162 research outputs found

    Feature technology and its applications in computer integrated manufacturing

    Get PDF
    A Thesis submitted for the degree of Doctor of Philosophy of University of LutonComputer aided design and manufacturing (CAD/CAM) has been a focal research area for the manufacturing industry. Genuine CAD/CAM integration is necessary to make products of higher quality with lower cost and shorter lead times. Although CAD and CAM have been extensively used in industry, effective CAD/CAM integration has not been implemented. The major obstacles of CAD/CAM integration are the representation of design and process knowledge and the adaptive ability of computer aided process planning (CAPP). This research is aimed to develop a feature-based CAD/CAM integration methodology. Artificial intelligent techniques such as neural networks, heuristic algorithms, genetic algorithms and fuzzy logics are used to tackle problems. The activities considered include: 1) Component design based on a number of standard feature classes with validity check. A feature classification for machining application is defined adopting ISO 10303-STEP AP224 from a multi-viewpoint of design and manufacture. 2) Search of interacting features and identification of features relationships. A heuristic algorithm has been proposed in order to resolve interacting features. The algorithm analyses the interacting entity between each feature pair, making the process simpler and more efficient. 3) Recognition of new features formed by interacting features. A novel neural network-based technique for feature recognition has been designed, which solves the problems of ambiguity and overlaps. 4) Production of a feature based model for the component. 5) Generation of a suitable process plan covering selection of machining operations, grouping of machining operations and process sequencing. A hybrid feature-based CAPP has been developed using neural network, genetic algorithm and fuzzy evaluating techniques

    An Integrated Intelligent CAD/CAPP Platform: Part II - Operation Sequencing Based on Genetic Algorithm

    Get PDF
    We present a platform for integrated CAD/CAPP part design based on Elementary Machining Features (EMF) and intelligent approach for setup planning and operation sequencing based on a genetic algorithm through two papers. In this paper, as Part II of this platform, CAD/CAPP integration was realized via information from the enriched EMF, as well as production rules and a genetic algorithm. This is done for the purpose of the automated machining operation sequencing. Operation sequencing was conducted by using the improved genetic algorithm (GA).The improved GA uses integer representation for operations and implements modified genetic operators, enabling the achievement of high results in a reasonable computational time. In the paper we present a comprehensive case study applied to some existing and one new industrial example, confirming a high level of usability of the proposed GA and overall platform. Experimental results show that the improved GA algorithm gives slightly better results than similar algorithms in literature. For industrial example, we use body of the hydraulics cylinder which consists of 52 EMF. After implementation of the proposed methodology, the optimal machining operation sequence was identified, as well as the total machining cost of 142.49 BAM

    Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models

    Get PDF
    This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi-Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components

    Computer aided process planning for rapid prototyping using a genetic algorithm

    Get PDF
    This thesis presents a new method for Computer Aided Process Planning (CAPP) for a subtractive Rapid Prototyping (RP) process. The CNC-RP process uses a 4-axis CNC machining center to create parts with flat end-mills. The objective is to determine the optimal system parameters for the RP process - those that enable parts to be created in a shorter amount of time. Two main contributions make this possible. First, a method of generating different machining orientation sets enables the part to be created with the same level of safety and quality available with the current system. Second, machining time is related to tool selection. These two contributions are combined into a single objective function. A Genetic Algorithm technique is implemented to determine the best machining tool sizes and machining orientations. The results show that a Genetic Algorithm can be applied to a RP process plan to reduce the total processing time

    Optimization for process planning and scheduling in parts manufacturing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A hybrid grey wolf optimizer for process planning optimization with precedence constraints

    Get PDF
    Process planning optimization is a well-known NP-hard combinatorial problem extensively studied in the scientific community. Its main components include operation sequencing, selection of manufacturing resources and determination of appropriate setup plans. These problems require metaheuristic-based approaches in order to be effectively and efficiently solved. Therefore, to optimize the complex process planning problem, a novel hybrid grey wolf optimizer (HGWO) is proposed. The traditional grey wolf optimizer (GWO) is improved by employing genetic strategies such as selection, crossover and mutation which enhance global search abilities and convergence of the traditional GWO. Precedence relationships among machining operations are taken into account and precedence constraints are modeled using operation precedence graphs and adjacency matrices. Constraint handling heuristic procedure is adopted to move infeasible solutions to a feasible domain. Minimization of the total weighted machining cost of a process plan is adopted as the objective and three experimental studies that consider three different prismatic parts are conducted. Comparative analysis of the obtained cost values, as well as the convergence analysis, are performed and the HGWO approach demonstrated effectiveness and flexibility in finding optimal and near-optimal process plans. On the other side, comparative analysis of computational times and execution times of certain MATLAB functions showed that the HGWO have good time efficiency but limited since it requires more time compared to considered hybrid and traditional algorithms. Potential directions to improving efficiency and performances of the proposed approach are given in conclusions.Web of Science1423art. no. 736

    The evaluation of a novel haptic machining VR-based process planning system using an original process planning usability method

    Get PDF
    This thesis provides an original piece of work and contribution to knowledge by creating a new process planning system; Haptic Aided Process Planning (HAPP). This system is based on the combination of haptics and virtual reality (VR). HAPP creates a simulative machining environment where Process plans are automatically generated from the real time logging of a user’s interaction. Further, through the application of a novel usability test methodology, a deeper study of how this approach compares to conventional process planning was undertaken. An abductive research approach was selected and an iterative and incremental development methodology chosen. Three development cycles were undertaken with evaluation studies carried out at the end of each. Each study, the pre-pilot, pilot and industrial, identified progressive refinements to both the usability of HAPP and the usability evaluation method itself. HAPP provided process planners with an environment similar to which they are already familiar. Visual images were used to represent tools and material whilst a haptic interface enabled their movement and positioning by an operator in a manner comparable to their native setting. In this way an intuitive interface was developed that allowed users to plan the machining of parts consisting of features that can be machined on a pillar drill, 21/2D axis milling machine or centre lathe. The planning activities included single or multiple set ups, fixturing and sequencing of cutting operations. The logged information was parsed and output to a process plan including route sheets, operation sheets, tool lists and costing information, in a human readable format. The system evaluation revealed that HAPP, from an expert planners perspective is perceived to be 70% more satisfying to use, 66% more efficient in completing process plans, primarily due to the reduced cognitive load, is more effective producing a higher quality output of information and is 20% more learnable than a traditional process planning approach

    Aggregate process planning and manufacturing assessment for concurrent engineering

    Get PDF
    The introduction of concurrent engineering has led to a need to perform product development tasks with reduced information detail. Decisions taken during the early design stages will have the greatest influence on the cost of manufacture. The manufacturing requirements for alternative design options should therefore be considered at this time. Existing tools for product manufacture assessment are either too detailed, requiring the results of detailed design information, or too abstract, unable to consider small changes in design configuration. There is a need for an intermediate level of assessment which will make use of additional design detail where available, whilst allowing assessment of early designs. This thesis develops the concept of aggregate process planning as a methodology for supporting concurrent engineering. A methodology for performing aggregate process planning of early product designs is presented. Process and resources alternatives are identified for each feature of the component and production plans are generated from these options. Alternative production plans are assessed in terms of cost, quality and production time. A computer based system (CESS, Concurrent Engineering Support System) has been developed to implement the proposed methodology. The system employs object oriented modelling techniques to represent designs, manufacturing resources and process planning knowledge. A product model suitable for the representation of component designs at varying levels of detail is presented. An aggregate process planning functionality has been developed to allow the generation of sets of alternative plans for a component in a given factory. Manufacturing cost is calculated from the cost of processing, set-ups, transport, material and quality. Processing times are calculated using process specific methods which are based on standard cutting data. Process quality cost is estimated from a statistical analysis of historical SPC data stored for similar operations performed in the factory, where available. The aggregate process planning functionality has been tested with example component designs drawn from industry

    Process Planning for Assembly and Hybrid Manufacturing in Smart Environments

    Get PDF
    Manufacturers strive for efficiently managing the consequences arising from the product proliferation during the entire product life cycle. New manufacturing trends such as smart manufacturing (Industry 4.0) present a substantial opportunity for managing variety. The main objective of this research is to help the manufacturers with handling the challenges arising from the product variety by utilizing the technological advances of the new manufacturing trends. This research focuses mainly on the process planning phase. This research aims at developing novel process planning methods for utilizing the technological advances accompanied by the new manufacturing trends such as smart manufacturing (Industry 4.0) in order to manage the product variety. The research has successfully addressed the macro process planning of a product family for two manufacturing domains: assembly and hybrid manufacturing. A new approach was introduced for assembly sequencing based on the notion of soft-wired galled networks used in evolutionary studies in Biological and phylogenetic sciences. A knowledge discovery model was presented by exploiting the assembly sequence data records of the legacy products in order to extract the embedded knowledge in such data and use it to speed up the assembly sequence planning. The new approach has the capability to overcome the critical limitation of assembly sequence retrieval methods that are not able to capture more than one assembly sequence for a given product. A novel genetic algorithm-based model was developed for that purpose. The extracted assembly sequence network is representing alternative assembly sequences. These alternative assembly sequences can be used by a smart system in which its components are connected together through a wireless sensor network to allow a smart material handling system to change its routing in case any disruptions happened. A novel concept in the field of product variety management by generating product family platforms and process plans for customization into different product variants utilizing additive and subtractive processes is introduced for the first time. A new mathematical programming optimization model is proposed. The model objective is to provide the optimum selection of features that can form a single product platform and the processes needed to customize this platform into different product variants that fall within the same product family, taking into consideration combining additive and subtractive manufacturing. For multi-platform and their associated process plans, a phylogenetic median-joining network algorithm based model is used that can be utilized in case of the demand and the costs are unknown. Furthermore, a novel genetic algorithm-based model is developed for generating multi-platform, and their associated process plans in case of the demand and the costs are known. The model\u27s objective is to minimize the total manufacturing cost. The developed models were applied on examples of real products for demonstration and validation. Moreover, comparisons with related existing methods were conducted to demonstrate the superiority of the developed models. The outcomes of this research provide efficient and easy to implement process planning for managing product variety benefiting from the advances in the technology of the new manufacturing trends. The developed models and methods present a package of variety management solutions that can significantly support manufacturers at the process planning stage

    Reconfiguring process plans: A mathematical programming approach

    Get PDF
    Increased global competition and frequent unpredictable market changes are current challenges facing manufacturing enterprises. Unpredictable changes of part design and engineering specifications trigger frequent and costly changes in process plans, which often require changes in the functionality and design of the manufacturing system. Process planning is a key logical enabler that should be further developed to cope with the changes encountered at the system level as well as to support the new manufacturing paradigms and continuously evolving products. Retrieval-based process planning predicated on rigid pre-defined boundaries of part families, does not satisfactorily support this changeable manufacturing environment. Since purely generative process planning systems are not yet a reality, a sequential hybrid approach at the macro-level has been proposed. Initially the master plan information of the part family\u27s composite part is retrieved, then modeling tools and algorithms are applied to arrive at the process plan of the new part, the definition of which does not necessarily lie entirely within the boundary of its original part family. Two distinct generative methods, namely Reconfigurable Process Planning (RPP) and Process Re-Planning were developed and compared. For RPP, a genuine reconfiguration of process plans to optimize the scope, extent and cost of reconfiguration is achieved using a novel 0-1 integer-programming model. Mathematical programming and formulation is proposed, for the first time, to reconfigure process plans to account for changes in parts\u27 features beyond the scope of the original product family. The computational time complexity of RPP is advantageously polynomial compared with the exponentially growing time complexity of its classical counterparts. As for Process Re-Planning, a novel adaptation of the Quadratic Assignment Problem (QAP) formulation has been developed, where machining features are assigned positions in one-dimensional space. A linearization of the quadratic model was performed. The proposed model cures the conceptual flaws in the classical Traveling Salesperson Problem; it also overcomes the complexity of the sub-tour elimination constraints and, for the first time, mathematically formulates the precedence constraints, which are a comer stone of the process planning problem. The developed methods, their limitations and merits are conceptually and computationally, analyzed, compared and validated using detailed industrial case studies. A reconfiguration metric on the part design level is suggested to capture the logical extent and implications of design changes on the product level; equally, on the process planning level a new criterion is introduced to evaluate and quantify impact of process plans reconfiguration on downstream shop floor activities. GAMS algebraic modeling language, its SBB mixed integer nonlinear programming solver, CPLEX solvers and Matlab are used. The presented innovative new concepts and novel formulations represent significant contributions to knowledge in the field of process planning. Their effectiveness and applicability were validated in different domains
    corecore