and electrostatic contributions (approach C), 
resulted in similar MAEs. These errors are on a par with 
previous literature and are a result of the combination of 
models benefitting from cancellation of errors. The latter 
occur both within an atom’s total energy modelling (atomic 
cancellation), and also when summing across total atomic 
models (molecular cancellation) to obtain the molecular 
model.

In summary, the novel strategy and results were a suc-
cessful proof-of-concept approach, developed to be 

integrated into FFLUX. Future work will build upon the 
method presented here employing the models in the appli-
cation of geometry optimization, initially without, but later 
with, the incorporation of multipolar electrostatics. Future 
research is also focussing on creating intelligent training 
sets, designed to reduce the number of samples used in the 
building of kriging models.
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Tables S1, S2 and S3 tabulate the energy ranges, mean absolute (prediction) energy (MAE), and 

relative MAE (in %) for the five types of atomic energy types (EIQA
A, Eintra

A, Vinter
AA’, VXC

AA’ and Vcl
AA’) 

(obtained from the kriging models) for methanol, NMA and (capped) glycine, respectively. 

 

Figures S1, S3 and S5 show the atomic energy range of each of the five atomic energy types as a 

function of the MAE, for methanol, NMA and (capped) glycine, respectively. 

 

Figures S2, S4 and S6 show the MAE % atomic energy for each of the five atomic energy types for 

each atom in methanol, NMA and (capped) glycine, respectively. 

 

The MAE % values refer to atoms (see Eq. S1) rather than to molecules, as in the main text (see 

Eq.15). So 

%
Atom

MAE

TestSet TestSet

MAX MIN

E
MAE

E E





   (S1) 

where ‘MAX’ refers to the highest atomic energy (of any type) in the test set, and ‘MIN’ to the 

lowest.   
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Atom |EIQA
A| Range MAE MAE % 

C1 37.4 0.3 0.7 

H3 12.7 0.0 0.0 

H4 12.0 0.0 0.0 

H5 14.3 0.0 0.0 

H6 48.1 0.0 0.0 

O2 51.1 0.1 0.2 

 

 

Atom |Eintra
A| Range MAE MAE % |Vinter

AA'| Range MAE MAE % 

C1 235.4 0.7 0.3 206.2 0.5 0.3 

H3 46.6 0.0 0.0 54.5 0.0 0.0 

H4 40.5 0.0 0.0 47.1 0.0 0.0 

H5 46.5 0.0 0.0 54.2 0.0 0.0 

H6 71.1 0.0 0.0 106.2 0.0 0.0 

O2 242.5 0.2 0.1 282.8 0.2 0.1 

 

 

Atom |VXC
AA'| Range MAE MAE % |Vcl

AA'| Range MAE MAE % 

C1 65.9 0.1 0.1 168.8 0.6 0.3 

H3 57.5 0.0 0.0 15.7 0.0 0.1 

H4 45.9 0.0 0.0 13.7 0.0 0.2 

H5 51.4 0.0 0.0 15.1 0.0 0.1 

H6 19.0 0.0 0.0 115.4 0.0 0.0 

O2 25.5 0.1 0.2 272.6 0.2 0.1 

 

 

Table S1. Absolute atomic energy ranges and MAE’s for (a) EIQA
A, (b) Eintra

A and Vinter
AA' , and (c) VXC

AA' 
and Vcl

AA' in each atom within methanol. All data are taken from the test set samples. All energies are 
in kJmol-1. MAE % represents the percentage error of the MAE with respect to the energy range of 
the respective atomic energy. 
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Figure S1. Atomic energy range versus MAE for methanol. 

 

 

 

Figure S2. MAE % atomic energy errors per atom for methanol. 
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Atom |EIQA
A| Range MAE MAE % 

C2 39.0 0.4 1.0 

C4 45.4 0.2 0.5 

C9 40.9 0.2 0.4 

H5 14.5 0.0 0.1 

H6 18.1 0.0 0.1 

H7 17.5 0.0 0.1 

H8 29.1 0.0 0.0 

H10 13.5 0.0 0.1 

H11 16.2 0.0 0.1 

H12 18.5 0.0 0.1 

N1 59.2 0.1 0.2 

O3 31.0 0.0 0.0 

 

Atom |Eintra
A| Range MAE MAE % |Vinter

AA'| Range MAE MAE % 

C2 422.4 1.5 0.4 439.6 1.0 0.2 

C4 118.5 0.5 0.4 74.4 0.3 0.4 

C9 257.8 0.5 0.2 241.9 0.4 0.2 

H5 59.4 0.0 0.0 68.8 0.0 0.0 

H6 31.3 0.0 0.0 41.5 0.0 0.0 

H7 41.3 0.0 0.0 52.2 0.0 0.0 

H8 55.0 0.0 0.0 55.0 0.0 0.0 

H10 41.7 0.0 0.0 47.8 0.0 0.0 

H11 44.7 0.0 0.0 51.5 0.0 0.0 

H12 34.5 0.0 0.0 41.5 0.0 0.0 

N1 501.9 0.4 0.1 501.9 0.4 0.1 

O3 188.6 0.0 0.0 188.6 0.0 0.0 

 

Atom |VXC
AA'| Range MAE MAE % |Vcl

AA'| Range MAE MAE % 

C2 38.4 0.2 0.4 470.5 1.4 0.3 

C4 87.9 0.1 0.1 26.1 0.4 1.4 

C9 71.8 0.2 0.2 216.3 0.5 0.3 

H5 48.7 0.0 0.0 23.3 0.0 0.1 

H6 54.6 0.0 0.0 15.0 0.0 0.1 

H7 54.5 0.0 0.0 13.8 0.0 0.1 

H8 34.8 0.0 0.0 48.5 0.0 0.0 

H10 47.1 0.0 0.0 13.6 0.0 0.1 

H11 56.1 0.0 0.0 16.1 0.0 0.1 

H12 48.7 0.0 0.0 16.6 0.0 0.1 

N1 40.6 0.1 0.2 486.4 0.4 0.1 

O3 18.8 0.0 0.1 158.5 0.0 0.0 

Table S2. Absolute atomic energy ranges and MAEs for (a) EIQA
A,  (b) Eintra

A and Vinter
AA' , and (c) VXC

AA' 
and Vcl

AA' in each atom within NMA. All data are taken from the test set samples. All energies are in 
kJmol-1. MAE % represents the percentage error of the MAE with respect to the energy range of the 
respective atomic energy. 



5 
 

 

 

Figure S3. Atomic energy range versus MAE for NMA. 

 

Figure S4. MAE % atomic energy errors per atom for NMA. 
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Atom |EIQA
A| Range MAE MAE % 

C1 39.3 0.3 0.7 

C6 48.4 0.3 0.7 

C8 47.0 0.3 0.7 

C12 55.5 0.2 0.4 

C16 31.6 0.1 0.5 

H2 19.6 0.0 0.1 

H3 18.1 0.0 0.2 

H5 20.7 0.1 0.3 

H11 21.7 0.1 0.4 

H13 31.9 0.0 0.1 

H14 43.0 0.0 0.1 

H15 44.7 0.0 0.1 

H17 41.6 0.0 0.1 

H18 39.4 0.0 0.1 

H19 35.0 0.0 0.1 

N4 76.6 0.2 0.2 

N10 62.3 0.1 0.2 

O7 21.0 0.1 0.3 

O9 28.5 0.1 0.3 

 

Atom |Eintra
A| Range MAE MAE % |Vinter

AA'| Range MAE MAE % 

C1 140.5 0.7 0.5 104.8 0.4 0.4 

C6 604.7 1.2 0.2 558.8 0.9 0.2 

C8 458.3 1.3 0.3 437.0 1.1 0.3 

C12 146.4 0.6 0.4 134.6 0.4 0.3 

C16 71.1 0.3 0.5 66.6 0.2 0.3 

H2 18.2 0.0 0.1 13.6 0.0 0.1 

H3 22.1 0.0 0.1 14.9 0.0 0.1 

H5 38.5 0.1 0.2 38.7 0.0 0.1 

H11 55.0 0.1 0.2 37.5 0.1 0.2 

H13 13.7 0.0 0.2 34.3 0.0 0.1 

H14 26.0 0.0 0.1 28.7 0.0 0.1 

H15 40.3 0.0 0.1 26.1 0.0 0.1 

H17 17.2 0.0 0.1 28.4 0.0 0.1 

H18 15.7 0.0 0.2 35.2 0.0 0.1 

H19 12.6 0.0 0.2 26.3 0.0 0.1 

N4 477.4 0.5 0.1 547.7 0.4 0.1 

N10 445.7 0.4 0.1 491.1 0.4 0.1 

O7 252.4 0.1 0.0 239.8 0.1 0.0 

O9 228.2 0.1 0.1 215.7 0.1 0.1 
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Atom |Vcl
AA'| Range MAE MAE % |VXC

AA'| Range MAE MAE % 

C1 92.5 0.6 0.6 60.9 0.2 0.3 

C6 609.7 1.1 0.2 57.7 0.2 0.3 

C8 462.9 1.2 0.3 52.9 0.2 0.3 

C12 92.6 0.5 0.6 160.5 0.2 0.1 

C16 106.4 0.2 0.2 169.2 0.1 0.0 

H2 39.9 0.0 0.0 49.1 0.0 0.0 

H3 33.6 0.0 0.1 40.0 0.0 0.0 

H5 48.3 0.0 0.1 46.9 0.0 0.1 

H11 66.1 0.1 0.2 33.2 0.0 0.1 

H13 60.5 0.0 0.0 92.4 0.0 0.0 

H14 53.8 0.0 0.0 81.7 0.0 0.0 

H15 49.4 0.0 0.0 73.2 0.0 0.0 

H17 55.1 0.0 0.0 83.2 0.0 0.0 

H18 50.1 0.0 0.0 75.7 0.0 0.0 

H19 55.9 0.0 0.0 77.6 0.0 0.0 

N4 487.0 0.5 0.1 67.2 0.1 0.1 

N10 472.1 0.4 0.1 54.4 0.1 0.1 

O7 231.4 0.1 0.0 17.2 0.0 0.2 

O9 208.5 0.2 0.1 24.0 0.0 0.1 

 

 

Table S3. Absolute atomic energy ranges and MAE’s for (a) EIQA
A, (b) Eintra

A and Vinter
AA' , and (c) VXC

AA' 
and Vcl

AA' in each atom within doubly-capped glycine. All data are taken from the test set samples. All 
energies are in kJmol-1. MAE % represents the percentage error of the MAE with respect to the 
energy range of the respective atomic energy. 
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Figure S5. Atomic energy range versus MAE for capped glycine. 

 

 

 

Figure S6. MAE % atomic energy errors per atom for capped glycine. 
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Preface 
 

            With the knowledge that IQA energies can be successfully and accurately modelled using 

the GAIA protocol, the question became to what limit? Within this body of work the GAIA protocol 

was challenged further by attempting to model five (weakly) dispersion-bound complexes, whilst 

also incorporating an adaptation to the normal modes sampling procedure necessary for the 

treatment of complexes. Thus, this work tackled three new challenges: (1) the first case(s) of 

kriging IQA models of atoms in complexes, (2) the weak, dispersion-bound nature of the 

complexes makes them more difficult to model than hydrogen-bonded complexes which would 

feature, for example, strong electrostatic interactions, and (3) introduced a new sampling 

procedure designed to broadly sample complexes. 

      Expanding on the sampling procedure, the complexes used within the investigation were 

obtained from the S22157 dataset of Jurecka et al., along with taking the four non-equilibrium 

geometries additionally available within the S22x5 dataset. From the 5 (=1 + 4) seed complexes, a 

monomer within each complex was subjected to a rotation of 90⁰, 180⁰ and 270⁰ about an 

intermolecular interaction axis, resulting in 20 (=5 x 4) seed geometries in total. Thus, the 

sampling presented a broader range of potential geometries that FFLUX may one day be faced 

with. In each example, the IQA intra- and interatomic energies were modelled to observe how the 

mimicking of dispersion (through the use of the M06-2X functional) may or may not influence the 

kriging error within such energies. 
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Abstract Here, we extend the system energy prediction ap-
proach used in the force field FFLUX (Maxwell et al. Theor
Chem Acc 135:195, 2016) to complexes bound by weak in-
termolecular interactions. The investigation features the first
application of the approach to bound complex systems, addi-
tionally challenged by investigating complexes held together
only weakly, through either a predominant dispersion contri-
bution, or through mixed dispersion and hydrogen-bonding.
Our approach uses the interacting quantum atoms (IQA) en-

ergy partitioning scheme to obtain the intra-atomic, EA
intra, and

interatomic, VAA
0

inter, energies, which when summed, compose

the molecular energy, Esystem
IQA . The EA

intra and V
AA

0

inter energies are

mapped to the positions of the nuclear coordinates through the
machine learning method kriging to build atomic energy
models. A model’s quality is established through its ability
to accurately predict the atomic and molecular energies of
atoms in an external test set. Mean absolute error percentages
(MAE%) of 1.5, 1.5, 1.6, 1.0, 2.6 and 1.7% are obtained in
recovering the molecular energy for ammonia…benzene, wa-
ter…benzene, HCN…benzene, methane…benzene, stacked-
benzene (C2h) dimer and T-benzene (C2v) dimer complexes,
respectively.

Keywords QTAIM . Quantum chemical topology (QCT) .

IQA . Kriging .Machine learning . Force field development .

S22 . Complexes . Dispersion

Introduction

Within a protein, one may expect to find several different
types of interatomic interactions such as hydrogen bonds, hal-
ogen bonds, π-π stacking interactions and ionic bonds. Force
fields should be able to cope with these interactions, ideally in
a streamlined and conceptually minimal way, rather than by ad
hoc modifications or additions to their original standard archi-
tecture. The development of the force field FFLUX [1] (for-
merly called QCTFF [2]) is a sustained and relatively recent
effort carried out in this spirit.

At the heart of FFLUX are topological atoms defined by the
Quantum Theory of Atoms inMolecules (QTAIM) [3–6]. These
atoms emerge naturally [7] (without using parameters) in the
electron density of any (quantum chemical) system: a single mol-
ecule, a cluster of molecules or a piece of solid matter. The
topological atoms are space-filling: no overlap and no interatom-
ic gaps. It turns out that topological atoms are also so-called
quantum atoms [8], that is, subspaces with a well-defined [9]
and unique kinetic energy. This characteristic [10] is important
in the design of a force field that stays close to the underlying
quantum mechanics. FFLUX is such a force field: it is aware of
the internal energy of an atom, as well as its various interaction
energies, an atom’s charge, dipole moment and higher multipole
moments. Hence, FFLUX “sees the electrons” unlike the popular
classical force fields AMBER or CHARMM. Topological atoms
have already been proven to be successful in describing the elec-
trostatic interactions in proteins [11].

FFLUX uses machine learning to predict how a given atom
will behave in an atomic environment previously not seen by

This paper is dedicated to Professor Lou Massa on the occasion of his
Festschrift: A Path through Quantum Crystallography.

* Paul L. A. Popelier
paul.popelier@manchester.ac.uk

1 Manchester Institute of Biotechnology (MIB), 131 Princess Street,
Manchester M1 7DN, Great Britain

2 School of Chemistry, University of Manchester, Oxford Road,
Manchester M13 9PL, Great Britain

Struct Chem
DOI 10.1007/s11224-017-0928-9

1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-017-0928-9&domain=pdf


this atom. More precisely, FFLUX needs to be trained by a
sufficient number of relevant geometries such that it can inter-
polate a property of a given atom of interest between the data
learnt. The selected [12] machine learning method is Kriging
[13], which has been tested successfully on a variety of sys-
tems, including ethanol [14], (peptide-capped) alanine [15],
the microhydrated sodium ion [15], N-methylacetamide
(NMA) and histidine [16], the four aromatic (peptide-
capped) amino acids [17], all naturally occurring amino acids
[18], helical deca-alanines [19, 20], water clusters [21], cho-
lesterol [22] and carbohydrates [23]. This collective work
shows an existing proof-of-concept that kriging models gen-
erate sufficiently accurate atomic property models, and they
do this directly from the coordinates of the surrounding atoms.
What all these models have in common is that only ab initio
wavefunctions are necessary to cover any type of desired in-
teraction. The only requirement is that the input training data
consists of system geometries that include examples of the
interaction type at hand.

The work presented here follows on from our earlier work
[24], where we obtained successful kriging models of atomic
multipole moments of seven hydrogen-bonded complexes pres-
ent in the S22 dataset [25]. The current work concentrates on a
different segment of the S22 dataset, now not focusing on hydro-
gen bonding but on what are sometimes (loosely) called
dispersion-dominated complexes. Furthermore, here, we go be-
yond atomic multipole moments, which cover only long-range
electrostatics. The short-range electrostatic interaction can still be
treatedwithout usingmultipolemoments. This energy type refers
to the situation when the multipole expansion [26, 27] fails to
converge. The un-expanded interatomic Coulomb energy can
also be successfully kriged as we recently demonstrated [28].
This work also showed that exchange energy and intra-atomic
energy could all be kriged with an accuracy of about 1 kJ mol−1

or less (for methanol, NMA and peptide-capped glycine). These
energy components are defined by the quantum topological
method of interacting quantum atoms (IQA) [29].

Here, we obtain the first ever kriging models for the IQA
energies of six weakly bound complexes where hydrogen
bonding is not the dominant interaction but, instead, dispersion
is. The six systems studied all contain benzene: the ammonia…
benzene complex, water…benzene, HCN…benzene, meth-
ane…benzene, the stacked-benzene (C2h) dimer and the T-
benzene (C2v) dimer. For this purpose, we use the density func-
tional M06-2X [30], because it has been shown to mimic the
effects of the dispersion interaction. The ammonia…benzene,
water…benzene, HCN…benzene and T-benzene (C2v) dimer
complexes involve a weak hydrogen bond between the hydro-
gen atom of the donor non-benzene molecule interacting with
the delocalised π-system of the benzene ring. The stacked-
benzene (C2h) dimer involves a π-π stacking interaction, and
the methane…benzene complex involves a C-H/π bond, com-
mon in protein side chains [31].

Methodology

The IQA partitioning

Figure 1 shows the topological atoms as they appear in all six
complexes studied. The atoms were generated by the in-house
program IRIS, which is based on a finite-element algorithm
[32]. QTAIM defines these atoms by allowing a system’s
electron density to partition itself, using the minimal idea [8]
of the gradient path, which is a curve following the direction
of steepest ascent. We note again that a system can be single
molecule, a cluster of molecules (e.g. a complex consisting of
two monomers) or a piece of solid matter. A topological atom
consists of all gradient paths terminating at the maximum in
the electron density nearest to the nucleus associated with the
atom. IQA translates this partitioning idea into the energy
domain, augmenting the topological atoms with an atomic
energy partitioning scheme. Just like a system can be divided
into topological atoms, a system’s energy can be divided into a
collection of atomic energies. The topological atoms and en-
ergy values are allied to one another. Since topological atoms
partition a system’s space exhaustively, ensuring that every
point is attributed to an atom, a system’s energy is recovered
from the summation over all atomic energies. Note that
QTAIM and IQA are both part of an overarching approach
called Quantum Chemical Topology (QCT) [33]. The central
idea behind QCT is to use the gradient of a quantum mechan-
ical density function to extract chemical information from the
wavefunction (or experimental electron density). To date,
there are almost a dozen such functions (listed in Box 8.1 of
ref. [34]) having been analysed with the QCT context, includ-
ing ELF [35, 36], for example.

The IQA decomposition of the system energy, used within
this work, is now briefly reviewed. The IQA-reconstructed

system energy, Esystem
IQA , is obtained through a summation of

atomic energies, EA
IQA, one for each atom A,

Esystem
IQA ¼ ∑

A
EA
IQA ð1Þ

which in turn are a summation of intra-atomic (also known as

‘self’ energy), EA
intra, and interatomic energies, VAA

0

inter:

EA
IQA ¼ EA

intra þ
1

2
VAA

0

inter ð2Þ

where A represents an atom and A′ represents the remainder of
the system without A present (and hence AA′ refers to the
interaction between A and A′). Note that VinterAA is halved
in order to prevent double counting. This is made possible by
attributing only half of the total interaction energy to atom A.

For the purpose of this work, the above decomposition is
enough but we point out that both the intra-atomic and inter-
atomic energies can be decomposed further to pursue deeper

Struct Chem

2



chemical insight [28]. However, here, we are only interested in
testing our building protocol of kriging models to complexes
with a more subtle binding nature than the hydrogen-bond
dominated complexes studied [24] before. The intra-atomic
energy results from the kinetic energy, the electron-electron
interaction and the nucleus-electron interaction, confined to
electrons within the volume of the topological atom at hand.
This energy has recently been shown [38] to be fittedwell by an
exponential Buckingham-type potential, giving credence to
IQA. In summary, in this work, we map two atomic energies
(intra-atomic and interatomic) onto the topological atoms,
resulting in 2n models for a given system, where n represents
the number of atoms in the system.

In 2012, Flick et al. [39] analysed the interaction energy
contributions in the three S22 subsets (hydrogen-bonded com-
plexes, dispersion-dominated complexes and mixed com-
plexes). In the dispersion and mixed complexes, electrostatics
were found not to play the same dominant role they play in
hydrogen-bonded complexes. We have chosen to build
kriging models with only a single IQA energy representing
the interatomic interaction energy for a given atomA, denoted

VAA
0

inter. This quantity refers to the total interaction energy that
atom A experiences as a result of interacting all other atoms in

the system, A′ (except itself). The energy contribution VAA
0

inter

incorporates both the Coulombic and non-classical exchange
and correlation components. In the previous study [24] on S22
hydrogen-bonded systems, it is the Coulombic component
that was expanded using spherical harmonics [40] to give rise
to the atomic multipole moments kriged there. The remainder
of an atom’s energy is collected within the intra-atomic ener-

gy, denoted EA
intra. Modelling both energy contributions (VAA

0

inter

and EA
intra ) for each atom in the system gives us a system

model recovering the total energy of the system. Thus, the
current treatment of the weakly bound complexes goes be-
yond the one that was performed before on hydrogen bonded
complexes and now offers a complete model of the system’s
energy. Note that a rigorous, multipolar description of the
electrostatic interaction, not used here, is still important for a
potential that aims to accurately model the energy profile of
larger oligopeptides and proteins, because of long-range elec-
trostatics. However, the six systems investigated here do con-
tain atoms that are far enough from each other that they nor-
mally can be represented by multipole moments.

A final note on the IQA partitioning is on its recent inclu-
sion of some density functionals, such as B3LYP and M06-
2X. Previously, IQA could only be used in conjunction with
computational ansätze that generate a well-defined second-
order reduced density matrix. A recent publication explains
the problem in greater detail [41] and presents a practical
solution. An alternative, slightly more recent solution is that
[42] of Francisco et al., which is not (yet) implemented in the
software (see The GAIA Protocol) we used to generate the
IQA contributions. Note that, very recently, IQA can also be
used with MP2, MP3 and MP4 wavefunctions, involving the
explicit four-dimensional two-particle density matrix, and
thereby theoretically recovering the original total energy
[43]. The important point is that the system’s energy can be
recovered (to a practical degree of accuracy) from the atomic
IQA energy components with the M06-2X functional used in
this study.

Sampling of the molecular complexes

Behind each sampling of system geometries is a generator of
geometries. Typically, normal modes are used to distort the

Fig. 1 The six weakly bound
complexes studied in this work:
ammonia…benzene (top left),
methane…benzene (top middle),
stacked-benzene (C2h) dimer (top
right), HCN…benzene complex
(bottom left), water…benzene
complex (bottom middle) and T-
benzene (C2v) dimer (bottom
right). Visualisation [37] of the
atomic basins of the topological
atoms is made possible by a
finite-element algorithm [32]
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geometry of a stationary point on the potential energy surface
(i.e. an “equilibrium geometry”). Normal modes ensure a
physically (and chemically) informed way of distorting a sys-
tem’s nuclear skeleton. However, in this work, we wanted to
enhance the geometric diversity, beyond that of mere distor-
tions around the local energy minima. It is important that a
kriging training set also samples geometries of complexes in
which the monomers are translated (and rotated) with respect
to each other. Figure 2 gives an impression of this enhanced
sampling for all six systems (i.e. complexes). In more detail,
we used complexes from the extended S22x5 dataset [44]
which includes the equilibrium S22 complex geometries as
input for normal modes sampling. The resulting dataset in-
cludes the S22 systems at four non-equilibrium geometries,
where the monomers have been translated along the axis in the
direction of the main intermolecular interaction. As a conse-
quence of the non-equilibrium nature of the extra geometries
in the S22x5 set, standard normal modes sampling [24], not
revised here, was not possible. The first derivative term of the
Taylor expansion (used to calculate the vibrational modes) is
no longer zero and, thus, must be included in the calculation of
the normal modes. Instead, our non-equilibrium normal
modes sampling algorithm described in Part B of the
Supplementary Material of ref. [45] and implemented in the

in-house program EROS [45] were used for the vibrational
sampling of the complexes.

We now describe in more detail how the training set was
constructed. For each molecular complex, we obtained the
five S22x5 geometries (one being the equilibrium S22 com-
plex). Subsequently, each of these five geometries had one
molecule in each complex rotated by 90°, 180° and 270°, in
turn, in order to give a total of 20 [=(1 + 3) × 5] molecular
geometries. The latter are henceforth called seed geometries.
For HCN…benzene, ammonia…benzene, methane…ben-
zene and T-benzene, the two monomers are almost orientated
perpendicular to one another. In these systems, the intermo-
lecular interaction axis is defined as the axis formed by the
centre of the benzene monomer and the nearest atom of the
second monomer. When a rotation is applied along such inter-
molecular interaction axis, little monomer displacement oc-
curs (see Fig. 2). However, in the cases of water…benzene
and stacked-benzene, the monomers are not perpendicular
with respect to each other. Indeed, one monomer is directed
towards the secondmonomer at an acute angle and offset from
the centre of the benzene monomer. Here, the intermolecular
interaction axis is defined as the axis formed by the two
nearest functional groups between the monomers (H-C…H-
O in water…benzene and H-C…H-C in stacked-benzene,

Fig. 2 Wireframe images of 16
sample geometries of the
ammonia…benzene complex (top
left), HCN…benzene (top right),
methane…benzene (middle left),
water…benzene (middle right),
stacked-benzene (C2h) dimer
complex (bottom left) and T-
benzene (C2v) dimer complex
(bottom right). The
intermolecular interaction line
(upon which rotation occurs) lies
between the centre of the benzene
ring, and the nearest atom of the
secondmonomer, except for those
where the monomers form an
acute angle as a complex, where
instead the nearest atoms are used
to define the intermolecular
interaction line (appended in
yellow). In the latter systems, the
off-centre pivot causes a
displacement-like effect in the
figure (colour figure online)
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denoted in Fig. 2 in yellow). Hence, when a rotation is applied
to these systems, the off-centre pivot causes a displacement as
illustrated in Fig. 2. All 20 seed geometries were then input as
minima to the non-equilibrium normal modes sampling rou-
tine within the program EROS. The use of seed geometries
from the S22x5 data set provides an additional four non-
equilibrium geometries to the geometries found in the S22
set and achieves a greater and more challenging sampling of
conformational space. Amore challenging sampling gives rise
to potentially more useful kriging models as they are able to
predict energies for systems with greater flexibility. With the
above details in mind, Fig. 2 can now be more thoroughly
inspected, showing images of 16 sample geometries for each
of the six weakly bound complexes. Note that the 16 samples
depicted belong to samples generated around the four S22x5
non-equilibrium seeds. The equilibrium S22 seed was sam-
pled to produce twice as many samples compared to each non-
equilibrium seed to ensure a broad sampling in this important
region of conformational space.

For each molecular seed, EROS inserts energy into
the normal modes in a pseudo-random distribution en-
abling vibrational distortions of the molecule to be gen-
erated. Snapshots can be taken from aforementioned dis-
tortions and used as samples in the training set. To
ensure that only realistic molecular samples are generat-
ed, a bond-stretch and angular-stretch parameter of 1.10
is defined by the user as a threshold. The threshold
parameter ensures that the bond and angular stretches
are limited to ±10% of the respective values in the seed
geometry. Approximately 10% was selected as a chem-
ically reasonable threshold, producing distorted geome-
tries with equivalent bond and angle stretches similar to
those obtained through a molecular dynamics simulation
at room temperature.

The GAIA protocol

The GAIA protocol is the sequence of computational steps
used in FFLUX to build atomic models from scratch. We
recently reported [28] the IQA-compatible version of GAIA
that is subsequently used in this investigation, which is why
only a brief description will be presented here.

The GAIA protocol has five key steps: (1) sampling, (2) ab
initio calculations, (3) atomic property calculations, (4)
kriging model building and (5) validation. Each step is per-
formed in sequence, with the output of the previous step
forming the input for the next step. The first four steps involve
data being generated, using either in-house software or com-
mercially available software. The final step is a quality check
or validation step completed through an analysis of the outputs
both by the user and the computer, evaluating the generated
models. In short:

1. Sampling – EROS (in-house): EROS distorts input seed
geometries using the molecular normal modes, creating
sample geometries, which collectively describe the mo-
lecular conformational space around the seed geometries.

2. Ab initio calculations – GAUSSIAN09 (commercial):
GAUSSIAN09 [46] performs single-point energy calcu-
lations for each sample, outputting the wavefunctions of
all systems.

3. Atomic property calculations – AIMAll (commercial):
AIMAll (version 14.11.23) [47] uses the system’s
wavefunction and calculates the intra-atomic and inter-
atomic IQA energies (amongst others) for each
wavefunction.

4. Model building – FEREBUS [48, 49] (in-house): The
atomic property data is compiled and ‘scrubbed’.
Scrubbing removes and discards any sample geometry
that has an atomic energy with an integration error [50]
(L(Ω)) greater than a given user-defined threshold, which
is in our case 0.001 Hartrees. Next, from the remaining
samples, a pre-determined amount is set aside as the test
set, and the remainder, to the nearest hundred, become the
training set. FEREBUS builds kriging models using the
training set by mapping the geometrical features to the
atomic energies.

5. Validation – kriging models built by FEREBUS are test-
ed, using the test set by predicting atomic energies for
each test sample, and then comparing them with the
known correct values.

Together, the steps outlined above describe the parameter-
ization procedure within FFLUX. In previous literature (e.g.
see Appendix of ref. [51]), a different variation of GAIA de-
scribed the analogous procedure used to build models for
atomic multipole moments in place of the atomic IQA ener-
gies. Future work will describe a final version which caters for
the building and merging of both atomic properties (IQA and
multipole electrostatics).

Computational details

The M06-2X functional, used in this work, was developed
with the aim of improving the description of intermolecular
energies and has been adopted due to its success [52–55]. As a
consequence of the widespread use of M06-2X, our group
worked with Dr. Keith to have this functional implemented
and tested in his program AIMAll. Using the same methodol-
ogy thoroughly reported in our other research [41], the IQA
decomposition can be performed on M06-2X wavefunctions.
The other commonly available IQA theory levels (HF and
B3LYP) would give poor interaction energies of weakly
bound systems without the use of (ad hoc) dispersion correc-
tions [56].

Struct Chem

5



Molecular models were obtained by following the GAIA
protocol for each of the six complexes. Five seed geometries
for each complex were obtained from the S22x5 datasets
optimised [44] at MP2/cc-pVTZ level of theory by Jurecka
et al. [25]. One of these seeds is the S22 equilibrium geometry,
the remaining non-equilibrium seeds sample the intermolecu-
lar distance at translated relative distances of 0.9, 1.2 1.5 and
2.0 to the equilibrium value. The S22 and S22x5 datasets are
common benchmarking datasets for non-covalently bonded
complexes. Thus, rather than manipulate the geometries by
re-optimising at M06-2X level, which would introduce an
unnecessary uncertainty into the geometries, the MP2-
optimised S22x5 geometries were used as reported by
Jurecka et al. [25]. Furthermore, it should be noted that an
MP2-IQA approach has recently become computationally
possible [43] but is feasible at the moment only for much
smaller molecules. For each of the five seeds, one molecule
was subjected to rotation by 90°, 180° and 270°, resulting in
20 [=5×(3 + 1)] final seed geometries to be distorted. For each
system, 1992 sample geometries were generated from each set
of 20 seeds (83 samples per non-equilibrium seed and 166
(=2 × 83) for the equilibrium seed, so 1992 = (16 × 83) +
(4 × 166)) using EROS with bond and angle stretch factors
of ±10%. All ab initio calculations were performed using the
GAUSSIAN09 software package at the M06-2X/aug-cc-
pVDZ level of theory. The M06-2X [30] functional was cho-
sen for its specific design to correctly provide accurate inter-
action energies for a range of intermolecular interaction types,
in particular van der Waals dimers and the S22 complex set
[39]. The aug-cc-pVDZ basis set was chosen for its compro-
mise between speed and accuracy. In keeping with AIMAll’s
user documentation, each wavefunction file was appended
with the ‘M062X’ keyword to act as a flag to AIMAll, which
in turn ensures that the explicit M06-2X IQA algorithm is
followed. The IQA calculations were performed by AIMAll
(version 14.11.23), using default parameters but with the
added request of the IQA energies to be calculated ‘-
encomp = 3’ (short for energy components, and where the
value (0 to 4) corresponds to the computation of a given list

of IQA energies). The calculatedΔEsystem
IQA energies, across all

systems, on average recovered the ab initiomolecular energies
to within approximately 1 kJ mol−1. The kriging models were
built with the FEREBUS kriging engine using the following
variables: p was optimised, convergence was set to 200, theta
(Θ) was set to a maximum value of 0.1 and the tolerance to
10−9. Variable training set sizes between 800 and 1400 exam-
ples were used for the six molecular complexes, conditional
on the number of samples passing the molecular scrubbing
(set to 0.001 Hartrees). The test set consisted of 500 samples,
with exception of the two benzene dimers, which used 400
each. The predictions made by FEREBUS were used to con-
struct the so-called S-curves (explained in S-curves

formulation) for the system’s energy predictions, ΔEsystem
IQA ,

and for the intra-atomic energy, ΔEA
intra, and the interatomic

energy predictions, ΔVAA
0

inter.

Results

S-curves formulation

The EA
intra and VAA

0

inter energies were predicted for 500 test ge-
ometries for ammonia…benzene, water…benzene, meth-
ane…benzene and HCN…benzene, and 400 test geometries
for the T-benzene and stacked-benzene complexes. A smaller
test set of 400 samples was required for the benzene dimer
complexes due to a greater number of geometries being fil-
tered out with high integration errors in the scrubbing step.
The performance of the kriging models, obtained from
FEREBUS for the six complexes studied, is displayed using
S-curves. Each point in the S-curve is equal to the error for a
specific test point, that is, a sample geometry in the test set.
The y-axis returns the number of test samples represented as a
percentile, for example, 500 test points divided by 100%,
equates to 0.2% per test point. The x-axis plots the absolute
energy error between original and predicted values. More pre-
cisely, the absolute error for a given system geometry,

ΔEsystem
IQA , is obtained through a summation of the errors ob-

tained across both atomic EA
intra and V

AA
0

inter energies, and across
all atoms, or

ΔEsystem
IQA ¼ ∑

A

N atoms

EA
intra;Act−E

A
intra;Pred

� �
þ 1

2
VAA0
inter;Act−

1

2
VAA0

inter;Pred

� �� ������

�����
ð3Þ

where ‘Act’ stands for the actual (i.e. original) value and
‘Pred’ the predicted value.

The mean absolute error (MAE) can be calculated in order
to obtain a single error value for a system’s model. The MAE

is calculated by summing all theΔEsystem
IQA values and dividing

by the number of test set samples:

ΔEsystem
MAE ¼ 1

N test
∑
i¼1

N test

ΔEsystem
IQA;i ð4Þ

where Ntest is the number of samples in the test set, with i
representing a single test sample.

A final measure, the MAE percentage (MAE %), can also

be calculated by dividing ΔEsystem
MAE by the size of the energy

range sampled by the test set:

MAE% ¼ ΔEMolec
MAE

ETestSet
max −ETestSet

min

ð5Þ
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where ‘max’ refers to the highest system energy in the test
set and ‘min’ to the lowest. Percentage errors are more
transferable than MAEs since they free the error from the
associated sampled energy range, which is known to influence
the error obtained for the model. Thus, the MAE%’s from
different molecules are comparable as a transferable perfor-
mance measure.

The fortuitous cancellation of errors has been described in
full in previous work [28], which is why we described it again
only briefly here. Using two or more IQA energies to model
the system energy results in two or more predicted energies
being summed. If a predicted energy is predicted to be less
stable than the actual energy, it is called underestimated.
Accordingly, an energy that is predicted to be more stable is
overestimated. When an overestimated energy is summed
with an underestimated energy, the resulting system energy
recovered is more accurate due to a cancellation. In opposi-
tion, if two over- or two under-estimated energies are
summed, the resulting energy is less accurate through an ac-
cumulation of errors. Control of the over- and under-
estimation of energies is not possible, but previous research
[28] has proven that they often fortuitously cancel.

A final note concerning the formation of S-curves is on the
removal of predictions that fall outside the domain of applica-
bility. The domain of applicability is defined as the region of
conformational space that can be interpolated by the training
points of the kriging model, i.e. the conformational space de-
fined by the training set points. Points that fall outside the
training set, and thus outside the domain of applicability, re-
quire an extrapolation from the model to make a prediction.
Where a point lies far from the domain of applicability, no-
ticeably larger prediction errors are observed. The identifica-
tion of points outside the domain of applicability can be made
by the analysis of the mean signed error (MSE) (or mean
signed deviation, MSD). A high MSE or MSD indicates to a
user that a particular prediction point is not well trained for in
the model and thus is a hallmark of working outside the do-
main of applicability. Some clear outliers have been removed

from theΔEA
intra andΔVAA

0

inter S-curves presented in this inves-
tigation. However, no outliers are removed from the system

energy S-curves, which naturally eliminate those seen in Δ

EA
intra and ΔVAA

0

inter through cancellation of errors.

S-curves

Figure 3 shows the system prediction errors for all six systems
as S-curves. The ammonia…benzene (blue) and water…ben-
zene (red) complex kriging models perform very similarly and
both outperform the models obtained for the remaining four
benzene complexes. Of the test points, 90% are accurately
predicted within 2.2, 2.3, 4.5, 5.5, 7.7 and 9.8 kJ mol−1 for
the ammonia…benzene, water…benzene, methane…

benzene, stacked-benzene, T-benzene and HCN…benzene
complexes, respectively.

Table 1 contains the range in the total energy for each
weakly bound complex as well as the mean absolute error
(MAE) for the predicted molecular energy. Included is the
MAE% error, i.e. the MAE as a percentage of the range of
said energy. The system energy is predicted within 2.6% for
all systems. The values in Table 1 show that as the range in
total energy increases, the MAE also increases, but the in-
crease in MAE is slower than that of the range, and therefore
the MAE is a smaller percentage of the range. This shows that
the FFLUX protocol is capable of handling large ranges in
system energies with only a small cost to the accuracy of the
kriging predictions.

The kriging performance of the separate EA
intra and VAA

0

inter

energetic terms has also been analysed, where the two terms
on the right hand side of Eq. (3) are each plotted as separate S-
curves. Thus, each point on the ΔEA

intra curve is given by:

ΔEA
intra ¼ ∑

A

N atoms

EA
intra;Act−E

A
intra;Pred

� ������

����� ð6Þ

and each point on the ΔVAA
0

inter curve given by:

ΔVAA
0

inter ¼ ∑
A

N atoms 1

2
VAA0
inter;Act−

1

2
VAA0
inter;Pred

� ������

����� ð7Þ

The two sets of S-curves are seen in Fig. 4. Both sets of S-
curves perform similarly to the total energy S-curve; only the
stacked-benzene complex shows a noticeable shift to slightly
poorer predictions. However, since this shift to the right (i.e.

worse performance) is seen for both the ΔEA
intra and ΔVAA

0

inter

energetic terms, we again benefit from a cancellation of errors,

0
10
20
30
40
50
60
70
80
90

100

0.0001 0.001 0.01 0.1 1 10

P
er

ce
nt

ile
 / 

%

System Energy Error /  kJmol -1

AMMONIA BENZENE

WATER BENZENE

HCN BENZENE

METHANE BENZENE

BENZENE STACK

T BENZENE

Fig. 3 S-curves displaying the absolute error for a given system
geometry (ΔEsystem

IQA ) defined in Eq. (3) for the six weakly bound
complexes: ammonia…benzene (blue), water…benzene (red), HCN…
benzene (green), methane…benzene complex (orange), stacked-
benzene dimer (purple) and T-shaped benzene dimer (turquoise) (colour
figure online)
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as in previous work [28], resulting in the overall better predic-
tion of the system energy.

The S-curve MAE values are found in Table 1 alongside
the test set energy range sampled for the intra-atomic and
interatomic energies. The test set energy ranges for the two
separate IQA energy terms are much larger than the test set
energy range for the IQA system energy. For example, the

ranges in the EA
intra and V

AA
0

inter energies for ammonia…benzene
are 203.6 and 218.4 kJ mol−1, respectively, whereas the range
in the system energy is only 74.6 kJ mol−1. The lower system
energy ranges are a result of cancellation between the energet-
ic components. When two molecules are close to one another,
the intra-atomic energy is more positive than when they are at
greater separation. A more positive intra-atomic energy is ob-
served because the atoms are deformed [38] when brought
close together, resulting in them being less stable. Bringing
atoms together to be in closer proximity always gives rise to a

positive change in the intra-atomic energy, EA
intra. Conversely,

the interatomic energy, VAA
0

inter, is more negative to the closer
two molecules are because the interatomic, and therefore in-
termolecular, bonding is stronger. The relationship between
IQA’s intra-atomic and interatomic energies has been a topic
of discussion in previous publications by our group [28, 57,
58]. Table 1 shows that despite the large range in total EA

intra

and VAA
0

inter values, the respectiveMAEs are relatively similar to
the MAE values of the IQA system energy for all complexes,
except stacked-benzene. Thus, the MAE% values are often

Table 1 Summary of the kriging performance of the weakly bound complexes

System Ammonia…benzene Water-benzene HCN…benzene Methane…benzene Stacked-benzene T-benzene

Esystem
IQA

Energy Range 74.58 71.03 301.18 226.45 103.13 210.23

St. Deviation 0.88 0.89 4.17 1.89 2.56 2.89

MAE 1.11 1.10 4.94 2.20 2.64 3.58

MAE % Error 1.49 1.55 1.64 0.97 2.56 1.70

EA
intra

Energy Range 203.56 233.45 2131.71 316.34 260.11 435.43

St. Deviation 1.12 1.11 4.77 2.40 4.94 2.79

MAE 1.36 1.39 5.61 2.73 5.29 3.69

MAE % Error 0.67 0.59 0.26 0.86 2.03 0.85

VAA
0

inter

Energy Range 218.38 248.96 2259.48 333.17 261.78 384.57

St. Deviation 0.92 0.98 3.67 1.60 5.22 2.37

MAE 1.11 1.23 4.71 1.92 5.04 3.06

MAE % Error 0.51 0.49 0.21 0.58 1.93 0.80

St. Deviation is the standard deviation and MAE is the mean absolute error. All energies are given in kJ mol−1
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Fig. 4 S-curves displaying the prediction error of the total intra-atomic
energy (top) and total interatomic energy (bottom) for the six weakly
bound complexes
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much less than 1% of the range in the total intra-atomic and
interatomic energies, but slightly higher for the system energy.

From the results, two points must be addressed that arose in
the analysis. Firstly, the HCN…benzene complex has an en-
ergy sampling range much greater than any of the other com-

plexes, by up to an order of magnitude for the ΔEA
intra and Δ

VAA
0

inter energies. Such a large sampled energy range is the rea-
son the S-curve is shifted to higher energy prediction errors.
However, obtaining models with a MAE % smaller than
0.26% for energy ranges of ~2200 kJ mol−1 is testament to
the proficiency of the kriging algorithm and encouraging for
the future of FFLUX. The second point to address is the cause
of the stacked-benzene (C2h) complex S-curves being shifted

for the ΔEA
intra and ΔVAA

0

inter energies. Observing the MSEs of
the predictions within the atomic models for the stacked-
benzene (C2h) dimer allowed us to identify numerous test
points that lay outside the domain of applicability. Those con-
sidered very far from the training set region of conformational
space (>~10 kJ mol−1) were removed from the plot. However,
a number of points within a few kJ mol−1 of the training range
were still included. The inclusion of such points is one of three
possible causes for the shifting of the S-curve, the other two

being (1) the PES is undulant for the ΔEA
intra and ΔVAA

0

inter

energies, making them independently more difficult to model

than the singular ΔEsystem
IQA , or (2) the cancellation of errors

from the summation of the EA
intra and VAA

0

inter energy models is
particularly high, causing a significantly improved S-curve for
the resulting system model.

Conclusions and further work

The results of the investigation demonstrate that the IQA
atomic energies can be modelled by kriging as a function of
nuclear coordinates to high accuracy for weakly bound inter-
molecular systems featuring a mixture of intermolecular inter-
actions. As such systems are ubiquitous within chemistry, and
the accurate modelling of system energies of bound systems is
of great importance in the design of a next-generation force
field such as FFLUX, the extension of the modelling approach
to incorporate bound complexes was necessary. As the models
are built on ab initio values for such IQA energies, kriging
allows for near-ab initio atomic energies to be obtained in a
fraction of the time. The models are able to describe bound
systems with complex intermolecular interactions, including
dispersion and hydrogen bonding, to within 2.6% accuracy for
the molecular energy, and within 2.1% for the individual EA

intra

and VAA
0

inter atomic models.
The current work extends the applications that the GAIA

protocol can operate on, allowing future progress to be made

on larger, more complex chemical systems. For example,
knowledge that the hydrogen bond in the water dimer can be
kriged to a high accuracy opens the door to working on larger
water clusters as well as hydrated molecules. Recent work has
been started by others in the group on such systems. Further
work will focus on the scaling up of these investigations,
along with the creation of strategic training sets, designed to
reduce the likelihood of errors resulting from a point arising
outside of the domain of applicability.
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Preface 
 

      Within the development of any force field, transferability is a topic requiring discussion.  

Whether through function parameters (classical force fields) or generating generalised atomic 

energy models (FFLUX), every force field must be able to be parameterised allowing it to operate 

on systems not included in the parameterisation step. Within FFLUX, the aim is to make 

computationally expensive bimolecular simulations available on much cheaper timescales. To do 

so, it must become possible to build kriging models on computationally feasible smaller systems, 

but remain accurate when used to describe a fragment of a much larger system. Thus, 

understanding how IQA energies vary within small fragments of a system compared to in larger 

fragments of a similar system would allow an important insight into the relationship between the 

IQA energies and system structure.  

      Within FFLUX, the amount of feature space to be incorporated into the kriging model needs to 

be decided upon. In other words, how much of an atom’s neighbouring environment must be 

included in order to allow the model to operate on that environment in a larger system. In this 

paper, atoms forming the central amino acid in sequences of methyl capped-oligopeptides of 

varying size (mono-, tri- and penta-) are investigated for the transferability of the intra-atomic 

energy, 
A

intraE . Four backbone atoms (N, O, Cα and Hα) within seven amino acids (Gly, Ala, Ser, Thr, 

Val, Leu and Ile)(along with an example of a sulphur atom within the sidechain of Cys) were 

investigated. The investigation would provide preliminary data, to accompany that already 

obtained for the multipole electrostatic energies81, about the feature space required to be included 

in future transferable kriging models. With FFLUX aiming to use electrostatic multipole moments 

to account for the long-range electrostatic contribution of the interatomic energy, and the 

exchange-correlation interatomic contribution known to be short-ranged, it was sufficient to limit 

our investigation to the lesser known 
A

intraE  energy.  
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ABSTRACT
Quantifying an atom’s transferability, in a force field context, demands a quantitative understand-
ing of how an atom ‘experiences’ the surrounding environment both intra-atomically and inter-
atomically. Here we investigate the intra-atomic (Eintra

A) viewpoint through the study of the atoms
C

α
, H

α
, N, O, and S in a series of ‘mono’-, tri- and penta-peptides. The remaining inter-atomic view-

point consists of an electrostatic (via multipole moments), exchange and correlation components
respectively, ofwhich the electrostatic component has beenpreviously reported. Together these four
energy components, as calculated from the InteractingQuantumAtoms (IQA) partitioning approach,
express the foundation of the Quantum Chemical Topological Force Field (QCTFF). In order to have
transferability within a force field, smaller sample systems must be calculated and developed as rep-
resentative of larger target systems.
The C

α
, H

α
, N, O and S atoms in a tri-peptide are energetically comparable to those in their penta-

peptide configurations, within 2.1 kJ/mol in absolute value (1 exception). Across all five elements, this
energy difference is on average ∼0.3 kJ/mol. On average, the tri-peptide sample systems represent a
∼8.2 Å atomic horizon around the central atoms of interest. Thus, both the previous knowledge of
the ∼10.3 Å horizon sphere and ∼0.4 kJ/mol error required by the electrostatic multipole moments,
determine how two of the four key QCTFF energy components are affected by an atom’s molecular
environment.
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1. Introduction

Here we push computational boundaries to help answer-
ing an important but rather under-documented question.
This question is of interest to anyone concerned [1] with
Quantum Chemical Topology (QCT) [2–5] and focuses
on the energetic transferability of a topological atom, now
within the context of Interacting Quantum Atoms (IQA)
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[6]. An answer to the question of energetic transferabil-
ity is pivotal in the development of a force field because
transferability is its zeroth cornerstone [7]. All structure
and dynamics predicted by a force field depend on the
energy predictions it makes, and therefore we need to
know the size of the atomic environment that still influ-
ences the energy of a central atom of interest.

A force field is asked to make predictions on a target
system, which can be a protein in a large box of water,
or a sizeable piece of RNA. Inevitably, target systems are
large, and of course too large to serve as a sampling sys-
tem for a force field. Even if this force field parameteri-
sation were possible, it would defeat the object because
it does not make sense to parameterise a dedicated force
field for each target system. Instead, one parameterises
a much smaller set, which is the sampling system. The
question is then how small this sampling system can be.
In the case of a protein as a target system, can the sam-
pling system be a single amino acid? Or should it be a
protein fragment consisting of three amino acids? Trans-
ferability studies can answer this question although per-
fect transferability is impossible: one cannot take a topo-
logical atom from a sampling system and literally transfer
it to the target system without introducing an energetic
error. So, really, transferability is not binary but a slid-
ing scale, and we will discuss our data below keeping this
in mind.

In the past, we have reported that ‘the true predic-
tive power of a force field depends on the reliability of
the information transfer of small molecules (or molecu-
lar clusters) to large molecules. Only if this transferabil-
ity is high, a force field will make reliable predictions’
[8]. The expression ‘information transfer’ is deliberately
kept general and open in order towelcome various atomic
properties as gauges of transferability. For example, in a
study [9] on the transferability of methylene and methyl
fragments in alkylethers, atomic volumes (and even bond
critical point properties) were invoked to quantify trans-
ferability. Because we believe that energy is the ultimate
arbiter in force field transferability, we have studied prop-
erties more directly related to energy than volume, or
intra-atomic energy itself, as we do in this paper. Given
that interatomic electrostatic energy, at sufficiently long
range, can be exactly represented by a multipole expan-
sion [10], it makes sense to study the transferability of
atomic multipole moments. This was done in the con-
text of computing atom types [11], while the next study
[12] on transferability came one step closer to energy
by studying the atomic electrostatic potential. Although
useful, this type of assessment demands the construc-
tion of a grid at which the potential is evaluated. The
necessity for such a grid is a vulnerability, which can
be circumvented by going beyond the potential and

investigating the interatomic electrostatic energy itself.
However, this type of assessment introduces one or more
atoms tasked to probe the central atom of interest. Such
an investigation [13] was done some time ago for a water
trimer and a microhydrated serine. Amongst other find-
ings, this study showed that the atoms of serine are more
transferable, in going from the isolated serine to the Ser-
ine…(H2O)5 supermolecule, than the atoms in the water
cluster.

Other research groups have also investigated the issue
of transferability [14–20]. The transferability question
does not solely focus on the role of atomic multipole
moments in the literature. The highly transferable nature
of common structural properties such as bond lengths
and angles has also been reported [21].

2. Methodology

2.1. General background

We strive towards the completion of a topological force
field known asQCTFF [22]. QCTFFwill be a novel atom-
istic protein force field that builds on the principle of
QCT, which is using the gradient vector field as a (mini-
mal) means to let a quantum function partition itself in
space. If this quantum function is the electron density
then the product of the partitioning is a set of topolog-
ical atoms. This was the first result of QCT, better known
under the name Quantum Theory of Atoms inMolecules
(QTAIM) [3]. An example of topological atoms is shown
in Figure 1. Topological atoms are boxes of finite volume,
with a peculiar shape that precisely reflects the whole
quantum system they are part of. In other words, the
whole system imprints its presence (at least in principle,
not necessarily with much ‘numerical power’) onto each
of the (topological) atomswithin the system.We also note
that there are no gaps [23] between the atoms. Thismeans
that each little bit of electron density in a potentially large
‘pocket’ belongs to one atom or another. This means that
the electrostatic potential this piece of electron density
generates also belongs to an atom, always. As a further
consequence, one can assert that all energy contributions
(invariably associated with electron density) are always
assigned to one atom or a pair of atoms. In short, all intra-
atomic or interatomic energies are accounted for.

QCTFF is built on the precise constellation of four
resolutions [22]. The first resolution is summarised by
adopting the topological atom as the carrier of chemi-
cal information. Indeed, the total energy of a sampling
system, and then ultimately a target system, can be pre-
dicted from the information that the atoms carry. The
second resolution stipulates that the total energy is par-
titioned into four types of energy contributions, each
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Figure . A representation of the topological atoms in Leucine,
which is capped both at the N-terminus and the C-terminus
by a peptide bond. The nuclear configuration is taken from a
(Leu) conformer geometry-optimised at HF/–+G(d,p) level of
theory.

of which has a chemical meaning: (1) intra-atomic self-
energy, and interatomic (2) Coulomb, (3) exchange and
(4) correlation energy. A short mathematical description
of the IQA partitioning is provided in Section 2.3. This
scheme is inspired by IQA, which in turn was inspired
by the early establishment [24] of a six-dimensional
integration over two topological atoms simultaneously.
This type of calculation returns the potential energy
between two atoms, for any molecular geometry. This
achievement makes the calculation of the intra-atomic
energy independent of the atomic virial theorem [25].
Third, any 1/r type of interaction can be expanded,
thereby introducing spherical harmonic (atomic) multi-
pole moments. This expansion is of great practical use for
the Coulomb energy, provided that the multipole expan-
sion converges [26,27]. Finally, a variation in nuclear
configuration causes a change in a given atom’s ener-
gies and its multipole moments. The machine learn-
ing method Kriging [28,29] has the capacity to capture
the mapping between the coordinates of the atom’s sur-
rounding nuclei (input) and this atom’s energies and
multipole moments (output). The input is cast into a
number of so-called features, the details of which are
described elsewhere [29]. It suffices to state here that
features are essentially internal geometrical coordinates
that allow a given atom to describe its own atomic

environment (that is, basically by means of nuclear posi-
tions). Note that a Kriging model is trained on a data set
of sample systems.

When each of the four aforementioned energies
undergoes Kriging, then a complete molecular energy
Kriging model is generated. Compiling these mod-
els, along with other comparable models from other
molecules into a database, results in the ultimate forma-
tion of QCTFF. At short range, the electrostatic energy
(or Coulomb energy without being pedantic) between
two atoms can only be calculated directly, that is, with-
out using multipole moments. These interatomic ener-
gies then serve as output for a Kriging model. However,
at long-range, a convergent multipole expansion is used
and each Kriging model takes up the multipole moment
as its output. So far, most work has been done [30-35] on
multipole moments, up to hexadecapole in fact.

The exchange energy can also be expanded into so-
called exchange (multipole) moments as first demon-
strated [36] in 2007. However, these moments carry
imprints of the molecular orbitals themselves, a difficulty
that has not been overcome. This is why we instead fol-
low the route of unexpanded exchange energies. Fortu-
nately, for saturated systems [37] (andmany non-metallic
condensed matter systems are saturated) these energies
drop off very quickly with distance. The local nature of
the exchange energies makes it feasible to krige them
as energies. Locality means that a given atom does not
have to be aware of too deep an environment. Because
only the immediate neighbours suffice, the number of
possible nuclear configurations around the given atom
is restricted. Indeed, atoms that are covalently attached
to a given atom cannot move around as much compared
with atoms further away (that are hence less covalently
attached).

Dynamical correlation energies were first [38] calcu-
lated through coupled cluster theory, and can also be
offered to a Kriging engine to then be mapped onto
the coordinates of the surrounding atoms. Work is in
progress to do this for inter-atomic correlation ener-
gies from Møller–Plesset wave functions. However, the
first non-electrostatic energy that was ever kriged is the
atomic kinetic energy [39]. Building on this success more
non-electrostatic energy components have been kriged in
our lab and will be published in due course. However, the
subject of this paper is not Kriging but the transferabil-
ity of a non-electrostatic energy, namely the intra-atomic
energy or self-energy, for short. This paper will report the
results seen for the intra-atomic self-energy in a series of
oligopeptides of varying length.

The intra-atomic energy represents the energy that
an atom possesses inside a molecular system. Under-
standing the energetic cost of transferring an atom from
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a smaller sampling system into a larger target system
reveals whether the sampling system is suitable to be used
as a sample for this target. If the sampling system is too
small then one observes a large change in self-energy
between the given atom in the sampling system as com-
pared with that atom in the target system. An assessment
of the atom in the sample system and then in the target
system results in a quantitative measure of their similar-
ity. This similarity measure enables the computation of
atom types, an achievement that was realised some time
ago [11] but based on atomic properties such as multi-
pole moments, virial-based atomic energy and volume.
In future work, the intra-atomic energy of an atom could
add value and play a role in the classification and compu-
tation of atom types, which is under-researched.

2.2. Horizon sphere, atomic horizon and
compounds studied

The case studies chosen for the analysis focus on
homogeneous oligopeptides of three possible sizes:
mono- (n = 1), tri- (n = 3) and penta-peptide (n = 5),
where n is the number of amino acids in the peptide
chain. Eight systems are analysed in total, seven of which
(Alanine, Glycine, Isoleucine, Leucine, Serine, Threo-
nine and Valine) will be used to investigate the trans-
ferability of the central α-carbon, α-hydrogen, amino-
oxygen and amino-nitrogen atoms. The eighth system
(cysteine) is used to investigate the transferability of a
sulphur sidechain atom. This investigation is analogous
to that in a previous paper featuring the study of the
same five elements (C, H, O, N and S) in the small
and naturally occurring protein crambin [40]. That study
introduced the concept of a horizon sphere. This concept
addresses the following simple question: For a selected
central atom, how do its neighbours influence its multi-
pole moments and at which distance can their influence be
ignored?

This horizon sphere was presented as a metaphorical
sphere, which when centred on a single atom, correlates
the energetic change in an atom’s multipole moment with
the sphere’s radius. This allows the intuitive mapping of
two commonly known physical parameters (interaction
energy and distance). Operationally, the horizon sphere
incrementally increases its radius in steps of 0.1 Å and
observes the growing number of other atoms appearing
within its volume. At every step, new atomsmay enter the
sphere. If not, the horizon sphere grows by another step.
As such, a set of nested atomic configurations appears,
each containing the central atom, and one can observe
how the multipole moments of the central atom change
with increasing configuration size. In other words, the

horizon sphere allows a chemically meaningful measure-
ment of how far out the central atom still experiences the
presence of its atomic environment. In short, how far does
the given atom ‘feel’?

In crambin, the largest structure considered had a
radius of 12 Å, and was taken as the reference structure.
It consisted of 294 atoms in total, while four atoms (one
of each element or C, H, O and N) were selected as ‘prob-
ing atoms’. The multipole moments of the latter always
remained invariant. Thesemultipolemoments were com-
bined with the varying multipole moments of the central
atom in the horizon sphere to yield the electrostatic inter-
action energy between that atom and a probing atom.

The conclusion from the crambin work was that each
element had its own horizon sphere radius (Cα = 10.5 Å,
Hα = 7.7 Å, O = 11.0 Å, N = 11.3 Å and S = 10.8 Å)
where each atom’s multipole moments are influenced by
the presence of other atoms (by nomore than 0.4 kJ/mol).
The current study expands and complements the crambin
study from the perspective of atomic self-energy. The lat-
ter produces its own horizon sphere radii, as will become
clear later. In the presence of two types of radii, the ques-
tion is then how to quantify transferability. One way
would be to take the larger radius of the two because
the larger radius is the most ‘demanding’ in terms of
transferability. However, one could also argue that ulti-
mately a force field adds the various energy contribu-
tions that it uses to describe a system, and hence the sum
of the energies needs to be screened for transferability.
In this paper, we will not follow either option but focus
on the transferability of the self-energy itself. We know
from unpublished work (on different systems, i.e. large
water clusters) that the exchange energy generates smaller
horizon radii. This is not surprising in the light of pre-
viously published work [37], which shows how quickly
exchange energy drops off with distance (for saturated
systems).

In retrospect, the horizon sphere would have been bet-
ter called atomic horizon thereby allowing it to be not
spherical, in general. In this work we do not construct a
horizon sphere but control the size of the sample system
by varying the length of an oligopeptide. This size control
occurs ‘linearly’ in that the chain length of the oligopep-
tide is varied, which is reminiscent of the primary struc-
ture of a protein. However, the oligopeptidemay very well
curl up, reminding us of the importance of secondary
structure. The largest size oligopeptide then represents a
globular environment with respect to which a given atom
is studied. The edge of this environment is more accu-
rately called an atomic horizon. One can then introduce
a ‘pseudo’-radius for this atomic horizon by measuring
the distance between the nuclear positions of the atom of
interest and the atom furthest away from it.
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2.3. Interacting quantum atoms (IQA): some
relevant formulae

The IQA partitioning quantitatively describes the ener-
getic of topological atomic, that is, their interaction as
well as their internal energy, through a combination
of kinetic and potential energies [6]. These energies
consist of an intra-atomic or an interatomic contribu-
tion. At an unrefined level, the IQA formalism parti-
tions the molecule’s energy according to the following
equation:

Emolec
IQA =

∑

A

EA
IQA =

∑

A

EA
intra + 1

2
∑

A

∑

B�=A

VAB
inter. (1)

The energy term EintraA can be broken down in three
contributions:

EA
intra = TA +VAA

ee +VAA
en , (2)

where TA is the kinetic energy of the electrons, Vee
AA

is the electron–electron repulsive potential energy and
Ven

AA is the attractive electron-nuclear potential energy,
all within atom A. Note that the kinetic energy is well
defined for the topological atom, which would not be
true for an arbitrary (atomic) subspace. Together, these
three energy contributions comprise the self-energy pos-
sessed by a single atom. This energy is the central quan-
tity investigated in the present work. For completeness,
the remaining interatomic energy attributed to an atom
is defined in the following equation:

VAB
inter = VAB

nn +VAB
en +VAB

ne +VAB
ee , (3)

where Ven
AB, Vne

AB and Vee
AB are as described above

but with respect to both A and B. The quantity Vnn
AB is

the repulsive nuclear–nuclear potential energy, which is
totally classical within the Born–Oppenheimer approxi-
mation. For the sake of completeness, theVee

AB contribu-
tion can be specified further,

VAB
ee = VAB

Coul +VAB
exch +VAB

corr, (4)

where the first term on the right-hand side embodies
the Coulomb interaction between electrons in atoms A
and B, the second term is the electronic exchange energy
(between A and B) while the third term is the most
challenging term to calculate, which is associated with
dynamic correlation or dispersion.

A further rearrangement of the energies take places in
Equation (5), and following this, a new expression for the
complete interaction energy between two atoms, denoted
Vinter

AB, can then be formed, as

VAB
elec = VAB

nn +VAB
en +VAB

ne +VAB
Coul, (5)

VAB
inter = VAB

elec +VAB
exch +VAB

corr. (6)

Here, Velec
AB represents the complete electrostatic

interaction energy between two atoms A and B, now
including the interaction with the respective nuclei. This
quantity (rather than VAB

Coul) is the energy that has
been expanded as a multipolar series on many occasions
[26,27,40–44] in the past.

For a more exhaustive description of the partition-
ing scheme including additional formulae and previous
applications, the reader is directed to the original litera-
ture by Blanco et al. [6,38,45–48]. For the purpose of this
paper, we will only present the transferability assessment
from the point-of-view of the intra-atomic energy EintraA
as defined in Equation (2).

2.4. Computational details

The penta-peptide geometries were the result of a geom-
etry optimisation at the HF/6-31+G(d,p) theory level
using the GAUSSIAN09 program [49]. No frequency
calculations were carried out because confirming that
the optimised geometries are true energy minima is not
essential in reaching the conclusion of this paper, and
the cost of these extra calculations is huge, given their
size. A randomly generated penta-glycine (Penta-gly) was
created from scratch by the program Gaussview and its
sidechain changed according to the amino acid to be
analysed. For each of the eight oligopeptides studied,
the penta-peptide always provided the exact geometry
of the tri-peptide and the single amino acid, that is, for
the atoms the penta-peptide (n = 5) has in common
with its derivatives (n = 3 or n = 1). Hence, the tri-
peptide and the single amino acid were not geometry-
optimised. Thus, the current transferability study freezes
out any geometry changes while comparing the penta-
peptide with the tri-peptide, for example. Note that nei-
ther di-peptides nor tetra-peptides were included in this
study (i.e. n = 2 or n = 4). They are excluded to ensure
that the radius decreases approximately symmetrically at
either side of the central amino acid under study.

Following the optimisation of the penta-peptide, this
system is first trimmed to form the corresponding tri-
peptide and then again to form the single amino acid.
When trimming the N-terminus, the CH3NHC( = O)–
group is removed and replaced by a hydrogen atom.
This means that the first α-carbon of the original penta-
peptide now becomes a methyl group. This methyl group
caps the emerging tri-peptide in the same way as the
now removed methyl capped the original penta-peptide.
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Similarly, trimming at the C-terminus means remov-
ing the CH3C(= O)NH– group and replacing it by a
hydrogen. Again, this substitution generates a terminal
methyl group, which is part of the newly formed but
familiar CH3NHC(= O)– capping group. The geomet-
rical positions of hydrogen atoms in these methyl caps
are predetermined by previous atomic positions in the
larger chain. Their bond lengths are standardised to be
1.07 Å in accordance with the standard parameters in
Gaussview.

The IQA energy partitioning was carried out by the
program AIMAll [50–52]. Default inputs were used. The
keyword ‘encomp = 3’ was included in the input, which
is the short-hand input name referring to ‘Energy Com-
ponents’. Some poorly calculated atoms were recom-
puted with a specified outer angular quadrature (‘sky-
high_lebedev’) for the atom under study, instead of the
default ‘auto’ in an attempt to obtain a more accurate cal-
culation. This improved some atomic integration errors,
but also worsened some. The best from both sets of runs
were selected for further analysis. Typical CPU times for
oxygen atoms (which took most time compared to other
elements) in penta-peptides amounted to up to 24 hours
on 32 cores, highlighting the compute intense nature of
the current study. Table S1 in the Supplementary Infor-
mation gives an impression of the general atomic integra-
tion accuracy obtained from the L(�) value [53], which
settles for about 0.2–0.5 kJ/mol for all elements except
carbon where L(C) = 2.0 kJ/mol. The latter error is wor-
risome but could not be improved in spite of several
attempts.

With regard to visualisation, Figure 1 was generated
with in-house software called IRIS, which is based on
earlier work [54,55]. The nuclear configuration is taken
from a (Leu)5 conformer geometry-optimised at HF/6–
31+G(d,p) level of theory (51 Molecular Orbitals and
542 Gaussian primitives). This figure represents mono-
Leucine whose geometry was taken directly from the
optimised penta-Leucine (the central amino group ‘3’)
and capped by the familiar CH3NH– group at the C-
terminus andCH3C(=O)– group at theN-terminus. The
wave function was again calculated at HF/6–31+G(d,p)
level. IRIS’s default settings were employed, other than
using wireframe for the surface and altering the trans-
parency. Default element colours were used. The images
of each of the eight penta-peptides (geometry-optimised
at HF/6–31+G(d,p) level) shown in Figure 2 were cre-
ated by AIMStudio [50]. Each penta-peptide is capped at
both termini by the same groups as in Figure 1. Default
settings were used other than changing the electron den-
sity cutoff to 1×10−6 a.u. in order to ensure that there
are no ‘gaps’ in the non-covalent interaction lines. Each
molecule was viewed individually and screenshot. The

eight screenshots were combined to give the final image
in Figure 2.

3. Results and discussion

Here we monitor how the EintraA energies of each of the
five elements occurring in naturally amino acids change
with peptide size. The hypothesis for the overall analy-
sis is that the central atoms of the penta-peptides will be
closest in energy to the corresponding central atoms in
the tri-peptides. If the hypothesis is true, within a suit-
able energy margin, then the tri-peptide atoms can suffi-
ciently accurately represent (or model) the atoms in the
(penta-peptide) target system.

Figure 2 shows the precise configurations of each of
the eight penta-peptides investigated. The geometry of
these peptide chains are not constrained or biased to
any conformations during the ab initio geometry opti-
misation and are all initialised in a consistent and ran-
dom way. Hence, no optimisation is directed towards a
predominant favourable growth pattern, e.g. ‘linear’ in
one direction. Linear oligopeptides are like open chains,
i.e. extended in one dimension. On average, the inter-
nuclear distances in such open configurations are larger,
as opposed to ‘curled’ configuration where the central
atom is surrounded by atoms that are closer by. One
expects more distant atoms (in the environment) to have
less influence on the central atom. Therefore, the cen-
tral atom will be more readily transferable, since most
of its environment in the penta-peptide does not matter
much. Hence, a transferability test on an open (i.e. linear,
extended) configuration is less severe than one on a curly
(i.e. globular) configuration. The majority of the config-
urations are curly, so our transferability tests are severe.
Finally we note that, although not directly investigated
here, it is well known that the number of local energy
minima present in oligopeptide conformational space is
vast [56]. Based on the data presented here, we cannot
be sure that the fixed configurations studied are repre-
sentative for configurations found in the Protein Data
Bank, for example. However, the uniform treatment and
the lack of bias gives some comfort that the results may be
universal.

Across the eight geometry-optimised penta-peptides,
the penta-Gly system showed a preference for helical
growth (in the peptide chain). However, the penta-Thr
system showed no obvious preference in adopting a pro-
nounced secondary structure, while the remaining six
penta-peptides curl up to form conformations resem-
bling β-turns. In all penta-peptides, numerous intra-
molecular interactions were observed, marked by a com-
plex network of bond and ring critical points. These
intramolecular interactions also increase the possibility
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Figure . (A) Penta-Gly, (B) Penta-Ala, (C) Penta-Ser, (D) Penta-Thr, (E) Penta-Cys, (F) Penta-Val, (G) Penta-Leu and (H) Penta-Ile configura-
tions (suspected as local energy minima but not confirmed through frequency calculations).

for a network of interactions that connects the atoms of
the central amino acid to the termini of the oligopep-
tide. This phenomenon is prevalent in water clusters and
known to influence atomic energies [57,58]. This effect
adds another dimension of complexity to the study.

Figure 3 clarifies the actual atoms studied, each repre-
senting an element. Clearly the atoms appear in the third
amino acid, in the middle of the penta-peptide, or in the
middle of the tri-peptide, or as the atoms of the single
amino acid of course.
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Figure . Penta-Ala system. Highlighted atoms represent the central atoms under study.

The differences in self-energies (EintraA see Equation
(2)) for each element across each peptide system are
summarised in Table 1 (for nitrogen), Table 2 (for oxy-
gen), Table 3 (for carbon), Table 4 (for hydrogen) and
Table 5 (for sulphur). Each table details the difference in
intra-atomic energies, denoted �E, for the given atom
across the sequence of three oligopeptides (‘penta’, ‘tri’
and ‘mono’), one entry for each of the eight amino acids
(except cysteine). The data of the cysteine oligopep-
tides are only used to study the element sulphur. The
energy differences listed in all the tables are very much
smaller than the typical magnitude of the EintraA energies

for the five possible elements, which are huge: nitrogen
∼−140,000 kJ/mol, oxygen ∼−195,000 kJ/mol, carbon
∼−100,000 kJ/mol, hydrogen ∼−1200 kJ/mol and sul-
phur ∼−1,042,000 kJ/mol, respectively.

First, the nitrogen and oxygen results confirm the
hypothesis stated above, that the energy difference
between the tri-and penta-peptide (i.e.�E2) is the small-
est possible of the three energy differences. The max-
imum energy difference (in absolute value) between
the penta-peptide and tri-peptide self-energy for N is
3.3 kJ/mol, and 0.8 kJ/mol for O. Overall, combining all
entries of oxygen and nitrogen, in 11 of the 14( = 2×7)

Table . Energydifferences (�E) in peptidic nitrogen (see Figure ) intra-atomic
energies. All energies are in kJ/mol.

System �E (TRI-MONO) �E (PENTA-TRI) �E (PENTA-MONO) Mean errora

Ala . . . .
Ser –. . –. .
Thr –. –. –. .
Gly . . . .
Val . . . .
Leu . . . .
Ile . –. . .

aMean of the absolute atomic integration errors L(�) (kJ/mol), obtained by averaging over
the atoms occurring in each of the three oligopeptides.

Table . Energy differences (�E) in carbonyl-oxygen (see Figure ) intra-
atomic energies. All energies are in kJ/mol.

System �E (TRI-MONO) �E (PENTA-TRI) �E (PENTA-MONO) Mean error

Ala . . . .
Ser . . . .
Thr . . . .
Gly –. . –. .
Val . . . .
Leu . –. . .
Ile . . . .
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Table . Energy differences (�E) inα-carbon (see Figure ) intra-atomic ener-
gies. All energies are in kJ/mol.

System �E (TRI-MONO) �E (PENTA-TRI) �E (PENTA-MONO) Mean error

Ala . . . .
Ser . –. 0.2 2.2
Thr . . . 2.1
Gly –0.2a . . 1.1
Val –. . –. 2.2
Leu –. . –0.8 1.5
Ile –. . –. 2.6

aThe numbersmarked in bold and italics are where the hypothesis fails. The hypothesis fails
as a result of themean error being too large to observe the smaller (more sensitive) differ-
ences (�E) observed between the carbon atoms in the peptide chains. This convention is
also used in Table .

cases, energy differences are smaller than 1 kJ/mol. This
is a very pleasing result, considering the magnitude of
the intra-atomic energies of these atoms. However, this
result also highlights the accuracy required for a study of
this nature. The average integration errors (L(�), given
in the fifth columns of each table), validate this conclu-
sion. The reported errors are an average of the integration
error calculated for the atom in each of the three chain
lengths. Overall, the total intra-atomic energy differences
across the olidopeptides are below 0.0016% and 0.0012%,
respectively.

Observing the trends for the α-carbon and its bonded
α-hydrogen atom, the message is less pleasing. For the
carbon atoms the hypothesis only holds for 4 (Ala, Thr,
Val and Ile) of the 7 amino acids. The same is true for
the α-hydrogens (Ala, Thr, Gly and Leu). However, for
both Cα and Hα , much smaller total energy differences
are observed across all oligopeptides, in general. For car-
bon and hydrogen, absolute energy differences fall under
3.9 kJ/mol (two exceptions: Ala and Ile) and 0.65 kJ/mol
(one exception: Ala), respectively. These small energy
differences combined with the relatively much larger

averaged atomic integration errors L(�), make for less
convincing results. It appears that, when the averaged
integration error has a magnitude similar to that of the
energy difference, then the hypothesis does not hold.
When the average integration error is sufficiently smaller
than the energy difference, then the hypothesis holds.
Perhaps fortuitously, some hydrogen energy differences
still confirm the hypothesis, despite the integration errors
being relatively large in comparison to each of the energy
differences (e.g. Thr �E2 = 0.14 (±0.4) kJ/mol and
Gly �E2 = −0.01 (±0.3) kJ/mol)). However, there are
still three cases (Ser, Val and Ile) where the integra-
tion error is the accuracy limiting factor. The integra-
tion errors observed throughout the hydrogen atom anal-
ysis are smaller than 0.4 kJ/mol in absolute value, and
would normally be considered very accurate. However,
for these atoms, the difference in the EintraA energy is very
low and in most cases is smaller than the mean error.
The same observations can be made for the α-carbons,
which are known to be more difficult to accurately
integrate due to the increased complexity due to its tetra-
hedral hybridisation [59]. The hybridisation of the atom

Table . Energy differences (�E) in α-hydrogen (see Figure ) intra-atomic
energies. All energies are in kJ/mol.

System �E (TRI-MONO) �E (PENTA-TRI) �E (PENTA-MONO) Mean error

Ala –. . –. .
Ser 0.27 . . 0.1
Thr –. . –. 0.4
Gly . –. . 0.3
Val –. . –0.04 0.1
Leu –. . –. .
Ile 0.10 . . 0.1

Table . Energy differences (�E) in side-chain sulphur intra-atomic energies.
All energies are in kJ/mol.

System �E (TRI-MONO) �E (PENTA-TRI) �E (PENTA-MONO) Mean error

Cys . . . .
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Table . Horizon sphere radii (for multipolar electrostatics) and atomic horizon pseudo-radii
(for EintraA) in each element in crambin and the oligopeptides.�E values are also provided for
these radii in kJ/mol. Data for the multipole moments were taken from Ref. [] and data for
the oligopeptides are averaged across all tri-peptides.

Atom Multipole Dist.a (Å) �E (kJ/mol) Meanc Tri-peptide Eintra
A Dist.b (Å) Meanc �E (kJ/mol)

N . . . .
O . –. . .
C

α
. –. . .

H
α

. . . .
S . –. . .

.d .d .e .e

aHorizon sphere radius. bAtomic horizonpseudo-radius. cOver the seven amino acids (have excludedCys,which
provides the data for S on its own). dAverage over the absolute values of the five entries.

eAverage over the values of the  (= ×+) entries.

generally appears to correlate well with the accuracy of
the calculation (see Table S1). The atomic integration
errors are not a problem for the oxygen atoms and only a
minor effect for the nitrogen atoms. Overall, these atoms
have the optimal balance of good atomic integration
errors and large EintraA energetic differences (>5 kJ/mol
in absolute value).

Finally, Table 5 shows that the sulphur atom in the Cys
oligopeptide chains also conforms to the expected trend
with an energy difference, all in absolute value terms
of 1.67 kJ/mol between tri- and penta-chains (�E2) as
compared with 7.10 kJ/mol and 8.78 kJ/mol for �E1 and
�E3, respectively.

Tables S2–S6 of the Supplementary Information sum-
marise the pseudo-radii of the atomic horizons of each of
the elements in each of the oligiopeptides studied. Previ-
ous work on crambin [40] showed that the electrostatic
multipole moments generate a unique horizon sphere
radius for each element. Table 6 lists these radii along-
side the atomic horizon pseudo-radii obtained here for
the averaged EintraA values of the tri-peptides.

It is clear that, for each element, the EintraA causes a
smaller atomic horizon compared to the horizon sphere
of themultipole moments. The one exception to this con-
clusion is Hα , for which the multipolar horizon sphere
radius is smaller, by 0.6 Å. However, as we have observed
the Hα atoms to show very little energetic change across
all mono-, tri- and penta-peptide chain lengths (|�E |
approx. < 0.3 kJ/mol), we believe it is fair to treat the
‘mono-peptide’ (i.e. single amino acid) as a suitable sam-
ple system size for these atoms. Hence, a new atomic
horizon pseudo-radius can be calculated for Hα only,
based on the mono-peptide spheres. The mono-peptide
averaged atomic horizon pseudo-radius is 5.2 Å for the
Hα atoms, which coincides with observing the smaller
EintraA pseudo-radius compared to the multipolar hori-
zon sphere radius.

The energy differences associated with EintraA are
smaller than those associated with the multipole

moments. In general, an energy difference (whether
from multipole moments or EintraA) becomes smaller
and smaller with increasing size of the sample system.
If this energy difference reaches zero, one can conclude
that convergence occurs. Comparing �E1 (TRI-MONO)
and �E2 (PENTA-TRI) gives an impression of the speed
of convergence. Indeed, if �E2 (PENTA-TRI) << �E1
(TRI-MONO) then the convergence is fast. From the
respective tables it is clear the N, O and S atoms show
fast convergence. However, the Cα atom and Hα atom
converges slower. We note that their �E1 (TRI-MONO)
values were already quite small in the first place. Return-
ing to sulphur, it is regarded as fast converging despite a
large �E2 (PENTA-TRI). This fact can be rationalised by
the larger number of electrons that a sulphur atom owns
and, thus, the greater the complexity and sensitivity of
the EintraA energy. In general, the convergence is faster
for EintraA compared the multipolar energies (studied in
crambin [40]), as can be seen from Table 6. In addition,
the atomic horizons of the various elements are also
smaller for the EintraA as compared with those of the
multipolar energies.

4. Conclusion

The atomic self-energy, denoted EintraA, is studied as a
gauge of energetic transferability for five elements (H, C,
N, O and S) occurring in homogeneous oligopeptides (of
increasing length) of eight possible amino acids. The self-
energy of a given atom is systematically monitored as a
function of a chemical environment growing in size but
while freezing the geometry of the central amino acid.

The central hypothesis of the current work is that
EintraA of an atom in a tri-peptide is quantitatively
close to EintraA of the corresponding atom in the penta-
peptide. This hypothesis proves unreservedly correct for
the oxygen, nitrogen and sulphur atoms. However, for
the α-carbon atoms the hypothesis is harder to prove
because the atomic integration errors are larger than for
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the other four elements. The α-hydrogen atoms show
very small differences in EintraA across all three sizes of
(oligo)peptide. However, for α-hydrogen and α-carbon
overall, the central hypothesis is true in 8 out of 14
(= 2×7) peptides. For the remaining six cases, the atomic
integration errors are too large to be conclusive.

We have learned that for the elements studied, the tri-
peptide is a sufficient sample system to accurately predict
the energy (on average to within ∼0.32 kJ/mol) for the
corresponding element in the target penta-peptide. For
hydrogen, the sample size can be reduced further to a
single amino acid as a result of small energy differences
(|�E | approx. < 0.3 kJ/mol) across all oligopeptides.

The convergence of the intra-atomic energy is gener-
ally faster compared to multipole moments. In addition,
the atomic horizonpseudo-radii are smaller than the radii
of the multipolar electrostatics horizon spheres.

Atomic integration errors will ever improve with algo-
rithmic efficiency and, thus too, will the accuracy of
the partitioned energies of a molecule. Future work will
involve the study of the EIQAA component for a complete
description of the atomic horizon. This will provide sup-
plementary resource and knowledge towards the devel-
opment of QCTFF.
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Element Hybridisation Average L(Ω) 

Hydrogen -- 0.2 

Oxygen sp2 0.2 

Sulphur sp3 0.2 

Nitrogen sp3 0.5 

Carbon sp3 2.0 

 
Table S1.  Average integration error L(Ω), in kJ/mol, according to atomic element and hybridisation 
state. 
 

System Furthest Atom Distance a / Å 

PentaAla Hs 8.39 

TriAla Hm 7.80 

MonoAla Hm 4.72 

PentaGly Hm 8.66 

TriGly Hm 7.81 

MonoGly Hm 4.95 

PentaIle Hs 9.82 

TriIle Hs 8.74 

MonoIle Hs 5.01 

PentaLeu Hs 9.56 

TriLeu Hs 7.91 

MonoLeu Hs 5.93 

PentaSer Hm 8.85 

TriSer Hm 8.14 

MonoSer Hm 4.82 

PentaThr Hs 10.27 

TriThr Hm 8.02 

MonoThr Hm 4.71 

PentaVal Hm 9.45 

TriVal Hm 7.84 

MonoVal Hm 4.86 

a Atomic horizon radius. 

Table S2.  Maximum N-centred atomic horizon radius present across all systems.  Hm represents a 
terminal methyl hydrogen and Hs represents a sidechain hydrogen. 
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System Furthest Atom Distance a / Å 

PentaAla Hs 9.43 

TriAla Hm 8.25 

MonoAla Hm 6.67 

PentaGly Hm 9.29 

TriGly Hm 8.33 

MonoGly Hm 5.80 

PentaIle Hs 10.50 

TriIle Hm 8.69 

MonoIle Hs 6.72 

PentaLeu Hm 10.50 

TriLeu Hs 8.76 

MonoLeu Hm 5.99 

PentaSer Hm 9.48 

TriSer Hm 8.44 

MonoSer Hm 6.20 

PentaThr Hm 11.94 

TriThr Hm 9.52 

MonoThr Hm 6.37 

PentaVal Hs 9.12 

TriVal Hs 7.86 

MonoVal Hm 6.30 

a Atomic horizon radius. 

Table S3.  Maximum O-centred atomic horizon radius present across all systems.  Hm represents a 
terminal methyl hydrogen and Hs represents a sidechain hydrogen. 
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System Furthest Atom Distance a / Å 

PentaAla Hs 8.76 

TriAla Hm 7.87 

MonoAla Hm 4.60 

PentaGly Hm 9.60 

TriGly Hm 7.69 

MonoGly Hm 4.53 

PentaIle Hs 10.36 

TriIle Hs 8.19 

MonoIle Hs 4.67 

PentaLeu Hs 10.22 

TriLeu Hm 7.73 

MonoLeu Hs 4.74 

PentaSer Hm 9.06 

TriSer Hm 8.09 

MonoSer Hm 4.51 

PentaThr Hm 10.61 

TriThr Hm 8.11 

MonoThr Hm 4.51 

PentaVal Hm 9.51 

TriVal Hm 7.37 

MonoVal Hm 4.53 

a Atomic horizon radius. 

Table S4.  Maximum Cα-centred atomic horizon radius present across all systems.  Hm represents a 
terminal methyl hydrogen and Hs represents a sidechain hydrogen. 
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System Furthest Atom Distance a / Å 

PentaAla Hs 9.39 

TriAla Hm 8.62 

MonoAla Hm 5.07 

PentaGly Hm 10.55 

TriGly Hm 8.30 

MonoGly Hm 5.24 

PentaIle Hs 11.35 

TriIle Hs 8.66 

MonoIle Hm 5.14 

PentaLeu Hs 10.94 

TriLeu Hs 8.31 

MonoLeu Hm 5.34 

PentaSer Hm 10.00 

TriSer Hm 8.84 

MonoSer Hm 5.24 

PentaThr Hm 10.61 

TriThr Hm 8.16 

MonoThr Hm 5.10 

PentaVal Hm 10.04 

TriVal Hm 7.48 

MonoVal Hm 5.31 

a Atomic horizon radius. 

Table S5.  Maximum Hα-centred atomic horizon radius present across all systems.  Hm represents a 
terminal methyl hydrogen and Hs represents a sidechain hydrogen. 
 
 
 
 

System Furthest Atom Distance a / Å 

PentaCys Hs 11.29 

TriCys Hm 9.99 

MonoCys Hm 7.03 

a Atomic horizon radius. 

Table S6.  Maximum sidechain S-centred atomic horizon radius present across all systems.  Hm 
represents a terminal methyl hydrogen and Hs represents a sidechain hydrogen. 
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Preface 
 

      In Paper 7 (Section 8) a second transferability study is completed, this time within the context 

of water clusters. Today, force fields commonly operate on solvated systems, making further 

understanding solvent behaviour important towards accurately modelling it. Within this paper, 

the transferability study completed on oligopeptides is expanded upon by observing the 

convergence behaviour of all five key IQA energies (
A

IQAE , 
A

intraE , 
AA'

interV , 
AA'

clV  and 
AA'

XCV ), used in the 

current form of FFLUX, within water cluster systems. Not only are all five key IQA energies 

investigated, their long-range convergence is captured along with the convergence of the dipole 

and quadrupole multipole moments. The analysis of both the IQA energies and multipolar 

moments makes this study the first to detail the convergence behaviour of both properties 

alongside one another. 

      Within the study, snapshots of a water simulation are used to construct approximate water 

clusters varying in radial size from 9 Å to 0.5 Å, in 0.5 Å steps. The cluster’s radius, whereby a 

property is converged (IQA energy or multipolar moment), represents the horizon sphere of that 

property. Thus, the horizon sphere is a spherical-like boundary illustrating how far a property 

feels its neighbouring environment. Iterating the radius of the investigated clusters, and averaging 

across independent clusters, enables the point of convergence to be identified to within 0.5 Å. The 

maximum water cluster investigated consists of 113 water molecules (approximately the third 

solvation shell, and more than half the size of the typical 216 water molecules simulation box), 

making it the largest case study analysed using the IQA partitioning, within the current literature. 
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The Interacting Quantum Atoms (IQA) energy partitioning scheme has been applied to a set of liquid water 
largely spherical clusters (henceforth called spheres) of up to 9 Å radius, with a maximum cluster size of 
113 molecules.  This constitutes half of the commonly used 216 molecule water box, and to our knowledge 
is the largest analysis of this kind ever undertaken.  As well as demonstrating the topological analysis of 
large systems, which has only recently become computationally feasible, important long range properties of 
liquid water are obtained.  The full topological partitioning of each sphere into atomic basins is used to 
consider the long-range convergence of the energetic and multipolar properties of the water molecule at the 
centre of each sphere.  It is found that the total molecular energy converges to its 9 Å value after 7 Å, 
which corresponds to approximately the first three solvation shells, while the molecular dipole and 
quadrupole moments approximately converge after 5.5 Å, which corresponds to approximately the first two 
solvation shells.  The effects of water molecule flexibility are also considered. 

 
 

      Despite the simple structure of a single water monomer, 
liquid water remains notoriously difficult to simulate. One 
of the most significant simulation difficulties is the accurate 
modelling of the long-range hydrogen bonding networks 
that water molecules form[1-7].  These hydrogen bonding 
networks are extremely important to water’s bulk 
behaviour. For example, they are considered responsible for 
the extremely long-ranged, and unusually strong, 
hydrophobic interactions measured between organic non-
polar molecules[8, 9]. The hydrogen bond network 
determines the energy and stability of a water cluster, 
directed by the polarization of hydrogen bonds[10], but 
such networks are susceptible to sub-femtosecond 
fluctuations on the liquid phase[11]. Unfortunately, the 
spatial distribution of water can vary significantly between 
various point charge models[12-14], with further 
differences exhibited between multipolar electrostatic 
models[15, 16].  Such results are not surprising considering 
the hydrogen bonding properties of water are even be 
sensitive to nuclear quantum effects[17], promoting modern 
reassessments of water model performances on small 
systems[18-20].  

      Understanding the behaviour of water is instrumental in 
force field design, evidenced through the large number of 
models listed in reviews[21][22]. Further models focus on 

specific phenomena, including the main features of 
vibrational spectra within water clusters[23], dispersion-
corrected modelling of liquid water[24], rigid water[25], 
dissociative water potentials[26], and transferable 
parameter sets for use with biomolecules, inorganic 
surfaces and transition metals[27]. Understanding how a 
water molecule ‘views’ the surrounding system is vital in 
developing improved water models.   

      One method of obtaining such a perspective is through 
Quantum Chemical Topology (QCT)[28].  QCT groups 
several approaches that share the same central idea of 
partitioning a quantum mechanical property density into a 
set of finite-volume fragments in real 3D space using the 
gradient. These fragments correspond to topological atoms, 
each represented by an atomic basin that possesses an 
atomic nucleus and a portion of the system’s electron 
density. Accordingly, changes in a basin’s electron density 
measures the influence of perturbations from the 
surrounding system. Such an analysis of the ‘atomic 
horizon’ of a water molecule at the centre of a water cluster 
was completed[29], using the QCT branch called Quantum 
Theory of Atoms in Molecules (QTAIM)[30-33] and its 
atomic multipole moments[34]) . 
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FIG. 3. (a), (c) and (e) display the total energy, self-energy, and interaction energy, respectively, of the central water 
molecule in each sphere.  Error bars represent total integration error for the molecule (i.e. the sum of the three absolute 
atomic integration errors).  (b), (d) and (f) display the mean absolute difference in total energy, self-energy, and interaction 
energy respectively, of the central water molecule between consecutive sphere sizes, across all spheres. Error bars represent 
±1 standard deviation.  
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        Despite a 30 kJmol-1 range in the sampled 9 Å sphere 
molecular energies, the mean absolute change in energy on 
a central water molecule at that distance, caused by a 0.5 Å 
increase in sphere radius, is less than 1 kJmol-1.  By 7 Å, 
the mean molecular energy (-200779.97 kJmol-1 in Fig. 3a) 
has converged to within 0.2 kJmol-1 of the 9 Å value (-
200779.81 kJmol-1), with mean energy differences 
approximately 1 kJmol-1 or less between sphere sizes.  
Figure S2 shows the convergence of the exact energies (i.e. 
not absolute differences in energy). Fig. S3 and Fig S4.  
shows, the convergence of the total energy and mean 
absolute change in energy for three flexible-water spheres. 
Despite slightly larger fluctuations, the mean absolute 
change in energy is under 2 kJmol-1 at 7 Å. 

      The IQA energy partitioning divides total energies into 
individual ‘self’ and ‘interaction’ contributions.  In Eqs. (1) 
and. (2) this partitioning is carried through to atomic level. 
However, we can easily generate a coarser-grained 
partitioning from the energies at the molecular resolution.  
Molecular ‘self’ and ‘interaction’ energies are obtained by 
simply summing each of the Nat atomic energies, where Nat 
is the number of atoms in the molecule. Water’s molecular 

self-energy, Mol
selfE , is then  

1 2Hydrogen HydrogenMol Oxygen
self self selfselfE E E E    (3) 

while the molecular interaction energy is  

1 2Hydrogen , ' Hydrogen , 'Mol Oxygen,A'
inter inter inter inter

A AV V V V    (4) 

       The intramolecular interaction energies (i.e. interaction 
energies between the atoms of the central molecule e.g.

O1-H2
interV ) are often defined as a component of the molecular 

interaction energy, not of the molecular self-energy.  Our 
inclusion here stems from our decision to calculate AA'

interV  by 

taking the difference between A
IQAE  and A

selfE , which is 

computationally cheaper than calculating every pairwise 
interatomic contribution. This shortcut reveals the total 
atomic behavior within larger system sizes at the cost of 
interatomic-level insight. The inclusion of intramolecular, 
interatomic interaction energies in our definition of inter

MolV  is 

not expected to influence the rate of convergence of the 
molecular self-energies and interaction energies, as the 
variation in these energies is extremely small (less than 
0.05 kJmol-1, for both self- and interaction energies, for 
both the oxygen and hydrogen atoms in the monomer 
systems).   

      Figure 3c displays the self-energy of the central water 
molecule as a function of sphere radius, and Fig. 3d the 
mean absolute difference in self-energy across all ten 
spheres. Figure 3e and Fig. 3f presents analogous 
information for the interaction energies.  Convergence of 
the individual molecular self- and interaction energies is 
slower than for summed molecular energy, indicating that 
fluctuations in one energy are largely compensated by 
fluctuations in the other.  There are no configurational 
changes to the molecules already present in a sphere upon 
increasing the sphere radius (i.e. the molecules in a Nr Å 
sphere are identically positioned to the equivalent 
molecules in a Nr+Δ Å sphere).  Thus, the only change in 
energy of the central water molecule is due to a 
redistribution of the electron density caused by the sphere’s 
extended hydrogen bonding networks.  For all ten spheres, 
molecular self-energies became less stable and molecular 
interaction energies became more stable as the central water 
molecule gained its first solvation shell.  This effect is due 
to the expected positions of surrounding molecules likely to 
produce net stabilizing interactions (e.g. O-H…O as 
opposed to O…O or H…H) in creating a hydrogen bonding 
network. Accordingly, all ten spheres display 
configurations where the central molecule is hydrogen 
bonded to its first solvation shell.  As such, the interactions 
of the central molecule are electrostatically favourable, and 
the total interaction energy of the central molecule 
stabilizes. Alternatively, as the first solvation shell is added, 
the redistribution of the electron density around the central 
molecule causes the self-energy of the central molecule to 
increase. This is because the most energetically favourable 
distribution of the electron density around a water monomer 
is that which is present in an isolated monomer.  By 
perturbing the electron density of the central molecule 
through hydrogen bonding networks, the self-energy 
destabilises. Thus, effects that are likely to stabilize the 
interaction energy are likely to destabilize the self-energy, 
and effects that are likely to stabilize the self-energy are 
likely to destabilize the interaction energy. In other words, 
as the hydrogen bonding network changes with increasing 
sphere radius, fluctuations in one energy will be mirrored 
by opposite fluctuations in the complementary energy. The 
convergence of the molecular clV , and XCV  energies are 

displayed together in Fig. S5.  Furthermore, Figs. S6-S13 
shows the convergence of certain other individual atomic 
energy components, including A

selfE , AA'
clV , and AA'

XCV , for the 

individual central oxygen and hydrogen atoms.  

        The convergence of the dipole and quadrupole 
moments of the central water molecule were also 
considered. As water is a polar molecule, the behaviour of 
the water dipole moment in the bulk medium has attracted 
significant interest in the past, from small clusters[47, 48], 
to clusters of up to 50 molecules[29, 49, 50].  As AIMAll 
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only calculates atomic moments, the molecular multipole 
moments were calculated by combining[51] the 
corresponding atomic multipole moments. Figure 4a 
displays the magnitude of the dipole moment as a function 
of cluster radius, while Figure 4b displays the convergence 
of the magnitude of the dipole moment by considering the 
absolute change in energy between steps in cluster size.  
The dipole moment of the monomer (2.16 D) turned out 
higher than the experimental value of 1.855 D[52], an 
expected result with this Pople basis set[29].  Ab initio 
molecular dynamics on a box of 32 water molecules, using 
density functional theory with local density fluctuations and 
gradient corrections, gave a mean dipole moment of 2.66 
D[53], close to experiment[54], but almost 9% higher than 
the value obtained here. The convergence of the magnitude 
of the dipole moment to a lower value than expected may 
be a consequence of the selected level of theory[47].  
Despite a 0.5 D range in the sampled 9 Å cluster molecular 
energies, the mean absolute change in the dipole on the 
central water molecule at that distance, caused by a 0.5 Å 
increase in cluster radius, is less than 0.01 D.  In fact, after 
6.5 Å, the mean absolute change in the magnitude of the 
dipole moment across all clusters were less than 0.02 D. 
Fig. S14 shows the convergence of the total dipole 
deflection, and Figs. S15 and S16 the dipole moments of 
the individual atoms. The convergence of the quadrupole 
moments of the central water molecule is shown in Figs. 
S17-S19. 

 

FIG. 4. (a) Total dipole moment of central water molecule 
for each cluster. The low dipole magnitude of Cluster 7 is a 
result of the cluster’s unusually long-ranged ‘accepting’ 
type hydrogen bonds, and unusually angled ‘donating’ type 
hydrogen bonds (b) Mean absolute difference in the 
magnitude of the dipole moment between consecutive 
cluster sizes, across all clusters. Error bars represent ±1 
standard deviation. 

        A comment is in order on the potential role of 
quantum nuclear effects [17] on the hydrogen atoms. Our 
work does not discuss proton transport, autoionization 

events or the liquid-water self-diffusion coefficient, which 
are all affected by the quantum nature of hydrogen nuclei. 
However, a pioneering study [55] extends QTAIM beyond 
the Born-Oppenheimer paradigm, showing differences in 
the properties of atomic basins in the presence of a nuclear 
wavefunction. For example, in LiH the dipole moment and 
electronic charge of hydrogen is, respectively, 0.001 a.u. 
and 0.004 a.u. smaller in magnitude compared to those of 
hydrogen in the clamped nuclei model. Hydrogen’s 
electronic energy is 78 kJ/mol lower in the latter model. 
Assessing such differences for water clusters belongs to 
future study. 

      In conclusion, full QCT analysis is computationally 
feasible for systems in excess of 100 water molecules, 
about half of the 216 molecule box. We obtained 
unprecedented insight into the long-range convergence of a 
water’s properties in water.  By 7 Å, within the third 
solvation shell, mean energetic properties of the rigid water 
monomer converge to within 1 kJmol-1 of the 9 Å sphere 
values.  By 5.5 Å, about the radius of the first two solvation 
shells, the mean dipole moment and mean magnitude of the 
quadrupole moment were 0.005 D and 0.005 a.u. of the 
corresponding 9 Å values, respectively.  The convergence 
of flexible water was shown to be slightly slower, although 
similar.  These results should provide a useful test for new 
water potentials to be validated against. Furthermore, as 
application of such topological partitioning schemes are 
computationally feasible for large, conformationally 
flexible systems, such calculations will be useful in 
unlocking new insights into other large systems dominated 
by long range interactions, such as those involving ions. 
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Technical Details 

The technical details of the computations carried out are as follows: 

      AIMAll [1] was used to partition the water spheres into their QCT atomic basins and to 
calculate their IQA energy components, using wavefunctions obtained from GAUSSIAN09[2] at 
the B3LYP/6-311++G(d,p) level of theory with nosymm set, and cartesian functions in use for the 

d and f orbitals.  

      The B3LYP functional was used because it is compatible with the IQA partitioning scheme[3, 
4], has been implemented in AIMAll, has been shown to be capable of accurately predicting the 
water dipole quantitatively[5, 6], and has been shown to accurately predict the low lying energy 
minima of small water clusters qualitatively[5, 7-9].  Although use of relatively small basis sets 
has been shown to result in a shift in the dipole moment of the water monomer[10], and can result 
in the over-prediction of binding energies[11], B3LYP/6-311++G(d,p) is popular for modelling 

water[7, 9, 12, 13].   

      Flexible-water clusters were generated from the rigid-body clusters using the same distortion 
procedure in Ref. [14].  For the flexible-water clusters, frequency files were calculated at the HF 
level of theory but wavefunctions were calculated at the same B3LYP/6-311++G(d,p) level of 

theory and basis set as the rigid-water clusters.  

       AIMAll calculations were completed with the following settings: basin, outer, angular 
quadrature set to auto, TWOe calculation of electron-electron potential energies switched off and 
the calculation of adjacent interatomic surface (IAS) paths set to veryfine.  For atoms with an 
integration error, L(Ω), of more than 0.5 kJmol-1 (oxygen) or 0.2 kJmol-1 (hydrogen), a variety of 
stricter integration controls were used, with the output that obtained the lowest integration error 
selected for this work.  After use of stricter integration controls, the mean oxygen integration 
error across spheres of each step size was lower than 0.5 kJmol-1, while the mean hydrogen 
integration error across spheres of each step size was lower than 0.2 kJmol-1 for all but 4 step 
sizes (however the mean hydrogen integration error across all spheres for these 4 step sizes was 
still less than 0.3 kJmol-1).  The stricter integration controls included manually setting the basin 
outer angular quadrature to skyhigh_leb or superhigh_leb, and the calculation of adjacent 
interatomic surface paths set to superfine.  Some of the stricter integration calculations were 
completed with an updated version of AIMAll (version 15.09.12) but, apart from greater 
parallelization scalability, the integration algorithms themselves were not subject to improvement 

between versions.   

        Calculations were run on 16-core AMD Magny-Cour nodes, possessing 2.3 GHz AMD 
Opteron™ Processor 6134 processors. As AIMAll allows parallelisation, the time taken in Fig. 2 
(main text) of the main manuscript assumes perfect parallelisation, and is calculated as Time on 1 

core = Time of Nc cores x Nc	for a job run using Nc cores.  

       Although spheres larger than 9 Å could be taken from the simulation by using the periodic 
images of adjacent cells, IQA partitioning of the energies of spheres larger than 9 Å were difficult 

to obtain due to computational expense.   
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F. Zielinski, P. I. Maxwell, T. Fletcher, N. di Pasquale, S. Cardamone, S. Davie, M. Mills,     P. L. 
A. Popelier 

Status: To be Submitted  

 

Preface 
 

      In this section, a new form of validation for the FFLUX force field is presented. Here, atomic 

forces derived from FFLUX’s kriged energy models, are used to optimise the geometries of a 

number of distorted systems. The resulting geometries are then compared to the ab initio-

optimised geometries (called the QM minima), enabling conclusions regarding the kriging models 

and the robustness of the FFLUX approach, in general, to be drawn. The investigation is split into 

two parts (Parts I and II) based upon the systems investigated and the style of each investigation.  

      For the first account, Part (I), a detailed report on the optimisation of the simplest case study, 

water, is presented. The style of the report is intended to give all necessary computational details 

and a thorough analysis of the trajectories and final geometries obtained through the 

optimisations. The validation incorporates a number of kriging models, and tests the robustness of 

the method by initialising optimisations using geometries outside of the conformational space 

trained for. Despite the optimisations only being performed on water monomers, the report is the 

first example of FFLUX in action and has been long-awaited. The research draws on all of the 

knowledge presented so far, incorporating it into this application of FFLUX. Within the 

optimisation, FFLUX models are used to guide optimisation runs of distorted water monomers via 

two different optimisation algorithms currently integrated into the MD simulation package 

DL_POLY. For this investigation, DL_POLY is appended with additional modules enabling it to 

perform the optimisations using atomic forces derived from FFLUX’s kriging models. 

      Within the second account, Part (II), the method presented in Part (I) is extended, simplified 

and applied to a small amino acid system and other related small systems important for the 

modelling of amino acid sidechains. The report is designed to follow on from Part I, using a 

simpler modelling procedure, and report the aggregated optimisation results for each system. 

Future work will involve adding to Part (II) with the intention to publish Part (II) as a separate 

paper. Collectively, Parts (I) and (II) present the first applications of FFLUX models in action. It is 

also noted that the inclusion of multipole moments models alongside IQA kriging models are not 

yet incorporated in this version of FFLUX, instead details on that work is provided in the Future 

Work (Section 11). 
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Geometry Optimisation with Machine Trained 

Topological Atoms 

 

 

François Zielinski, Peter I. Maxwell, Tim Fletcher, Nicodemo Di  Pasquale, 

Salvatore Cardamone, Stuart Davie, Matthew Mills and Paul L. A. Popelier * 

 

Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester M1 7DN, Great 

Britain and  

School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, Great 

Britain 

Abstract 

      We present a geometry optimisation with a novel type of energy function called FFLUX, 

which bypasses the traditional bonded and non-bonded potentials. Instead, topological 

atoms are trained by the machine learning method kriging to predict their IQA atomic 

energies for a molecular geometry previously unseen. We rigorously demonstrate proof-of-

concept that FFLUX’s architecture is suitable for geometry optimisation. We carefully analyse 

the behaviour of several energetic (water, propane, isobutane, methanol, NMA and Gly) and 

geometric (water) optimisations observing that suitably accurate kriging models can 

deterministically optimise distorted geometries to the correct ab initio optimised system, 

within an error bar. The energetic optimisations are supplemented by investigations of the 

energy landscapes of the kriging models through the optimisation of 22,000 distorted 

geometries using a total of 166 million computed timesteps. We also find that kriging models 

are robust enough to optimise the water molecule to sub-noise accuracy, when two thirds of 

the geometric inputs are outside of the training range of that model. Finally, we also learn 

that chemical intuition is reflected in the independent behaviour of the 
A

intraE (intra-atomic), 

AA'

clV  (electrostatic) and 
AA'

xV  (exchange) IQA energies.  

Corresponding Author: pla@manchester.ac.uk, +44 161 3064511  

Keywords: Machine learning, force field, molecular dynamics, geometry optimisation, IQA, 

kriging, QTAIM, Quantum Chemical Topology 
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1. Introduction 

 

         Traditional force fields express energy as a direct function of nuclear coordinates. These 

expressions are loosely connected to an underlying quantum mechanical reality, if at all. 

Typically the various energy contributions fall into two broad categories: bonded and non-

bonded. Although this may appear a natural and innocent choice, this sharp distinction does 

not handle well the complexity of atomic interactions found in condensed matter. Hydrogen 

bonding is probably the oldest type of interaction to challenge the artificially sharp distinction 

between bonded (covalent) and non-bonded (non-covalent) interaction. Indeed, the modern 

approach of Interacting Quantum Atoms (IQA)1, which works with finite-volume topological 

atoms2-4, offers a view of covalency as a sliding scale5,6. Still, popular force fields propose a 

variety of bonded energy terms (such as stretch, bend, torsion and their cross terms), and 

non-bonded energy terms (such as van der Waals and electrostatic).  

          A second major feature of these force fields is that the energy expressions are written 

as penalty functions. For example, if a given bond takes on its equilibrium bond length then 

the corresponding bond stretch energy is zero. Any deviations from equilibrium (either by 

bond compression or elongation) result in a positive energy penalty. The force field thus 

needs a reference geometry (i.e. the equilibrium geometry). Furthermore, the typical 

Lennard-Jones potential appearing in the modelling of van der Waals interactions introduces 

its own reference minimum-energy distances. The electrostatic interaction, which is typically 

written as a Coulomb interaction between point charges, introduces a different reference, 

namely, that of charges being infinitely far apart.  

         Here, we suggest a very different approach called FFLUX. This approach, which was 

formerly called QCTFF7, is one in which atoms endowed with quantum mechanical 

knowledge8 come together and form a molecule. The topological energy partitioning method 

IQA offers a route to accomplish this goal if it is combined with a machine learning method. 

The latter was chosen to be kriging9-11, which unlike neural networks or genetic algorithms 

originates in geostatistics. Kriging (or Gaussian process regression) is a method of 

interpolation, giving the best linear unbiased prediction of the intermediate values. In 2009 

this method was first used12 in combination with topological atoms in work that successfully 

captured the fluctuation of multipole moments of atoms in water clusters (up to hexamer) in 

response to geometrical changes in the cluster. This advance constituted the first application 

of kriging in the context of intermolecular potentials, soon followed by the careful kriging 

construction13 of interatomic potentials for solid state simulations.  
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         We further developed the proof-of-concept reached in 2009, and demonstrated the 

applicability of kriged topological atoms in a growing variety of cases including water 

clusters14,15, methanol16, N-methylacetamide17, cholesterol18, a microhydrated sodium ion19, 

and all amino acids20,21 including aromatic amino acids22, alanine helices23, hydrogen-bonded 

complexes24 and weakly bounded complexes25 both from the S22 data set, and 

carbohydrates26. This collective work displayed the performance of the kriging models in 

terms of the accuracy of their energy prediction. For that purpose we typically showed the 

cumulative error distribution (the so-called “S-curve”) of the energy of each of the test 

geometry of the kriged system. Because the intersection between the set of training 

geometries and the set of test geometries is empty, this type of validation is external. Over 

the years, the validation of the kriging models has been very systematic, complete and 

candid. In this same tradition we now systematically investigate a truly novel type of 

geometry optimisation where a kriging model informs an atom on “how to behave” in the 

presence of other atoms. Ever since the availability of analytical forces27 for kriging models, it 

has been possible to make nuclei move towards an energy minimum.  

       In the current paper we show how a series of small molecules are optimised, without 

ever using bonded potentials. Instead, we let atoms adjust themselves as guided by quantum 

mechanical energy contributions as provided by IQA, including kinetic energy, exchange 

energy and Coulomb energy.  We focus on the essential technical points of the method, and 

its application. We then report various observations split into two parts based on system size 

and investigation style. Part I reports on the optimisation of the water monomer, via: (i) 

statistical assessment of the kriging models predictions, (ii) an in-depth look at the 

optimisation performances of the various models and optimisers’ parametrisations, (iii) a 

robustness test over a large set of starting points, and (iv) the chemical insight obtained from 

the IQA framework in combination with FLUXX. Part II extends the approach used in Part I to 

that of a number of small molecules, reporting: (i) a simplified model building procedure, (ii) 

statistically assessing the quality of the kriging models, and (iii) robustness testing 

incorporating 20,000 optimisation runs across 5 systems (4,000 each for propane, isobutane, 

methanol, N-methylacetamide (NMA) and glycine dipeptide (Gly)), with a total number of 

164,000,000 (=(16,000 x 10,000 steps) + (4,000 x 1,000 steps), see later for breakdown) 

timesteps being computed in total. 
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2. Computational Methods 

     There are several components that cannot be discussed in great detail here because of 

space limitations. Below we provide key references to previous work where these 

components have been carefully and extensively explained. A number of in-house and 

external computer programs are called by an in-house script called GAIA, which controls the 

construction of a kriging model and hence the training for FFLUX. A detailed flowchart of 

GAIA is given in the Appendix of reference 28. GAIA controls thousands of input and output 

files and allows a user to essentially parameterise FFLUX for a system of interest. The GAIA 

protocol has five key steps: (1) sampling, (2) ab initio calculations, (3) atomic property 

calculations, (4) kriging model building and (5) validation. Each step is carried out 

sequentially, with the output of the previous step forming the input for the next step. These 

five steps are now briefly discussed in turn. 

 

2.1 Sampling by normal modes 

     A single molecule has its geometry optimised using the program GAUSSIAN0929 at either 

HF/6-31+G(d,p) (water monomer) or B3LYP/6-31+G(d,p) (small molecules) level. However, 

the glycine molecule’s global optimum geometry is taken from work by Yuan17, optimised at 

B3LYP/apc-1. These single optimised geometries are used as the “seeds” to generate 

thousands of unique geometries by distorting its normal modes. The normal mode distortions 

have been previously described in detail by Cardamone et al. 26 and implemented in the in-

house code EROS. In each distorted geometry, bond lengths and angles were prohibited from 

straying further than ±10% of their value in the optimised “seed” geometry, except for the 

water monomer where ±20% is used reflecting greater conformational flexibility. Thus, a 

bond with an optimised length of 1 Å, for example, cannot be distorted below 0.9 Å or 

beyond 1.1 Å (or 0.8 Å and 1.2 Å for water). 

 

2.2 Ab initio calculations 

     Each of the distorted geometries has its wavefunction calculated by GAUSSIAN09 at its 

relevant theory level. In order to keep the IQA partitioning simple and well-defined Hartree-

Fock theory was selected for water and the recently proposed B3LYP functional extension of 

IQA6 was used for the remaining small molecules. Here, we are interested in demonstrating 

that FFLUX geometry optimisation works and more advanced wavefunctions will be 

introduced in subsequent work. Note that the QM minimum wavefunction is never included 
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in the machine learning training sets described below, in order to more strictly test the 

kriging capability.  

 

2.3 Atomic property calculations 
      The IQA method is part of an overall approach coined30 Quantum Chemical Topology 

(QCT)31 in 2003, which is based on the central idea of (gradient) vector field partitioning. The 

crucial idea lies at the heart of the Quantum Theory of Atom in Molecules (QTAIM)2,32, which 

was the first component of QCT. Recently, QCT has been didactically explained from various 

angles3,33,34. QTAIM (and hence QCT) defines a topological atom, which has a well-defined 

kinetic energy35. This feature is important in the design of a force field with a deep 

connection to quantum mechanics. IQA partitions a molecule’s energy,
system

IQAE , into a sum of 

atomic energies, 
A

IQAE , which in turn are composed of intra-atomic and inter-atomic energy 

components, 

system A A AB A AB AB

IQA IQA intra inter intra cl xc

1 1
( )

2 2A A B A A A B A

E E E V E V V
 

 
      

 
                 (1) 

where A and B represent atoms, and the subscript denotes the type of energy contribution. 

This equation contains the four types of IQA energy contribution that are relevant to the 

current study: the overall atomic energy, the intra-atomic (or self) energy, the exchange-

correlation energy, and finally the (classical) Coulomb energy, respectively denoted 
A

IQAE , 

A

intraE , 
AB

xcV  and 
AB

clV . We briefly explain these primary energy contributions. 

      The intra-atomic energy 
A

intraE  consists of kinetic, T, and potential energy, V, contributions: 

A A AA AA

intra ee enE T V V      (2) 

where TA represents the kinetic energy of atom A, 
AA

enV  is the (attractive) potential energy 

between the electrons and nucleus of atom A, and 
AA

eeV  is the (repulsive) potential energy 

between the electrons within atom A. The latter quantity can be generalised for any atom 

pair, 
AB

eeV , and further broken down as follows: 

AB AB AB AB

ee Coul x corrV V V V     (3) 

where ‘Coul’ refers to the Coulombic interaction between the electrons, ‘x’ represents the 

exchange energy, and a third term, missing at Hartree-Fock level, is the correlation energy. 

Now that the Coulombic energy has been separated from 
AB

eeV , the classical electrostatic 
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energy 
AB

clV can be calculated by bringing in the interaction involving the nucleus of A and of 

B, 

 AB AB AB AB AB

cl nn en ne CoulV V V V V      (4) 

Note that the order of the superscripts and subscripts is important because 
AB

enV , for 

example, refers to the electrons of A interacting with the nucleus of B, therefore, are not 

interchangeable. 

        Now that the explanation of the primary energy contributions is complete one more 

remark needs to be made. A recent FFLUX publication36 introduced the use of interatomic 

energies designated by AA’ instead of AB. Here A’ represents every other atom in the 

molecular system except A. Thus, the notation AA’ denotes the interatomic energy between 

an atom A and its surrounding environment A’, such that 

'AA AB

A A B A

V V


       (5) 

         Finally, the commercial package AIMAll37 is used to calculate these energy contributions 

from the wavefunctions. 

 

 

 

2.4 Kriging model building 
 

       Any machine learning method essentially links a set of inputs (called ”features”) with a 

set of outputs. Our use of kriging links a single output at a time (i.e. one of four possible types 

of atomic energy) with a set of nuclear coordinates (the features or inputs). Because the 

output depends only on the internal geometry of the molecule there are 3N-6 features, for a 

system with N atoms. In the case of water there will only be three features: two O-H bond 

lengths and the H-O-H angle. In larger systems, spherical polar coordinates describe an atoms 

position within the wider neighbouring environment. The general definition of features 

introduces a broader context in which a local axis system, called atomic local frame (ALF), 

must be installed on the atom being trained for. Strictly speaking, the axis system is only 

necessary for directional quantities as output, such as atomic multipole moments, which do 

not appear in this article. However, the idea of installing an origin at the nuclear position of 

each atom, one at a time, must be explained here because this installation determines the 

way the features are constructed. 
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       The x-axis of the ALF points from the origin atom to its heaviest bonded neighbour 

(following the Cahn-Ingold-Prelog invention). The xy plane sweeps out from the x-axis toward 

the second heaviest atom bonded to the origin atom. The origin atom, first and second 

bonded atom then determine the xy plane. Subsequently, the y-axis is constructed to be 

orthogonal to the x-axis and, finally, the z-axis orthogonal to both, forms a right-handed axis 

system. The first three features consist of: (i) the distance between the origin atom (A1, 1st 

atom) and the “x-axis-atom” (A2, 2nd atom), (ii) the distance between the origin atom (A1) and 

the “xy-plane-atom” (A3, 3rdatom), and (iii) the angle A2-A1-A3. Taking the oxygen in water as 

an example, the features are d(OH1), d(OH2) and α(H1OH2); for H1, they are d(OH1), d(H1H2) 

and α(OH1H2);  and for H2, they are d(OH2), d(H1H2) and α(OH2H1). For larger molecules, the 

molecular geometry is converted from Cartesian coordinates in a global frame, to spherical 

polar coordinates of each remaining atom in the ALF (i.e. not being part of the installation of 

the ALF). Note that each atom in the system acts as an origin for its own ALF, allowing the 

description of the remaining atoms by a unique (but complete) set of spherical polar 

coordinates.  

        Each atom in the system now sees its environment as a set of features (input) and has a 

set of IQA properties (output)(one per kriging model) that together make up a single training 

example for that atom. Since each geometry is a unique training example, each atom in the 

system has a list of such examples that is termed a ‘sample set’. GAIA cleans the data through 

a “scrubbing” process by finding any examples with an AIMAll integration error larger than a 

specific threshold and removes the examples from the sample set. Any geometries that are 

incomplete due to removed atoms are then discarded from all atom’s sample sets. The 

atomic integration L(Ω)38 threshold value used is 0.001 au. This threshold is applied for all but 

one training set. In Part I, the water molecule is modelled using a variety of training sets 

called “100”, “300” and “500”, which contain 100, 300 and 500 training examples, 

respectively. A twenty times tighter threshold (of 0.00005 au) was applied for a training set 

with 500 examples, termed “T500”. An additional training set was created, termed “TE500”, 

which replaces clV , xcV , intraE  with a single value, namely that of 
IQAE . In Part II, the 0.001 

au threshold is applied to all atomic models, within all systems, with each system described 

using only the IQAE  atomic energies. Within these system, 1000 training examples are used 

to model each system, with Gly using 1500 reflecting its anticipated greater complexity. We 

have shown before that kriging can successfully36 construct a relationship between the 

various energy contributions and the (geometrical) features. 
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        The kriging method outlined here is based on the treatment of Jones et al. 39,40 and has 

been explained in much greater detail in our previous work17 and also in references14,41. 

Kriging maps the response of an output y (an IQA energy) to any given input x (set of 

geometric coordinates),  

  
1

ˆ ˆ( ) ( )
n

i i

i

i

y a   


     x x x x                  (1) 

where  ( ̂ ) is the (evaluated) global term, the background value for this output,    is an 

error term, and n is the number of training geometries. The quantity ai is the ith element of 

the vector 𝒂 = 𝑹−1(𝒚 − 𝟏µ̂) where R is a matrix of error correlations between training 

points, and 1 is a column vector of ones. The error from the global term is determined17 by 

the distance between the new input point (x) and a known input point (xi). The sum of these 

errors gives the appropriate deviation from the background term and results in the new 

output, ˆ( )y x . An IQA energy has a mean ‘background’ value when considered across many 

geometries and kriging can map the deviations from the mean in response to geometric 

changes. The fact that kriging uses the distance between the new input and known inputs is 

chemically sensible as we can assume that if two geometries are very similar, the IQA 

energies on the atoms in each geometry are similar as well.  

         The symmetric correlation matrix R consists of the following kernel, 

 
1

[ ( ), ( )] exp
h

d
p

i j i j

ij h h h

h

R cor x x  


 
    

 
x x                           (2) 

where d is the number of features or the dimensionality of the input space, which is 3 in the 

water case study. In general, this value is equal to the number of internal coordinates or 3N-

6. The correlation between two points in the training data is thus a function of the distance 

between the points, along with the kriging hyperparameters θ and p. These two sets of 

parameters may both be optimised in order for this correlation to best describe the effect 

that a move between these two inputs has on the selected output. Note that each dimension 

(feature) of the kriging problem has its own θh and ph value. It has been suggested that ph can 

be fixed at 2 for most cases and, thus, is implemented in the modelling of the small molecules 

other than water. For the water monomer, we instead optimise ph alongside θh, as optimising 

ph tends to help the kriging process with very small molecules. This process is carried out with 

a Particle Swarm implementation, against a log-likelihood function as objective41. The Particle 

Swarm step makes use of a convergence parameter, here set to 200, and a tolerance 

parameter, set to 1x10-9, not described here. When the kriging process is complete, a model 

is created that can be used to predict the IQA properties belonging to an atom when given a 
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previously-unseen geometry. Any remaining data (that is, data that has not already been 

used to train models) left in the training sets can potentially be used as test examples as the 

kriging models have no knowledge of these examples. 

 

2.5 Validation 
    The long-term strategy of FFLUX is one of bottom-up validation. This means that a kriging 

model is first assessed by the accuracy of its energy predictions. This is done by an S-curve, 

which will be explained in the Results. The next level of validation is based on a geometry 

prediction, which is achieved for the first time in this article. For that purpose we need the 

analytical forces applying to the nuclei of topological atoms that have been trained to return 

the energy of the (molecular) system they form. The next level of validation, which will be 

achieved in future work, is that of structure and dynamics obtained from a molecular 

dynamics (MD) simulation. This highest level of validation will appear in future work on kriged 

topological atoms, which covers the case of polarisable atoms if kriging trains for atomic 

dipole moments (and higher rank moments). However, in the case of non-polarisable 

topological atoms, their high-rank multipolar potentials have been tested against experiment 

for radial distribution functions and thermodynamic properties, for liquid water42,43, liquid 

imidazole44 and  aqueous imidazole solutions45.  

 

2.6 Atomic forces 
     For each Kriged quantity, i.e. IQA atomic energy, first derivatives are computed through 

adapted routines from earlier work dedicated to Kriged multipolar electrostatic interaction27. 

In the present case, in the absence of multipole moments, the reported mathematical 

framework essentially simplifies itself to: 

 

AA ' '
IQAintra 1 1

2 2

AA AA

cl xc
i

A Ai i i i

EE V V
F

   



   

    
                
                    (3) 

where we differentiated with respect to the ith Cartesian coordinate α (i=1,2,3 referring to x, 

y, or z, respectively) expressed in the global frame. Note that a kriging model is expressed 

using internal coordinates,  

1 1

ˆ( ) exp
h

n d
p

j

j h h h

j h

E y a x x 
 

 
     

 
 x              (4) 

where E refers to any of the four types of energy, for any atom, x={xh ; h=1,2,…d} is a given 

set of features or internal coordinates for which the energy needs to be predicted, and d and 

n again refer to the number of features and training examples. Equation 4 (related to 
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equation 1) is used when making a prediction for an energy j

kx  using the trained correlation 

relationship of Rij (see equation 2). The chain rule of differentiation serves as a bridge 

between Cartesian and internal coordinates or,  

1

( ) ( )d
h

hi h i

xE E

x  


 


  


x x
               (5) 

The kriging derivatives of the various energies can then be directly summed into atomic 

forces, once converted from the ALF to the global Cartesian frame by applying the chain rule. 

 

2.7 Geometry Optimisation 
    DL_POLY v4.0546 was chosen to host adapted code from the group’s kriging prediction 

engine into a prototype dedicated to both proof-of-concept and design explorations. Indeed, 

for our framework’s performance, the final computational resources (memory requirements, 

disk space, etc.) are yet to be fully known. As such, several of the host software’s capabilities, 

parallelism in particular, have been deactivated to facilitate the design and implementation 

of our method. The current local code demonstrates our method’s viability of gradient-based 

optimisation techniques on water. 

    The current implementation chose to keep the new modules as self-contained as possible 

in order to minimise intervention into DL_POLY’s core. By doing so, no changes had to be 

made to the Verlet integration or the optimisation routines, which enabled a seamless 

operation of the MD software. The 0 K (zero Kelvin) optimiser is a dynamic run that is set at 

minimal temperature, with the particles’ velocities reset to zero between each step. In 

practice, an atom strictly moves along the forces to which it is subjected. Similarly to a MD 

run, such an optimisation then relies on the length and number of timesteps as parameters. 

Long timesteps mean the optimum would be reached faster at the risk of overshooting or 

oscillating around a narrow and deep minimum, while short timesteps would converge 

slower and risk being stuck in shallow and spurious local minima appearing in an undular PES.  

       The conjugate gradient (CG) method proceeds by following the direction of a guess vector 

until the system’s energy rises, at which point a new vector is computed, as a conjugate of 

the last guess direction. As a first parameter, the length of CG steps is based on the timestep 

length in DL_POLY’s implementation. The latter also provides three different convergence 

criteria to stop the optimisation process when satisfied: energy, forces or displacement 

(“distance”). So far, only the last one is compatible with our kriging engine. Further details on 

the optimisers can be found in DL_POLY’s user manual. 
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3. Results 
 

3.1 Part I – The Water Monomer 
       

      2000 uniquely normal modes-distorted samples make up the sample set for the water 

monomer. The above GAIA protocol is followed as described. Within the optimisations, 

different combinations of DL_POLY optimisation parameters are used and are tabulated 

Section 3.1.2.  

      The results for Part I are split into five analyses: S-curve analysis, Optimisation runs, 

Initiating outside the training set, Energy landscape analysis and an assessment of the 

Individual preferences of the xV , clV  and intraE  atomic energies. The S-curve analysis will 

present the s-curves for each modelled system, along with accompanying quantitative data. 

The energy analysis will report the 2000 aggregated optimisation runs for each system, 

presenting the energetic optimisation evolution for each run. 

3.1.1 S-curve analysis (kriging model quality) 

 

        The water’s optimised geometry (hereafter referred to as the “QM minimum”) was 

distorted using the program EROS with a maximal ± 20% bond stretch and angle control 

parameter. The resultant O-H bond range was 0.754 Å ≤ x ≤ 1.132 Å, and the H-O-H angle 

range 85.70 ⁰ ≤ x ≤ 128.54 ⁰. The sample set had a molecular energy range of 201.6 kJmol-1. 

The quality of the five molecular models (100, 300, 500, T500 and TE500) is illustrated in the 

S-curves in Figure 1, supplemented by the statistics given in Table 1. S-curves plot the 

prediction error (x-axis) of each test prediction as a function of the number of test points (in 

our case 500, y-axis) so that each increment of 100 %/500 = 0.2 % on the y-axis represents a 

test point. Plotting test predictions on an S-curve allows a thorough inspection of a kriging 

model’s quality. Within an S-curve, hallmarks of a good model are: (i) a steep gradient, (ii) 

being positioned as much as possible to the left, and (iii) a short ‘tail’ at the top (near 100 %). 

The tail refers to the general portion of the curve where the highest errors are seen on the 

approach to the final point at 100 %.  
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Figure 1. S-curves for the 100, 300, 500, T500 and TE500 water models described using the 

three energies given in Eqn. 1 (
A

intraE , 
AA'

clV  and 
AA'

xV ). The label “T” stands for the tighter 

scrubbing threshold of 0.00005 Hartrees, while “TE” stands for this tight model using single 

total atomic energies,
A

IQAE .       

 

 

Measure Model 

 100 300 500 T500 TE500 

Test Set Energy Range 194.8 199.6 199.6 179.2 179.2 

Training Set Energy Range 181.0 197.5 199.4 188.7 188.7 

Maximum Error 16.6 0.8 0.6 0.9 0.3 

Minimum Error 0.0 0.0 0.0 0.0 0.0 

Error Range 16.6 0.8 0.6 0.9 0.3 

Mean Absolute Error (MAE) 1.00 0.10 0.06 0.07 0.10 

Prediction % Error 0.51 0.05 0.03 0.04 0.05 

 

Table 1. Statistical analysis of the performance of the five water kriging models. All energies 

are in kJmol-1. 

 

     Three observations follow from the S-curves: (i) increasing the training set size from 100 to 

300, and again to 500, incrementally moves the curve to the left, resulting in lower Mean 
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Absolute Errors (MAEs), (ii) using a tighter scrubbing threshold T (0.00005 Hartrees instead of 

0.001 Hartrees) showed little effect on the position of the S-curve, and (iii) kriging the single 

A

IQAE  atomic energy instead of each of 
A

intraE , 
AA'

clV  and 
AA'

xV dramatically increased the 

gradient of the S-curve and shortened the tail. The statistics in Table 1 show us that model 

TE500 has a smaller range of errors, but a slightly higher MAE (0.10 kJmol-1) compared to 

either 500 (0.06 kJmol-1) or T500 (0.07 kJmol-1). However, with the exception of the 100 

model, all other models performed very well, having very low molecular energy errors 

throughout. 

 

3.1.2 Optimisation runs 

 

Having ensured that the generated models are of good quality, the investigation now moves 

onto their application within the geometry optimisation study. From the total sample set, 

three test samples are chosen as starting points (SP) for the initialisation of DL_POLY’s 

geometry optimisation run. The three starting points are referred to as SP1, SP2 and SP3, and 

their relative molecular energies are, respectively, +15.05 kJmol-1, +47.97 kJmol-1 and +126.18 

kJmol-1 above that of the QM minimum. Selecting three starting points allows us to 

investigate each individually, but also to compare and contrast the resulting energies and 

geometries from each. The three SPs are selected to represent an incrementally (from SP1 

over SP2 to SP3) more challenging task. However, the geometries of each starting point 

(illustrated in Figure 2) also feature three significantly different H-O-H angles of 115.62⁰, 

106.3⁰ and 93.36⁰, and also three quite different O-H bond length combinations. The 

increasing molecular energy of each starting geometry, along with three very different bond 

angles and bond length combinations (which notably feature no symmetry), ensure that the 

starting points begin their optimisation trajectory from significantly different regions of 

conformational space. The described approach ensures a thorough assessment of each 

model.  
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Figure 2. SP1 (left), +15.05 kJmol-1), SP2 (middle, +47.97 kJmol-1) and SP3 (right, +126.18 

kJmol-1) water geometries. Bond distances are in Å, and bond angles in degrees. 

 

 

      For our preliminary exploration we select two different parameter sets for each of the two 

optimisation methods. The 0 K optimisation algorithm was run for 5,000 steps with timesteps 

of 1 fs (parameter setting 1 or “Set 1” in short) and 0.5 fs (“Set 2”), while CG uses 1 fs 

timesteps with a distance convergence criteria of 10-5 Å (“Set 3”) and 10-6 Å (“Set 4”). In total, 

four parameter sets are employed within this investigation 

         Finally, the kriged PES can be analysed through a comparison of the geometric features 

of the optimised water molecules. Should the models have a similar kriged PES, the energies 

and geometries should show a similar optimisation evolution, when starting from the same 

point. As a first step, here we will limit ourselves to quantitative comparisons on the 

optimised molecules only. Inconsistent results indicate that the respective PESs of the models 

are not so similar in the region of the optimum solution. From different SPs, any variation 

within the resulting energies and geometries within the same model will indicate an undular 

PES. In an undular PES, a trajectory has the potential to become trapped in a local minimum. 

106.3 
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       Table 2 summarises the molecular optimisation energy results for each SP, for all five 

molecular models. The QM energy (-199,620.00 kJmol-1) is used as the reference energy for 

all ΔE values, calculated as: ΔE =[Final Molecular Energy – QM Energy]. For each parameter 

setting (i.e. “Set”), the final optimised geometry energy is given along with the corresponding 

ΔE. We now discuss, in turn, four observations. 

       The first observation is that all the optimisations have indeed run successfully with the 

exception of one (SP1, parameter set 4, for model 500 – details discussed shortly). However, 

before any further analysis, proof-of-concept has been shown: QCT atoms dressed up with 

IQA atomic energies and converted into kriging models, indeed are sufficient to obtain atomic 

forces suitable for molecular geometry optimisation. 

       The second observation is that for all parameter sets (with only the above exception), the 

ΔE of the final geometry is within ±1.6 kJmol-1. In fact, most cases are within  ±0.2 kJmol-1. 

Remarkably, the lowest ΔE reported is < 0.01 kJmol-1. However, final ΔE’s smaller than the 

model’s MAE (typically within ±0.1 kJmol-1), are within the accuracy threshold of our 

approach. Also, the atomic integration implemented in AIMAll introduces energy noise that 

typically does not enable us to recover the QM energy within ±0.1 kJmol-1 (or 0.0005 a.u.). 

With the above in mind, it is remarkable to observe the kriging predictions performing so 

well. The same energetic minimum is being reached consistently for most SPs, within the 

same molecular model. Hence, no spurious local minima significantly corrupt the PESs, which 

still appear unimodal. This observation can be made across models too but now returning 

more variation in the values of the energy minimum reached. Moving from the 100 model, 

over the 300 model to the 500 model, shows that denser sampling converges closer to the ab 

initio minimum.  

        We also see the abovementioned consistent convergence when operating both above 

and below the accuracy threshold. For example, in the TE500 model, all six 0 K optimisations 

(two across each of SP1, SP2 and SP3) all converge to a geometry with the same energy (ΔE = 

+0.14 kJmol-1), above the accuracy limit (± 0.1 kJmol-1). For the 500 model we see this 

consistency (reaching ΔE = +0.04 kJmol-1, below the accuracy threshold of ± 0.06 kJmol-1) for 

five of the six 0 K parameter settings. The respective geometries reached for the TE500 and 

500 models, are not only energetically the same, but also geometrically, as shown in Table 3, 

which reports the final geometries of parameter Set 1.  

        The third observation is that the 0 K optimisations consistently perform better than the 

CG optimisations, where “better” equates to a lower ΔE. Throughout all 15 datasets (5 
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models x 3 SPs), there is only one example where both CG optimisations perform better than 

the two 0 K models (100 Model, SP3). The superior accuracy of 0 K was expected, given this 

method’s design to follow the trajectory of a very low temperature simulation continuously 

until a chosen number of steps are reached. However, CG places more emphasis on reaching 

the minimum of the model quicker, through a reduced number of steps and stopping when a 

convergence criterion is met. Indeed, CG reaches a slightly poorer molecular energy 

minimum geometry than 0 K, but one that is still good. Within the optimisation community, 

the reduced accuracy of CG is generally accepted in favour of a fast calculation. Hence, CG’s 

firm grounding as a common optimisation algorithm, and 0 K’s relative obscurity. For our 

investigation, 0 K is an undoubtedly useful algorithm for diagnostic purposes and proof-of-

concept. 

       The fourth observation is that “Set 4” fails for SP1 for the “500” training as a result of the 

trajectory of the optimisation never meeting the distance convergence criteria. Such 

behaviour is an indication that the PES modelled in the IQA model is not smooth enough to 

reach a solution. At some point, the energy gradient of the model may cause a step in an 

incorrect direction of conformational space. Should such an event lead to the geometry 

‘escaping’ the training range far enough to result in the kriging training correlation vanishing, 

then the geometry is considered to be in the flat “no man’s land” outside of the PES. For the 

SP1-Set 4 example, the molecular energy fluctuates between a good prediction followed by a 

poor prediction as the optimiser attempts to improve it. Eventually the model predicted a 

point far outside the training range, from which the trajectory failed to recover. A sensible 

hypothesis is that the PES is not smooth enough within that specific region of the 

conformational space. The PES smoothness could be improved by using (i) more training 

points, (ii) more accurate training points, or (iii) a better distribution of training points in 

conformational space. Alternatively, completing the optimisation with a less strict distance 

convergence criterion (as in “Set 3”) is a solution that would not involve the modification of 

the model. 

         Having analysed the energy of each final timestep, we now analyse the energy evolution 

trajectory. Because we observe consistently low energy ΔE values for the T500 model, these 

energy trajectories should provide a good example of the behaviour that one can expect from 

an accurate kriging water model. Figure 3 shows the energy trajectory of the optimisation 

using Set 1 (0 K and 1 fs) and Set 3 (CG and 1x10-5 Å convergence) for each starting point. The 

left panels show a difference between the smooth trajectory of the 0 K algorithm (top) and 

the jagged trajectory expected from CG (bottom). This behaviour is amplified in the right-
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hand magnified plots. The magnified plots show the convergence for each SP through 

monitoring the energy differences between successive timesteps. The plots on the right of 

Figure 3 define ΔE as [current system energy – previous system energy]. Note that the 

convergence plot for CG always ends with a peak, caused by the CG algorithm being forced to 

predict a geometry of higher energy because the landscape does not offer any further 

minimising solutions. The final point on the CG plots merely show this final step. The 

penultimate step is then treated as the final optimised solution. The 0 K plots are truncated 

to 500 out of the 5,000 completed timesteps since the molecular energy does not fluctuate 

by more than 0.0001 kJmol-1 following this point. Interestingly, the CG runs almost reach 

energy convergence on a similar time scale to 0 K. The lack of a clear difference between the 

number of timesteps is unexpected but can be explained by the fact that such a molecular 

system could be too small to really benefit from the CG approach. Soon-to-be published work 

will expand this approach to larger molecules where the number of time steps required for a 

successful optimisation can be readdressed and confirmed with scaled-up examples. 

 

 

 

Figure 3. T500 molecular model geometry optimisation trajectory steps with SP1 (blue), SP2 

(red) and SP3 (green) starting points: a) Set 1 (0 K and 1 fs timestep) truncated at 500 steps 

where the energy fluctuation is < 0.0001 kJmol-1 and b) Set 3 (GC and 1 fs timestep) with no 

truncation. The x-axis marks the timestep number. In the left panels, the y-axes denote 
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molecular energy; in the right panels the y-axes denote ΔE (current energy – previous 

energy). All energies are in kJmol-1. 

 

 

     Finally, Set 1 serves as an example to discuss the geometrical aspect of the optimisation 

results. Table 3 summarises each model’s geometries optimised using Set 1’s parameters. The 

quantitative data are augmented by data bars representing the deviation of optimised bonds 

and angles with respect to the QM values. Unsurprisingly, the 100 model is the worst 

performing, consistently producing geometries that are the most different from the QM 

optimum. However, even for the 100 model, the correct bond stretches are reproduced to 

within 0.01 Å, whereas the H-O-H angle is less accurate. The 300, 500 and T500 models all 

perform relatively similarly, with bond stretches within 0.007 Å and angles within 0.39⁰. The 

TE500 model performs exceptionally well, predicting both bond stretches to within 0.0005 Å 

and the angles to within 0.09⁰. Note that the TE500 model is the only model to reproduce a 

symmetrical final geometry. TE500 also optimises to almost the exact same geometry for all 

three starting points (with ΔE = 0.14 kJmol-1), with the final angles differing < 0.001⁰. All 

other models return different optimised angles for each SP, with some models reporting the 

same bond stretches across some SPs. The lack of consistency for the bond angle confirms 

that angular features are lesser energetically influencing than radial features (bond 

distances). 
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Table 3. Water’s optimised geometrical data from each starting point (SP1, SP2 and SP3) 

using the five models with parameter Set 1 throughout. Optimised values are reported as 

relative to the QM, i.e. bond distances and angles are plotted as “relative data” bars where 

red indicates a lower value, blue a higher value. The magnitude of each bar is marked by its 

length, normalised using all resulting bond distances across all three SPs. The largest bar (red, 

SP3, 100 model) is set to one unit of length. The angles are treated similarly, with the unit 

length bar being “blue, SP1, 100 model”. 

 

       The above analysis is presented from a critical point of view in order to properly 

scrutinise the results. However, as seen from the energy results in Table 2, we are often 

working within the accuracy threshold and the error margins seen across all the results 

presented in Table 3 are very low for all but the 100 model. In conclusion, the geometrical 

features, like the energies, are proven to be optimised to their correct values within very 

small error margins. 
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3.1.3 Initiating outside the training set  

 

      Here we report on the robustness of the models when the optimisation is initialised from 

starting point geometries (SPs) with energies that are all outside of the training range. The set 

of 4 starting points will be referred to as SP-OUT1, SP-OUT2, SP-OUT3* and SP-OUT4*, which 

respectively start with the following ΔE values: 195.24 (+6.53), 201.15 (+13.45), 300.50 

(+111.79) and 592.21 (+403.5) kJmol-1, respectively. The geometrical features of each SP-OUT 

system may be found in Table 5. The ‘*’ indicates that this starting point contained geometric 

features outside of the training range, and the bracketed values represent the difference in 

energy from the maximum of the trained energy range, in this case 188.71 kJmol-1 for the 

T500 model. It was important that at least some of the geometric features lay within the 

training set range, otherwise the model would not be expected to perform and produce any 

relevant results. SP-OUT4 is the only starting point lacking any geometrical features within 

the training set range, but is included for comparison. To reiterate, when making predictions, 

a kriging model will default to the mean value (μ) when correlation between the training 

features and an example point’s features vanish, i.e. when a geometry drifts too far outside 

of the training range. In the case of water, when one (or two) geometric feature(s) are in this 

position, the remaining two (or one) feature(s) are responsible for guiding the molecule back 

to within the operable training range. Currently, it is unknown to what extent this is possible. 

Should all three geometric features be outside the training range, the model is expected to 

fail and give a poor final geometry.  

        Table 4 reports the optimised energies from the four SP-OUT runs, again using the same 

four parameter sets (Sets 1 to 4). For consistency with Figure 3, the T500 model is used for 

this analysis, however, any of the other 500, T500 or TE500 models would have been suitable. 

Remarkably, the optimisations run successfully for each of SP-OUT1, SP-OUT2 and SP-OUT3 

cases, reaching ΔE values within 0.14 kJmol-1.  

 

 

 

 

 

 

 



22 
 

 

Table 4. Optimisation results from starting points (SP) generated outside (OUT) the training 

set energy range (called “SP-OUT1” to “SP-OUT4”), using the T500 water model. 

 

        The final geometric data for the runs of Set 1 are given in Table 5, which is analogous to 

the format of Table 3. Geometrical features appear good, matching the energy optimisation 

for all except SP-OUT4. SP-OUT4 fails by incorrectly predicting the O1-H2 bond by +0.558 Å 

and the H-O-H angle by -15.138⁰. Elongation of the O1-H2 bond causes the O1-H3 bond to 

shorten and finish with a reasonable final length (only + 0.008 Å from the target value). 

Examples of the geometric trajectory can be found in the Supplementary Information (SI). 

Figures S1 and S2 depict the fluctuation of the geometric features for SP-OUT 2 Sets 1 and 4 

respectively, recovering from outside of the training range and producing a good final 

geometry. However, Figures S3 (Set 1) and S4 (Set 4) illustrate how such a recovery never 

occurs with SP-OUT 4. Here, the optimisations eventually terminate with all or some of the 

final geometric features still not, or never, in the training set range. The behaviour of the final 

few steps of the optimisation in Figure S4 is comparable to that observed in the failed case of 

[SP1/500 model/“Set 4”] (see Table 2). This behaviour characterises an evolution outside the 

operable range of the models. 
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Table 5. Optimised geometrical data for each of the four SP-OUT runs for the most 

energetically stable parameter set (Set 1). All runs are completed using the T500 model. 

Optimised values are reported as relative to the QM, i.e. bond distances and angles are 

plotted as “relative data” bars where red indicates a lower value, blue a higher value. The 

magnitude of each bar is marked by its length, normalised using all resulting bond distances 

across all three SPs. The largest bar (blue, SP-OUT4, O1-H2) is set to one unit of length. The 

angles are treated similarly, with the unit length bar being “red, SP-OUT4”. 
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3.1.4 Energy landscape analysis 

       As a final check of the model’s robustness, a comprehensive analysis was set-up by taking 

as starting points each of the 2,000 geometries generated by the distortion method. 

Optimisation runs were carried out for each geometry with the 0 K method (to ensure 

consistency and proper comparison) for 1000 timesteps of 0.5 fs, totalling 2 million timesteps 

being evaluated (= 2,000 x 1,000 steps). From the previous investigations, these parameters 

were deemed suitable to obtain a bird’s eye view of the set’s general behaviour and detect 

outliers. Again, the T500 model was selected for this analysis. Energy evolution of every 

trajectory was then extracted and aggregated, to be plotted in Figure 4 as differences with 

respect to the QM minimum. By the 2,000th step, the average energy difference reached is 

0.056 kJmol-1 (standard deviation: 0.046 kJmol-1, minimum and maximum: 0.003 and 0.24 

kJmol-1, respectively).  
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Figure 4. (a) Aggregated plot of the molecular energy evolution in time for each of the 2000 

starting geometry considered, using the T500 model, (b) Magnified energies at the final step 

of the 0 K optimisation, (c) Distribution of final energies at 1,000th timestep. 

 

 

           The generality of the behaviour described earlier for the three individual starting points 

can also be observed in Figure 4a: every trajectory’s energy monotonically drops within ~15 

kJmol-1 of the QM minimum in less than 100 timesteps. The slower converging trajectories 

seem to mostly originate in low-lying energy starting points (darker blue). The final steps, as 

seen in Figure 4b, reveal several trajectory bundles approaching the expected QM energy 

minimum by a different amount (again, without clear separation of the trajectories 

originating from low and high-lying energy starting points). From Figure 4c, the final energies 

of the 2000 initialisations at the 1000th timestep are depicted: 25% of the set converges 

within less than 0.01 kJmol-1, while a bigger portion of the set (~50%) clusters around 

convergence within 0.05 kJmol-1, and 100% of the set converges within 0.25 kJmol-1. The most 

probable reason for this behaviour is the inevitable presence of noise (at least with the 
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current method) in the kriging model, causing small spurious local minima around the global 

minimum and limiting the smoothness of the predicted PES. In any case, the accuracy 

threshold we operate within is reasonable enough to consider the whole of the sample set 

reasonably converging. In order to provide a fuller picture of the convergence behaviour, 

adequate tools for a proper analysis of the geometry evolution are in development and 

results will be featured in forthcoming publications featuring a larger variety of systems. 

 

 

3.1.5 Individual preferences of the xV , clV  and intraE  atomic energies 

 

       Here we report on the individual tendencies of each of the three IQA energies (
A

intraE , 

AA'

xV  and 
AA'

clV ), which are used in four of the molecular models tested. Observing the ‘ideal’ 

behaviour of each gives us an insight into the interplay between the knowledgeable 

topological atoms occurring in each of the optimisation runs. Here, we systematically 

eliminate, in turn, each of the other two energy contributions. First, the 
AA'

clV  and 
AA'

xV  

models are switched off to observe only the behaviour of 
A

intraE  in an optimisation. Likewise, 

the next run switches off the 
AA'

clV  and 
A

intraE  components to obtain the behaviour of just 

AA'

xV . The final run completes the analysis by switching off 
AA'

xV  and 
A

intraE  to observe only 

the 
AA'

clV  behaviour.  

       Once more, the combination of the T500 model and Set 1 was selected for these 

examples. At the QM minimum, all three IQA components are optimally balanced: by 

optimising from the corresponding QM minimum geometry we can then observe each of the 

individual IQA components’ preferential drift. Figure 5 illustrates the resulting geometries, 

alongside the QM initialisation geometry for reference. Table 6 accompanies the results, 

analysing the geometries from Figure 5 quantitatively, similar to Table 5. 
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Figure 5. Single-energy optimised water geometries using the individual 
A

intraE , 
AA'

xV  and 

AA'

clV  energies. Initialisation geometry is the QM minimum, and the optimisations are 

performed using the T500 model with parameter Set 1. 

 

 

Table 6. Geometrical data for the single-energy optimised runs, using Set 1 associated to the 

T500 model. Optimised values are reported as relative to the QM, i.e. the value of [Resulting 

Feature – QM], and plotted as a relative data bar. Optimised values are reported as relative 

to the QM, i.e. bond distances and angles are plotted as “relative data” bars where red 

indicates a lower value, blue a higher value. The magnitude of each bar is marked by its 

length, normalised using all resulting bond distances across all three SPs. The largest bar (red, 

AA'

xV , O1-H2) is set to one unit of length. The angles are treated similarly, with the unit length 

bar being “blue, 
AA'

clV ”. 

 

       The Coulomb-only optimisation (
AA'

clV ) slightly compresses the O-H bond lengths but 

maximises the H-O-H angle to 172.6 ⁰, indicative of the, admittedly very low, electrostatic 

repulsion between the hydrogen atoms with one another. The intra-atomic- only 

optimisation ( A

intraE ) significantly elongates the O-H bonds and makes the H-O-H angle much 
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more acute (~50 ⁰). Unpublished results have shown that A

intraE  can generally be correlated 

with atomic volumes, hence elongation of the bond lengths is to be expected to maximise 

such atomic volumes. In addition to the elongation, maximising the oxygen volume must 

more than compensate for the additional destabilisation coming from the mutual 

compression of the two hydrogens. As the IQA term carrying covalent interaction, 
AA'

xV  

expectedly compresses the O-H bond lengths upon optimisation, which corresponds to an 

increase in the covalent nature of the bonding. We can also deduce that the attraction 

between the H…H atoms must not be significant since it causes only a small deviation in 

making the H-O-H angle more acute (~90 ⁰).  

        The geometries presented in Section 3.5 should not be overinterpreted, as they are 

driven outside of the training range (in “no-man’s-land”) and are likely to converge due to the 

loss of kriging correlation: these analyses are relevant for the geometric drift tendencies only. 

         The analysis in this section reminds us how there is not only a complex interplay 

between the type of atomic energies used within the optimisation, but also a balance being 

reached between the atoms when only a single type of IQA energy is used. The interpretation 

of each IQA energies’ significance47 could benefit from the perspective provided by such 

optimisations, at least at the level of chemical intuition, as it gives some insight about where 

each energy component “pushes” the molecule to go toward. No such analysis is possible for 

the TE500 model, for which the earlier results (see Section 3.2) already illustrate the 

preferential behaviour of the 
A

IQAE energy for an atom in this water model. 

 

 

3.2 Part II - An Energetic Analysis of the Optimisation of the Propane, Isobutane, 

Methanol, N-Methylacetamide (NMA) and Glycine dipeptide (Gly) systems 
 

      The small molecules investigated are chosen to reflect a scaling level of complexity, but 

still biologically relevant: propane (sidechain of Val), isobutane (sidechain of Leu), methanol 

(sidechain of Ser), NMA (methyl-capped peptide bond) and Gly (dipeptide capped amino 

acid). The training sets are built using the 
A

IQAE  energies only (instead of each of A

intraE , 
AA'

clV   

and 
AA'

xV ) and fixed to 1,000 training points for the sidechain and NMA systems, and 1,500 

training points for Gly. We note that these training sets are significantly smaller compared to 

those reported previously36, for the methanol (3,400 training points), NMA (3,300 training 

points) and Gly (3,000 training points) systems. Between investigations, some computational 

efficiency has been improved, some kriging parameters are altered and the sampling program 
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used is different (here EROS is used instead of TYCHE). However, the overall GAIA approach, 

and more importantly the core kriging algorithm, has remained consistent. For the purposes 

of this investigation, smaller models are preferred for computational practicality, at the 

expected loss of some model accuracy. The amount of accuracy lost within the models will 

also be investigated within the analysis.  

      Each system is sampled with 4,000 normal modes-distorted sample points, upon which, 

every point will be optimised resulting in 4,000 optimisation runs per system, using the 0 K 

optimiser. Albeit not too computationally expensive to optimise, the 0 K route is much slower 

than other optimisation algorithms and but is still useful for the validation of our approach 

and model checks. 

      In Part II, no geometric analysis is included. The geometric analysis will be the subject of 

further investigations that are still required to complete this part of the publication. It is the 

intent that, in the final published article, the energy results presented in this section will be 

accompanied with geometric results, providing a complete analysis of the non-water systems. 

The completion of the geometric analysis will also enable the separation of Parts I and II into 

detached articles (possibly as a series) depicting the first and second applications of FFLUX on 

the water monomer (article one), reporting a detailed analysis of case study optimisations, 

and on multiple small molecules, where greater emphasis is given towards the reporting of 

the global energetic and geometric results of 4000 aggregated 0 K optimisations for each 

system (article two).  

      The 0 K optimiser parameters are set to 0.5 fs timesteps with 10,000 timesteps for each 

system. The Gly optimisations are significantly more computationally expensive than the 

other small systems. Thus, 1000 timesteps are used instead of 10,000 with the hypothesis 

that this should still be enough to optimise the structures. It is presumed that 10,000 steps 

will be excessive, but should ensure that the final optimised geometries are indeed the 

optimal solution of the kriging models.  

      The results for Part II are split into three analyses: S-curve analysis, Energy landscape 

analysis and a Discussion. The S-curve analysis will present the s-curves for each modelled 

system, along with accompanying quantitative data. The energy analysis will report the 4,000 

aggregated optimisation runs for each system, presenting the energetic optimisation 

evolution for each run. 
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3.2.1 S-curve analysis (kriging model quality) 

 

     The s-curves for each system are plotted in Figure 6. The position of the s-curves, built 

using 1,000 training points, can be correlated to the size of the system, with the most 

accurate (to the left) being methanol (6 atoms) and the least accurate (to the right) being 

isobutane (14 atoms). The Gly system is not considered within this correlation since 1,500 

training points are used to capture its larger, more complex structure, making it unfair to 

compare with a system modelled with 1,000 training points. The accompanying quantitative 

analysis for each model is summarised in Table 7. 

 

 

Figure 6. 
system

IQAE S-curves for the propane, isobutane, methanol, NMA and Gly systems, 

obtained from 500 test point predictions. The x-axis denotes the prediction error upon the 

system energy, the y-axis denotes the 500 test points represented as a percentage where 500 

/ 100 % = 0.2%, indicating that for every 0.2% a test point is plotted. 

  

      Like the s-curve positions in Figure 6, the corresponding MAEs correlate to the size of the 

system: 0.53, 1.29 1.29, and 1.90 kJmol-1 for the methanol, propane, NMA and isobutane 

systems, respectively. The Gly system has an MAE of 1.86 kJmol-1. Accordingly, the MAE%s 

also correlate with system size: 0.61%, 0.86%, 1.55%, and 1.55% for the methanol, propane, 

NMA and isobutane systems, respectively. However, no real correlation is seen for the 
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maximum absolute errors. Compared to the MAE%s reported in an earlier publication 

(Methanol 0.3 %, NMA 0.6 % and Gly 0.4 %), the current MAE%s are expectedly slightly 

worse. However, considering the substantial scaling down of the number of training points 

used here (2 – 3 times fewer), alongside the more challenging sampling of EROS (instead of 

TYCHE), the MAE%s should be considered reasonable. What is more interesting is to now 

investigate how these computationally cheaper models perform within the geometry 

optimisation application. Should they perform poorly, the computationally more expensive 

but more accurate models may prove necessary. 

 

Measure Propane Isobutane Methanol NMA Gly 

Maximum Absolute Error 7.38 8.48 4.82 12.56 10.55 

Minimum Absolute Error 0.01 0.00 0.01 0.01 0.01 

Absolute Error Range 7.38 8.48 4.81 12.56 10.54 

Mean Absolute Error (MAE) 1.29 1.90 0.53 1.29 1.86 

Standard Deviation (SD) 1.12 1.54 0.54 1.16 1.41 

Test Set Energy Range 150.13 122.52 87.20 82.94 100.56 

MAE% Error 0.86 1.55 0.61 1.55 1.85 

Table 7. Quantitative analysis of the propane, isobutane, methanol, NMA and Gly models. 

 

3.2.2 Energy landscape analysis 

 

      Within the energy analysis, the aggregated plots, like that seen in Figure 4a for the water 

monomer in Part I, are reported in place of single case study analyses. The aggregated plots 

provide a comprehensive analysis of the optimisation performance for that system, providing 

a birds-eye view of the energy evolution from every initialisation starting point. The y-axis on 

the aggregated plots should be read as the value of the system energy (in kJmol-1) relative to 

the ab initio value, the x-axis is the timestep (in 0.5 fs steps).  

      The aggregated plots indicate the quality of the kriged 
system

IQAE   landscape. Should there be 

a significant discrepancy between the final energies reached by each of the 4,000 

initialisation starting points, then the kriging model requires improvement. Improvement can 

be achieved through using more training points, using better quality training points (tighter 

scrubbing threshold or some improvement on the selection of training points) or through an 

improvement of the kriging parameters (optimising p , lowering the tolerance, raising the 

convergence, etc.). Such improvements will be elaborated on later the discussion section. 
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      Next, each system will be addressed in turn, grouped according to their anticipated 

complexity. Complexity is interpreted as the number and range of atoms and functional 

groups present in the system. As such, the aliphatic systems (propane and isobutane) are 

presented first, followed by the slightly more challenging methanol and NMA systems, and 

finally the most challenging system: Gly. 

 

Aliphatic systems (propane and isobutane) 

 

      Figures 7 and 8 plot the aggregated molecular energy evolutions for the propane and 

isobutane system optimisations, respectively. Every initialisation point can be seen to 

optimise to converged system energies ΔE = -1.1 kJmol-1 and -0.7 kJmol-1 relative to the ab 

initio optimised energy, respectively. These converged final energies are within the noise 

regions of ±1.3 kJmol-1 and ±1.9 kJmol-1 for the propane and isobutane systems, respectively. 

Thus, all the initialisation geometries are said to be successfully optimised within the error 

region. Furthermore, all initialisation points are optimised to their respective converged 

energies within 200 timesteps. 
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Figure 7. Aggregated plot of the molecular energy evolution in time for each distorted 

sample, for the propane system with 10,000 0.5 fs timesteps. 

 

      Next we observe the trajectories of the energies. Interestingly, the energetically higher 

initialisation points (lighter blue trajectories) appear to optimise faster than some of the 

lower energy initialisation points (darker blue trajectories). Since the algorithm takes finite 

step sizes (unlike the CG approach), it suggests that the kriging model offers clearer energy 

pathways to the optimal solution from higher energy regions of conformational space. 

Despite being perhaps unexpected, this would make sense since the lower energy regions are 

expected to be more undulant and potentially be more susceptible to being trapped in local 

minima (if present). It is also expected that the lower energy regions are increasingly 

vulnerable to the associated MAE of the kriging model, which acts as noise on the model. As a 

result, once the noise region given by the MAE has been reached by the energy trajectory, it 

should be considered a successful optimisation. However, it is known that the higher 

prediction errors typically occur on test points further from the minimum, therefore the 

conformational space near the global optimum solution (global minimum) of a kriging model 

should remain well described. Overall, it is hoped that the noise region used within these 
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small models is suitably small to allow accurate optimisations towards the global minimum of 

the kriging model.  

      Next we observe the energy analysis for the methanol and NMA systems.  

 

 

Figure 8. Aggregated plot of the molecular energy evolution in time for each distorted 

sample, for the isobutane system with 10,000 0.5 fs timesteps. 

 

Methanol and NMA systems  

 

      Figures 9 and 10 plot the aggregated molecular energy evolutions for the methanol and 

NMA system optimisations, respectively. Unfortunately, two minima are located within each 

system optimisation. The minima are located ΔE = -0.1 kJmol-1 and -3.3 kJmol-1 relative to the 

ab initio energy for methanol, and ΔE =+0.5 kJmol-1 and -0.7 kJmol-1 relative to the ab initio 

for NMA. The MAE noise regions for methanol and NMA were ±0.53 and ±1.29 kJmol-1, 

respectively. Thus, the NMA system can be considered to be optimised to within the noise 

region, even if to two located minima. However, the methanol system locates one minimum 
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within the noise region and one outside, suggesting an improvement of the methanol model 

is necessary. 

 

  

Figure 9. Aggregated plot of the molecular energy evolution in time for each distorted 

sample, for the methanol system with 10,000 0.5 fs timesteps. 

 

      Again we observe the energy trajectories noting that higher and lower initialisation points 

are seen to optimise at different rates. For the methanol and NMA systems, these rates seem 

to influence the final optimal energies reached; where we see the higher energy systems 

optimise to one minimum, and lower energy systems to another. Despite the rate 

differences, there is no consistency as to which category of initialisation points optimise to 

the ‘better’ energy, since the lower initialisation points reach a lower final energy in 

methanol but a higher final energy in NMA. To clarify, ‘better’ is assumed to be closest to the 

ab initio energy, not necessarily the lowest energy.  

      In methanol, a number of optimisations take a step from the better converged energy 

towards the poorer, but lower, energy minimum located. The point where this step occurs is 
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indicated by a dashed orange circle in Figure 9. Furthermore, there also appears to be a 

stabilising region ΔE = ~+3.3 kJmol-1 above the ab initio energy, from which some energy 

trajectories escape to a lower minimum around similar timesteps of the first identified 

minima-bridging step (still within the orange circle). In Figure 10, we see a similar late 

minima-bridging step for the NMA system. Here, some geometries converged upon one 

minimum (ΔE = +0.5 kJmol-1) appear to take a late step towards the lower minimum (ΔE = -0.7 

kJmol-1). The occurrence of this optimising step indicates that, given enough timesteps, the 

optimisations converging on the higher minima may too take a step to the lower minimum. 

However, given the successful optimisations of the aliphatic systems within a few hundred 

timesteps, 1,000 timesteps or more is a considerably large number of timesteps for such 

small systems. Furthermore, it would not be computationally feasible to frequently operate 

much higher than 1,000 timesteps. Such minima-bridging steps are also seen to occur much 

earlier, around 100 timesteps, within the methanol optimisations. 

 

Figure 10. Aggregated plot of the molecular energy evolution in time for each distorted 

sample, for the NMA system with 10,000 0.5 fs timesteps. 
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      The methanol and NMA results indicate that some further analysis is required to fully 

understand the trajectory taken by the initialisation points, including the to-be-completed 

geometric analysis which should clarify any structural anomalies and geometrically better 

classify the minima. Overall, improvement is necessary for the methanol model, but the NMA 

model should be considered a successful optimisation. Suggestions on improving a model will 

be discussed in Section 3.2.3.  

 

Glycine system (Gly) 

 

 

 

Figure 11. Aggregated plot of the molecular energy evolution in time for each distorted 

sample, for the Gly system with 1,000 0.5 fs timesteps. 

 

      Figure 11 plots the aggregated molecular energy evolution for the final system, Gly. Again, 

two minima appear to form by the 1,000th timestep, however, the optimisations need further 

timesteps to confirm the nature of the navy minimum. To clarify, the final energy reached by 
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the navy trajectories are consistent for ~100 timesteps, but when observed broadly within 

Figure 11,  are not converged for as many timesteps as that of the lighter blue minimum. 

Hence, the hypothesis that 1,000 timesteps would be enough for Gly’s energy convergence 

was optimistic.  

      Despite the convergence question remaining open, both minima reached by the 1,000th 

timestep are very accurate: ΔE = +0.8 kJmol-1 and +0.5 kJmol-1, relative to the ab initio 

minimum, and both within the MAE noise of ±1.86 kJmol-1. Thus, the optimisation should be 

considered as successful. However, given the greater success of the water monomer, 

propane and isobutane systems where a single minimum is converged upon, it is still hoped 

some improvement is still possible. Given more timesteps there also remains the potential for 

the higher minima energy trajectories to step towards the lower, more accurate minimum 

similar to the late minima-bridging step observed for the NMA system.  

      Finally, to comment on the energy trajectories once more, the higher initialisation points 

are again observed to optimise faster than the lower energy initialisation points, and to 

separate minima (so far). Thus, for all but the methanol model, our analysis suggests that 

starting energetically further from the minimum in conformational space, provides a clearer 

pathway to a models global minimum solution. Such a consistent trend should be looked for 

in future cases. 

 

3.2.3 Discussion 

 

      Within Part II, the optimisations performed upon the propane, isobutane, NMA and Gly 

can be considered as successful. However, the results observed for the methanol 

optimisations are poorer, with the model quality being called into question. Subsequently, we 

now speak about how system models in general may be improved. The aim of improving or 

refining a model should be to enable a successful optimisation (within the MAE noise region), 

but also to remove the likelihood of converging upon multiple minima. Thus, the latter point 

makes these considerations also applicable to the refinement of the NMA and Gly models. 

Each solution will now be discussed, in turn: 

Increasing the number of training points 

      Increasing the number of training points reminds us of the differences between the model 

accuracy seen within our previous work36, and that obtained for the smaller models used in 

this investigation. Again, we point out that this investigation is computationally expensive. A 

total of 20,000 (= 5 x 4,000) systems are optimised using a total of 164 million (= (16,000 x 



39 
 

10,000) + (4,000 x 1,000)) timesteps. All of these are performed before the algorithm is 

optimised to maximum efficiency. Therefore choosing 1,000 (and 1,500 for Gly) training 

points was seen as a reasonable compromise. However, including more training points, 

potentially around the global minimum solution, could improve the model and enhance the 

smoothness of the energy landscape between the minima located in these systems. 

Unpublished results, along with those concluded between here and Ref36 have shown that 

increasing the number of training points correlates well to an increase in the accuracy 

(lowering of MAE and MAE%) of the model. However, the poorer performing methanol 

system has a low MAE% of 0.61 %, whereas the MAE%s of the well performing other systems 

are higher: propane (0.86 %), isobutane (1.55 %), NMA (1.55 %) and Gly (1.85 %). Thus, 

having a lower MAE% does not ensure a good optimisation, neither does there appear to be a 

MAE% threshold upon which one should expect good optimisation behaviour. Thus, we also 

look to additional methods of model improvement. 

Improving the quality of training points  

      Improving the quality of the training points is possible by either using a tighter scrubbing 

threshold (< 0.001 Hartrees used here) within GAIA, or through ensuring a more even training 

of conformational space. Tightening the scrubbing threshold will eliminate more sample 

points from the sample pool, hence leaving fewer samples to train and test using. Thus, a 

balance must be found between the training set size and the accuracy desired. This balance 

becomes particularly significant as the system size increases, where increasingly more atoms 

will have the capacity to have a poor integration error, causing that molecular sample to be 

ejected from the sample pool. Currently, there is no quantitative measure to capture a ‘sweet 

spot’ for this balance.  

      Ensuring the conformational space trained is well-sampled is a present topic under 

investigation within our group. Currently, samples are randomly shuffled twice within the 

GAIA protocol, with the resulting samples assumed to reasonably sample conformational 

space through this random factor. Alternatively, the conformational space trained may be 

strategically designed using pre-existing sampling techniques. Those such as a Voronoi48 

tessellation algorithm for evenly sampling a training space, or the MaxMin49,50 algorithm that 

ensures samples containing the global maximum and minimum value for a particular feature 

are included in the training set, are available options, amongst others, for improving the 

training point quality. 
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Improving the training parameters 

      One of the most influential parameters within the kriging procedure is p . Optimising p , 

will improve the accuracy of the model and subsequently provide a better description of the 

kriged energy landscape. In these non-water models, p =2 was chosen for its computational 

efficiency (allowing later functions to be resolved through squaring) instead of p  being 

optimised to a non-integer value (significantly increasing the time spent evaluating the kriging 

equation for each feature using unique p  values). Other than p , very accurate convergence 

(200) and tolerance (1x10-9) parameters are already implemented in the building of the 

models here, so improvement of these parameters is unnecessary. 

  

     The above suggestions offer solutions for improving the results observed for the methanol 

system and the further refinement of the NMA and Gly systems. However, in order to 

determine the most appropriate solution(s) the geometric analysis, that is next to be 

completed, will enable this choice to be informed. For example, the geometric analysis will 

allow key bonds and angles that are potentially outside of the training range, or perhaps, are 

under-sampled within the current training regime, to be isolated. The geometric analysis will 

also enable a thorough comparison of the multiple minima reached where appropriate, and 

determine which minima is closer to that of the QM minimum system.  

 

4. Conclusions 

 

      For the first time, atomic kriging models have been “set in motion”, through the 

associated (analytical) forces. Geometry optimisations have been successfully carried out, 

yielding energies (both water and non-water) and geometries (water) in agreement with the 

QM optimum. While used as the model’s seed, the latter is not part of the training set: the 

ability of our kriging atomic models to generally reproduce a sampled molecular potential is 

then fully confirmed. 

      A variety of kriging models for water were analysed and compared: complementing the 

picture provided by S-curves, optimisation stands as a new validation tool, closer to practical 

purposes and sensitive to gradient prediction errors. As expected, models including more 

training points are yielding optimised structures closer to the QM reference, both in energy 

and geometry. Robustness of our kriging models is demonstrated by their ability to fall back 

onto their optimum even when starting outside of their conformational training range. For 

the water monomer, initialising the optimisation from every sample point generated did not 
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reveal any major spurious minimum or other shortcoming on the potential energy surface, 

thereby corroborating the kriging method.   

      For the non-water system analyses, only propane and isobutane converged upon single 

minimum solutions at ΔE = -1.1 and ΔE = -0.7 kJmol-1 relative to the QM minimum (within the 

respective noise regions of ±1.3 and ±1.9 kJmol-1). NMA and Gly also converge to energies 

within their respective noise regions of ±1.3 and ±1.9 kJmol-1, but each to two energy minima 

at the values of ΔE = +0.5 and -0.7 kJmol-1 (NMA) and ΔE = 0.6 and 0.8 kJmol-1 (Gly), 

respectively. Only methanol fails to optimise correctly, where instead two minima of ΔE = 

+0.1 and -3.3 kJmol-1 (with a noise of ±0.53 kJmol-1), relative to the QM minimum, are 

located. However, three solutions are discussed to improve these models, in addition to 

running more timesteps for the Gly system, where the higher of the two minima is yet to be 

proven as converged by the 1,000th timestep.  

      Further encouraging results are soon-to-be published, featuring a geometric analysis to 

complement the energetic analyses of the non-water systems presented here, and a deeper 

analysis of the potential energy surfaces from an atomic force perspective. However, the 

present work is a first proof towards the validation of our method for molecular entities. 
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Figure S2. SP-OUT2 Set 4 with T500 model geometric feature optimization. 

Figure S3. SP-OUT4 Set 1 with T500 model geometric feature optimization. 

Figure S4. SP-OUT4 Set 4 with T500 model geometric feature optimization. 

 

 

 

 



2 
 

 

 

Figure S1. SP-OUT2 Set 1 with T500 model geometric feature optimisation. 
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Figure S2. SP-OUT2 Set 4 with T500 model geometric feature optimisation. 
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 Figure S3. SP-OUT4 Set 1 with T500 model geometric feature optimisation. 
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Figure S4. SP-OUT4 Set 4 with T500 model geometric feature optimisation. 
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10. Conclusions 
 

      The investigations carried out within this thesis have allowed a number of conclusions to be 

drawn, each contributing to the ever-growing knowledge enabling the further development of 

FFLUX. Like in Section 1.9, the following conclusions tell a timeline of development from the 

previously named QCTFF force field to the now proof-of-concept FFLUX force field. 

      The hierarchical perception of the IQA approach enabling quantitative insight at the molecular, 

(functional) group (where applicable) and atomic levels, was illustrated in the case studies of the 

torsional barriers in the biphenyl and φ and ψ torsions in dipeptide systems. For biphenyl, the 

central carbon atoms composing the torsional angle (C2-C1-C1’-C2’) proved vital to the accurate 

description of the torsional behaviour, in contrast to many literature sources attributing the 

behaviour to sterically hindered H2 atoms. For the dipeptides, the barriers in the PESs were 

caused by a molecular electrostatic destabilisation. At the group and atomic levels, the 

electrostatic destabilisation was typically seen within the peptide bond atoms along with some 

steric destabilisation within the Hϒ atoms forming the sidechains. Either dipeptide destabilisation 

(φ = -15⁰) or a combination of peptide and sidechain destabilisation (φ = +165⁰, ψ = +15⁰ and ψ = 

-120⁰) caused each of the torsional barriers identified. However, remarkably similar backbone 

energy behaviour was observed across all three dipeptides (Gly, Val and Ile) with Val and Ile 

atomic behaviours having Pearson correlations of r = 0.996 (φ) and r = 0.997 (ψ), an encouraging 

result for the future modelling of such atoms. From the success of the initial quantitative analysis 

of biphenyl, IQA was subsequently chosen as a suitable framework for FFLUX to be based upon. 

The expansion of the IQA approach to B3LYP and M06-2X functional levels, in order to accurately 

recover the ab initio system energy, was a necessary step to equip (or illustrate an approach 

capable of equipping) FFLUX with the popular DFT functionals. Restricting FFLUX to HF level of 

theory would be inadequate, and to MP2, CAS, FCI, CISD and CCSD levels would be too 

computationally expensive for anything other than very small systems. The expansion also 

enabled the dipeptide analysis to be completed at B3LYP level. 

      The IQA energies of a variety of systems and complexes where successfully modelled to within 

2.6% accuracy, validating the core energetic framework of FFLUX. The relationship between 

sampling and atomic model accuracy was assessed and quantified via modelling a variety of 

energy combinations where an atom was described by one-, two- or three- energies. As already 

identified within IQA literature, intra- and inter-atomic energy cancellation was also observed 

when the atomic energies where modelled. In other words, predictions made with the models 

showed very small over- or under-predicted values, depending on the energy type and the kriging 

error. However, these predictions would fortuitously cancel one another when summed 

representing a system (or total atomic) energy prediction. 
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       Next, two important investigations enabled the transferable nature of the IQA energies to be 

better understood. The transferability of intra-atomic energies in homogeneous oligopeptides 

illustrated how many key atoms in tri-peptides are energetically very close (within ±2 kJmol-1) to 

their counterparts in penta-peptides. As such, central amino acid atoms within tri-peptides should 

be used when generating transferable intra-atomic models for predicting oligopeptide chains or 

protein properties. More specifically, the intra-atomic energy of the atoms investigated (Cα, Hα, N, 

O and S) are influenced by neighbouring atoms within a radial average distance of ~8.2 Å, to 

within a mean energy of ±0.32 kJmol-1. The second study, performed on large rigid water clusters, 

enabled the energetic fluctuations of a single water molecule, and its composing atoms, to be 

investigated. For a water monomer within a rigid water cluster, a similar horizon sphere radius of 

~7 Å (to within ±1 kJmol-1, rising to ±2 kJmol-1 for flexible clusters) was observed. The water study 

also depicted the convergence radius of each IQA energy type, again identifying the role energy 

cancellation plays in reaching the 7 Å value for the total water monomer energy. These 

investigations are expected to enable a reasonable estimate towards which ALF features (those 

within ~7-8 Å) are necessary for an accurate transferable model to be built. 

      Finally, the FFLUX architecture was validated within a first study of a targeted application: 

geometry optimisation. Thousands of distorted geometries, across various systems, were 

modelled using a variety of IQA energies and training set sizes (water system) or using the single 

atomic energy, 
A

IQAE , only (non-water systems). To perform the optimisation, the simulation 

package DL_POLY was altered to accommodate, and calculate forces upon, the atomic energy 

kriging models. In turn, near-22,000 distorted samples were successfully optimised to within ±1.1 

kJmol-1 using the IQA kriging models with small training set sizes (≤ 1500 points). Structurally, the 

FFLUX-optimised water geometries were shown to be consistent to within ±0.006 Å and ±0.4⁰ of 

the ab initio-optimised seed structures (when using appropriately accurate training models), 

resulting in proof-of-concept. Upon conclusion, a total of 166 million timesteps were computed 

within this validation of FFLUX. 

      From the electrostatic-only investigations developing QCTFF, to the energetically complete and 

functioning force field now known as FFLUX, the development of this novel next-generation force 

field has been significant. The integration of the non-electrostatic energies using the Interacting 

Quantum Atoms (IQA) partitioned energies coupled with the machine leaning method kriging has 

completed FFLUX to a point where it can predict a full system energy from a collection of energy 

models. Such models have also been proven suitable for the accurate calculation of atomic forces 

facilitating geometry optimisation (as shown here) and, it is believed, molecular simulation in 

future investigations. In addition, numerous conclusions regarding transferability and energy 

convergence paves the way for the continued future development of FFLUX via transferable 

fragment models. 
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11. Future Work 
 

      The work presented in this thesis, along with other recent developments within the Popelier 

group101,142,157-162, have formed the basis of FFLUX and enabled the validation and proof-of-

concept needed to provide further encouragement for future developments. 

      For future work, I anticipate four key fronts upon which FFLUX can be further developed. Each 

will now be discussed in turn: 

1. Refinement 

      Many of the studies presented in this thesis were the first examples of such in the field (Papers 

2 and 4 – 8 (Sections 3 and 5 - 9). As such, further work must be completed in order to 

increasingly understand the limits and generality of the conclusions. This has already begun, for 

example, in Paper 2 (Section 3) an approach to expand the IQA partitioning approach to B3LYP-

DFT level of theory was presented, recently, other members of our group reported the first correct 

application of MP2-IQA101. This work was encouraged by the prior work completed in Paper 2, and 

shares the same goal: increasing the theory-level compatibility of FFLUX. The expansion to MP2-

level also allows for the fourth energy forming the FFLUX energy description, ( corrV ), to be 

explicitly incorporated. In addition to this, alongside the encouraging transferability results 

presented in Papers 6 and 7 (Sections 7 and 8), early work has been completed on the selection 

of transferable geometrical features142,152, or in other words, the definition of transferable 

fragments. Transferability will be discussed further in the next point. Furthermore, there is 

ongoing research into the refinement and improvement of the geometry optimisation results 

presented in Paper 8 (Section 9), with the aim to present Part (II) as a separate collection of 

molecular optimisations, including the necessary improvement required for the methanol 

molecule, and an accompanying complete geometric analysis for every other molecule. 

      In addition to the refinement investigations mentioned above, the general scaling-up of the size 

of the systems investigated will naturally uncover an even better understanding of the 

relationship between geometry and the IQA energies. The capability to do so will come in time 

with the ever continuing improvement of computational power and updates to key programs. 

2. Transferable Models 

      The long-term aim for FFLUX demands a database of small transferable models be developed 

which a user can collectively utilise when wanting to make predictions upon a large system, such 

as a protein. The application may be in a simulation, geometry optimisation or snapshot energy 

context, but it is necessary for such large systems to be able to be ‘dressed up’ using transferable 

models available ‘off the shelf’. These models should therefore incorporate the necessary 

surrounding geometrical description (through features) allowing such an accurate prediction to 
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be made. So far, our target systems have been the same as the training system. This was a 

necessary proof to ensure kriging could effectively model the IQA energies, but remains a step 

which must be expanded upon in future studies. In order to obtain a satisfactory feature 

description a few factors have to be considered: 

i. Generally, the more features included, the more accurate the model will be. 

However, the more features incorporated into the model, the less transferable 

that particular fragment will be since that feature description will have to be 

present in the larger target system. Thus, a large neighbouring feature 

description will occur much less frequently than a more minimalistic feature 

description. Hence, a balance of a minimalistic feature description and accuracy 

must be struck, and the error scale associated in such a decision, understood. 

ii. The atom type label must be carefully chosen based on the ordering of the 

features included, perhaps even including a shorthand summary of the features 

incorporated. For example, knowing that atom A is surrounded by one oxygen 

atoms, two carbon atoms and two hydrogen atoms will not be enough to 

designate a label to a transferable model. Additional knowledge may be obtained 

using the ALF’s ordering of such atoms through proximity to give a more 

understandable impression of the atom in the environment. Overall, transferable 

models must be given specific, and carefully thought out, atom type labels in 

order to allow the user to make an informed selection of which transferable 

models are most suitable. 

iii. A third factor, unconsidered to date, is the influence of non-covalently bonded 

atoms breaching the feature space of a transferable model of an atom. For 

example, during a protein folding simulation, atoms on α-helices or β-sheets may 

approach other amino acid sequences as a result of tertiary structure, such that 

some atoms are separated by an interatomic distance shorter than the horizon 

sphere dictating the features included. Such an occurrence would be difficult to 

train for given the uncertain nature or regularity of their presence within 

systems, and in particular, considering the modelling of secondary structure is 

already an expensive computational exercise in quantum chemistry. 

      Some of these considerations have been made in other recent publications from the Popelier 

group. However, there are still many investigations and decisions, such as those above, to be 

made. 
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3. Intelligent Training Sets 

      Despite a decision on the interplay atomic horizon-inspired feature selection and model 

accuracy needing to be made, another line of investigation may influence the accuracy aspect of 

this balance: intelligent training sets. Intelligent training sets have been mentioned at various 

points throughout this report, however, are yet to be fully investigated. Intelligent training 

involves consciously and strategically choosing the sample points with which to train the model. 

This differs to the current protocol where the random (twice) shuffling of the samples is assumed 

to allow us to sufficiently and broadly train the feature space. Already, instances have been 

identified where the protocol fails whereby the domain of applicability (DOA) has not been met 

because a test set sample is outside of the training space covered by the training set. Instead, by 

choosing the points from the start, potentially guided using pre-existing literature on training 

point selection (for example, MaxMin163,164 or Voronoi tessellation sampling165 approaches, not 

explained here), could enable a model to have greater accuracy and a larger DOA. Another solution 

would involve the statistical ranking of the features so that those with the highest correlation with 

the property are biased in the model building (this could involve using a different variation of 

Kriging known as blind kriging166). However, another factor should also be considered. As 

mentioned in Section 1.7, it is beneficial for consistent samples to be included in the training of 

every atom, enabling predictions upon full sample systems to be made and compared to the ab 

initio values. Therefore, any theory that sorts training points by feature space, must also be 

capable of doing so consistently for every atom within that sample. In other words, the samples 

used for one atomic model must be present for every atom (global). Otherwise, a choice would 

need to be made between (i) the benefits of intelligent global sample selection or feature 

prioritisation, or (ii) maintaining system validation through the comparison of predicted system 

energies with ab initio data.  

4. Cooperative IQA-Multipole Moment modelling 

      The final step of the work carried out within this thesis was to put the IQA atomic energy 

models into action within a geometry optimisation context. The next step, upon which some 

preliminary work has begun, but is yet to reach maturity, is to use IQA energy models to account 

for the non-electrostatic and short-range electrostatic energy description of a system, and use the 

long-range electrostatic multipole moments for the long-range electrostatic energy. This 

combination of IQA energy and multipole moment kriging models will fully complete the FFLUX 

force field energy framework. Note that multipole moments remain important for the prediction 

of tertiary structure, something that would be very computationally expensive to include via 

training IQA energies with large horizon radii. 

      In order for these two properties to be accounted for within a single framework without any 

energetic overlap, the following representation of a system’s energy must be changed from: 
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system A A AA' A AA' AA' AA'

IQA IQA intra inter intra cl exch corr

1 1 1 1
( ) ( )

2 2 2 2A A A

ApproachA ApproachB ApproachC

E E E V E V V V          (1.4.44) 

to: 

system A A

IQA IQA,tr cl,LR

A AA' AB

intra inter,tr cl,LR

A B A

A AA' AA' AA' AB

intra cl,SR exch corr cl,LR

A B A

( )

1 1
( )

2 2

1 1 1 1
( )

2 2 2 2

A

A

A

E E V

E V V

E V V V V





 

  

    



 

 

 (12.79) 

where it may be seen that the electrostatic energy component, clV  , has been split into a short-

ranged component (‘SR’), accounted for through IQA, and a long-ranged component (‘LR’), 

accounted for using multipole moments. The ‘tr’ notation indicates that this IQA energy has been 

truncated to exclude the long-ranged electrostatic energy contribution. Note that this only applies 

to energies that already include clV  within their summation. The above approach also raises a 

further modification which needs accounting for: using pairwise AB energies instead of the atomic 

AA’ energies. Since A’ cannot currently be split to be anything other than the remainder of the 

molecule, the AB energies must be summed and categorised by short- and long-ranged 

interatomic distance. Using the interatomic distance thresholds reported in work by Yuan82, this 

classification can be incorporated into the GAIA protocol in order to automate this next  extension 

of FFLUX. Unreported results have shown that using the multipole moments to recover one or 

more electrostatic interactions in the N-methylacetamide (NMA) molecule, with (truncated) IQA 

atomic models accounting for all other energy contributions, the ab initio system energy is still 

recovered to within ~ 1 kJmol-1. Much of the future publications of FFLUX are anticipated to 

address this next step, potentially using the above, even more novel, architecture. 

      The future work outlined in the above key points anticipates how further progression of the 

work completed within this thesis is possible, and is intended to offer important considerations 

for doing so. 
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Appendices 
 

Appendix A - Interacting Quantum Atoms (IQA) using AIMAll and 

PROMOLDEN 
 

      Early in the research a decision had to be made on which package could perform the 

Interacting Quantum Atoms (IQA) calculations more accurately: PROMOLDEN167 or AIMAll168 

(v13.05.06). The criteria used to determine accuracy was the recovery of the ab initio energy of 

the molecule using the IQA partitioned energies: 
system system

WFN IQAE E E     . This initial energy 

recovery (ΔE) would form a baseline error for any future applications of the work, so it was 

important to ensure this remained as low as possible. Previous IQA literature using PROMOLDEN 

presented example molecules which could be repeated with AIMAll, allowing a performance 

comparison of each software’s IQA-implementation.  H2 and N2 were selected for comparison and 

their IQA energies now calculated with the AIMAll package. Tables A1 and A2 present the 

summarised results between the PROMOLDEN calculations and the AIMAll calculations, for the H2 

and N2 systems respectively. 

H2 PROMOLDEN 2005 AIMAll (v13.05.06) 
system

IQAE  / Hartree -1.1324 -1.1325 

system

WFNE / Hartree -1.1325 -1.1325 

E  / kJmol-1 0.1076 0.0017 

Table A1: HF-level calculations for the H2 molecule using PROMOLDEN and AIMAll (v13.05.06). 

PROMOLDEN results taken directly from Ref85 and AIMAll (v13.05.06) results reported for H2 using the same 

geometry.  

N2 PROMOLDEN 2005 AIMAll (v13.05.06) 
system

IQAE  / Hartree -108.9700 -108.9694 
system

WFNE / Hartree -108.9696 -108.9694 

E  / kJmol-1 -1.05 0.08 

   
Table A2: HF-level calculations for the N2 molecule using PROMOLDEN and AIMAll (v13.05.06). 

PROMOLDEN results taken directly from Ref85 and AIMAll (v13.05.06) results reported for N2 using the same 

geometry. 

      From the comparison, the AIMAll package obtained a lower ΔE for both systems by between 

one and two orders of magnitude. Further in-house testing confirmed this was also true for larger 

examples (for example biphenyl, AIMAll results reported Paper 1 (Section 2)). Additional 

advantages of the AIMAll package include: (a) the commercial nature of the package meant that 
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continued support and clear version releases should occur, (b) AIMAll had been optimised to run 

in parallel, across multiple processors, and on a per-atom basis, and (c) overall AIMAll could 

perform the IQA calculations quicker. These additional factors would be important in order to 

analyse larger molecules (larger than H2 and N2) with the computationally expensive IQA energy 

partitioning. Hence, the decision to integrate the use of AIMAll instead of PROMOLDEN into the 

FFLUX force field was made at the beginning of the research. 

      A second comparison, completed alongside the research presented in Paper 2 (Section 3), 

compared the 
AB

XCV  energies for a series of small molecules, at both HF and B3LYP levels of theory 

using PROMOLDEN and AIMAll packages. Tables A3 and A4 summarise these results.  The results 

are split into three sets: a) using default PROMOLDEN input parameters, b) using PROMOLDEN 

with increased inner Lebedev grid points (200 becoming 3000) and c) AIMAll169 (v15.05.18) with 

default input parameters (which involves an adaptive number of Lebedev grid points). Tables A3 

and A4 both show how PROMOLDEN’s default initial parameters (which are user defined) are too 

low in order to replicate the results being obtained through AIMAll169 (v15.05.18). However, the 

PROMOLDEN calculations repeated with a higher number of inner Lebedev grid points matched 

well for all but two cases (BF3CH3 at HF and BF2OH at B3LYP). 

HF Interaction 
PROMOLDEN 

Default 

PROMOLDEN 

Non-default 

AIMAll 

(v15.05.18) 

AlH3 (H-H) -25.2126765 -29.526373 -29.53198079 

BeF2 (F-F) -20.53141 -23.293436 -23.29406555 

BeF4
2- (F-F) -39.4376355 -40.5666005 -40.56705029 

BF2H (F-F) -90.0992835 -99.4460635 -99.39404734 

BF2OH (F-F) -96.9780935 -91.1232285 -91.0250958 

BF3 (F-F) -81.8972215 -91.9056275 -91.90330594 

BF3CH3 (F-F) -73.403729 -73.403729 -79.79570614 

CF2CF2 (F-F) -63.374319 -76.5464525 -76.52597883 

CF2O (F-F) -82.487959 -100.204833 -100.1895808 

CF3O (F-F) -74.7243555 -74.753236 -74.70719722 

CF4 (F-F) -70.757225 -87.623437 -87.61419768 

NF4
+ (F-F) -43.42577 -45.0562055 -45.07462714 

NH3 (H-H) -5.503048 -5.2116175 -5.210489002 

NH4
+ (H-H) -2.4390895 -2.110902 -2.112809774 

PH3 (H-H) -49.3725275 -61.2660425 -61.25496891 

Table A3: Summary of 
AB

XCV  energies for specific interactions within a series of small molecules. The VXCAB 

energies are calculated through three routes (1) using PROMOLDEN with default input parameters, (2) 
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PROMOLDEN with increased inner Lebedev integration grid points, and (3) using AIMAll with default (auto) 

inner and outer grid input parameters. All calculations are performed at HF level of theory. 

 

B3LYP Interaction 
PROMOLDEN 

Default 

PROMOLDEN 

Non-default 

AIMAll 

(v15.05.18) 

AlH3 (H-H) -30.382286 -30.382286 -30.38093227 

BeF2 (F-F) -35.6254095 -35.6254095 -35.62113273 

BeF4
2- (F-F) -51.076477 -51.076477 -51.08706725 

BF2H (F-F) -113.5239945 -113.5239945 -113.5215218 

BF2OH (F-F) -100.546148 -110.565056 -100.541421 

BF3 (F-F) -102.121448 -102.121448 -102.1092181 

BF3CH3 (F-F) -87.6155605 -87.6155605 -87.62346927 

CF2CF2 (F-F) -76.465062 -76.465062 -76.47221997 

CF2O (F-F) -97.768369 -97.768369 -97.80344009 

CF3O (F-F) -72.0883535 -72.09623 -72.07662463 

CF4 (F-F) -83.391131 -83.391131 -83.39583835 

NF4
+ (F-F) -55.881142 -55.881142 -55.87937019 

NH3 (H-H) -5.5949405 -5.5949405 -5.592864468 

NH4
+ (H-H) -2.488974 -2.488974 -2.490176092 

PH3 (H-H) -51.2943935 -51.312772 -51.29309195 

Table A4: Summary of 
AB

XCV  energies for specific interactions within a series of small molecules. The 
AB

XCV  

energies are calculated through three routes (1) using PROMOLDEN with default input parameters, (2) 

PROMOLDEN with increased inner Lebedev integration grid points, and (3) using AIMAll with default (auto) 

inner and outer grid input parameters. All calculations are performed at B3LYP level of theory (HF-equation 

with KS orbitals). 

 

      The requirement of PROMOLDEN to use more computationally demanding non-default input 

values, in place of the suggested default input parameters, in order to recover the AIMAll results 

also indicated that the AIMAll results could be assumed to be more accurate.  

      This appendix concludes with a note directing readers to use the key parameters summarised 

in Table 1.7.3 for the replication of results in the presented papers. Each paper, where permitted 

by the journal, includes the combination of these inputs to do so.  A further note is included 

regarding the integration errors, L(Ω), accompanying the IQA energies. The use of the default 

input –boaq=auto is the default input parameter for the basin outer angular quadrature.  In order 

to improve unusually high integration errors, it is suggested that this parameter be changed to 

specify a particular large grid (for example, skyhigh_lebedev or superhigh_lebedev). ‘Auto’ is 
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designed to choose the best compromise between accuracy and time, however, from experience it 

would appear that these integration errors may be improved ~50% of the time by requesting an 

expensive grid, at an additional time-cost. Finally, the input parameter –usetwoe=1 is also the 

default route of calculation of the 6D eeV  integrals, in latter versions of AIMAll. The TwoE 

algorithm is a computationally faster and considered more accurate set of equations based on 

work by Polestshuk170. However, AIMAll’s implementation of TwoE caused various systems to 

show sporadic fluctuations of the eeV -related IQA energies, with no indication of poor integration 

errors. Hence, until further consideration and evidence of consistent energies from using the 

TwoE algorithm in AIMAll is possible, the TwoE route was switched off by default. Therefore, all of 

the work presented within this thesis does not use the TwoE route in calculating the eeV  energies. 
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Hydrogen-Bond Accepting Properties of New Heteroaromatic Ring
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ABSTRACT: The prediction of hydrogen-bond (H-bond) acceptor ability is crucial
in drug design. This important property is quantified in a large pKBHX database of
consistently measured values. We aim to expand the chemical diversity of the studied
H-bond acceptors and to increase the range of H-bond strength considered. Two
quantum chemical descriptors are contrasted, called ΔE(H) (the change in the
energy of a topological hydrogen atom upon complexation) and Vmin (the local
minimum in the electrostatic potential on the H-bond accepting site). We performed
a systematic analysis of the correlations between pKBHX and Vmin for an initial set of
106 compounds (including O- and N-containing subsets, as well as compounds
including sulfur, chlorine, and π-bases). Correlations improve for family dependent
subsets, and after outlier treatment, a set of 90 compounds was used to set up a linear
equation to predict pKBHX from Vmin. This equation and a previously published
equation [Green and Popelier J. Chem. Inf. Model. 2014, 54 (2), 553−561], to predict
pKBHX from ΔE(H), were used to predict the pKBHX values for 22 potentially
biologically active heteroaromatic ring compounds, [Pitt et al. J. Med. Chem. 2009, 52 (9), 2952−2963], among which several
structures still remain experimentally unavailable. H-Bond basicity of sp2 nitrogen sites were consistently predicted with both
descriptors. A worse agreement was found with carbonyl acceptor sites, with the stronger deviations observed for the lactam
groups. It was shown that secondary interactions involving the neighboring NH group were influencing the results. Substitution
of the NH group with an NMe group resulted in an improved consistency from both Vmin and ΔE(H) predictions, the latter
being more prominently affected by the methyl substitution. Both approaches appear as efficient procedures for the H-bond
ability prediction of novel heteroaromatic rings. Nevertheless, the ΔE(H) parameter presents slight chemical structure limitations
and requires more detailed H-bond structure investigations.

■ INTRODUCTION

Hydrogen-bond (H-bond) interactions are the most important,
specific, and local interactions occurring in biological
recognition processes,1 in particular between a drug molecule
and its local environment. For ligands of potential therapeutic
interest, this local environment may be a biological target,
aqueous solution, a lipid membrane, or even a crystalline solid.
For these reasons, hydrogen bonding properties of a drug
molecule have a profound influence on a wide range of
molecular properties critical to drug design, including
potency2,3 and selectivity4 but also permeability5 and
solubility.6,7 This is the reason why an important goal of
structure-based drug design is to identify and optimize H-bond
interactions of drug candidates.8,9 Another common approach
in drug design is to focus on the molecular scaffold, the central
core component of a molecule, rather than on the entire
molecule.10 In this context, particular attention has been paid to
ring systems, since they are fundamental building blocks of
most drugs on the market today.11 Rings determine key
properties of biological ligands such as electronic distribution,
three-dimensional structure, and rigidity. In fact, the properties

of rings are often detrimental to whole-ligand properties such as
lipophilicity, polarity, molecular reactivity, metabolic stability,
and toxicity.12

The prediction of H-bond properties such as H-bond
energies has been attempted for a long time (e.g., refs
13−17) and is still the subject of intensive studies (e.g., refs
18−27). Indeed, a reliable and accurate quantification of H-
bond energies is a prerequisite for the modeling and
understanding of many important processes in physical
chemistry, life-science, formulation science, and chemical
engineering. Since key physicochemical properties such as
solubility, partitioning and phase separation, ligand−protein
binding, and crystal structure are strongly dependent on H-
bonding, any attempt of prediction can be considered at first
sight as doomed to fail if no accurate H-bond energies are
known. However, due to the complex nature of the interaction,
even the definition of hydrogen bonding has been recently
revisited,28 and reasonably simple and accurate methods for the
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quantitative prediction of H-bond energies are still unavailable.
It is important to note that the main goal of these studies is to
properly reproduce the relative order of H-bond energies
because a description of absolute thermodynamic parameters is
still lacking. In such studies, the focus has generally been put on
H-bond accepting strength (H-bond basicity) because of the
wide chemical diversity of H-bond acceptors compared to H-

bond donors. Therefore, H-bond accepting strength represents
an ideal test set for such investigations. This important property
is found under several more or less equivalent parameters in the
literature, such as pKHB,

29 log Kβ,
30 log KB

H (and its linear
transform β2

H),31 ∑β2
H or B,32,33 and pKBHX,

34 the similarities
and discrepancies between them having already been clarified
elsewhere.34 In the current study, we have selected the data

Table 1. Numbering, Names, and Structures of 22 Studied Heteroaromatic Rings
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stored in the pKBHX database, also used in several recent studies
to check the relevance and potential of different predictive
methods.18−20 This database gathers about 1400 experimental
values of free energies of complexation and spectroscopic
parameters corresponding to a wide and diverse collection of
organic compounds. These data have been systematically
measured using a Fourier transform infrared (FTIR)
spectrometry procedure in consistent conditions (CCl4 solvent,
temperature of 25 °C). Thanks to its time scale, this
methodology has the strong advantage of allowing the
observation of multiple H-bond acceptor sites in polyfunctional
compounds because of the existence of several absorption
bands, and to determine separately the individual constants of
complexation corresponding to each H-bond acceptor site. For
this purpose, particular attention is paid in building the pKBHX
database to measure equilibrium constants involving only 1:1
complexes with a large excess of H-bond acceptor concen-
tration by comparison with H-bond donor. This is actually the
only way to have access to a thermodynamically correct
treatment of the experimental equilibrium constants (see ref 34
for further details). For historical reasons, 4-fluorophenol is the
selected reference H-bond donor used to measure the
equilibrium constant of complexation (eq 1) of a series of H-
bond acceptors, leading to the pKBHX parameter (eq 2).

+ ‐ ⇌ ‐ ···B 4 FC H OH 4 FC H OH B6 4 6 4 (1)

= − = +K K Kp log logBHX 10 BHX 10 (2)

In their recent study, Pitt et al.35 proposed a series of 22 new
heteroaromatic rings as promising fragments of novel protein
ligands. These compounds were selected from their VEHICLe
database (virtual exploratory heterocyclic standing library) built
to establish the full set of heteroaromatic ring systems with the
following constraints: (i) only mono and bicyclic rings, (ii) only
five and six membered rings, (iii) only containing C, N, O, S,
and H, (iv) all neutral, (v) obey Hückel’s 4n + 2 rule of
aromaticity, and (vi) only exocyclic carbonyls. Through a
machine learning approach, they defined a series of not yet
published and synthetically accessible compounds with four or
fewer heteroatoms, and finally manually selected a set of 22
compounds, whose synthesis would represent a challenge for
organic chemists. In the current work, our objective is to
characterize these fragments’ H-bond acceptor ability. Ob-
viously, the structures of these 22 rings, which are gathered in
Table 1, are unfortunately not commercially available and
cannot be characterized experimentally through established
procedures.34

The determination of the structures of H-bond complexes
and the prediction of their interaction strength have been the
subject of numerous studies, including various attempts to use
quantum theoretical descriptors. Owing to the well-known
significant contribution of electrostatic forces in H-bond
interactions, the electrostatic potential appeared at an early
stage as an appealing parameter to describe the interactions
strength. Hence, it was initially proposed as an efficient
parameter to describe the solvatochromic H-bond acceptor
parameter β36 and has since been used for the description of H-
bond basicity or acidity in several studies,17,37−47 systematically
considering restricted compound families. Since the electro-
static potential is typically used as a descriptor of the monomer
and not of the H-bond complex, the potential energy surface of
interaction does not have to be investigated, saving significant
computational time. Nevertheless, it suffers from several

drawbacks since of course it cannot give any structural
information on the H-bond geometry, and it does not take
into account other contributions involved in the H-bond
interaction, such as charge transfer and dispersion forces. On
the contrary, these contributions are expected to be considered
with theoretical descriptors related to the H-bond complexes.
In this context, the change in atomic energy of the methanol
hydrogen atom upon complexation, denoted ΔE(H), recently
introduced by Popelier and co-workers, has appeared as a
successful parameter for the description and prediction of the
experimental pKBHX parameter. In particular, it has been
validated by means of eq 3 through a set of 41 bases bearing
diverse H-bond acceptors.18

= Δ −K Ep 180.94 (H) 3.7074BHX (3)

= = = =n r s F41, 0.95, 0.31, 7412

The ΔE(H) quantity is defined within the Quantum
Chemical Topology (QCT) framework,48,49 in particular, by
QCT’s segment called the Quantum Theory of Atoms in
Molecules (QTAIM), and the interested reader is referred to
the corresponding papers for further information.50,51 However,
here we just briefly mention that QTAIM defines atoms, inside
a system, in a parameter-free way, directly from the electron
density. The QTAIM atoms appear as (malleable) boxes with
finite volumes and particular shapes determined by their
environment. These (topological) atoms have a well-defined
kinetic energy, which is a most desirable property in the
localization and partitioning of quantum mechanical energy.
In this work, our aim is to expand the chemical diversity of

the H-bond acceptors stored in the pKBHX database and to
investigate the range of H-bond strength of these new H-bond
motifs. The confrontation of the two descriptors used, ΔE(H)
and Vmin, will be made with caution because no experimental
data are available to allow any conclusion on their respective
performance to properly describe the H-bond basicity of novel
heteroaromatic rings.

Method and Computational Details. All DFT calcu-
lations were performed using the GAUSSIAN09 program.52

Two distinct quantum descriptors have been investigated for
the estimation of the H-bond accepting capacity of the
heteroaromatic ring compounds in the current study: (i) the
change in atomic energy ΔE(H) of the methanol hydrogen
atom upon complexation with each H-bond acceptor site of a
given compound and (ii) the local minimum electrostatic
potential value, Vmin, defined as the electrical effect of the nuclei
and electrons of a molecule at any point r in space and
expressed by eq 4, where ZA is the charge on nucleus A, located
at point RA and ρ(r) is the electronic density,

∫∑ ρ=
| − |

− ′ ′
| ′ − |

V
Z

r
R r

r r
r r

( )
( ) d

A

A

A (4)

The SI units of the electrostatic potential is volt, but
throughout the paper, it will be listed in kJ mol−1, which is
actually an energy unit obtained after multiplication with the
unit test charge. This descriptor is computed for each potential
H-bond acceptor site of the monomeric structures. The data set
of heteroaromatic rings includes 34 compounds, the 22 motifs
previously proposed by Pitt et al.,35 and 12 motifs in which the
NH moieties are substituted by an N-methyl group.
Tautomerism is expected to be a significant issue for several
compounds of the sample considered (5−9, 13, 16−18, 20−
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Table 2. Experimental Hydrogen-Bond Accepting Ability (pKBHX, pK units) and Local Minimum of Electrostatic Potential (Vmin
in kJ mol−1) Calculated at the MPWB1K/6-31+G(d,p) Level of Theory for the Full Set of Hydrogen-Bond Acceptors

function subfunction compounds Vmin pKBHX

23 carbonyl ketone benzophenone −210.9 1.07
24 carbonyl ketone 3-methylbutan-2-one −223.2a 1.20
25 carbonyl ketone isophorone −247.3 1.74
26 carbonyl ketone camphor −227.6 1.31
27 carbonyl ketone 1,1,1-trifluoroacetone −154.2 −0.06
28 carbonyl ketone 1,1-dichloroacetone −160.7a 0.25
29 carbonyl ketone diphenylcyclopropenone −266.1 2.30
30 carbonyl aldehyde acetaldehyde −206.5 0.65
31 carbonyl aldehyde benzaldehyde −209.9 0.78
32 carbonyl aldehyde 4-(N,N-dimethylamino)-benzaldehyde −250.4 1.53
33 carbonyl amide formamide −245.4 1.75
34 carbonyl amide acetamide −259.6 2.06
35 carbonyl amide dimethylcarbamoyl chloride −212.4 1.00
36 carbonyl amide N,N-diethylacetamide −272.8 2.47
37 carbonyl amide antipyrine −275.4 2.80
38 carbonyl urea 1,1,3,3-tetramethylurea −259.2 2.44
39 carbonyl lactone gamma-butyrolactone −240.5 1.32
40 carbonyl lactam 1-methyl-2-pyrrolidone −270.1 2.38
41 carbonyl lactam 1-methyl-2-piperidone 276.5 2.60
42 carbonyl lactam 1-methyl-2-pyridone 275.1 2.50
43 carbonyl carbamate methyl dimethylcarbamate −228.4 1.8
44 carbonyl carbonate 1,3-dioxol-2-one −195.0 0.69
45 carbonyl carboxamidate N,N,N-trimethylammonioacetamidate −328.0 3.43
46 carbonyl imide N-methylsuccinimide −199.8 1.06
47 ether diethyl ether −217.9a 1.01
48 ether tetrahydrofuran −235.4 1.28
49 ether tetrahydropyran −223.9 1.23
50 alcohol 2-methylpropan-2-ol −229.5 1.14
51 sulfinyl sulfoxide diphenyl sulfoxide −262.9 2.04
52 sulfinyl sulfoxide methyl phenyl sulfoxide −271.1 2.24
53 sulfinyl sulfoxide dimethyl sulfoxide −282.5 2.54
54 sulfinyl sulfoxide tetramethylene sulfoxide −290.9 2.47
55 sulfinyl sulfinamide N,N-dimethylmethanesulfinamide −269.4 2.43
56 sulfinyl sulfoxide dibutyl sulfoxide −290.4 2.65
57 phosphoryl phosphine oxide tributylphosphine oxide −299.1 3.63
58 phosphoryl phosphine oxide triphenylphosphine oxide −276.1 3.16
59 arsine oxide triphenylarsine oxide −290.0 4.15
60 nitro nitroalkane nitromethane −173.4 0.27
61 nitro nitramide N-methyl-N-nitromethanamine −204.2 0.82
62 nitro nitroalkene 1-(2-nitrovinyl)pyrrolidine −256.0 1.62
63 nitroso nitrosamine 1-nitrosopyrrolidine −257.5 1.49
64 nitroso nitrosobenzene −181.6 0.15
65 nitrile acetonitrile −211.8 0.89
66 nitrile chloroacetonitrile −174.9 0.39
67 nitrile 4-(dimethylamino)benzonitrile −241.4 1.23
68 nitrile cyanoacetamidine −275.0 2.24
69 nitrile N1,N1-dimethyl-N2-cyanoacetamidine −273.7 2.24
70 nitrile cyanamide dimethylcyanamide −239.3 1.56
71 nitrile cyanate phenyl cyanate −199.1 0.77
72 nitrile thiocyanate methyl thiocyanate −196.2 0.73
73 heteroarene pyridine pyridine −262.3 1.86
74 heteroarene pyridine 4-picoline −272.1 2.07
75 heteroarene pyridine 2-picoline −265.0 2.03
76 heteroarene pyridine 2,6-lutidine −267.7 2.14
77 heteroarene pyridine 3-ethylpyridine −269.8a 2.01
78 heteroarene pyridine 3-picoline −269.0 2.00
79 heteroarene pyridine 3-chloropyridine −232.3 1.31
80 heteroarene pyridine 3-bromopyridine −232.0 1.31
81 heteroarene pyridine 3-fluoropyridine −236.3 1.35
82 heteroarene pyridine 2-fluoropyridine −223.6 0.95
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22). In order to determine the most stable isomer, we have
investigated (for these 12 relevant compounds) the relative
stabilities of the various tautomers.
The ΔE(H) descriptor has been previously successfully used

for the calibration (eq 3) of the experimental pKBHX parameter,
and validated for the study of polyfunctional bases.18 Here it is
worth mentioning that there is a family of kinetic energy
densities, all giving a different answer when evaluated in a given
point. However, when integrated over the volume of a
(topological) atom, a unique answer for the atom’s kinetic
energy remarkably appears. Second, it can be proven that, at an
equilibrium geometry, all topological atoms obey a virial

theorem. This means that the potential energy of the atom is
trivially related to its kinetic energy. As a result, the total energy
(kinetic and potential) of atom A, denoted E(A), is just a
simple function of the (well-defined) kinetic energy. Topo-
logical atoms are also sometimes called virial fragments for this
reason. We are interested in the change in this energy when
going from its appearance in the monomer to its presence in
the complex, leading to ΔE(H), for the hydrogen in question.
The ΔE(H) descriptor is calculated with the AIMAll
program,53 using B3LYP/6-311++G(2d,p) wave functions,
including that of the methanol monomer and the hydrogen-
bond complexes with the heteroaromatic rings. The potential

Table 2. continued

function subfunction compounds Vmin pKBHX

83 heteroarene pyridine 1,3,5-triazine −189.5 0.32
84 heteroarene pyridine pyridazine −263.3 1.65
85 heteroarene pyridine pyrazine −218.4 0.92
86 heteroarene pyridine pyrimidine −227.3 1.07
87 heteroarene pyridine 4-N,N-dimethylaminopyridine −303.7 2.77
88 heteroarene phenanthroline phenanthroline −310.1 3.10
89 heteroarene oxazole 1,3-oxazole −239.0 1.3
90 heteroarene oxazole 2-methyl-1,3-benzoxazole −236.0 1.48
91 heteroarene isoxazole isoxazole −223.9 0.81
92 heteroarene imidazole 1-methyl-1H-imidazole −304.2 2.72
93 heteroarene pyrazole 1-methyl-1H-pyrazole −255.9 1.84
94 heteroarene thiazole 1,3-thiazole −237.7 1.37
95 heteroarene thiazole 1,3-benzothiazole −223.1 1.29
96 amidine 1,5-diazabicyclo[4.3.0]non-5-ene −333.1 3.89
97 amidine formamidine N,N,N′-trimethylimidoformamide −288.4 2.70
98 amidine benzamidine N,N,N′-trimethylbenzenecarboximidamide −286.3 2.62
99 amidine guanidine N,N,N′-trimethylbenzenecarboximidamide −325.7 3.48
100 amidine guanidine 1,1,2,3,3-pentamethylguanidine −313.0 3.16
101 amidine acetamidine (1E)-N-methyl-N,N′-diphenylethanimidamide −250.5 1.65
102 imine 1-pyrroline −284.5 2.20
103 imine 2-methyl-1-pyrroline −292.2 2.56
104 imine 3H-pyrrole −271.2 1.95
105 imine 2H-pyrrole −281.0 2.18
106 amine primary amine ammonia −319.5 1.73
107 amine primary amine methylamine −312.1 2.20
108 amine primary amine 2,2,2-trifluoroethylamine −232.5 0.73
109 amine secondary amine diethylamine −291.6a 2.25
110 amine secondary amine piperidine −292.7a 2.38
111 amine tertiary amine trimethylamine −273.0 2.13
112 amine tertiary amine triethylamine −271.4a 1.98
113 amine tertiary amine N-methylpiperidine −271.4 2.11
114 amine tertiary amine quinuclidine −296.2 2.71
115 amine tertiary amine diazabicyclooctane −284.4 2.33
116 amine 3-pyrroline −290.0 2.36
117 enamine 2-pyrroline −230.2 1.32
118 sulfide diethyl sulfide −148.4a 0.25
119 thiocarbonyl thioamide N,N-dimethylthioacetamide −188.3 1.22
120 thiocarbonyl thiourea N,N,N′,N′-tetramethylthiourea −184.1 1.35
121 thiocarbonyl thiocarbamate O-methyldimethylthiocarbamate −151.3 0.84
122 thiocarbonyl dithiocarbamate methyldimethyldithiocarbamate −143.3 0.7
123 isothiocyanate methyl isothiocyanate −75.4 −0.05
124 thiophosphoryl phosphine sulfide triphenylphosphine sulfide −163.2 1.00
125 chloroalkane 2-chloro-2-methylpropane −88.6 −0.28
126 alkene 2,3-dimethylbut-2-ene −95.6 −0.85
127 heteroarene pyrrole 1H-pyrrole −116.6 0.15
128 alkyne hex-3-yne −114.8 −0.1

aWeighted value with Boltzmann population owing to the presence of several conformations.
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energy surfaces of complexation were investigated at this level
of theory by defining several initial geometries of interaction
between methanol and each H-bond acceptor: (i) the methanol
hydroxyl group was positioned along the H-bond acceptor
putative lone pair and also between two lone pairs for the
oxygen and sulfur complexation sites and (ii) the methanol
methyl group was rotated around the defined H···X H-bond.
After checking for the absence of imaginary frequencies, all the
geometries of complexation were used for the ΔE(H)
calculation, and the values given hereafter are weighted by
their Boltzmann population.
A training set of 106 various H-bond acceptors has been

defined for the calibration of the pKBHX values with the second
descriptor, the electrostatic potential, Vmin. These compounds,
reported in Table 2, cover almost the whole pKBHX scale and
include 42 oxygen bases, 53 nitrogen compounds, 7 sulfur
bases, 1 chlorine compound, and 3 π-bases. On the pKBHX scale,
the H-bond basicity ranges from −0.85 (2,3-dimethylbut-2-ene,
compound 126) to +4.15 (triphenylarsine oxide, compound
59), 5 pK units, corresponding to a Gibbs energy range of 28.5
kJ mol−1. The conformational study of the whole data set is
carried out using the MPWB1K functional, in combination with
the 6-31+G(d,p) basis set. On the one hand, this functional
developed by Truhlar and Zhao,54 was shown to give improved
results relative to many other DFT functionals for nonbonded
interactions such as hydrogen bonding,54−57 and on the other
hand, the successful prediction of H-bond acidity has already
been carried out using this level of theory.46 The Vmin
descriptor was also calculated at the MPWB1K/6-31+G(d,p)
level of theory and the corresponding data are gathered in
Table 2.
Within the whole series, more or less flexible compounds can

show several stabilized conformations. Their relative population
is estimated through the Boltzmann equation, and used for the
weighting of the Vmin parameter, as illustrated with the example
of piperidine 110 (Figure 1).

It is perhaps worth clarifying the following aspects regarding
the weighting of the discussed properties. The ultimate
property to predict are the pKBHX values, and a straightforward
route to estimate them properly is through weighting of the
individual pKBHX values, calculated from the pKBHX/Vmin or
pKBHX/ΔE(H) calibration lines, obtained for the different
conformers. In fact, pKBHX values can also be estimated through
the weighting of the descriptor Vmin or ΔE(H) at first, and then
through use of the calibration line. Indeed, let us call P the
molecular property of interest that can be modeled by the

descriptor D. Owing to the presence of different conformations
(i) showing various individual property values Pi modeled by
various individual descriptors Di, the experimental accessible
property value, P̅, is a sum of the individual values weighted by
their Boltzmann populations, pi.

∑̅ =P pP
i

i i
(5)

Each Pi value can be estimated by the Di descriptor value
following an established calibration line, Pi = αDi + β, then
leading to the P̅ value.
Hence, P̅ = ∑i [pi(αDi + β)], and finally,

α β̅ = ̅ +P D (6)

The global P̅ property value can therefore also, and
equivalently, be estimated by the weighted value of the
descriptor D.

■ RESULTS AND DISCUSSION
Calibration of pKBHX Data with the Electrostatic

Potential Vmin, Calculated at the MPWB1K/6-31+G(d,p)
Level of Theory. Figure 2 shows the useful correlation found

between the experimental pKBHX data and the calculated Vmin
values at the MPWB1K/6-31+G(d,p) level for the varied set of
106 hydrogen-bond acceptors studied. Nevertheless, the
standard deviation (s = 0.410) is too high to expect a sufficient
accuracy for H-bond basicity prediction. Even if the
experimental uncertainty (±0.05) will probably be unreachable,
a significant improvement is necessary to be competitive toward
other theoretical descriptors.18,42

When the oxygenated compounds (23−64) are considered
separately, the correlation improves significantly, as demon-
strated in Figure 3, provided the phosphine oxides (57, 58) and
the arsine oxide (59) are removed from the sample (marked in
red in Figure 3). The regression coefficient then becomes r2 =
0.932 and the standard deviation almost halves to s = 0.223,
values both superior to those found for the whole training set.
With the subset of 53 nitrogen-containing compounds (65−

117), an even better correlation is found between experimental
values and theoretical descriptors (Figure 4), provided the two
very small and volatile amines, ammonia and methylamine, are
excluded (green in Figure 4). The corresponding regression

Figure 1. Computed structures, Gibbs energy differences, relative
populations and local minimum electrostatic potential of the two
stabilized conformers of piperidine 110.

Figure 2. Relationship between the experimental H-bond basicity
(pKBHX) and the local minimum electrostatic potential descriptor
(Vmin, kJ mol

−1) for the set of 106 H-bond acceptors.
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coefficient and standard deviation found are r2 = 0.950 and s =
0.179, respectively.
In the next stage, it turns out that the outlier-corrected

oxygen-containing subset (with 42 − 3 = 39 compounds) and
nitrogen-containing subset (with 53 − 2 = 51 compounds) can
be considered as a single set with 90 (= 39 + 51) compounds.
Figure 5 shows the excellent correlation recovered, r2 = 0.932,
with a satisfactory standard deviation (s = 0.214), associated
with eq 7,

= − −K Vp 0.0207 3.458BHX min (7)

= = = =n r s F90, 0.932, 0.214, 12102

It must be noted that the 11 remaining compounds (118−
128) with other atomic acceptors (sulfur, chlorine, and π-
bases) do not belong to the same regression line, as can be
visually deduced from Figure 5. On the contrary, during the
calibration of the pKBHX/ΔE(H) equation,18 the four sulfur
compounds selected did not behave as outliers. This suggests

that, in the current calibration with Vmin, a different electrostatic
contribution is observed in the complexes of p-fluorophenol
with nitrogen and oxygenated compounds by comparison with
sulfur, chlorine and π-bases. In other words, the proportion of
the electrostatic contribution to H-bond complexes is constant
in nitrogen and oxygen bases, whatever the organic chemical
functions considered, making the electrostatic potential
parameter an excellent descriptor of H-bond strength for this
large family of compounds.

Simultaneous Prediction of pKBHX Values of Hetero-
aromatic Rings with Vmin and ΔE(H) Descriptors. Table 3
collects the calculated Vmin and ΔE(H) values and the inferred
predicted pKBHX values from eqs 7 and 3, respectively, that are
compared in Figure 6. Each potential H-bond accepting atomic
site of the 22 heteroaromatic rings were considered as well as
the 12 corresponding N-methyl derivatives when a N−H
moiety is present in the structure. Indeed, for most of them, the
N−H moiety belongs to a lactam group, thereby presenting a
non-negligible H-bond acidity expected to influence signifi-
cantly the H-bond basicity of the neighboring oxygen. It is
important to highlight that for compounds 5−9, 13, 16−18,
and 20−22, tautomeric forms can be expected. Indeed, a
significant energy stabilization is predicted for 7−9, 17, 18, 21,
and 22 leading to a population of 100% of these o-
hydroxypyridine like structures. Conversely, the structures
shown in Table 1 are the most stable ones for 5, 6, 13, 16, and
20. Nevertheless, in this work, our objective is to furnish
quantitative data of H-bond accepting ability for acceptors
involved in the original scaffolds of potential interest in
medicinal chemistry proposed by Pitt and co-workers.
Obviously, the molecular properties of the various tautomer
forms would be significantly different, but our opinion is that it
remains important to characterize the motifs as they were
designed. Moreover, in the VEHICLe library designed by Pitt
et al., tautomeric forms were treated separately, since this
structural isomerism can be lost in larger molecules.35 Indeed,
one desired tautomeric form can be imposed with various
substitutions, as simply as the N-methylation that has been
considered in the following of the manuscript. For these
reasons, even when they are clearly not the most stable

Figure 3. Relationship between the experimental H-bond basicity
(pKBHX) and the local minimum electrostatic potential descriptor
(Vmin, kJ mol−1) for the subset of 42 oxygen-containing H-bond
acceptors. Three compounds (57, 58, and 59), marked with red boxes,
have been removed from the correlation line.

Figure 4. Relationship between the experimental H-bond basicity
(pKBHX) and the local minimum electrostatic potential descriptor
(Vmin, kJ mol−1) for the subset of 53 nitrogen-containing H-bond
acceptors. Two compounds (106 and 107), marked with green
triangles, have been removed from the correlation line.

Figure 5. Relationship between experimental H-bond basicity (pKBHX)
and the local minimum electrostatic potential descriptor (Vmin, kJ
mol−1) for the set of 90 nitrogen- and oxygen-containing H-bond
accepting compounds. The 7 sulfur-containing and 1 chlorine-
containing compounds as well as the 3 π-bases, 11 in total and
marked in orange, do not belong to the previous set in blue.
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Table 3. Local Minimum Electrostatic Potential (Vmin, kJ mol−1) and Change in Atomic Energy of the Methanol Hydrogen
Atom (ΔE(H), hartree) Upon Complexation With Hydrogen-Bond Acceptor Sites of the 22 Heteroaromatic and 12 Additional
N-Methyl Derivativesa

Vmin pKBHX(Vmin) ΔE(H) pKBHX(ΔE(H)) ΔpKBHX

1 O1 CO −223.43 1.17 0.0281 1.38 0.21
N2 NC −196.23 0.61 0.0245 0.73 0.12
O3 C−O−C −11.72 −3.22 0.0052 −2.77 0.45
N4 Npyr −198.74 0.66 0.0261 1.02 0.36

2 O1 CO −209.62 0.89 0.0290 1.53 0.65
N2 NC −204.60 0.78 0.0262 1.03 0.25
N3 Npyr −180.33 0.28 0.0236 0.57 0.29

3 O1 CO −176.15 0.19 0.0271 1.19 1.00
O2 C−O−C −29.29 −2.85 0.0065 −2.54 0.32
N3 Nimidaz −248.95 1.70 0.0308 1.86 0.16

4 O1 CO −205.43 0.80 0.0298 1.68 0.88
O2 C−O−C −51.04 −2.40 0.0097 −1.96 0.45

5 O1 CO −251.46 1.75 0.0376 3.09 1.33
N2 CN−N −153.97 −0.27 b
O4 Ofuran −28.03 −2.88 b

6 O1 CO −246.86 1.66 0.0374 3.05 1.40
O3 Oisoxazol −97.07 −1.45 0.0121 −1.52 −0.08
N4 Nisoxazol −219.24 1.09 0.0227 0.41 −0.68

7 O1 CO −252.71 1.78 0.0439 4.24 2.46
S3 Sisothiazol −25.52 −1.38 b
N4 Nisothiazol −183.26 0.34 0.0219 0.26 −0.08

8 O1 CO −268.19 2.10 0.0430 4.08 1.98
O2 Ofuran −72.38 −1.96 0.0111 −1.70 0.26

9 O1 CO −285.35 2.46 0.0461 4.63 2.17
N4 Npyrazol −182.42 0.32 0.0238 0.61 0.28

10 N1 Npyridaz −262.76 1.99 0.0309 1.87 −0.11
N2 Npyridaz −246.02 1.64 0.0328 2.23 0.59

11 N1 Ntriazine −225.52 1.22 0.0272 1.21 −0.01
N2 Ntriazine −184.10 0.36 0.0267 1.13 0.77

12 N2 Noxazol −215.89 1.02 0.0280 1.36 0.35
O3 Ooxazol −84.10 −1.72 0.0120 −1.53 0.19

13 N1 Npyrazol −270.70 2.15 0.0325 2.18 0.03
14 N1 Npyrazol −230.54 1.32 0.0283 1.41 0.09

O3 Oisoxazol −81.17 −1.78 0.0102 −1.87 −0.09
15 O1 CO −256.06 1.85 0.0365 2.90 1.05

O3 C−O−C −79.91 −1.80 0.0113 −1.66 0.14
16 O1 CO −223.84 1.18 0.0375 3.08 1.90

N3 Npyr −230.12 1.31 0.0289 1.52 0.21
17 O1 CO −189.95 0.48 0.0329 2.24 1.76

N2 N −171.13 0.09 b
O3 C−O−C −104.60 −1.29 0.0165 −0.71 0.58

18 O1 CO −258.57 1.90 0.0447 4.38 2.48
N3 Npyr −230.96 1.33 0.0296 1.65 0.32

19 O1 CO −223.84 1.18 0.0281 1.38 0.20
N3 Npyr −207.11 0.83 0.0268 1.14 0.30

20 O1 CO −241.42 1.54 0.0397 3.48 1.94
N3 Npyridaz −172.38 0.11 0.0236 0.57 0.45
N4 Npyr −220.92 1.12 0.0278 1.32 0.20

21 O1 CO −240.16 1.52 0.0432 4.11 2.59
N3 Npyridaz −192.88 0.54 0.0327 2.21 1.67
N4 Npyridaz −232.21 1.35 0.0291 1.57 0.21

22 O1 CO −250.20 1.73 0.0444 4.32 2.60
N3 Npyridaz −228.03 1.27 0.0279 1.34 0.07
N4 Npyridaz −226.35 1.23 0.0290 1.54 0.31

5(Me) O1 CO −264.35 2.02 0.0384 3.24 1.22
N2 CN−N −155.27 −0.24 0.0249 0.80 1.04
O4 Ofuran −33.39 −2.77 0.0096 −1.96 0.80

6(Me) O1 CO −254.05 1.81 0.0278 1.32 −0.49
O3 Oisoxazol −103.30 −1.32 0.0124 −1.46 −0.14
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tautomers, the heteroaromatic rings designed by Pitt et al.35

have been used as is for their H-bond basicity estimation.
At first glance, the best agreement between both descriptors

appears to be found for heteroatomic sites of the molecules that
actually do not behave as H-bond acceptors. These sites

correspond to oxygen atoms for which the corresponding lone
pairs are conjugated with the π orbitals of the heterocyclic rings,
leading to calculated pKBHX values significantly below 0 (green
dots). In these delocalized systems, such oxygen atoms
therefore appear to be electron-deficient, reinforcing the
electron density around other heteroatomic sites of the rings.
Consistently, the sulfur atoms of the four structures 7, 7(Me),
10, and 12 are also found to behave as non H-bond accepting
sites, owing to the lone pairs delocalization on the aromatic
systems. Finally, the same trends apply to the trivalent nitrogen
atoms found in all structures except 17 and 17(Me), all of
which have lone pairs being delocalized in their aromatic
systems. Because of the absence of exposed lone pairs no Vmin

value can be associated with these compounds.
In view of the previous paragraph, the potential effective H-

bond acceptor sites in the series are the carbonyl oxygen atoms
and the sp2 nitrogen atoms belonging to the five- or six-
heteroaromatic rings. For these significant acceptors (with
pKBHX values higher than 0), the nitrogen acceptors are found
to be rather well described through both methodologies with a
distribution of the series around the 1:1 line (i.e., the bisector).
Although two or three acceptor sites appear as outliers, the
prediction made by Vmin and ΔE(H) are definitely in better
agreement for the nitrogen-containing compounds than for the
oxygen-containing ones, despite pKBHX values appearing slightly
overestimated by the ΔE(H) descriptor (or underestimated by
the Vmin descriptor). All this is illustrated in Figure 7A, with
standard deviations of 0.39 and 0.82, for nitrogen and carbonyl
compounds, respectively. For the latter compounds, the
deviations from the 1:1 line are much more important, and
the two methodologies do not reach any agreement for a
quantitative prediction of the oxygenated acceptors H-bond
basicity.

Table 3. continued

Vmin pKBHX(Vmin) ΔE(H) pKBHX(ΔE(H)) ΔpKBHX

N4 NOisoxazol −227.19 1.25 0.0237 0.59 −0.66
7(Me) O1 CO −257.44 1.88 0.0350 2.62 0.74

S3 Sisothiazol −31.71 −1.28 b
N4 Nisothiazol −191.00 0.50 0.0229 0.43 −0.07

8(Me) O1 CO −274.18 2.22 0.0354 2.69 0.47
O2 Ofuran −78.12 −1.84 0.0116 −1.61 0.23

9(Me) O1 CO −293.21 2.62 0.0376 3.10 0.48
N4 Npyrazol −190.50 0.49 0.0294 1.61 1.12

13(Me) N1 Npyrazol −278.82 2.32 0.0364 2.88 0.56
16(Me) O1 CO −219.16 1.08 0.0337 2.39 1.30

N3 Npyr −234.72 1.41 0.0295 1.63 0.22
17(Me) O1 CO −190.71 0.49 0.0265 1.08 0.59

N2 N −172.09 0.11 b
O3 C−O−C −99.66 −1.39 0.0165 −0.73 0.67

18(Me) O1 CO −262.42 1.98 0.0349 2.62 0.64
N3 Npyr −239.79 1.51 0.0305 1.80 0.29

20(Me) O1 CO −249.58 1.71 0.0345 2.53 0.82
N3 Npyridaz −177.69 0.22 0.0265 1.09 0.86
N4 Npyr −229.95 1.31 0.0293 1.60 0.29

21(Me) O1 CO −243.76 1.59 0.0333 2.33 0.73
N3 Npyridaz −203.55 0.76 0.0336 2.37 1.61
N4 Npyridaz −243.09 1.58 0.0303 1.77 0.19

22(Me) O1 CO −254.26 1.81 0.0329 2.24 0.43
N3 Npyridaz −238.07 1.48 0.0286 1.48 0.00
N4 Npyridaz −237.57 1.47 0.0298 1.69 0.22

aΔpKBHX is the difference between pKBHX predicted with Vmin (by eq 2) and with ΔE(H) (by eq 1). bH-bond structure not stabilized.

Figure 6. Comparison between pKBHX predicted from the Vmin and the
ΔE(H) quantum descriptor, for the 22 nonmethylated heteroaromatic
rings.
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The difficulties encountered in properly describing the H-
bond ability of a significant number of carbonyl groups could
originate from their closest surroundings since they belong to a
lactam group, hence showing an NH moiety. Indeed, the most
important deviations (up to 2.6 pK units) come from these
lactam compounds, while for most of the other carbonyl
groups, the deviations do not exceed 1 pK unit. At first glance,
it is worth noticing that the pKBHX database contains just very
few monosubstituted amides, and actually no lactam group
since their strong autoassociation prevents a sufficient solubility
in the CCl4 solvent used in the equilibrium constant
measurements. Hence, the calibration made with both quantum
descriptors does not include such chemical functions.58

Nevertheless, a few N-methyl substituted lactams are found
in the pKBHX database and three of them (1-methyl-2-
pyrrolidone, 1-methyl-2-piperidone and 1-methyl-2-pyridone)
have indeed been successfully used for the calibration with Vmin.
Additionally, the structures of their complexes with methanol
have been optimized in order to calculate their ΔE(H) values
and interestingly the pKBHX values are properly predicted, with
errors only ranging from −0.04 to +0.19 pK units, keeping in
mind that a standard error of 0.31 was found for the
corresponding calibration.18 From a computational chemistry
point of view, the H-bond acidity of the NH moiety is likely to
yield a secondary NH···O interaction with the oxygen atom of
the methanol hydroxyl group stabilizing the H-bond complex-
ation, and that cannot occur anymore with the N-methylated
derivatives, as illustrated in Figure 8 for the examples of the
optimized 18···MeOH and 18(Me)···MeOH complexes.
The contribution of this secondary interaction, specific of the

H-bond complex is (i) actually not taken into account in the
electrostatic potential calculation, which is a descriptor of the
monomer, and (ii) much weaker experimentally since the
oxygen of p-fluorophenol used for the pKBHX measurements is
significantly less basic than the methanol oxygen.59 For a better
description of the H-bond properties of the lactam group in
these systems, we propose to reevaluate the H-bond basicity of
the corresponding oxygen acceptor sites for compounds for

which the NH moiety has been substituted by a methyl group
in the related structures (Table 3). It appears that in almost all
cases, the Vmin descriptor predicts an increase of the carbonyl
H-bond basicity upon methylation. This is in agreement with
the electron-donating effect of the methyl substituent on the
amide function, which experimentally leads to a systematic
increase of 0.1 to 0.2 pK units in the pKBHX scale.

60 In contrast,
the presence of this methyl group prevents the formation of the
secondary NH···O interaction. Therefore, we can expect a
destabilization of the H-bonded structure upon methylation.
Indeed, the ΔE(H) descriptor almost systematically foresees a
significant decrease of the carbonyl H-bond basicity from the

Figure 7. Predicted pKBHX values for significant H-bond acceptors in the initial series (A), and by replacing the structures involving the NH group by
an NMe group (B).

Figure 8. Optimized structure (at B3LYP/6-311++G(2d,p) level) on
the carbonyl acceptor site of the 18···MeOH and 18(Me)···MeOH
complexes showing additionally a stabilizing secondary NH···O
interaction between the NH moiety and the methanol oxygen atom
for the former.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.5b00574
J. Chem. Inf. Model. 2016, 56, 322−334

331

http://dx.doi.org/10.1021/acs.jcim.5b00574


nonmethylated to the methylated series, in some cases even
larger than 2 pK units. As a consequence, the agreement
between both predicted pKBHX series is significantly better than
previously, as shown in Figure 7B, where the methylated data
have been incorporated instead of the nonmethylated
structures. The corresponding standard deviation falls from
0.82 to 0.43, now being much closer than the one found with
the nitrogen series. One can therefore conclude that (i) the
carbonyl groups are more efficiently described for complexes
that cannot form a secondary interaction, (ii) the vast majority
of points are still above the 1:1 line, and (iii) a slightly larger
scattering of nitrogen acceptors is observed with the methylated
structures. The comparison between the predictive power of
both descriptors shown in Figure 7 clearly indicates that for
some chemical compounds the ΔE(H) can lead to an
overestimation of more than 2 pK units. A closer examination
of these deviations reveals that this behavior mainly applies to
lactams owing to secondary NH···O interactions, and as shown
in Table 3 the ΔpKBHX is much reduced if these secondary
interactions are prevented with a N-methyl substitution. Once
this issue is resolved, the ΔE(H) appears, as Vmin, as an efficient
descriptor of pKBHX.
H-Bond Basicity Evolution Trends. Despite the difficul-

ties of both methodologies to predict H-bond basicity with
sufficient agreement, a qualitative ranking can however be
established among the various accepting sites encountered in
this heteroaromatic series. On the basis of the values evaluated
from the electrostatic potential descriptor Vmin, the carbonyl
and nitrogen sites would range from weak to rather strong H-
bond acceptors, their predicted H-bond basicity ranging from
0.19 to 2.62 and from −0.24 to 2.32, respectively. No clear
trends emerge considering the very close surroundings of the
acceptor site. Indeed, irrespective of the proximity of the
structural variations in these aromatic structures, the H-bond
accepting character of a given site can drastically change. For
example, the carbonyl H-bond basicity strongly decreases from
compound 4 to 3, in the presence of an imidazole nitrogen,
which exhibits the main H-bond accepting site in 3. The
pyrazole nitrogen in 13(Me) is the stronger nitrogen H-bond
acceptor, with a fused pyrrole ring, whereas in 9(Me), a
decrease of almost 2 pK units is estimated with a fused
pyridinone ring. The pyridazine motif appears as a significant
acceptor site, such as in 10, and to a lesser extent in 21(Me)
and 22(Me).

■ CONCLUSION

On the basis of experimental values of H-bond acceptor ability
(pKBHX) and the calculation of relevant quantum chemical
descriptors of hydrogen-bonding, ΔE(H) and Vmin, the pKBHX
of the nitrogen and oxygen H-bond acceptor sites of 22 original
heteroaromatic ring compounds (proposed recently as
promising protein ligands) have been predicted.
The behavior of the two descriptors, one relative to a H-bond

complex property (ΔE(H)), the other to a H-bond acceptor
site property (Vmin), has been compared. From a detailed
analysis of the correlations between pKBHX and Vmin for an
initial set of 106 compounds, a set of 90 bases was used to set
up a linear equation to predict pKBHX from Vmin for the
nitrogen and oxygenated H-bond acceptors. The outlier
behavior obtained for interactions involving sulfur, chlorine,
or π-bases probably originates from a difference in the
electrostatic contributions. In the case of ΔE(H), a recently

published equation, based on the pKBHX of 41 H-bond
acceptors has been used.
It has been shown that the correlations set up between the

experimental pKBHX and the two theoretical descriptors can be
used to accurately predict the pKBHX of sp2 nitrogen sites. In
contrast, for carbonyl sites, the occurrence of secondary H-
bond interactions in lactam groups leads to a significant
reduction in the value of the correlation coefficient, the ΔE(H)
descriptor being more sensitive to such effects, as confirmed by
the improvement of the predictive power of the correlations
observed for N-methyl substituted lactams.
From a computational point of view, it is noticeable that the

monomer based quantum descriptor (Vmin) is well suited to the
prediction of H-bond basicity without structural limitations
(such as lactams). This is an interesting result since the
exhaustive investigation of the H-bond complexation potential
energy surface requires significant computational effort.
The paper has shown that a careful and in-depth analysis of

correlations between pKBHX and relevant theoretical descriptors
can be used to predict the H-bond ability of sites of
polyfunctional bases. These are important findings since the
prediction of such site specific thermodynamic property is
important in the field of computer-aided drug design.
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