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ABSTRACT

Efficient Acoustic Simulation for Immersive Media and Digital
Fabrication

Dingzeyu Li

Sound is a crucial part of our life. Well-designed acoustic behaviors can lead to significant im-
provement in both physical and virtual interactions. In computer graphics, most existing meth-
ods focused primarily on improving the accuracy. It remained underexplored on how to develop
efficient acoustic simulation algorithms for interactive practical applications. The challenges arise
from the dilemma between expensive accurate simulations and fast feedback demanded by intuitive
user interaction: traditional physics-based acoustic simulations are computationally expensive; yet,
for end users to benefit from the simulations, it is crucial to give prompt feedback during interac-

tions.

In this thesis, I investigate how to develop eflicient acoustic simulations for real-world applications
such as immersive media and digital fabrication. To address the above-mentioned challenges, I
leverage precomputation and optimization to significantly improve the speed while preserving the
accuracy of complex acoustic phenomena. This work discusses three efforts along this research
direction: First, to ease sound designer’s workflow, we developed a fast keypoint-based precompu-
tation algorithm to enable interactive acoustic transfer values in virtual sound simulations. Second,
for realistic audio editing in 360° videos, we proposed an inverse material optimization based on
fast sound simulation and a hybrid ambisonic audio synthesis that exploits the directional isotropy
in spatial audios. Third, we devised a modular approach to efficiently simulate and optimize fabri-
cation-ready acoustic filters, achieving orders of magnitudes speedup while maintaining the simu-
lation accuracy. Through this series of projects, I demonstrate a wide range of applications made

possible by efficient acoustic simulations.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Physics-based acoustic simulation in computer graphics has witnessed tremendous progress over
the past decades. Parallel to traditional visual renderings of virtual scenes, now we are also able to
simulate the sounds with more accurate and efficient algorithms to simulate the excitation mech-
anism and propagation process. The goal of most existing sound simulation techniques is to add
realistic physics-based synchronized audio to existing virtual animation. In the past decade, we
have seen a growing number of phenomena that can be reproduced in simulation, for example, thin
shell [Chadwick ef al., 20094, fracture [Zheng and James, 2010], fire [Chadwick and James, 2011]],

cloth [An et al., 2012], and fluids [Langlois ef al., 2016].

An emerging area is the application of these simulation algorithms in the presence of real-world
recordings. For example, when we compare simulated sounds and recorded ones side by side, there
are still discrepancies between them in terms of realism. With the emergence of hardware devices
like virtual reality headsets, this difference is further amplified during immersive playbacks. Mean-
while, another challenging scenario for simulation is to predict acoustic behavior using simulation,
especially with complex shapes. Although personalized fabrication devices like 3D printers are be-

coming more accessible, there is no existing tool that supports interactive and accurate simulation
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of acoustic behavior for customized complex shapes. My thesis research is to develop realistic sound

simulation algorithms that close the gap between virtual and real auditory application.

Different from most previous research that has focused on pure virtual simulation, my thesis ex-
plored the use of efficient acoustic simulation techniques to bridge the gap between sound simu-
lations and real-world applications in interactive material selection via efficient precomputation,
rapid prototyping of acoustic filters enabled by fast simulation, and immersive spatial audio gener-
ation for 360 videos. In my thesis, I develop a suite of algorithms for efficient acoustic simulations

that enable a wide range of applications.
In the following, I will outline the structure of this thesis.

Chapter [ presents an interactive sound simulation framework that supports interactive material
parameters editing for rigid body animations [Li ef al., 2015]. In practice, material parameters like
Young’s modulus and Poisson ratio are not exact, since they are measured and tabulated in a range
of values. To achieve a desired sound, one usually needs to tune the parameters many times. It is
very expensive to compute sound radiation which is modeled by the acoustic transfer values and de-
pends on the input material parameters. In our system, we first select a set of key positions around a
vibrating geometry. At every key position, we precompute a frequency-sweeping transfer function
with asymptotic Padé approximant expansion and frequency-adaptive mesh simplification during
Helmbholtz solves. With our proposed precomputation technique, we generate various sound effects
without expensive recomputation. At runtime, we construct multipole expansion coefficients from
key-position transfer values and evaluate resulting transfer function at any given position interac-

tively.

Chapter [ looks at the design and optimization of acoustic filters. We propose Acoustic Voxels, a
computational optimization method to design acoustic filter given an input geometry and high-

level frequency requirement [Li ef al., 2016]. Our idea is to assemble basic shape primitives into a
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complex geometry, one that produces the desired acoustic filtering. We show that these primitives,
albeit simple individually, offer a large design space for acoustic filters when modularly joined into
a complex assembly. This modular scheme also permits fast and accurate estimation of the acoustic
performance of a given assembly. For the resulting assembly structure, we combine a stochastic op-
timization method for the topology of the assembly with a gradient-based quasi-Newton method
for computing the geometric parameters of each primitive shape in the assembly. This allows au-
tomatically optimizing its structure to achieve target acoustic filtering properties while satisfying

geometric constraints of overall shape.

Chapter [ investigates immersive spatial audio in a new medium, 360° videos [Li ef al., 2018]. Un-
like visual contents, the creation of spatial audio in immersive audios is challenging. We propose
to produce spatial audio by combining a lightweight measurement of room acoustics and a fast
geometric acoustic simulation. We first record a single acoustic impulse response (IR) in a room
using a readily available mono-channel microphone. We develop an optimization approach that es-
timates the acoustic material properties associated with the room, based on the measured IR. Then,
provided any 360° footage captured in the same environment, our method outputs the 360° video
with an accompanying ambisonics spatial soundtrack. The resulting soundfield captures the spatial
sound effects at the camera location, even if the camera is dynamic, as if the input audio is emitted

from a user-specified sound source in the environment.

Chapter [ concludes this thesis and discusses several related future directions.
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Chapter 2

Related Work

2.1 Rigid-body Acoustic Transfer

The computer graphics community has a long history of synthesizing synchronized sound effects for
computer animation [Takala and Hahn, 1992B]. Modal sound models, based on linear modal anal-
ysis, have been widely used to generate plausible contact sounds [van den Doel and Pai, 1996] syn-
chronized with physics-based simulation. They are often constructed using recorded sounds [van den
Doel et al., 2001; Ren et al., 2013d] or linear modal analysis [Pentland and Williams, 1989; O'Brien
et al., 2002]. More recent development has used modal vibration for synthesizing rigid fracture
sound [Zheng and James, 2010], deformable sound [Zheng and James, 2011]], and fast interactive
sound [Raghuvanshi and Lin, 2006; Bonneel ef al., 2008; Ren et al., 2010]. But all these methods
are closely coupled with vibration frequencies, and none of them enable fast user editing of modal

sound parameters with acoustic transfer functions.

The object’s geometry can significantly affect modal sound radiation and change the sound’s tim-

bre in a spatially varying way, as demonstrated by James et al. [2006d]. Unfortunately, computing
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sound radiation for all vibration modes is very expensive. To improve the performance, existing
methods [James ef al., 2006d; Chadwick ef al., 2009b; Zheng and James, 2011] assume fixed modal
vibration frequencies, and precompute an efficient representation of acoustic transfer functions.
The precomputation can take many hours. Once it is finished, the user can evaluate transfer values
at an arbitrary position almost instantaneously. However, whenever the user adjusts vibration fre-
quencies, the entire acoustic transfer representation needs to be recomputed. [Corbett ef al., 2007]
developed a system to acquire near-field acoustic transfer field from recorded sounds and synthesize
spatial sounds interactively. Yet, this approach relied on an automated measuring system, in which
the measurement is closely coupled with each object’s specific geometry and material. Different
from these approaches, our method only relies on precomputation and allows the user to change

modal sound parameters at runtime and still enjoys the high quality of sound synthesis.

For fast estimation of sound wave radiation, O’Brien et al. [2001] adopted the Rayleigh method
which assigns a monopole on each surface element and summed the sound radiation from all
monopoles. This is essentially a first-order approximation of sound radiation, neglecting the fact
that the shaped structure also scatters and radiates sound. Furthermore, they considered time de-
lays from the monopoles to the listener. In contrast, we solve the Helmholtz radiation equation
but ignore the time delays. We also note that the difference of resulting sounds using the Rayleigh

method and the Helmholtz solution has been shown in [James ef al., 20064].

On the other hand, when simulating the acoustics of rooms and concert halls, the dimensions of
the rooms or obstacles are many times larger than the sound wavelength. As a result, a variety of
geometric acoustical methods have been developed [Funkhouser ef al., 1999; [Tsingos et al., 2001g;
Tsingos ef al., 2002], analogous to the geometric optics in image rendering. The geometric acoustic
methods enjoy fast performance while producing plausible results. However, when the character-
istic dimension of objects becomes comparable to the wavelength, as in our problems, the wave

diffraction begins to play an import part, necessitating the modeling of sound wave behaviors usu-
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ally described by near-field transfer functions. A few previous works have demonstrated the impor-
tance of transfer functions [James ef al., 20064; Corbett ef al., 2007] for typical rigid object sounds

in computer animations.

There exist several example-based methods on estimating sound parameters from input audio clips.
Early work by Pai et al. [2001] estimated rigid modal sound models from recorded sounds and
measurements. More recently, Lloyd et al. [2011] analyzed the short-time Fourier Transform and
identify the strongest peaks in the spectrogram to estimate modal parameters. Ren et al. [2013a]
computed a set of features from given examples of audio clips, and used them to optimize modal
sound parameters. While they can produce high-quality parameter estimation, they are not focused
on acoustic transfer functions of vibration modes. With our model, we are able to explore modal
sound parameter space straightforwardly (see §p.6) and synthesize resulting sounds that take into

account the sound radiation effects.

The frequency-varying sound radiation problem has been studied in many engineering applications.
Fast frequency sweep methods are most closely related to our method [Pillage and Rohrer, 1990;
Lenzi ef al., 2013]. The basic idea is to compute Helmholtz solutions at a few key frequencies and
interpolate / extrapolate Helmholtz radiation at intermediate points. However, these methods aim
to produce engineering accuracy rather than high performance at runtime. Although they provide
approximations of frequency-varying Helmholtz solutions, it is nontrivial to evaluate transfer values
at an arbitrary point at runtime. In contrast, we aim for fast evaluation of acoustic transfer at any
spatial and frequency point. To this end, we propose to use a Prony series representation [Hauer ef

al., 1990] constructed using adaptive frequency sweeping.

In addition to the sound synthesis from physically based simulation, there exist numerous audio
processing software. Almost all these tools rely on signal processing algorithms to edit sound ef-
fects such as frequency modulation [Chowning, 1973], reverberation [Smith, 1985], and spectrum

adjustment [Strawn, 1987, or use stochastic sound models and granular synthesis methods to pro-
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duce natural sound textures [Cook, 2002]. However, these methods lack automatic synchroniza-
tion with computer-simulated animation, and often need to store a large database of sound effects.
Our model is complementary to those tools, enabling automatic audiovisual synchronization using

physical simulation.

Our method utilizes frequency-adaptive mesh simplification to accelerate the individual Helmholtz
solves. There are numerous methods for surface mesh simplification (see a survey by Luebke [2001]).
Among them, our method is based on the edge collapse algorithms [Garland and Heckbert, 1997,
which coarsen a mesh through a sequence of edge collapse operations. In particular, we augment
the method introduced in [Hoppe, 1999] and [Lindstrom and Turk, 1998] to preserve mesh vol-
ume as well as volume vibration velocity. The latter is an important quantity to preserve sound
radiation power. Consequently, the optimization problem for edge collapse becomes significantly
harder: rather than solving a linear system, we need to solve a quadratically constrained quadratic

programming (QCQP) problem, for which we propose a staggered iterative algorithm.

The idea of using geometric simplification for efficient acoustic computation has been used in the
research of room acoustical modeling. The input CAD models are often simplified architectural
models in an exchange for faster computation. Siltanen et al. [2008] proposed a geometry reduc-
tion method based on volumetric reconstruction using a modified Marching Cubes algorithm. Fur-
ther, geometrical acoustical simulation has adopted level-of-detail approaches to adaptively select
polygon meshes used in the computation [Tsingos ef al., 2007; Pelzer and Vorlinder, 2010]. The
adaptivity of these approaches is based on incident sound waves for sound auralization. While
these approaches mostly focus on room acoustics, our method is concerned with sound radiation
produced by the modal vibration of an object. Therefore, the adaptivity of our method is based on

the modal vibration frequencies of the object.
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2.2 Acoustic Filter Design

Sound simulation The computer graphics community has a long history of simulating sound
propagation in a virtual environment [Stettner and Greenberg, 1989; Takala and Hahn, 19924,
starting from the geometric acoustical methods [Funkhouser ef al., 1998; Funkhouser ef al., 1999;
Tsingos et al., 2001d] which are fast but less accurate at low frequencies, and evolving to the wave-
based methods [James ef al., 2006b; Raghuvanshi et al., 2010a; Mehra ef al., 20134d; Raghuvanshi and
Snyder, 2014] to improve sound quality. The goal of these work is to add realistic wave scattering
and room acoustic effects. These approaches have proven successful in many virtual environment
applications, but not for fabricating acoustic structures. Moreover, the geometric scale in those
simulations is typically meters or tens of meters, whereas we are interested in the sound propagation

in small cavities at the centimeter scale.

Recently, Allen and Raghuvanshi [2015] proposed an interactive method for simulating wave prop-
agation in wind instruments, modeled in 2D. This method produces realistic sound effects in real-
time, but is unclear how to apply it for solving our inverse problem. Aside from requiring a physics-
based 3D simulation and high accuracy for predicting fabricated results, our method needs a well-
defined relationship between the sound transmission and the boundary geometry to formulate a

tractable inverse problem.

Acoustic inverse problem Acoustic inverse problems have intrigued scientists for decades, start-
ing from Kac’s famous question: “can one hear the shape of a drum?”[Kac, 1966]. While Kac’s
question is about the vibrational patterns of a shape, similar questions that infer shapes from sound
propagation and scattering patterns have been actively studied [Angell ef al., 1997; Feijéo ef al.]
2004]. Monks et al. [2000] optimized room acoustics motivated by the applications in architectural
design. Recently, Dokmani¢ et al. [2013] showed an algorithm for computing a convex polyhe-

dral room shape using acoustic response recorded at multiple microphones. We also address an
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acoustic inverse problem, but from a different perspective. Our input is the acoustic response (i.e.,
impedance or transmission loss) measured at a pair of locations (i.e., between the inlet and the

outlet), and our goal is not to reconstruct existing shapes but to construct new structures.

Transmission Line Matrix Based on Huygens’ model of wave propagation and the analogy be-
tween wave propagation and transmission lines, the Transmission Line Method has been widely
used for computing electromagnetic waves [Caloz and Ttoh, 2005; Christopoulos, 2006] and acous-
tics [Munjal, 2014]. It first discretizes the computational domain into interconnected nodes. On
the connecting interface, field information is propagated and coupled between adjacent nodes. By
breaking down the whole domain into basic nodes, the computational performance can be signit-
icantly improved. Our method shares the similar idea, but a key difference lies in the new opti-
mization framework. Our method optimizes the configuration of the nodes both geometrically

and topologically, aiming to realize the desired acoustic filtering properties.

Muffler design Noise attenuation is an important topic in many engineering fields. There has
been a well established theory for modeling noise reduction in a cavity structure [[ngard, 2009;
Munjal, 2014], and numerous approaches for improving a standard muffler have been developed
with sub-chamber structures [Selamet ef al., 2003], varying inlet and outlet sizes [De Lima ef al.]
2011], or perforated liners [Chiu, 2010; Munjal, 2014]. However, the optimization for desired target
performance is not straightforward. Traditionally, mufflers are often analyzed using finite element
methods and then used in a sensitivity analysis to compute the derivatives of the muffler metric with

respect to shape parameters. In general, this is a computationally expensive process.

The application of our method for muffler design takes a different approach, namely tiling simple
resonator shapes, without choosing a specific parametric shape a priori. Meanwhile, precomputed

filtering properties of primitive resonators sidestep the expensive finite-element solves during the
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optimization and thus allows us to optimize for complex structures.

Computational design of music instruments Our method can be applied to customize wind in-
struments, although that is not a primary goal of our work. Related to this aspect, existing work has
explored the optimization of the bore shapes for brasswind instruments [Kausel, 2001; Noreland ef
al., 2010]. Similar to our optimization target, Braden et al. [2009] use the input impedance of the
instrument in the objective function to optimize bore shapes. These methods typically focus on a
specific family of shapes and thereby formulate a continuous optimization problem. Our method,
in contrast, aims to create acoustic filters using an arbitrary shape for a range of applications be-
yond wind instruments. More recently, Zoran [2011] has demonstrated the use of 3D printers for
creating plausible wood instruments and for exploring new designs without any numerical opti-

mization.

In computer graphics, Umetani et al. [2011] have develop the first interactive tool for designing met-
allophones. The tool aims for interactivity but not for solving the inverse problem. Recently, Bharaj
etal. [2015] have explored the inverse computational design of metallophones and have proposed a
stochastic optimization method for this purpose. Unlike ours, both approaches focus on the modal

vibrational sounds from solid vibrations but not the sound propagation inside a chamber.

Microstructure design Recently in computer graphics, there has been a variety of work on design-
ing macroscopic mechanical material properties through controlling their microscopic structures,
based on the inverse homogenization theory [Sigmund, 1994]. Along this line of research, exist-
ing work has used a data-driven approach to control nonlinear elasticity [Bickel ef al., 2010] with
multi-material 3D printing, while others tile precomputed structural patterns [Panetta ef al., 2015}
Schumacher ef al., 2015] to obtain user-specified elastic properties. While we also combine small-

scale primitives, in order to affect sound waves, the geometric size of our primitives is of a few
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centimeters, much larger than the microstructure scales in these approaches. Furthermore, rather
than the elastic behaviors of microstructures, we focus on the sound propagation through the prim-

itives.

Acousticin HCI Recent development in passive acoustic sensing inspired new HCI applications,
such as the recent tangible input devices by analyzing the sound produced by a comb-like struc-
ture [Savage ef al., 2015]. More relevant to our method, Laput et al. [2015] proposed Acoustru-
ments to recover information from audio signals recorded through ducts. None of these previous
works considers the inverse problem of acoustic optimization. Our method complements to those

work and offers a computational tool to develop new HCI applications, as we will demonstrate in

SH.5.4.

Contributions Compared to previous work, our method has the following contributions: (i) We
propose to construct acoustic filters using primitive resonators. (ii) With modular assemblies, we
develop a numerical optimization method to construct desired acoustic filters while sidestepping
expensive finite-element solves. (iii) We demonstrate the use of our primitives and optimization
method in the context of different applications including a new application that embeds acoustic

signatures into 3D printed objects.

2.3 Spatial Audio in 360° Videos

Recent advances in 360° video research have focused mostly on improving visual quality. Rich360
and Jump designed practical camera systems and developed seamless stitching with minimal dis-
tortion, even for high-resolution 360° videos [Lee ef al., 2016; [Anderson ef al., 2016]. To capture

stereo omni-directional videos, Matzen et al. [2017] built a novel capturing setup from off-the-shelf
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components, providing a more immersive viewing experience in head-mounted displays with depth
cues. Kopf [2016] introduced a 360° video stabilization algorithm for smooth playback in the pres-
ence of camera shaking and shutter distortion. Our work improves the audio experience in existing
360° videos, working in tandem with existing methods for capturing, post-processing, and playback

for immersive visual media.

Spatial audio in virtual reality (VR) is also crucial to provide convincing immersion. Most recent
work aims to enable efficient rendering of spatial audio at real-time rates. Schissler et al. [2016]
proposed a novel analytical formulation for large area and volumetric sound sources in outdoor en-
vironments. Constructing spatial room impulse responses (SRIR) with geometric acoustics is ex-
pensive due to the number of rays and the disparity in energy distribution. Schissler et al. [20175]
partition the traditional impulse response (IR) into segments and project each segment onto a min-
imal order spherical harmonics bases to retain the perceptual quality. We build upon the concept of
SRIR and observe that late reverberation is diffuse, which means that the late IR tail is uniform not
only spatially but directionally. Our method combines early IR simulation with estimated material

parameters and recorded late IR tails to generate scene-aware audio for 360° videos.

Recording and reproducing spatial audio provides the fundamental building blocks for more ad-
vanced virtual auditory manipulation algorithms. In the seminal work by Liand Duraiswami [2006],
a hemispherical microphone array was used to record the spatial soundfield. Using spherical beam-
forming, the authors demonstrated 3D soundfield reproduction in headphone-based scenarios.
Later a vision-based system combined cameras with microphones to enable immersive joint au-
diovisual sensing [O’'Donovan et al., 2007]. To efficiently incorporate room acoustics, Zotkin et
al. [2004] computed early reflections and reused the late tail regardless of the microphone/speaker
locations. Inspired by the hybrid idea, we introduce an optimized simulation for the early part. To
overcome the inherent limitation of geometric acoustic simulators, we also propose a frequency

modulation algorithm to compensate for the wave-based room resonance effects.
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The simulation of sound propagation has been widely studied [Vorlander, 2008; Bilbao, 2009].
Wave-based methods usually provide high accuracy with expensive computation [Raghuvanshi ef
al,, 2009]. Alternatively, geometric acoustic (GA) methods can be used, which make the high-
frequency Eikonal ray approximation [Savioja and Svensson, 2015]. These methods often bundle
rays together and trace as beams for efficiency [Funkhouser et al., 1998]. While traditional GA
does not include diffraction effects, they can be approximated via the uniform theory of diffrac-
tion for edges that are much larger than the wavelength [Tsingos ef al., 2001b; Schissler et al.]
2014]. We use the GA method proposed by Cao et al. [2016], which exploits bidirectional path
tracing and temporal coherence to provide significant speedups over previous work. For fast au-
ralization in VR, many methods precompute IRs or wavefields [Pope ef al., 1999; [Tsingos, 2009;
Raghuvanshi and Snyder, 2014]. Raghuvanshi et al. [20104] precompute and store one LRIR per
room, similar to our method. We show how to use recorded IRs to optimize acoustics materials for
simulation, and also how to directly use the recorded IR tails instead of simulating them, reducing
the computation time and memory requirements. Moreover, our method accounts for a particular
wave effect, the room resonances, using a frequency modulation algorithm, which further improves

the generated audio quality.

To synthesize scene-aware audio, optimal material parameters are needed in the simulation. Given
recorded IRs, we estimate the material parameters that best resemble the actual recording. For rigid-
body modal sounds, Ren et al. [2013B] optimized the material parameters based on recordings and
demonstrated the effectiveness of optimized parameters to virtual objects. Most related to ours is
Schissler et al. [2017d] where a pretrained neural network is used to classify the objects, followed by
an iterative optimization process. Every iteration requires registering the simulated IR with a mea-
sured IR and solving a least-squares problem. We draw inspirations from inverse image rendering
problems [Marschner and Greenberg, 1998], and derive an analytical gradient to the inverse ma-

terial optimization problem, which we solve in a nonlinear least-squares sense. Our optimization
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runs in seconds, tens of times faster than previous work.

While our method aims to ease the audio editing process, this is a broad area with an abundance
of prior work. Most methods strive to provide higher-level abstractions and editing powers, to
help users avoid non-intuitive direct waveform editing. VoCo [Jin ef al., 2017] allows realistic text-
based insertion and replacement of audio narration using a learning-based text to speech conversion
which matches the rest of the narration. Germain et al. [2016] present a method for equalization
matching of speech recordings, to make recordings sound as if they were recorded in the same room,
even if they weren’t. Rubin et al. [2013] present an interface for editing audio stories like interviews
and speeches, which includes transcript-based speech editing, music browsing, and music retarget-
ing. Like previous work, we aim to match the timbre of generated sounds with that of recordings.
Moreover, we are able to produce spatial audio that blends in seamlessly with existing 360° videos,

and provide a high-level “geometric” effect which can be applied to audio.
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Chapter 3

Interactive Rigid-body Acoustic Transfer

3.1 Introduction

Modal sounds are widely used for synthesizing plausible solid-object sounds synchronized with
computer-simulated animations (e.g., see [van den Doel ef al., 2001; O'Brien et al., 2002; Zheng
and James, 2011; Ren ef al., 2013d]). The standard pipeline consists of two steps: (i) integration
of surface vibrations followed by (ii) the computation of sound radiation. The former produces
surface motions that are driven by external forces and vibrate at individual modal frequencies, while
the latter accounts for wave phenomena such as diffraction and interference that can recognizably
change the sound’s timbre [James et al., 2006a]. Both steps are closely coupled with modal vibration

frequencies.

The most expensive step of generating a modal sound is computing sound radiation. For every vi-
bration mode with a frequency w, it can be computed by solving a frequency-domain wave equation,
the Helmholtz equation,

Vp(x) + kK*p(z) =0, x€Q, (3.1)
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where p(x) is the acoustic transfer value at &, k = w/c is the wavenumber of the correspond-
ing vibration mode, and c is the speed of sound. To accelerate this step, various methods have
been devised [Ciscowski and Brebbia, 1991]. In computer graphics, James et al. [2006d] introduced
precomputed acoustic transfer (PAT), wherein, after hours of precomputation of equivalent point
sources, fast runtime transfer evaluation is achieved at any listening location. However, in all of
these methods, the entire Helmholtz solution needs to be recomputed whenever the frequency w is

changed.

The tight dependence of modal sound radiation on its vibration frequencies as well as its expensive
(pre-)computation of sound radiation give rise to many difficulties when one starts to tweak model
sound parameters for desirable sound effects. In practice, tuning parameters is almost unavoidable,
as the material parameters (e.g., the Young’s modulus) are measured and tabulated in a range of
values, and there are no generally accepted damping values [[Adhikari and Woodhouse, 2001]. Both
kinds of parameters directly affect modal frequencies (see §B.7), which have been found critical
for achieving desired sound characteristics [Klatzky ef al, 2000]. Unfortunately, when the user
changes these parameters and thus the frequencies, it becomes necessary to recompute the entire

modal sound, leading to a rather inefficient parameter tuning cycle.

In light of this, we propose a new method that decouples surface modal vibration and acoustic trans-
fer evaluation from modal vibration frequencies. It allows the user to freely change modal frequen-

cies at runtime, and quickly synthesize resulting sounds at an arbitrary listening location.

At first glance, one simple approach to enable runtime editing of modal frequencies is to precompute
individual modal sound models using a set of frequency samples, and rely on runtime interpola-
tion to approximate with user-specified vibration frequencies. Unfortunately, it is unclear how we
should interpolate between different models of modal sound. Moreover, the acoustic transfer p(x)
is highly oscillatory with respect to the vibration frequency (see §B.4 and Figure B.5). As a result,

such an approach will need lots of frequency samples for plausible runtime interpolation, causing a
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prohibitively long precomputation time and an overwhelming memory footprint.

In our approach, we first select a set of key positions around a vibrating object. At every key po-
sition we precompute a frequency-sweeping transfer function compactly represented using Prony
series. We accelerate the precomputation by devising two key techniques: (i) we solve Helmholtz
equations only at a few carefully selected frequency samples. And for each frequency sample, we
build an asymptotic Padé approximant in frequency domain to evaluate transfer values at nearby
frequencies. (ii) To speed up Helmholtz solves, we propose a frequency-adaptive mesh simplifica-
tion algorithm; for low-frequency boundary element (BEM) Helmholtz solves, we simplify the mesh
more aggressively in exchange for larger computational speedup. At runtime, given a user-specified
modal frequency, we represent the resulting transfer function at any spatial position using an acous-
tic multipole expansion. We first evaluate key-position transfer values, which are in turn used to

construct a small least-squares problem to estimate the multipole expansion coeflicients.

With our proposed precomputation technique, we are able to generate various sound effects with-
out expensive recomputation. This greatly eases the parameter tuning for different sound charac-
teristics, whether one desires high-pitch long-ringing metal sounds or low-tone quickly damped
wood-like sounds. We can explore the parameter space and quickly hear the sound feedback (Fig-
ure B.1)). The resulting sounds are almost identical to the ones using expensive full recomputation,

both qualitatively and numerically.

Our technique also enables more control of sound characteristics for animators wishing to add syn-
chronized modal sounds. We explore examples of nonlinear time-varying modal sound effects us-

ing user-guided nonphysical change of frequencies.
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3.2 Modal Sound Preliminary

Before presenting the details of our method, we briefly review the widely used modal sound model
(see [Shabana, 1991}; (O'Brien ef al., 2002; James ef al., 2006a] for details) and clarify the frequency-

related parameters that can be freely changed in our model.
Modal Vibration First, a solid object vibration is approximated by a linear vibration equation,

Mii + Dt + Ku = fou, (3.2)

where M, K, and D are respectively the mass, stiffness, and damping matrices depending on the
object materials, u € R*" describes the finite element nodal displacement with n nodes, and f..; €
R3" is the external force driving the vibration. The damping matrix D is usually approximated
using the Rayleigh damping model [Shabana, 1991, i.e., D = aM + SK, where the scalars o and /3
are user-specified parameters. Linear modal analysis then solves a generalized eigenvalue problem
KU = MUS to compute a modal shape matrix U and a diagonal eigenvalue matrix S. The former
describes the vibration pattern of each mode while the latter indicates the square of undamped
natural frequencies, i.e., S;; = w?. Substituting u = Uq and then premultiplying U on both sides
of (B.2) decouples the system into a set of 1D second-order ordinary differential equations (ODEs),

each of which is an ODE describing the modal vibration of a single mode ¢, namely,
G + diGi + wiq = U] feu, (3.3)
where d; is the damping parameter of mode 7, and U; is the i-th column of U.

Sound Radiation A vibration mode with an observed frequency w produces propagating sound

waves that have a wavenumber £ = w/c. A standard tool to model its sound radiation is the
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Helmholtz equation (B.I)), which is coupled with surface modal vibration through a Neumann

boundary condition defined on the object surface .S,

op = —jwpv onS, (3.4)
on

where ¢ is the imaginary unit, p is the air density, and v is the mode’s time-harmonic vibration
velocity along the surface normal direction, computed as v = iw(n - 4;), where .- @; is the normal-
direction modal displacement of a mode 7. Note we also use 7 to represent mode index when there
is no ambiguity. Solving (B.I) for each mode ¢ results in a complex-valued transfer function p;(x).
Finally, following the approximation in [James ef al., 2006d], the sound wave at a listening position

x is computed as a weighted summation of all audible vibration modes,

s(x) = Z pi()|q(t). (3.5)

This expression is accurate up to a phase, ignoring the time delay of sound propagation. The Helm-
holtz solution describes modal sound radiation affected by the object’s own geometry, and ig-
nores environment acoustics. This is sufficient in our problem because environment acoustics
are independent from a modal sound model; if the environment is known, one can easily feed
the resulting sound of our model to any sound auralization methods (e.g., [Tsingos et al., 2001¢;

Raghuvanshi et al., 2010b; Mehra ef al., 2013b]) to add room acoustic effects.

Frequency-Related Parameters As observed by Klatzky et al. [2000], two sets of parameters are
of particular importance for achieving desired sound characteristics: vibration frequencies, w;, that
determine sound pitch, and damping coefficients, d;, that affect the timbre of particular materials.
For instance, a small damping value results in the long ringing sounds that metal or porcelain objects

often produce, whereas a large damping value tends to produce sounds more like wood or stone. We
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note that the damping coeflicients d; are also frequency-related; they affect the observed damped
natural frequency through the relationship &; = \/w? — d?/4. This frequency value is used for
computing the wavenumber k, and thus affects the Helmholtz solution. In standard modal sound
models, the user can change material parameters such as Young’s modulus to adjust w;, and change
a and [ values in Rayleigh damping to control d;. In our implementation, we change the scales
of Young’s modulus, which we call stiffness scales, and damping scales. They form a 2D parameter
space (see Figure B.1)), in which the modal shape matrix U remains constant. We also explore the

examples that allow the user to change w; and d; directly and individually (see §p.§).

3.3 Interactive Sound Synthesis Algorithm

In this section, we introduce our runtime sound synthesis algorithm while deferring the precompu-
tation details until §B.4. At runtime, we take as input an animation sequence, the user-specified w;
and d;, and the contact forces that appear on the right-hand side of (B.7) to drive the surface vibra-
tion. Given a listening location z, it computes surface modal vibration g; for every mode (in $B.3.1)),
and evaluates the transfer function p;(x) (in §B.3.7). The final sound is computed using the super-
position (B.5) of individual modes. For simplicity of presentation, we describe the sound synthesis

algorithm for a single mode. An outline of our runtime algorithm is shown in Algorithm [Il.

3.3.1 Vibration Integration

We first solve the decoupled 1D modal vibration equation (B.3), where the external force f.,; is the
contact forces resulting from the simulated animation. Many previous methods [Hamming, 1983;
James and Pai, 2002] solve this inhomogeneous second-order ODE using a digital Infinite Impulse

Response (IIR) filter. Our implementation uses the fourth-order Runge-Kutta method [Press et al.]
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Algorithm 1 Runtime Sound Computation for Mode ¢

Require: frequency w; of mode 7 and listening position

1: procedure SOUNDEVAL(Z, x)

2: Compute ¢;(¢) at audio rate by integrating (3.3) > §B.3.1]
3: Compute transfer p(w;) at key positions using (B.10) > §B.4]]
4 Estimate M using a least-squares solve (B.§) > §B.3.7

5: Compute transfer p(x) using M"* and (B.6)
6: Compute ) . |p()|q;(t) at the audio rate

7: end procedure

2007], since we found it has comparable performance but higher accuracy than the digital IIR filter,

especially when the user specifies time-varying w; and d; values, as in the examples of §B.§ (see

Figure B.2).

3.3.2 Transfer Estimation via Least-Squares

A main challenge for runtime sound synthesis is the evaluation of transfer values p;(x). This is
because p;, the solution of the Helmholtz equation (B.1)), is frequency-dependent. Whenever the
user changes frequency parameters, we need to update p;(x), but solving the Helmholtz equation

from scratch is impractical and computationally very expensive.

Multipole Approximation To allow the user to freely change the listening location & while edit-
ing a sound, we need a compact representation of p(x) in the spatial domain. Similar to [Zheng

and James, 2010], we represent a Helmholtz solution p(x) using a single point multipole expan-
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sion [Gumerov and Duraiswami, 2004], which takes an expansion form,

N n
pilm) ~ik Y Y ST (@, @) M (w). (3.6)

n=0 m=—n

Here & is the expansion center near the object. In practice, we always place it at the object’s center
of mass. We follow the rule of thumb [Liu, 2009; Zheng and James, 2010] and set the expansion
order N = max(3kL,4) (N < 18 in all our examples). Si* are singular Helmholtz basis functions,
Si(r) = hg)(kr)Ynm(@, ¢), where r = (r, 0, ¢) is the spherical coordinate of x — x, WY ec
are spherical Hankel functions of the second kind, and Y,* € C are spherical harmonics. The

expansion coeflicients M depend on the modal vibration frequency w, and are what we need to

quickly update when w is changed at runtime.

Previous methods of computing M (e.g. [Gumerov and Duraiswami, 2004; Zheng and James]
2010]) integrate the results of a boundary element (BE) solve of (B-1]) over the entire object surface.
Both the BE solve and surface integral are expensive. One might precompute a set of M using fre-
quency values sampled in a frequency range, and use the interpolated M, at runtime. However, as
shown in Figure B.3, M, at high orders fluctuates dramatically as the frequency value sweeps. Con-
sequently, the frequency needs to be densely sampled to interpolate M, leading to a prohibitively

long precomputation time.

Fast Least-Squares Approximation of /" Inspired by the subspace construction for shape de-
formations [Meyer and Anderson, 2007], we approximate M™ using a small-scale least-squares
approximation. Here, the Helmholtz basis functions \S]* construct a set of reduced-space bases of
the Helmholtz solution. We estimate the basis coeflicients M based on the transfer values at a set
of key positions, and use the resulting M, to compute transfer value p;(x) at any listening location

.
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First, we sample a set of key positions x;,j = 1, ..., J outside of the object (see Figure B.4). In the
precomputation, we construct a frequency-sweeping transfer function p;(w) at «;. The represen-
tation of p;(w) is compact, adding very little memory overhead over the standard modal sound
model (see §P.5). And its construction requires only coarse frequency samples. We defer the details
of its construction until §B.4.1. Here we use the precomputed representation to evaluate p,(w) with

user-specified w at every key position x; and stack them into a vector p.

The summation of (B.§) can be expressed in matrix form, p = Am, where m stacks all the co-
efficients M]", and A consists of the Helmholtz basis function values at all selected positions x;.

Concretely, they have the form

Sg(.’ljl, CE()) c. S]]\\/[(Cﬁl, jo) Mg
A= : : and m = N (3.7)

Sg(wj,io) S%(ZIJ,E()) M]]\\;

We then estimate the unknown coefficients M by solving the least squares problem

Am = p. (3.8)

As long as the number of key positions is larger than the number of columns of A, we have an over-
constrained and complex-valued least-squares problem, and thus the solution is unique. Recall that
the order of multipole expansion (B.€) is small (i.e., N < 18). The number of columns is also small
(i.e., N? < 324), and thus the least-squares problem can be efficiently solved at runtime. Once M™
are computed, we substitute them into (B.G) to evaluate the transfer value at any location x. In §B.5,

we validate the accuracy and convergence of our transfer evaluation algorithm.

When sampling key positions, we need to cover the region where the listener will be located. We

therefore select three spheres centered at the object’s center of mass &, with radii of 1.6, 2.6, and
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3.4 times the object’s geometric size. We then uniformly sample positions over the spheres (see

Figure B.4). In §P.5, we validate the numerical accuracy and convergence of this scheme.

3.4 Precomputation of Helmholtz Equations

The core goal of our precomputation is to construct a representation of frequency-sweeping transfer
function p;(w) for every key position x;, j = 1, ..., J and every vibration mode. This representation
is used at runtime to construct the right-hand-side vector p in (B.§). For a mode ¢ with a natural
vibration frequency wy, we allow the user to adjust its vibration frequency in the range R = [wy —
Aw,wy + Aw]. In practice, we allow the runtime frequency adjustment in a range of 5kHz (i.e.,

Aw = 2.5kHz - 27).

A simple approach is to compute p;(w;) at a set of frequency samples w;, ¢ = 1,...,7 in R, and
interpolate to obtain p;(w). However, this approach requires a large number of frequency samples,
since p;(w) oscillates at a high frequency as shown in Figure B.5. And evaluation of transfer samples
p;(w;) at different frequencies requires expensive individual Helmholtz solves. Therefore, we seek
to sample R using a sparse set of w;. Our algorithm strives to (i) avoid as many Helmholtz solves as
possible (in §B.4.2) and (ii) improve the solving performance (in $B.4.3). We start by first presenting
an efficient representation of p;(w) using sparse transfer samples p; (w; ). For simplicity, we will drop

the subscript j, because we will consider transfer values at a single key position ;.

3.4.1 Frequency-Sweeping Transfer Representation Monopole

X M)

To reveal why p(w) is oscillatory, consider a first-order approximation

)

of sound radiation. As commonly used in the Rayleigh method [Cremer

et al., 2005], we can discretize a vibrating surface into small elements,
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and estimate its radiation (up to first order) by placing a monopole on
every element and summing up their contributions. Namely, the acoustic

transfer at « is estimated as
N N
p(x) ~ Z Cie ™ = Z Cje e, (3.9)
i=1 j=1

where C; is the weight of a monopole on element j and r; is the distance from « to the position

of j-th monopole (i.e., 7; = |& — x;|). This expression clearly shows that as w sweeps in a range

W
—tET;

R, p(x) oscillates because e is harmonic with respect to w. In fact, for a far-field listener, 7; is

large, and thus p(x) oscillates strongly.

Interpolation of p(w) We propose the following scheme to interpolate p(w). For every acoustic

iker

transfer sample p(w;), we compute p(w;) = €""p(w; ), where k; is the wavenumber w;/c, and r =

|x; — 2| is the distance from a key position @; to the object’s center of mass. We claim that p(w) is

much smoother than p(w) (see Figure B.5), and thus we can easily construct an interpolation of p(w;)
ikrp (w) ~

—ik(Tj —T)

in R. To understand the reason, we again look to the approximation (B.9), and have e
> Cje~*ki=7)_ For a far-field listening location, we have |r; — r| < |r|. Therefore, e
ikr

and hence ¢"*"p(w) are much less oscillatory. Lastly, given a frequency w, we interpolate p(w) and

compute the transfer value using p(w) = e~ p(w).

Representation of p(w; ) using Prony’s Method The remaining question is how to represent p(w;).
Since we will create a representation of p(w) for every key position and every vibration mode, the
representation needs to be compact. Note p(w) still oscillates with respect to w, albeit smoothly,

because of the term ("=

). This suggests that we should use a small number of harmonic basis
functions to interpolate p(w; ). Fourier basis functions were considered; they are efficient for repre-

senting periodic signals. However, in our case, the amplitude of p(w;) generally tends to decrease
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as w increases, because the high-frequency waves dissipate energy faster than low-frequency waves
do. These damped signals require more Fourier bases for a plausible representation (see Figure [A.]]
in Section [A.6). Instead, we propose to use Prony’s method [Hauer ef al., 1990; Lobos ef al., 2003],
which approximates a uniformly sampled signal using a series of weighted complex exponentials.

In our case, it approximates p(w) as

N

Plw) = Y el (3.10)

=1

where ¢; and y; are complex values determined using the transfer samples p(w;). For readers not
familiar with this method, we list the details in Section [A.T. Here we highlight its advantages in
our problems. (i) Prony series has been known for its efficiency on estimating damping coefficients
apart from frequency, phase, and amplitude [Lobos ef al., 2003]. It requires only sparse samples
to represent the signals (i.e., 2V samples for N harmonic components). (ii) It offers a compact
representation of p(w), allowing fast runtime evaluation of p(w). With precomputed ¢; and p;, we
use the Prony series (B.10) to construct the right-hand-side vector in the least-squares problem (B.§)
for estimating the multipole coefficients M as described in § 3.3.2. Figure B.5 shows that N = 6
is sufficient for a close approximation in our experiments. Table B.] lists the storage needed for
runtime use, less than 25MB per model. (iii) Computing the parameters c¢; and y; is fast, involving

only two small least-squares solves and a polynomial root-finding (see Section [A.T]).

3.4.2 Adaptive Frequency Sweep

Creating a Prony’s representation of p(w) takes as input a set of transfer values p(w;) at uniformly
sampled w; € R,t = 1,..,T. Straightforward evaluation of p(w;) needs to solve the Helmholtz
equation from scratch, which is expensive. Thus, we wish to bypass those solves as many as pos-

sible. To this end, we build our algorithm upon the method of Asymptotic Waveform Evaluation
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Algorithm 2 Frequency Sweep Precomputation for Mode ¢

Require: the damped natural frequency w; of mode ¢

1: procedure ADAPTIVEFREQUENCYSWEEP(w);)

2: Frequency range R < [w; — Aw, w; + Aw]
3: Uniformly sample R with w; s.t. wy > wy > ... > wr
4. w* = wy

5: Construct AWE coefficients at w* (i.e., ; and 3; in (B.13))

6: for all w, in descending order do
7: if w; not in the convg. radius of w* (using (B.17)) then
8: W = wp — (W — wiy1)
9: Construct AWE coefficients at w*
10: end if
11: Compute p;(w;) at key positions using (8.15) and ([A.5)
12: end for

13: for all key position j do
14: Build Prony series representation (B.10)
15: end for

16: end procedure

(AWE) [Pillage and Rohrer, 1990; Gallivan et al., 1994] and perform adaptive Helmholtz solves.

Our key idea is to sweep the frequency range R with multiple steps. At each step, we choose a refer-
ence frequency wy and build a local asymptotic expansion of the frequency-varying Helmholtz solu-
tion. At the next step, we choose a new reference frequency that cannot be covered by the estimated
convergence radius of the expansion at wy in the previous solve. We repeat the step until the entire

R is covered by the convergence ranges of all expansions (see an outline in Algorithm ).
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Boundary Element Solve We use BEM to solve the Helmholtz equation at every reference fre-
quency. For the exterior Helmholtz radiation problem as in our case, The conventional boundary
integral equation (CBIE) has non-unique solutions at certain fictitious frequencies [Matsumoto ef al.]
2010]. This will cause serious problems as we need to sweep through a wide frequency range, which
likely covers those fictitious frequency values. Instead, we follow the Burton-Miller method [Burton
and Miller, 1971]], which solves a linear combination of CBIE and a hypersingular boundary integral
equation (HBIE) to overcome the non-uniqueness (see Figure for numerical validation). We
refer the reader to Section [A.7 for our implementation details. Ultimately, we solve a dense linear

system

Aw)p(w) = b(w). (3.11)

Here we explicitly express the system with a frequency parameter w to emphasize its dependence
on the frequency value that we are sweeping in R. The solution ¢(w) is a vector stacking the acous-
tic transfer value on object surface elements. With this solution, the transfer value p(x;) at a key

position x; is computed using the Kirchhoff integral formula detailed in ([A.5) of Section [A.2.

Asymptotic Waveform Evaluation After a BE solve at a frequency wy, we have p(wy) that satisfies
the linear system A(wo)p(wy) = b(wp). Then, a polynomial asymptotic expansion of p(w) can be

built in a local region centered at wy,

N
plw) =) pilw —wp)', (3.12)
=0
where py = p(wp) and p;,i = 1,..., N are coefficients to be determined. To compute p;, we take

the derivatives of both (B.11)) and (B.12) with respect to w and form a linear system of p;,

A(wo)pr = b'(wg) — A’ (wo)p(wo)- (3.13)
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Here A’(wp) and b'(wp) can be computed analytically (see Section [A4 for details), and we have
factorized A(wp) when solving A(wg)p(wo) = b(wp). Therefore only a fast back-substitution is
needed here. Higher-order coefficients p; can be solved in a similar manner using higher-order
derivatives of (B.I1)) and (B.12)). We defer the detailed derivation in Section [A.3. In short, we have

the following equation to solve for p;,
nlA(wo)pn + Y (n — D)ICLAD (wo)pn—i = ™ (wo). (3.14)
i=1

where C! = #ll), are the binomial coefficients. This is a linear system of the form A(wy)p, = ¢,
since all the p;,7 = 0,...,n — 1 are known from previous computation. And again we quickly
solve this system by reusing the factorization of A(wy). Afterall p;,7 =0, ..., N are solved, we can

quickly compute the Helmholtz solution at a frequency w using (B.12).

Extending Convergence Radius with Padé Approximant One drawback of the straightforward
polynomial expansion (B.I7) is that it tends to have a limited convergence radius (see Figure 3.6).
Consequently, we need many AWE solves to cover the frequency range R. To alleviate this problem,
we propose to build a Padé approximant, which is known to provide a larger convergence radius
than a polynomial expansion although it is derived from polynomial coefficients [Karlsson, 1976].
In particular, provided a set of solved polynomial expansion coefhicients p;, ¢ = 0, ..., /N, we match

the polynomial expansion (B.I7) with a rational polynomial,

L+M+1 L .
AN Pp(w — wo) _ 2z @i(w — wo)' 315

where both a; and 3; are vectors with the same length as p;; the quotient is computed using a
component-wise division. In practice, we set the rational polynomial orders, M = |N /2] and

L=N-M,
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so this Padé approximant has the same complexity as the polynomial expansion (B.12)). We solve
a; and 3; by multiplying both sides of (B.15) by ()/(w — wp) and matching the coefficients for all

orders of terms. This amounts to solving

PL Pr—1  --- DPL—M+1 B4 Pr+1
DL+1 PL cov PL—M+2 B2 Dr+2
i " — |7 (3.16)
| PL+M-1 PLiM-2 - - pr | _5M_ | DL+M |

Let D denote the number of boundary elements and also the length of p;. The above equation
describes D independent linear systems, each corresponding to a single component of p; and 3;;
therefore we can solve all D linear systems in parallel. Once 3; is obtained, we compute c; using
a; = Zj’:o B;Di—j. Again the product 3;p;_; indicates a component-wise multiplication. Fig-

ure 3.4 illustrates the improvement of the convergence radius.

Adaptive Helmholtz Solves With a depiction of our AWE solver in place, we now present our al-
gorithm to sweep through R and adaptively perform AWE solves. Let w; ;—; _r denote our uniform
frequency samples sorted in descending order. Our goal is to evaluate p(w;) at all key positions. We
start from the highest frequency sample w; and build an AWE expansion series at wy. Then we move
on to wyp_; and check if wy_; is within the convergence radius of the series at wy. If it is, we directly
evaluate the series to compute p(wr_1) and continue to the next sample wy_». At some point, a
sample w; is out of the convergence radius, and thus the obtained AWE series becomes invalid. At
this point, we know a lower bound of the convergence radius of the series at wy is wp — w; 1. We
also observe that the convergence radius of the AWE series increases as the expansion frequency
decreases. Therefore, we build a new AWE series at the frequency sample w; = w; — (wr — wit1).

Since wj is smaller than wy, we guarantee that w; is now within the convergence radius of the series
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at w;. From there we switch to the new series at w; and continue our transfer evaluation. We repeat
these steps until the entire frequency samples w;, ¢ = 1, ..., T are evaluated (see Algorithm [). The
main advantage of this process is that we solve the AWE only at a few automatically selected fre-
quency samples while relying on the expansion form to quickly evaluate transfer values for all the

samples.

A simple approach to check if a frequency w is within the convergence radius is to evaluate the se-
ries at w and substitute it back into (B.I1]) to compute the residual. However, this approach needs
to construct the dense matrix A(w) for every check. Instead, we propose a faster algorithm by ex-
ploiting a mathematical insight of Padé approximant: two consecutive orders of Padé solutions are
very close inside the convergence radius, but they diverge rapidly when this radius is reached. To

harness this insight, we compute

and j(w) = %, (3.17)

PL_l(w — wo)

plw) =

B QM—1(W - wo)

and require [|p(w) — p(w)|| < e. For all our examples, we use L = 6, M = 5and ¢ = 107%. On
average we only need about 5 AWE solves to cover a frequency range of 5kHz to achieve this error

tolerance (See Figure B.6).

3.4.3 Frequency-Adaptive Mesh Simplification

To further speed up the precomputation, we accelerate each Helmholtz solves by adaptively simpli-
tying object surface meshes. It is well known that the complexity of BEMs depend on the number
of surface elements N. The smaller V is, the faster computation can be. For Helmholtz solves, it is
also found that the element size should be bounded by the wavelength [Jerri, 2005]. Correspond-
ing to human hearing range from 20Hz to 20kHz, the wavelength varies from 17 meters to 1.72

centimeters. Thus we can use fewer elements while retaining the accuracy for lower frequencies.
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Furthermore, we observe that the scale of spatial variance of an object’s mode shapes is often much
larger than the size of the mesh elements (see Figure B.7). As a result, the modal displacement data

can be well resolved even with a coarse surface mesh.

We therefore use frequency-adaptive surface discretization in our BE solves. We start from a fine
surface mesh sufficient for the highest frequency (e.g., 20kHz). For each mode i, surface vertices
are also associated with their modal displacement vectors u; extracted from the shape matrix U.
Next, we divide our interested frequency range R = [wy — Aw, wy + Aw] into multiple intervals,
each with a fixed frequency band. In practice, we use a 2kHz frequency band and hence up to 3
intervals for R. For each frequency interval and each mode 7, we construct a simplified surface
mesh as well as corresponding modal displacement data. We perform the mesh simplification at
the beginning of our precomputation stage. During our Helmholtz solves performed in §p.4.2, we
adaptively choose the mesh resolution and modal displacement data based on the target frequency

range and mode.

Edge Collapse Algorithm We build our mesh simplification algorithm based on the edge collapse
algorithm of Hoppe [1999], and follow their notations therein. Each mesh vertex v has a 6D vector
v = [p? ul'|T, where p is the vertex position, and the modal displacement vector w is used as a

vertex attribute. The quadric error function for collapsing an edge is defined as

Q"(v) = Y Af) (Qv) + Ql(v))
feN(v)
where A(f) is the area of a triangle f adjacent to v, Q/ (v) measures the distance of p to the plane
containing f, and )/ (v) measures the deviation of u from a linearly changing modal displacement
field on the triangle f. Both terms are simply zero-extended versions of those in [Hoppe, 1999].

We therefore refer the reader to that paper for details. In short, Q(v) has a 6D quadratic form,
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Q’(v) = vTAv + 2b"v + c. When collapsing an edge connecting v; and v, into a new vertex vy,c,,»

we solve for its position p,,.,, and modal vibration vector u,,,, by minimizing

Upew = argmin Q" (v) + Q™ (v)

s.t. gfolp + dyo = 0. (3.18)

Here g, and d,,,; are respectively a 3D vector and scalar determined by the 1-ring local geometry

of the collapsing edge. This linear constraint is to ensure volume preservation.

Volume Velocity Preservation While previous methods can achieve volume preservation, they
shrink the modal amplitude in the process of edge collapse, resulting in a loss of sound power (see
Figure 3.§). We address this problem by introducing a constraint on the object’s volume-velocity.
Given a modal displacement vector u at a frequency w, the object’s volume velocity is defined

as

/(u ‘n)we™tdS = we™! / u - ndS.
S

S
This quantity has been previously used as a far-field approximation of sound power [Johnson and
Elliott, 1995]. Our goal is to ensure its preservation during our mesh simplification. When an
edge collapses into a vertex v, only the volume-velocity contributed by its 1-ring triangle fan can be
changed. Ignoring the unchanged time-harmonic part and assuming a piece-wise constant modal

vibration, we have the volume-velocity constraint,

1
5 Y llp—pn)x (p—pp)l" (wtup +up)=0C, (3.19)
fEN(v)

where f denote a triangle adjacent to v, (p, 1, Pr2) are f’s vertex positions, (u, w s, us2) are the
modal displacement vectors on those vertices, and C, is a constant volume velocity value com-

puted from the corresponding triangle region before the edge collapse. Now we need to minimize
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Q" (v) = Q" (v) + Q"*(v) with two constraints when collapsing an edge,
v = argmin Q"(v) subject to constraint (3.1§) and (3.19).

This is a quadratically constrained quadratic programming (QCQP) problem, generally considered
to be NP-hard. Fortunately, in this particular QCQP problem, because the quadratic constraints

involve only p”u but not p”p or u”

u, we are able to solve it using iterations of linearly constrained
problems: we start from an initial guess of v by minimizing )*(v) without any constraints, and this
amounts to solving a 6D linear system, Av = b. Then we iteratively apply a staggered sequence of

two quadratic optimization solves

u = argmin Q" ([p” u”]") subject to (B:19) only, (3.20)
p = argmin Q"([p” u’]") subject to (B.18) and (B.19). (3.21)
p

In the first solve (B.20)), we use vertex positions p from previous iterations and compute w. In the
second solve (B.21)), we fix displacement vector w using values resulting from (B.20) and compute
vertex positions. Both solves minimize a quadratic form with linear equality constraints. We solve
them using the method of Lagrange Multipliers: problem (.20) becomes a 4D linear system, while
problem (B.21)) amounts to a 5D linear solve (see Section [A.5). In practice, only tens of iterations
are needed for convergence. As demonstrated in Figure B.9, using the adaptively simplified meshes
greatly speeds up the boundary element solves (in §B.4.2), while introducing very little numerical

€rror.
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(i) Complexity (ii) Mesh Simplification (iii) Adaptive Freq. Sweep (iv) Runtime Evaluation
Example # before (avg.)  after (avg.) simp. before after before after
# tet. speeduy speeduy speedup
modes |# tri. BE Solve # tri. BE Solve time # solves # solves size  time size time
PLATE 404k 59 100k  19m 5750 4.2m 16.8m 4.2x 4740 253  17.2x| 8.1MB 59m 5.1MB 129s 274x
Muac 292k 61 68k 35m 7255 6.1m 14.7m 5.5X% 4492 379  11.3x| 8.7MB 96m 5.4MB 13.6s 424x
Bunny 130k 56 30k 52m 4297 4.6m 10.2m 10.1x 3360 198 14.5x| 7.7MB 132m 4.8MB 22.2s 356x

BorTLE (solid) | 160k 197 35k 2Ilm 4139 4.1Im 30.6m 4.9x| 13396 1068 10.4x|30.2MB 237m 22.1MB 28.9s 492X

1Jump 62k 70 14k  14m 3123 38m 6.5m 3.7X 5075 267 17.6x| 92MB 96m 6.0MB 24.8s 232x
STAIRS 78k 49 12k 14m 5425 58m 212m 29X 3626 221 132x| 6.7MB 38m 42MB 11.6s 197x
Oro1D (shell) - 300 32k 29m 7841 5.6m 284m 4.9x| 12623 715  17.1x|62.4MB 258m 26.1MB 12.2s 1270x
Cow (shell) - 300 65k 42m 6406 5.1m 403m 7.8x| 14131 624 22.2x|61.2MB 312m 25.7MB 23.8s 785X
BorTLE (shell) | - 200 35k 23m 5364 4.7m 36.6m 44X 9246 436  20.5x|42.7MB 186m 19.9MB 19.4s 575x

Table 3.1: Statistics and Timings: (i) the size of tetrahedral meshes and modes; (ii) the averaged number of triangles
before and after mesh simplification, the averaged BE solve time with and without simplification, the mesh simplifica-
tion time, and the speedup to compute transfers of all modes, (iii) the total number of Helmholtz solves without and
with adaptive frequency sweep, the speedup achieved using adaptive frequency sweep with simplified meshes. (iv) the
memory overhead for transfer evaluation without and with key-position least-squares solves, the timings of transfer up-
date using standard BE solves on a 20-core cluster, the timings of transfer evaluation using our approach on a quad-core
desktop, and the computational speedup. Note: the memory without key-position least-squares solves only represents
the storage on a single frequency. This storage increases as we sweep through the frequency range R, whereas our
model uses a fixed memory.

3.5 Validation of Interactive Acoustic Transfer

Performance We profiled the performance of our algorithm, and summarized speedups of each
step over the straightforward approaches, as well as the runtime speedups. Table B.1] lists the statis-
tics of our examples. The precomputation timings were measured on a 20-core Intel Xeon E5 cluster,
and the runtime profiling was performed on a desktop with a quad-core Intel Xeon E5 (3.4GHz)
CPU. Due diligence has been taken to exploit multi-core parallelization for both the precomputation
and runtime sound synthesis. On average, our adaptive mesh simplification achieved 5x speedups
for Helmholtz solves; our adaptive frequency sweep led to at least 10x speedups; and at runtime,
given user-specified parameters, we are able to synthesize sound with more than 300 x speedups

over the traditional approach which needs to recompute the Helmholtz solutions. We note that it
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is possible to further boost runtime performance for interactive parameter editing: for example, at
runtime one can start a background thread performing the least-squares solves of multipole coef-
ficients at more densely sampled frequencies while the user is adjusting parameters, and cache the

computed transfer coefficients for later reuse.

The additional memory size needed for runtime use of our Prony representation for all key positions
is less than 25MB per model. We also note that the major memory bottleneck of a modal sound
model is the storage of shape modal matrix U that can take hundreds of megabytes of memory,
depending on the mesh resolution. Our frequency-sweeping transfer representation is resolution-
independent, and adds little memory overhead. We note a recent method [Langlois ef al., 2014] that

compresses the modal matrix U and complements to our approach.

Comparisons To demonstrate the effects of transfer values on final sounds and the accuracy of
our transfer evaluation, we compared the sounds computed without transfer, with transfer at a fixed
frequency, with transfer using our model, and the exact transfer using BE solves. For this com-
parison, we also chose different modal sound parameters to generate different sound effects. We
observed that the resulting sounds from our model are very close to the sounds using brute-force
transfer evaluation, while the sounds without transfer and with constant transfer both show audible
differences from the ground-truth sounds. Please see the accompanying video for animations and

sound comparisons.

Numerical Validation We further validated our models numerically. Our runtime transfer eval-
uation are approximated by least-squares problems formulated using key-position transfers. In
Figure .10, we validate its accuracy by comparing with the results from full BE solves. For low-
frequency Helmholtz solves (Figure B.I{ left), our results agree with the brute-force solution very

well. As expected, the high-frequency solves (Figure right) are numerically more challenging,



CHAPTER 3. INTERACTIVE RIGID-BODY ACOUSTIC TRANSFER 37

and our approximation degrades. However, Figure .11 shows the convergence of our approxima-
tion as the number of key positions increases. Therefore, we can always increase the accuracy of
our runtime approximation by adding more key points. This feature provides the user easy control

of the performance-accuracy tradeofls for specific applications.

Lastly, Figure validates our BEM implementation with the conventional CBIE approach. As
shown, our implementation based on the Burton-Miller method [Burton and Miller, 1971] is more

robust and agrees with the analytical solution very closely.

3.6 Results

3.6.1 Sound Editing Examples

Our interactive transfer estimation enables flexible and efficient approaches to tweak modal sound
parameters, explore different sound characteristics, and achieve desirable sound effects. We now
demonstrate with three applications. All the animations are simulated using [Kaufman ef al., 2008]

except 1fump is from [Tan ef al., 2012]. Please see the accompanying video for full results.

Fast Parameter Editing Modal sound models are often used to synthesize sounds automatically
synchronized with simulated animations. To achieve certain sound characteristics, the user might
start with physical parameters of target materials. However, even for a single material, its mate-
rial parameters are given in a range. For instance, polyethylene, a common plastic, has a Young’s
modulus in a range from 0.11GPa to 0.45GPa, which doubles the modal frequencies when changed
from the lower end to the upper end. In addition, there are no mechanically well-defined damp-
ing parameters [[Adhikari and Woodhouse, 2001]], although the damping can significantly affect the

sound perception [Klatzky ef al., 2000]. Consequently, one has to rely on a trial-and-error approach
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to tune the parameters. It is therefore desirable to have a fast sound synthesis method to shorten
the tuning cycle. In our examples, we take a rigid-body simulation as input, and edit Young’s mod-
ulus and damping ratio to synthesize sounds produced by different materials ranging from wood,
plastic, porcelain to metal (see Figure B.13.h). Our runtime synthesis time is always less than 30

seconds.

Parameter Space Exploration Our method allows the user to continuously explore the parameter
space. In our implementation, we present the user with a 2D parameter space whose two axes are
damping scale and stiffness scale respectively (see the video). When the user clicks a point in the
coordinate system, we immediately synthesize the sounds with corresponding stiffness and damping
values and present to the user Figure B.1. Take STAIrs as a demonstration. With a single pass of
precomputation, we explore the parameter space, and identify a set of parameters that produces
different pitches corresponding to a set of music notes with different timbres. After we are satisfied
with the resulting sound characteristics, we use the parameters to generate sounds of more complex
animations. In STAIRS, we choose three different materials and produce sounds that match the

melody “Song of the Wind” (see Figure B.13.h).

Thin-Shell Modal Models Our method is not limited to editing solid modal sound models. We
also apply our method to edit thin-shell modal sound models. In the precomputation, we compute
thin-shell modal matrices and vibration frequencies following the method proposed by Chadwick
et al. [2009B]. The rest of the pipeline is exactly the same as the solid modal sound model. In the

accompanying video, we demonstrate different thin-shell sound effects edited using our method

(see Figure B.13.e, fand g).

Extension: Time-varying Frequency Effects Finally, we extend our method to allow the user to

specify time-varying parameters, we can thus approximate sound effects with frequency shift, which
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is usually caused by nonlinear modal vibrations. This extension is straightforward: with user-guided
time-varying parameters, we sample the values across the temporal domain and evaluate transfers
for smooth interpolation. The modal vibration equation (B.3) with time-varying coeflicients is still
integrated using Runge-Kutta method as presented in §B.3.1. In our examples, we used the time-
varying stiffness scale to mimic the nonlinear pitch changes, such as pitch gliding [Penttinen ef
al., 2006] (see Figure B.13.c). We also explored an example in which the user specifies nonphys-

ical time-varying frequencies to produce interesting artistic effects such as the one in 1Jump (see

Figure B.13.d).

3.6.2 Preliminary User Studies

Experiment Setup We perform four user studies to evaluate the perceptual quality of different

levels of transfer approximation accuracy in our method.

1. We generate sounds using four different sets of hit locations and impact forces. For each
setting, we compute three versions of sounds, denoted as A, B, and C, using different ap-
proximation accuracies. The accuracy is measured as the normalized least-squares residual
as used in §P.5 (Table B.2). We then perform the Two-alternative forced choice (2AFC) tests:
we generate three pairs of sounds, AB, BC and AC, for every set of sounds, and present the
human subjects with each pair of sounds, one immediately after the other, along with a refer-
ence sound generated without transfer approximation. The subjects are asked which sound

in each pair is closer to the reference.

2. We ask the subjects to rank the similarity of pairs of sounds, one approximated sound from
above and one reference audio, on a Likert scale (i.e., choosing from “very similar”, “similar”,
“neutral’, “different”, and “very different”). We repeat this experiment for all sound settings

computed in previous study. This study is to examine preliminarily the correlation between
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the numerical errors and the perceived difference.

3. Then, for each sound generation setting, we choose different number of samples to estimate
transfer values. This results in sounds with different accuracies (measured by the normalized
L, error in Table B.3)). We present the subjects with each of these sounds and a fully simulated
sound, along with the reference sound. We then ask them which sound (the approximated

sound or the fully simulated sound) is closer to the reference.

4. Lastly, we validate our assumption of using fixed modal shapes. For each test example, we
computed two sounds, one with varying modal shapes and one with fixed modal shapes. We
use the BuNNY example with three materials (wood, porcelain and metal). When building
the modal sound model with fixed modal shapes, we use our method to simplify meshes.
While the mesh simplification is frequency dependent, on average we observed more than
20x reduction of the number of triangles. We then ask the subjects to rate the similarity of
the two sounds on a Likert scale. We present these sounds in a random order to avoid possible

bias from ordering.

Analysis of the Results We conducted the experiments with 40 subjects, ranging from age 20 to
31, with 35% female and 65% male. All subjects are university affiliates who reported no problem
with hearing and had no sound design experience before. As part of the training process, we show

each subject a set of sample questions and walk through the interface.

In the first pairwise comparisons, we aggregated the results from all examples. Overall, 86.6% of
the subjects thought the full-sample sound was more similar to the reference sound among all three
sounds. Using half and a quarter of the samples won 47.8% and 15.6% of user selections, respec-

tively. (see Table B.2).

Figure .14 visualizes the results of the second experiment. For each sound (of A, B and C), we plot
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sound A B C

# samples | 100%  50% 25%
averaged error | 107  0.299  0.641

winning percentage | 86.6% 47.8% 15.6%

Table 3.2: Statistics of the first user study. The error is measured as the normalized least-squares residual. As the
error increases, fewer and fewer subjects consider the approximated sounds to be similar to the reference.

#samples | 100% 80% 60% 40% 25%

error | 107° 0.08 0.19 0.37 0.53

winning percentage | 47.5% 32.5% 5% 2.5% 2.5%

Table 3.3: Statistics of the third user study. As the error increases, more and more subjects can perceive the difference
between the reference sound and the approximated sound.

its frequencies of being classified on each Likert scale category. We found that as the approximation
error increases, it becomes easier for the subjects to notice the difference between the approximated

sounds and the reference.

The third study shows that when the error is very small, the subjects cannot tell the difference. As
the L, error is slightly increased to 0.08, 32.5% of the subjects perceived the approximated sound to
be similar to the reference sound. As the number of samples drops below 60%, we observed a clear
decline in the perceived similarity. In other words, subjects were able to discern the difference once

the errors were above 0.08 (see Table B.3).

Lastly, in the fourth user study, 82.5% of the subjects considered two sounds with fixed and varying
modal shapes to be “Very similar”, and 17.5% of them chose “Similar”. This suggests that using fixed

modal shapes for fast transfer approximation is indeed plausible.
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3.7 Conclusion

We have presented the method for fast runtime modal sound synthesis via efficient and more gen-
eral precomputation. It greatly eases parameter tuning for desirable sound effects, and has the abil-
ity to generate various sound effects even using a single model. Our efficient runtime synthesis is
realized by solving small-scale least-squares problems to estimate multipole coefficients of trans-
fer functions. The least-squares formulation relies on precomputation. To improve its efficiency,
we utilize Padé approximant to sample key frequencies adaptively and propose a volume-velocity-
preserving mesh simplification algorithm to speed up individual Helmholtz solve. With numerical
comparisons and user studies, we demonstrate its use in sound synthesis applications such as fast
parameter tuning for various sound effects, and extend it to support the creation of time-varying
sound effects. We augment and leverage several numerical techniques throughout, such as Prony’s
method and Padé approximant, hoping that these tools can be useful in other graphics research

areas as well.

Although we have shown that our approximation is comparable to the ground-truth results both
numerically and qualitatively, it remains unexplored how far we can go to further speed up the
computation. For example, can we take even coarser samples and solve Helmholtz on even sim-
pler meshes while maintaining the perceptual plausibility? In addition, it is well-known that the
Helmbholtz problem at higher frequencies tends to be more ill-conditioned and thus numerically
more challenging. This difficulty is also observed in our experiments, as our least-squares solves in
§PB.3 can not perfectly agree with the accurate solutions for frequencies higher than 12kHz, and the
numerical error of transfer solves (shown in Figure B.9) becomes larger as the frequency increases.

For modal vibration sound, the high-frequency modes have large damping coefficients, and there-
fore this inaccuracy is hardly noticeable. However, when extending this method for editing other

sound models such as fluid sounds, we hope to have a more accurate high-frequency approxima-
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tion. In the proposed model we are able to generate different sound effects such as wood, porcelain,
metal, etc.. With different input models, the results of linear model analysis, mostly the modal
frequencies, are very distinct. As a result, it may require different parameters to achieve similar
sound effects. One possible extension is to build a geometry-invariant measure such that a set of
parameters can produce similar sound effects regardless of the input model geometry. Moreover, as
observed in the OLoID (shell) example, different transfer approaches may produce similar sounds
that the users cannot distinguish. We would like to better understand the reason that causes this
ambiguity, which might in turn suggest a way to exploit this ambiguity. One common feedback
from users is that the stiffness and damping parameters are not very intuitive at the beginning; they
only started realizing their different effects during the second or even third trial. Therefore, one
possible future work is to identify more intuitive sound model parameters for user adjustment. Fi-
nally, another interesting direction is to investigate a combination of our method and traditional
Foley sound tools based on sound recording and granular synthesis to circumvent the numerical

difficulties at high frequencies.
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Figure 3.1: Parameter Exploration using our method: With our precomputed information, we are able to explore the
space of modal sound parameters at runtime, achieving numerous sound effects (bottom) synchronized with a physics-
based animation. The three spectrograms highlighted in the colored boxes correspond to (left to right) metal, porcelain,
and wood materials shown on the top.
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Figure 3.2: Comparison between Runge-Kutta and IIR filter: Given a time-varying vibration equation, fourth-order
Runge-Kutta (RK4) integrator ( ) offers higher accuracy against the IIR filter (purple), which was used in previous
methods.
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Figure 3.3: Non-smoothness of M/]": The high-order M, becomes non-smooth and fluctuates strongly at high fre-
quencies, making direct interpolation difficult. We note that these orders (i.e., N=7,8) are necessary in the expansion
for sufficient accuracy.
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Figure 3.5: Frequency-Sweeping Transfers: We choose one mode of the BUNNY model, evaluate p(w) using BEM at a

fixed point as frequency sweeps and plot both real and imaginary parts. p(w) oscillates dramatically (purple); factoring

out e~ #kT

while 6th-order series produces a curve (red) almost identical to the original function.

produces a much smoother curve (green); 4th-order Prony series gives a coarse interpolation curve (orange),
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Figure 3.6: Asymptotic Waveform Evaluation: Using the BUNNY model, we sweep a frequency range and evaluate
|¢p(w)|2 in (B:I1)) using different expansions and accurate Helmholtz BE solves. (left) We compare the convergence
radius of polynomial expansions against Padé approximant. Accurate BE solution is plotted in red. Both 5th-order
and 9th-order polynomial expansion diverge from the accurate solution faster than their Padé counterparts. (right)
8th-order Padé approximant agrees with the 9th-order one closely until the convergence radius is reached.
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Figure 3.7: Smooth Modal Shapes: Color encodes the modal displacement amplitude of the PLATE model; modal
frequencies are listed below each subfigure. Even for high frequency modes, their modal displacement varies smoothly
on the surface, making it possible to perform mesh simplification.
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Figure 3.8: Volume-Velocity-Preserving Mesh Simplification: We solve the Helmholtz equation using the origi-
nal high-resolution mesh (left). We then simplify the mesh without volume-velocity preservation (middle) and with
volume-velocity preservation (right). For both meshes, the Helmholtz solve is 12.6 x faster than the original Helmholtz
solve. Without volume-velocity preservation (middle), the acoustic transfer field loses radiation power, while the
volume-velocity-preserving mesh simplification (right) results in almost identical pressure field to the original high-
resolution solve.
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Figure 3.9: Transfer Values with Frequency-Adaptive Remeshing: We compare transfer values computed using the
original high-resolution mesh (top) with the values using simplified meshes (bottom) for three modes with low, medium
and high frequency values. Even for high-frequency modes which require a relatively high-resolution mesh, our method
achieves nearly 4 x speedup, while retaining a low Ly error (< 8.2%).
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Figure 3.10: Accuracy of Least-Squares Approximation: we sample 483 key positions for the least-squares estimation
of M. We estimate M, with three frequency values and use them to evaluate acoustic transfer values at 500 randomly
selected locations (blue). Meanwhile, we compute the accurate Helmholtz solution at the same locations ( ). For
better visualization, we sort the locations based on their accurate transfer values. As frequency increases, the accuracy
of our approximated transfer values degrades gracefully.
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Figure 3.11: Convergence of Least-Squares Approximation: Fixing the frequency value f = 12758 H z, we estimate
M using an increasing number of key positions. We use the estimated M to evaluate acoustic transfer values at
500 randomly selected locations ( , blue, and curves), and compare them against accurate transfer values
solved using conventional BEM (red). As the number of key positions increases, we get higher fidelity for the estimated
transfer values.

45
40
o 35
=
©
>
o
530
a
o Analytic -|—£o—
&25 na y IC G+ior
Our Implmentation
Conventional BEM
20
0 200 400 600 800 1000

frequency (Hz)

Figure 3.12: BEM Comparison: Using a pulsating sphere with known analytic solution, our BE implementation (
) agrees with the analytic solution ( ) as frequency sweeps, whereas the CBIE solver (purple) has large error at
fictitious frequencies.
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Figure 3.13: (a and b) We edit the Young’s modulus and damping values at runtime, and produce sound effects corre-
sponding to various materials. (c and d) We explore the examples that allow the user to change individual frequency
values in a time-varying way, producing nonlinear artistic effects while retaining physical realism. (e, f and g) We
apply our method to edit sound effects of thin shells. (h) We explore modal sound parameters so that each stair makes
sounds corresponding to a music note, and the entire ball bouncing sequence produces a melody.
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Figure 3.14: Statistics of the second user study.
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Chapter 4

Acoustic Filters Simulation and

Optimization

4.1 Introduction

Acoustic filters have numerous important applications, whether to produce a desired sound pitch
or to attenuate undesired noise. These applications, ranging from wind instruments to mufflers and
hearing aids, all rely on the same fundamental physical principle: when sound waves pass through
a cavity, part of the waves reflect back and forth, effectively boosting or suppressing certain acoustic

frequencies. In this process, the filtered frequencies are largely affected by the shape of the cav-
ity.

However, for all but the simplest cavity shapes, the influence of the shape on the filtered frequency
bands is complicated and unintuitive. Thus, the current process for improving the quality of acoustic

filters requires many trial-and-error iterations over the shape. Furthermore, the design space is

often limited to simple geometries such as pipes (e.g., for making flutes, trumpets, and industrial
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(a) b) (©)

Figure 4.1: Acoustic Tagging. By optimizing the structure of primitives (a), we control the acoustic response of an
object when it is tapped (c) and thereby tag the object acoustically. Given three objects with identical shapes (b), we
can use a smartphone to read the acoustic tags in realtime, by recording and analyzing the tapping sound, and thereby
identify each object.

mulfllers) since the acoustic behavior of only these simple shapes can be easily characterized. Current
computational design tools support only these simple primitives and even then the design process

requires strong expertise in this domain.

Meanwhile, recent advances in additive manufacturing have significantly facilitated rapid manufac-
turing of complex geometries. This trend opens up new possibilities for expanding the design space
of acoustic filters, thus motivating the development of corresponding computational methods that
can efficiently simulate and optimize the shape of the cavity in order to achieve desired acoustic
filtering effects. In light of this, the goal of our work is to expand the range of acoustic filter design
by employing complex cavity shapes computationally optimized and then physically realized using

additive manufacturing.

We propose Acoustic Voxels, a computational method that assembles basic shape primitives into
a complex geometry, one that produces the desired acoustic filtering. In particular, we consider
a simple type of shape primitive, a hollow cube with circular holes on some of its six faces (Fig-
ure f.4). We show that these primitives, albeit simple individually, offer a large design space for
acoustic filters when modularly joined at their faces into a complex assembly. This modular scheme
also permits fast and accurate estimation of the acoustic performance of a given assembly, thereby

allowing automatically optimizing its structure to achieve target acoustic filtering properties while
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satisfying geometric constraints of inlet/outlet positions and overall shapes.

Our approach starts with precomputing the acoustic transmission for our parameterized shape
primitives. At runtime, given an arbitrary assembly of these primitive filters, our method estimates
its acoustic transmission, predicting the boosted and suppressed frequency regions. This, in turn,
enables us to derive a formula to compute the gradient of the acoustic transfer with respect to shape
parameters, and further develop an efficient combinatorial and continuous optimization algorithm
to design desired filter structures. Our method combines a stochastic optimization method for com-
puting the topology of the assembly (i.e., the way of arranging and connecting the primitives) with
a gradient-based quasi-Newton method for computing the geometric parameters of each primitive
shape in the assembly. We validate our method by running finite-element off-line acoustic simula-

tion and industrial laboratory tests performed by acoustic engineering professionals (Sg.5).

Our proposed approach automates the design of acoustic filters. This simplified design process al-
lows casual users to produce objects with custom acoustic properties. Our method also expands
the range of acoustic filters that can be achieved, enabling exploration of many different applica-
tions. In addition to designing different types of noise attenuation components (e.g., mufflers), our
method can customize musical instruments with non-conventional shapes. Furthermore, we can
embed imperceptible acoustic information into the fabricated objects, and thus opens up new types
of interactions with fabricated objects, extending current visually based design into audiovisual de-

sign.

4.2 Background on Acoustic Filters

We start by briefly reviewing the theory of acoustic filters and refer to the textbooks [[ngard, 2009;
Munjal, 2014] for more details. A typical acoustic filter has a cavity structure connecting an inlet and

an outlet— trumpets and motorcycle mufflers are classic examples. When sound waves enter into
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the inlet, travel through the cavity, and leave from the outlet, their frequency components are altered.
In most applications, the physical size of a filter ranges from centimeters to tens of centimeters and
their operating frequencies are up to thousands of Hz. To evaluate the performance of acoustic

filters, the following two quantities are often used (Figure f.2):

« Input impedance. Consider a steady-state sound transmission through a filter. In the fre-

quency domain, the sound pressure and acoustic velocity at a location x are denoted as

p(z.w)

(@) indi-

p(x,w) and v(x, w), respectively. The acoustic impedance, defined as Z(x, w) =
cates how much sound pressure is generated by a given air vibration of frequency w at position
x. Particularly, we are interested in the impedance value at the inlet x;, Zin(w) = Z(x;,w),
called input impedance (Fig. .7). Zin(w) usually varies strongly with respect to the frequency
and has multiple local minima and maxima, which correspond to the sound frequencies that
are the easiest and the most difficult to transmit through the filter. For example, the playing

frequencies of a trumpet are very close to the local maxima of its input impedance.

« Transmission loss. To design acoustic filters for noise reduction, a widely used measure is
the transmission loss [Munjal, 2014], defined as the ratio, expressed in decibels (dB), of the
acoustic power incident to the muffler to the power transmitted downstream into the envi-
ronment. Concretely, if the inlet and the outlet of an acoustic filter are sufficiently small, its

transmission loss is described as:

SipiQ+ (w)

LTL(W) =10 logm m

Y

where S; and S, are the cross-sectional area of the inlet and the outlet, respectively; p,(w)
is the frequency-domain acoustic pressure of the transmitted sound wave at the outlet, away
from the filter; and p;, (w) is the acoustic pressure of the incident wave at the inlet, also in the

frequency domain. In short, Lty (w) measures how much the sound wave of frequency w gets
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Figure 4.2: Acoustic filters examples. (a) A duct as part of a wood instrument is measured using the input acoustic
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impedance; (b) Mufllers are often evaluated using transmission loss.

attenuated when passing through the filter.

Depending on specific applications, our goal is to optimize the internal structure of a filter in order
to obtain target input impedance or transmission loss in a frequency range. In general, accurately
predicting these quantities requires solving the acoustic wave equation or, in the frequency domain,
the Helmholtz equation [Pierce and others, 1991} Allen and Raghuvanshi, 2015]. Either approach
is computationally expensive, especially for complex filter structures. Notably, the relationship be-
tween the geometry of the filter and the resulting impedance or transmission loss function is rather
complex, obstructing us from formulating a well-defined optimization problem of this geometry.

Therefore, we take a different approach by leveraging the concept of the transmission matrix.

Transmission matrix If both the inlet and the outlet have a small cross-section, much smaller
than the wavelength of the operating sound waves, one can reasonably assume that the acoustic
pressure and velocity are both distributed uniformly over the cross-section [Ingard, 2009; Rienstra
and Hirschberg, 2003]. In our examples, the highest frequency that we modeled is 4500Hz, having

a wavelength around 7.6cm. And our cross section radius ranges from 3mm to lcm. We vali-
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dated this assumption with industrial lab measurements (§§.5.1)) and physical fabrication (Sg.5.2-
S§.5.4).

Let (p;(w),v;(w)) and (po(w), vo(w)) denote the complex-valued acoustic pressure and velocity in
frequency domain, at the cross-sections of the inlet and the outlet, respectively (Figure §.2-a). Their
relationship can be approximated linearly,
Po(w) _ Ty T Uo(w) 7 (4.1)
pi(w) Ty T% vi(w)
where 777 is i-th row and j-th column in the complex-valued transmission matrix at frequency w. In
this thesis, we also denote this matrix as T (w) to emphasize its frequency dependence. Transmission
matrices have been widely used in industrial muffler design [[ngard, 2009], as it relates to the input
impedance and transmission loss through simple formulas:

Ty + 19T — THTS,
Zn(w) = 11+ 115l 11722 .9 (4.2)

1-1T%
1|1y Ty TyTs,  pc T
L =201 B e e Rt 4.3
() ©%10 (2 T35 * pc  pcly * T5 1% (43)

where p is the air density and c is the sound speed.

Challenges Unfortunately, computing the transmission matrix of a filter structure is expensive.
For each frequency w, the standard approach first samples two sets of pressures, (pi1,po1) and
(Pi2, Po2), at the inlet and the outlet. Each set of pressures, together with the zero-normal-velocity
condition on the solid boundary of the filter, forms a complete boundary condition that can be
used to solve the Helmholtz equation and uniquely determine the acoustic velocity (vi1, vo1) (and

(vi2, Vo2)) at the inlet and outlet. Then, the transmission matrix can be computed by solving a 2 x 2
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Figure 4.3: Overview. Our method exploits precomputed transmission matrices of the primitives and uses a combi-
natorial and continuous optimization to construct the assembly of filters. Please refer to SE.2.]] for an outline of each
step.

linear system,

Por(w) po(w)| [ Ti1 Tz | [ver(w) ver(w) ‘ (4.4)

pi(w)  pi(w) I3 1% vin(w)  vig(w)
This process needs to solve the Helmholtz equation twice for each frequency w. In addition, while
it is straightforward to compute impedance and transmission loss using the transmission matrix,
it remains hard, if not impossible, to compute the gradient of the transmission matrix with respect
to the geometric parameters of the filter—this gradient is needed for optimizing the cavity shape of

the filter (S.4). Our approach addresses all these challenges.

4.2.1 Method Overview

Our method automatically constructs the internal structure of an acoustic filter that connects an
inlet and an outlet of a 3D volume (Figure f.4-right). We aim to control its input impedance or the

transmission loss function as specified by the user.
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System input and output Concretely, out method takes as input three components, (i) a 3D vol-
ume in which the acoustic filter is placed, (ii) the positions of the inlet and the outlet, specified
on the surface of the 3D volume, and (iii) the frequency locations to be boosted or suppressed. It
then outputs the transmission geometry that fits into the 3D volume and that can be fabricated to

produce the desired filtering effects (Figure §.3)).

To this end, we propose a primitive acoustic resonator, a family of simple hollow shapes serving
as building blocks to assemble a complex acoustic filter. These primitives allow us to precompute
their transmission matrices, which in turn enable a fast runtime algorithm to compute the acoustic
impedance and transmission loss of any filters made from an assembly of the primitive resonators
(SE.3). Leveraging the fast computation of transmission matrices, we further address the optimiza-
tion of the inverse problem (§f.4), one that finds an assembly of the primitive shapes to achieve
a target acoustic input impedance or transmission loss. To this effect, we formulate a combinato-
rial and continuous optimization problem, combinatorial in the sense of how to connect primitive
shapes, and continuous in the sense of determining geometric parameters of the primitives. To
solve it, we propose a hybrid method that interleaves a stochastic optimization, namely the Sequen-

tial Monte Carlo method, with a gradient-based quasi-Newton scheme.

4.3 Modular Acoustic Filter

4.3.1 Primitive Resonator

We propose to use a simple shape as our primitive resonator—a hollow cube with extruded cylinders
on its six faces (Figure f.4-left). All the cylindrical extrusions have the same radius and length
and therefore the bounding boxes of all primitives stay the same. They can be composed together

at their faces by connecting an inlet and an outlet to form a complex structure (Figure §.4-right).
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Figure 4.4: Modular filter. Our primitive resonator is a single shape bounded by a 2cmx2cmx2cm cube (left). A
combination of the primitives with varying shape parameters can form complex structure that connects an inlet to an
outlet.

Furthermore, the size of each hollow cube can change, providing one degree of freedom per element
as control variables to influence acoustic filtering properties, in addition to the connectivity of the

resonators.

Rationale Using the simple primitives offers many advantages: (i) They can fill the interior vol-
ume of virtually any shape, as long as they are sufficiently small. This enables us to construct acoustic
filters subject to various shape constraints. (ii) Computing the transmission matrix of any assembly
becomes fast and accurate. (iii) With a hollow cube of a variable size, the primitive is in a one-
dimensional shape space, which can be easily sample. For each sample, we precompute its trans-
mission matrices and interpolate between neighboring transmission matrices. When composed
into an assembly, these primitives offer a large number of degrees of freedom for controlling acous-
tic filtering properties. This idea is also similar to the concept of 3D symmetric condensed nodes

for the computation of electromagnetic fields [Christopoulos, 2006].

In this section, we describe how we compute the transmission matrix of an arbitrary assembly of the
primitive resonators. Ultimately, our goal is to compute both the topology of the primitive assembly

and the geometric parameters (i.e., the cube size of each element) for a desired input impedance or
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transmission loss.

Multi-port transmission matrix We start by extending the concept of transmission matrix in
(B.1) into a six-port transmission matrix. Since the radii of the six open ports of a primitive shape
are small, it remains valid to assume that the frequency-domain acoustic pressure p;(w) and ve-
locity v(w) (i=1...6) are uniformly distributed over the cross sections at each port. Then a linear

relationship similar to (4.1) holds:

p1(w) Ty ... T4 v1(w)
= : - : . (4.5)

pe(w) 9 ... Tg ve(w)

In a way similar to Eq. (4.4), we compute for a given frequency w the six-port transmission matrix
T by sampling six different sets of pressures {p;,i = 1...6}. Each set of pressures establishes the
(Dirichlet) boundary condition that uniquely solves the Helmholtz equation for sound propagation
in the primitive resonator. After the six Helmholtz solves, it produces six corresponding acoustic
velocities {v;,7 = 1...6}, which, together with {p;}, can be substituted into Eq. (.5) and uniquely

determine the matrix T.

Precomputation Given a primitive resonator shape with six ports, precomputing the transmis-
sion matrix T* amounts to solving the Helmholtz equation 6 times, with different Neumann bound-
ary conditions. In particular, for the i-th solve, we set v; = 1 and v; = 0 for all j # ¢. The trans-
mission matrix is calculated as 77; = pé-, where pé is the solution on face j under the i-th boundary
condition. This transmission matrix depends on not only the frequency but also the shape parame-
ter, the cube size. Therefore, we sample a set of frequency values and cube sizes, precompute the T

matrices, and store them in a database. We also note that the precomputation step can be accelerated
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using the recent asymptotic frequency sweeping method [Li ef al., 2015]. With these precomputed
six-port transmission matrices, we are able to interpolate the matrix of a primitive resonator of any
frequency and cube size in the sampled range. This interpolation will be used later in the optimiza-
tion step (S§.4) to compute optimal topology and geometry of the primitive assembly for a target

acoustic filtering property.

4.3.2 Transmission Matrix of Resonator Assembly

Now we compute the transmission matrix of a resonator assembly, which consists of primitive res-
onators (the size of each resonator is specified). Each of the six ports of a resonator is either joined
with a port of another resonator or closed with a solid wall. These ports are connected (possibly
through multiple paths) from an inlet to an outlet. Our goal here is to compute the frequency-
dependent 2 x 2 transmission matrix that relates the acoustic pressure and velocity at the outlet to

those at the inlet, as described in ({.1)).

We start with some notation. Consider an assembly composed of N primitive resonators. We use
j to index the primitives and k to index the six ports of each primitive. Let p),(w) and v} (w) de-
note respectively the frequency-domain acoustic pressure and velocity at the k-th port of the j-th
primitive. From the precomputation, for each primitive resonator j we also have a six-port (6 x 6)
transmission matrix T;(w) that relates the pressures p/, (w) with velocities v/ (w), k = 1...6 at its six

ports.

Similarly to the method used in Eq. (£-4), we sample two sets of pressures, (i1, Do1) and (Piz, Po2)>
at the inlet and the outlet. We seek a fast method to compute the corresponding acoustic velocity,

(Ti1, Uo1) and (i, o2 ), without solving the expensive Helmholtz equations. We observe that we can
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Figure 4.5: Linear solve of a filter assembly. The top orange part refers to the transmission matrices related to each

node in the assembly. The middle blue part specifies the connection information by mapping the velocity and pressure
values. The bottom two green rows are the given boundary conditions at the inlet and the outlet.

construct a sparse linear system (visualized in Figure §.5),
Aw)x(w) = b(w), (4.6)

to solve for the pressures p/,(w) and velocities v} (w) of all ports (j = 1...N, k = 1...6). Here, « has
12N elements, stacking all the pressures and velocities of frequency w at all ports. Every resonator
contributes a linear relationship (.5), resulting in a 6 linear equations which appears as a 6 x 12
submatrix (orange blocks in Figure §.5). All the resonators together form a 6/N x 12N sub-block
matrix. In addition, for the two ports that connect to the inlet and outlet, the pressures are the
sampled values (i.e., the two green rows in Figure f.5); at the closed ports, the velocities vanish; at
every pair of connected ports, their pressures need to match and their velocities need to be additively
inverse (e.g., the blue rows in Figure .5), as the sound waves flow along the same direction. All these
constraints result in another 6V linear equations. Putting together these equations yield a full-rank

sparse and 12N x 12N linear system.



CHAPTER 4. ACOUSTIC FILTERS SIMULATION AND OPTIMIZATION 64

We also note that the matrix A depends on the cube sizes of the primitive resonators, as it is assem-
bled using their transmission matrices T;, but b is a constant. Later when optimizing the cube sizes,

we will compute the derivative of A with respect to each cube size.

Computational efficiency This process computes the transmission matrix at a frequency w by
solving the sparse linear system, Az = b, twice. Both have the same A matrix, so it only needs
to be factorized once. In addition, across all frequencies, the sparsity pattern of A stays the same.
To exploit this invariant, we use the symbolic factorization (reordering) only once for the entire
computation and update the numerical data for each frequency sample, all implemented using the
Direct Sparse Solver provided in Intel MKL. As a result, the computation of transmission matrices

for all frequency samples (nearly 1000 samples) typically finishes in a few seconds.

4.4 Optimization

We now focus on the inverse problem: computing a structure of a primitive assembly and the pa-
rameter of each primitive in the assembly in order to realize a desired acoustic filtering property. We
formulate this problem as a combinatorial and continuous optimization (Sg.4.1)). To address both
the combinatorial and the continuous aspects of the problem, our algorithm interleaves a stochastic

optimization method with a quasi-Newton method (§§.4.2 and S§.4.3)).

4.4.1 Problem Formulation

Optimization objective Our optimization goal, the acoustic filtering property, depends on a spe-
cific application, whether it is a target impedance Zjy(w) (e.g., for wind instruments) or a target

transmission loss Ly (w) (e.g., for engine mufflers) in a frequency range |w;, w,]. Both quantities can
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be computed from the transmission matrix T(w) of a given assembly using Eq. (£.2) and Eq. (£3),
respectively. Thus, we discretize the frequency range using a set of samples w; € [w;, w,],7 = 1...N,,

and define a unified objective function in a least-squares form:

T= (9(T(w)) = 3:)° (4.7)

=1

Here, g(T(w;)) is the acoustic filtering quantity depending on the transmission matrix at a sampled
frequency w;. For instance, to control the input impedance, we use g(T(w;)) = log,, |Zv(ws)l;
to control the transmission loss, we use g(T(w;)) = Lrtr(w;). g; is the target acoustic filtering
quantity at the frequency w;. These values are user-controlled, e.g., by specifying a target curve in

the frequency domain.

We note that while this objective function suits well for our applications (§f.5), our optimization

method does not depend on this particular choice, as presented in the rest of this section.

Shape constraint In many applications, filters are often embedded in a limited space. To account
for this requirement, we allow the user to specify a 3D surface mesh to constrain the volume of the
assembly in the optimization process. Before the optimization starts, we voxelize the 3D mesh into
a lattice, where each grid cell represents a possible placement of a primitive resonator, and the grid
connects an inlet and an outlet, both specified on the mesh boundary (see video). By construction,
the resulting assembly of resonators are guaranteed to satisfy the shape constraint and connect the

inlet and outlet.

Optimization variables We have two types of optimization variables: (i) a string of binary bits s
indicating the lattice grid connectivity and (ii) a vector w stacking the cube sizes of primitive res-
onators used in the assembly. We index each grid cell interface in the lattice. If two primitives are

joined at an interface 7, then the corresponding bit in s is set to one. Ifa face of the grid cell is not con-
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nected with its neighboring grid cell, the corresponding bit in s is set to zero and the resonator port
on that face is closed with a solid boundary. As we will describe later, this bit string representation
is particularly suitable for our stochastic sampling algorithm. With these optimization variables, we
rewrite the acoustic filtering quantity ¢(T(w)) in Eq. (£7) as g(T (s, u,w;)) and explicitly write ./
as J(s, u) because the transmission matrix T depends on both the topology (described by s) and

the geometry (described by u) of the primitive assembly.

Method rationale and overview The optimization variables reflect the combinatorial and con-
tinuous nature of our problem. The problem of determining the placement and connectivity of the
primitives in the lattice is combinatorial; and determining the cube sizes of each primitive is con-
tinuous. A typical method of solving a combinatorial optimization relies on a Monte Carlo method
to sample in the parameter space and accept or reject samples probabilistically. The efficiency of
this method critically depends on the performance of evaluating the objective function, as it often
requires a large number of samples. From this perspective, our fast computation of the transmis-
sion matrix (Sg.3.2), a necessary component for evaluating the objective function (§.7), lays out an
important cornerstone for using a stochastic optimization algorithm. Meanwhile, if the connec-
tivity is given, optimizing the cube sizes for each primitive is a continuous problem, for which a

gradient-based method is more efficient.

We propose to use a stochastic optimization method to optimize the connectivity of the primitives.
When evaluating the objective function of a sampled resonator structure (i.e., the s), we compute
the cube size for each primitive (i.e., the u) using a gradient-based continuous optimization method
that minimizes the objective function with the fixed resonator structure. This is because continuous
optimization, leveraging gradient descent, is more efficient than stochastically sampling cube sizes.
Effectively, our method is a hybrid that interleaves a Monte Carlo sampling with a quasi-Newton

optimization scheme.
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4.4.2 Combinatorial Optimization of Connectivity

To solve a combinatorial optimization problem, one simple and popular approach is to use simu-
lated annealing [Kirkpatrick ef al., 1983], a method that can be interpreted as a single sequence of
Markov-Chain Monte Carlo (MCMC) sampling [Robert and Casella, 2013]. One way of improv-
ing its efficiency is to use multiple sequences of MCMC sampling, for which an efficient method is
Sequential Monte Carlo (SMC). In computer graphics, SMC has been applied for rendering, char-
acter control, and procedural modeling [Pegoraro et al., 2008; Hamildinen ef al., 2014; Ritchie ef al.}
2015]. In numerical optimization, SMC methods have been used for optimizing non-convex, non-
differentiable, and high-dimensional objective functions [Miguez ef al., 2010]. In the following, we
outline our modified SMC algorithm, followed by highlighting the components that are specifically

tailored for our problem.

Modified SMC algorithm As outlined in Algorithm [, we maintain N, different samples of the
lattice connectivity, that is, a set of binary-bit strings {s;,7 = 1...N,}. At each iteration, the algo-

rithm performs the following steps:
1. Evaluate the objective function J; for each sampled connectivity s;, = = 1...Ns (Line 3-6 in

Algorithm ).

2. Select the best M samples that produce the lowest objective values and perturb them. The
perturbation of bit strings is similar to the mutation operation in a genetic algorithm.

3. Replace the rest of the Ny — M samples with new samples using an MCMC sampling step
(Line 13-14 in Algorithm [3)).

These steps repeat until the best objective value drops below a threshold (Line 7 in Algorithm [).
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Evaluation of objective function Given a sampled connectivity, we evaluate the objective func-
tion .J defined in S§.4.1. Since .J depends on both the connectivity and the primitive cube sizes and
the latter has not yet been determined, we treat the evaluation as another optimization problem,
one that minimize the objective function over all possible cube sizes but with a fixed connectivity.

This is a continuous optimization problem, which we solve in §§.4.3.

Random sample of connectivity To initialize the set of lattice connectivities and to replace the
worst Ny — M samples at the third step of the algorithm, we need to sample bit strings s;. To this
end, we use a simple rejection sampling scheme, starting by random sampling of a bit string. Since
we must ensure the inlet and outlet are connected through primitive resonators, after sampling a bit
string we verify whether the corresponding connectivity structure connects the inlet with the outlet

(e.g., using a depth-first search on the lattice) and reject the sample if does not.

Connectivity perturbation We perturb the connectivity string s; using a mutation. Specifically,
we randomly select a bit in a string s; and flip it. In addition, this mutated string is subject to two
constraints: (i) the corresponding connectivity structure needs to retain the connection between
the inlet and the outlet; and (ii) the mutated bit needs to influence the resonator paths that connect
the inlet and the outlet; otherwise, the mutation makes no difference to the connected component
between the inlet and the outlet. We check the mutated bit string against both requirements and

reject the mutation if it fails the check.

4.4.3 Local Continuous Optimization

Next we discuss how to evaluate the objective function after sampling a lattice structure. This eval-
uation optimizes the cube sizes u of each primitive in the lattice structure in order to compute the

minimal objective function value. To achieve this, we first compute the gradient of .J with respect
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Figure 4.6: Before and after Broyden-Fletcher—Goldfarb-Shanno (BFGS) optimization. Combinatorial sampling is
difficult to converge to the user-specified target quickly due to its random nature. Enforcing local optimization for each
sample reaches the desired acoustic target faster.

to u from Eq. (£.7),

8J (s,u) 22 (5,1, w,)) — gi)(‘?g(T(s,u,wi))' (4.8)

The function g depends on the transmission matrix T, which further depends on the acoustic pres-
sures and velocities at every port of all the primitive resonators, according to Eq. (§.6). To compute

the partial derivative of g, applying the chain rule yields:

0g9(T(s,u,wi)) _ (09 9T Oz (4.9)
7 aT oz ) ou '
T

where x, as used in Eq. (§.6), stacks frequency-domain pressures and velocities of all the ports of
the primitives. If NV denotes the number of primitive resonators of the assembly, then m is a vector
of the length 12N, independent of the cube sizes of the primitives. gm isa 12N x N matrix. To

compute this matrix, recall that in Eq. (§.6), the matrix A depends on the cube sizes of the primitives,

and b is a constant. Differentiating both sides of Eq. (£.6) with respect to u yields:

ox OA
A— 4+ — = 4.1
ou Ou 0, (4.10)
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which is a linear system with V right-hand-side vectors, —22. Since A is assembled from the trans-
mission matrices of all primitives in the assembly(recall §f:3.2), 52 involves the derivatives of the
transmission matrices with respect to the cube sizes. We compute them by interpolating our pre-

computed primitive transmission matrices.

It seems straightforward to compute g—ﬁ by factorizing A only once and solving the linear system
N times, and use Eq. (£.9) and (§.8) to compute the gradient of the objective function. However,
if NV is large, even the repeated back substitutions for solving Eq. ({.10) are slow. Especially when
used in a Monte Carlo sampling step, this would significantly reduce the efficiency of the overall

optimization algorithm.

Speedup with Adjoint Method Fortunately, this computation can be largely accelerated using
the adjoint method, one that has been applied in computer graphics mainly for animation control
problems [McNamara ef al., 2004; Wojtan ef al., 2006; Barbi¢ ef al., 2009]. The key idea is based on
the observation that computing a matrix-vector product, m’ B such that AB = C, is equivalent to
computing ¢ C such that ATt = m. The advantage of the latter is that only a single linear-system

solve for the vector ¢ is needed. In our problem, this amounts to first solving

1+ OA

dg OT . 0g
ATt = ( —=—— ), followed b ting — =1t~ —. 4.11
( zc) , followed by computing == T (4.11)

For all our examples, this method results in nearly 10x speedups over the straightforward ap-

proach.

With the computation of the gradient g—i depicted, we apply it to a quasi-Newton method to mini-
mize J. In our implementation, we use the Limited-memory BFGS Bounded (L-BFGS-B) [Zhu ef
al., 19974]. In practice we found local gradient descent step complements the combinatorial sam-

pling. Figure @.g illustrates the effectiveness of the local optimization of the impedance curve.
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Figure 4.7: Industrial laboratory measurement setup.

4.5 Results

We now present the experiments we conducted to test our method. In all examples, we sample the
frequency range every 3Hz from 20Hz to 5kHz to precompute transmission matrices. The cube size
of the primitive resonator varies depending on specific applications: For muffler design and acoustic
signatures, the cube size is between 6mm and 2cm, sampled every Imm. For laboratory tests and
wind instrument design, the cube size is between 25cm and 35mm, also sampled every Imm. The

precomputation takes a few hours on a 16-core cluster.

We fabricated our designs using Stratasys uPrint SE Plus, a filament-based 3D printer with a layer
resolution at 0.254mm. We use ABS-P430 plastic as the model material and a dissolvable support
material which can be washed away upon finish. The fabrication time varies from a few hours to a

day, primarily depending on geometric size of a given model.

4.5.1 Validation on Acoustic Voxels

The fundamental building block of our assembly structure optimization is the fast computation of
a transmission matrix for an assembly (recall §§.3.7). We validate its accuracy using finite-element-

method (FEM) simulation and industrial laboratory tests.
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Figure 4.8: Double muffler and cube measured by Briiel & Kjeer. Our method agrees closely with both the expensive
FEM solve and the lab measurement. There is a large difference around 1600Hz, where the measurement input signal
does not have sufficient power to pass through. We believe this is caused by the wide and high transmission loss values
around this region which lead to low signal-to-noise ratio (SNR) during measurement.

Finite-element simulation We compute the transmission loss using Code_Aster [Aubry, 2013],
awell-developed and carefully tested finite-element solver for mechanics. We follow the routine out-
lined in §B.2.2, solving for the acoustic velocities with different boundary conditions using Code _Aster.

We then compute the transmission matrix by assembling and solving the Equation (£.4).

Industrial laboratory test We sent fabricated samples to Briiel & Kjaer’s acoustic laboratory for
independent, third-party tests conducted by their acoustic professionals.  Briiel & Kjer is the
world’s largest manufacturer and supplier of acoustic measurement equipment and solutions. They

measured the transmission loss of our samples using Briiel & Kjaer4206-T measurement tubes with

the 4-microphone technique [[Tao and Seybert, 2003], sweeping the frequency range every 4Hz from
20Hz to 3500Hz under the condition of 21°C (room temperature), 98.9kPa (pressure), and 44% of
relative humidity. To ensure best acoustic seal during the tests, clay gaskets were also added between

the measurement tubes and our test samples (see Fig. f.7).

Comparison The comparison shows that our fast computation of transmission loss agrees with

both the finite-element simulation and laboratory experiments closely, as in Figure .§. The top
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plot in Figure {f.§ validates the agreement between the finite-element simulation and the laboratory
tests using a double-chamber mufller, which is known to be an effective broadband filter. It lacks
the curve from our computation model, simply because this model is not made from our primi-
tive resonators. We use this test to examine the use of the numerical and experimental methods.
The bottom plot reports the transmission loss of an assembly muffler made of 3x3x3 primitive
resonators, comparing the results from finite-element simulation (blue curve), Briiel & Kjer’s lab-
oratory measurement (orange dots), and our fast computation (blue curve). They all agree with
each other closely. Particularly, our computational model is able to predict the peaks and valleys on
the transmission loss curve, with the differences from the measurement less than 20Hz on average.
These peaks and valleys indicate the most and the least attenuated frequencies when sound passes
through the filter, and they will be of practical importance to control when one designs a muftler,

as demonstrated later in S.5.2.

We also run three validation tests on impedance curves to compare the error of our fast computa-
tion and full FEM solve. Figure .9 shows that our method robustly computes the impedance curve
and introduces slight numerial instability as the model gets more complicated. In terms of compu-
tational performance, our method is much faster than the finite-element simulation. For example,

to compute the transmission loss curve of this 33 x3 resonator assembly, which involves compu-

’ Code Aster
1 Our method )
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o

impedance
S
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>
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Figure 4.9: Impedance comparison with Code Aster. In the sequence of three models with increasing complexity, our
method agrees with Code Aster closely.
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-— sound absorbing foam

Figure 4.10: Recording setup to record the sounds before and after our filtering. The chamber inner surface is sur-
rounded by sound absorbing foam to minimize ambient noise from outside as well as the wave reflection/refraction
inside the chamber.

tation at 1000 frequency samples, our method takes 1.2 seconds, while the finite-element method

takes around 22 hours, resulting in 77,000 x speedup.

4.5.2 Application I: Muffler Design

Man-made mechanisms produce noise, with clear patterns exhibited in the sound spectrum. For
instance, the aircraft and automobile engine noise have pronounced frequency components related
to revolutions per minute (RPM) of the engine cranks. The car horns have particular frequency
patterns regulated by local government (i.e., 390Hz and its harmonics in U.S.). Traditionally, muf-
flers are designed at a large granularity, aiming to filter sound in a wide band of frequency range,

partially because of its ease of control using relatively simple muffler geometries.

Engine noise muffler Here we demonstrate the possibility of controlling muffler behavior at finer
granularity using our modular filter, because of its ability to construct complex muffler structures.
We aim to construct mufllers that selectively attenuate sound near a set of discrete frequency values.
Our first example is to attenuate a recorded engine noise, which has peaks in frequency domain at

850Hz, 1550Hz, and 2100Hz. To filter these frequency components, we uniformly sample frequen-
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Optimization

# DoFs type #targets avg. time
PigGy 21 Z 3 9m
Ocrorus 76 TL 8 2h10m
Bos 258 Z 13 7h
ENGINEMUFF 20 TL 3 15m
EARENGINE 51 TL 3 11lm
EARHORN 127 TL 7 1h15m
Hippo 122 Z 4 51lm

Table 4.1: Optimization Statistics The number of DoFs is the sum of number of feasible nodes and number of con-
necting faces. Optmization time is averaged over all the optimized targets for each example. The number of targets is
the number of peaks and valleys that we want to optimize in each example.

cies w;, 1 = 1..N,, which include the peak frequencies. We then define an objective function (g.7),
in which the g(T(w;)) compute the transmission loss (using Equation (§.3)), and g; is a large value at
the peak frequencies and zero otherwise. The mufller structure is optimized with a combination of
8 resonators, and the quantitative results is plotted in Figure (orange curve). We also compare
the result with a muffler that has the same volume of the internal chamber but unoptimized struc-
ture (blue curve), showing that the optimized mufller indeed attenuates the unwanted frequency

peaks. Please refer to the video for their audible differences.

Acoustic earmuffs Our next example of muffler design is for acoustic earmuffs. There has been a
variety of acoustic earmufls targeting at different application scenarios, such as hunting, construc-
tion work, and riding motorcycles. While some earmuffs also employ a microphone mounted in
the headset to actively reduce broadband noise, many others reply on acoustic structures and mate-
rials for noise reduction and have the advantage of robustness and long working time (without any

battery). Our method can also design passive earmulffs, but complement this category by allowing
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Figure 4.11: Engine Muffler. We compare an unoptimized muffler and an optimized one. The three noisy peaks are
suppressed to lower levels with the optimized muffler.

user customization.

We demonstrate two earmuffs that can be modularly mounted in the headset (see video) and switch
to different ones when needed. The first one is customized to reduce engine noise having peak fre-
quencies at 1000Hz, 1600Hz, and 2200Hz (Figure §.12-top). The second one is designed for riding
motorcycles (Figure f.12-bottom). We aim for reducing aerodynamic noise while allowing the rider
to hear car horns for the sake of safety. Therefore, the objective function is to suppress a broadband
noise without heavily filtering car horn sound at 390Hz and its harmonics. Both earmuffs are com-
puted by optimizing the structure of 42 primitive resonators. As shown in the plots of Figure §.12,

our mufflers indeed filter out frequency components we desired.

4.5.3 Application II: Wind Instruments

Acoustic resonator is a key part of wind instruments. While nonlinear excitation mechanism of a

wind instrument (such as the mouth piece) is also important [Allen and Raghuvanshi, 2015], criti-
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Figure 4.12: Acoustic earmuff. We customized two earmuffs (top and bottom) that can be modularly mounted in a
headset. In the plots on the left, the orange curves show the filtered sounds where the peaks and valleys correspond to
the purple points on the right.

cally affecting the timbre of the instrument, the acoustic resonator serves to modulate the excitation
and controls the pitch. In particular, it is known that the playable notes of a wind instrument corre-

spond to the peaks of the resonator’s input impedance, except its first peak (called pedal note).

We applied our method to customize trumpets. Our customization is twofold: we wish to control
the set of notes that a trumpet can play while customizing its shape, which, in our case, a cartoon
hippopotamus shape. The resulting trumpet still relies on the standard mouthpiece for excitation.
Given a set of notes, we define an objective function (4.7) that maximizes the impedance values at the
frequencies of those notes. We customized 3 different trumpets, whose playable notes are [G4,D5],
[C4, G4, C5], and [G4, B%4, C*5, E5], respectively. As shown in Figure .13, our optimized primitive
assembly can be placed inside of the hippopotamus shape and are playable. In the supplemental
video, we demonstrate that the resulting musical notes produced by our customized resonators are

in tone, whereas the unoptimized resonator deviates a lot from the desired notes. We note that while
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impedance

Figure 4.13: Wind instrument. We optimize for 4 notes for the Hippo trumpet to play, located at the impedance
maximums, the first one being the pedal note, a sustained tone. The spectrogram of our recording confirms the accuracy
of our optimization framework.

it is known that the players can “bend” the notes by around a semitone, it is difficult to rely on this

controllability to play in tune especially without our assembly optimization.

4.5.4 Application III: Acoustic Signatures

Our acoustic filter design opens up possibilities for new applications. Inspired by the recent work
on creating tangible input devices that interact through acoustics [Laput ef al., 2015; Savage ef al.]

2015], we demonstrate two examples, namely acoustic tagging and acoustic encoding.

Acoustic tagging Our method enables a new way of tagging 3D shapes. This is similar in spirit to
the recent work on tagging 3D fabricated shapes by modulating material distribution and decoding
using Terahertz imaging [Willis and Wilson, 2013], but from a completely different perspective, the

acoustics.

Our key idea is to embed tags into the acoustic filtering effects of a shape, by computationally opti-
mizing its internal structure without largely changing its visual appearance, as long as the shape has

two holes serving as the inlet and outlet (Figure .T-a). Even with a single tapping using a palm at a
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hole, one can produce an acoustic wave passing through the internal structure and output a filtered
noise. A simple FFT-based algorithm can recognize the output sound and decode the tags. Com-
pared to the existing tagging approaches, this method requires no electronics during installation and
detection (unlike Radio Frequency Identification tags) or multi-material fabrication (unlike [Willis
and Wilson, 2013]). It relies on our optimization method to physically realize a specific acoustic sig-
nature that can be reliably read by a computer program. In our examples, we choose to make each
tag to have distinct peaks of their impedance curves, and thereby allowing for robust, FFT-based

decoding.

We demonstrate this approach by fabricating three identical piggy shapes (Figure f.1-b), each with
an target acoustic impedance curve peaking at different frequency values (Figure §.14). Using our
Acoustic Voxels approach, we realize these impedance curves with our primitive assemblies. We
have implemented a simple iPhone application that decodes a recorded tapping sound and detect
the resonant frequencies which correspond to the local maximums on the impedance curve. As
shown in the video (and Figure §.1)), the iPhone application can reliably detect the tags and identify

the piggies.

To take the complexity of our optimized muffler further, we voxelized Bos, the duck-shaped life-
saver, with the inlet at the beak and the outlet at the tail (Figure f.15). We optimized for two sets of
frequency peaks on the impedance curve; each has more than 10 peaks. We evaluated this example
by comparing the target impedance against the optimized impedance computed using our simula-
tion model without fabricating the models, because of the 3D printer’s limitation on the geometric
size of the fabricated shapes (Figure f.15). This example promises for tagging a large pool of objects

or controlling the filtering behaviors at a finer granularity in future.

Acoustic encoding Taking one step further, we demonstrate the ability to encode bit strings,

which can be interpreted as virtually any type of information, akin to the idea of QR code but visu-
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ally less distracting. The idea is again using acoustic filter to modulate frequencies in a controlled
way. Instead of controlling acoustic impedance curves, here we explore the possibility of encoding
in the transmission loss curve, with a simple coding scheme: To encode /N bits of information, we
evenly sample 2N frequency values and group the samples pairwise. Let the frequencies are grouped
as (wy,ws), (W3, wy), ..., (Wan_1,wan ). We encode a “1” at the i-th bit if the transmission loss value
at wy;_1 is smaller than that at wy;, and encode a “0” if the value at wy; 4 is larger than that at w,; (Fig-
ure f1.16-b). By setting an objective function that maximizes and minimizes the transmission loss
at corresponding frequencies, we optimize for an acoustic filter that physically realizes this coding

scheme.

We fabricated three objects with an identical, octopus-like surface shape (Figure d.1€), and use them
to encode different 4-bit strings, including “0000”, “1001”, and “0111”. As shown in the video, we
have implemented another iPhone application that plays a white noise from its speaker while si-
multaneously recording from its microphone. When aligning the iPhone speaker and microphone
with two holes (i.e., the inlet and outlet) on the object, the white noise passes through the internal
structure of the shape and gets filtered. By detecting the filtered amplitudes at the pre-specified
frequencies w;, the application decodes the bit strings. In future, the application can be made to

interpret the bit strings in a specific context and enable other new applications.

4.6 Conclusion

Our method is mostly suitable for controlling impedance and transmission loss at discrete frequen-
cies, but has limited ability to control a broadband of frequencies. For this purpose, the traditional
muffler design is more suitable. Currently, we use only one rigid material and optimize the filter’s
chamber shape, while automotive mufllers often use composite materials. It is also less clear, when

optimizing for more acoustic properties, how much control can be exerted via merely the assembly
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shape optimization. So far, we consider only a single type of primitive resonators. Extending our
method to more primitive shapes and materials can offer a larger palette for better acoustic filter-
ing control. Practically, we have some difficulties to ensure the internal structure of a filter being

thoroughly cleaned after 3D printing, as it is hard to examine give