11,989 research outputs found

    Optimal Microgrid Topology Design and Siting of Distributed Generation Sources Using a Multi-Objective Substrate Layer Coral Reefs Optimization Algorithm

    Get PDF
    n this work, a problem of optimal placement of renewable generation and topology design for a Microgrid (MG) is tackled. The problem consists of determining the MG nodes where renewable energy generators must be optimally located and also the optimization of the MG topology design, i.e., deciding which nodes should be connected and deciding the lines’ optimal cross-sectional areas (CSA). For this purpose, a multi-objective optimization with two conflicting objectives has been used, utilizing the cost of the lines, C, higher as the lines’ CSA increases, and the MG energy losses, E, lower as the lines’ CSA increases. To characterize generators and loads connected to the nodes, on-site monitored annual energy generation and consumption profiles have been considered. Optimization has been carried out by using a novel multi-objective algorithm, the Multi-objective Substrate Layers Coral Reefs Optimization algorithm (Mo-SL-CRO). The performance of the proposed approach has been tested in a realistic simulation of a MG with 12 nodes, considering photovoltaic generators and micro-wind turbines as renewable energy generators, as well as the consumption loads from different commercial and industrial sites. We show that the proposed Mo-SL-CRO is able to solve the problem providing good solutions, better than other well-known multi-objective optimization techniques, such as NSGA-II or multi-objective Harmony Search algorithm.This research was partially funded by Ministerio de Economía, Industria y Competitividad, project number TIN2017-85887-C2-1-P and TIN2017-85887-C2-2-P, and by the Comunidad Autónoma de Madrid, project number S2013ICE-2933_02

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    Efficient Deployment of Small Cell Base Stations Mounted on Unmanned Aerial Vehicles for the Internet of Things Infrastructure

    Get PDF
    In the Internet of Things networks deploying fixed infrastructure is not always the best and most economical solution. Advances in efficiency and durability of Unmanned Aerial Vehicles (UAV) made flying small cell base stations (BS) a promising approach by providing coverage and capacity in environments where using fixed infrastructure is not economically justified. A key challenge in covering an area with UAV-based small cell BSs is optimal positioning the UAVs to maximize the coverage and minimize the number of required UAVs. In this paper, we propose an optimization problem that helps to determine the number and position of the UAVs. Moreover, to have efficient results in a reasonable time, we propose complementary heuristic methods that effectively reduce the search space. The simulation results show that our proposed method performs better than genetic algorithms

    State of the art of wind farm optimization

    Get PDF
    • …
    corecore