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ABSTRACT

Efficient Acoustic Simulation for Immersive Media and Digital
Fabrication

Dingzeyu Li

Sound is a crucial part of our life. Well-designed acoustic behaviors can lead to significant im-

provement in both physical and virtual interactions. In computer graphics, most existing meth-

ods focused primarily on improving the accuracy. It remained underexplored on how to develop

efficient acoustic simulation algorithms for interactive practical applications. The challenges arise

from the dilemma between expensive accurate simulations and fast feedback demanded by intuitive

user interaction: traditional physics-based acoustic simulations are computationally expensive; yet,

for end users to benefit from the simulations, it is crucial to give prompt feedback during interac-

tions.

In this thesis, I investigate how to develop efficient acoustic simulations for real-world applications

such as immersive media and digital fabrication. To address the above-mentioned challenges, I

leverage precomputation and optimization to significantly improve the speed while preserving the

accuracy of complex acoustic phenomena. This work discusses three efforts along this research

direction: First, to ease sound designer’s workflow, we developed a fast keypoint-based precompu-

tation algorithm to enable interactive acoustic transfer values in virtual sound simulations. Second,

for realistic audio editing in 360° videos, we proposed an inverse material optimization based on

fast sound simulation and a hybrid ambisonic audio synthesis that exploits the directional isotropy

in spatial audios. Third, we devised a modular approach to efficiently simulate and optimize fabri-

cation-ready acoustic filters, achieving orders of magnitudes speedup while maintaining the simu-

lation accuracy. Through this series of projects, I demonstrate a wide range of applications made

possible by efficient acoustic simulations.
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Chapter 1

Introduction

Physics-based acoustic simulation in computer graphics has witnessed tremendous progress over

the past decades. Parallel to traditional visual renderings of virtual scenes, now we are also able to

simulate the sounds with more accurate and efficient algorithms to simulate the excitation mech-

anism and propagation process. The goal of most existing sound simulation techniques is to add

realistic physics-based synchronized audio to existing virtual animation. In the past decade, we

have seen a growing number of phenomena that can be reproduced in simulation, for example, thin

shell [Chadwick et al., 2009a], fracture [Zheng and James, 2010], fire [Chadwick and James, 2011],

cloth [An et al., 2012], and fluids [Langlois et al., 2016].

An emerging area is the application of these simulation algorithms in the presence of real-world

recordings. For example, when we compare simulated sounds and recorded ones side by side, there

are still discrepancies between them in terms of realism. With the emergence of hardware devices

like virtual reality headsets, this difference is further amplified during immersive playbacks. Mean-

while, another challenging scenario for simulation is to predict acoustic behavior using simulation,

especially with complex shapes. Although personalized fabrication devices like 3D printers are be-

coming more accessible, there is no existing tool that supports interactive and accurate simulation
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of acoustic behavior for customized complex shapes. My thesis research is to develop realistic sound

simulation algorithms that close the gap between virtual and real auditory application.

Different from most previous research that has focused on pure virtual simulation, my thesis ex-

plored the use of efficient acoustic simulation techniques to bridge the gap between sound simu-

lations and real-world applications in interactive material selection via efficient precomputation,

rapid prototyping of acoustic filters enabled by fast simulation, and immersive spatial audio gener-

ation for 360 videos. In my thesis, I develop a suite of algorithms for efficient acoustic simulations

that enable a wide range of applications.

In the following, I will outline the structure of this thesis.

Chapter 3 presents an interactive sound simulation framework that supports interactive material

parameters editing for rigid body animations [Li et al., 2015]. In practice, material parameters like

Young’s modulus and Poisson ratio are not exact, since they are measured and tabulated in a range

of values. To achieve a desired sound, one usually needs to tune the parameters many times. It is

very expensive to compute sound radiation which ismodeled by the acoustic transfer values and de-

pends on the input material parameters. In our system, we first select a set of key positions around a

vibrating geometry. At every key position, we precompute a frequency-sweeping transfer function

with asymptotic Padé approximant expansion and frequency-adaptive mesh simplification during

Helmholtz solves. With our proposed precomputation technique, we generate various sound effects

without expensive recomputation. At runtime, we construct multipole expansion coefficients from

key-position transfer values and evaluate resulting transfer function at any given position interac-

tively.

Chapter 4 looks at the design and optimization of acoustic filters. We propose Acoustic Voxels, a

computational optimization method to design acoustic filter given an input geometry and high-

level frequency requirement [Li et al., 2016]. Our idea is to assemble basic shape primitives into a
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complex geometry, one that produces the desired acoustic filtering. We show that these primitives,

albeit simple individually, offer a large design space for acoustic filters when modularly joined into

a complex assembly. This modular scheme also permits fast and accurate estimation of the acoustic

performance of a given assembly. For the resulting assembly structure, we combine a stochastic op-

timization method for the topology of the assembly with a gradient-based quasi-Newton method

for computing the geometric parameters of each primitive shape in the assembly. This allows au-

tomatically optimizing its structure to achieve target acoustic filtering properties while satisfying

geometric constraints of overall shape.

Chapter 5 investigates immersive spatial audio in a new medium, 360° videos [Li et al., 2018]. Un-

like visual contents, the creation of spatial audio in immersive audios is challenging. We propose

to produce spatial audio by combining a lightweight measurement of room acoustics and a fast

geometric acoustic simulation. We first record a single acoustic impulse response (IR) in a room

using a readily available mono-channel microphone. We develop an optimization approach that es-

timates the acoustic material properties associated with the room, based on the measured IR. Then,

provided any 360° footage captured in the same environment, our method outputs the 360° video

with an accompanying ambisonics spatial soundtrack. The resulting soundfield captures the spatial

sound effects at the camera location, even if the camera is dynamic, as if the input audio is emitted

from a user-specified sound source in the environment.

Chapter 6 concludes this thesis and discusses several related future directions.
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Chapter 2

RelatedWork

2.1 Rigid-body Acoustic Transfer

Thecomputer graphics community has a long history of synthesizing synchronized sound effects for

computer animation [Takala and Hahn, 1992b]. Modal sound models, based on linear modal anal-

ysis, have been widely used to generate plausible contact sounds [van den Doel and Pai, 1996] syn-

chronizedwith physics-based simulation. They are often constructed using recorded sounds [vanden

Doel et al., 2001; Ren et al., 2013a] or linear modal analysis [Pentland and Williams, 1989; O’Brien

et al., 2002]. More recent development has used modal vibration for synthesizing rigid fracture

sound [Zheng and James, 2010], deformable sound [Zheng and James, 2011], and fast interactive

sound [Raghuvanshi and Lin, 2006; Bonneel et al., 2008; Ren et al., 2010]. But all these methods

are closely coupled with vibration frequencies, and none of them enable fast user editing of modal

sound parameters with acoustic transfer functions.

The object’s geometry can significantly affect modal sound radiation and change the sound’s tim-

bre in a spatially varying way, as demonstrated by James et al. [2006a]. Unfortunately, computing
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sound radiation for all vibration modes is very expensive. To improve the performance, existing

methods [James et al., 2006a; Chadwick et al., 2009b; Zheng and James, 2011] assume fixed modal

vibration frequencies, and precompute an efficient representation of acoustic transfer functions.

The precomputation can take many hours. Once it is finished, the user can evaluate transfer values

at an arbitrary position almost instantaneously. However, whenever the user adjusts vibration fre-

quencies, the entire acoustic transfer representation needs to be recomputed. [Corbett et al., 2007]

developed a system to acquire near-field acoustic transfer field from recorded sounds and synthesize

spatial sounds interactively. Yet, this approach relied on an automated measuring system, in which

the measurement is closely coupled with each object’s specific geometry and material. Different

from these approaches, our method only relies on precomputation and allows the user to change

modal sound parameters at runtime and still enjoys the high quality of sound synthesis.

For fast estimation of sound wave radiation, O’Brien et al. [2001] adopted the Rayleigh method

which assigns a monopole on each surface element and summed the sound radiation from all

monopoles. This is essentially a first-order approximation of sound radiation, neglecting the fact

that the shaped structure also scatters and radiates sound. Furthermore, they considered time de-

lays from the monopoles to the listener. In contrast, we solve the Helmholtz radiation equation

but ignore the time delays. We also note that the difference of resulting sounds using the Rayleigh

method and the Helmholtz solution has been shown in [James et al., 2006a].

On the other hand, when simulating the acoustics of rooms and concert halls, the dimensions of

the rooms or obstacles are many times larger than the sound wavelength. As a result, a variety of

geometric acoustical methods have been developed [Funkhouser et al., 1999; Tsingos et al., 2001c;

Tsingos et al., 2002], analogous to the geometric optics in image rendering. The geometric acoustic

methods enjoy fast performance while producing plausible results. However, when the character-

istic dimension of objects becomes comparable to the wavelength, as in our problems, the wave

diffraction begins to play an import part, necessitating the modeling of sound wave behaviors usu-
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ally described by near-field transfer functions. A few previous works have demonstrated the impor-

tance of transfer functions [James et al., 2006a; Corbett et al., 2007] for typical rigid object sounds

in computer animations.

There exist several example-basedmethods on estimating sound parameters from input audio clips.

Early work by Pai et al. [2001] estimated rigid modal sound models from recorded sounds and

measurements. More recently, Lloyd et al. [2011] analyzed the short-time Fourier Transform and

identify the strongest peaks in the spectrogram to estimate modal parameters. Ren et al. [2013a]

computed a set of features from given examples of audio clips, and used them to optimize modal

sound parameters. While they can produce high-quality parameter estimation, they are not focused

on acoustic transfer functions of vibration modes. With our model, we are able to explore modal

sound parameter space straightforwardly (see §3.6) and synthesize resulting sounds that take into

account the sound radiation effects.

The frequency-varying sound radiation problemhas been studied inmany engineering applications.

Fast frequency sweep methods are most closely related to our method [Pillage and Rohrer, 1990;

Lenzi et al., 2013]. The basic idea is to compute Helmholtz solutions at a few key frequencies and

interpolate / extrapolate Helmholtz radiation at intermediate points. However, these methods aim

to produce engineering accuracy rather than high performance at runtime. Although they provide

approximations of frequency-varyingHelmholtz solutions, it is nontrivial to evaluate transfer values

at an arbitrary point at runtime. In contrast, we aim for fast evaluation of acoustic transfer at any

spatial and frequency point. To this end, we propose to use a Prony series representation [Hauer et

al., 1990] constructed using adaptive frequency sweeping.

In addition to the sound synthesis from physically based simulation, there exist numerous audio

processing software. Almost all these tools rely on signal processing algorithms to edit sound ef-

fects such as frequency modulation [Chowning, 1973], reverberation [Smith, 1985], and spectrum

adjustment [Strawn, 1987], or use stochastic sound models and granular synthesis methods to pro-
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duce natural sound textures [Cook, 2002]. However, these methods lack automatic synchroniza-

tion with computer-simulated animation, and often need to store a large database of sound effects.

Our model is complementary to those tools, enabling automatic audiovisual synchronization using

physical simulation.

Our method utilizes frequency-adaptive mesh simplification to accelerate the individual Helmholtz

solves. There are numerousmethods for surfacemesh simplification (see a survey byLuebke [2001]).

Among them, our method is based on the edge collapse algorithms [Garland and Heckbert, 1997],

which coarsen a mesh through a sequence of edge collapse operations. In particular, we augment

the method introduced in [Hoppe, 1999] and [Lindstrom and Turk, 1998] to preserve mesh vol-

ume as well as volume vibration velocity. The latter is an important quantity to preserve sound

radiation power. Consequently, the optimization problem for edge collapse becomes significantly

harder: rather than solving a linear system, we need to solve a quadratically constrained quadratic

programming (QCQP) problem, for which we propose a staggered iterative algorithm.

The idea of using geometric simplification for efficient acoustic computation has been used in the

research of room acoustical modeling. The input CAD models are often simplified architectural

models in an exchange for faster computation. Siltanen et al. [2008] proposed a geometry reduc-

tionmethod based on volumetric reconstruction using amodifiedMarching Cubes algorithm. Fur-

ther, geometrical acoustical simulation has adopted level-of-detail approaches to adaptively select

polygon meshes used in the computation [Tsingos et al., 2007; Pelzer and Vorländer, 2010]. The

adaptivity of these approaches is based on incident sound waves for sound auralization. While

these approaches mostly focus on room acoustics, our method is concerned with sound radiation

produced by the modal vibration of an object. Therefore, the adaptivity of our method is based on

the modal vibration frequencies of the object.
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2.2 Acoustic Filter Design

Sound simulation The computer graphics community has a long history of simulating sound

propagation in a virtual environment [Stettner and Greenberg, 1989; Takala and Hahn, 1992a],

starting from the geometric acoustical methods [Funkhouser et al., 1998; Funkhouser et al., 1999;

Tsingos et al., 2001a] which are fast but less accurate at low frequencies, and evolving to the wave-

basedmethods [James et al., 2006b; Raghuvanshi et al., 2010a;Mehra et al., 2013a; Raghuvanshi and

Snyder, 2014] to improve sound quality. The goal of these work is to add realistic wave scattering

and room acoustic effects. These approaches have proven successful in many virtual environment

applications, but not for fabricating acoustic structures. Moreover, the geometric scale in those

simulations is typically meters or tens of meters, whereas we are interested in the sound propagation

in small cavities at the centimeter scale.

Recently, Allen and Raghuvanshi [2015] proposed an interactive method for simulating wave prop-

agation in wind instruments, modeled in 2D. This method produces realistic sound effects in real-

time, but is unclear how to apply it for solving our inverse problem. Aside from requiring a physics-

based 3D simulation and high accuracy for predicting fabricated results, our method needs a well-

defined relationship between the sound transmission and the boundary geometry to formulate a

tractable inverse problem.

Acoustic inverse problem Acoustic inverse problems have intrigued scientists for decades, start-

ing from Kac’s famous question: “can one hear the shape of a drum?”[Kac, 1966]. While Kac’s

question is about the vibrational patterns of a shape, similar questions that infer shapes from sound

propagation and scattering patterns have been actively studied [Angell et al., 1997; Feijóo et al.,

2004]. Monks et al. [2000] optimized room acoustics motivated by the applications in architectural

design. Recently, Dokmanić et al. [2013] showed an algorithm for computing a convex polyhe-

dral room shape using acoustic response recorded at multiple microphones. We also address an
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acoustic inverse problem, but from a different perspective. Our input is the acoustic response (i.e.,

impedance or transmission loss) measured at a pair of locations (i.e., between the inlet and the

outlet), and our goal is not to reconstruct existing shapes but to construct new structures.

Transmission Line Matrix Based on Huygens’ model of wave propagation and the analogy be-

tween wave propagation and transmission lines, the Transmission Line Method has been widely

used for computing electromagnetic waves [Caloz and Itoh, 2005; Christopoulos, 2006] and acous-

tics [Munjal, 2014]. It first discretizes the computational domain into interconnected nodes. On

the connecting interface, field information is propagated and coupled between adjacent nodes. By

breaking down the whole domain into basic nodes, the computational performance can be signif-

icantly improved. Our method shares the similar idea, but a key difference lies in the new opti-

mization framework. Our method optimizes the configuration of the nodes both geometrically

and topologically, aiming to realize the desired acoustic filtering properties.

Muffler design Noise attenuation is an important topic in many engineering fields. There has

been a well established theory for modeling noise reduction in a cavity structure [Ingard, 2009;

Munjal, 2014], and numerous approaches for improving a standard muffler have been developed

with sub-chamber structures [Selamet et al., 2003], varying inlet and outlet sizes [De Lima et al.,

2011], or perforated liners [Chiu, 2010; Munjal, 2014]. However, the optimization for desired target

performance is not straightforward. Traditionally, mufflers are often analyzed using finite element

methods and then used in a sensitivity analysis to compute the derivatives of themufflermetric with

respect to shape parameters. In general, this is a computationally expensive process.

The application of our method for muffler design takes a different approach, namely tiling simple

resonator shapes, without choosing a specific parametric shape a priori. Meanwhile, precomputed

filtering properties of primitive resonators sidestep the expensive finite-element solves during the
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optimization and thus allows us to optimize for complex structures.

Computational design of music instruments Our method can be applied to customize wind in-

struments, although that is not a primary goal of our work. Related to this aspect, existing work has

explored the optimization of the bore shapes for brasswind instruments [Kausel, 2001; Noreland et

al., 2010]. Similar to our optimization target, Braden et al. [2009] use the input impedance of the

instrument in the objective function to optimize bore shapes. These methods typically focus on a

specific family of shapes and thereby formulate a continuous optimization problem. Our method,

in contrast, aims to create acoustic filters using an arbitrary shape for a range of applications be-

yond wind instruments. More recently, Zoran [2011] has demonstrated the use of 3D printers for

creating plausible wood instruments and for exploring new designs without any numerical opti-

mization.

In computer graphics, Umetani et al. [2011] have develop the first interactive tool for designingmet-

allophones. The tool aims for interactivity but not for solving the inverse problem. Recently, Bharaj

et al. [2015] have explored the inverse computational design of metallophones and have proposed a

stochastic optimization method for this purpose. Unlike ours, both approaches focus on the modal

vibrational sounds from solid vibrations but not the sound propagation inside a chamber.

Microstructure design Recently in computer graphics, there has been a variety ofwork ondesign-

ing macroscopic mechanical material properties through controlling their microscopic structures,

based on the inverse homogenization theory [Sigmund, 1994]. Along this line of research, exist-

ing work has used a data-driven approach to control nonlinear elasticity [Bickel et al., 2010] with

multi-material 3D printing, while others tile precomputed structural patterns [Panetta et al., 2015;

Schumacher et al., 2015] to obtain user-specified elastic properties. While we also combine small-

scale primitives, in order to affect sound waves, the geometric size of our primitives is of a few
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centimeters, much larger than the microstructure scales in these approaches. Furthermore, rather

than the elastic behaviors of microstructures, we focus on the sound propagation through the prim-

itives.

Acoustic in HCI Recent development in passive acoustic sensing inspired new HCI applications,

such as the recent tangible input devices by analyzing the sound produced by a comb-like struc-

ture [Savage et al., 2015]. More relevant to our method, Laput et al. [2015] proposed Acoustru-

ments to recover information from audio signals recorded through ducts. None of these previous

works considers the inverse problem of acoustic optimization. Our method complements to those

work and offers a computational tool to develop new HCI applications, as we will demonstrate in

§4.5.4.

Contributions Compared to previous work, our method has the following contributions: (i) We

propose to construct acoustic filters using primitive resonators. (ii) With modular assemblies, we

develop a numerical optimization method to construct desired acoustic filters while sidestepping

expensive finite-element solves. (iii) We demonstrate the use of our primitives and optimization

method in the context of different applications including a new application that embeds acoustic

signatures into 3D printed objects.

2.3 Spatial Audio in 360° Videos

Recent advances in 360° video research have focused mostly on improving visual quality. Rich360

and Jump designed practical camera systems and developed seamless stitching with minimal dis-

tortion, even for high-resolution 360° videos [Lee et al., 2016; Anderson et al., 2016]. To capture

stereo omni-directional videos, Matzen et al. [2017] built a novel capturing setup from off-the-shelf
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components, providing amore immersive viewing experience in head-mounted displays with depth

cues. Kopf [2016] introduced a 360° video stabilization algorithm for smooth playback in the pres-

ence of camera shaking and shutter distortion. Our work improves the audio experience in existing

360° videos, working in tandemwith existingmethods for capturing, post-processing, and playback

for immersive visual media.

Spatial audio in virtual reality (VR) is also crucial to provide convincing immersion. Most recent

work aims to enable efficient rendering of spatial audio at real-time rates. Schissler et al. [2016]

proposed a novel analytical formulation for large area and volumetric sound sources in outdoor en-

vironments. Constructing spatial room impulse responses (SRIR) with geometric acoustics is ex-

pensive due to the number of rays and the disparity in energy distribution. Schissler et al. [2017b]

partition the traditional impulse response (IR) into segments and project each segment onto a min-

imal order spherical harmonics bases to retain the perceptual quality. We build upon the concept of

SRIR and observe that late reverberation is diffuse, which means that the late IR tail is uniform not

only spatially but directionally. Our method combines early IR simulation with estimated material

parameters and recorded late IR tails to generate scene-aware audio for 360° videos.

Recording and reproducing spatial audio provides the fundamental building blocks for more ad-

vanced virtual auditorymanipulation algorithms. In the seminalwork byLi andDuraiswami [2006],

a hemispherical microphone array was used to record the spatial soundfield. Using spherical beam-

forming, the authors demonstrated 3D soundfield reproduction in headphone-based scenarios.

Later a vision-based system combined cameras with microphones to enable immersive joint au-

diovisual sensing [O’Donovan et al., 2007]. To efficiently incorporate room acoustics, Zotkin et

al. [2004] computed early reflections and reused the late tail regardless of the microphone/speaker

locations. Inspired by the hybrid idea, we introduce an optimized simulation for the early part. To

overcome the inherent limitation of geometric acoustic simulators, we also propose a frequency

modulation algorithm to compensate for the wave-based room resonance effects.
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The simulation of sound propagation has been widely studied [Vorländer, 2008; Bilbao, 2009].

Wave-based methods usually provide high accuracy with expensive computation [Raghuvanshi et

al., 2009]. Alternatively, geometric acoustic (GA) methods can be used, which make the high-

frequency Eikonal ray approximation [Savioja and Svensson, 2015]. These methods often bundle

rays together and trace as beams for efficiency [Funkhouser et al., 1998]. While traditional GA

does not include diffraction effects, they can be approximated via the uniform theory of diffrac-

tion for edges that are much larger than the wavelength [Tsingos et al., 2001b; Schissler et al.,

2014]. We use the GA method proposed by Cao et al. [2016], which exploits bidirectional path

tracing and temporal coherence to provide significant speedups over previous work. For fast au-

ralization in VR, many methods precompute IRs or wavefields [Pope et al., 1999; Tsingos, 2009;

Raghuvanshi and Snyder, 2014]. Raghuvanshi et al. [2010a] precompute and store one LRIR per

room, similar to our method. We show how to use recorded IRs to optimize acoustics materials for

simulation, and also how to directly use the recorded IR tails instead of simulating them, reducing

the computation time and memory requirements. Moreover, our method accounts for a particular

wave effect, the room resonances, using a frequencymodulation algorithm, which further improves

the generated audio quality.

To synthesize scene-aware audio, optimal material parameters are needed in the simulation. Given

recorded IRs, we estimate thematerial parameters that best resemble the actual recording. For rigid-

body modal sounds, Ren et al. [2013b] optimized the material parameters based on recordings and

demonstrated the effectiveness of optimized parameters to virtual objects. Most related to ours is

Schissler et al. [2017a] where a pretrained neural network is used to classify the objects, followed by

an iterative optimization process. Every iteration requires registering the simulated IR with a mea-

sured IR and solving a least-squares problem. We draw inspirations from inverse image rendering

problems [Marschner and Greenberg, 1998], and derive an analytical gradient to the inverse ma-

terial optimization problem, which we solve in a nonlinear least-squares sense. Our optimization
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runs in seconds, tens of times faster than previous work.

While our method aims to ease the audio editing process, this is a broad area with an abundance

of prior work. Most methods strive to provide higher-level abstractions and editing powers, to

help users avoid non-intuitive direct waveform editing. VoCo [Jin et al., 2017] allows realistic text-

based insertion and replacement of audio narration using a learning-based text to speech conversion

which matches the rest of the narration. Germain et al. [2016] present a method for equalization

matching of speech recordings, tomake recordings sound as if theywere recorded in the same room,

even if they weren’t. Rubin et al. [2013] present an interface for editing audio stories like interviews

and speeches, which includes transcript-based speech editing, music browsing, and music retarget-

ing. Like previous work, we aim to match the timbre of generated sounds with that of recordings.

Moreover, we are able to produce spatial audio that blends in seamlessly with existing 360° videos,

and provide a high-level “geometric” effect which can be applied to audio.
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Chapter 3

Interactive Rigid-body Acoustic Transfer

3.1 Introduction

Modal sounds are widely used for synthesizing plausible solid-object sounds synchronized with

computer-simulated animations (e.g., see [van den Doel et al., 2001; O’Brien et al., 2002; Zheng

and James, 2011; Ren et al., 2013a]). The standard pipeline consists of two steps: (i) integration

of surface vibrations followed by (ii) the computation of sound radiation. The former produces

surfacemotions that are driven by external forces and vibrate at individualmodal frequencies, while

the latter accounts for wave phenomena such as diffraction and interference that can recognizably

change the sound’s timbre [James et al., 2006a]. Both steps are closely coupled with modal vibration

frequencies.

The most expensive step of generating a modal sound is computing sound radiation. For every vi-

brationmodewith a frequencyω, it can be computed by solving a frequency-domainwave equation,

the Helmholtz equation,

∇2p(x) + k2p(x) = 0, x ∈ Ω, (3.1)
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where p(x) is the acoustic transfer value at x, k = ω/c is the wavenumber of the correspond-

ing vibration mode, and c is the speed of sound. To accelerate this step, various methods have

been devised [Ciscowski and Brebbia, 1991]. In computer graphics, James et al. [2006a] introduced

precomputed acoustic transfer (PAT), wherein, after hours of precomputation of equivalent point

sources, fast runtime transfer evaluation is achieved at any listening location. However, in all of

these methods, the entire Helmholtz solution needs to be recomputed whenever the frequency ω is

changed.

The tight dependence of modal sound radiation on its vibration frequencies as well as its expensive

(pre-)computation of sound radiation give rise to many difficulties when one starts to tweak model

sound parameters for desirable sound effects. In practice, tuning parameters is almost unavoidable,

as the material parameters (e.g., the Young’s modulus) are measured and tabulated in a range of

values, and there are no generally accepted damping values [Adhikari and Woodhouse, 2001]. Both

kinds of parameters directly affect modal frequencies (see §3.2), which have been found critical

for achieving desired sound characteristics [Klatzky et al., 2000]. Unfortunately, when the user

changes these parameters and thus the frequencies, it becomes necessary to recompute the entire

modal sound, leading to a rather inefficient parameter tuning cycle.

In light of this, we propose a newmethod that decouples surfacemodal vibration and acoustic trans-

fer evaluation from modal vibration frequencies. It allows the user to freely change modal frequen-

cies at runtime, and quickly synthesize resulting sounds at an arbitrary listening location.

At first glance, one simple approach to enable runtime editing ofmodal frequencies is to precompute

individual modal sound models using a set of frequency samples, and rely on runtime interpola-

tion to approximate with user-specified vibration frequencies. Unfortunately, it is unclear how we

should interpolate between different models of modal sound. Moreover, the acoustic transfer p(x)

is highly oscillatory with respect to the vibration frequency (see §3.4 and Figure 3.5). As a result,

such an approach will need lots of frequency samples for plausible runtime interpolation, causing a
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prohibitively long precomputation time and an overwhelming memory footprint.

In our approach, we first select a set of key positions around a vibrating object. At every key po-

sition we precompute a frequency-sweeping transfer function compactly represented using Prony

series. We accelerate the precomputation by devising two key techniques: (i) we solve Helmholtz

equations only at a few carefully selected frequency samples. And for each frequency sample, we

build an asymptotic Padé approximant in frequency domain to evaluate transfer values at nearby

frequencies. (ii) To speed up Helmholtz solves, we propose a frequency-adaptive mesh simplifica-

tion algorithm; for low-frequency boundary element (BEM)Helmholtz solves, we simplify themesh

more aggressively in exchange for larger computational speedup. At runtime, given a user-specified

modal frequency, we represent the resulting transfer function at any spatial position using an acous-

tic multipole expansion. We first evaluate key-position transfer values, which are in turn used to

construct a small least-squares problem to estimate the multipole expansion coefficients.

With our proposed precomputation technique, we are able to generate various sound effects with-

out expensive recomputation. This greatly eases the parameter tuning for different sound charac-

teristics, whether one desires high-pitch long-ringing metal sounds or low-tone quickly damped

wood-like sounds. We can explore the parameter space and quickly hear the sound feedback (Fig-

ure 3.1). The resulting sounds are almost identical to the ones using expensive full recomputation,

both qualitatively and numerically.

Our technique also enables more control of sound characteristics for animators wishing to add syn-

chronized modal sounds. We explore examples of nonlinear time-varying modal sound effects us-

ing user-guided nonphysical change of frequencies.
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3.2 Modal Sound Preliminary

Before presenting the details of our method, we briefly review the widely used modal sound model

(see [Shabana, 1991; O’Brien et al., 2002; James et al., 2006a] for details) and clarify the frequency-

related parameters that can be freely changed in our model.

Modal Vibration First, a solid object vibration is approximated by a linear vibration equation,

Mü+ Du̇+ Ku = fext, (3.2)

where M, K, and D are respectively the mass, stiffness, and damping matrices depending on the

object materials,u ∈ R
3n describes the finite element nodal displacement with n nodes, and fext ∈

R
3n is the external force driving the vibration. The damping matrix D is usually approximated

using the Rayleigh damping model [Shabana, 1991], i.e., D = αM + βK, where the scalars α and β

are user-specified parameters. Linear modal analysis then solves a generalized eigenvalue problem

KU = MUS to compute a modal shape matrix U and a diagonal eigenvalue matrix S. The former

describes the vibration pattern of each mode while the latter indicates the square of undamped

natural frequencies, i.e., Si,i = ω2
i . Substituting u = Uq and then premultiplying U on both sides

of (3.2) decouples the system into a set of 1D second-order ordinary differential equations (ODEs),

each of which is an ODE describing the modal vibration of a single mode i, namely,

q̈i + diq̇i + ω2
i qi = UT

i fext, (3.3)

where di is the damping parameter of mode i, and Ui is the i-th column of U.

Sound Radiation A vibration mode with an observed frequency ω produces propagating sound

waves that have a wavenumber k = ω/c. A standard tool to model its sound radiation is the
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Helmholtz equation (3.1), which is coupled with surface modal vibration through a Neumann

boundary condition defined on the object surface S,

∂p

∂n
= −iωρv on S, (3.4)

where i is the imaginary unit, ρ is the air density, and v is the mode’s time-harmonic vibration

velocity along the surface normal direction, computed as v = iω(n ·ũi), wheren ·ũi is the normal-

direction modal displacement of a mode i. Note we also use i to represent mode index when there

is no ambiguity. Solving (3.1) for each mode i results in a complex-valued transfer function pi(x).

Finally, following the approximation in [James et al., 2006a], the sound wave at a listening position

x is computed as a weighted summation of all audible vibration modes,

s(x) =
∑

i

|pi(x)|qi(t). (3.5)

This expression is accurate up to a phase, ignoring the time delay of sound propagation. The Helm-

holtz solution describes modal sound radiation affected by the object’s own geometry, and ig-

nores environment acoustics. This is sufficient in our problem because environment acoustics

are independent from a modal sound model; if the environment is known, one can easily feed

the resulting sound of our model to any sound auralization methods (e.g., [Tsingos et al., 2001c;

Raghuvanshi et al., 2010b; Mehra et al., 2013b]) to add room acoustic effects.

Frequency-Related Parameters As observed by Klatzky et al. [2000], two sets of parameters are

of particular importance for achieving desired sound characteristics: vibration frequencies, ωi, that

determine sound pitch, and damping coefficients, di, that affect the timbre of particular materials.

For instance, a small damping value results in the long ringing sounds thatmetal or porcelain objects

often produce, whereas a large damping value tends to produce soundsmore like wood or stone. We
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note that the damping coefficients di are also frequency-related; they affect the observed damped

natural frequency through the relationship ω̃i =
√

ω2
i − d

2
i /4. This frequency value is used for

computing the wavenumber k, and thus affects the Helmholtz solution. In standard modal sound

models, the user can change material parameters such as Young’s modulus to adjust ωi, and change

α and β values in Rayleigh damping to control di. In our implementation, we change the scales

of Young’s modulus, which we call stiffness scales, and damping scales. They form a 2D parameter

space (see Figure 3.1), in which the modal shape matrix U remains constant. We also explore the

examples that allow the user to change ωi and di directly and individually (see §3.6).

3.3 Interactive Sound Synthesis Algorithm

In this section, we introduce our runtime sound synthesis algorithmwhile deferring the precompu-

tation details until §3.4. At runtime, we take as input an animation sequence, the user-specified ωi

and di, and the contact forces that appear on the right-hand side of (3.2) to drive the surface vibra-

tion. Given a listening locationx, it computes surfacemodal vibration qi for everymode (in §3.3.1),

and evaluates the transfer function pi(x) (in §3.3.2). The final sound is computed using the super-

position (3.5) of individual modes. For simplicity of presentation, we describe the sound synthesis

algorithm for a single mode. An outline of our runtime algorithm is shown in Algorithm 1.

3.3.1 Vibration Integration

We first solve the decoupled 1D modal vibration equation (3.3), where the external force fext is the

contact forces resulting from the simulated animation. Many previous methods [Hamming, 1983;

James and Pai, 2002] solve this inhomogeneous second-order ODE using a digital Infinite Impulse

Response (IIR) filter. Our implementation uses the fourth-order Runge-Kutta method [Press et al.,
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Algorithm 1 Runtime Sound Computation for Mode i
Require: frequency ωi of mode i and listening position x

1: procedure S E (i,x)

2: Compute qi(t) at audio rate by integrating (3.3) ▷ §3.3.1

3: Compute transfer p(ωi) at key positions using (3.10) ▷ §3.4.1

4: EstimateMm
n using a least-squares solve (3.8) ▷ §3.3.2

5: Compute transfer p(x) usingMm
n and (3.6)

6: Compute
∑

i |p(x)|qi(t) at the audio rate

7: end procedure

2007], since we found it has comparable performance but higher accuracy than the digital IIR filter,

especially when the user specifies time-varying ωi and di values, as in the examples of §3.6 (see

Figure 3.2).

3.3.2 Transfer Estimation via Least-Squares

A main challenge for runtime sound synthesis is the evaluation of transfer values pi(x). This is

because pi, the solution of the Helmholtz equation (3.1), is frequency-dependent. Whenever the

user changes frequency parameters, we need to update pi(x), but solving the Helmholtz equation

from scratch is impractical and computationally very expensive.

Multipole Approximation To allow the user to freely change the listening location x while edit-

ing a sound, we need a compact representation of p(x) in the spatial domain. Similar to [Zheng

and James, 2010], we represent a Helmholtz solution p(x) using a single point multipole expan-
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sion [Gumerov and Duraiswami, 2004], which takes an expansion form,

pi(x) ≈ ik

N∑

n=0

n∑

m=−n

Sm
n (x, x̄0)M

m
n (ω). (3.6)

Here x̄0 is the expansion center near the object. In practice, we always place it at the object’s center

of mass. We follow the rule of thumb [Liu, 2009; Zheng and James, 2010] and set the expansion

orderN = max(1
4
kL, 4) (N ≤ 18 in all our examples). Sm

n are singular Helmholtz basis functions,

Sm
n (r) = h

(2)
n (kr)Y m

n (θ, ϕ), where r = (r, θ, ϕ) is the spherical coordinate of x − x0, h(2)n ∈ C

are spherical Hankel functions of the second kind, and Y m
n ∈ C are spherical harmonics. The

expansion coefficients Mm
n depend on the modal vibration frequency ω, and are what we need to

quickly update when ω is changed at runtime.

Previous methods of computing Mm
n (e.g. [Gumerov and Duraiswami, 2004; Zheng and James,

2010]) integrate the results of a boundary element (BE) solve of (3.1) over the entire object surface.

Both the BE solve and surface integral are expensive. One might precompute a set ofMm
n using fre-

quency values sampled in a frequency range, and use the interpolatedMm
n at runtime. However, as

shown in Figure 3.3,Mm
n at high orders fluctuates dramatically as the frequency value sweeps. Con-

sequently, the frequency needs to be densely sampled to interpolateMm
n , leading to a prohibitively

long precomputation time.

Fast Least-Squares Approximation ofMm
n Inspired by the subspace construction for shape de-

formations [Meyer and Anderson, 2007], we approximate Mm
n using a small-scale least-squares

approximation. Here, the Helmholtz basis functions Sm
n construct a set of reduced-space bases of

the Helmholtz solution. We estimate the basis coefficientsMm
n based on the transfer values at a set

of key positions, and use the resultingMm
n to compute transfer value pi(x) at any listening location

x.
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First, we sample a set of key positions xj, j = 1, ..., J outside of the object (see Figure 3.4). In the

precomputation, we construct a frequency-sweeping transfer function pj(ω) at xj . The represen-

tation of pj(ω) is compact, adding very little memory overhead over the standard modal sound

model (see §3.5). And its construction requires only coarse frequency samples. We defer the details

of its construction until §3.4.1. Here we use the precomputed representation to evaluate pj(ω) with

user-specified ω at every key position xj and stack them into a vector p̃.

The summation of (3.6) can be expressed in matrix form, p̃ = Am, where m stacks all the co-

efficients Mm
n , and A consists of the Helmholtz basis function values at all selected positions xj .

Concretely, they have the form

A =









S0
0(x1, x̄0) . . . SN

N (x1, x̄0)

... . . . ...

S0
0(xJ , x̄0) . . . SN

N (xJ , x̄0)









and m =









M0
0

...

MN
N









. (3.7)

We then estimate the unknown coefficientsMm
n by solving the least squares problem

Am = p̃. (3.8)

As long as the number of key positions is larger than the number of columns of A, we have an over-

constrained and complex-valued least-squares problem, and thus the solution is unique. Recall that

the order of multipole expansion (3.6) is small (i.e.,N ≤ 18). The number of columns is also small

(i.e.,N2 ≤ 324), and thus the least-squares problem can be efficiently solved at runtime. OnceMm
n

are computed, we substitute them into (3.6) to evaluate the transfer value at any location x. In §3.5,

we validate the accuracy and convergence of our transfer evaluation algorithm.

When sampling key positions, we need to cover the region where the listener will be located. We

therefore select three spheres centered at the object’s center of mass x̄0 with radii of 1.6, 2.6, and
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3.4 times the object’s geometric size. We then uniformly sample positions over the spheres (see

Figure 3.4). In §3.5, we validate the numerical accuracy and convergence of this scheme.

3.4 Precomputation of Helmholtz Equations

The core goal of our precomputation is to construct a representation of frequency-sweeping transfer

function pj(ω) for every key positionxj, j = 1, ..., J and every vibrationmode. This representation

is used at runtime to construct the right-hand-side vector p̃ in (3.8). For a mode i with a natural

vibration frequency ω0, we allow the user to adjust its vibration frequency in the rangeR = [ω0 −

∆ω, ω0 + ∆ω]. In practice, we allow the runtime frequency adjustment in a range of 5kHz (i.e.,

∆ω = 2.5kHz · 2π).

A simple approach is to compute pj(ωt) at a set of frequency samples ωt, t = 1, . . . , T in R, and

interpolate to obtain pj(ω). However, this approach requires a large number of frequency samples,

since pj(ω) oscillates at a high frequency as shown in Figure 3.5. And evaluation of transfer samples

pj(ωt) at different frequencies requires expensive individual Helmholtz solves. Therefore, we seek

to sampleR using a sparse set of ωt. Our algorithm strives to (i) avoid as many Helmholtz solves as

possible (in §3.4.2) and (ii) improve the solving performance (in §3.4.3). We start by first presenting

an efficient representation of pj(ω) using sparse transfer samples pj(ωt). For simplicity, we will drop

the subscript j, because we will consider transfer values at a single key position xj .

3.4.1 Frequency-Sweeping Transfer Representation
Monopole

To reveal why p(ω) is oscillatory, consider a first-order approximation

of sound radiation. As commonly used in the Rayleigh method [Cremer

et al., 2005], we can discretize a vibrating surface into small elements,
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and estimate its radiation (up to first order) by placing a monopole on

every element and summing up their contributions. Namely, the acoustic

transfer at x is estimated as

p(x) ≈
N∑

j=1

Cje
−ikrj =

N∑

j=1

Cje
−iω

c
rj , (3.9)

where Cj is the weight of a monopole on element j and rj is the distance from x to the position

of j-th monopole (i.e., rj = |x − xj|). This expression clearly shows that as ω sweeps in a range

R, p(x) oscillates because e−iω
c
rj is harmonic with respect to ω. In fact, for a far-field listener, rj is

large, and thus p(x) oscillates strongly.

Interpolation of p(ω) We propose the following scheme to interpolate p(ω). For every acoustic

transfer sample p(ωt), we compute p̃(ωt) = eiktrp(ωt), where kt is the wavenumber ωt/c, and r =

|xj − x̄0| is the distance from a key position xj to the object’s center of mass. We claim that p̃(ω) is

much smoother than p(ω) (see Figure 3.5), and thuswe can easily construct an interpolation of p̃(ωt)

in R. To understand the reason, we again look to the approximation (3.9), and have eikrp(ω) ≈
∑

j Cje
−ik(rj−r). For a far-field listening location, we have |rj − r| ≪ |r|. Therefore, e−ik(rj−r)

and hence eikrp(ω) are much less oscillatory. Lastly, given a frequency ω, we interpolate p̃(ω) and

compute the transfer value using p(ω) = e−ikrp̃(ω).

Representationof p̃(ωt)usingProny’sMethod Theremaining question is how to represent p̃(ωt).

Since we will create a representation of p̃(ω) for every key position and every vibration mode, the

representation needs to be compact. Note p̃(ω) still oscillates with respect to ω, albeit smoothly,

because of the term eik(rj−r). This suggests that we should use a small number of harmonic basis

functions to interpolate p̃(ωt). Fourier basis functions were considered; they are efficient for repre-

senting periodic signals. However, in our case, the amplitude of p(ωt) generally tends to decrease
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as ω increases, because the high-frequency waves dissipate energy faster than low-frequency waves

do. These damped signals require more Fourier bases for a plausible representation (see Figure A.1

in Section A.6). Instead, we propose to use Prony’s method [Hauer et al., 1990; Lobos et al., 2003],

which approximates a uniformly sampled signal using a series of weighted complex exponentials.

In our case, it approximates p̃(ω) as

p̃(ω) ≈
N∑

i=1

cie
µiω (3.10)

where ci and µi are complex values determined using the transfer samples p̃(ωt). For readers not

familiar with this method, we list the details in Section A.1. Here we highlight its advantages in

our problems. (i) Prony series has been known for its efficiency on estimating damping coefficients

apart from frequency, phase, and amplitude [Lobos et al., 2003]. It requires only sparse samples

to represent the signals (i.e., 2N samples for N harmonic components). (ii) It offers a compact

representation of p̃(ω), allowing fast runtime evaluation of p(ω). With precomputed ci and µi, we

use the Prony series (3.10) to construct the right-hand-side vector in the least-squares problem (3.8)

for estimating the multipole coefficientsMm
n as described in § 3.3.2. Figure 3.5 shows that N = 6

is sufficient for a close approximation in our experiments. Table 3.1 lists the storage needed for

runtime use, less than 25MB per model. (iii) Computing the parameters ci and µi is fast, involving

only two small least-squares solves and a polynomial root-finding (see Section A.1).

3.4.2 Adaptive Frequency Sweep

Creating a Prony’s representation of p̃(ω) takes as input a set of transfer values p(ωt) at uniformly

sampled ωt ∈ R, t = 1, .., T . Straightforward evaluation of p(ωt) needs to solve the Helmholtz

equation from scratch, which is expensive. Thus, we wish to bypass those solves as many as pos-

sible. To this end, we build our algorithm upon the method of Asymptotic Waveform Evaluation
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Algorithm 2 Frequency Sweep Precomputation for Mode i
Require: the damped natural frequency ωi of mode i

1: procedure A i F yS (ωi)

2: Frequency rangeR ← [ωi −∆ω, ωi +∆ω]

3: Uniformly sampleR with ωt s.t. ω1 > ω2 > . . . > ωT

4: ω∗ = ω1

5: Construct AWE coefficients at ω∗ (i.e., αi and βi in (3.15))

6: for all ωt in descending order do

7: if ωt not in the convg. radius of ω∗ (using (3.17)) then

8: ω∗ ← ωt − (ω∗ − ωt+1)

9: Construct AWE coefficients at ω∗

10: end if

11: Compute pj(ωt) at key positions using (3.15) and (A.5)

12: end for

13: for all key position j do

14: Build Prony series representation (3.10)

15: end for

16: end procedure

(AWE) [Pillage andRohrer, 1990;Gallivan et al., 1994] andperformadaptiveHelmholtz solves.

Our key idea is to sweep the frequency rangeRwith multiple steps. At each step, we choose a refer-

ence frequencyω0 and build a local asymptotic expansion of the frequency-varyingHelmholtz solu-

tion. At the next step, we choose a new reference frequency that cannot be covered by the estimated

convergence radius of the expansion at ω0 in the previous solve. We repeat the step until the entire

R is covered by the convergence ranges of all expansions (see an outline in Algorithm 2).
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Boundary Element Solve We use BEM to solve the Helmholtz equation at every reference fre-

quency. For the exterior Helmholtz radiation problem as in our case, The conventional boundary

integral equation (CBIE) has non-unique solutions at certain fictitious frequencies [Matsumoto et al.,

2010]. This will cause serious problems as we need to sweep through a wide frequency range, which

likely covers those fictitious frequency values. Instead, we follow the Burton-Millermethod [Burton

andMiller, 1971], which solves a linear combination of CBIE and a hypersingular boundary integral

equation (HBIE) to overcome the non-uniqueness (see Figure 3.12 for numerical validation). We

refer the reader to Section A.2 for our implementation details. Ultimately, we solve a dense linear

system

A(ω)φ(ω) = b(ω). (3.11)

Here we explicitly express the system with a frequency parameter ω to emphasize its dependence

on the frequency value that we are sweeping inR. The solutionφ(ω) is a vector stacking the acous-

tic transfer value on object surface elements. With this solution, the transfer value p(xj) at a key

position xj is computed using the Kirchhoff integral formula detailed in (A.5) of Section A.2.

AsymptoticWaveformEvaluation After a BE solve at a frequency ω0, we have p̄(ω0) that satisfies

the linear system A(ω0)p̄(ω0) = b(ω0). Then, a polynomial asymptotic expansion of p̄(ω) can be

built in a local region centered at ω0,

p̄(ω) =
N∑

i=0

p̄i(ω − ω0)
i, (3.12)

where p̄0 = p̄(ω0) and p̄i, i = 1, . . . , N are coefficients to be determined. To compute p̄i, we take

the derivatives of both (3.11) and (3.12) with respect to ω and form a linear system of p̄1,

A(ω0)p̄1 = b′(ω0)− A′(ω0)p̄(ω0). (3.13)
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Here A′(ω0) and b′(ω0) can be computed analytically (see Section A.4 for details), and we have

factorized A(ω0) when solving A(ω0)p̄(ω0) = b(ω0). Therefore only a fast back-substitution is

needed here. Higher-order coefficients p̄i can be solved in a similar manner using higher-order

derivatives of (3.11) and (3.12). We defer the detailed derivation in Section A.3. In short, we have

the following equation to solve for p̄i,

n!A(ω0)p̄n +
n∑

i=1

(n− i)!Ci
nA(i)(ω0)p̄n−i = b(n)(ω0). (3.14)

where Ci
n = n!

i!(n−i)!
are the binomial coefficients. This is a linear system of the form A(ω0)p̄n = c,

since all the p̄i, i = 0, . . . , n − 1 are known from previous computation. And again we quickly

solve this system by reusing the factorization of A(ω0). After all p̄i, i = 0, . . . , N are solved, we can

quickly compute the Helmholtz solution at a frequency ω using (3.12).

Extending Convergence Radius with Padé Approximant One drawback of the straightforward

polynomial expansion (3.12) is that it tends to have a limited convergence radius (see Figure 3.6).

Consequently, we needmanyAWE solves to cover the frequency rangeR. To alleviate this problem,

we propose to build a Padé approximant, which is known to provide a larger convergence radius

than a polynomial expansion although it is derived from polynomial coefficients [Karlsson, 1976].

In particular, provided a set of solved polynomial expansion coefficients p̄i, i = 0, . . . , N , we match

the polynomial expansion (3.12) with a rational polynomial,

L+M+1∑

i=0

p̄i(ω − ω0)
i =

PL(ω − ω0)

QM(ω − ω0)
=

∑L

i=0 αi(ω − ω0)
i

1 +
∑M

j=1 βj(ω − ω0)j
(3.15)

where both αi and βi are vectors with the same length as p̄i; the quotient is computed using a

component-wise division. In practice, we set the rational polynomial orders, M = ⌊N/2⌋ and

L = N −M ,
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so this Padé approximant has the same complexity as the polynomial expansion (3.12). We solve

αi and βi by multiplying both sides of (3.15) byQM(ω − ω0) and matching the coefficients for all

orders of terms. This amounts to solving












p̄L p̄L−1 . . . p̄L−M+1

p̄L+1 p̄L . . . p̄L−M+2

... ... . . . ...

p̄L+M−1 p̄L+M−2 . . . p̄L























β1

β2

...

βM












= −












p̄L+1

p̄L+2

...

p̄L+M












. (3.16)

Let D denote the number of boundary elements and also the length of p̄i. The above equation

describes D independent linear systems, each corresponding to a single component of p̄i and βi;

therefore we can solve all D linear systems in parallel. Once βi is obtained, we compute αi using

αi =
∑i

j=0 βj p̄i−j . Again the product βj p̄i−j indicates a component-wise multiplication. Fig-

ure 3.6 illustrates the improvement of the convergence radius.

Adaptive Helmholtz Solves With a depiction of our AWE solver in place, we now present our al-

gorithm to sweep throughR and adaptively performAWE solves. Letωt t=1,...,T denote our uniform

frequency samples sorted in descending order. Our goal is to evaluate p(ωt) at all key positions. We

start from the highest frequency sampleωT and build anAWEexpansion series atωT . Thenwemove

on to ωT−1 and check if ωT−1 is within the convergence radius of the series at ωT . If it is, we directly

evaluate the series to compute p(ωT−1) and continue to the next sample ωT−2. At some point, a

sample ωi is out of the convergence radius, and thus the obtained AWE series becomes invalid. At

this point, we know a lower bound of the convergence radius of the series at ωT is ωT − ωi+1. We

also observe that the convergence radius of the AWE series increases as the expansion frequency

decreases. Therefore, we build a new AWE series at the frequency sample ωj = ωi − (ωT − ωi+1).

Since ωj is smaller than ωT , we guarantee that ωi is now within the convergence radius of the series
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at ωj . From there we switch to the new series at ωj and continue our transfer evaluation. We repeat

these steps until the entire frequency samples ωt, t = 1, . . . , T are evaluated (see Algorithm 2). The

main advantage of this process is that we solve the AWE only at a few automatically selected fre-

quency samples while relying on the expansion form to quickly evaluate transfer values for all the

samples.

A simple approach to check if a frequency ω is within the convergence radius is to evaluate the se-

ries at ω and substitute it back into (3.11) to compute the residual. However, this approach needs

to construct the dense matrix A(ω) for every check. Instead, we propose a faster algorithm by ex-

ploiting a mathematical insight of Padé approximant: two consecutive orders of Padé solutions are

very close inside the convergence radius, but they diverge rapidly when this radius is reached. To

harness this insight, we compute

ˆ̄p(ω) =
PL−1(ω − ω0)

QM−1(ω − ω0)
and p̄(ω) =

PL(ω − ω0)

QM(ω − ω0)
, (3.17)

and require ∥ ˆ̄p(ω) − p̄(ω)∥ ≤ ϵ. For all our examples, we use L = 6, M = 5 and ϵ = 10−4. On

average we only need about 5 AWE solves to cover a frequency range of 5kHz to achieve this error

tolerance (See Figure 3.6).

3.4.3 Frequency-Adaptive Mesh Simplification

To further speed up the precomputation, we accelerate each Helmholtz solves by adaptively simpli-

fying object surface meshes. It is well known that the complexity of BEMs depend on the number

of surface elementsN . The smallerN is, the faster computation can be. For Helmholtz solves, it is

also found that the element size should be bounded by the wavelength [Jerri, 2005]. Correspond-

ing to human hearing range from 20Hz to 20kHz, the wavelength varies from 17 meters to 1.72

centimeters. Thus we can use fewer elements while retaining the accuracy for lower frequencies.
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Furthermore, we observe that the scale of spatial variance of an object’s mode shapes is often much

larger than the size of the mesh elements (see Figure 3.7). As a result, the modal displacement data

can be well resolved even with a coarse surface mesh.

We therefore use frequency-adaptive surface discretization in our BE solves. We start from a fine

surface mesh sufficient for the highest frequency (e.g., 20kHz). For each mode i, surface vertices

are also associated with their modal displacement vectors ũi extracted from the shape matrix U.

Next, we divide our interested frequency rangeR = [ω0 − ∆ω, ω0 + ∆ω] into multiple intervals,

each with a fixed frequency band. In practice, we use a 2kHz frequency band and hence up to 3

intervals for R. For each frequency interval and each mode i, we construct a simplified surface

mesh as well as corresponding modal displacement data. We perform the mesh simplification at

the beginning of our precomputation stage. During our Helmholtz solves performed in §3.4.2, we

adaptively choose the mesh resolution and modal displacement data based on the target frequency

range and mode.

EdgeCollapseAlgorithm Webuild ourmesh simplification algorithm based on the edge collapse

algorithm of Hoppe [1999], and follow their notations therein. Each mesh vertex v has a 6D vector

v = [pT uT ]T , where p is the vertex position, and the modal displacement vector u is used as a

vertex attribute. The quadric error function for collapsing an edge is defined as

Qv(v) =
∑

f∈N (v)

A(f)
(
Qf

p(v) +Qf
u(v)

)

where A(f) is the area of a triangle f adjacent to v, Qf
p(v) measures the distance of p to the plane

containing f , andQf
u(v)measures the deviation ofu from a linearly changing modal displacement

field on the triangle f . Both terms are simply zero-extended versions of those in [Hoppe, 1999].

We therefore refer the reader to that paper for details. In short, Q(v) has a 6D quadratic form,
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Qv(v) = vTAv+2bTv+c. When collapsing an edge connecting v1 and v2 into a new vertex vnew,

we solve for its position pnew and modal vibration vector unew by minimizing

vnew = argmin
v

Qv1(v) +Qv2(v)

s.t. gT
volp+ dvol = 0. (3.18)

Here gvol and dvol are respectively a 3D vector and scalar determined by the 1-ring local geometry

of the collapsing edge. This linear constraint is to ensure volume preservation.

Volume Velocity Preservation While previous methods can achieve volume preservation, they

shrink the modal amplitude in the process of edge collapse, resulting in a loss of sound power (see

Figure 3.8). We address this problem by introducing a constraint on the object’s volume-velocity.

Given a modal displacement vector u at a frequency ω, the object’s volume velocity is defined

as
∫

S

(u · n)ωeiωtdS = ωeiωt
∫

S

u · ndS.

This quantity has been previously used as a far-field approximation of sound power [Johnson and

Elliott, 1995]. Our goal is to ensure its preservation during our mesh simplification. When an

edge collapses into a vertex v, only the volume-velocity contributed by its 1-ring triangle fan can be

changed. Ignoring the unchanged time-harmonic part and assuming a piece-wise constant modal

vibration, we have the volume-velocity constraint,

1

6

∑

f∈N (v)

[(p− pf1)× (p− pf2)]
T
(u+ uf1 + uf2) = Cv (3.19)

where f denote a triangle adjacent to v, (p,pf1,pf2) are f ’s vertex positions, (u,uf1,uf2) are the

modal displacement vectors on those vertices, and Cv is a constant volume velocity value com-

puted from the corresponding triangle region before the edge collapse. Now we need to minimize
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Q̄v(v) = Qv1(v) +Qv2(v) with two constraints when collapsing an edge,

v = argmin
v

Q̄v(v) subject to constraint (3.18) and (3.19).

This is a quadratically constrained quadratic programming (QCQP) problem, generally considered

to be NP-hard. Fortunately, in this particular QCQP problem, because the quadratic constraints

involve only pTu but not pTp oruTu, we are able to solve it using iterations of linearly constrained

problems: we start from an initial guess of v byminimizingQv(v)without any constraints, and this

amounts to solving a 6D linear system, Av = b. Then we iteratively apply a staggered sequence of

two quadratic optimization solves

u = argmin
u

Qv([pT uT ]T ) subject to (3.19) only, (3.20)

p = argmin
p

Qv([pT uT ]T ) subject to (3.18) and (3.19). (3.21)

In the first solve (3.20), we use vertex positions p from previous iterations and compute u. In the

second solve (3.21), we fix displacement vector u using values resulting from (3.20) and compute

vertex positions. Both solves minimize a quadratic form with linear equality constraints. We solve

them using the method of Lagrange Multipliers: problem (3.20) becomes a 4D linear system, while

problem (3.21) amounts to a 5D linear solve (see Section A.5). In practice, only tens of iterations

are needed for convergence. As demonstrated in Figure 3.9, using the adaptively simplified meshes

greatly speeds up the boundary element solves (in §3.4.2), while introducing very little numerical

error.
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Example

(i) Complexity (ii) Mesh Simplification (iii) Adaptive Freq. Sweep (iv) Runtime Evaluation

# tet.
#

modes

before (avg.) after (avg.) simp.
speedup

before after
speedup

before after
speedup

# tri. BE Solve # tri. BE Solve time # solves # solves size time size time

P 404k 59 100k 19m 5750 4.2m 16.8m 4.2× 4740 253 17.2× 8.1MB 59m 5.1MB 12.9s 274×

M 292k 61 68k 35m 7255 6.1m 14.7m 5.5× 4492 379 11.3× 8.7MB 96m 5.4MB 13.6s 424×

B y 130k 56 30k 52m 4297 4.6m 10.2m 10.1× 3360 198 14.5× 7.7MB 132m 4.8MB 22.2s 356×

B (solid) 160k 197 35k 21m 4139 4.1m 30.6m 4.9× 13396 1068 10.4× 30.2MB 237m 22.1MB 28.9s 492×

iJ 62k 70 14k 14m 3123 3.8m 6.5m 3.7× 5075 267 17.6× 9.2MB 96m 6.0MB 24.8s 232×

S i 78k 49 12k 14m 5425 5.8m 21.2m 2.9× 3626 221 13.2× 6.7MB 38m 4.2MB 11.6s 197×

O i (shell) - 300 32k 29m 7841 5.6m 28.4m 4.9× 12623 715 17.1× 62.4MB 258m 26.1MB 12.2s 1270×

C (shell) - 300 65k 42m 6406 5.1m 40.3m 7.8× 14131 624 22.2× 61.2MB 312m 25.7MB 23.8s 785×

B (shell) - 200 35k 23m 5364 4.7m 36.6m 4.4× 9246 436 20.5× 42.7MB 186m 19.9MB 19.4s 575×

Table 3.1: Statistics and Timings: (i) the size of tetrahedral meshes and modes; (ii) the averaged number of triangles
before and after mesh simplification, the averaged BE solve time with and without simplification, the mesh simplifica-
tion time, and the speedup to compute transfers of all modes, (iii) the total number of Helmholtz solves without and
with adaptive frequency sweep, the speedup achieved using adaptive frequency sweep with simplified meshes. (iv) the
memory overhead for transfer evaluation without and with key-position least-squares solves, the timings of transfer up-
date using standard BE solves on a 20-core cluster, the timings of transfer evaluation using our approach on a quad-core
desktop, and the computational speedup. Note: the memory without key-position least-squares solves only represents
the storage on a single frequency. This storage increases as we sweep through the frequency range R, whereas our
model uses a fixed memory.

3.5 Validation of Interactive Acoustic Transfer

Performance We profiled the performance of our algorithm, and summarized speedups of each

step over the straightforward approaches, as well as the runtime speedups. Table 3.1 lists the statis-

tics of our examples. The precomputation timings weremeasured on a 20-core Intel Xeon E5 cluster,

and the runtime profiling was performed on a desktop with a quad-core Intel Xeon E5 (3.4GHz)

CPU.Due diligence has been taken to exploitmulti-core parallelization for both the precomputation

and runtime sound synthesis. On average, our adaptive mesh simplification achieved 5× speedups

for Helmholtz solves; our adaptive frequency sweep led to at least 10× speedups; and at runtime,

given user-specified parameters, we are able to synthesize sound with more than 300× speedups

over the traditional approach which needs to recompute the Helmholtz solutions. We note that it
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is possible to further boost runtime performance for interactive parameter editing: for example, at

runtime one can start a background thread performing the least-squares solves of multipole coef-

ficients at more densely sampled frequencies while the user is adjusting parameters, and cache the

computed transfer coefficients for later reuse.

The additionalmemory size needed for runtime use of our Prony representation for all key positions

is less than 25MB per model. We also note that the major memory bottleneck of a modal sound

model is the storage of shape modal matrix U that can take hundreds of megabytes of memory,

depending on the mesh resolution. Our frequency-sweeping transfer representation is resolution-

independent, and adds little memory overhead. We note a recentmethod [Langlois et al., 2014] that

compresses the modal matrix U and complements to our approach.

Comparisons To demonstrate the effects of transfer values on final sounds and the accuracy of

our transfer evaluation, we compared the sounds computed without transfer, with transfer at a fixed

frequency, with transfer using our model, and the exact transfer using BE solves. For this com-

parison, we also chose different modal sound parameters to generate different sound effects. We

observed that the resulting sounds from our model are very close to the sounds using brute-force

transfer evaluation, while the sounds without transfer and with constant transfer both show audible

differences from the ground-truth sounds. Please see the accompanying video for animations and

sound comparisons.

Numerical Validation We further validated our models numerically. Our runtime transfer eval-

uation are approximated by least-squares problems formulated using key-position transfers. In

Figure 3.10, we validate its accuracy by comparing with the results from full BE solves. For low-

frequency Helmholtz solves (Figure 3.10 left), our results agree with the brute-force solution very

well. As expected, the high-frequency solves (Figure 3.10 right) are numerically more challenging,
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and our approximation degrades. However, Figure 3.11 shows the convergence of our approxima-

tion as the number of key positions increases. Therefore, we can always increase the accuracy of

our runtime approximation by adding more key points. This feature provides the user easy control

of the performance-accuracy tradeoffs for specific applications.

Lastly, Figure 3.12 validates our BEM implementation with the conventional CBIE approach. As

shown, our implementation based on the Burton-Miller method [Burton and Miller, 1971] is more

robust and agrees with the analytical solution very closely.

3.6 Results

3.6.1 Sound Editing Examples

Our interactive transfer estimation enables flexible and efficient approaches to tweak modal sound

parameters, explore different sound characteristics, and achieve desirable sound effects. We now

demonstrate with three applications. All the animations are simulated using [Kaufman et al., 2008]

except iJ is from [Tan et al., 2012]. Please see the accompanying video for full results.

Fast Parameter Editing Modal sound models are often used to synthesize sounds automatically

synchronized with simulated animations. To achieve certain sound characteristics, the user might

start with physical parameters of target materials. However, even for a single material, its mate-

rial parameters are given in a range. For instance, polyethylene, a common plastic, has a Young’s

modulus in a range from 0.11GPa to 0.45GPa, which doubles the modal frequencies when changed

from the lower end to the upper end. In addition, there are no mechanically well-defined damp-

ing parameters [Adhikari and Woodhouse, 2001], although the damping can significantly affect the

sound perception [Klatzky et al., 2000]. Consequently, one has to rely on a trial-and-error approach
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to tune the parameters. It is therefore desirable to have a fast sound synthesis method to shorten

the tuning cycle. In our examples, we take a rigid-body simulation as input, and edit Young’s mod-

ulus and damping ratio to synthesize sounds produced by different materials ranging from wood,

plastic, porcelain to metal (see Figure 3.13.h). Our runtime synthesis time is always less than 30

seconds.

Parameter Space Exploration Ourmethod allows the user to continuously explore the parameter

space. In our implementation, we present the user with a 2D parameter space whose two axes are

damping scale and stiffness scale respectively (see the video). When the user clicks a point in the

coordinate system, we immediately synthesize the soundswith corresponding stiffness and damping

values and present to the user Figure 3.1. Take S i as a demonstration. With a single pass of

precomputation, we explore the parameter space, and identify a set of parameters that produces

different pitches corresponding to a set of music notes with different timbres. After we are satisfied

with the resulting sound characteristics, we use the parameters to generate sounds of more complex

animations. In S i , we choose three different materials and produce sounds that match the

melody “Song of the Wind” (see Figure 3.13.h).

Thin-Shell Modal Models Our method is not limited to editing solid modal sound models. We

also apply our method to edit thin-shell modal sound models. In the precomputation, we compute

thin-shell modal matrices and vibration frequencies following the method proposed by Chadwick

et al. [2009b]. The rest of the pipeline is exactly the same as the solid modal sound model. In the

accompanying video, we demonstrate different thin-shell sound effects edited using our method

(see Figure 3.13.e, f and g).

Extension: Time-varying Frequency Effects Finally, we extend our method to allow the user to

specify time-varying parameters, we can thus approximate sound effects with frequency shift, which
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is usually caused by nonlinearmodal vibrations. This extension is straightforward: with user-guided

time-varying parameters, we sample the values across the temporal domain and evaluate transfers

for smooth interpolation. The modal vibration equation (3.3) with time-varying coefficients is still

integrated using Runge-Kutta method as presented in §3.3.1. In our examples, we used the time-

varying stiffness scale to mimic the nonlinear pitch changes, such as pitch gliding [Penttinen et

al., 2006] (see Figure 3.13.c). We also explored an example in which the user specifies nonphys-

ical time-varying frequencies to produce interesting artistic effects such as the one in iJ (see

Figure 3.13.d).

3.6.2 Preliminary User Studies

Experiment Setup We perform four user studies to evaluate the perceptual quality of different

levels of transfer approximation accuracy in our method.

1. We generate sounds using four different sets of hit locations and impact forces. For each

setting, we compute three versions of sounds, denoted as A, B, and C, using different ap-

proximation accuracies. The accuracy is measured as the normalized least-squares residual

as used in §3.5 (Table 3.2). We then perform the Two-alternative forced choice (2AFC) tests:

we generate three pairs of sounds, AB, BC and AC, for every set of sounds, and present the

human subjects with each pair of sounds, one immediately after the other, along with a refer-

ence sound generated without transfer approximation. The subjects are asked which sound

in each pair is closer to the reference.

2. We ask the subjects to rank the similarity of pairs of sounds, one approximated sound from

above and one reference audio, on a Likert scale (i.e., choosing from “very similar”, “similar”,

“neutral”, “different”, and “very different”). We repeat this experiment for all sound settings

computed in previous study. This study is to examine preliminarily the correlation between
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the numerical errors and the perceived difference.

3. Then, for each sound generation setting, we choose different number of samples to estimate

transfer values. This results in sounds with different accuracies (measured by the normalized

L2 error in Table 3.3). We present the subjects with each of these sounds and a fully simulated

sound, along with the reference sound. We then ask them which sound (the approximated

sound or the fully simulated sound) is closer to the reference.

4. Lastly, we validate our assumption of using fixed modal shapes. For each test example, we

computed two sounds, one with varying modal shapes and one with fixed modal shapes. We

use the B y example with three materials (wood, porcelain and metal). When building

the modal sound model with fixed modal shapes, we use our method to simplify meshes.

While the mesh simplification is frequency dependent, on average we observed more than

20× reduction of the number of triangles. We then ask the subjects to rate the similarity of

the two sounds on a Likert scale. We present these sounds in a randomorder to avoid possible

bias from ordering.

Analysis of the Results We conducted the experiments with 40 subjects, ranging from age 20 to

31, with 35% female and 65% male. All subjects are university affiliates who reported no problem

with hearing and had no sound design experience before. As part of the training process, we show

each subject a set of sample questions and walk through the interface.

In the first pairwise comparisons, we aggregated the results from all examples. Overall, 86.6% of

the subjects thought the full-sample sound was more similar to the reference sound among all three

sounds. Using half and a quarter of the samples won 47.8% and 15.6% of user selections, respec-

tively. (see Table 3.2).

Figure 3.14 visualizes the results of the second experiment. For each sound (of A, B and C), we plot
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sound A B C

# samples 100% 50% 25%

averaged error 10−9 0.299 0.641

winning percentage 86.6% 47.8% 15.6%

Table 3.2: Statistics of the first user study. The error is measured as the normalized least-squares residual. As the
error increases, fewer and fewer subjects consider the approximated sounds to be similar to the reference.

# samples 100% 80% 60% 40% 25%

error 10−9 0.08 0.19 0.37 0.53

winning percentage 47.5% 32.5% 5% 2.5% 2.5%

Table 3.3: Statistics of the third user study. As the error increases, more and more subjects can perceive the difference
between the reference sound and the approximated sound.

its frequencies of being classified on each Likert scale category. We found that as the approximation

error increases, it becomes easier for the subjects to notice the difference between the approximated

sounds and the reference.

The third study shows that when the error is very small, the subjects cannot tell the difference. As

theL2 error is slightly increased to 0.08, 32.5% of the subjects perceived the approximated sound to

be similar to the reference sound. As the number of samples drops below 60%, we observed a clear

decline in the perceived similarity. In other words, subjects were able to discern the difference once

the errors were above 0.08 (see Table 3.3).

Lastly, in the fourth user study, 82.5% of the subjects considered two sounds with fixed and varying

modal shapes to be “Very similar”, and 17.5%of them chose “Similar”. This suggests that using fixed

modal shapes for fast transfer approximation is indeed plausible.
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3.7 Conclusion

We have presented the method for fast runtime modal sound synthesis via efficient and more gen-

eral precomputation. It greatly eases parameter tuning for desirable sound effects, and has the abil-

ity to generate various sound effects even using a single model. Our efficient runtime synthesis is

realized by solving small-scale least-squares problems to estimate multipole coefficients of trans-

fer functions. The least-squares formulation relies on precomputation. To improve its efficiency,

we utilize Padé approximant to sample key frequencies adaptively and propose a volume-velocity-

preserving mesh simplification algorithm to speed up individual Helmholtz solve. With numerical

comparisons and user studies, we demonstrate its use in sound synthesis applications such as fast

parameter tuning for various sound effects, and extend it to support the creation of time-varying

sound effects. We augment and leverage several numerical techniques throughout, such as Prony’s

method and Padé approximant, hoping that these tools can be useful in other graphics research

areas as well.

Although we have shown that our approximation is comparable to the ground-truth results both

numerically and qualitatively, it remains unexplored how far we can go to further speed up the

computation. For example, can we take even coarser samples and solve Helmholtz on even sim-

pler meshes while maintaining the perceptual plausibility? In addition, it is well-known that the

Helmholtz problem at higher frequencies tends to be more ill-conditioned and thus numerically

more challenging. This difficulty is also observed in our experiments, as our least-squares solves in

§3.5 can not perfectly agree with the accurate solutions for frequencies higher than 12kHz, and the

numerical error of transfer solves (shown in Figure 3.9) becomes larger as the frequency increases.

For modal vibration sound, the high-frequency modes have large damping coefficients, and there-

fore this inaccuracy is hardly noticeable. However, when extending this method for editing other

sound models such as fluid sounds, we hope to have a more accurate high-frequency approxima-
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tion. In the proposed model we are able to generate different sound effects such as wood, porcelain,

metal, etc.. With different input models, the results of linear model analysis, mostly the modal

frequencies, are very distinct. As a result, it may require different parameters to achieve similar

sound effects. One possible extension is to build a geometry-invariant measure such that a set of

parameters can produce similar sound effects regardless of the input model geometry. Moreover, as

observed in the O i (shell) example, different transfer approaches may produce similar sounds

that the users cannot distinguish. We would like to better understand the reason that causes this

ambiguity, which might in turn suggest a way to exploit this ambiguity. One common feedback

from users is that the stiffness and damping parameters are not very intuitive at the beginning; they

only started realizing their different effects during the second or even third trial. Therefore, one

possible future work is to identify more intuitive sound model parameters for user adjustment. Fi-

nally, another interesting direction is to investigate a combination of our method and traditional

Foley sound tools based on sound recording and granular synthesis to circumvent the numerical

difficulties at high frequencies.
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Figure 3.1: Parameter Exploration using our method: With our precomputed information, we are able to explore the
space of modal sound parameters at runtime, achieving numerous sound effects (bottom) synchronized with a physics-
based animation. The three spectrograms highlighted in the colored boxes correspond to (left to right) metal, porcelain,
and wood materials shown on the top.
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Figure 3.2: Comparison between Runge-Kutta and IIR filter: Given a time-varying vibration equation, fourth-order
Runge-Kutta (RK4) integrator (orange) offers higher accuracy against the IIR filter (purple), which was used in previous
methods.
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Figure 3.3: Non-smoothness of Mm
n : The high-order Mm

n becomes non-smooth and fluctuates strongly at high fre-
quencies, making direct interpolation difficult. We note that these orders (i.e., N=7,8) are necessary in the expansion
for sufficient accuracy.
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Figure 3.4: Key Positions

Real Parteal P

Prony Approx. (N=4)

Prony Approx. (N=6)

frequency (kHz)

Prony Approx. (N=4)

Prony Approx. (N=6)

Imaginary Partmaginary Part

frequency (kHz)

Figure 3.5: Frequency-Sweeping Transfers: We choose one mode of the B y model, evaluate p(ω) using BEM at a
fixed point as frequency sweeps and plot both real and imaginary parts. p(ω) oscillates dramatically (purple); factoring
out e−ikr produces a much smoother curve (green); 4th-order Prony series gives a coarse interpolation curve (orange),
while 6th-order series produces a curve (red) almost identical to the original function.
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Taylor Approx. (Order 9)

Padé Approx. (Order 9)

Padé Approx. (Order 5)
Taylor Approx. (Order 5)
Accurate Solution

frequency (kHz)

Convg. Radius

Padé Approx. (Order 9)

Padé Approx. (Order 8)

Accurate Solution

frequency (kHz)

Figure 3.6: Asymptotic Waveform Evaluation: Using the B y model, we sweep a frequency range and evaluate
|φ(ω)|2 in (3.11) using different expansions and accurate Helmholtz BE solves. (left) We compare the convergence
radius of polynomial expansions against Padé approximant. Accurate BE solution is plotted in red. Both 5th-order
and 9th-order polynomial expansion diverge from the accurate solution faster than their Padé counterparts. (right)
8th-order Padé approximant agrees with the 9th-order one closely until the convergence radius is reached.

998 Hz 11545 Hz 17887 Hz17661 Hz

Figure 3.7: Smooth Modal Shapes: Color encodes the modal displacement amplitude of the P model; modal
frequencies are listed below each subfigure. Even for high frequency modes, their modal displacement varies smoothly
on the surface, making it possible to perform mesh simplification.



CHAPTER 3. INTERACTIVE RIGID-BODY ACOUSTIC TRANSFER 48

30076 triangles
4647 seconds

Original Traditional Simplification Our VVP Simplification 

2004 triangles
370 seconds
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370 econds

Figure 3.8: Volume-Velocity-Preserving Mesh Simplification: We solve the Helmholtz equation using the origi-
nal high-resolution mesh (left). We then simplify the mesh without volume-velocity preservation (middle) and with
volume-velocity preservation (right). For both meshes, the Helmholtz solve is 12.6× faster than the original Helmholtz
solve. Without volume-velocity preservation (middle), the acoustic transfer field loses radiation power, while the
volume-velocity-preserving mesh simplification (right) results in almost identical pressure field to the original high-
resolution solve.
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Original Mesh

Our VVP Simplified Mesh

30067 triangles                 30067 triangles           30067 triangles            

2000 triangles           13.6x 

832Hz    Error: 0.002 5468Hz    Error: 0.007 12308Hz    Error: 0.081 

3842 triangles             6.4x 7945 triangles              3.9x 

Figure 3.9: Transfer Values with Frequency-Adaptive Remeshing: We compare transfer values computed using the
original high-resolutionmesh (top)with the values using simplifiedmeshes (bottom) for threemodeswith low,medium
and high frequency values. Even for high-frequencymodeswhich require a relatively high-resolutionmesh, ourmethod
achieves nearly 4× speedup, while retaining a low L2 error (< 8.2%).
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Figure 3.10: Accuracy of Least-Squares Approximation: we sample 483 key positions for the least-squares estimation
ofMm

n . We estimateMm
n with three frequency values and use them to evaluate acoustic transfer values at 500 randomly

selected locations (blue). Meanwhile, we compute the accurate Helmholtz solution at the same locations (orange). For
better visualization, we sort the locations based on their accurate transfer values. As frequency increases, the accuracy
of our approximated transfer values degrades gracefully.
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Figure 3.11: Convergence of Least-Squares Approximation: Fixing the frequency value f = 12758Hz, we estimate
Mm

n using an increasing number of key positions. We use the estimated Mm
n to evaluate acoustic transfer values at

500 randomly selected locations (orange, blue, and green curves), and compare them against accurate transfer values
solved using conventional BEM (red). As the number of key positions increases, we get higher fidelity for the estimated
transfer values.
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Figure 3.12: BEM Comparison: Using a pulsating sphere with known analytic solution, our BE implementation (or-
ange) agrees with the analytic solution (green) as frequency sweeps, whereas the CBIE solver (purple) has large error at
fictitious frequencies.
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Figure 3.13: (a and b) We edit the Young’s modulus and damping values at runtime, and produce sound effects corre-
sponding to various materials. (c and d) We explore the examples that allow the user to change individual frequency
values in a time-varying way, producing nonlinear artistic effects while retaining physical realism. (e, f and g) We
apply our method to edit sound effects of thin shells. (h) We explore modal sound parameters so that each stair makes
sounds corresponding to a music note, and the entire ball bouncing sequence produces a melody.

Figure 3.14: Statistics of the second user study.
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Chapter 4

Acoustic Filters Simulation and

Optimization

4.1 Introduction

Acoustic filters have numerous important applications, whether to produce a desired sound pitch

or to attenuate undesired noise. These applications, ranging from wind instruments to mufflers and

hearing aids, all rely on the same fundamental physical principle: when sound waves pass through

a cavity, part of the waves reflect back and forth, effectively boosting or suppressing certain acoustic

frequencies. In this process, the filtered frequencies are largely affected by the shape of the cav-

ity.

However, for all but the simplest cavity shapes, the influence of the shape on the filtered frequency

bands is complicated and unintuitive. Thus, the current process for improving the quality of acoustic

filters requires many trial-and-error iterations over the shape. Furthermore, the design space is

often limited to simple geometries such as pipes (e.g., for making flutes, trumpets, and industrial
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(a) (b) (c)

Figure 4.1: Acoustic Tagging. By optimizing the structure of primitives (a), we control the acoustic response of an
object when it is tapped (c) and thereby tag the object acoustically. Given three objects with identical shapes (b), we
can use a smartphone to read the acoustic tags in realtime, by recording and analyzing the tapping sound, and thereby
identify each object.

mufflers) since the acoustic behavior of only these simple shapes can be easily characterized. Current

computational design tools support only these simple primitives and even then the design process

requires strong expertise in this domain.

Meanwhile, recent advances in additive manufacturing have significantly facilitated rapid manufac-

turing of complex geometries. This trend opens up new possibilities for expanding the design space

of acoustic filters, thus motivating the development of corresponding computational methods that

can efficiently simulate and optimize the shape of the cavity in order to achieve desired acoustic

filtering effects. In light of this, the goal of our work is to expand the range of acoustic filter design

by employing complex cavity shapes computationally optimized and then physically realized using

additive manufacturing.

We propose Acoustic Voxels, a computational method that assembles basic shape primitives into

a complex geometry, one that produces the desired acoustic filtering. In particular, we consider

a simple type of shape primitive, a hollow cube with circular holes on some of its six faces (Fig-

ure 4.4). We show that these primitives, albeit simple individually, offer a large design space for

acoustic filters whenmodularly joined at their faces into a complex assembly. This modular scheme

also permits fast and accurate estimation of the acoustic performance of a given assembly, thereby

allowing automatically optimizing its structure to achieve target acoustic filtering properties while
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satisfying geometric constraints of inlet/outlet positions and overall shapes.

Our approach starts with precomputing the acoustic transmission for our parameterized shape

primitives. At runtime, given an arbitrary assembly of these primitive filters, our method estimates

its acoustic transmission, predicting the boosted and suppressed frequency regions. This, in turn,

enables us to derive a formula to compute the gradient of the acoustic transfer with respect to shape

parameters, and further develop an efficient combinatorial and continuous optimization algorithm

to design desired filter structures. Ourmethod combines a stochastic optimizationmethod for com-

puting the topology of the assembly (i.e., the way of arranging and connecting the primitives) with

a gradient-based quasi-Newton method for computing the geometric parameters of each primitive

shape in the assembly. We validate our method by running finite-element off-line acoustic simula-

tion and industrial laboratory tests performed by acoustic engineering professionals (§4.5).

Our proposed approach automates the design of acoustic filters. This simplified design process al-

lows casual users to produce objects with custom acoustic properties. Our method also expands

the range of acoustic filters that can be achieved, enabling exploration of many different applica-

tions. In addition to designing different types of noise attenuation components (e.g., mufflers), our

method can customize musical instruments with non-conventional shapes. Furthermore, we can

embed imperceptible acoustic information into the fabricated objects, and thus opens up new types

of interactions with fabricated objects, extending current visually based design into audiovisual de-

sign.

4.2 Background on Acoustic Filters

We start by briefly reviewing the theory of acoustic filters and refer to the textbooks [Ingard, 2009;

Munjal, 2014] formore details. A typical acoustic filter has a cavity structure connecting an inlet and

an outlet— trumpets and motorcycle mufflers are classic examples. When sound waves enter into
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the inlet, travel through the cavity, and leave from the outlet, their frequency components are altered.

In most applications, the physical size of a filter ranges from centimeters to tens of centimeters and

their operating frequencies are up to thousands of Hz. To evaluate the performance of acoustic

filters, the following two quantities are often used (Figure 4.2):

• Input impedance. Consider a steady-state sound transmission through a filter. In the fre-

quency domain, the sound pressure and acoustic velocity at a location x are denoted as

p(x, ω) and v(x, ω), respectively. The acoustic impedance, defined as Z(x, ω) = p(x,ω)
v(x,ω)

, indi-

cates howmuch sound pressure is generated by a given air vibration of frequencyω at position

x. Particularly, we are interested in the impedance value at the inlet xi, ZIN(ω) = Z(xi, ω),

called input impedance (Fig. 4.2). ZIN(ω) usually varies strongly with respect to the frequency

and has multiple local minima and maxima, which correspond to the sound frequencies that

are the easiest and the most difficult to transmit through the filter. For example, the playing

frequencies of a trumpet are very close to the local maxima of its input impedance.

• Transmission loss. To design acoustic filters for noise reduction, a widely used measure is

the transmission loss [Munjal, 2014], defined as the ratio, expressed in decibels (dB), of the

acoustic power incident to the muffler to the power transmitted downstream into the envi-

ronment. Concretely, if the inlet and the outlet of an acoustic filter are sufficiently small, its

transmission loss is described as:

LTL(ω) = 10 log10

∣
∣
∣
∣

Sip
2
i+(ω)

Sop2o(ω)

∣
∣
∣
∣
,

where Si and So are the cross-sectional area of the inlet and the outlet, respectively; po(ω)

is the frequency-domain acoustic pressure of the transmitted sound wave at the outlet, away

from the filter; and pi+(ω) is the acoustic pressure of the incident wave at the inlet, also in the

frequency domain. In short, LTL(ω)measures how much the sound wave of frequency ω gets
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Figure 4.2: Acoustic filters examples. (a) A duct as part of a wood instrument is measured using the input acoustic
impedance; (b) Mufflers are often evaluated using transmission loss.

attenuated when passing through the filter.

Depending on specific applications, our goal is to optimize the internal structure of a filter in order

to obtain target input impedance or transmission loss in a frequency range. In general, accurately

predicting these quantities requires solving the acoustic wave equation or, in the frequency domain,

the Helmholtz equation [Pierce and others, 1991; Allen and Raghuvanshi, 2015]. Either approach

is computationally expensive, especially for complex filter structures. Notably, the relationship be-

tween the geometry of the filter and the resulting impedance or transmission loss function is rather

complex, obstructing us from formulating a well-defined optimization problem of this geometry.

Therefore, we take a different approach by leveraging the concept of the transmission matrix.

Transmission matrix If both the inlet and the outlet have a small cross-section, much smaller

than the wavelength of the operating sound waves, one can reasonably assume that the acoustic

pressure and velocity are both distributed uniformly over the cross-section [Ingard, 2009; Rienstra

and Hirschberg, 2003]. In our examples, the highest frequency that we modeled is 4500Hz, having

a wavelength around 7.6cm. And our cross section radius ranges from 3mm to 1cm. We vali-
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dated this assumption with industrial lab measurements (§4.5.1) and physical fabrication (§4.5.2-

§4.5.4).

Let (pi(ω), vi(ω)) and (po(ω), vo(ω)) denote the complex-valued acoustic pressure and velocity in

frequency domain, at the cross-sections of the inlet and the outlet, respectively (Figure 4.2-a). Their

relationship can be approximated linearly,
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where T ω
ij is i-th row and j-th column in the complex-valued transmissionmatrix at frequency ω. In

this thesis, we also denote thismatrix as T(ω) to emphasize its frequency dependence. Transmission

matrices have been widely used in industrial muffler design [Ingard, 2009], as it relates to the input

impedance and transmission loss through simple formulas:
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(4.3)

where ρ is the air density and c is the sound speed.

Challenges Unfortunately, computing the transmission matrix of a filter structure is expensive.

For each frequency ω, the standard approach first samples two sets of pressures, (pi1, po1) and

(pi2, po2), at the inlet and the outlet. Each set of pressures, together with the zero-normal-velocity

condition on the solid boundary of the filter, forms a complete boundary condition that can be

used to solve the Helmholtz equation and uniquely determine the acoustic velocity (vi1, vo1) (and

(vi2, vo2)) at the inlet and outlet. Then, the transmission matrix can be computed by solving a 2× 2
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Figure 4.3: Overview. Our method exploits precomputed transmission matrices of the primitives and uses a combi-
natorial and continuous optimization to construct the assembly of filters. Please refer to §4.2.1 for an outline of each
step.

linear system,
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This process needs to solve the Helmholtz equation twice for each frequency ω. In addition, while

it is straightforward to compute impedance and transmission loss using the transmission matrix,

it remains hard, if not impossible, to compute the gradient of the transmission matrix with respect

to the geometric parameters of the filter—this gradient is needed for optimizing the cavity shape of

the filter (§4.4). Our approach addresses all these challenges.

4.2.1 Method Overview

Our method automatically constructs the internal structure of an acoustic filter that connects an

inlet and an outlet of a 3D volume (Figure 4.4-right). We aim to control its input impedance or the

transmission loss function as specified by the user.
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System input and output Concretely, out method takes as input three components, (i) a 3D vol-

ume in which the acoustic filter is placed, (ii) the positions of the inlet and the outlet, specified

on the surface of the 3D volume, and (iii) the frequency locations to be boosted or suppressed. It

then outputs the transmission geometry that fits into the 3D volume and that can be fabricated to

produce the desired filtering effects (Figure 4.3).

To this end, we propose a primitive acoustic resonator, a family of simple hollow shapes serving

as building blocks to assemble a complex acoustic filter. These primitives allow us to precompute

their transmission matrices, which in turn enable a fast runtime algorithm to compute the acoustic

impedance and transmission loss of any filters made from an assembly of the primitive resonators

(§4.3). Leveraging the fast computation of transmission matrices, we further address the optimiza-

tion of the inverse problem (§4.4), one that finds an assembly of the primitive shapes to achieve

a target acoustic input impedance or transmission loss. To this effect, we formulate a combinato-

rial and continuous optimization problem, combinatorial in the sense of how to connect primitive

shapes, and continuous in the sense of determining geometric parameters of the primitives. To

solve it, we propose a hybrid method that interleaves a stochastic optimization, namely the Sequen-

tial Monte Carlo method, with a gradient-based quasi-Newton scheme.

4.3 Modular Acoustic Filter

4.3.1 Primitive Resonator

Wepropose to use a simple shape as our primitive resonator—a hollow cubewith extruded cylinders

on its six faces (Figure 4.4-left). All the cylindrical extrusions have the same radius and length

and therefore the bounding boxes of all primitives stay the same. They can be composed together

at their faces by connecting an inlet and an outlet to form a complex structure (Figure 4.4-right).
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2cm

Figure 4.4: Modular filter. Our primitive resonator is a single shape bounded by a 2cm×2cm×2cm cube (left). A
combination of the primitives with varying shape parameters can form complex structure that connects an inlet to an
outlet.

Furthermore, the size of each hollow cube can change, providing one degree of freedomper element

as control variables to influence acoustic filtering properties, in addition to the connectivity of the

resonators.

Rationale Using the simple primitives offers many advantages: (i) They can fill the interior vol-

ume of virtually any shape, as long as they are sufficiently small. This enables us to construct acoustic

filters subject to various shape constraints. (ii) Computing the transmission matrix of any assembly

becomes fast and accurate. (iii) With a hollow cube of a variable size, the primitive is in a one-

dimensional shape space, which can be easily sample. For each sample, we precompute its trans-

mission matrices and interpolate between neighboring transmission matrices. When composed

into an assembly, these primitives offer a large number of degrees of freedom for controlling acous-

tic filtering properties. This idea is also similar to the concept of 3D symmetric condensed nodes

for the computation of electromagnetic fields [Christopoulos, 2006].

In this section, we describe howwe compute the transmissionmatrix of an arbitrary assembly of the

primitive resonators. Ultimately, our goal is to compute both the topology of the primitive assembly

and the geometric parameters (i.e., the cube size of each element) for a desired input impedance or
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transmission loss.

Multi-port transmission matrix We start by extending the concept of transmission matrix in

(4.1) into a six-port transmission matrix. Since the radii of the six open ports of a primitive shape

are small, it remains valid to assume that the frequency-domain acoustic pressure pi(ω) and ve-

locity vi(ω) (i=1...6) are uniformly distributed over the cross sections at each port. Then a linear

relationship similar to (4.1) holds:
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In a way similar to Eq. (4.4), we compute for a given frequency ω the six-port transmission matrix

T by sampling six different sets of pressures {pi, i = 1...6}. Each set of pressures establishes the

(Dirichlet) boundary condition that uniquely solves the Helmholtz equation for sound propagation

in the primitive resonator. After the six Helmholtz solves, it produces six corresponding acoustic

velocities {vi, i = 1...6}, which, together with {pi}, can be substituted into Eq. (4.5) and uniquely

determine the matrix T.

Precomputation Given a primitive resonator shape with six ports, precomputing the transmis-

sionmatrix Tω amounts to solving theHelmholtz equation 6 times, with different Neumann bound-

ary conditions. In particular, for the i-th solve, we set vi = 1 and vj = 0 for all j ̸= i. The trans-

mission matrix is calculated as T ω
ji = pij , where pij is the solution on face j under the i-th boundary

condition. This transmission matrix depends on not only the frequency but also the shape parame-

ter, the cube size. Therefore, we sample a set of frequency values and cube sizes, precompute the T

matrices, and store them in a database. We also note that the precomputation step can be accelerated
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using the recent asymptotic frequency sweeping method [Li et al., 2015]. With these precomputed

six-port transmission matrices, we are able to interpolate the matrix of a primitive resonator of any

frequency and cube size in the sampled range. This interpolation will be used later in the optimiza-

tion step (§4.4) to compute optimal topology and geometry of the primitive assembly for a target

acoustic filtering property.

4.3.2 Transmission Matrix of Resonator Assembly

Now we compute the transmission matrix of a resonator assembly, which consists of primitive res-

onators (the size of each resonator is specified). Each of the six ports of a resonator is either joined

with a port of another resonator or closed with a solid wall. These ports are connected (possibly

through multiple paths) from an inlet to an outlet. Our goal here is to compute the frequency-

dependent 2× 2 transmission matrix that relates the acoustic pressure and velocity at the outlet to

those at the inlet, as described in (4.1).

We start with some notation. Consider an assembly composed of N primitive resonators. We use

j to index the primitives and k to index the six ports of each primitive. Let pjk(ω) and vjk(ω) de-

note respectively the frequency-domain acoustic pressure and velocity at the k-th port of the j-th

primitive. From the precomputation, for each primitive resonator j we also have a six-port (6× 6)

transmission matrix Tj(ω) that relates the pressures pjk(ω) with velocities vjk(ω), k = 1...6 at its six

ports.

Similarly to the method used in Eq. (4.4), we sample two sets of pressures, (p̄i1, p̄o1) and (p̄i2, p̄o2),

at the inlet and the outlet. We seek a fast method to compute the corresponding acoustic velocity,

(v̄i1, v̄o1) and (v̄i2, v̄o2), without solving the expensive Helmholtz equations. We observe that we can
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Figure 4.5: Linear solve of a filter assembly. The top orange part refers to the transmission matrices related to each
node in the assembly. The middle blue part specifies the connection information by mapping the velocity and pressure
values. The bottom two green rows are the given boundary conditions at the inlet and the outlet.

construct a sparse linear system (visualized in Figure 4.5),

A(ω)x(ω) = b(ω), (4.6)

to solve for the pressures pjk(ω) and velocities vjk(ω) of all ports (j = 1...N, k = 1...6). Here, x has

12N elements, stacking all the pressures and velocities of frequency ω at all ports. Every resonator

contributes a linear relationship (4.5), resulting in a 6 linear equations which appears as a 6 × 12

submatrix (orange blocks in Figure 4.5). All the resonators together form a 6N × 12N sub-block

matrix. In addition, for the two ports that connect to the inlet and outlet, the pressures are the

sampled values (i.e., the two green rows in Figure 4.5); at the closed ports, the velocities vanish; at

every pair of connected ports, their pressures need tomatch and their velocities need to be additively

inverse (e.g., the blue rows in Figure 4.5), as the soundwaves flow along the same direction. All these

constraints result in another 6N linear equations. Putting together these equations yield a full-rank

sparse and 12N × 12N linear system.
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We also note that the matrix A depends on the cube sizes of the primitive resonators, as it is assem-

bled using their transmission matrices Ti, but b is a constant. Later when optimizing the cube sizes,

we will compute the derivative of A with respect to each cube size.

Computational efficiency This process computes the transmission matrix at a frequency ω by

solving the sparse linear system, Ax = b, twice. Both have the same A matrix, so it only needs

to be factorized once. In addition, across all frequencies, the sparsity pattern of A stays the same.

To exploit this invariant, we use the symbolic factorization (reordering) only once for the entire

computation and update the numerical data for each frequency sample, all implemented using the

Direct Sparse Solver provided in Intel MKL. As a result, the computation of transmission matrices

for all frequency samples (nearly 1000 samples) typically finishes in a few seconds.

4.4 Optimization

We now focus on the inverse problem: computing a structure of a primitive assembly and the pa-

rameter of each primitive in the assembly in order to realize a desired acoustic filtering property. We

formulate this problem as a combinatorial and continuous optimization (§4.4.1). To address both

the combinatorial and the continuous aspects of the problem, our algorithm interleaves a stochastic

optimization method with a quasi-Newton method (§4.4.2 and §4.4.3).

4.4.1 Problem Formulation

Optimization objective Our optimization goal, the acoustic filtering property, depends on a spe-

cific application, whether it is a target impedance ZIN(ω) (e.g., for wind instruments) or a target

transmission lossLTL(ω) (e.g., for enginemufflers) in a frequency range [ωl, ωr]. Both quantities can



CHAPTER 4. ACOUSTIC FILTERS SIMULATION AND OPTIMIZATION 65

be computed from the transmission matrix T(ω) of a given assembly using Eq. (4.2) and Eq. (4.3),

respectively. Thus, we discretize the frequency range using a set of samples ωi ∈ [ωl, ωr], i = 1...Nω

and define a unified objective function in a least-squares form:

J =
Nω∑

i=1

(g(T(ωi))− ḡi)
2
. (4.7)

Here, g(T(ωi)) is the acoustic filtering quantity depending on the transmission matrix at a sampled

frequency ωi. For instance, to control the input impedance, we use g(T(ωi)) = log10 |ZIN(ωi)|;

to control the transmission loss, we use g(T(ωi)) = LTL(ωi). ḡi is the target acoustic filtering

quantity at the frequency ωi. These values are user-controlled, e.g., by specifying a target curve in

the frequency domain.

We note that while this objective function suits well for our applications (§4.5), our optimization

method does not depend on this particular choice, as presented in the rest of this section.

Shape constraint In many applications, filters are often embedded in a limited space. To account

for this requirement, we allow the user to specify a 3D surface mesh to constrain the volume of the

assembly in the optimization process. Before the optimization starts, we voxelize the 3D mesh into

a lattice, where each grid cell represents a possible placement of a primitive resonator, and the grid

connects an inlet and an outlet, both specified on the mesh boundary (see video). By construction,

the resulting assembly of resonators are guaranteed to satisfy the shape constraint and connect the

inlet and outlet.

Optimization variables We have two types of optimization variables: (i) a string of binary bits s

indicating the lattice grid connectivity and (ii) a vector u stacking the cube sizes of primitive res-

onators used in the assembly. We index each grid cell interface in the lattice. If two primitives are

joined at an interface i, then the corresponding bit ins is set to one. If a face of the grid cell is not con-
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nected with its neighboring grid cell, the corresponding bit in s is set to zero and the resonator port

on that face is closed with a solid boundary. As we will describe later, this bit string representation

is particularly suitable for our stochastic sampling algorithm. With these optimization variables, we

rewrite the acoustic filtering quantity g(T(ω)) in Eq. (4.7) as g(T(s,u, ωi)) and explicitly write J

as J(s,u) because the transmission matrix T depends on both the topology (described by s) and

the geometry (described by u) of the primitive assembly.

Method rationale and overview The optimization variables reflect the combinatorial and con-

tinuous nature of our problem. The problem of determining the placement and connectivity of the

primitives in the lattice is combinatorial; and determining the cube sizes of each primitive is con-

tinuous. A typical method of solving a combinatorial optimization relies on a Monte Carlo method

to sample in the parameter space and accept or reject samples probabilistically. The efficiency of

this method critically depends on the performance of evaluating the objective function, as it often

requires a large number of samples. From this perspective, our fast computation of the transmis-

sion matrix (§4.3.2), a necessary component for evaluating the objective function (4.7), lays out an

important cornerstone for using a stochastic optimization algorithm. Meanwhile, if the connec-

tivity is given, optimizing the cube sizes for each primitive is a continuous problem, for which a

gradient-based method is more efficient.

We propose to use a stochastic optimization method to optimize the connectivity of the primitives.

When evaluating the objective function of a sampled resonator structure (i.e., the s), we compute

the cube size for each primitive (i.e., theu) using a gradient-based continuous optimizationmethod

that minimizes the objective function with the fixed resonator structure. This is because continuous

optimization, leveraging gradient descent, is more efficient than stochastically sampling cube sizes.

Effectively, our method is a hybrid that interleaves a Monte Carlo sampling with a quasi-Newton

optimization scheme.
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4.4.2 Combinatorial Optimization of Connectivity

To solve a combinatorial optimization problem, one simple and popular approach is to use simu-

lated annealing [Kirkpatrick et al., 1983], a method that can be interpreted as a single sequence of

Markov-Chain Monte Carlo (MCMC) sampling [Robert and Casella, 2013]. One way of improv-

ing its efficiency is to use multiple sequences of MCMC sampling, for which an efficient method is

Sequential Monte Carlo (SMC). In computer graphics, SMC has been applied for rendering, char-

acter control, and procedural modeling [Pegoraro et al., 2008; Hämäläinen et al., 2014; Ritchie et al.,

2015]. In numerical optimization, SMC methods have been used for optimizing non-convex, non-

differentiable, and high-dimensional objective functions [Mıguez et al., 2010]. In the following, we

outline our modified SMC algorithm, followed by highlighting the components that are specifically

tailored for our problem.

Modified SMC algorithm As outlined in Algorithm 3, we maintain Ns different samples of the

lattice connectivity, that is, a set of binary-bit strings {si, i = 1...Ns}. At each iteration, the algo-

rithm performs the following steps:

1. Evaluate the objective function Ji for each sampled connectivity si, i = 1...Ns (Line 3-6 in

Algorithm 3).

2. Select the best M samples that produce the lowest objective values and perturb them. The

perturbation of bit strings is similar to the mutation operation in a genetic algorithm.

3. Replace the rest of the Ns −M samples with new samples using an MCMC sampling step

(Line 13-14 in Algorithm 3).

These steps repeat until the best objective value drops below a threshold (Line 7 inAlgorithm3).
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Evaluation of objective function Given a sampled connectivity, we evaluate the objective func-

tion J defined in §4.4.1. Since J depends on both the connectivity and the primitive cube sizes and

the latter has not yet been determined, we treat the evaluation as another optimization problem,

one that minimize the objective function over all possible cube sizes but with a fixed connectivity.

This is a continuous optimization problem, which we solve in §4.4.3.

Random sample of connectivity To initialize the set of lattice connectivities and to replace the

worst Ns −M samples at the third step of the algorithm, we need to sample bit strings si. To this

end, we use a simple rejection sampling scheme, starting by random sampling of a bit string. Since

we must ensure the inlet and outlet are connected through primitive resonators, after sampling a bit

string we verify whether the corresponding connectivity structure connects the inlet with the outlet

(e.g., using a depth-first search on the lattice) and reject the sample if does not.

Connectivity perturbation We perturb the connectivity string si using a mutation. Specifically,

we randomly select a bit in a string si and flip it. In addition, this mutated string is subject to two

constraints: (i) the corresponding connectivity structure needs to retain the connection between

the inlet and the outlet; and (ii) the mutated bit needs to influence the resonator paths that connect

the inlet and the outlet; otherwise, the mutation makes no difference to the connected component

between the inlet and the outlet. We check the mutated bit string against both requirements and

reject the mutation if it fails the check.

4.4.3 Local Continuous Optimization

Next we discuss how to evaluate the objective function after sampling a lattice structure. This eval-

uation optimizes the cube sizes u of each primitive in the lattice structure in order to compute the

minimal objective function value. To achieve this, we first compute the gradient of J with respect
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Figure 4.6: Before and after Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization. Combinatorial sampling is
difficult to converge to the user-specified target quickly due to its random nature. Enforcing local optimization for each
sample reaches the desired acoustic target faster.

to u from Eq. (4.7),

∂J(s,u)

∂u
= 2

Nω∑

i=1

(g(T(s,u, ωi))− ḡi)
∂g(T(s,u, ωi))

∂u
. (4.8)

The function g depends on the transmission matrix T, which further depends on the acoustic pres-

sures and velocities at every port of all the primitive resonators, according to Eq. (4.6). To compute

the partial derivative of g, applying the chain rule yields:

∂g(T(s,u, ωi))

∂u
=

(
∂g

∂T
∂T
∂x

)

︸ ︷︷ ︸

mT

∂x

∂u
, (4.9)

where x, as used in Eq. (4.6), stacks frequency-domain pressures and velocities of all the ports of

the primitives. IfN denotes the number of primitive resonators of the assembly, thenm is a vector

of the length 12N , independent of the cube sizes of the primitives. ∂x
∂u

is a 12N × N matrix. To

compute thismatrix, recall that in Eq. (4.6), thematrix A depends on the cube sizes of the primitives,

and b is a constant. Differentiating both sides of Eq. (4.6) with respect to u yields:

A∂x
∂u

+
∂A
∂u

= 0, (4.10)
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which is a linear system withN right-hand-side vectors,−∂A
∂u

. Since A is assembled from the trans-

mission matrices of all primitives in the assembly(recall §4.3.2), ∂A
∂u

involves the derivatives of the

transmission matrices with respect to the cube sizes. We compute them by interpolating our pre-

computed primitive transmission matrices.

It seems straightforward to compute ∂x
∂u

by factorizing A only once and solving the linear system

N times, and use Eq. (4.9) and (4.8) to compute the gradient of the objective function. However,

if N is large, even the repeated back substitutions for solving Eq. (4.10) are slow. Especially when

used in a Monte Carlo sampling step, this would significantly reduce the efficiency of the overall

optimization algorithm.

Speedup with Adjoint Method Fortunately, this computation can be largely accelerated using

the adjoint method, one that has been applied in computer graphics mainly for animation control

problems [McNamara et al., 2004; Wojtan et al., 2006; Barbič et al., 2009]. The key idea is based on

the observation that computing a matrix-vector product, mTB such that AB = C, is equivalent to

computing tTC such that AT t = m. The advantage of the latter is that only a single linear-system

solve for the vector t is needed. In our problem, this amounts to first solving

AT t =

(
∂g

∂T
∂T
∂x

)

, followed by computing
∂g

∂u
= tT

∂A
∂u

. (4.11)

For all our examples, this method results in nearly 10× speedups over the straightforward ap-

proach.

With the computation of the gradient ∂J
∂u

depicted, we apply it to a quasi-Newton method to mini-

mize J . In our implementation, we use the Limited-memory BFGS Bounded (L-BFGS-B) [Zhu et

al., 1997a]. In practice we found local gradient descent step complements the combinatorial sam-

pling. Figure 4.6 illustrates the effectiveness of the local optimization of the impedance curve.
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Figure 4.7: Industrial laboratory measurement setup.

4.5 Results

We now present the experiments we conducted to test our method. In all examples, we sample the

frequency range every 3Hz from 20Hz to 5kHz to precompute transmission matrices. The cube size

of the primitive resonator varies depending on specific applications: Formuffler design and acoustic

signatures, the cube size is between 6mm and 2cm, sampled every 1mm. For laboratory tests and

wind instrument design, the cube size is between 25cm and 35mm, also sampled every 1mm. The

precomputation takes a few hours on a 16-core cluster.

We fabricated our designs using Stratasys uPrint SE Plus, a filament-based 3D printer with a layer

resolution at 0.254mm. We use ABS-P430 plastic as the model material and a dissolvable support

material which can be washed away upon finish. The fabrication time varies from a few hours to a

day, primarily depending on geometric size of a given model.

4.5.1 Validation on Acoustic Voxels

The fundamental building block of our assembly structure optimization is the fast computation of

a transmission matrix for an assembly (recall §4.3.2). We validate its accuracy using finite-element-

method (FEM) simulation and industrial laboratory tests.
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Figure 4.8: Double muffler and cube measured by Brüel & Kjær. Our method agrees closely with both the expensive
FEM solve and the lab measurement. There is a large difference around 1600Hz, where the measurement input signal
does not have sufficient power to pass through. We believe this is caused by the wide and high transmission loss values
around this region which lead to low signal-to-noise ratio (SNR) during measurement.

Finite-element simulation We compute the transmission loss using Code_Aster [Aubry, 2013],

awell-developed and carefully tested finite-element solver formechanics. We follow the routine out-

lined in §5.2.2, solving for the acoustic velocitieswith different boundary conditions usingCode_Aster.

We then compute the transmission matrix by assembling and solving the Equation (4.4).

Industrial laboratory test We sent fabricated samples to Brüel & Kjær’s acoustic laboratory for

independent, third-party tests conducted by their acoustic professionals. Brüel & Kjær is the

world’s largest manufacturer and supplier of acoustic measurement equipment and solutions. They

measured the transmission loss of our samples using Brüel & Kjær4206-T measurement tubes with

the 4-microphone technique [Tao and Seybert, 2003], sweeping the frequency range every 4Hz from

20Hz to 3500Hz under the condition of 21◦C (room temperature), 98.9kPa (pressure), and 44% of

relative humidity. To ensure best acoustic seal during the tests, clay gaskets were also added between

the measurement tubes and our test samples (see Fig. 4.7).

Comparison The comparison shows that our fast computation of transmission loss agrees with

both the finite-element simulation and laboratory experiments closely, as in Figure 4.8. The top
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plot in Figure 4.8 validates the agreement between the finite-element simulation and the laboratory

tests using a double-chamber muffler, which is known to be an effective broadband filter. It lacks

the curve from our computation model, simply because this model is not made from our primi-

tive resonators. We use this test to examine the use of the numerical and experimental methods.

The bottom plot reports the transmission loss of an assembly muffler made of 3×3×3 primitive

resonators, comparing the results from finite-element simulation (blue curve), Brüel & Kjær’s lab-

oratory measurement (orange dots), and our fast computation (blue curve). They all agree with

each other closely. Particularly, our computational model is able to predict the peaks and valleys on

the transmission loss curve, with the differences from the measurement less than 20Hz on average.

These peaks and valleys indicate the most and the least attenuated frequencies when sound passes

through the filter, and they will be of practical importance to control when one designs a muffler,

as demonstrated later in §4.5.2.

We also run three validation tests on impedance curves to compare the error of our fast computa-

tion and full FEM solve. Figure 4.9 shows that our method robustly computes the impedance curve

and introduces slight numerial instability as the model gets more complicated. In terms of compu-

tational performance, our method is much faster than the finite-element simulation. For example,

to compute the transmission loss curve of this 3×3×3 resonator assembly, which involves compu-
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Figure 4.9: Impedance comparison with Code Aster. In the sequence of three models with increasing complexity, our
method agrees with Code Aster closely.
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sound absorbing foam

microphone speaker

Figure 4.10: Recording setup to record the sounds before and after our filtering. The chamber inner surface is sur-
rounded by sound absorbing foam to minimize ambient noise from outside as well as the wave reflection/refraction
inside the chamber.

tation at 1000 frequency samples, our method takes 1.2 seconds, while the finite-element method

takes around 22 hours, resulting in 77,000× speedup.

4.5.2 Application I: Muffler Design

Man-made mechanisms produce noise, with clear patterns exhibited in the sound spectrum. For

instance, the aircraft and automobile engine noise have pronounced frequency components related

to revolutions per minute (RPM) of the engine cranks. The car horns have particular frequency

patterns regulated by local government (i.e., 390Hz and its harmonics in U.S.). Traditionally, muf-

flers are designed at a large granularity, aiming to filter sound in a wide band of frequency range,

partially because of its ease of control using relatively simple muffler geometries.

Engine noisemuffler Here we demonstrate the possibility of controlling muffler behavior at finer

granularity using our modular filter, because of its ability to construct complex muffler structures.

We aim to construct mufflers that selectively attenuate sound near a set of discrete frequency values.

Our first example is to attenuate a recorded engine noise, which has peaks in frequency domain at

850Hz, 1550Hz, and 2100Hz. To filter these frequency components, we uniformly sample frequen-
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Optimization

# DoFs type # targets avg. time

Pi y 21 Z 3 9m

O 76 TL 8 2h10m

B 258 Z 13 7h

E i M 20 TL 3 15m

E E i 51 TL 3 11m

E H 127 TL 7 1h15m

Hi 122 Z 4 51m

Table 4.1: Optimization Statistics The number of DoFs is the sum of number of feasible nodes and number of con-
necting faces. Optmization time is averaged over all the optimized targets for each example. The number of targets is
the number of peaks and valleys that we want to optimize in each example.

cies ωi, i = 1..Nω, which include the peak frequencies. We then define an objective function (4.7),

in which the g(T(ωi)) compute the transmission loss (using Equation (4.3)), and ḡi is a large value at

the peak frequencies and zero otherwise. The muffler structure is optimized with a combination of

8 resonators, and the quantitative results is plotted in Figure 4.11 (orange curve). We also compare

the result with a muffler that has the same volume of the internal chamber but unoptimized struc-

ture (blue curve), showing that the optimized muffler indeed attenuates the unwanted frequency

peaks. Please refer to the video for their audible differences.

Acoustic earmuffs Our next example of muffler design is for acoustic earmuffs. There has been a

variety of acoustic earmuffs targeting at different application scenarios, such as hunting, construc-

tion work, and riding motorcycles. While some earmuffs also employ a microphone mounted in

the headset to actively reduce broadband noise, many others reply on acoustic structures and mate-

rials for noise reduction and have the advantage of robustness and long working time (without any

battery). Our method can also design passive earmuffs, but complement this category by allowing
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Figure 4.11: Engine Muffler. We compare an unoptimized muffler and an optimized one. The three noisy peaks are
suppressed to lower levels with the optimized muffler.

user customization.

We demonstrate two earmuffs that can be modularly mounted in the headset (see video) and switch

to different ones when needed. The first one is customized to reduce engine noise having peak fre-

quencies at 1000Hz, 1600Hz, and 2200Hz (Figure 4.12-top). The second one is designed for riding

motorcycles (Figure 4.12-bottom). We aim for reducing aerodynamic noise while allowing the rider

to hear car horns for the sake of safety. Therefore, the objective function is to suppress a broadband

noise without heavily filtering car horn sound at 390Hz and its harmonics. Both earmuffs are com-

puted by optimizing the structure of 42 primitive resonators. As shown in the plots of Figure 4.12,

our mufflers indeed filter out frequency components we desired.

4.5.3 Application II: Wind Instruments

Acoustic resonator is a key part of wind instruments. While nonlinear excitation mechanism of a

wind instrument (such as the mouth piece) is also important [Allen and Raghuvanshi, 2015], criti-
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Figure 4.12: Acoustic earmuff. We customized two earmuffs (top and bottom) that can be modularly mounted in a
headset. In the plots on the left, the orange curves show the filtered sounds where the peaks and valleys correspond to
the purple points on the right.

cally affecting the timbre of the instrument, the acoustic resonator serves to modulate the excitation

and controls the pitch. In particular, it is known that the playable notes of a wind instrument corre-

spond to the peaks of the resonator’s input impedance, except its first peak (called pedal note).

We applied our method to customize trumpets. Our customization is twofold: we wish to control

the set of notes that a trumpet can play while customizing its shape, which, in our case, a cartoon

hippopotamus shape. The resulting trumpet still relies on the standard mouthpiece for excitation.

Given a set of notes, we define an objective function (4.7) thatmaximizes the impedance values at the

frequencies of those notes. We customized 3 different trumpets, whose playable notes are [G4,D5],

[C4, G4, C5], and [G4, Bb4, C#5, E5], respectively. As shown in Figure 4.13, our optimized primitive

assembly can be placed inside of the hippopotamus shape and are playable. In the supplemental

video, we demonstrate that the resulting musical notes produced by our customized resonators are

in tone, whereas the unoptimized resonator deviates a lot from the desired notes. We note that while
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Figure 4.13: Wind instrument. We optimize for 4 notes for the Hi trumpet to play, located at the impedance
maximums, the first one being the pedal note, a sustained tone. The spectrogramof our recording confirms the accuracy
of our optimization framework.

it is known that the players can “bend” the notes by around a semitone, it is difficult to rely on this

controllability to play in tune especially without our assembly optimization.

4.5.4 Application III: Acoustic Signatures

Our acoustic filter design opens up possibilities for new applications. Inspired by the recent work

on creating tangible input devices that interact through acoustics [Laput et al., 2015; Savage et al.,

2015], we demonstrate two examples, namely acoustic tagging and acoustic encoding.

Acoustic tagging Our method enables a new way of tagging 3D shapes. This is similar in spirit to

the recent work on tagging 3D fabricated shapes by modulating material distribution and decoding

using Terahertz imaging [Willis and Wilson, 2013], but from a completely different perspective, the

acoustics.

Our key idea is to embed tags into the acoustic filtering effects of a shape, by computationally opti-

mizing its internal structure without largely changing its visual appearance, as long as the shape has

two holes serving as the inlet and outlet (Figure 4.1-a). Even with a single tapping using a palm at a
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hole, one can produce an acoustic wave passing through the internal structure and output a filtered

noise. A simple FFT-based algorithm can recognize the output sound and decode the tags. Com-

pared to the existing tagging approaches, thismethod requires no electronics during installation and

detection (unlike Radio Frequency Identification tags) or multi-material fabrication (unlike [Willis

andWilson, 2013]). It relies on our optimizationmethod to physically realize a specific acoustic sig-

nature that can be reliably read by a computer program. In our examples, we choose to make each

tag to have distinct peaks of their impedance curves, and thereby allowing for robust, FFT-based

decoding.

We demonstrate this approach by fabricating three identical piggy shapes (Figure 4.1-b), each with

an target acoustic impedance curve peaking at different frequency values (Figure 4.14). Using our

Acoustic Voxels approach, we realize these impedance curves with our primitive assemblies. We

have implemented a simple iPhone application that decodes a recorded tapping sound and detect

the resonant frequencies which correspond to the local maximums on the impedance curve. As

shown in the video (and Figure 4.1), the iPhone application can reliably detect the tags and identify

the piggies.

To take the complexity of our optimized muffler further, we voxelized B , the duck-shaped life-

saver, with the inlet at the beak and the outlet at the tail (Figure 4.15). We optimized for two sets of

frequency peaks on the impedance curve; each has more than 10 peaks. We evaluated this example

by comparing the target impedance against the optimized impedance computed using our simula-

tion model without fabricating the models, because of the 3D printer’s limitation on the geometric

size of the fabricated shapes (Figure 4.15). This example promises for tagging a large pool of objects

or controlling the filtering behaviors at a finer granularity in future.

Acoustic encoding Taking one step further, we demonstrate the ability to encode bit strings,

which can be interpreted as virtually any type of information, akin to the idea of QR code but visu-
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ally less distracting. The idea is again using acoustic filter to modulate frequencies in a controlled

way. Instead of controlling acoustic impedance curves, here we explore the possibility of encoding

in the transmission loss curve, with a simple coding scheme: To encode N bits of information, we

evenly sample 2N frequency values and group the samples pairwise. Let the frequencies are grouped

as (ω1, ω2), (ω3, ω4), ..., (ω2N−1, ω2N). We encode a “1” at the i-th bit if the transmission loss value

atω2i−1 is smaller than that atω2i, and encode a “0” if the value atω2i−1 is larger than that atω2i (Fig-

ure 4.16-b). By setting an objective function that maximizes and minimizes the transmission loss

at corresponding frequencies, we optimize for an acoustic filter that physically realizes this coding

scheme.

We fabricated three objects with an identical, octopus-like surface shape (Figure 4.16), and use them

to encode different 4-bit strings, including “0000”, “1001”, and “0111”. As shown in the video, we

have implemented another iPhone application that plays a white noise from its speaker while si-

multaneously recording from its microphone. When aligning the iPhone speaker and microphone

with two holes (i.e., the inlet and outlet) on the object, the white noise passes through the internal

structure of the shape and gets filtered. By detecting the filtered amplitudes at the pre-specified

frequencies ωi, the application decodes the bit strings. In future, the application can be made to

interpret the bit strings in a specific context and enable other new applications.

4.6 Conclusion

Our method is mostly suitable for controlling impedance and transmission loss at discrete frequen-

cies, but has limited ability to control a broadband of frequencies. For this purpose, the traditional

muffler design is more suitable. Currently, we use only one rigid material and optimize the filter’s

chamber shape, while automotive mufflers often use composite materials. It is also less clear, when

optimizing for more acoustic properties, how much control can be exerted via merely the assembly
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shape optimization. So far, we consider only a single type of primitive resonators. Extending our

method to more primitive shapes and materials can offer a larger palette for better acoustic filter-

ing control. Practically, we have some difficulties to ensure the internal structure of a filter being

thoroughly cleaned after 3D printing, as it is hard to examine given its structural complexity.

So far, we have demonstrated the control transmission loss and impedance curves up to 4500Hz.

While this is motivated by the fact that most muffler and instrument applications operate in this

frequency range, we are restricted by the precomputation time needed for computing transmission

matrices at higher frequencies, as it requires significantly higher finite-element resolution and longer

time to solve the Helmholtz equation at higher frequencies. In the example of B , we optimized

for more then ten peaks in the impedance curve. To control more peaks, a higher resolution of

lattices is needed, leading to a much longer optimization time. It is an interesting future work to

further speed up the optimization process for more detailed control of acoustic filtering.

In conclusion, we present Acoustic Voxels, a computational method that optimizes assembly of

primitive resonators to realize a target acoustic filtering property, described in acoustic impedance

or transmission loss. We demonstrated our algorithm with three types of applications, including

muffler design, wind instruments, and a new way of customizing 3D-printed shapes with acoustic

signatures. In future, this idea can be carried over to design acoustic filters at different scales, such

as at high frequencies for ultrasonic imaging and at low frequencies for improving room acoustics.

Further, we are interested in exploring new HCI applications enabled by acoustic signatures as well

as new acoustic meta-materials enabled by computational optimization.
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Algorithm 3 SMC for Resonator Assembly Optimization
1: procedure M i i –SMC(GN ,M , threshold)

2: while true do

3: for each topology inGN do

4: p̂n ←continuous_optimization(pn) ▷ §4.4.3

5: compute the objective Ji for p̂n

6: end for

7: if best objective> threshold then(end optimization)

8: end if

9: weighted sampleM topologies based on the objectives

10: for each topology inGN do ▷ §4.4.2

11: if selected then

12: perturb connectivity of the current graph

13: else

14: resample a new random graph

15: MCMC step: probabilistically accept the sample

16: end if

17: end for

18: end while

19: end procedure
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Figure 4.14: Acoustic tagging. We optimize three identical piggy shapes such that they all have different impedance
curves. When tapped with a palm on their nose, the filtered sounds are different. The iPhone application used for
recognition is shown in Fig. 4.1.
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Figure 4.15: B . In this example we optimize for two sets of frequency peaks (top and bottom); each has more than
10 target frequency peaks, indicated by the dotted vertically lines. For both cases, out optimized acoustic filters are able
to achieve the desired peaks.
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Figure 4.16: Acoustic encoding. By embedding more voxels in the geometry, we achieve finer-grained control of the
acoustic properties, exemplified by encoding 4 binary bits of information.



CHAPTER 5. SCENE-AWARE AUDIO FOR 360° VIDEOS 85

Chapter 5

Scene-Aware Audio for 360° Videos

5.1 Introduction

The ecosystem of 360° video is flourishing. Devices such as the Samsung Gear 360 and the Ricoh

Theta have facilitated 360° video capture; software such as Adobe Premiere Pro has included fea-

tures for editing 360° panoramic footage; and online platforms such as Youtube and Facebook have

promoted easy sharing and viewing of 360° content. With these technological advances, video cre-

ators now have a whole new set of tools for creating immersive visual experiences. Yet, the creation

of their auditory accompaniment, the immersive audio, is not as easy. Immersive 360° videos are

noticeably lacking immersive scene-aware 360° audio.

Toward filling this gap, we propose a method that enables 360° video creators to easily add spatial

audio from specified sound sources in a typical indoor scene, such as the conference room shown in

Figure 5.1. Our method consists of two stages. We first record a single acoustic impulse response in

a room using a readily available mono-channel microphone and a simple setup. Then, provided any

360° footage captured in the same environment and a piece of source audio, ourmethod outputs the
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360° video with an accompanying ambisonics spatial soundtrack. The resulting soundfield captures

the spatial sound effects at the camera location, even if the camera is dynamic, as if the input audio is

emitted from a user-specified sound source in the environment. Our method has no restriction on

the input audio: it could be artificially synthesized, recorded in an anechoic chamber, or recorded

in the same scene simply using a conventional mono-channel microphone (Figure 5.1).

A conventional microphone and a sound source are the only requirements of our method, in ad-

dition to a 360° camera. This contrasts starkly with the current approach of capturing spatial au-

dio, which requires the use of a soundfield (ambisonic) microphone, a dedicated device that uses

a microphone array (multiple carefully positioned mono microphones) to record the spatial sound

field. These devices are generally expensive, and currently very few 360° cameras have an integrated

ambisonic microphone. When designing sound for traditional media, audio from each source is

processed to add various effects: noise removal, frequency equalization, dynamic compression,

panning, and so forth. Then, the audio clips are mixed into a cohesive soundtrack for a specific

layout of speakers, with a known camera angle. While ambisonics could be created virtually from

these sources, it is only feasible to do this manually in a space with no reflections. In real rooms

reflections off of surfaces and sources need to account for direction. Our method provides an easy

way to achieve these directed reflections.

Ourmethod enables 360° video creators to incorporate spatial audio at a lower cost, without the need

of ambisonic microphones. More importantly, it allows the creator to reuse the well-established

audio production pipeline, where sound effects are designed, recorded, denoised, and composed

— without worrying about downstream ambisonic effects. Afterwards, our method automatically

incorporates room acoustic effects in the video-shooting scene, and converts the sound produced

in the earlier stage into spatial audio, which is fully synchronized with the camera trajectory in the

360° video.
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Figure 5.1: 360° audiovisual capture. Our method enables video creators to add ambisonic audio (bottom) in a 360°
video of a indoor scene (top). When viewers watch the video and change the camera angle, they hear the binaural audio
consistent with the current viewing angle. Ourmethod has no restriction on the input audio. In the case shown here, the
input audio is the person’s speech captured using a conventional mono-channel microphone collocated with the 360°
camera, and our method converts the mono-channel input audio into a spatial audio in standard ambisonic format.
The waveforms show a first-order ambisonic output (four channels), although our method supports an arbitrary order
of ambisonics.

Technical insight and contributions Wepropose to produce spatial audio by combining a lightweight

measurement of room acoustics and a fast geometric acoustic simulation. A key step in our method

is to construct directional impulse response (IR) functions. For traditional, non-spatial audio, an

acoustic IR (see Figure 5.2) is the sound recorded omni-directionally at a listening location due to an

impulsive signal at a source location. Then, given any input sound signals at the source, the received

non-spatial sound signals can be computed by convolving the input signals with the IR. However,

to produce spatial audio, we need instead directional IR functions that record the IR sound coming

from each direction at the listening location. Even in the same scene, the IR varies with respect

to the source and listening locations, and the directional IR further depends on incoming sound

directions.
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An interesting property of IR functions lays the foundation for our proposed method. The late part

of the IR is the received sound energy after excessively interacting with the scene. Every time sound

waves reach a scene object, a portion of their energy is reflected “diffusely”, effectively causing the

sound energy distribution in the scene to become more uniform. Consequently, it is generally ac-

cepted that the late part of the IR is independent of the source and listening locations [Kuttruff,

2017]. Further, in directional IRs, the late part becomes isotropic (independent of incoming direc-

tion), as confirmed in our room acoustic measurements (see Figure 5.3 and §5.5.1).

Exploiting this property, we measure a single non-spatial IR in the scene and extract its late part

through a novel method, which identifies when its energy distribution becomes truly uniform. This

enables us to reuse the measured late IR when constructing the spatial IR at given source and listen-

ing locations, only relying on geometric acoustic simulation to generate the early part of the spatial

IR. The simulated early IR part is further improved by a simple and effective frequency modulation

method that accounts for room resonances.

To leverage acoustic simulation, we reconstruct rough scene geometry from the 360° video footage,

using a state-of-the-art 360° structure-from-motion method, guided by a few user specifications.

We develop an optimization approach that estimates the acoustic material properties associated

with the geometry, based on the measured IR. The geometry and material parameters enable the

acoustic simulation to capture the early, directional component of the spatial IR. Because the early

part of the IR is oftentimes very short (typically 50-150 ms), the sound simulation is fast.

We demonstrate the quality of our resulting audio by comparingwith spatial audio directly recorded

by ambisonic microphones, and show that their differences are almost indistinguishable. Unlike

ambisonic recordings, our method requires only a low-cost microphone, and offers the flexibility

to add, replace, and edit spatial audio for 360° video. We explore the potential use of our method

in several applications. While our method is designed for indoor 360° video, we further explore its

use for those shot in outdoor spaces.
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Time

Direct Early Reflections Late Reverberation

Figure 5.2: A typical impulse response. (top) An idealized illustration, showing the arrival time of rays and the amount
of energy they carry. (bottom) A recorded impulse response in a lecture hall. The reflections become more dense and
diffuse towards the later part. Traditionally, an IR is measured by recording sound omni-directionally. But for spatial
audio generation, we need to estimate a directional IR, which is illustrated in Figure 5.9.

5.2 Background for 360° Audio

An important concept used throughout ourmethod is the acoustic impulse response (IR).We there-

fore start by discussing its properties in typical indoor scenes to motivate our algorithmic choices

presented later.

5.2.1 Properties of Room Acoustic Impulse Response

The room acoustic IR is a time-dependent function, describing the sound signals recorded at a

listening location due to an impulsive (Dirac delta-like) signal at a source (Figure 5.2). In this thesis,

we useH(t) to denote an IR. IfH(t) is known, then the sound signal sr(t) received at the listening

location can be computed by convolvingH(t) with the sound signal se(t) emitted from the source:

sr(t) = se(t) ∗ H(t). Therefore, to add spatial audio to a 360° video, we need to estimate the IRs

between the sound source and the camera location in the scene along all incoming directions.

The IR is usually split into three parts: i) the direct sound traveling from the source to the listener,
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ii) the first few early reflections (ER), and iii) the later reflections called late reverberation (LR). Part

(i) and (ii) are the early reflection impulse response (ERIR). Perceptually, they give us a directional

sense of the sound source, known as the precedence effect [Gardner, 1968].

The LR part of the impulse response (referred to as LRIR) has several properties significant to our

goal. First, the LRIR is greatly “diffused” in the scene [Kuttruff, 2017], meaning that it has little

dependence with respect to the source and listening locations. This is because whenever a direc-

tional sound wave encounters an obstacle, a portion of the energy is reflected diffusely, spreading

the sound in many directions. Virtually all rooms include some diffuse reflection even when the

walls appear smooth [Hodgson, 1991]. Thus, the longer the sound travels in a scene, the more it

gets diffused. The LRIR has little perceptual contribution to our sense of directionality. Rather, it

conveys a sense of “spaciousness” [Kendall, 1995] — the size of the room, but not where the listener

and source are.

Another important implication of LRIR being diffused is that the sound energy carried by LRIR

tends to be uniformly distributed, not only spatially [Kuttruff, 2017] but also directionally — it

can be assumed isotropic. We justify this assumption with directional acoustic measurements, as

described in Figure 5.3.

5.2.2 Method Overview

The room acoustic IR properties suggests a hybrid approach for estimating spatial IRs when we

generate spatial audio for 360° videos: the LRIR can be measured at one pair of source and listening

locations because of its spatial and directional independence, while the ERIR needs to be simulated

with carefully chosen parameters to capture sound directionality. Also crucial is the time duration

for separating ER from LR, in order to ensure the directional independence of LRIR satisfied. The

major steps of our method are summarized as follows.
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Figure 5.3: LRIR isotropy. We use a high-end directional (shotgun) microphone (RODE NTG8) to measure room
acoustic IR received along particular directions. (left) The polar pickup plot of our shotgun microphone in compari-
son to the conventional omni-directional microphone. The shotgun microphone records sound mainly from its front
direction. (right) For several recordings of an impulse with the shotgun microphone pointed in different directions
(corresponding to different colors), we plot the amount of energy coming from each direction with respect to time. In
the early part, more energy is in directions that face the source, but the energy is quickly distributed uniformly among
all directions.

360° video analysis. Provided a 360° video, we estimate rough scene geometry and the camera

trajectory in the scene. The former is for running the simulation, and the latter is to locate the

listener when we generate spatial audio. 3D scene reconstruction has been an active research area

in computer vision. We adopt the recent structure-from-motion approach [Huang et al., 2017] that

generates a point cloud of the scene from a 360° video (see top of the adjacent figure), along with

an aligned camera path through it. Our method does not depend on this particular approach: any

future improvement could be easily incorporated. Then, we rely on the user to specify a few planar

shapes that align with the point cloud to capture the main geometry of the scene, such as the roof,

floor, and walls (see bottom of the adjacent figure). A benefit of our hybrid approach is that only

approximate geometry is required: it does not need to be water-tight, or evenmanifold. Themethod

of [Huang et al., 2017] takes 10-20 minutes, depending on the video resolution. Creating planar

geometry to match the reconstructed point cloud only takes users several minutes per room.

Room IR analysis. Next, we record an impulse response in the room using a conventional omni-

directional microphone and speaker (§5.3.1). This measurement is straightforward and serves two

purposes. First, it provides the LR component when we estimate the spatial IR between a sound
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source and a camera location. Second, it offers a means to sense the acoustic material properties

in the room. Based on the measured IR, we estimate the acoustic material parameters for use in

acoustic simulation, by formulating a nonlinear least-squares optimization problem (§5.3.2). After

acquiring scene material parameters, we are then able to leverage the acoustic simulation to de-

termine the transition point between the ERIR and LRIR based on a directionality analysis of the

incoming sound energies (§5.3.4).

Spatial audio generation. Lastly, we generate spatial 360° audio from input audio signals. As audio

editors place sources in the scene, our simulator computes the ERIR from the source to positions on

the reconstructed camera path (providing directional cues), and the LRIR is reused from the mea-

sured IR (providing a sense of spaciousness). Combining them together, we obtain spatial IRs for

generating spatial audio (§5.4). We show how to store the final audio in ambisonics in §5.4.2, which

allows adaptation of sound effects to viewing direction when playing the final 360° video.

5.2.3 Room Acoustic Simulation

Before diving into our technical details, we briefly describe the acoustic simulator that we use. We

use a geometric acoustic (GA) model that describes sound propagation using paths along which

sound energy propagates from the source to the receiver, akin to the propagation of light rays

through an environment. Each path carries a certain amount of sound energy, and arrives at the

receiver with a time delay proportional to the path length. Exploiting the sound energy carried by

the paths and their arrival time, we are able to infer scene materials (§5.3.2), determine ER duration

(§5.3.4), and synthesize ERIRs for ambisonic audio generation (§5.4.1).

Our method does not depend on any particular GA method. In this thesis, we employ the bidi-

rectional path tracing method recently developed in [Cao et al., 2016]. This technique simulates

sound propagation by tracing paths from both the sound source and the receiver, and uses multiple
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importance sampling to connect the forward and backward paths. It offers a considerable speedup

over prior GA algorithms and better balance between early and late acoustic responses.

While the GA model is an approximation of sound propagation and ignoring wave behaviors such

as diffraction, it can reasonably estimate the impulse response of room acoustics, and has been

widely used for decades [Savioja and Svensson, 2015]. Nevertheless, we consider an important wave

effect, namely room resonance, and propose a frequency modulation method to incorporate the

room resonance effect in our simulated ERIR (§5.3.3).

5.3 Room Acoustic Analysis for 360° Scenes

This section presents our method of analyzing an IR measurement to estimate acoustic material

properties of the room and frequency modulation coefficients needed for compensating room res-

onances. We also determine the transition point between ERIR and LRIR.

5.3.1 IR Measurement

There exist many methods for acoustic IR measurement. We refer the reader to [Kuttruff, 2017] for

a comprehensive summary. In this work, we use the reliable sine sweep technique of [Farina, 2000;

Farina, 2007]. We briefly summarize its theoretical foundation here: the signal sr(t) recorded by a

receiver is the convolution of the source signal se(t) and the room’s IR H(t) (i.e., sr(t) = se(t) ∗

H(t)). It can be shown thatH(t) can be reconstructed by measuring the cross-correlation between

sr(t) and se(t), H(t) = sr(t) ⋆ se(t), as long as the autocorrelation of the source signals se(t) is a

Dirac delta, or se(t) ⋆ se(t) = δ(t). For reliability, se(t) needs to have a flat power spectrum. A

commonly used practical choice of se(t) is a sine sweep function that exponentially increases in
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speaker

sound-insulation foam

mono-channel microphone

Figure 5.4: IR measurement. We measure the IR using a conventional speaker and a mono-channel microphone. The
speaker plays a sine sweep noise, which is then recorded by a microphone. In practice, we put the speaker on soft foam
to absorb any mechanical vibrations it produces, which can be propagated to the microphone through the table.

frequency from ω1 to ω2 in a time period T [Farina, 2000]:

se(t) = sin

[

ω1T

ln ω2

ω1

(

e
t
T

ln ω2

ω1 − 1
)
]

. (5.1)

This signal spends more time sweeping the low-frequency regime, thus it is particularly robust to

low-pass noise sources like those in most rooms. In practice, we choose ω1 = 20Hz, ω2 = 20 kHz,

and T = 48 seconds. Also, we play the source se(t) and record sr(t) simultaneously, so they are

fully synchronized. This sine sweep is played only once (no average is needed), using a conventional

speaker and a mono-channel microphone. Their simple setup is illustrated in Figure 5.4.

While the IR depends on the positions of source and receiver, our measurement is insensitive to

where the source and receiver are positioned. This is because for ambisonic audio generation, we

only need the LR component of themeasured IR, which remains largely constant in the environment

(recall §5.2.1). In practice, we position the source and receiver almost arbitrarily, as long as they are

well separated. We only need to perform the IR measurement once in a room. If there are multiple

rooms in the 360° scene, we measure one IR per room (an example is shown in §5.5.2). This step

yields a measured IR,H(t), and we also compute its energy response h(t).
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5.3.2 Material Analysis

Having the IR measured and the room’s rough geometry reconstructed from the 360° video, we

now determine the acoustic material parameters needed for our room acoustic simulation. These

parameters are associated with individual planar regions of the reconstructed room shape — for

example, in a typical room, the walls are often painted with a particular acoustic material while

the floor may have other acoustic properties. Our method also allows the user to manually select

sections of the reconstructed geometry and group them as having the same acoustic material.

Acoustic properties of materials are frequency dependent. We therefore define these acoustic pa-

rameters in each octave frequency band. Without loss of generality, consider a particular octave

band. When a sound wave in this octave band is reflected by a material i, part of the sound en-

ergy is absorbed by the material, which is described by the material absorption coefficient pi in this

octave band. Let p⃗ stack the pi values of all types of materials in the room. We then formulate an

optimization problem to solve for p⃗.

Path. The ray-based room acoustic simulator generates numerous paths, along which sound sig-

nals propagate from a source to a speaker. Each path is described by a sequence of 3D positions,

x⃗0, x⃗1, ..., x⃗n, where the first and last positions are the source and receiver, respectively. The other

positions are surface points where the ray is reflected, each associatedwith an acousticmaterial (Fig-

ure 5.5). Depending on thematerial at position x⃗i, i = 1...n−1, each x⃗i is mapped to an absorption

coefficient indexed in the aforementioned parameter vector p⃗. Letm(i) denote the index.

Energy. With this notion, the energy fraction propagated along a path j and arriving at the receiver

is written as

ej(p⃗) = βj

Nj∏

i=1

p⃗m(i), (5.2)

whereNj is the number of surface reflection points along the path j, and βj accounts for the sound

attenuation due to propagation in air; it depends on the path length but not on room materi-
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Figure 5.5: Path and notation. A sound path connecting a source to a receiver may be reflected multiple times at the
surface positions xi. Each xi is associated with a material indexed by m(i), and its absorption coefficients over all
frequency bands are stacked in the vector p⃗m(i).

als [Dunn et al., 2015]. Our goal is to determine p⃗ so that the energies ej delivered by all paths

at the receiver match the energy distribution in the measured IR.

Objective function. To this end, we propose the following nonlinear least-squares objective function,

J(p⃗) =
M∑

j=1

[

log10

(
ej(p⃗)

e0

)

− log10

(

h̃(tj)

h̃(t̄0)

)]2

, (5.3)

where j ∈ [0,M ] is the index of the paths resulted from the simulation, tj is the sound travel

time along path j, t̄0 is the earliest sound arrival time in the measured IR (not in the simulation),

and h̃(tj) is a parametric model of the measured sound energy response at time tj , which we will

elaborate on shortly.

Moreover, e0 is the energy delivered by the earliest path arriving at the receiver in the simulation.

This is the path that directly connects the source and receiver, thus independent from material pa-

rameters. This is also the path whose arrival time is used to calibrate the reconstructed room size:

before formulating the objective function (5.3), we scale the room size so that the arrival time of the

first path matches t̄0, and in turn, the same scale is applied to the arrival time tj of all later paths.

By taking the ratio of ej to e0, we avoid matching the absolute energy level between the simulation
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and the measurement. Later in §5.4, the energy level of simulated early rays will be scaled in order

to combine with the measured LR part.

Directly using the measured energy response h(t) (instead of h̃(t)) in (5.3) is susceptible to mea-

surement noise. We therefore fit a parametric model h̃(t) first. In this aspect, Traer and McDer-

mott [2016] recently measured the IRs of hundreds of different daily scenes, and discovered that

h(t) always decays exponentially, and the decay rates are consistently frequency dependent. We

therefore fit the measured h(t) in each frequency band j with an exponentially decaying function,

h̃j(t) = Aje
−γjt, and use it in (5.3), where we discard the subscript j for simplicity, as (5.3) is solved

for each frequency band independently.

We note that it is critical to formulate the objective function (5.3) using a logarithmic scale, because

the ray energy drops exponentially with respect to the arrival time. Otherwise, the summation in

the nonlinear least-squares sensewould overemphasize thematch of the early pathswhile sacrificing

late paths, which also have significant perceptual contributions [Traer andMcDermott, 2016].

Inverse Solve We solve for p⃗ by minimizing (5.3) with the constraint that all values in p⃗ must

be non-negative. This constrained nonlinear least-squares problem can be efficiently solved using

the L-BFGS-B algorithm [Zhu et al., 1997b]. This is a gradient-descent-based method, where the

gradient of (5.3) is

∂J

∂pi
=

2

ln 10

M∑

j=1

1

ej

[

log10

(
ej

e0

)

− log10

(

h̃(tj)

h̃(t̄0)

)]

∂ej

∂pi
. (5.4)

In practice, the optimizations for individual frequency bands are performed in parallel, and often

take less than 10 seconds.

As a validation, we substitute the optimizedmaterial absorption coefficient p⃗ into (5.2), and evaluate

the energy ej of every path j we collected. Using these updated ej , we construct a simulated IR and
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Figure 5.6: IR optimization. (top) The four plots correspond to four frequency bands (centered at 62.5Hz, 250Hz,
1000Hz, and 4000Hz). In each plot, the four curves correspond to the energy decay curves of four IRs obtained using
different approaches. The orange curves are simulated using initial material parameters, and serve as a starting point.
The blue curves are directly recorded, and are the goal. The yellow curves are simulated using our optimized material
parameters. They have the same energy decay rates as themeasured (blue) curves but different scales. The purple curves
are computed using the yellow curves modified using our frequency modulation algorithm (see §5.3.3 and Eq. 5.7), and
theymatch themeasured curves closely. The spectrograms of the four IRs are shown on the bottom, where the simulated
IR with frequency modulation matches closely with the recorded IR.

compare it with the measured IR. As shown in the top row of Figure 5.6, the energy decay rate

of the simulated IR with respect to time indeed matches with the measured IR at every frequency

band. This verifies the plausibility of our optimized parameter values. Nevertheless, the energy

intensities are still different. It is this discrepancy that motivates our frequencymodulation analysis,

as described next.

5.3.3 Frequency Modulation Analysis

In our simulated IR, the energy decay in every frequency band always starts from e0, the energy

level delivered by the direct path from the source to the receiver. This is because the direct path has

no surface reflection, and is thus independent of the material’s absorption. However, this reason-

ing contradicts what we observe in the measured IR, where the energy decay in different frequency
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bands start from different values (e.g., see the four dark blue curves in the top row plots of Fig-

ure 5.6). An important factor that cause the frequency-dependent variation is a wave behavior of

sound. namely the room resonances. In essence, each room is an acoustic chamber. When a sound

wave travels in the chamber, it boosts wave components at its resonant frequencies while suppress-

ing others. Most rooms have their fundamental resonances in the 20-200Hz range. It is known that

the room resonances affect the sound effects in the room and are one of the major obstacles for

accurate sound reproduction [Cox et al., 2004]. Yet, room resonance, because of its wave nature,

cannot be captured by a geometric acoustic (GA) simulation.

We propose a simple and effective method to incorporate room resonances in our simulated IR. We

use H̃(t) to denote our simulated IR and to distinguish from the measured IR H(t). Let t0 be the

arrival time of the direct path. We compute the discrete Fourier transforms of the simulated and

measured IRs in a small time window ∆t at t0:

H̃(ω) = F [H̃(t)] and H(ω) = F [H(t)], for t0 < t < t0 +∆t. (5.5)

Both H̃(ω) and H(ω) in the discrete setting are vectors of complex numbers. We compute and store

the ratio M(ω) = |H(ω)|/ ˜|H(ω)|. Later, whenwe generate spatial IRs, we will use M(ω) tomodulate

the frequency-domain energy of the IRs without affecting their phases (see §5.4.1).

In practice, we need to smooth M(ω) in presence of measurement noise. According to the uncer-

tainty principle of signal processing [Papoulis, 1977], we choose a small window that contains 256

samples of H̃(t) and H(t). This gives us 128 samples of M(ω) in frequency domain. We slide the

small time window ∆t in a slightly larger window [t0, t0 + 2∆t], repeat the computation of M(t),

and then average the resulting ratios.

To our knowledge, methods that compensate room resonances remain elusive in existing GA-based

audio generation approaches. As shown in Figure 5.6 and our supplemental video, our frequency
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modulation method improves the fidelity of the simulated IR and the realism of resulting spatial

audio in a very noticeable way.

5.3.4 ER Duration Analysis

After obtaining the optimized material parameters, we now use simulation to obtain a reliable esti-

mate of the ER duration TER.

ER-LR separation is traditionally defined based on subjective perception [Kuttruff, 2017]. There

exist various heuristics for estimating the ER duration TER from IR measurement or simulation,

from a simple kurtosis threshold [Traer and McDermott, 2016] to a threshold on the number of

peaks per second in a simulated IR [Raghuvanshi et al., 2010a], None of these heuristics rest on

the observation that we exploit to combine a simulated ERIR with a measured LRIR for ambisonic

audio generation — that is, the LR is isotropic, having uniformly distributed incoming sound en-

ergy along all directions. As a consequence, simple heuristics lead to unreliable TER estimates. We

therefore propose a new algorithm to determine TER directly based on the observation of the LR’s

isotropy.

Reusing the path energies ej collected in §5.3.2, we define the ER duration TER as the earliest time

instant when the received acoustic energy is uniformly distributed among all directions. To identify

TER, the collected rays with their energies are viewed as Monte-Carlo samples of the energy distri-

bution over time and direction. From this vantage point, we consider a sliding time window ∆t,

and check if the statistical distance between the energy distribution sampled by the rays in the time

window and a uniform distribution is below a threshold.

Three statistical distance metrics are commonly used, including Kolmogorov-Smirnov (KS) Dis-

tance, the Earth Mover’s Distance, and the Cramér-von Mises Distance. They can be viewed as

taking different kinds of norms of the cumulative distribution function (CDF) difference between
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two distributions. Here we choose to use KS distance, while the other two can be naturally used as

well.

Our algorithm is as follows. Consider all the rays in a time window ∆t=10ms. The ray directions

are described by two coordinates, the azimuthal and zenith angles. We process the distribution with

respect to each coordinate separately. First, we put the sampled energies ej into histogram bins ac-

cording to their zenith angles. After normalization, this histogram represents a discrete probability

distribution of incoming sound energies with respect to zenith angle. We then convert this his-

togram into a discrete CDF, represented by a vector P⃗s. If the energy is uniformly distributed, the

expected CDF with respect to the zenith angle ϕ is

Pc(ϕ) =
1

2
(1− cosϕ), (5.6)

which is discretized into a vector P⃗c with the same length as P⃗s. The KS distance is computed

as dϕ = |P⃗c − P⃗s|∞. Similarly, we compute the KS distance dθ of the energy distribution with

respect to the azimuthal angle θ. In this dimension, the expected CDF is simply a linear function,

as θ needs to be uniformly distributed in [0, 2π]. If both KS distances are smaller than a threshold

(0.15 in all our examples), we consider the current sliding time window ∆t as having uniformly

distributed directional energies. As we slide the time window, the first distance that passes the KS

test determines TER.

To verify the robustness of this method, we run the acoustic simulation seven times, each set to

produce a different number of total rays — the total number of rays increases from 15000 to 38000

evenly. After each simulation, we repeat the aforementioned analysis to compute TER. We verify

that among all the TER values, the variance is small: less than 4.2% of the average TER.
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5.4 Ambisonic Audio for 360° Videos

After analyzing the room geometry and acoustics, we are now able to generate ambisonic audio for

any 360° video captured in the same scene. This section describes our method which produces am-

bisonic audio from a dry audio signal. This technique will be the cornerstone of various applications

that we will explore in §5.5.2.

5.4.1 Constructing Direction-Aware Impulse Responses

Trajectory analysis Provided a 360° video, we recover the camera motion path by performing

structure-from-motion analysis [Huang et al., 2017]. This is the same technique that we use for

reconstructing the room shape (recall §5.2.2). Our method does not critically depend on this tech-

nique; any source of geometry and a registered camera trajectory would suffice.

Simulating ER To add ambisonic sound to a 360° video, the user first clicks a location in the

reconstructed 3D scene to specify a sound source position. The source location, the camera tra-

jectory, and the room geometry together with the optimized acoustic materials provide sufficient

information to launch a room acoustic simulation. The goal of this simulation is to collect a set

of incoming acoustic rays at each sampled location along the camera trajectory. These rays will be

used to construct directional IRs for early reverberation. Therefore, in our path-tracing acoustic

simulation, we cull a path whenever its travel time exceeds TER. This restriction of simulating only

early paths significantly lowers the simulation cost. In our implementation, culling paths using TER

yields 10∼20× speedups and memory savings in comparison to a simulation that lasts for the time

length of measured IR.

In practice, we sample positions every 50 centimeters along the camera trajectory, and for each

position, we collect incoming rays that arrived before TER. Each ray is described by its arrival time,
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Figure 5.7: Ray samples. We sample locations along the camera trajectory, and use geometric acoustic simulation to
collect sound rays that arrive to each location within TER after an impulsive sound signal is emitted from the source.
These rays will be used for synthesizing the ERIR for spatial audio.

its incoming direction θ⃗ (including azimuthal and zenith angles) and the carried sound energy ei of

every octave band i (see Figure 5.7).

Constructing IRs Next, at every camera position, we construct spatial IRs for ambisonic audio

synthesis. Each spatial IR is decomposed into two components. The early reverberation component

(ERIR) is directional, constructed individually from the simulated early rays. Given a ray r coming

from the direction θ⃗ and carrying energies er,i of all octave bands (index by i), we generate an

ERIR component H∗
r,θ⃗
(t) using the classic Linkwitz-Riley 4th-order crossover filter, as was used

in [Schissler et al., 2014].

At this point, we apply the frequencymodulation curve M(ω) that we computed in §5.3.3 toH∗
r,θ⃗
(t),

because the early rays resulting from GA-based simulation do not capture the room resonances. In

particular, we compute the Fourier transform of H∗
r,θ⃗
(t) to get H∗

r,θ⃗
(ω) = F [H∗

r,θ⃗
(t)], and scale it

using M(ω) before transforming it back in time domain. The resulting ERIR,

Hr,θ⃗(t) = F
−1[H∗

r,θ⃗
(ω)M(ω)], (5.7)

is what we will use for spatial audio generation (§5.4.2). As shown in the supplemental video’s

soundtrack, this step improves the realism of resulting spatial audio in a noticeable way.
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The LRIR componentHL(t) is omni-directional, directly taken by scaling the measured IRH(t) for

t > tER:

HL(t) =







0, t < tER
[(∫ TER

TER−∆t
h(t)dt

)−1∑

r∈W
∑

i er,i

] 1

2

H(t), t ≥ tER,

(5.8)

The scale in front of H(t) is to match the energy level when combining simulated ERIR with the

measured LRIR. It ensures that, in a small time window ∆t near TER, the ratio of ERIR energy to

LRIR energy in the synthesized IR is the same as the ratio computed using the measured energy

response h(t). Here, W denotes the set of rays whose arrival time is in the time window [TER −

∆t, TER], and the index i in the summation iterates through all octave bands.

5.4.2 Generating Ambisonic Audio

Lastly, provided a dry audio, we generate ambisonic audio received as the camera moves along its

trajectory.

Background. Ambisonic audio uses multiple channels to reproduce the sound field arriving to a

receiver from all directions. It can be understood as an approximation to the solution of the non-

homogeneous Helmholtz equation,

(∆ + k2)p = −fk(ψ⃗)
δ(r − rL)

r2L
, (5.9)

for each frequency band [Zotter et al., 2009], where p is the received sound pressure, k is the wave

number of the frequency band, rL is the distance of sound sources from the receiver, and fk(ψ⃗) is the

directional distribution of the sound sources at the frequency band k. In our case, at each location

along the camera trajectory, fk(ψ⃗) is specified by its incoming rays. If a receiver is located at a polar
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coordinate (r, ψ⃗), then its sound pressure is described by the solution of (5.9),

pk(r, ψ⃗) = −ik
∞∑

n=0

n∑

m=−n

ϕk,nmY
m
n (ψ⃗)hn(krL)jn(kr), (5.10)

where Y m
n (ψ⃗) are the real-valued spherical harmonics, jn are the spherical Bessel functions, hn are

the spherical Hankel functions, and ϕk,nm are the coefficients of fk(ψ⃗) projected on the spherical

harmonic basis,

ϕk,nm =

∫

S2

fk(ψ⃗)Y
m
n (ψ⃗)dψ⃗. (5.11)

Equation (5.10) is the sound pressure of frequency band k. In the time domain, the received sound

is a summation over all frequency bands, namely, s(r, ψ⃗, t) =
∑

k pk(r, ψ⃗)e
−iωkt, where ωk is the

frequency corresponding to the wave number k. Correspondingly, ϕk,nm in the frequency domain

can be rewritten in the time domain using the Fourier transform,

ϕnm(t) =
∑

k

ϕk,nme
−iωkt =

∫

S2

f(ψ⃗, t)Y m
n (ψ⃗)dψ⃗. (5.12)

where f(ψ⃗, t) is the directional distribution of sound source signals in time domain.

In essence, ambisonic audio records the coefficients ϕnm(t) (normalized by a constant) up to a cer-

tain order n. At runtime, an ambisonic decoder generates audio signals output to speaker channels

(such as stereo and 5.1) according to (5.10) together with a head-related transfer function model.

Currently, almost all the mainstream 360° video players (such as Youtube and Facebook video play-

ers) support only first order ambisonics, which takes four channels of signals corresponding to ϕnm

at n = 0,m = 0 and n = 0,m = −1, 0, 1.

Generating ambisonic channels Let si(t) denote the dry audio signals. Using the ambisonic

model, we view each early ray as a directional sound source, whose signal s(t) is the dry audio
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convolved with its ERIR component (i.e., s(t) = si(t) ∗ Hr,θ⃗(t), where Hr,θ⃗(t) is introduced in

(5.7)). Because this ray comes from direction θ⃗, we model the corresponding f(ψ⃗, t) in (5.12) as a

Dirac delta distribution scaled by its incoming signal s(t): f(ψ⃗, t) = δ(ψ⃗− θ⃗)s(t). Then, the audio

data due to early reverberation at each ambisonic channel is

ϕnm =

∫

S2

δ(ψ⃗ − θ⃗)s(t)Y m
n (ψ⃗)dψ⃗ = Y m

n (θ⃗)
(

si(t) ∗Hr,θ⃗(t)
)

. (5.13)

In our examples, we compute ϕnm only up to the first order because of the limitation in current 360°

video players. This results in four channels of signals (named as theW -, X-, Y -, and Z-channel),

and their corresponding Y m
n are 1√

2
, cos θ cosϕ, sin θ cosϕ, and sinϕ respectively, where θ and ϕ

are the azimuthal and zenith angle of the direction θ⃗. We iterate through all incoming rays collected

in §5.4.1, compute their ϕnm using (5.13) and accumulate them into corresponding channels.

Meanwhile, the LRIR component produces audio signals sL(t) = si(t) ∗HL(t). We model sL(t) as

sound signals coming uniformly from all directions according to our observation of energy isotropy

in LR (recall §5.3.4). Then, f(ψ⃗, t) in (5.12) becomes a direction independent function, 1
4π
sL(t). In

this case, the W -channel is accumulated by 1√
2
sL(t), while the X-, Y -, and Z-channels are not

affected.

After this step, the four channels of audio data are encapsulated into the 360° video. Ourmethod can

readily produce ambisonic audio with higher-order channels for future 360° video players.

5.5 Results

We present technical validation of our method, along with several useful applications. To fully ap-

preciate our results, we encourage readers to watch our accompanying video. Our results were com-

puted on a 4-core Intel i7 CPU. Our system, including acoustic simulation, material optimization,
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Figure 5.8: Position independence. We recorded 12 IRs in a room at different source and receiver locations, and
perform our material estimation (§5.3.2) separately using each of the IRs. (left) We visualize the source (in green) and
listening (in orange) positions used in each IR measurement indicated by the numbers inside the dots. (right) For each
measurement, we optimize the material parameters, and plot the average value in each octave band (x-axis), along with
error bars (indicating one standard deviation) shown on top of the bars. This plot shows that the material estimation is
virtually independent from the choice of source and receiver locations.

determination of TER, frequency modulation, and ambisonic encoding, takes≈ 10-20 seconds. In

addition to our main supplemental video, we also provide our raw 360 videos and instructions in a

supplemental zip file for full immersive experience.

5.5.1 Validation

Directionality of LRIR While the common assumption that the LRIR is diffuse spatially has been

exploited in previous methods (e.g., [Raghuvanshi and Snyder, 2014]), its isotropy with respect to

direction has received less attention. We therefore provide evidence through room acoustic mea-

surement using a highly directional “shotgun” microphone. The details are described in Figure 5.3.

An additional plot that also appears in the supplemental video is explained in Figure 5.9.

Robustness ofmaterial parameter estimation Part of the ease of ourmethod rests on the fact that

we only need one recorded impulse response per roomusing a conventionalmonomicrophone, and

that the positions of the source and receiver when recording do not matter. Figure 5.8 demonstrates

the negligible impact these positions have on our IR measurement and material estimation steps.

The same experiment also confirms that the LRIRs in all the measured IRs closely match each other.
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This bolsters the common assumption that the LRIR is spatially diffuse.

energy

time
early late

Figure 5.9: Directional energy response. We measure the directional energy response h
θ⃗
(t) along five incoming di-

rections (left) using a directional shotgun microphone. These measured h
θ⃗
(t) (right) have different ER parts, but as

time increases their LR tails converge.

Agreement with recordings We demonstrate that our algorithm can faithfully match recorded

audio using ambisonic microphones. We compare recorded audio to the 360° audio synthesized

by our method. In several rooms of varying size, our results match very well with the recordings

(Figure 5.10). Again, please see our accompanying video to appreciate the high level of agreement

our method has with recordings. To highlight the match with recordings, we stitch the recorded

and synthesized audio side-by-side, to show the nearly seamless transitions.

5.5.2 Applications

Our approach enables several novel applications which make spatial audio for 360° videos easier to

work with.

Audio replacement in 360° video While ambisonic microphones can be used to record spatial

audio directly, they have limited use in the production pipeline. Many sounds are added to videos

in post production, instead of during the video shooting. Our method allows adding sound to

360° video during post-production in a realistic spatialized fashion. We have done this in various

classrooms, lecture halls, and auditoriumswith varying sizes and reverberation characteristics, some

of which are shown in Figure 5.10. An additional, concrete application is the removal of unwanted
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Figure 5.10: Matching recorded IRs. Our method (bottom) produces IRs that match closely recorded IRs (middle) for
three different cases (top). Shown here are IRs of three distinct rooms. Their sizes, shapes, and materials vary largely
(see Table 5.1). We refer to the supplemental materials that include audio clips of these IRs.

carhorn

noise

replaced with 

our simulation

Figure 5.11: Audio replacement. While recording sound in a classroom, there was an unwanted car horn outside. The
car horn overlapped in frequency with our desired audio, which makes removing it challenging. Using our method to
resimulate the dry audio provides noise free audio that sounds as if it was recorded in the scene.

sound, shown in Figure 5.11. During one of our recordings, an unwanted car horn came from

outside. Noise removal can be challenging, especially for non-stationary sources that overlap in

frequency. Our method allows resimulating the desired dry audio, making it sound as if it was

recorded in the same room, but with no noise.

Geometric effects One of the main benefits our method provides to 360° video editors is the

ability to automatically capture geometric effects. This can easily be seen when geometry occludes

the source or receiver. In this example, we moved a speaker above and below a table, causing the
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size (meter) TER(msec) type

C 15×20×6 44 indoor

C 4×6×3 21 indoor

C 11×8×4 37 indoor

P 12×17×7 68 indoor

N 11×15×6 46 indoor

L 40×60×12 121 indoor

H y 2×15×5 40 multiroom

O 70×50 164 outdoor

Table 5.1: Example Statistics

sound to become muffled. Our method captures this effect automatically (Figure 5.12). Instead

of painstakingly adjusting amplitude and frequency to approximate shadowing, sound editors can

now just apply a geometric filter.

Extension to cross-room propagation An even stronger geometric effect happens when a source

or listener moves between rooms. This can cause very different sound due to the small opening

between rooms, and different reverberation in each room. A simple extension of ourmethod to two

rooms is demonstrated (Figure 5.13). Consider a source s located in room 1 and a listening location

d in room 2. Just like single rooms, the (directional) ERIRH12
E between s and d is computed from

simulated rays with spatial effects. For the LRIR, we recorded an IR once in each room,H1 andH2.

We then compute the propagated IR between two rooms as

H12
L = a

∑

p∈A

(
H1

E,s→p ∗H
2
L +H2

E,d→p ∗H
1
L +H1

L ∗H
2
L

)
, (5.14)
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Figure 5.12: Geometric effects: occlusion. As a sound source moves below a table, it exhibits a low-pass muffling effect
due to direct sound being blocked. Our method captures this effect.

where p are locations uniformly sampled in the planar region of the door A, a is the effective area

of each sampled location p, H1
L and H2

L are the LR components of the recorded IRs in each room,

andH1
E,s→p andH2

E,d→p are simulated ERIRs from s to p in room 1 and from d to p in room 2. The

derivation of (5.14) is presented in Section B. This formulation is similar to [Stavrakis et al., 2008].

Therefore, our algorithm could be easily extended to a general graph of connected rooms using their

algorithm.

Re-spatialization of mono audio The final application we present is a way to apply spatial effects

to in-situ recorded mono audio, i.e., audio recorded in a room with reverberation. This problem

is similar in spirit to the conversion of a 2D film into a 3D film without refilming it — a popular

problem in the film industry. Theoretically, re-spatializing the audio could be done by deconvolving

the impulse response from the recorded audio, to obtain the original (“dry”) source audio. The dry

audio could then be spatialized with our method. However, deconvolution is a very ill-conditioned

process and is difficult in practice. Instead, we present an ad-hoc effect that can give some spatial
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(a) (b) (c)
Figure 5.13: Connected rooms. As a listener moves between rooms, the reverberation changes, and strong geometric
shadowing effects are heard. Our method naturally works in these cases, requiring only one IR measurement in each
room. (a) A photograph of the multi-room scene. (b) The layout of the rooms. (c) The spectrograms of the synthesized
IRs at three distinct locations.

impression. Given a room model with estimated materials, we perform a full IR simulation and

store the propagated rays. We can then take the input mono-channel audio and distribute its energy

over the sphere to match the energy of the computed rays. While not fully principled, it provides a

plausible effect and works well in many cases, shown in Figure 5.1 and Figure 5.14.

5.6 Conclusion

We have presented a method for adding realistic, scene-aware spatial audio to 360° videos. By com-

bining simulated early reflections with recorded late reverberation, our method is extremely fast

and matches recorded audio well. It provides a practical way to incorporate geometric effects dur-

ing audio post-production, requiring only a standard mono microphone and a 360° camera. We

believe this will enable the next generation of sound design for emerging immersive content.

Limitations and future work A major limitation to proper viewing of spatial audio currently is

the lack of personalized head-related transfer functions. These functions describe how our head

and ear geometry modifies sound before it reaches our ear drums, which is how humans detect
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left

right

Figure 5.14: Re-spatialization. From recordedmono audio of a person talking whilemoving around a room, we can re-
spatialize the sound. By using our method to compute the energy distribution due to the moving source, we distribute
the mono sound energy appropriately. (top) Sound source moving from left to right in the camera frame. (bottom) The
sound waveform (left) and the energy (right) after binauralizing our spatialization. Notice how the sound follows the
source, moving from left to right.

directionality of sound. These functions are unique to individuals, but are laborious to measure.

While the common/average models that current 360° video players use give a spatial impression,

we expect the accuracy continue to increase in the future as personalized HRTFs become easier to

obtain.

Our method requires a good impulse response to work well. While much easier and faster than

directly measuring acoustic properties of scene materials, it is still an extra step that requires access

to the original roomwhere the videowas recorded. Futurework could examine inferring an impulse

response from the audio in the video. Large spaces such as outdoor scenes are challenging. The

large amount of uncontrollable noise makes it difficult for our method to match recordings exactly,

as shown in Figure 5.15. However, this could also be seen as a strength of our method: the ability

to re-simulate only the audio sources of interest, noise free.

Currently we onlymodel themajor walls and obstacles in the scene, ignoringmost other objects like

chairs. While it is reasonable to drop small features when the sound wave length is large enough,
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Typical Indoor Recording Ourdoor Recording

Figure 5.15: Challenging outdoor case. We applied ourmethod to outdoor 360° videos. Themajor challenge is record-
ing noise, due to e.g., environment and wind, which makes an exact match of our synthesized audio to the ambisonic
recordings very challenging. However, the results sound plausible (see video). (left) An outdoor 360° recording scene at
6AM in the morning. (right) The recorded audio severely contaminated by noise. (middle) A typical indoor recording
with much less noise.

we indeed oversimplify the reconstructed geometry. One issue occurs when the listening location

becomes too close to an object that we do not model/optimize. In this case, the synthesized audio

soundsmay characteristically differ from the recordings. In our experiments, we found that keeping

a safe distance between unmodelled objects prevents this discrepancy. In the future, we wish to

investigate the impact of accurate geometric modeling on the optimization process as well as the

resulting audio.

Realistic spatial audio authoring in 360° videos is an exciting and challenging research field. Thanks

to recent hardware developments and surging interest in virtual reality, we expect to see an increased

demand for immersive 360° audio. Our scene-aware audio is a first step towards the practical appli-

cation of a more immersive audio-visual experience. In order to further advance the audio quality,

still more accurate and efficient methods are required.

We believe that an intuitive spatial audio editing pipeline will go a long way to advance audio edit-

ing. Unlike mono-channel or stereo audio, high-order ambisonics have quadratically increasing

number of channels, i.e., 1st order has 4, 2nd order has 9, and so on. While low-level mixing and

stitchingworks on one or two channels for traditional audio, we argue that a higher-level abstraction

of the audio editing process can help users access the full potential of spatial audio. Our work ab-

stracts the manipulation of different channels to intuitive concepts such as the virtual sound source
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location and listening location, allowing designers to think more about the scene and less about

waveform editing. Lastly, we look forward to other avenues where spatial audio will enhance the

user experience.
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Chapter 6

Conclusion

In this thesis, I investigate the area at the intersection of virtual simulation and real-world applica-

tions. Unlike other research that has focused on solely the virtual simulation, my research considers

the practical constraints and advantages imposed by hardware devices, such as 360° video cameras

and 3D printers. This additional relationship with existing hardware introduced both opportuni-

ties and challenges into my sound simulation. My thesis explored different methods to address the

challenges and presented a series of projects on efficient acoustic simulation.

In the following, I will briefly summarize each project and then discuss futurework directions.

We have presented a physics-based interactive sound editing interface that can synthesize realistic

audio for a given animation. By designing and implementing an efficient precomputation pipeline

and an interactive runtime synthesis algorithm, we demonstrated the ability to change, edit, and ex-

plore new material settings on the fly. I believe this research is a cornerstone towards incorporating

automatic audio generation for virtual animation.

We also introduced a new spatial audio editing pipeline that is strongly coupled together with real-

world recordings, significantly improving the state-of-the-art room acoustic matching for immer-
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sive audiovisual contents. We developed an inverse material estimation based visual components

as well as audio recording. To further accelerate the audio composition, we observed and exploited

the directional isotropy in the late tails of sound propagation. This leads to an order of magnitude

speedup without compromising the audiovisual immersion.

Finally, we proposed a new acoustic filter simulation and optimization algorithm based on the idea

of modularity. Modular voxels not only enable much faster forward simulations, but also make

optimization possible with user-specified acoustic targets. The combination of fast simulation and

inverse optimization allows one to explore the design space without a strong background in acous-

tics. We also manufactured all of our models and measured their acoustic filtering behavior to

validate the accuracy of our efficient simulation framework.

6.1 Future Work

For discussion specific to the individual project, please refer to the end of each chapter. Here I will

focus on more general discussions.

Visualization and Interfaces for Acoustic Design In order to interact with acoustic designs, one

has to understand the characteristics of the current design. To convey the performance/behavior

of the acoustic properties, we have adopted industry-standard metrics, such as waveform analysis,

spectrum display, spectrogram visualization, and etc. However, as the goals and design domain

become more complex, I think we need new effective ways to convey the performance of current

designs. For example, in spatial audios, one important property is the directionality evolution in

the time domain and there is no available tools or metrics to visualize it. In another fabrication

scenarios, it remains With the introduction of new visualization comes the challenges on how to

design better interfaces to work in tandem with the visualization methods.
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Multi-Modality Fusion My thesis focuses on sound simulation. However, to reproduce our sur-

roundings realistically in a virtual environment, it is crucial to provide multi-modality immersion

beyond just auditory and visual aspects. For example, one common element missing in my research

is haptic simulation. While there is a long line of research in the haptics community, it is still unex-

plored how to effectively simulate auditory, visual, and haptic content as well as other modalities in

the same unified framework. Most existing research investigates a small subset of these modalities.

As each of the components becomes more sophisticated and realistic, I believe we can learn more

insights when we fuse all the modalities together.

Low-Power Mobile Simulation As mobile phones gain more computational power, there have

been emerging graphics research algorithms designed with power efficiency in mind [Wang et al.,

2016; Wadhwa et al., 2018]. More broadly, I think mobile simulation goes beyond mobile phones –

smart watches, smart glasses, and other compact wearables all serve as platforms for mobile com-

puting. While the physical sizes of these devicesmay shrink, the computational demands on realism

and latency are higher. To some extent, we can optimize existing algorithms to adapt them to meet

the power consumption threshold. However, due to the sheer power differences between mobile

and desktop resources, I believe a new methodology with power consumption as part of the input

constraint is an interesting research direction.



BIBLIOGRAPHY 119

Bibliography

[Adhikari and Woodhouse, 2001] S. Adhikari and J. Woodhouse. Identification of damping: Part

1, viscous damping. Journal of Sound and Vibration, 243(1):43 – 61, 2001.

[Allen and Raghuvanshi, 2015] Andrew Allen and Nikunj Raghuvanshi. Aerophones in flatland:

Interactive wave simulation of wind instruments. ACM Trans. Graph., 34(4), July 2015.

[An et al., 2012] Steven S. An, Doug L. James, and Steve Marschner. Motion-driven concatenative

synthesis of cloth sounds. ACM Transactions on Graphics (SIGGRAPH 2012), August 2012.

[Anderson et al., 2016] Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen,

Noah Snavely, Carlos Hernández, Sameer Agarwal, and Steven M Seitz. Jump: virtual reality

video. ACM Transactions on Graphics (TOG), 35(6):198, 2016.

[Angell et al., 1997] TS Angell, Xinming Jiang, and RE Kleinman. A distributed source method for

inverse acoustic scattering. Inverse Problems, 13(2):531, 1997.

[Aubry, 2013] Jean-Pierre Aubry. Beginning with Code_Aster. Framasoft, 2013.

[Barbič et al., 2009] Jernej Barbič,Marco da Silva, and JovanPopović. Deformable object animation

using reduced optimal control. ACM Trans. Graph., 28(3):53:1–53:9, July 2009.

[Bharaj et al., 2015] Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister,

Wojciech Matusik, and Changxi Zheng. Computational design of metallophone contact sounds.



BIBLIOGRAPHY 120

ACM Trans. Graph., 34(6), October 2015.

[Bickel et al., 2010] Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee,

Hanspeter Pfister, Markus Gross, and Wojciech Matusik. Design and fabrication of materials

with desired deformation behavior. ACM Trans. Graph., 29(4), July 2010.

[Bilbao, 2009] Stefan Bilbao. Numerical Sound Synthesis. John Wiley & Sons, Ltd, 2009.

[Bonneel et al., 2008] Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle Viaud-Delmon,

and Doug James. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. on

Graph., 27(3), August 2008.

[Braden et al., 2009] Alistair CP Braden, Michael J Newton, and D Murray Campbell. Trombone

bore optimization based on input impedance targets. The Journal of the Acoustical Society of

America, 125(4), 2009.

[Burton and Miller, 1971] A.J. Burton andG.F.Miller. The application of integral equationmethods

to the numerical solution of some exterior boundary-value problems. In Proceedings of the Royal

Society of London, Series A. Math Phys Sci, pages 201–10, 1971.

[Caloz and Itoh, 2005] Christophe Caloz and Tatsuo Itoh. Electromagnetic metamaterials: trans-

mission line theory and microwave applications. John Wiley & Sons, 2005.

[Cao et al., 2016] Chunxiao Cao, Zhong Ren, Carl Schissler, Dinesh Manocha, and Kun Zhou. In-

teractive sound propagation with bidirectional path tracing. ACM Trans. Graph., 35(6):180:1–

180:11, November 2016.

[Chadwick and James, 2011] Jeffrey N. Chadwick and Doug L. James. Animating fire with sound.

ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011), 30(4), August 2011.

[Chadwick et al., 2009a] Jeffrey N. Chadwick, Steven S. An, and Doug L. James. Harmonic shells:

a practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph., 28(5):119:1–



BIBLIOGRAPHY 121

119:10, 2009.

[Chadwick et al., 2009b] Jeffrey N. Chadwick, Steven S. An, and Doug L. James. Harmonic Shells:

A practical nonlinear sound model for near-rigid thin shells. ACMTrans. on Graph., 28(5):1–10,

2009.

[Chiu, 2010] Min-Chie Chiu. Shape optimization of multi-chamber mufflers with plug-inlet tube

on a venting process by genetic algorithms. Applied Acoustics, 71(6):495–505, 2010.

[Chowning, 1973] John Chowning. The synthesis of complex audio spectra by means of frequency

modulation. Journal of the Audio Engineering Society, pages J. Audio Eng. Soc. 21 (7), 526–534.,

1973.

[Christopoulos, 2006] Christos Christopoulos. The Transmission-Line Modeling (TLM) Method in

Electromagnetics. Morgan & Claypool Publishers, 2006.

[Ciscowski and Brebbia, 1991] R.D. Ciscowski and C.A. Brebbia. Boundary Element methods in

acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton,

1991.

[Cook, 2002] Perry R. Cook. Real Sound Synthesis for Interactive Applications. A. K. Peters, Ltd.,

Natick, MA, USA, 2002.

[Corbett et al., 2007] Richard Corbett, Kees van den Doel, John E. Lloyd, and Wolfgang Heidrich.

Timbrefields: 3d interactive sound models for real-time audio. Presence, 16(6):643–654, 2007.

[Cox et al., 2004] Trevor J Cox, Peter D’Antonio, and Mark R Avis. Room sizing and optimization

at low frequencies. Journal of the Audio Engineering Society, 52(6):640–651, 2004.

[Cremer et al., 2005] L. Cremer, M.Heckl, and B.A.T. Petersson. Structure-Borne Sound: Structural

Vibrations and Sound Radiation at Audio Frequencies. Springer, 2005.



BIBLIOGRAPHY 122

[De Lima et al., 2011] Key Fonseca De Lima, Arcanjo Lenzi, and Renato Barbieri. The study of re-

active silencers by shape and parametric optimization techniques. Applied Acoustics, 72(4):142–

150, 2011.

[Dokmanić et al., 2013] Ivan Dokmanić, Reza Parhizkar, Andreas Walther, Yue M Lu, and Martin

Vetterli. Acoustic echoes reveal room shape. Proceedings of the National Academy of Sciences,

110(30), 2013.

[Dunn et al., 2015] FDunn,WMHartmann, DMCampbell, andNevilleHFletcher. Springer hand-

book of acoustics. Springer, 2015.

[Farina, 2000] Angelo Farina. Simultaneous measurement of impulse response and distortion with

a swept-sine technique. InAudio Engineering Society Convention 108. Audio Engineering Society,

2000.

[Farina, 2007] Angelo Farina. Advancements in impulse response measurements by sine sweeps.

In Audio Engineering Society Convention 122, May 2007.

[Feijóo et al., 2004] Gonzalo R Feijóo, AssadAOberai, and PeterMPinsky. An application of shape

optimization in the solution of inverse acoustic scattering problems. Inverse problems, 20(1):199,

2004.

[Funkhouser et al., 1998] Thomas Funkhouser, Ingrid Carlbom, Gary Elko, Gopal Pingali, Mohan

Sondhi, and Jim West. A beam tracing approach to acoustic modeling for interactive virtual

environments. In Proc. of SIGGRAPH 98, 1998.

[Funkhouser et al., 1999] Thomas A. Funkhouser, Patrick Min, and Ingrid Carlbom. Real-time

acoustic modeling for distributed virtual environments. In SIGGRAPH, pages 365–374, 1999.

[Gallivan et al., 1994] K. Gallivan, E. Grimme, and P. Van Dooren. Asymptotic waveform evalua-

tion via a lanczos method. Appl. Math. Lett., 7(5):75–80, 1994.



BIBLIOGRAPHY 123

[Gardner, 1968] Mark B. Gardner. Historical background of the haas and/or precedence effect. The

Journal of the Acoustical Society of America, 43(6):1243–1248, 1968.

[Garland and Heckbert, 1997] Michael Garland and Paul S. Heckbert. Surface simplification using

quadric error metrics. In SIGGRAPH, pages 209–216, 1997.

[Germain et al., 2016] François. G. Germain, Gautham. J. Mysore, and Takako. Fujioka. Equal-

ization matching of speech recordings in real-world environments. In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 609–613, March 2016.

[Gumerov and Duraiswami, 2004] Nail A. Gumerov and Ramani Duraiswami. Fast Multipole

Methods for the Helmholtz Equation in Three Dimensions. Elsevier Science, first edition, 2004.

[Hämäläinen et al., 2014] Perttu Hämäläinen, Sebastian Eriksson, Esa Tanskanen, Ville Kyrki, and

Jaakko Lehtinen. Online motion synthesis using sequential monte carlo. ACM Trans. Graph.,

33(4), July 2014.

[Hamming, 1983] R. W. Hamming. Digital Filters. Prentice-Hall, 1983.

[Hauer et al., 1990] J.F. Hauer, C.J. Demeure, and L.L. Scharf. Initial results in prony analysis of

power system response signals. Power Systems, IEEE Transactions on, 5(1):80–89, Feb 1990.

[Hodgson, 1991] Murray Hodgson. Evidence of diffuse surface reflections in rooms. The Journal

of the Acoustical Society of America, 89(2):765–771, 1991.

[Hoppe, 1999] Hugues Hoppe. New quadric metric for simplifying meshes with appearance at-

tributes. In IEEE Visualization, pages 59–66, 1999.

[Huang et al., 2017] J. Huang, Z. Chen, D. Ceylan, and H. Jin. 6-dof vr videos with a single 360-

camera. In 2017 IEEE Virtual Reality (VR), pages 37–44, March 2017.

[Ingard, 2009] Uno Ingard. Noise reduction analysis. Jones & Bartlett Publishers, 2009.



BIBLIOGRAPHY 124

[James and Pai, 2002] Doug L. James and Dinesh K. Pai. Dyrt: Dynamic response textures for real

time deformation simulation with graphics hardware. ACM Trans. on Graph., 21(3), July 2002.

[James et al., 2006a] Doug L. James, Jernej Barbic, andDineshK. Pai. PrecomputedAcoustic Trans-

fer: Output-sensitive, accurate sound generation for geometrically complex vibration sources.

ACM Trans. on Graph., 25(3):987–995, July 2006.

[James et al., 2006b] Doug L. James, Jernej Barbic, and Dinesh K. Pai. Precomputed acoustic trans-

fer: Output-sensitive, accurate sound generation for geometrically complex vibration sources.

ACM Trans. Graph., 25(3), July 2006.

[Jerri, 2005] A. J. Jerri. The Shannon sampling theorem – Its various extensions and applications:

A tutorial review. Proceedings of the IEEE, 65(11):1565–1596, June 2005.

[Jin et al., 2017] Zeyu Jin, Gautham J.Mysore, StephenDiVerdi, JingwanLu, andAdamFinkelstein.

VoCo: Text-based insertion and replacement in audio narration. ACMTransactions on Graphics,

36(4):Article 96, 13 pages, July 2017.

[Johnson and Elliott, 1995] M. E. Johnson and S. J. Elliott. Active control of sound radiation using

volume velocity cancellation. Journal of the Acoustical Society of America, 4(98):2174–2186, May

1995.

[Kac, 1966] Mark Kac. Can one hear the shape of a drum? AmericanMathematical Monthly, pages

1–23, 1966.

[Karlsson, 1976] Johan Karlsson. Rational interpolation and best rational approximation. Journal

of Mathematical Analysis and Applications, 53(1):38–52, 1976.

[Kaufman et al., 2008] Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai.

Staggered projections for frictional contact in multibody systems. ACM Trans. on Graph.,

27(5):164:1–164:11, December 2008.



BIBLIOGRAPHY 125

[Kausel, 2001] Wilfried Kausel. Optimization of brasswind instruments and its application in bore

reconstruction. Journal of New Music Research, 30(1):69–82, 2001.

[Kendall, 1995] Gary S. Kendall. The decorrelation of audio signals and its impact on spatial im-

agery. Computer Music Journal, 19(4):71–87, 1995.

[Kirkpatrick et al., 1983] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[Klatzky et al., 2000] Roberta L. Klatzky, Dinesh K. Pai, and Eric P. Krotkov. Perception of material

from contact sounds. Presence: Teleop. Virtual Environ., 9(4):399–410, August 2000.

[Kopf, 2016] Johannes Kopf. 360 video stabilization. ACM Transactions on Graphics (TOG),

35(6):195, 2016.

[Kuttruff, 2017] Heinrich Kuttruff. Room Acoustics. CRC Press, sixth edition, 2017.

[Langlois et al., 2014] Timothy R. Langlois, Steven S. An, Kelvin K. Jin, and Doug L. James. Eigen-

mode compression for modal sound models. ACM Trans. on Graph., 33(4), 2014.

[Langlois et al., 2016] Timothy R. Langlois, Changxi Zheng, andDoug L. James. Toward animating

water with complex acoustic bubbles. ACMTransactions on Graphics (Proceedings of SIGGRAPH

2016), 35(4), July 2016.

[Laput et al., 2015] Gierad Laput, Eric Brockmeyer, Scott E Hudson, and Chris Harrison. Acous-

truments: Passive, acoustically-driven, interactive controls for handheld devices. In Proc. CHI

2015. ACM, 2015.

[Lee et al., 2016] Jungjin Lee, Bumki Kim, Kyehyun Kim, Younghui Kim, and Junyong Noh.

Rich360: optimized spherical representation from structured panoramic camera arrays. ACM

Transactions on Graphics (TOG), 35(4):63, 2016.



BIBLIOGRAPHY 126

[Lenzi et al., 2013] Marcos Souza Lenzi, Sanda Lefteriu, Hadrien Beriot, and Wim Desmet. A fast

frequency sweep approach using padé approximations for solving helmholtz finite elementmod-

els. Journal of Sound and Vibration, 332:1897–1917, 2013.

[Li and Duraiswami, 2006] Zhiyun Li and Ramani Duraiswami. Headphone-based reproduction

of 3d auditory scenes captured by spherical/hemispherical microphone arrays. In IEEE Interna-

tional Conference on Acoustics Speech and Signal Processing, ICASSP 2006, pages 337–340, 2006.

[Li et al., 2015] Dingzeyu Li, Yun Fei, and Changxi Zheng. Interactive acoustic transfer approxi-

mation for modal sound. ACM Trans. Graph., 35(1), December 2015.

[Li et al., 2016] Dingzeyu Li, David I.W. Levin, Wojciech Matusik, and Changxi Zheng. Acoustic

voxels: Computational optimization ofmodular acoustic filters. ACMTrans. Graph., 35(4), 2016.

[Li et al., 2018] Dingzeyu Li, Langlois Timothy, and Changxi Zheng. Scene-aware audio for 360°

videos. under review, 2018.

[Lindstrom and Turk, 1998] Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal

simplification. In IEEE Visualization, pages 279–286, 1998.

[Liu, 2009] Y. J. Liu. Fast Multipole Boundary Element Method: Theory and Applications in Engi-

neering. Cambridge University Press, 2009.

[Lloyd et al., 2011] Brandon Lloyd, Nikunj Raghuvanshi, and Naga K. Govindaraju. Sound syn-

thesis for impact sounds in video games. In Symposium on Interactive 3D Graphics and Games,

2011.

[Lobos et al., 2003] T. Lobos, J. Rezmer, and P. Schegner. Parameter estimation of distorted signals

using prony method. In Power Tech Conference Proceedings, 2003 IEEE Bologna, volume 4, page

5 pp, June 2003.



BIBLIOGRAPHY 127

[Luebke, 2001] David P. Luebke. A developer’s survey of polygonal simplification algorithms. IEEE

Comput. Graph. Appl., 21(3):24–35, 2001.

[Marschner and Greenberg, 1998] Stephen Robert Marschner and Donald P Greenberg. Inverse

rendering for computer graphics. Cornell University, 1998.

[Matsumoto et al., 2010] T. Matsumoto, C. Zheng, S. Harada, and T. Takahashi. Explicit evalua-

tion of hypersingular boundary integral equation for 3-d helmholtz equation discretized with

constant triangular element. J Comput Sci Technol, 4(3):194–206, 2010.

[Matzen et al., 2017] Kevin Matzen, Michael F Cohen, Bryce Evans, Johannes Kopf, and Richard

Szeliski. Low-cost 360 stereo photography and video capture. ACM Transactions on Graphics

(TOG), 36(4):148, 2017.

[McNamara et al., 2004] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid

control using the adjoint method. ACM Trans. Graph., 23(3), August 2004.

[Mehra et al., 2013a] Ravish Mehra, Nikunj Raghuvanshi, Lakulish Antani, Anish Chandak, Sean

Curtis, and Dinesh Manocha. Wave-based sound propagation in large open scenes using an

equivalent source formulation. ACM Trans. Graph., 32(2), April 2013.

[Mehra et al., 2013b] Ravish Mehra, Nikunj Raghuvanshi, Lakulish Antani, Anish Chandak, Sean

Curtis, and Dinesh Manocha. Wave-based sound propagation in large open scenes using an

equivalent source formulation. ACM Trans. on Graph., 32(2):19:1–19:13, April 2013.

[Meyer and Anderson, 2007] Mark Meyer and John Anderson. Key point subspace acceleration

and soft caching. ACM Trans. on Graph., 26(3), July 2007.

[Mıguez et al., 2010] Joaquın Mıguez, Dan Crisan, and Petar M Djuric. Sequential monte carlo

methods for the optimization of a general class of objective functions. SIAM Journal on Opti-

mization, 2010.



BIBLIOGRAPHY 128

[Monks et al., 2000] Michael Monks, Byong Mok Oh, and Julie Dorsey. Audioptimization: goal-

based acoustic design. Computer Graphics and Applications, IEEE, 20(3):76–90, 2000.

[Munjal, 2014] M.L. Munjal. Acoustics of Ducts and Mufflers. John Wiley & Sons, second edition,

2014.

[Noreland et al., 2010] JO Daniel Noreland, M Rajitha Udawalpola, and O Martin Berggren. A

hybrid scheme for bore design optimization of a brass instrument. Journal of the Acoustical

Society of America, 128(3):1391–1400, 2010.

[O’Brien et al., 2001] James F. O’Brien, Perry R. Cook, and Georg Essl. Synthesizing sounds from

physically basedmotion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceed-

ings, Annual Conference Series, pages 529–536, August 2001.

[O’Brien et al., 2002] James F. O’Brien, Chen Shen, and Christine M. Gatchalian. Synthesizing

sounds from rigid-body simulations. In The ACM SIGGRAPH 2002 Symposium on Computer

Animation, pages 175–181, July 2002.

[O’Donovan et al., 2007] AdamO’Donovan, RamaniDuraiswami, and JanNeumann. Microphone

arrays as generalized cameras for integrated audio visual processing. In IEEE Conference on

Computer Vision and Pattern Recognition CVPR, 2007.

[Pai et al., 2001] Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd,

Joshua L. Richmond, and Som H. Yau. Scanning physical interaction behavior of 3d objects. In

SIGGRAPH, pages 87–96, 2001.

[Panetta et al., 2015] Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni,

and Denis Zorin. Elastic textures for additive fabrication. ACM Trans. Graph., 34(4), July 2015.

[Papoulis, 1977] Athanasios Papoulis. Signal analysis, volume 191. McGraw-Hill New York, 1977.



BIBLIOGRAPHY 129

[Pegoraro et al., 2008] Vincent Pegoraro, Ingo Wald, and Steven G Parker. Sequential monte carlo

adaptation in low-anisotropy participating media. In Computer Graphics Forum, volume 27.

Wiley Online Library, 2008.

[Pelzer and Vorländer, 2010] Sönke Pelzer andMichael Vorländer. Frequency-and time-dependent

geometry for real-time auralizations. In Proceedings of 20th International Congress on Acoustics

(ICA), 2010.

[Pentland and Williams, 1989] Alex Pentland and John Williams. Good vibrations: model dynam-

ics for graphics and animation. In SIGGRAPH, volume 23, pages 215–222, July 1989.

[Penttinen et al., 2006] Henri Penttinen, Jyri Pakarinen, Vesa Välimäki, Mikael Laurson, Henbing

Li, and Marc Leman. Model-based sound synthesis of the guqin. J. of the Acoustical Society of

America, 120(6), 2006.

[Pierce and others, 1991] Allan D Pierce et al. Acoustics: an introduction to its physical principles

and applications. Acoustical Society of America Melville, NY, 1991.

[Pillage and Rohrer, 1990] L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for

timing analysis. IEEE Trans. Computer-Aided Design, 9:352–366, April 1990.

[Pope et al., 1999] Jackson Pope, David Creasey, and Alan Chalmers. Realtime room acoustics us-

ing ambisonics. In Audio Engineering Society Conference: 16th International Conference: Spatial

Sound Reproduction, Mar 1999.

[Press et al., 2007] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes: The art of scientific computing. Cambridge University Press, 2007.

[Raghuvanshi and Lin, 2006] Nikunj Raghuvanshi and Ming C. Lin. Interactive sound synthesis

for large scale environments. In SI3D, pages 101–108, 2006.



BIBLIOGRAPHY 130

[Raghuvanshi and Snyder, 2014] Nikunj Raghuvanshi and John Snyder. Parametric wave field cod-

ing for precomputed sound propagation. ACM Trans. Graph., 33(4), July 2014.

[Raghuvanshi et al., 2009] N. Raghuvanshi, R. Narain, and M. C. Lin. Efficient and accurate sound

propagation using adaptive rectangular decomposition. IEEE Transactions on Visualization and

Computer Graphics, 15(5):789–801, Sept 2009.

[Raghuvanshi et al., 2010a] Nikunj Raghuvanshi, John Snyder, Ravish Mehra, Ming Lin, and Naga

Govindaraju. Precomputedwave simulation for real-time sound propagation of dynamic sources

in complex scenes. ACM Trans. Graph., 29(4), July 2010.

[Raghuvanshi et al., 2010b] Nikunj Raghuvanshi, John Snyder, Ravish Mehra, Ming Lin, and Naga

Govindaraju. Precomputedwave simulation for real-time sound propagation of dynamic sources

in complex scenes. ACM Trans. on Graph., 29(4):68:1–68:11, July 2010.

[Ren et al., 2010] Z. Ren, H. Yeh, and M.C. Lin. Synthesizing contact sounds between textured

objects. In IEEE Virtual Reality, 2010.

[Ren et al., 2013a] Zhimin Ren, Hengchin Yeh, andMing C. Lin. Example-guided physically based

modal sound synthesis. ACM Trans. on Graph., 32(1):1:1–1:16, 2013.

[Ren et al., 2013b] Zhimin Ren, Hengchin Yeh, and Ming C Lin. Example-guided physically based

modal sound synthesis. ACM Transactions on Graphics (TOG), 32(1):1, 2013.

[Rienstra and Hirschberg, 2003] Sjoerd W Rienstra and Avraham Hirschberg. An introduction to

acoustics. Eindhoven University of Technology, 18:19, 2003.

[Ritchie et al., 2015] Daniel Ritchie, Ben Mildenhall, Noah D Goodman, and Pat Hanrahan. Con-

trolling proceduralmodeling programswith stochastically-ordered sequentialmonte carlo. ACM

Trans. Graph., 34(4), July 2015.



BIBLIOGRAPHY 131

[Robert and Casella, 2013] Christian Robert and George Casella. Monte Carlo statistical methods.

Springer Science & Business Media, 2013.

[Rubin et al., 2013] Steve Rubin, Floraine Berthouzoz, Gautham J. Mysore, Wilmot Li, and Ma-

neesh Agrawala. Content-based tools for editing audio stories. In Proceedings of the 26th Annual

ACMSymposium onUser Interface Software and Technology, UIST ’13, pages 113–122, NewYork,

NY, USA, 2013. ACM.

[Savage et al., 2015] Valkyrie Savage, Andrew Head, Björn Hartmann, Dan B Goldman, Gautham

Mysore, and Wilmot Li. Lamello: Passive acoustic sensing for tangible input components. In

Proc. CHI 2015. ACM, 2015.

[Savioja and Svensson, 2015] Lauri Savioja and U. Peter Svensson. Overview of geometrical room

acoustic modeling techniques. The Journal of the Acoustical Society of America, 138(2):708–730,

2015.

[Schissler et al., 2014] Carl Schissler, Ravish Mehra, and Dinesh Manocha. High-order diffraction

and diffuse reflections for interactive sound propagation in large environments. ACM Trans.

Graph., 33(4):39:1–39:12, July 2014.

[Schissler et al., 2016] Carl Schissler, AaronNicholls, andRavishMehra. Efficient hrtf-based spatial

audio for area and volumetric sources. IEEE transactions on visualization and computer graphics,

22(4):1356–1366, 2016.

[Schissler et al., 2017a] Carl Schissler, Christian Loftin, and Dinesh Manocha. Acoustic classifi-

cation and optimization for multi-modal rendering of real-world scenes. IEEE Transactions on

Visualization and Computer Graphics, 2017.

[Schissler et al., 2017b] Carl Schissler, Peter Stirling, and Ravish Mehra. Efficient construction of

the spatial room impulse response. In Virtual Reality (VR), 2017 IEEE, pages 122–130. IEEE,



BIBLIOGRAPHY 132

2017.

[Schumacher et al., 2015] Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara

Daraio, and Markus Gross. Microstructures to control elasticity in 3d printing. ACM Trans.

Graph., 34(4), July 2015.

[Selamet et al., 2003] A Selamet, FD Denia, and AJ Besa. Acoustic behavior of circular dual-

chamber mufflers. Journal of Sound and Vibration, 265(5):967–985, 2003.

[Shabana, 1991] A. A. Shabana. Theory of Vibration, Volume II: Discrete and Continuous Systems.

Springer-Verlag, New York, first edition, 1991.

[Sigmund, 1994] Ole Sigmund. Materials with prescribed constitutive parameters: an inverse ho-

mogenization problem. International Journal of Solids and Structures, 31(17):2313–2329, 1994.

[Siltanen et al., 2008] Samuel Siltanen, Tapio Lokki, Lauri Savioja, and Claus Lynge Christensen.

Geometry reduction in room acoustics modeling. Acta Acustica united with Acustica, 94(3):410–

418, 2008.

[Smith, 1985] Julius O. Smith. A new approach to digital reverberation using closed waveguide

networks. International Computer Music Conference, (STAN-M-31):47–53, 1985.

[Stavrakis et al., 2008] Efstathios Stavrakis, Nicolas Tsingos, and Paul Calamia. Topological sound

propagation with reverberation graphs. Acta Acustica/Acustica - the Journal of the European

Acoustics Association (EAA), 2008.

[Stettner and Greenberg, 1989] A. Stettner and D. P. Greenberg. Computer graphics visualization

for acoustic simulation. In Computer Graphics, volume 23, July 1989.

[Strawn, 1987] John Strawn. Editing time-varying spectra. J. Audio Eng. Soc, 35(5):337–352, 1987.

[Takala and Hahn, 1992a] Tapio Takala and James Hahn. Sound rendering. In Computer Graphics,

volume 26, pages 211–220, July 1992.



BIBLIOGRAPHY 133

[Takala and Hahn, 1992b] Tapio Takala and James K. Hahn. Sound rendering. In SIGGRAPH,

pages 211–220, 1992.

[Tan et al., 2012] Jie Tan, Greg Turk, and C. Karen Liu. Soft body locomotion. ACM Trans. on

Graph., 31(4):26:1–26:11, July 2012.

[Tao and Seybert, 2003] Z Tao and AF Seybert. A review of current techniques for measuringmuf-

fler transmission loss. Technical report, SAE Technical Paper, 2003.

[Traer and McDermott, 2016] James Traer and Josh H. McDermott. Statistics of natural reverber-

ation enable perceptual separation of sound and space. Proceedings of the National Academy of

Sciences, 113(48):E7856–E7865, 2016.

[Tsingos et al., 2001a] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom.

Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proc.

of SIGGRAPH 2001, 2001.

[Tsingos et al., 2001b] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom.

Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceed-

ings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’01, pages 545–552, New York, NY, USA, 2001. ACM.

[Tsingos et al., 2001c] Nicolas Tsingos, Thomas A. Funkhouser, Addy Ngan, and Ingrid Carlbom.

Modeling acoustics in virtual environments using the uniform theory of diffraction. In SIG-

GRAPH, pages 545–552, August 2001.

[Tsingos et al., 2002] Nicolas Tsingos, Ingrid Carlbom, Gary Elbo, Robert Kubli, and Thomas

Funkhouser. Validation of acoustical simulations in the “Bell Labs Box”. IEEEComputer Graphics

and Applications, 22(4):28–37, June 2002.



BIBLIOGRAPHY 134

[Tsingos et al., 2007] Nicolas Tsingos, Carsten Dachsbacher, Sylvain Lefebvre, and Matteo Dellepi-

ane. Instant sound scattering. In Proceedings of the 18th Eurographics conference on Rendering

Techniques, pages 111–120, 2007.

[Tsingos, 2009] Nicolas Tsingos. Precomputing geometry-based reverberation effects for games.

In Audio Engineering Society Conference: 35th International Conference: Audio for Games, Feb

2009.

[Umetani et al., 2011] Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grin-

spun. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph.,

30(4):90:1–90:12, July 2011.

[van den Doel and Pai, 1996] K. van den Doel and D. K. Pai. Synthesis of shape dependent sounds

with physical modeling. In Intl Conf. on Auditory Display, Xerox PARC, Palo Alto, November

1996.

[van den Doel et al., 2001] Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. Foleyautomatic:

physically-based sound effects for interactive simulation and animation. In SIGGRAPH, pages

537–544, August 2001.

[Vorländer, 2008] Michael Vorländer. Auralization: Fundamentals of Acoustics, Modelling, Simu-

lation, Algorithms and Acoustic Virtual Reality (RWTHedition). Springer, 2008 edition, 2008.

[Wadhwa et al., 2018] Neal Wadhwa, Rahul Garg, David E Jacobs, Bryan E Feldman, Nori

Kanazawa, Robert Carroll, Yair Movshovitz-Attias, Jonathan T Barron, Yael Pritch, and Marc

Levoy. Synthetic depth-of-field with a single-camera mobile phone. ACM Trans. on Graph.,

37(4), August 2018.

[Wang et al., 2016] RuiWang, BowenYu, JulioMarco, TianleiHu, DiegoGutierrez, andHujunBao.

Real-time rendering on a power budget. ACM Trans. on Graph., 35(4), 2016.



BIBLIOGRAPHY 135

[Willis and Wilson, 2013] Karl D. D. Willis and Andrew D. Wilson. Infrastructs: Fabricating in-

formation inside physical objects for imaging in the terahertz region. ACMTrans. Graph., 32(4),

July 2013.

[Wojtan et al., 2006] Chris Wojtan, Peter J. Mucha, and Greg Turk. Keyframe control of complex

particle systems using the adjoint method. In Proc. SCA, 2006.

[Zheng and James, 2010] Changxi Zheng and Doug L. James. Rigid-body fracture sound with pre-

computed soundbanks. ACM Trans. on Graph., 29(4), July 2010.

[Zheng and James, 2011] Changxi Zheng and Doug L. James. Toward high-quality modal contact

sound. ACM Trans. on Graph., 30(4), August 2011.

[Zhu et al., 1997a] CiyouZhu, RichardHByrd, Peihuang Lu, and JorgeNocedal. Algorithm 778: L-

bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math.

Softw., 23(4), 1997.

[Zhu et al., 1997b] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778:

L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans.

Math. Softw., 23(4):550–560, December 1997.

[Zoran, 2011] Amit Zoran. The 3d printed flute: Digital fabrication and design of musical instru-

ments. Journal of New Music Research, 40(4):379–387, 2011.

[Zotkin et al., 2004] Dmitry N. Zotkin, Ramani Duraiswami, and Larry S. Davis. Rendering local-

ized spatial audio in a virtual auditory space. IEEE Trans. Multimedia, 6(4):553–564, 2004.

[Zotter et al., 2009] Franz Zotter, Hannes Pomberger, and Matthias Frank. An alternative am-

bisonics formulation: Modal source strengthmatching and the effect of spatial aliasing. InAudio

Engineering Society Convention 126. Audio Engineering Society, 2009.



APPENDIX A. ACOUSTIC TRANSFER DETAILS 136

Appendix A

Acoustic Transfer Details

A.1 Prony’s Method for Transfer Computation

ConsiderM complex-valued transfer samples p(ωt), t = 0, . . . ,M − 1 that are uniformly sampled

in a frequency rangeR. We seek aN-th order Prony’s series to approximate it,

p(ωt) ≈
N∑

i=1

cie
µiωt =

N∑

i=1

ciλ
ωt

i . (A.1)

where λi = eµi . First, we define aN-th order polynomial

ψ(z) =
N∏

i=1

(z − λi) = zN + a1z
N−1 + . . .+ aN−1z + aN , (A.2)

which has N roots, λi, i = 1, . . . , N . And thus λkiψ(λi) = 0, ∀k ≥ 0. Next, notice the equality

relationship,

N∑

i=1

λki ciψ(λi) = p(ωN+k) + a1p(ωN+k−1) + . . .+ aNp(ωk) = 0. (A.3)
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This is a linear equation of ai, i = 1, . . . , N . Let k go from [0, . . . ,M −N − 1]. We form a linear

system











p(ωN−1) p(ωN−2) . . . p(ω0)

p(ωN) p(ωN−1) . . . p(ω1)

... ... . . . ...

p(ωM−2) p(ωM−3) . . . p(ωM−N−1)























a1

a2

...

an












=












p(ωN)

p(ωN+1)

...

p(ωM−1)












. (A.4)

As long as we choose N ≤ M/2, this is an over-constrained least-squares system with a unique

solution ai. Knowing the polynomial coefficients ai of (A.2) allows us to find all its roots λi, and

thus compute µi. Finally, after substituting λi into (A.1), we form another least-square system to

solve ci.

A.2 Helmholtz Boundary Element Solve

Our adaptive frequency sweeping algorithm in §3.4.2 samples frequency points and solves theHelmholtz

equation. Our basic Helmholtz solver uses a BEM introduced in [Matsumoto et al., 2010]. Here we

sketch out the important formulas to make the thesis self-contained.

The BE solver is built upon the Kirchhoff integral formula, which is also used in [Tsingos et al.,

2007].

p(x) =

∫

S

[

G(x;y)
∂ϕ

∂n
(y)−

∂G

∂n
(x;y)ϕ(y)

]

dS(y), (A.5)

where S denote the entire object surface; G(x;y) = eik∥x−y∥

4π∥x−y∥ is the free-space Helmholtz Green’s

function; ϕ is the surface transfer value resulting from the BE solve (3.11); and ∂ϕ

∂n
is the surface

normal derivative of the acoustic transfer, as specified in the Helmholtz Neumann boundary con-

dition (3.4). Once we have known the acoustic transfer ϕ(y) and its normal derivative ∂ϕ

∂n
on object

surface, we can use this integral formula to evaluate the transfer function at any location x.
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When the evaluation point is on the surface, i.e.,x ∈ S, we have the conventional boundary integral

equation (CBIE),

1

2
ϕ(x) = C

∫

S

[G(x,y)∂nϕ(y)− ϕ(y)
∂G(x,y)

∂n(y)
]dS(y). (A.6)

Here we use C

∫

S
to indicate a Cauchy principal value at pointx over the surfaceS. It is known that for

the exterior Helmholtz problem, directly discretizing this equation using boundary elements fails

to produce a unique solution at certain fictitious frequency values. Fictitious frequency results from

numerical procedures and is related to the eigenfrequencies of the associated interior problem. The

Burton-Miller method [Burton and Miller, 1971] takes the directional derivation of (A.6) to get a

hypersingular boundary integral equation (HBIE),

1

2
∂nϕ(x) = C

∫

S

[
∂G(x,y)

∂n(x)
∂nϕ(y)− ϕ(y)

∂2G(x,y)

∂n(x)∂n(y)

]

dS(y), (A.7)

and uses a linear combination of CBIE and HBIE in boundary element discretization. Formally, it

solves

1

2
ϕ(x) + D[ϕ(y)] + βH[ϕ(y)] = S[∂nϕ(y)] + βM[∂nϕ(y)]−

β

2
∂nϕ(y), (A.8)
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where the integral operators D,H, S and M are respectively

D[ϕ(y)] = C

∫

S

ϕ(y)
∂G(x,y)

∂n(y)
dS(y) (A.9)

H[ϕ(y)] = C

∫

S

ϕ(y)
∂2G(x,y)

∂n(x)∂n(y)
dS(y) (A.10)

S[ϕ(y)] = C

∫

S

∂nϕ(y)G(x,y)dS(y) (A.11)

M[ϕ(y)] = C

∫

S

∂nϕ(y)
∂G(x,y)

∂n(x)
dS(y) (A.12)

As long as the coefficient β has a nonzero imaginary part, this linear combination has a unique solu-

tion. A common practice is to choose β = i/k. This equation is then discretized and forms a dense

linear system (3.11). In the integral equation (A.8), the surface transfer value ϕ(y) is unknown.

Discretizing the equation (A.8) using the object’s surface mesh yields a dense linear system (3.11)

to solve for ϕ(y) on the surface.

A.3 Derivation of (3.14)

To compute the nth order expansion coefficients p̄i in (3.12), we take the n-th order derivative

of (3.11) at ω0, i.e.,
n∑

i=0

Ci
nA(i)(ω0)p̄

(n−i)(ω0) = b(n)(ω0), (A.13)

where C i
n = n!

i!(n−i)!
are the binomial coefficients. Noticing the n-th order derivative of the expan-

sion (3.12) is p̄(n)(ω0) = n!p̄n, we substitute it into (A.13) and arrive (3.14) to solve for p̄i.
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A.4 Frequency Derivative of Linear System (3.11)

Our asymptotic waveform evaluation method involves the frequency derivative of (3.11) as derived

in Section A.3. In particular, we need to compute

∂nA(ω)
∂ωn

and
∂nb(ω)

∂ωn
. (A.14)

Their analytic forms can be computed by taking the derivatives of (A.8). In our implementation,

we use piecewise constant boundary element. Therefore, ∂nϕ(y) and ϕ(y) in (A.8) can be moved

outside of the integral (i.e., the Cauchy principle value). For example, we discretize the first term

of (A.8) as

C

∫

S

ϕ(y)
∂G(x,y)

∂n(y)
dS(y) ≈

∑

triangle i

ϕ(yi)C

∫

∆i

∂G(x,y)

∂n(y)
dS(y), (A.15)

where∆i denotes the surface of the i-th triangle element, and ϕ(yi) is the constant sound pressure

value at ∆i. We evaluate the integral on ∆i using a Gaussian quadrature scheme,

C

∫

∆i

∂G(x,y)

∂n(y)
dS(y) ≈

∑

j on ∆i

wj

∂G(x,yj)

∂n(yj)
, (A.16)

for a set of Gaussian quadrature points yj on ∆i. This expression also shows that to compute the

frequency derivative of (3.11) analytically we need to compute

∂n

∂ωn

(
∂G(x,yj)

∂n(yj)

)

. (A.17)

And similarly for other integral terms in (A.8), we need to compute

∂n

∂ωn

(
∂G(x,yj)

∂n(x)

)

,
∂n

∂ωn
G(x,yj) and

∂n

∂ωn

(
∂2G(x,yj)

∂n(x)∂n(yj)

)

. (A.18)
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For the infinite-space Green’s function G(x,y) = eikr

4πr
, where r = ∥x − y∥2, the analytic normal

derivatives are

∂G(x,y)

∂n(y)
= −

eikr

4πr2
(1− ikr)

∂r

∂n(y)
(A.19)

∂G(x,y)

∂n(x)
= −

eikr

4πr2
(1− ikr)

∂r

∂n(x)
(A.20)

∂2G(x,y)

∂n(x)∂n(y)
=

eikr

4πr3
[(−3 + 3ikr + k2r2)

∂r

∂n(x)

∂r

∂n(y)
+ (A.21)

(1− ikr)n(x)n(y)] (A.22)

The n-th order frequency derivative of these terms are polynomials with respect to k, because k =

ω/c is linear in ω and appears only in eikr and the polynomials of k in these formulas. Finally, since

β = i/k depends on ω, we compute

∂n

∂ωn
β = (−1)nn!icω−n−1, (A.23)

where c is the speed of sound.

A.5 Linear Solves for Mesh Simplification

The quadric error function for collapsing an edge is

Qv(v) =
1

2
pTAp+

1

2
uTCu+ pTGu+ aTp+ bTu+ c0, (A.24)

where A,G, and C are 3 × 3 matrices, a and b are 3D constant vectors, and c0 is a constant scalar.

We refer the reader to [Hoppe, 1999] for their formulas. Initially, we minimize Qv(v) without



APPENDIX A. ACOUSTIC TRANSFER DETAILS 142

constraints by solving






A G

G C











p

u




 = −






a

b




 . (A.25)

Next, we iteratively solve the linearly constrained quadratic programming (LCQP) problems, (3.20)

and (3.21). Whenwe solve (3.20), bothpTAp andaTp are constant values, and the constraint (3.19)

is linear to u with a form tTu + s = 0, where t = 1
6

∑

f∈N (v)(p − pf1) × (p − pf2) following

the notations in (3.19) and s = 1
6

∑

f∈N (v) [(p− pf1)× (p− pf2)]
T (uf1 + uf2)− Cv. Using the

method of Lagrange Multipliers, we solve this LCQP problem using a 4D linear system,






A t

tT 0











u

λ




 = −






a

s




 . (A.26)

Next, we fix u and solve the vertex position p. This is an LCQP problem (3.21) with two linear

equality constraints, including the volume preservation constraint gT
V OLp + dV OL = 0 and the

volume-velocity constraint which is of a form hTp + n = 0. Using Lagrange Multipliers, we solve

a 5D linear system,









A gV OL h

gT
V OL 0 0

hT 0 0

















u

λ1

λ2









= −









a

dV OL

n









. (A.27)
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Real Parteal PReal Parteal PReal Part

Fourier series (N=6)
Fourier series (N=15)

Prony’s method. (N=6)

Imaginary Partmaginary PImaginary Part

Fourier series (N=6)
Fourier series (N=15)

Prony’s method. (N=6)

Figure A.1: Prony Series vs Fourier Series: We compare the approximation of frequency-dependent pressure curves
using Prony series and Fourier series. The ground-truth pressure curves are the same as the ones in Figure 3.5. We plot
the Prony approximation using 6 terms, and Fourier approximation using 6 and 15 Fourier basis functions respectively.

A.6 Prony Series vs Fourier Series

Herewe compare the approximations using Prony series and Fourier series. As shown in Figure A.1,

Prony series with just 6 terms approximate the frequency-varying pressure curves (also shown in

Figure 3.5) very closely. However, the Fourier series with only 6 basis oscillate dramatically at the

beginning and the ending part of the frequency window. Increasing the number of Fourier basis

(even using 15 terms) still cannot completely eliminate the oscillation.
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Appendix B

Cross-Room IR Formulation

Consider a source s located in room 1 and a listening location d in room 2. The IR between s and

d is the result of propagating sound though the door, and thus can be written as

H12
s→d(t) =

∫

S

H1
s→p(t) ∗H

2
p→d(t) dS(p), (B.1)

where S is the door area that connects two rooms (the semitransparent blue region in Figure 5.13-

b), and p is a point located in the door region. H1
s→p(t) andH2

p→d(t) are the IRs between s and p in

room 1 and between p and d in room 2, respectively. They can be approximated as concatenations

of the simulated ERIR and measured LRIR in each room, namely,

H1
s→p = H1

E,s→p +H1
L and H2

p→d = H2
E,d→p +H2

L, (B.2)

whereH1
L andH2

L are the LR components of the IRs recorded in each room independently (follow-

ing §5.3), and H1
E,s→p and H2

E,d→p are simulated ERIRs between s and p in room 1 and between d

and p in room 2. We note that here we use H2
E,d→p but not H2

E,p→d because they are the same due
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to acoustic reciprocity. Then, the integrand in (B.1) becomes

H1
E,s→p ∗H

2
E,d→p

︸ ︷︷ ︸
ERIR

+H1
E,s→p ∗H

2
L +H2

E,d→p ∗H
1
L +H1

L ∗H
2
L

︸ ︷︷ ︸
LRIR

, (B.3)

where the ERIR is replaced by with our acoustic simulation. After we discretize the door region

using sampled points, the LRIR becomes the expression (5.14).
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Appendix C

Supplemental Video - separately uploaded

digital file
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