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Abstract 

Computer aided design and manufacturing (CAD/CAM) has been a focal research 

area for the manufacturing industry. Genuine CAD/CAM integration is necessary 

to make products of higher quality with lower cost and horter lead times. 

Although CAD and CAM have been extensively used in industry , effective 

CAD/CAM integration has not been implemented. The major obstacles of 

CAD/CAM integration are the representation of design and proces knowledge 

and the adaptive ability of computer aided process planning (CAPP). 

This research is aimed to develop a feature-based CAD/CAM integration 

methodology. Artificial intelligent techniques such as neural networks, heuristic 

algorithms, genetic algorithms and fuzzy logics are used to tackle problems . The 

activities considered include: 

1) Component design based on a number of standard feature classe with validity 

check. A feature classification for machining application is defined adopting 

ISO 10303-STEP AP224 from a multi-viewpoint of design and manufacture. 

2) Search of interacting features and identification of features relationships . A 

heuristic algorithm has been proposed in order to resolve interacting features . 

The algorithm analyses the interacting entity between each feature pair, 

making the proce simpler and more efficient. 

3) Recognition of new features formed by interacting features . A novel neural 

network-based technique for feature recognition has been designed, which 

solves the problems of ambiguity and overlaps. 

4) Production of a feature based model for the component. 

5) Generation of a suitable process plan covering selection of machining 

operations, grouping of machining operations and process sequencing. A 

hybrid feature-based CAPP has been developed using neural network, genetic 

algorithm and fuzzy evaluating techniques . 
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Chapter I Introduction 

Chapter 1 

Introduction 

1.1. Background 

With the growing trend towards global market, industry is facing fierce 

competition. Traditional design and manufacturing practice i no longer uitable 

for the new requirements. It has been widely recognised that genuine integration 

of design and manufacturing is needed to make products of higher quality with 

lower cost and shorter lead times. Although CAD and CAM have been 

extensively used in industry, effective CAD/CAM integration ha not been 

implemented and human intervention is often required to interpret design data for 

downstream applications. 

One of the major obstacles of CAD/CAM integration is the repre entation of 

design and process knowledge. Geometrical models only provide the geometri 

and topological information of a component, which is not sufficient for 

manufacturing applications, e.g. process planning. Thu , feature encap ulating 

the engineering significance are considered as a key element in the integration of 

design and manufacturing and feature-based models have been widely u ed. 

Although considerable work has been done in feature technology, progres ha 

been hindered by interacting features and inability of elf-learning for feature 

recognition . 

Computer-aided process planning (CAPP) is considered as another key element 

for CAD/CAM integration, which automates to some extent, the decision making 
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m process selection, sequencing and parameter calculation . A con iderable 

number of CAPP systems have been developed , but only a few of them ha e the 

abilities of adaptation and self-learning for certain tasks . 

1.1.1. Definition of features 

A feature cannot be defined without considering its application . That is feature 

are application dependent. Numerous definitions of features according to th 

application are given by various researchers, uch as "any geometric form or 

entity uniquely defined by its boundaries, or any uniquely defined geometric 

attribute of a part that is meaningful to any life cycle issue" [Dixon et al, 1987] ; 

"regions of a part having some machining significance" [Joshi and Chang, 1988]· 

"solid removable by operations typically performed in a 3-axis machining centre 

[Vandenbrande and Requicha, 1990], "a set of geometric entitie (face , edge 

and vertices) together with specifications of the bounding relation hip between 

them that together imply an engineering function on an object" [Kang and Nnaji 

1993]; "a feature represents the engineering meaning or ignificance of the 

geometry of a part or assembly" [Shah and Mantyla, 1995], "form features can be 

defined as a part geometry associated with proces planning entities such a lot 

and pockets" [Zhang et al, 1997], "a geometric feature is traditionally defined a 

any subset of the geometric model of the object that is of intere t in a particular 

context (e.g. in CAPP)" [Yue and Venuvinod, 1999]. From the de ign and 

manufacturing point of view, features referred to in this thesis is defined as a 
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geometrical entity, which may be associated with a group of particular machining 

processes and can be used to reason about a suitable machining method. 

1.1.2. Feature technology 

Feature technology has been considered an indispensable tool for integrating 

design and manufacturing processes. Feature recognition and design by feature 

are the two major approaches to creating feature models [Bron voort and Jan n 

1993] . Feature recognition makes direct use of geometric model and generate 

application-specific feature models using various recognition rule sets regarding 

the application. A principal advantage of the feature recognition is the po ibility 

of using conventional CAD systems directly. However, there are problem with 

feature recognition such as feature interactions hindering its practical application . 

With a design by features approach, the designer specifies a de ign model u ing a 

set of design features defined in a feature-based model system [Lee and Kim 

1998] . In contrast to feature recognition , design by feature can capture the 

design and manufacturing information during the design tage. It reduce 

remarkably the amount of work for recognising feature , but does not eliminate 

the need for feature recognition [Gindy et al 1998]. Thus feature recognition 

techniques are required in all systems that use features for analysis and deci 1on 

making. 

3 
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1.1.3. Neural networks 

Artificial neural networks (ANNs) are information proces ing device con i ting 

of many interconnected processing elements (neuron ) based on the neural 

structure of the brain . An ANN is configured for a specific application by a 

learning process, such as classification, pattern recognition , optimi ation or 

prediction. Neural network techniques regarded as an adaptive method ha 

advantages on the applications of both feature recognition and CAPP: 

I) A neural network can tolerate slight errors from input; 

2) The techniques are faster because the process is limited to imple 

mathematical computations and does not use either a search or logical rules to 

parse information; 

3) An ANN feature recogniser possesses experience to recognise and cia ify 

similar features since it is trained and there is no need to predefine very 

instance of a feature as in most traditional system . 

Although much ha been done with various approache and certain succes 

achieved in feature recognition and CAPP, most of the methods do not have the 

learning capabilities of neural networks. Neural network technique which have 

been prevalent in recent years, offer a new promising solution in the e areas of 

research . 

4 
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1.1.4. CAPP 

Process planning establishes a set of manufacturing operation and their equence 

and specifie the appropriate tools and proce parameters in order to produce a 

component from its initial raw state to a final form predetermined from an 

engineering drawing. The use of computer techniques to automate the ta k of 

process planning - computer aided process planning (CAPP) has been the ubj ct 

of extensive research for CAD/CAM integration. A CAPP y tern u ually 

performs the determination of machining operations, selection of uitable etup 

and machining resources, and process sequencing. As a key technology for 

computer aided design and manufacturing integration, CAPP strongly influence 

the cost of production and the quality of a product. The greater the degree of 

automation of a CAPP system, the shorter the time from design to machining, and 

the better the quality of the final product owing to the elimination of human error 

[Yip-Hoi and Dutta, 1996]. 

Two approaches have been developed in CAPP: variant and generative. Variant 

process planning systems use group technology concepts to aid a process planner. 

Features sharing common manufacturing characteristics are cia ified into the 

same group. This approach may cut down process planning time dramatically 

especially for similar components. However, there is a main drawback that 

process plans are limited to those that were previously created. In generative 

process planning systems, a process plan is created by utilising rules of expert 

knowledge. In comparison to the variant method, the generative method need 

less human intervention and new parts may be planned as ea ily a existing 
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components. The main problem is that it cannot adapt to change in manufacturing 

practice and technology. Further, expert knowledge acqui ition i tim -

consuming, costly and error-prone. 

1.1 .5. Genetic algorithms 

A genetic algorithm (GA) being one of the mo t popular combinatorial algorithm 

and artificial intelligence (AI) technique, i a search technique for olving 

optimisation problems based one the mechanics of the survival of the fitte t 

[Dereli and Filiz, 1999]. The algorithm incrementally converges to an optimal or 

near-optimal solution based on a series of biological operations including 

selection, crossover and mutation. A GA ha certain favourable characteri tic , 

which make it an attractive tool for use in process sequencing: 

I) It is relatively easy to adapt for process planning due to its characteristic uch 

as suitable encoding scheme and effective fitness function. 

2) It is flexible in improving on poor performance by varying its input 

parameters including the initial population size and mutation rate. 

3) It permits a straightforward amendment of the heuri tic embodying m the 

fitness function of the algorithm. 
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1.2. Overview of this research 

The aim for this research is to develop a feature-based CAD/CAM integration 

methodology. Specific objectives include a) a novel feature-ba ed modelling 

approach , b) machining feature extraction by olving interacting feature 

individually, c) intelligent CAPP based on the feature extracted. The work 

consists of four main stages shown in Figure 1.1. 

1) The first stage uses a design by features approach to build a feature-ba ed 

model of a component. Based on standard feature library it maintain the 

feature-based model automatically. 

2) The second stage applies feature recognition technique to extracting 

machining features from the feature-based model. The focus i on interacting 

features. Incorporating a heuristic algorithm, a neural network-based feature 

recogniser is used to recognise and resolve interacting feature . 

3) The third stage carries out the task of process planning ba ed on the 

machining features extracted. It starts with the application of the feature­

based model and uses the extracted machining feature information directly for 

selecting and grouping machining operations, and optimising proce 

sequence. 

4) The fourth stage builds and enhances the system' capability through 

incremental learning. 
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Feature recognition, design by features, neural network technique , genetic 

algorithms, and fuzzy evaluation are employed a1mmg at resolving feature 

interactions and automating process planning. 

Design information Feature validation 

Output j Incremental learning I 

Figure 1.1 Proposed architecture of CAD/CAM integration 

1.3 Organisation of the thesis 

The thesis is presented in nine chapter as follows. 

Chapter 1 introduces the background and scope of the research. 

Chapter 2 reviews the work in conventional and ANN-based feature recognition 

design by features, ANN-based CAPP and CAPP using genetic algorithms. 

Chapter 3 proposes a design by features approach and its y tern organi ation. 

Feature classification, feature library, feature-ba ed model and feature-ba ed 

model management are described. 
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Chapter 4 presents a novel heuristic algorithm for the identification, analy i and 

processing of interacting features . 

Chapter 5 describes the neural network technique adopted in the re earch, 

covering four main aspects: input format , topology, learning method and output 

fo rmat. 

Chapter 6 develops intelligent CAPP consisting of five sub-module . Four ub­

modules are detailed: process planning database, machining operation election, 

feature precedence algorithm, and machining operations grouping. 

Chapter 7 introduces the fifth sub-module for the intelligent CAPP - a trateg 

for determining optimal feature-based process sequence using the propo ed GA 

analytical hierarchical process, estimation of cost and time of a process plan and 

allocation of relative weights by a neural network and fuzzy evaluation. 

Chapter 8 implements proposed methodology, and pre ents the te ting resul t 

with a range of components. 

Chapter 9 discusses the contributions and limitations, and ugge t 

recommendations for future work for the research. 

1.4 Thesis related publications 

This thesis presents the author 's original work except for the acknowledged where 

appropriate. Some of the work described here has been published prev iou ly in 

journal or conferences. These include: 
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• Ding, L., Yue, Y. and Ahmet, K. , "A Novel Input Repre entation for A 

Based Features Recognition", Frontiers in Artificial Intelligence and 

Applications, Vol 82, Knowledge-Based Intelligent Information Engineering 

Systems and Allied Technologies, KES 2002, Part I, pp 311-315, 2002 

• Yue, Y. Ding, L., Ahmet, K., Painter, J . and Walters, M., "Study into Neural 

Network Techniques for Computer Integrated Manufacturing ', Engineering 

Computations, Vol. 19, No. 1-2, pp. 136-157, 2002 

• Ding, L. and Yue, Y., "An ANN approach to Feature Recognition', 

Proceedings of the 8th Conference of the Chinese Automation and Computer 

Society in the UK and CAS/A Annual conference on Automation and 

Information Technology, pp.26-31, Beijing, 21-22 September 2002 

• Ding, L. and Yue, Y., "An Intelligent Hybrid Approach for De ign-by­

Features", Proceedings of the 10111 International Conference in Central Europe 

on Computer Graphics, Visualization and Computer Vision, P1zen Czech 

Republic, pp. 4-8, 2-4 February 2002 

• Ding, L., Yue, Y. and Ahmet, K., "Artificial Neural Network Application to 

Process Planning", Proceedings of the 2001 International Conference on 

Imaging Science, Systems, and Technology, Las Vegas, Nevada, Vol. II, pp. 

778-783 , June 2001 

• Ding, L., Yue, Y. and Ahmet, K., "An integrated approach to integrating 

CAD/CAM", 6th Conference of the Chinese Automation and Computer 

Society in the UK, pp. 91-96, Loughborough, 23-24 September 2000 

10 



Chapter I Introduction 

• Ding, L. , Yue, Y., Painter, J. and Walter , M. , "Artificial neural network 

applications to feature recognition", 16th National Conference on 

Manufacturing Research, pp. 41-46, London, 5-7 September 2000 

• Yue, Y. , Ding, L. and Ahmet, K. , "Neural Network System Technology and 

Applications in Computer Integrated Manufacturing", Business and 

Technology of the New Millennium, Corneliu T. Leondes (ed), Kluw r 

Academic Press, Accepted, 2003 

A further journal paper is under preparation for submission shortly. 

1.5 Summary 

This chapter has given a brief introduction of the author 's research, including the 

background, scope, organisation of the thesis and the related publication . Th 

research will be described in detail in the next eight chapters. 
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Chapter 2. 

Literature Review 

Literature review 

There are two key issues with CAD/CAM integration : representation of design 

information, and acquisition and representation of process knowledge, especially 

empirical knowledge, which is useful for analysis and decision making. Features 

encapsulate the engineering significance of portions of the product geometry and, 

as such, are applicable in product design, product definition , and reasoning about 

the product in a variety of applications such as manufacturing planning [Shah and 

MantyHi, 1995] . Thus , features have been used as a means of interface in 

computer integrated manufacturing (CIM) through computer aided process 

planning (CAPP), and feature technology has been considered an indispensable 

tool for integrating design and manufacturing processes. Feature recognition and 

design by features are the two major approaches to creating feature model 

[Bronsvoort and Jansen 1993]. This chapter reviews the work related to the 

feature recognition, design by features and process planning systems. 

2.1 Conventional approaches of feature recognition 

Feature recognition generates an application-specific feature model using various 

recognition rule sets, by searching the component geometric model. It is a 

preferred method but there are problems such as feature interactions and high 
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algorithmic complexity. Various feature recognition method ha e been propo ed 

in the last decade. There have been four common approache . 

2. 1.1 Graph matching method 

Graph matching method organises a B-rep model of a part into a stereotypical 

sub-graphs structure where the node represent faces , edge or vertice and th 

arcs represent the relation hips of any two entitie . Joshi and Chang [ 1988] De 

Flori ani and Bruzzone [ 1989] , Lentz and Sowerby [ 1993] ha e pur ued thi 

method. The graph-based recognition approach has an ad antage over the other 

due to the graph nature of B-rep-based solid model [Lam and Wong, 2000]. It i 

effective, but suffers from two significant drawbacks: the large computational 

expenditure of dealing with complex components, and the deficiency of dealing 

with interacting features. 

2. 1.2 Rule-base method 

Rule-base method uses artificial intelligence techniques to develop a et of feature 

rules. Choi et al [1984], and Donaldson and Corney [1993] have employed thi 

approach . The major difficulty with the rule-ba ed method i that it i impo ible 

to define all rules for manufacturing features in reality [Wong and Lam, 2000] . 

2.1.3 Volume decomposition method 

Volume decomposition method divides the three-dimensional pace surrounding 

an object into cells with all the geometric SUifaces of an object. Several 

researchers , such as Woo [1982], Tang and Woo [1991], Kim [1992] , and Woo 

and Sakurai [2002] , have adopted this approach. The proce of volume 
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decomposition method is complex and the computational cost of the method is 

high. In addition, two aspects still need further efforts, which are multiple feature 

interpretations for interacting features and the limited recognising domain due to 

the problems of non-converging decomposition . 

2.1.4 Hybrid approach 

Hybrid approach combines several basic techniques to increase the recognition 

power [Shah and MantyHi 1995]. There have been instances of work using this 

approach, such as Vandenbrande and Requicha [1990], Laakko and Mantyla 

[ 1991), Sreevalsan and Shah [ 1992], Lam and Wong [2000] and Miao et al 

[2002]. Hybrid approaches enhance the ability to handle feature interactions, but 

considerable efforts are still needed. 

Although the above methods have their own advantages and limi tations, there are 

four principal drawbacks with conventional feature recognition approaches that 

can be summarised as: the inability to recognise inexact or incomplete features, 

slow execution speed, inability to recognise all interacting features completely 

and correctly, and the inability to learn . 

2.2 Neural network-based feature recognition 

An ANN is an interconnected assembly of simple processing elements, units or 

nodes, whose functionality is loosely based on the animal neuron [Gurney 1997]. 

The function of an ANN-based system is determined by four parameters: the net 

topology, training or learning rules, input node characteristics and output node 
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characteristics [Prabhakar and Henderson 1992]. 

Neural network-based methods can eliminate some drawbacks of the conventional 

approaches, and therefore have attracted research attention particularly in recent 

years. This section discusses the following aspects of ANN application to 

feature recognition: the network topology, input representation, output format, 

training or learning method, and a summary of the results. 

2.2.1 The topology of artificial neural network 

There are three main ANN architectures: feed-forward, recurrent and competitive 

networks [Gurney 1997]. An ANN applied to feature recognition is generally a 

feed-forward model which is a layered network, either fully interconnected from 

layer to layer or containing hidden units. The typical topology can be defined by 

an input layer of neurons that receive binary or continuously valued input signals , 

an output layer with a corresponding number of neurons, and a number of hidden 

layers that are highly interconnected [Nezis and Vosniakos 1997]. Hence, the 

design of network topology can be reduced to three problems: the number of 

hidden layers, the optional number of neurons in the hidden layer, and the use of 

networks with incompletely connected layers. At present, three main feed­

forward architectures have been developed for feature recognition as described 

below. 

1) The five-layer, perceptrons quasi-neural network 

Prabhakar and Henderson [1992] developed a five-layer, perceptrons quasi­

neural network system called PRENET. The system has five layers which 
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respectively, consist of N nodes, N groups of M nodes , N nodes with a 

threshold non-linearity, M nodes corresponding to the M conditions for a 

feature, and one node, where N is the number of faces in the test part and M is 

the number of conditions required for the feature. Corresponding to the 

network architecture, there are four steps in the recognition process: 

• converting the input vectors of a row into single integers called codes, 

• searching for the integers corresponding to the feature definition , 

• finding the faces satisfying the conditions specified for a feature, and 

• producing the recognition result to the node in the 5th layer by an AND 

operation. 

2) The three-layer feed-forward neural network 

This model has an input, a hidden and an output layer (shown in Figure 2.1). 

Neurons on the hidden and output layers are defined from the neurons on the 

previous layer, the weights and a processing algorithm. For example, in 

Chuang's system [Chuang et al 1999], the lth neuron on the current layer, N1 

can be calculated as: 

II 

N, = L:ukwki' 
k=l 

where uk is the kth neuron on the previous layer, and 

(2-l ) 

wk1 is the weight representing the strength of the relationship 

between the kth neuron on the previous layer and the lth neuron 

16 



Chapter 2 Literature review 

on the current layer. 

In order to constrain the value of each neuron on the current layer ranging 

from 0 to 1, a sigmoid function is used as a transfer function: 

1 
F(N,) = - N 

I +e ' 
(2-2) 

Further, for the neuron on the output layer, the value is converted into 0 or 1 

by an appropriate thresholding scheme. There have been other instances of 

using three-layer feed-forward neural networks, such as Peters' work [ 1992] 

on 2D feature recognition and Hwang's work [ 1991] on 3D feature 

recognition. 

Output layer 

Hidden layer 

Input layer 

Figure 2.1 Three-layer feed-forward neural network model 

3) The four-layer feed-forward neural network 

This approach uses four layers: an input, a hidden, an output, and a threshold 

layer, which is added to the network as the training is completed. The 

threshold layer performs the function of activating the neurons of the output 
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layer by a threshold, e.g. 0.5. In Nezis and Vosniakos' work [1997] , there are 

20 neurons in the input layer, each representing an element of the input vector, 

and eight output neurons, each corresponding to a feature class. There are 

also eight neurons in the threshold layer, corresponding to the output layer 

neurons. Ten neurons are assigned to the hidden layer by experimentation. 

All elements of the hidden and output layers are connected with a bias element 

that can be considered as an activation threshold. The topology of the neural 

network in Nezis' system is shown in Figure 2.2. The other example of this 

architecture is the work of Oztiirk N. and Oztiirk F. [2001]. 

Threshold layer 

Output layer 

Hidden layer 

Bias 

Input layer 

Figure 2.2 Four-layer feed-forward neural network model 

2.2.2 Input representation 

Neural nets typically, although not necessarily, receive a set of integer values. 

The problem then is how to convert a solid model to a format suitable for neural 

net input in a convenient and efficient way. There are three basic characteristics 

for a satisfactory input representation: 
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I) the solid model information (e.g. faces, edges and vertices) for feature 

recognition, 

2) a format identifiable by the input layer, and 

3) a unique input representation without overlaps. 

The input representation can be broadly classified into the following types: 

I) 2D feature representation 

In engineering drawings, the wire-frame profiles of shapes can be subdivided 

into connected loops of edges. Peters [ 1992] proposed an ordered triplet ( C, 

Ai, Li) to represent each edge of a connected loop, where Ci, Ai and Li are the 

curvature, interior angle and arc length of the ith element respectively. An 

encoded feature vector of the triplet (Ci, Ai, Li) for a given profile is used as 

the input. 

Chen and Lee [1998] developed an improved encoded feature vector, in which 

the representation of each edge is expanded from an ordered 3-tuple to an 

ordered 7-tuple in the form: (Li, Ai, C, li, OLi, OAi, OCi) where Ji is the 

intersection type between the line segment and its subsequent line segment, 

and OLi, OAi and OCi are the ordinal values assigned to Li, Ai and C 

respectively. The ordinal values are assigned to the parameter in order to 

capture the magnitudes. The input layer has thirty-five neurons corresponding 

to five edges, seven neurons representing each edge. Although this method 

can recognise three and four-sided features, more neurons are needed in the 

input, output and hidden layers when the number of edges of a feature is 
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increased. 

2) Face adjacency matrix code 

A face adjacency matrix is a 2D array of integer vectors converted from a 

solid model. Each integer vector represents a face and its relationship to 

another face, i.e. adjacency or common edge. The length of an integer vector 

depends on the number of parameters considered for the recognition of a 

feature. In Prabhakar and Henderson's work [1992], the vector has eight 

integers indicating characteristics such as edge type, face type, face angle 

type, number of loops, etc. This method is limited to features defined by a 

primary face and a set of secondary faces. It cannot differentiate between 

features with the same topology but different dimensions of compound faces. 

3) Face score vector 

This represents the relationship between the main face of a feature and it 

neighbouring faces [Hwang 1991]. The eight-element face score vector is 

formed in three steps. 

• A face score is defined as Fs = f ( Fg, Eg, Vg, A1), where Fs is the face score, 

Fg, Eg and Vg are the information about the face, edge and vertex 

geometry, and A1 is the adjacency among the faces, edges and vertices. A 

high face score indicates a likely feature face, which in turn indicates the 

addition or removal of material. 

• A face score graph representing the relationship of face scores between a 

face and its neighbouring faces is drawn based on the face scores for all 
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faces of the given object. A non-zero difference between a face score and 

its neighbouring face score indicates a geometric or topological change 

between these faces, which form a region . The region may be defined as a 

feature. 

• An eight-element face score vector is formed and input to the net. Chan ' 

work [1994] is another example of a face score vector while Srinath 

[ 1993] tackled partial features. 

This representation can recognise a very limited number of compound 

features, and there is no one-to-one correspondence between feature patterns 

and features. 

4) Attributed adjacency matrix 

An attributed adjacency matrix [Nezis and Vosniakos 1997 and Gu et al 1995] 

describing the geometry and topology of a feature pattern is converted from 

the attributed adjacency graph (AAG) [Joshi and Chang 1988]. In Nezis and 

Vosniakos' research [1997], the adjacency matrix (AM) is a 2D, square, binary 

matrix with two triangular areas: an upper and a lower which are the convex 

and concave spaces respectively. AM[i, j] and AMU, i] indicate the connection 

between the ith and jth faces of the object. One of them belongs to the 

concave space and the other to the convex space. The representation vector is 

formed as follows: 

• the AAG is broken into sub-graphs which are converted into AM using a 

heuristic method; 
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• each matrix is converted into a representation vector (RV) by interrogating 

a set of 12 questions about the AM layout and the number of faces in the 

sub-graph; and 

• a binary vector is formed combining the 12 positive answers and the other 

8 elements corresponding to the number of external faces linked to the 

sub-graph . 

This method can recognise planar and simple curved faces, but not features 

related to secondary feature faces, such as T -slots. 

5) 2D input patterns of 3D feature volume 

Zulkifli and Meeran [1999] presented an input matrix based on a cross­

sectional method. The B-rep solid model is searched through cross-sectional 

layers and converted into 2D feature patterns, which are then translated into a 

matrix appropriate to the network. Four input matrices correspond to four 

feature classes: simple primitive, circular, slanting, and non-orthogonal 

primitive features. There are several disadvantages, e.g. simple primitive 

features are limited to four rectangular vertices, and features with non­

orthogonal faces in the z direction cannot be dealt with . 

6) A vector based on the partitioned view-contours of a given object 

The given object is represented by nine partitioned view-contours from +x, -x, 

+y, -y, +z, -z, x, y and z respectively. The vector is built in three steps . 
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• A graph with a representative ring code is defined from a partitioned view­

contour in which the nodes represent the regions and the arcs the 

adjacency relations among the regions; the representative ring code is a 

cyclic string of digits formed for each region based on both the graph and 

a two-layer octal coding system. 

• Based on the weighting value computed with the representative ring code, 

the graphs are converted to a reference tree in which each node is 

associated with 6+m values using heuristics from several experiments, 

assuming each graph node has at most m+ 1 adjacent nodes. 

• The vector is then generated with the first 6+m elements for the tree root 

and the next 6+m elements for the second tree node ranked, and so on. 

This method is only suitable for block-shaped objects with rectangular view­

contour boundaries. The work of Chuang et al [1999] provides an example. 

7) Simplified skeleton 

A simplified skeleton is a tree structure with line segments [Wu and Jen 1996] 

represented by an input vector that is formed in the following process: 

• A standard tree structure in which each parent branch has the same number 

of descendants is predefined; 

• A simplified skeleton with several standard trees is represented; 
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• Six attributes of a branch in the standard tree to describe each real link 

(non-null assignment branch) and the spatial relationships among them are 

defined; and 

• The standard tree is converted into a vector m which each element 

corresponds to a branch; there can be several standard trees for a 

simplified skeleton . 

This representation can be used to classify 3D prismatic parts , but only the 

contour information of the part is considered. 

2.2.3 The output format 

The output of an ANN is the result of many operations with the inputs and 

weights. Commonly, it is a nodal value in the format of a vector. Based on the 

information in the output vector, there are three types of output format. 

1) Each neuron corresponding to a feature class 

Many systems adopt this output format. In Chen and Lee's work [ 1998], for 

example, the six neurons on the output layer represent six feature classe : 

rectangle, lot, trapezoid, parallelogram, v-slot and triangle. Nezis and 

Vosniakos' system [ 1997] provides eight output neurons corresponding to 

eight feature classes. 

2) Neurons representing the information of the recognised feature 

Hwang [1991] uses six neurons for the output, representing the class, name, 

confidence factor, the main-face name, the list of associated faces of the 
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feature found, and the total execution time. A file storing the information of 

different features is constructed. In the file, each vector corresponding to a 

feature has thirteen elements as follows : the feature name, the number of 

elements in the weight vector, eight elements representing the weight , a 

threshold factor, a gain factor, and the number of iterations before converging 

to an acceptable value. 

3) A matrix file containing the code for each recognised feature and its 

machining directions 

The output has the information on tool access direction , which in turn reflects 

the feature orientation . Zulkifli and Meeran's system [1999] is a typical 

example: the output is a binary matrix O=[b u], 1~ i ~ 2, 1~ j ~5 , with blj 

representing the code for the feature recognised, and b21 showing the tool 

accessibility to machine the feature, namely +x, -x, +y, -y and -z direction . 

2.2.4 The training method 

The training or learning method determines how the network will react when an 

unknown input is presented [Prabhakar and Henderson 1992]. Before the process 

of recognition, the neurons in the network have to be trained with some set of 

training features . The training process is generally classified as supervised 

learning or unsupervised learning. During supervised training, the correct class 

corresponding to the training pattern is given. The net produces an output based 

on its current weights, and compares it with the correct output. If there is a 

difference, the weights are adjusted according to a learning algorithm based on the 

output difference. Most ANN-based feature recognition work employs supervised 
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training with a back propagation algorithm [Nezis and Vosniakos 1997, Chen and 

Lee 1998 and Zulkifli and Meeran 1999]. During back propagation a given input, 

called the training input, is mapped to a specified target output. The training 

process comprises of four stages: 

J) the weights are initialised; 

2) training vectors/matrices are presented to the network; 

3) the actual and desired outputs are compared, and the network's error is 

calculated as the difference between its output and target - the mean squared 

error is commonly used as the test norm. In the system developed by Chen 

and Lee [1998], the root-mean-square (RMS) error is defined by the equation: 

I I . (tJp- ajp)1 
RMS = _.:_P _::_l ----

npno 
(2-3) 

where t
1
P is the target value for output neuron j after presentation of pattern p 

a
1
P is the output value produced by output neuron j after presentation of 

pattern p, 

nP is the number of patterns in the training set, and 

n
0 

is the number of neurons in the output layer. 

4) information about this error is propagated backwards to the hidden neurons 

and the weights adjusted accordingly. 

After a number of iterations, the output will converge towards the target. The 

delta rule, also known as the Widrow-Hoff learning rule is used to modify the 
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weights [Nezis and Vosniakos 1997 and Chen and Lee 1998] . 

Prabhakar and Henderson [1992] developed a system that allows the feature class 

to be stored in the net as it is defined. Although in a sense it used a supervi ed 

training method, it is not receptive to traditional neural net training. During a 

training session, the trained feature is presented only once, and the weights and 

other parameters are set at the same time. Thus there is a lack of fundamental 

quality to the learning. 

At present, the results of neural network-based methodologies are limited to a 

range of particular features which are outlined in Table 2.1. From the previou 

discussions, it can be seen that neural networks have the potential to devise 

general methods of feature recognition that are effective and robust. Most of the 

neural network-based systems have shown a higher recognition speed, and any 

features that are moderately similar to the training examples can be recognised. 
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Table 2.1. Capabilities of ANN-based feature recognition systems 

System Features Recognised 

Prabhakar and 3-D features that can be defined by one primary face and a set 
Henderson [ 1992] of secondary faces , e.g. flat bottom hole, through-slot, 

through-hole 

Peters [ 1992] 2-D features: square, rectangle, parallelogram, slot 

Hwang [1991] a. Simple and partial features whose main face must be 
directly connected to all its associated faces , e.g. pocket, 
slot, through-hole, blind hole and step 

b. Compound features formed by two or more non-
intersecting simple features 

Dagli et al [1993] 2-D features: bracket, circle 

Chan [1994] 3-D features: block, hole, slot, pocket, groove, cylinder and 
boss 

Gu et al [1995] Depression features : step, slot, blind step, blind slot, pocket, 
inverted dove tail slot, blind hole 

Wu and Jen Some 3-D prismatic components 
[ 1996] 

Nezis and a. Features such as slot, blind slot, step, pocket and hole 
Vosniakos [ 1997] which only have planar faces 

b. Simple curved faces 

Chen and Lee 2-D features: rectangle, slot, trapezoid, parallelogram, V -slot 
[1998] and triangle 

Zulkifli and a. Simple primitive features defined by four rectangular 
Meeran [1999] vertices, such as step, slot, blind slot and pocket 

b. Circular features 

c. Z-slanting features 

d. Non-orthogonal faces in the x andy directions 

Chuang et al 3-D block-shaped components 
[ 1999] 

Ozti.irk N. and Non-Standard feature recognition 
bztiirk F [200 1]. 
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2.3 Design by features 

In the mid-1980s feature-based design was proposed to interface CAD and CAPP 

[Cay and Constantin 1997]. Since then, a number of integrated CAD/CAPP 

systems using design by features were implemented, which can be broadly 

classified into two categories [Lee and Kim 1998]: Destruction by machining 

features, in which a design model is built by subtracting depression features from 

a raw stock and the machining features are derived simultaneously. Because only 

depression features are used, the designer's creative work is restricted; Synthesi 

by design features, in which a design model is generated by adding protrusion 

features and subtracting depression features. 

2.3.1 Design by features systems 

Several design by features systems have been implemented since the rnid-1980s, 

for rotational components, prismatic components, 3D casting and sheet metals , 

and mechanical assemblies. 

Shah and Rogers [1988] developed an expert form feature modelling shell, which 

supports user definition of form features. This system consists of two shells: 

feature modelling shell (FMDS) and feature mapping shell (FMPS). FMDS 

provides the necessary facilities for creating a product database except the actual 

definition of features, while FMPS extracts and reformulates product data as 

needed by the application. This work focuses on form features and is limited to 

3D rotational component design. 

29 



Chapter 2 Literature review 

Desai and Pande [1991] designed a feature modelling system (GFM) for CAPP 

for rotationally symmetric components. The modular structure of GFM consists 

of feature modeller, feature validator, and dimensioning and tolerancing modules. 

Li et al [ 1993] presented a methodology of incorporating composite features and 

variational designs into a feature-based design system. Composite features are 

created with only a handful of primitive feature commands. Variational feature­

based designs are composed of dimensional operation unit, and relative positional 

operator for position and feature change. This system increases the flexibility of 

design commands creation and the capability of variational designs, but i 

implemented for rotational components. 

Chan and Nhieu [1993] proposed a framework for implementing a feature-based 

application with a CAD system, in which a user-defined external feature database 

was built, based on a hierarchical structure containing all feature information for 

the downstream application. This system is restricted to cabinet manufacturing. 

Jasthi et al [1994] presented a methodology for developing feature-based part­

modelling systems. A part description system, called TURBO-MODEL is 

designed to represent geometrical, technological and global data. However, only 

2D rotational components can be modelled. 

De Martino et al [1994] proposed a system consisting of a feature modeller and a 

feature-boundary processor. The user can design a component model directly 

with features defined in the common feature library. An intertwined data 

structure, called intermediate model is defined as a communication link between 

the geometric model and the feature-based model. Interacting features are 
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considered through the feature-boundary processor, but the result is limited. In 

addition, multi-mapping will result in inconsistency of information. 

Perng and Chang [1997] proposed a feature-based design system for prismatic 

parts. The system uses high-level 3D features as basic design entities and 

provides a graphical-user-interface design environment with two functions: a new 

construction function and a dynamic editing function. The predefined 3D features 

considered consist of Arch, Filler, Hole, Tslot, Uslot, Vslot and Wedge. 

However, some technological information, such as tolerance, surface finish is not 

included in the feature definition. 

Lee and Kim [ 1998] employed an incremental approach for extracting machining 

features from a feature-based design. Consequently, they [Lee and Kim 1999] 

proposed a feature-based approach to generate alternative interpretation of 3-axis 

milling machining features from a feature-based design model. A set of 

alternative generation operators, i.e., reorientation, reduction and splitting, are 

applied to generate alternative machining feature models. This approach uses a 

STEP-based feature representation scheme, but it does not integrate with design 

rules and constraints. 

Tseng [ 1999] presented a modular modelling approach by strengthening the 

technical support provided to the designer. Because this approach creates a new 

component based on the existing functional modules, it cannot accommodate new 

components which are completely different. 

Case and Harun [ 1999] provided a design tool to create a mechanical assembly in 

terms of features. A feature-based assembly modelling system is proposed and 
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embedded in the ACIS object-oriented solid modeller kernel. This approach 

shows that features can be used in multiple applications, such as process planning 

and assembly. 

Bidarra and Bronsvoort [2000] proposed a semantic feature modelling approach to 

defining and maintaining the semantics of feature during all the modelling 

operations. Feature class specification, feature model structure and functionality, 

and model validity maintenance scheme are included. The semantic feature 

modelling is defined by high-level programming languages, such as object­

oriented languages, and therefore contains fewer errors. However, the imposing 

rigid validity rules reduce the modelling freedom of the user. 

Other work includes Turner and Anderson [1988] , Chang [1989], Anderson and 

Chang [1990] , Pratt [1990], and Chung et al [1990]. 

2.3 .2 Design by features techniques 

Two important techniques for design by features have been reported: feature 

representation and feature validation. 

1) Feature representation 

Feature representation including feature definition and data structure, is an 

important aspect for design by features. Kang and Nnaji [1993] presented a 

generalised feature definition, classification and representation in the domains 

of mechanical assembly and sheet metal fabrication. A face-based feature 

graph was proposed to represent features by a face-face adjacency graph and 

face-edge incidence matrix in their research. Hounsell and Case [1999] 
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applied a method to identifying structured spatial geometric feature 

interactions based on a broad multilevel classification. Simple Boolean 

expressions are used to identify the relationship between any two entities, such 

as disconnected entities and connected entities. Wu et al [2001] proposed a 

face-based mechanism for naming, recording and retrieving topological 

entities to replay the design history. 

2) Feature validation 

Feature validation is another important issue addressed in design by features. 

Gindy et al [1998] proposed a Boolean operation-based systematic 

methodology of automating feature validation. The feature validation 

concerns with feature interactions, feature dimensions and feature class. 

Three procedures of feature validation are includes; they are adding a new 

feature, deleting an existing feature and modifying an existing feature. Case 

and Hounsell [2000] presented a methodology to validate the feature-based 

representation by capturing and using the designer's intents related to 

functional , relational and volumetric aspects of the component geometry. 

In contrast to feature recognition, design by features can capture the design 

and manufacturing information during the design stage. It reduces remarkably 

the amount of work for recognising features , but does not eliminate the need 

for feature recognition. 

In summary, prevwus research on design by features have gained some 

achievements in system development, feature definition, data structure of 

modelling and feature validation. However, several problems need to be tackled: 
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1) Feature interactions are yet to be fully resolved. 

2) Standard feature classification and universal feature taxonomy are needed. 

3) Enhancement is necessary in feature validation. 

2.4 Neural network-based CAPP 

Process planning is a function that establishes a set of manufacturing operations 

and their sequence, and specifies the appropriate tools (machine tools , cutting 

tools, jigs and fixtures, etc.) and process parameters in order to convert a part 

from its initial raw state to a final form predetermined from an engineering 

drawing [Devireddy and Ghosh 1999]. In the past, process plans were often 

generated by human process planners, which led to inconsistency, low efficiency 

and slow response to the changes in design and production environment. In recent 

decades, with the advents of computer technologies and artificial intelligence (AI) 

techniques, it has become easier to undertake process planning on the computer, 

that is, computer-aided process planning (CAPP). The use of computer 

techniques to automate the tasks of process planning has been the subject of 

extensive research. Although there are a huge amount CAPP system have been 

reported over the past two decades, the results are still far from being a practical 

industrial application. 

In recent years, ANNs have offered an encouraging approach to CAPP because of 

their learning ability. This section details the ANN techniques used in CAPP in 
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the following areas: the network topology, input representation, output 

representation, training method and a discussion of achievements . 

2.4.1 The topology of artificial neural network 

To date, four main ANN architectures have been used in CAPP: Feed-Forward 

network (FF), Hopfield network, Brain-State-in-a-Box (BSB) and MAXNET. 

1) Feed-Forward network (FF) 

Most neural network-based CAPP systems use the feed-forward architecture 

[e.g. Li et al 1994] . In general, the appropriate structure is identified through 

several experiments during the learning process. The structure with the 

minimum errors and the fastest learning rate is chosen. According to the 

'number of hidden layers, the net topology can be classified into three 

architectures. 

• Three-layer feed-forward network 

As described in Section 1, it comprises the input, hidden and output layers. 

This structure is suitable for a mapping in a continuous decision region [Mei 

et al 1995]. Osakada and Yang [1991] related the shape of rotationally 

symmetric products to their forming methods. The network consists of a 256-

unit input layer, an 8-unit hidden layer and a 4-unit output layer. Gu et al 

[1997] employed a three-layer feed-forward network with a 5-neuron hidden 

layer for manufacturing evaluation. Santochi and Dini [1996] proved in their 

experiment that a three-layer feed-forward network with a suitable number of 
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neurons for each layer is the best architecture for selecting technological 

parameters for a cutting tool using the hyperbolic tangent sigmoid function. 

• Four-layer feed-forward network with two hidden layers 

Park et al [1996] developed a 4-layer neural network to modify cutting 

condition based on several tests. Their network has a 15-neuron input layer, 

two 15-neuron hidden layers and a single-neuron output layer. Although four­

layer feed-forward networks are more versatile than three-layer feed-forward 

networks, they train more slowly due to the attenuation of errors through the 

non-linearities [Principe et al2000]. 

• Five-layer feed-forward network 

Le Tumelin et al [1995] proposed a 5-layer feed-forward network to 

determine appropriate sequence of operations for machining holes. 

2) Hopfield network 

The Hopfield network is a single layer recurrent network that uses threshold 

process elements and an interconnect symmetric matrix as shown in Figure 2.3 

[Principe et al 2000]. A minimum point or attractor has been demonstrated to 

be existence in this network, which corresponds to one of the stored patterns. 

It can be described as the following [Principe et al 2000]: 
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N 

y ( n + 1 ) = s gn ( L w u y j ( n ) - b ; + x ; ( n ) ) 
j = l 

where i=l , ... . N, 

Literature review 

(2-4) 

sgn represents the threshold nonlinearity ( -1,1 ), and 

b; is a bias. 

X1 
... I , , 

... I __.., , , 

... ..... 

Xn 

t I Yn 

Figure 2.3 Example of a Hopfield network 

The dynamics of the Hopfield network can be described by the state of 

an energy function which eventually gets to a minimum point. 

Therefore, optimal operation sequencing can be expected with the 

continuous download trend of a global energy function . Shan et al 

[1992] adapted the Hopfield network to the operation sequencing 

problem. Supposing the number of operations is n, the network is then 

composed of n2 neurons, each identified by double subscripts: the 

operation and the sequence to be executed. 
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The Hopfield network provides one of the strongest links between information 

processing and dynamics. However, spurious memories limit its capacity to 

store patterns. 

3) Brain-State-in-a-Box (BSB) 

As a di screte-time recurrent network with a continuous state, the output values 

of a BSB, consisting of interconnected neurons, depend on the learnt patterns, 

the initial values of given patterns and the recall coefficients. The motion of a 

BSB network can be described by the following equation [Principe et al 

2000]: 

N 

y;(n + 1) = j(x;(n) + a,L wux1(n)) 
J= l 

j(u) = {~ 
- 1 

if u ~ 1 

if - 1 ~ u ~ 1 

if u ~ -1 

(2-5) 

(2-6) 

A BSB can be used as a subnet for decision feedback applications because it 

amplifies the present input until all neurons saturate, and eventually converges 

to one of the corners of the hypercube [-1,1]". 

Sakakura and Inasaki [1992] adapted a BSB network in a CAPP system. The 

number of neurons assigned for the dressing depth of cut, dressing feed and 

surface roughness are 5, 5 and 9 respectively. The initial values are given by a 

feed-forward network run at the same time. The BSB repeats, performing a 

calculation using the following equation until the output value of each neuron 

converges to a certain value: 
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0 111 = LIMIT(am) 

am = CI I WmnOn + C20m + C30m(O) 
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(2-7) 

(2-8) 

where LIMIT() is the function which limits the value in the parenthese 

between -1.0 to + 1.0; 

c1,c2,c3 are recall coefficients; and 

o11l0) is initial value of neuron m. 

The limitation of the BSB network is that the location of the attractors must be 

predefined as the vertices of the hypercube. 

4) MAXNET 

MAXNET is a competitive network in which only one neuron will have a 

non-zero output when the competition is completed. The network consists of 

interconnected neurons and symmetric weights. There is no training 

algorithm for MAXNET and the weights are fixed as depicted in Figure 2.4 

[Fausett 1994]. Its application procedure includes two steps: 

• activation and initialisation of weights, and 

• updating the activation of each unit until only one unit responds. 
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Figure 2.4 Example of MAXNET 

MAXNET is suitable for situations where more information is needed than 

can be incorporated. Knapp and Wang [ 1992] used a MAXNET to force a 

decision between the competing operation alternatives. In their work, a 

sequence of operations for machining each feature of the part is generated 

independently by the MAXNET. 

However, few systems use only BSB or MAXNET independently. BSB and 

MAXNET are typically used in multi-type architectures, e.g. Sakakura and 

Inasaki [1992] used a BSB with a three-layer feed-forward network while 

Knapp and Wang [1992] utilised a co-operating architecture combining a 

three-layer feed-forward network and a MAXNET. 

2.4.2 Input representation 

The input representation for neural network-based CAPP involves the conversion 

of design data into a proper input format. There are three aspects to be resolved. 

1) Input information. Process planning deals with a number of detailed 

activities, such as selecting manufacturing operations, determining setups, 

specifying appropriate tools and so on. Each activity requires a different et of 

information. For example, setup generation requires information about 
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tolerance, material and operations. 

2) The need for unique input. Each piece of the input information for a neural 

network must be uniquely represented in a proper format. 

3) Numerical encoding. Based on the characteristics of neural networks, the 

input parameters need to be converted into numerical values. 

There are four main types of input representation. 

1) Standardised image data 

Osakada and Yang [ 1991] converted the cross-sectional shape data of the 

product into standardised image data for the input. They use 12 "colours" to 

represent 12 outer or inner geometric primitives, such as cylinder and cone. 

Half of the product shapes are converted into a 16*16 "colour" data image. 

These 256 units are regarded as the input to the neural network. Thi 

representation can only be used for rotationally symmetric products. 

2) Input vector with value ranging from 0 to 1 

It is one of n-unit vector input formats, whose units are coded with numerical 

values ranging between 0 and 1. Certain special transformations have to be 

performed, which different formulae need to be established for different units. 

For instance, a unit related to the workpiece material is calculated from the 

cutting force per unit area, kc using the following formula [Santochi and Dini's 

work, 1996]: 
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kc - 1900 
l6=---

2600 
(2-9) 

Park et al [2000] defined the input values from 0 to 1 according to its real 

values , e.g. 0.5000 for a hardness unit for a real value of 225 BHN, and 

0.4366 for a cutting speed unit for a real value of 80 rnlmin. 

3) Input vector with integer value 

Each input unit is given a particular integer instead of the original value. A 

common method is to classify the value for each parameter and assign a 

discrete integer to the corresponding unit. Park et al [1996] used 15 input 

parameters concerning seven factors, such as the feature type, ratio of feature 

width to depth, tool length, tool material. A class number is given for each 

parameter based on its real value, e.g. the class number is 6 if the ratio of 

selected tool length over standard length is 2. Similarly, in the system by 

Sakakura and Inasaki [1992], the unit of dressing depth of cut is assigned a 

value of 4 for a real value of 11.0 ~J.m. Mei et al [1995] developed a scheme 

for rotational parts in which the surface orientations (i.e. right, left or both) are 

represented by values -1, 1 and 0. 

4) Input vector in binary form 

The value of each unit uses only two characters (i.e. 0 and 1) representing 

whether the corresponding parameter is needed or not. In order to determine 

feature clusters, Chen and LeClair [1993] represented a feature with a (6+n)-
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unit vector in binary form, which defines the six approach direction and n 

tool types. 

2.4.3 Output representation 

Five main output formats have been proposed which are summarised below. 

1) Output vector in ordered binary form 

The output vector consists of a number of neurons, each with a value (i.e. 0 or 

1) showing whether the corresponding item (e.g. machining operation, tool 

and so on) belongs to the process plan or not. The output vector in the fir t 

stage consists of eight neurons representing respectively drilling, reaming, 

boring, turning, taper turning, grooving, grinding and precision. If the value 

of a neuron is '1', the corresponding operation is needed for the feature ; 

otherwise, the value is '0'. For instance, a hole requires the drilling operation, 

so the first neuron is assigned the value '1'. The sequence of the vector 

represents the sequence of the operations, e.g. reaming is usually performed 

after drilling. Li et al [1994] used a 4-neuron vector corresponding to the 

abrasive type, grade, grit size and bond. Le Tumelin et al [ 1995] designed a 

23-neuron vector. 

2) Output vector with special values 

Each neuron in the output vector has a possible value that the corresponding 

parameter may assume. Santochi and Dini [ 1996] developed a system for 

selecting the eight technological parameters of a cutting tool. For example, to 

select a normal clearance angle a;,, the number of output neurons is 5 which 
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represents 4°, 5°, 6°, i, 8° respectively. The neuron with the value ' 1' 

represents the optimal value and '0.5' a second choice. 

3) One-unit output in binary form 

This output format has only one unit whose value is either 0 or 1 [Mei et al 

1995]. The output shows which surfaces should be used as manufacturing 

datums. For instance, '1' means that the surface will be used for the part 

setups and '0' means that it has nothing to do with part setups. 

4) One-unit output in integer form 

Each discrete integer is concerned with a special class [Chen and LeClair 

1993]. The output integer represents a cluster of features according to the 

approach directions and the tool types. 

5) Output matrix 

Shan et al [1992] devised a binary incidence matrix V (n*n) in which the row 

denote operations and the columns correspond to sequences. The value ' 1' 

indicates that a specified operation is performed. Because each operation i 

performed only once and only one operation is carried out at a time, one and 

only one of the entries in each row and column should take the value of 1 

whereas the rest should be set to 0. 

2.4.4 Training method 

In CAPP applications, the training method usually employs either an unsupervi ed 

learning algorithm or back-propagation. 

44 



Chapter 2 Literature review 

1) Unsupervised learning algorithms 

With an unsupervised learning algorithm, the training set only contains input 

samples; no desired or sample outputs are available. The neural network mu t 

construct an internal model that captures regularities in input training pattern 

instead of measuring its predictive performance for a given input. Hence thi 

method is also called self-organisation. In CAPP applications, a logical 

AND/OR operation-based unsupervised learning approach is used. Chen and 

LeClair [1993] clustered features based on the approach direction and tool 

type and then generated a process plan using an Episodal Associative Memory 

(EAM) approach. The AND operation was applied to solve multiple approach 

directions for some features. If the digit is 1 for the corresponding approach 

direction, the update weight for the cluster j is 

0 b ( 1)-0 (p) AND 0 b ( )-0 (p) ab ( ) ij s+ - X; ij S - X; ij S (2- 10) 

where 0 x/PJ is the approach direction sub-pattern, <+x,+y,+z,-x,-y, -z> , 

of pattern p. 

In the meantime, the OR rule is used to update the weight so that the 

probability of common tools can be increased. If the digit is 1 for the 

corresponding tool , the~ biJ ( s+ 1) is modified according to the following 

equation [Chen and LeClair 1993]: 

(2-11 ) 

where 1x/PJ is the tool sub-pattern, and 

/(77)=1 if 77~1, e1sef(77)=0. 

45 



Chapter 2 Literature review 

2) Back-propagation 

A back-propagation algorithm is a form of supervised learning. The algorithm 

consists of two basic steps: 

• initialisation of weights. In Gu et al's work [ 1997] all the weights were 

initially randomly set in the range 0 to 0.1; 

• repetition of training until the error is acceptably low. Gu et al [ 1997] 

mapped the selected pattern pairs to reinforce the weights until the 

deviation between the training output and the target output of each sample 

converged to a pre-defined error goal (e.g. 0.05). 

Back-propagation methods have proven highly successful in CAPP 

applications [Osakada and Yang 1991, Dong et al 1995 and Mei et al 1995] . 

These method can be classified into three groups. 

• The delta rule 

One of the back-propagation learning algorithms is the delta rule based on 

the cumulative error. It is also known as the least mean squares (LMS) or 

Windrow-Hoff rule. The learning rule changes the connection weights so 

as to minimise the mean squared error between the network output and the 

target over all training patterns. 

Sakakura and Inasaki [1992] chose the delta rule for both a feed-forward 

network and a BSB network. In the three-layer feed-forward network, the 

weight connecting neuron j in the hidden layer to neuron k in the output 
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layer is updated as follows: 

~wkJ = 'T/I L bpkOpJ 

p 

where f() is the output function of neuron, 

ry1is the learning coefficient of the FF network, 

p is the learning pattern number, 

(2-12) 

(2- 13) 

tp; is the learning value of neuron i for learning pattern p , 

ap; is the status value of neuron i for learning pattern p , and 

op; is the output value of neuron i for learning pattern p. 

For the BSB network, the modified value of the weight which 

interconnects neuron m and neuron n is calculated as the following: 

~ W 11111 = TJb L (tpm - W mrr lpn )lpn 
p 

where 'T/b is the learning coefficient of BSB network, and 

tJi is the learning value of neuron i for learning pattern j. 

• Levemberg-Marquardt approximation 

(2- 14) 

A back-propagation algorithm using the approximation of Levemberg-

Marquardt is also used in some applications [Santochi and Dini 1996]. 

This algorithm allows a better performance in terms of training time in 

comparison with other training methods . However, it may require a very 
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large storage space for some complex situations. 

The matrix of the connection weights is updated through the following 

equation : 

(2- 15) 

where J is the Jacobian matrix of derivatives of the errors to each 

weight w;,J , 

f.L is a scalar, 

U is the unit matrix , and 

e is the error vector of the network. 

• Batch training 

Either the delta rule or the Levemberg-Marquardt approximation is used a 

the on-line learning rule. The batch training is an off-line training process. 

Rather than adjust the weights after each pattern presentation, batch 

training accumulates the errors over the whole training set and adjusts each 

weight according to the accumulated errors. It can generally be expre sed 

as follows [Principe et al2000]: 

~Wji = 7]"' OowH;, L....p (2-16) 

where the subscripts in and out refer to the net input and output signal 

associated with a given unit, and 

i andj refer to the connection from unit ito unitj. 
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The form of J will vary depending on the type of layer to which the 

formula applies. In some cases it is advantageou because of it 

smoothing effect on the correction terms and increasing of convergence to 

a local minimum [Fausett 1994]. Devireddy and Ghosh [1999] trained a 

system with a batch training back-propagation algorithm. 

The achievements of neural network-based CAPP systems are summari ed in 

Table 2.2. The major drawbacks of the existing neural network-ba ed CAPP 

systems are: 

1) Lack of systematic investigation of the framework and methodology of CAPP. 

Most of solutions are designed for specific activities (e.g. tool parameters 

selection, cutting condition generation) and specific application (e.g. cold 

forging, grinding operations), which cannot be used in different industrial 

environments. 

2) Low efficiency and quality of process planning. For a process pl anning 

system based on the machined surface, with the number of machined urface 

increasing, the efficiency and quality of reasoning can not guarantee, 

especially for a complex component. 

3) There have not been so many systems considering prismatic component . It i 

mainly due to the complex geometrical representation of the 3D prismatic 

components and the intricate nature of cutting mechanism in milling. It i 

difficult for a CAPP system to plan a solution for all possible component . 

Although the capabilities are limited at present, there is great potential for the 
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application of neural networks to CAPP. The review has shown that neural 

network techniques can significantly improve the performance of CAPP y terns . 

The self-learning functions allow empirical rules to be learnt through typical 

examples. Faster processing makes systems more effective, e pecially in parallel 

environments. 

Table 2.2. Achievements of ANN-based CAPP systems 

System Functions NN type Manufacturing 
processes I components 

Osakada and Yang Generation of Three-layer Cold forging for ax i -
[1991 J process plan Feed-Forward symmetric components 

network 

Roy et al [1994] Generation of Feed-Forward Cold forging 
process plan network 

Knapp and Wang Operation Three-layer Machining operation 
[1992] selection and Feed-Forward 

operation network and 
sequencmg MAXNET 

Dev ireddy and Operation Three-Layer Machining operations for 
Ghosh [ 1999] selection and Feed-Forward rotational components 

operation network 
sequencmg 

Shan et al [ 1992] Operation Hopfield Cutting operations for 
sequencing components machined 

on single spindle Swiss-
type automatics 

Le Tumelin et al Operation Five-layer Machining operation for 
[I 995] sequencmg Feed-Forward holes 

network 

Dong et al [ 1995] Operation Feed-Forward Machining operations 
sequencmg network and 

Hopfield 

Gu et al [ 1997] Operation Three-layer Machining operations for 
sequencmg Feed-Forward prismatic component 

network with regular machining 
features 

Giusti et al [I 986] Tool selection Unknown Rotational component 
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Chen and LeClair Generation of Unknown Machining operations 
[ 1993] setups 

Santochi and Dini Selection of Three-layer Turning operations 
[ 1996] optimal values Feed-Forward 

of a tool network 
parameter 

Mei et al [ 1995] Selection of Three-l ayer Rotational component 
manufacturing Feed-Forward 
datums network 

Li eta! [1994] Selection of Feed-Forward Grinding operations for 
grinding network ground components 
wheels 

Sakakura and Selection of BSBffhree- Grinding operations for 
Inasaki [ 1992] dressing layer Feed- ground components 

conditions Forward 
network 

Park et al [ 1996] Generation of Four-layer Milling and turning for 
modified Feed-Forward sheet metal 
cutting network 
conditions 

Park et al [2000] Generation of Fuzzy Milling operations 
cutting ARTMAP 
conditions network 

2.5 CAPP using genetic algorithms 

Operation sequencing is a task responsible for arranging the selected operations in 

a suitable order to fabricate the part [Shan et al, 1992]. An optimal process 

sequence could largely increase the efficiency and decrease the cost of production. 

Therefore, operation sequencing is always the major concern among process 

planning activities. It is influenced by various constraints and factors , such as the 

selection of machining operations, the machine tool chosen, tools accessibility, 
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geometrical tolerance and manufacturing rules. Thus, the task of sequencing i a 

problem to consider different choices and constraints. Genetic algorithm (GA ) 

are a technique for seeking to 'breed ' good solutions to complex problem by 

survival of the fittest. They have been successfully applied to various 

optimisation problems since the mid-1960s. Some attempts using GAs have been 

made on operations sequencing optimisation, . 

Vancza and Markus [1991] applied a genetic algorithm to optimising sequence of 

operations for machining a component composed of milling features, i.e. slot and 

holes. In their system, each string is represented by elements corresponding to 

feature states that are produced by machining operations. Three factors are 

considered in their optimisation criteria, that is, the number of setups of each plan , 

the total number of tool changes, and the total cost of individual operations. 

Yip-Hoi and Dutta [1996] used a genetic algorithm to generate plan for 

machining a milled /turned component for parallel machining that sati sfied both 

the constraints of the geometry of the component and the restriction due to the 

configuration of the machine-tool environment. A new coding method that allow 

the generation of only valid operation strings is developed, but operation feature 

with multiple parents are not considered. The planning criterion they used is to 

minimise the component processing time. 

Dereli and Filiz [ 1999] developed an optimisation system for proce planning 

using genetic algorithms. In their research , a reward/penalty matrix called 

REPMAX for each setup is determined based on the selected criterion, such as 
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safety or minimum tool change, and the objective of optimisation is to gain the 

least total penalty or largest total reward. 

Bhaskara et al [ 1999] proposed a quick identification of optimal or near optimal 

operation sequences in a dynamic planning environment using a genetic 

algorithm. They identified the feasible sequences based on a Feature Precedence 

Graph and used minimum production cost as the objective function, which wa 

calculated from a precedence cost matrix. The precedence cost matrix i 

generated for any pair of features based on the relative costs corresponding to the 

number of tasks that need to be performed in each category of attribute such as 

machining parameter change, tool change, setup change, machine change and the 

type of constraint one feature has with the other. 

Qiao et al [2000] presented a genetic algorithm method to select the machining 

operation sequence for prismatic parts. A combination fitness expression F i 

defined as the following: 

(2- 17) 

where Fp is the fitness of precedence rules; 

Fe is the fitness of clustering rules ; 

Fao is the fitness of adjacent order rule ; 

Fop is the fitness of optimisation objectives (In the practical sy tern 

developed by Qiao et al [2000], Fop is not considered); and 
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In addition , some biological parameters are discussed , including the number of 

individuals , the number of parent individuals and the mutation ratio. 

Li et al [2002] developed a hybrid genetic algorithm and simulated annealing 

approach for optimising process plans for prismatic components. A modified 

fitness function FF is defined as: 

FF='A *( UL-TWC) *( UL-TWC) (2- 18) 

where UL is an upper limit constant for TWC; 

TWC is the total weighted cost; 

A is a positive coefficient. 

In addition , Shunmugam et al [2000] and Dereli et al [200 l] used genetic 

algorithm for selecting optimal machining parameters, respectively . Li et a/ 

[2002] also designed a constraint adjustment algorithm to rearrange the proces 

plan according to the constraints while some random properties in it are kept. 

In conclusion, GAs are quite prom1smg m identifying optimal operation 

sequences . The effectiveness of a GA depends on the fitness function , appropri ate 

crossover and mutation operators. The problems with existing GA-based method 

for process planning include 

I) Few systems have intended to provide a globally-optimised fitnes function 

definition . As we know , operation sequencing is a comprehensive problem 

concerning various factors, such as processing cost, proces ing time and 

manufacturing rules. Although there have been several fitness functions for 
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process sequencmg, e.g. minimum number of setups, mm1mum machining 

cost, shortest processing time or satisfaction of manufacturing rules , etc., they 

are used only for local optimisation for the chosen object. 

2) Lack of adaptability. Most of GA-based CAPP systems propo ed up to date 

are designed for specific industrial environment and it is difficult to adapt 

them for different industrial applications. 

3) Inability to learn. GA-based CAPP systems cannot learn to adapt themselve 

automatically from the external environment. 

From the discussions, it still can be seen prospectively that GAs can be further 

applied to process planning, e.g. incorporating other techniques such as ANNs for 

global optimisation. 

2.6 Summary 

This chapter has presented a state of the art review of three key re earch issue in 

CAD/CAM integration: feature recognition, design by features and CAPP. The 

research reviewed above demonstrates that 

I ) There are still some problems to be solved with current methods, such as poor 

ability to recognise intersecting features and adaptability to CAPP. Therefore, 

new methods to recognise intersecting features and adapt CAPP are needed ; 

2) There are potential benefits for using neural networks in feature recognition 

with a design by features approach. Input representation of features for neural 

network-based feature recognition is a main problem that needs to be solved. 
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3) A hybrid GA method with neural network and fuzzy logic m CAPP 

applicable. 

Therefore, a CAD/CAM integration methodology using a neural network , GA and 

fuzzy logic is presented in this thesis in order to overcome the limitation in 

current methods. 

56 



Chapter 3 Design by Features Module 

Chapter 3. 

Design by Features Module 

As mentioned in Chapter 2, to take advantages of both design by features and 

feature recognition, the current research has employed both approache , 

incorporating a new identification algorithm of interacting features with ANN 

techniques. The ANN-based feature recogniser is used for the identification of 

new classes from interacting features while design by features techniques keep 

record of all feature information. This chapter will discuss the proposed de ign by 

features module. Chapters 4 and 5 will detail the identification algorithm for 

interacting features and ANN-based feature recogniser. 

3.1 Architecture of the design by features module 

Taking into account the advantages and disadvantages of design by features ( ee 

Section 2.3) and the requirements for integrating feature recognition , an 

architectural framework for a design by features module has been proposed in 

terms of certain fundamental design decisions that influence the overall sy tern 

performance. As shown in Figure 3.1, the proposed architecture includes a 

standard feature library, feature library management, feature-based model and 

feature-based model management. Important characteristics are described below. 
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USER INTERFACE 

Feature-based model management 

Model validity 
maintenance 

Interactive functions 
of feature model 

0: Non-connection 
I: Parent-child 
2: Connection 
3: Overlap-hiding 

Feature-based model 

Feature library 
management 

Design by features 
module 

:.... . -.- .-.-.- .- ·:~.-.- ·- ·- .- .-.- .- .-.- .-.- ·-.-.- .-.- .- . -;--;- .- .-. -· - ·- ·- ·- ·- ·- ·- ·- .- .I 
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I I I I 

r-----------~,~ ----------------------------- ~----~~~ -------------
1 I 

: Process planning : 
I I 

~-------------------: 
Heuristic Interacting 

feature Identifier 

H 

H 

Neural network-based 
feature recogniser 

Interacting feature recogniser 

' --------------------------------------------~ 

Figure 3.1 Architecture of the design-by-features module 
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1) Feature classification: The aim of feature classification i to acquire and 

process similar geometric and technological data for design and manufacturing 

process planning, thus further upporting CAD/CAM integration. With a 

suitable feature classification, a universal feature taxonomy can be developed, 

where features are grouped into several classes according to some shared or 

similar characteristics, such as geometry, machining attributes . Although the 

number of possible features and feature classes is not finite, it may be po ible 

to categorise feature classes into families that are relatively independent of the 

intended application domain of the features [Shah and Mantyla, 1995]. This 

module provides a set of prismatic-part feature classes based on STEP AP224 

standard. 

2) Feature Definition: One characteristic of design by features is the use of 

generic feature definitions as a template for creating individual feature 

instances. The choice of a feature representation scheme is the most 

significant issue. A genetic representation scheme for features containing 

geometric and manufacturing information has been proposed in this module. 

3) Support for feature validation: Feature validation is a critical property 

necessary for design by features sy terns. It is highly desirable that feature i 

validated when it is placed into the model and that the validity is maintained 

afterwards. In this research, pre-designed validity constraints are applied 

during the feature instancing stage. 

4) Feature-based model: The basic entity in feature-based model is feature. Two 

main problems that a feature-based model has to be solved are: 
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• Definition of feature semantics and the relationships among feature . 

• Maintenance of the feature-based model. 

Data structure definition and feature-based model management provide solution 

to these problems. 

3.2 Feature classification 

There are a number of feature classification schemes. Among them are tho e 

based on geometrical properties of the features , such as the work of Gindy [ 1989] . 

Others are based on machining methods associated with features that include 

rotational features created by machining operations on a lathe or a turning 

machine, and prismatic features created by machining operations on a milling 

machine or a three-axis machining centre [Tseng and Joshi , 1998]. There a1 o are 

those based on the number of possible tool approach directions that can be used to 

machine them: STAD (single tool axis direction) and MT AD (multiple tool ax i 

direction) [Chu and Gadh, 1996]. These classification schemes have advantage 

in certain respects, but major problems (e.g. non-standard and incompletenes ) 

hinder their practical applications in integrated environments for design and 

manufacturing. 

An important feature classification different from above mentioned is provided by 

STEP (STandard for External representation of Product data) [STEP, 1999]. 

Some researchers have developed feature recognition methods based on STEP. 

For example, Bhandarkar and Nagi [2000] developed a Boundary-representat ion 
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(B-rep) based feature extraction system that takes a STEP file a input and 

produces a form-feature STEP file; and Han et al [2001] proposed a geometric 

reasoning feature recognition kernel using STEP as input and output formats . In 

ISO I 0303 STEP-AP224 (Mechanical product definition for process planning 

using form features), machining features are defined as a type of manufacturing 

feature that identifies a volume of material to be removed to obtain the final 

geometry from the initial stock [STEP, 1999]. Sixteen machining feature classe 

are defined, such as hole, slot, etc. As an international standard , STEP ha some 

advantages of feature classification. For example, the feature definition i 

universal and includes both geometric and manufacturing information. However, 

there are still some limitations discussed below. 

I) The classification is not rigorous . Some overlapping or duplication situation 

exist. For example, the following definitions are provided by STEP. 

Rectangular-open-pocket: A rectangular-open-pocket is a type of pocket that 

is an open profile with opposite sides that are of equal length and with one 

side that does not make contact with the part. A pocket i a type of 

machining-feature that is a volume with a specific shape, removed from the 

part. 

Flat-slot-end-type: A flat-slot-end-type is a type of slot-end-type that is an 

end condition of a slot that shall be a planar shape perpendicular to both of the 

adjacent slot wall surface. The intersection of the slot wall surfaces and the 

end planar shape need not be blended by a radius. A slot is a type of 
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machining-feature that is a channel or depression with continuous direction of 

travel. 

Based on the above definitions, the entity shown in Figure 3.2 can be regarded 

as either a blind slot with a flat-slot-end-type or a rectangular-open-pocket. 

Since feature overlap or duplication can make feature recognition more 

difficult and feature libraries larger and unmanageable, it is desirable to 

reconcile and remove such overlapped distinctions between features. 

Figure 3.2 Example 1 of STEP classification 

2) The classification is incomplete. Completeness is an important characteristic 

of classification, which implies that the defined feature classes are sufficient 

for creating models that the system is intended. In an integrated design and 

manufacturing system, it should include all primitive machining features. But 

STEP does not cover the full range, e.g. the feature shown in Figure 3.3. 

Figure 3.3 Example 2 of STEP classification 
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3) The definition of machining features is not precise. STEP defines machining 

features as a volume of removal material while protrusion features , which are 

not removed volumes, are included. 

In order to overcome these limitations, a hierarchical classification (see Table 3.1) 

is proposed based on the following principles. 

I) A machining feature is defined as a geometrical entity, which is related to a 

group of particular machining processes and can be used to reason about a 

suitable machining method. In this research , the features considered cover a 

majority of the primitive features , which are likely to be of interest for the 

application of machining process planning. 

2) The feature classification and its validity are based on a multi-viewpoint 

considering manufacturing requirements with topological information . 

3) If a set of features have the similar geometric and topological characteristic 

and can be machined with the similar process, they are called a feature clas 

A sub-class is regarded as an instance of its main class . 

4) The classification is hierarchical , where a subclass inherits common properties 

from a higher class. This reduces the number of properties that have to be 

independently specified for each new feature. Object-oriented programming 

language- C++ is used to implement the feature taxonomy. 

5) The feature definition in the ISO STEP AP224 standard is considered as 

guideline for industrial extended. 
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Table 3.1 Classification of machining feature 

Internal feature Round hole Through round 
hole 
Blind round hole Flat 

Flat with radius 
Spherical 
Coin cal 

Conical hole 
General hole 
Slot Through slot 

Blind slot Flat 
Radiused 
Woodraff 

Pocket Closed pocket 
Open pocket 

Step Through step 
Blind step 

External feature Revolved-feature General revolution 
Groove 
Revolved flat 
Revolved round 

Boss Cylinder boss 
Conical boss 

General outside Close -
Open 

Round end 
Spherical cap 
Protrusion 
Surface machining 

Attaching feature Knurl 
Thread 
Marking 

Compound (not applicable in 
feature this work) 
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The classification has some advantages as listed below. 

1) With a finite feature library, it includes the majority of the primitive feature 

likely to be of interest for the application of machining proces planning. 

2) It is more suitable for integrated CAD/CAM environments becau e the 

requirements of both design and manufacturing are considered. 

3) It enables the use of a code representation and a computationaJiy efficient 

feature recognition strategy. 

The feature definition in the taxonomy is described in Appendix A. 

3.3 Feature class definition 

3.3 .1 The requirements of feature class definition 

In order to ensure a valid component model and suitable data for future process 

planning, feature definition must satisfy the following requirements. 

I) Completeness: Completeness implies that a component C can be fully 

produced by a set of machining features F= {ftJ, ftz, ... , ftn } , that is 

C=S- U.fti (3- l ) 
f/l e F 

where S represents the stock. 
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2) Connection: Each feature,Jt; should have at least one face connecting with C, 

that is 

(jt; nC) = Face/Faces:;:. (j) 

and 

(jt; n(S-C)) = volume :f. (j) 

(3-2) 

(3-3) 

3) Comprehensiveness: In order to pave the way for further applications (e.g. 

process planning), feature definition needs to store both geometric and proce 

data relevant to the application . Several types of attributes and the permi ible 

attribute values for feature instantiation must be determined : geometric , 

manufacturing data and validation constraints . 

3.3 .2 The parameters of feature class definition 

The parameters in feature definition are used for determining not only how a 

feature class is presented to the user but also how the user interacts with the 

system. A set of parameters of a feature class is defined based on the 

requirements for both design and machining purposes. The feature class in the 

module, which is either additive or subtractive, is represented by the feature 

volume or its boundary elements as a whole. As illustrated in Figure 3.4 a 

standard feature class can be explicitly defined with five de cribers: identifier, 

interface parameters, validity constraints, machining attributes and UndiGraph. 

1) Identifier: A number of basic terms understandable to both the designer and 

the system, namely, feature name, feature code and feature clas type. 
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I Feature Class I 

I I I 
I Identifier .I Interface Validity Machining Feature 

Parameters Constraints Atuibut UndiGraph 

I I 
Name Shape Geometry Tolerance/accw-acy 

Code Position Topology Machining Process 
Type Orientation Machining Tool Access Direction 

Intersections Machine tools 
Cutting tools 

Figure 3.4 Definition of feature class 

2) Interface parameters: A set of parameters relating to its basic shape and 

spatial relationships to the world co-ordinate system by fixing its degrees of 

freedom. It provides an interface between the design module and the u er. 

These parameters will be specified at the time that the feature is created. 

There are two major categories. 

• Geometric shape 

The basis of a feature is its geometric shape, which indicate the volume of 

material added to or removed from the model. In the proposed design by 

features method, geometric shapes of features are determined directly by 

specifying geometric shape parameters predefined in the feature cia s 

templates. The parameter set must be sufficient to construct but not over 

constraint a feature. For example, two geometric parameters of feature 

hole, radius and depth, constitute its basic shape- a cylinder (Figure 3.5). 
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Another example is the slot shown in Figure 3.6, which is described as a 

block with parameters of length, width, depth, angle a, etc. 

radius 

surface A 
centre line 

V( vx, vy, vz) 

Figure 3.5Geometric paran1eters of a hole 

angle a 

Figure 3.6 Geometric parameters of a slot 
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• Position and orientation parameters 

Position and orientation parameters identify the spatial relation hip 

between a feature and the stock. To establish the position and orientation, 

a reference is needed between the feature and the stock. For example, 

before a blind hole can be added to a stock (shown in Figure 3.5), the 

designer needs to specify the surface on which the feature is placed (i.e. 

surface A), and the location (point 0 (x, y, z)) and the centre line (vector 

V(vx, vy, vz)) need to be determined. 

3) Machining attributes: A set of parameters related to the specific machining 

operations corresponding to a feature class, such as tool access direction 

machine tools, etc. As an example, considering process planning data for a 

through hole, it may include items such as the following: 

• Roughness and tolerances (e.g. ITIO, Ra 3.2um). 

• Applicable machining operations (e.g. drilling, boring, reaming). 

• Machine tools and manufacturing condition information (e.g., radial 

drilling machine, depth hole drilling machine) . 

• Tool and fixture information (e.g. materials of cutting tools and fixtures). 

• Tool access directions (e.g., direction I (0, 0, 1) and direction II (0, 0, -1)). 

• Manufacturing cost information (e.g., operation cost, machine tool cost, 

tool and fixture cost, set-up change cost.) 
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4) Validity constrai nts: A set of constraints checked automatically at the feature 

instanti ation stage to ensure the feature validity. There are three type of 

constraints: geometric and topological , machining, and interacting con traint . 

All these constraints are important for feature validation and their value can 

be decided using algebraic expressions (see pages 80-87), the manufacturing 

environment and features relationships. 

• Geometric and topological constraints 

Usually, these constraints appear as a standard range for specifying the 

size limits, which can be calculated using mathematical equations ba ed 

on the shape parameters, class, and position and orientation of the feature. 

For example, the dimension of a hole cannot be larger than the size of the 

stock on which it is being placed; the depth of a blind hole must be 

restricted to be less than the size of the stock where the hole i to be added 

otherwise the blind hole would become a through-hole. 

• Machining constraints 

It is possible that some features have valid geometric shapes and topology 

but still are invalid features because of their non-machinability. Different 

from other constraints, machining constraints mainly depend on the 

machining attributes of features and the specific workshop environment 

that features will be manufactured (e.g. machine tool s can be available) . 

For instance, long and thin holes may be regarded invalid if no machining 

methods are available for their manufacturing. At the design stage, the 

check for machining constraints is limited to constraints that can be 
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defined by algebraic expressions, e.g. the ratio of height to radiu . Other 

machining attributes (e.g. tolerance and accuracy) are examined at the 

process planning stage, i.e. during selection of machining operations. 

• Interacting constraints 

Geometrical , topological and machining constraints are insufficient to 

fully retain feature validity when feature interactions occur. As known, 

feature interactions can cause serious constraint violations of valid feature 

instances . Therefore, the constraints for feature interactions mu t be 

defined, such as the dependent properties between parent and child 

features . An example is shown in Figure 3.7 that pocket B i added based 

on pocket A and becomes a child feature of pocket A. Due to thi 

interacting constraint, pocket B will be invalid if pocket A i deleted . 

Unlike the other two constraints , there are no appropriate mathematical 

ways to determine the interacting validity. However, it is po sible to 

develop some heuristic rules based on interacting rules for these 

constraints. These constraints are considered in a heuristic algorithm for 

interacting features recognition , which is discussed further in chapter 4. 

5) UndiGraph: A face graph defining a feature pattern. It can be defined as 

UndiGraph = (F, R), where 

F is the finite non-NULL set of faces consisting of the feature: 

F={face; I face; E Feature} (3-4) 
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R is a set of relationships between faces: R={FR} . 

FR is a relationship with no specific direction between two face : 

FR={ <face;,face1>1Piface;,facei)A(jace;,face1EF)} (3 -5) 

Piface;, face1) is a path with no specific direction between 

FR is symmetrical, i.e. <facexJace;>=<facey,face;>. 

Figure 3.8 shows an example ofUndiGraph. 

ocket A 
(added before pocket B) 

ocket B 
(added after pocket A) 

Figure 3. 7 Example of interacting constraints 

PLANE 

PLANE 

Figure 3.8 Example of feature Undigraph 
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3.4 Feature-based model 

The proposed feature-based model a1Jows the user to design a component direct! 

with features predefined in the feature library . Unlike conventional geometrical 

models, it is designed for high-level data, i.e. feature instances. Therefore all the 

model operations are feature-based. As depicted in Figure 3. 1, the highest level 

can be presented as a graph, where the nodes correspond to feature instance (e.g. , 

Feature 1 and Featuren) and the arcs store interaction relationships between feature 

pairs (e.g., I and 2). Figure 3.9 presents the detailed data structure of the propo ed 

hierarchical feature-based model, whose data spans over four level . The highe t 

or the first level is about the basic entities and the information (such a feature 

relationship, feature location and so on) required for feature recognition and model 

manipulation . The second level maintains a11 the constraint parameters for feature 

validity. The third level contains the geometric (e.g. face attributes) and 

topological information about the adjacency between pairs of vertices, edge , 

faces, etc. Finally, the lowest or fourth level is used for low leve l geometric data 

such as tolerance, etc. 

Four types of feature relationships are defined within the feature-based model: 

parent-child relationship, connection relationship, non-connection relation hip and 

overlap-hiding relationship [Ding et al2000]. 

1) Parent-child relationship. A feature ft1 is considered to be a child feature of 

feature ft2 if ft1 directly depends on ft2• The parameters of child feature ft1 are 

constrained by the parent feature , ft2. The parent feature,ft2 is independent of 

feature ft1. In other words, the validity of the child feature,ft1 needs to be re-
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checked and necessary change made when the parent feature , ft2 changes. On 

the contrary, the parent feature,.ft2 needs not change when the chi ld feature ft1 

changes. 

!Feature-based model j 

······························································· ....................................................................................................... ······ ···· ············· ·-··-· ···· ············································ 

Level 1 

Feature 1 
position 

~ Pointer 
Relation type 

interaction 

__.Related 
feature 

Feature n 
position 

}
Relation hip 

r------1 with adjacent 
'---..,------' features 

······· ·· ············ ······· ··· · · ·······;~ ·· · ····· ············ type .......................................... ............ ~~···················· .................... .. 

Level2 

Constraints 
Dimensions 

Interaction 

L._ ____ ___, 

Constraints 
Dimen ions 

Interaction 
" "'"""""" ' """"""""""' .......... ........................................................ ... ' ' """"""""" • ...................... ............................................ . 

Geometry Geometry 
Level 3 Topology Topology 

"""""""""""""•·· ····· .... ................................................................................................. ........ ................. ..................................... .......... .. 

Level 4 Tolerance Tolerance 

Figure 3.9 Structure of feature model 

2) Connection relationship . If two features have a connection relationship , the 

validity of both features need not be re-checked. However, the relationship 

should be identified for downstream applications (e.g. CAPP). 

3) Non-connection relationship. If there is a non-connection relation hip 

between two features, they are not dependant on each other. 
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4) Overlap-hiding relationship: If a feature ft1 is regarded as a hiding feature of 

feature ft2, it means ft2 overlaps ft1 completely. In this situation , ft1 i deleted 

from the final result and only ft2 is considered in the model. 

Examples of feature relationships are shown in Figure 3.10. 

3.5 Feature-based model management 

Feature-based model management provides several interacting functions for the 

user to create and manipulate the feature-based model , and maintain model 

validity. It is considered an important tool supporting feature-based de ign. 

There are three main operations: adding new feature instance, editing and deleting 

existing feature instance. 

3.5. 1 Adding a new feature instance to the model 

With a full set of interface parameter values, a pre-defined feature class template 

can be initialised as a new feature instance. When the validity check proce 

successfully performed, the new feature instance is added and the model data i 

updated. As shown in Figure D. I (Appendix D), thi s proce i detail ed a : 

Step 1: Input a set of parameters defining a feature. 

Step 2: Check the validity of the defined feature according to geometric and 

topological constraints using corresponding mathematical calculations de cribed 

in section 3.5.4. 
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(a) Example of parent-child relationship 
jt( blind slot (child) 

(b) Example of cmmection relationship 
fi 1: blind slot 

fi 2: blind slot (parent) ft2: blind slot 

(c) Example of non-connection relationship 
ft 1: blind slot 

ft2: pocket 

(d) Example of overlap-hiding relationship: 
ft1: through slot (hide) 
ft2: through slot 

Figure 3.10 Examples of feature relationships 
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If the checking fails, then go to end. Else, go to Step 3. 

Step 3: Determine relationships between the new feature and ex isting feature 

in the feature-based model. 

If any change (i.e. class or dimension change) is necessary, which user cannot 

agree, then go to end. Else, go to next step. 

Step 4: Add the new feature instance and update the model. 

Step 5: End. 

3.5.2 Editing a feature instance in the model 

Existing feature instances can be modified by changing the values of their 

parameters. The validity checking process consists of two parts: validity checking 

for the feature to be edited and validity checking for the existing features in the 

feature-based model. If the validity checking succeeds, the change to the feature 

is accepted and relevant parameters are updated accordingly; otherwi e the 

editing operation will be terminated. The editing process is given below (Figure 

D.2 in Appendix D). 

Step 1: Select the feature to be edited. 

Step 2: Input the modified parameters. 

Step 3: Check the validity of the modified parameters using corresponding 

mathematical calculation . 

If the checking fails , then go to end. Else, go to the next step. 
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Step 4: Re-check the features, which have a relation hip with the feature to be 

edited. Two situations needs attention: 

Situation I : Features that had been changed class or dimension due to the 

addition of the feature to be edited. These features will be restored to their 

original classes or dimensions . 

Situation 2: Features that are child features of the feature to be edited but their 

class or dimension had not been changed due to the addition of the feature to be 

edited. These features will be deleted, or they will be invalid. 

If the user does not agree with above changes, then go to end. Else, go to step 5. 

Step 5. Delete all previous relationships between the feature to be edited and 

existing features in the feature-based model. 

Step 6. Determine new relationships between the feature to be edited and 

existing features in the feature-based model based on new editing parameter . 

If the user doses not agree with any changes which are necessary , then go to tep 

7. Else, go to step 8. 

Step 7. Restore all information of the feature-based model before thi editing 

operation, including features, feature relationships , feature clas e and feature 

dimensions. Then, go to end. 

Step 8. Accept the modification and update the feature-based model. 

Step 9. End. 
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Figure 3.7 gives an example where pocket A is the parent of pocket B. When the 

depth of pocket A is shortened, pocket B must be deleted. The reque t of editing 

will be cancelled if user does not agree with the deletion of pocket B. 

3.5.3 Deleting a feature instance from the model 

When a feature instance is deleted from the model , all it parameter and 

interaction relationships with other features will be deleted completely. Thi 

process is simpler than editing a feature as there is no need to identify new 

interacting relationships. However, all child features of the feature to be deleted 

must be checked: 

1) Features that had been changed class or dimension due to the addition of the 

feature to be deleted. These features will be restored to their original cia e 

or dimensions. 

2) Features that are child features of the feature to be edited but their cia s or 

dimension had not been changed due to the addition of the feature to be 

deleted . These features will be deleted as well. 

If the user does not agree with above changes, then the deleting operation will be 

cancelled. Figure D.3 in Appendix D describes the deleting process. 

3.5.4 Checking validity of feature 

As described in section 3.3, the restricting values of geometrical and topological 

constraints can be calculated by algebraic expressions on the feature parameter 

and the relevant dimensions of the stock. Tables 3.2 to 3.6 give some 

79 



Chapter 3 Design by Features Module 

mathematical expressions for constraints used in this research. The corre ponding 

checking processes are implemented in the module using the C++ language. 

Primitive 
variables 

Case 1 

Case 2 

Table 3.2 Calculating expressions for blind slot 

L=.J(xmaA"XX)2 +(ymaA"~l 

LA=~(xx-oJ2 +(ymaA"~.)2 

(Jo =arcsin( width I L) (a<90°) 

fJ o = arcsin( width I LA) (a>90°) 

ao = arcctg(\tm,.-XX:J (a<90o) 
Y max- Oy 

( 
lxx-o f l J ao = arcctg I · I c a>90°) 
y max - Oy 

Lmax: the maximum length 

W max: the maximum width 

Wmax =I(Xmax-xx)*cosa I 

L1=width*tga 

~=(Ymax-Oy)lcosa 

Wmax =I(Xmax-xx)*cosa I 

Lmax= L *cos(90° -a-<XQ) 
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Case 3 

Case4 

Case 5 

Case 6 

Design by Features Module 

Table 3.2 Calculating expressions for blind lot (continued) 

w max =I(Xmax-xx)*cosa I 

Lt= Xmax-XX 

Lmax= Ltlcos(90°-a ) 

(90° +ao) > a > 90° 

Wmax =l(xx-ox)*cos(l80°-a)l 

Lt= XX-Ox 

Lmax= Lt/cos(a-90°) 

(90°+ao+Po) >cQ (90°+<Xo) 

Wmax =I(XX-Ox)*cos(l80°-a)l 

Lmax= LA *cos( a-90° -ao) 

180°>cQ (90°+<Xo+Po) 

W max =I(XX-Ox)*cos(l80°-a)l 

Lmax= Lt+L2, 

L1 =width *tg( 180° -a) 

L2=(Ymax-Oy)lcos( 180° -a) 
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Primitive 
variables 

Case I 

Case 2 

Design by Features Module 

Table 3.3 Calculating expressions for through slot 

L=J (X mar xxi +(ymar0y)
2 

LA=~(xx-oJ2 
+(ymax-0/ 

f3o =arcsin( width/ L) (a<90°) 

f3o =arcsin( width/ LA) (a>90°) 

ao = arcct/1
1
xm"- xx/J (a<90°) l ymax-Oy 

ao = arccti
1
1xx- o,i

1

J (a>90o) l Y max- Oy 

Lmin: the minimum length 

Wmax: the maximum width 

Wmax =I (X max-xx)*cosal 

L1=width*tga 

Lz=(Yrnax-Oy)lcosa 

Wmax =I(Xmax-xx)*cosal 

Lmin= L *cos(90° -a-ao) 

Yma 

0 
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Case 3 

Case 4 

Case 5 

Case 6 

Design by Features Module 

Table 3.3 Calculating expressions for through slot (continued) 

w max =I(Xmax-xx)*cosa I 

Lt==Xmax-XX 

Wmax =l(xx-ox)*cos( 180° -a)l 

Lt==XX-Ox 

Lmin= Ltlcos(a-90°) 

Wmax =l(xx-ox)*cos(l80°-a)l 

Lmin= LA *cos( a-90° -a.o) 

W max =I( XX -Ox)*cos( 180° -a)l 

Lmin= Lt+~, 

L1 =width *tg(180° -a) 

~=(Ymax-Oy)/cos( 180° -a) 
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Primitive 
variables 

Case 1 

Case 2 

Case 3 

Design by Features Module 

Table 3.4 Calculating expressions for through step 

Lmin: the minimum length 

y 
Ym x 

Width =I(Xmax-xx)*cosa. I 

Lmin= L *cos(90° -a.-ao) 

Width =I(Xmax-xx)*cosa.l 

Lt==Xmax- XX 

Lmin= Ltfcos(90° -a) 

Width =l(xx -ox)*cos( 180° -a.)l 

Lmin= LA *cos( a.-90° -ao) 
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Case4 

Primitive 
variables 

Case I 

Design by Features Module 

Table 3.4 Calculating expressions for through step (continued) 

Wmax =l(xx-ox)*cos( 180°-a )l 

Table 3.5 Calculating expressions for closed pocket 

L = ~(length) 2 + (width)
2 

ao = arctg (
width J 
length 

90°><P-: 0° 

p2x=P I x+length *cos a 
Ymax 

p2y=p 1 y+length*sina 

p3x=P 1 x+L *cos( a+cx.o) 
p2 

p3y=p 1 y+ L *sin( a+cx.o) 

p4x=P lx-width*cos(90°-a) 0 X max X 
p4y=pl y+ width*sin(90°-a) 
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Table 3.5 Calculating expressions for closed pocket (continued) 

Case 2 

Case 3 

Value 
limitations 

(180° -a0)>a~ 90° 

p2x=p 1 x-length*cos(180°-<X) 

p2y=p l y+ length*sin(180°-a) 

p3x=p l x-L *cos(180°-<Xo-a) 

p3y=pl y+ L*sin(180°-a0-a) 

p4x=p lx-width*cos( a-90°) 

p4y=p l y-width*sin( a-90°) 

p2x=p lx-length*cos(180°-a) 

p2y=ply+ length*sin(180°-a) 

p3x=p 1 x-L *cos( a+ao-180°) 

p3y=pl y- L*sin(a+a0-180°) 

p4x=p lx-width*cos( a-90°) 

p4y=p 1 y-width*sin( a-90°) 

Ox< plx <Xmax 

Ox< p2x <Xmax 

Ox< p3x <Xmax 

Ox< p4x <Xmax 
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Table 3.6 Calculating expression for blind/through hole 

through hole depth ~ lZmax-Ozl 

blind hole 

3.6 Summary 

Xo+d/2< Xmax 

Yo+d/2< Ymax 

y0 -d/2> Oy 

depth/d<R!imit 

Rlimit is determined by 

manufacturing environment 

Xo+d/2< Xmax 

Xo-d/2> Ox 

Yo+d/2< Ymax 

Yo-d/2> Oy 

depth/d<R!imit 

X 
Ymax t------;-~----, 

-{~;y;) 
I .. 

0 Xmax ~ X 

X 
Ymax I 

- ·ffi:y~) 
... 

Xmax X 0 

This chapter has described the design by features module. Fi rstly, a new 

architecture has been introduced for design by features with a feature library 

feature-based model , feature library management and feature-ba ed model 

management. Secondly, a classification scheme has been pre ented for 

manufacturing features based on the ISO STEP standard. The main characteristic 

of the classification is the consideration of STEP AP224 and a viewpoint of both 

manufacturing and design . Thirdly, a data structure for the feature cla s ha been 

87 



Chapter 3 Design by Features Module 

designed. Although at the current stage, the work deals only with primiri e 

features, new feature classes can be defined according to the defined data 

structure. Fourthly, a feature-based model is described with a hierarchical 

structure. The model can reflect the design intent of the user becau e rh 

modelling history can be traced through a top-down approach. Finally the 

feature-based model management deals with adding, editing and deleting feature . 

Mathematical calculations are used to check validity con traints and thu to 

effectively maintain the feature validity in terms of geometry and topology. 
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Chapter 4. 

Interacting Features Recogniser 

Although design by features does not need to recognise the primitive feature 

defined in the feature library, it is imperative to apply feature recognition 

techniques to deal with interacting features. Figures 4 . 1 and 4.2 how two 

situations of interacting features , which lead to different results. Most method 

for interacting feature recognition used to date are based on analysing the 

geometrical and topological information of the new volume created by all of the 

interacting features, such as the Graph Matching showing in Figures 4.1 and 4.2 . 

They are possibly successful in some conditions, e.g. two simple interacting 

features which may be merged to one feature. However, these methods are not 

very efficient or useful in many situations. For instance, the blind lot and the 

closed pocket shown in Figure 4.3 should not be recognised as a whole entity 

though they interact. This research presents a new identification algorithm of 

interacting features aiming to overcome the drawbacks of existing methods. 

Comparing the two illustrations shown in Figures 4.3 and 4.4, it can be seen that 

the two situations have different interacting entities , A and B. In Figure 4.4, the 

interacting entity B has a face fl I which represents the entire face fl of feature B2 

(closed pocket), which causes the loss of a face of feature B2 completely and 

consequently a class change to feature B2. On the contrary, in Figure 4.3, the 

interacting entity A does not contain a face similar to face fl I in the interacting 

entity B. Therefore, the validity of feature Al and A2 remains and no further 
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recognition is needed. In other words, it is possible to solve the interacting 

problem by analysing the interacting entity because different interacting entities 

will lead to different interacting results. Thus, unlike conventional approaches 

directly recognising the new volume created by all interacting features, the 

proposed heuristic algorithm focuses on analysing the relationships betw en pairs 

of features and determines an appropriate manipulation (e.g. merge, divide, class 

change) . This avoids UJmecessary feature recognition work and resolves 

interacting features more efficiently. 

Open Pocket Blind Slot Combined graph 

Figure 4.1 Type I feature interaction 
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/ 

Closed Pocket Through Slot 

Combined graph 

Figure 4.2 Type II feature interaction 

Feature AI 
Feature A2 Interacting 

entity (A) 

Figure 4.3 Example of interacting features, L ,> L2, d1 < d2 
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Feature Bl 
(blind slot) 

Feature B2 
(closed pocket) fl 

Interacting Features Recoguiser 

Interacting 
entity (B) 

Figure 4.4 Example of interacting features, L1 > L2, d1 = d2 

4.1 Basic terms and concepts 

In order to simplify the problem complexity at this stage, the re ea.rch r port d in 

this thesis is based on the following assumptions for the downstream application 

ofCAPP. 

1) The features belong to the internal features defined in chapter 3, uch as slot, 

pocket, and so on. 

2) The feature instances are machinable on 3-axis machines. 

3) The location vectors of interacting features are the same, parallel or 

orthogonal. 

4) The feature model is non-manifold . That is, every feature geometrical 

interpretation must be satisfied with the following rules [Shah and Mantyla 

1995]: 

• All edges separate exactly two faces 
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• All vertices are surrounded by a single circuit of faces. 

Figures 4.5 and 4.6 show some examples of valid features and non-valid feature 

for the proposed algorithm . 

Figure 4.5 Valid components for this research 

Figure 4.6 Invalid component due to a sloping hole 

A number of terms are used for describing the interacting features recognition 

algorithm. 

1) SVE (Spatial Virtual Entity): SVE is defined as an entity, which is equivalent 

to the volume removed from the initial material stock to obtain the final 

boundary of a feature. 

93 



Chapter 4 Interacting Features Recogniser 

2) FF (Feature Face): FF is a face that physically constitutes the basic hape of a 

feature on the model. It can be further classified into two type . 

• PF: a partial FF of its feature. 

• CF: a whole FF of its feature. 

3) VF (Virtual Face): VF is a face that forms the boundary of its SVE along ith 

the FFs. Two subtypes can be classified. 

• PV: a partial VF of its feature. 

• CV: a whole VF of its featme. 

4) NF (None Face): NF is an internal face in SVE and does not constitute th 

boundary of SVE. 

An example ofSVE, FF, VF and NF is shown in Figure 4.7. 

Interacting feature 

,t-,/ 
, , I ' 

, I ,... .-11 

' ' I 
'I 

FF 

SVE 

Figure 4.7 Example of SVE, FF, VF and NF 
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5) IE (Interacting Entity): IE is an entity defining the intersection of a feature 

pair. Figure 4.8 shows an example of IE. Based on the abov definition , 

there are thirteen types of faces for IE (shown in Table 4.1 ). 

PV-PV 

(a) pair of features (b) IE 

Figure 4.8 Example of IE 

Table 4.1. Face types for IE 

The type of face in IE The type of face of The type of face of 
Feature fit Feature.ft2 

CF-CF CF CF 
CF-PF CF PF 
PF-PF PF PF 

CV-CV cv cv 
CV-PV cv PV 
PV-PV PV PV 
CF-CV CF s;_v 
CF-PV CF PV 
PF-PV PF PV 
CF-NF CF NF 
PF-NF PF NF 
CV-NF CV NF 
PV-NF PV NF 
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4.2 The types of feature interactions 

The following five types of interactions are normally encountered: 

I) Non-result interaction: The interacting entity is none, which mean the two 

features are not interacted. 

2) Point-result interaction: The interacting entity is a point. According to the 

manufacturing requirements and the constraints of non-manifold model, point­

result interactions are not valid so that they are not considered in this re earch. 

3) Edge-result interaction (ERI): The interacting entity 

features can be determined without further proce sing. 

an edge. The two 

4) Face-result interaction (FRI): The interacting entity is one face. It can be 

further classified into four types: CF-CF, CF-PF (or PF-CF), PF-PF and PF­

CV (or CV-PF). 

• CF-CF: For either feature ft1 or feature ft2, the types of the interacting face 

are both CF faces. 

• CF-PF (or PF-CF): The intersecting face appear as a CF face of feature 

ft1 while a PF face of featurejt2 . 

• PF-PF: The intersecting face is regarded as a PF face for both features. 

• PF-CV (or CV-PF): The intersecting face represent a PF face of feature 

ft1 and a CV face of feature ft2 · 
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5) Vo1Lm1e-result interaction (VRJ) : The interacting entity is a volume. Thi 

type of intersection is more complicated and needs to be analy ed further. 

Examples of the above interacting situations are shown in Figures 4.9 to 4.20. 

4.3 Herustics algorithm for interacting feature recognition 

The basic mechanism of the proposed algorithm is to make use of JEs of pair of 

interacting features. The first step is to traverse all features in the hierarchical 

feature-based model. Then, Boolean set intersections are performed on each 

feature pair. Finally, the IE is analysed till a relationship is determined for each 

pair of features. The algorithm is described below. 

Assume two features, A and B satisfy the conditions mentioned before, whose 

interacting entity is JEAn= SVEA nSVEn. Four possible situations exist. 

Situation I: The interacting entity is none: JEAn= 0 (e.g. Figure 4.9). 

The relationship between feature A and feature B has a non-connection 

relationship. No further recognition is needed. 

Figure 4.9 Example of JEAn= 0 
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Situation 2: The interacting entity is an edge: lEAs= edge. 

The two features have a connection relationship (e.g. Figure 4.1 0). Although 

the two features share one edge, their individual validity is not affect d. 

Therefore, there is no further feature re-recognition. 

Rlinrl Slot 

Through Step 

Figure 4.10 Example of ERI 

Situation 3: The interacting entity is a face: lEAs= face . 

Step 1: If lEAs= faceE PF-PF, the relationship between the two features is 

a connection relationship (e.g. Figure 4.11 ). The validity of both features is not 

affected though there may be some impact on their machining planning. 

Figure 4.11 Example ofFRI (PF-PF) 

Step 2: If lEAs = faceE CF-PF (or PF-CF), a parent-child relationship is 

built with a feature class changed. For exan1ple, in Figure 4.12, a blind slot (A) 
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intersects with a through slot (B) . The interacting entity IEAa = CFblind-slot and 

IE;~a = PFthrough-s l o~> which means a FF face in the blind slot (A) di app ar 

completely due to the interaction. Thus, the class of feature A (blind lot) 

changes to a through slot which is a child feature of feature B (through slot). 

Figure 4.12Example ofiEc =faceE CF-PF, L1 = L2 

Step 3: If IE;ta = faceECF-CF, the two features are merged into a new 

feature class or a parent-child relationship is identified according to the 

requirements of merger. For instance, two interacting blind lots shown in 

Figure 4.13(a) can be merged into one new through slot and become hiding 

features of the new feature (a through slot). Another example is two pockets 

intersecting a faceECF-CF. As shown in Figure 4.13(b), although both 

features lose a FF face completely, they cannot be w1ite together because the 

new shape created does not belong to any feature class defined in this research. 

Therefore, a parent-child relationship is built and one of them becomes the 

child feature with a new feature class - through slot. A neural network-based 

feature recogniser has been designed to analyse the possibility of merger, 

which is described in chapter 5. 
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--
(a) 

(b) 

Figure 4.13 Examples of lEe =face E CF -CF, lEe =CF A , IEe=CF 8 

(a) L1 = L2, d1 = d2, w 1 = w2 

(b)L3= L4, d3= d4, w3= w4 

Step 4: If lEAs = face ECV-PF (or PF-CV), there IS a parent-child 

relationship between the two features. A good example of two interacting 

pockets is shown in Figure 4.14, which lEAs = CV, and lEAs= PFu. 

Pocket I 

ocket II 

Figure 4.14Examples ofiEe =faceE CV-PF, IEe=CV, , IEe=PFu 
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Situation 4: The interacting entity i a volume: JEAn= volume. 

Step 1: If JEAn= SVEA or JEAn = SVEn, one feature overlap the other feature 

completely. There is an overlap-hiding relationship. Supposing JEAn= SVEA 

and 1£118 ::f; SV£8 , then SVEA c SVEn, that i , feature A belong to feature B. 

Therefore, feature A is called a hiding feature of feature B and will not b 

stored in the model data structure. Feature B is the only feature con id red 

during process planning stage. 

Step 2: If JEAn =SVEA and JEAn= SVEn, (i .e. SVEA=SV£8 ), the two feature 

overlap each other entirely, and one feature is cho en. There is an overlap­

hiding relationship , and the feature not chosen becomes a hiding feature and 

does not being considered later. 

Step 3: If J; E IEA8 ,j; ECF-NF (or NF-CF) ,jj E JEAn andjj EPF-PF, they 

are merged to form a new feature if they meet the requirement of merger, i.e . 

the new feature belongs to a certain feature class that the ystem can recogni e. 

Otherwise, a parent-child relationship is detected. Figure 4.15 how an 

example. The blind hole and the blind slot are merged into a new feature: blind 

slot (radiused_slot_end_type). Another in tance is shown in Figure 4. 16 where 

feature A and feature B cannot be merged to form a new feature, the feature B 

(closed pocket) is changed to a blind slot and becomes a child feature of the 

feature A (parent feature). 
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n 

IE 

Figure 4.15 Example! ofiEAs= Volume, 
J; E IEAB, jj E lEAs, J; ECF-NF, jj EPF-PF, 

L, = L2, d, = W2, h, = h2 

feature A:through slot featme B:closed pocket 

Figure 4.16 Example2 of IEAB =Volume, 
f E IEAs,jj E lEAs,/; ENF-CF jj EPF-PF 

L1+w1 < L2 + w2, w2> w,, h, = h2 
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Step 4: lf./i E I£118 and .fi ECF-PF (or PF-CF), the cia s of the feature to 

whi ch CF belongs to, is modifi ed and a parent-child relationships is added. For 

instance, in the case of Figure 4.17, there exists a face ./i EfE~w, ./i =CF blind-slot 

and ./i =PF1hrough-slot· The blind slot is recognised as a through slot becau e the 

FF face becomes a VF. 

~ / J / 
r r l 

,/' 

~ 
~· 

n 

~ 
'< 

I . -::>: 

'I 
J / 

Figure 4.17 Example of IEA 13 = Volume, 
j,E IEAB, f,EPF-CF,L, =L2 

..... 

[ < ~ j~l 

Step 5: [f./i E IEA8 ,f; ECF-NF (or NF-CF),jj E IEA/3, and.fi ~PF-PF , e.g.f; 

=CF A and f; =NF13 , then the class of feature A is changed and the two features 

have a parent-child relationship, i.e. feature A becomes a child feature of 

feature B. For example, two blind steps (I and II) intersecting in Figure 4.18, 

their interacting entity IEA13 contains a NF-CF face and does not include a PF-
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PF face; the c lass of blind step ll changes through step due to loss of an entire 

face A (CF). The through step is a child feature of blind step I. 

h,~~· W! L, 
' . 

'--..._ 

Blind step I Blind step II 
Face A 

Figure 4.18Example ofiEAs = Volume,.fiE IEAs,.fiECF-NF 
L, < L2, w, > W2, h, > h2 

Step 6: If .fi E 1£11 13 and .fi E CY -PV (or PV -CV), then the dimension of the 

feature with CY is modified while the feature class remains unchanged. Based 

on thi s modification , a parent-child relationship is built. An example is a 

through slot interacting with a blind slot (Figure 4.19), where .fi E 1£1113 , .fi 

=CYthrough-slot and .fi =PVblind-slot· In this case, the through slot is shortened and 

becomes a child feature of the blind slot. 
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Figure 4.19 Example ofiEi\ 13 = Volume,jiE IEAB,./i ECV -PV 
d, > d2. d, + L1 < d2+L2, h, < h2 

Figure 4.20Example ofiEA 13 = Volume with 
two non-connected NFs 

Step 7: If JEA 13 has two non-connected groups of NF in one feature (say 

feature A), feature A i s divided into two parts. Figure 4 .20 shows a pocket 

(with two non-connected NFs) divided into two blind slots by a through slot. 
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Step 8: Otherwise, the relationship between the two features is a connection 

relationship. 

The above procedure is summarised in Figure D.4, Figure D.5 and Figure D.6 (in 

Appendix D). The relationships applied to the interacting features are illustrated 

in Table 4.2. 

Table 4.2. Relationship between interacting features 

Relationship Conditions feature Feature Output 
A B 

Non- IEAB=0 Feature A 
connection feature B 
Connection lEAs =edge feature A 

feature B 
lEAs =faceE PF-PF feature A 

feature B 
lEAs E volume feature A 
j;E IEAB feature B 

f;r£ CF-X,J;ri CV-X, 
two non-connected 
groups of NFri lEAs 
lEAst: SVEA 
lEAst: SVEs 

Parent-child IEAs=faceE CF-PF new Child: new feature A' 
class Parent: feature B 

IEAs=faceE PF-CF New Child: new feature B' 
class Parent: feature A 

lEAs =faceE CV-PF Child: feature A 
Parent: feature B 

lEAs =faceE PF-CV Child: feature B 
Parent: feature A 

lEAs =faceE CF-CF new Child: new feature A' 
Out of requirements of class Parent: feature B 
merger 

lEAs =faceE CF-CF new Child: new feature B' 
Out of requirements of class Parent: feature A 
merger 

lEAs E volume new Child: new feature A' 

j;E lEAs class Parent: feature B 

j;E CF-PF 
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Chapter4 Interacting Features Recogniser 

lEAs E volume new Child: new feature B' 

fiEIEAB class Parent: feature A 

_[iEPF-CF 

lEAs E volume new Child: new feature A ' 

fiE lEAs class Parent: feature B 

}iECF-NF 

hE lEAs 
./jEPF-PF 
Out of requirements of 
merger 

lEAs E volume new Child: new feature B ' 

fiE lEAs class Parent: feature B 

fiENF-CF 

fiE lEAs 
./jEPF-PF 
Out of requirements of 
merger 

lEAs E volume new Child: new feature A' 

hE lEAs class Parent: feature B 

jiECF-NF 

fiE lEAs 
ti ~ PF-PF 

lEAs E volume new Child: new feature B' 

hE lEAs class Parent: feature A 

fiENF-CF 

fiE lEAs 
};· ~PF-PF 

lEAs E volume new Child: new feature A' 

.fiE lEAs dimensi Parent: feature B 

fiECV-PV on 

lEAs E volume new Child: new feature B' 

,f;E lEAs dimensi Parent: feature A 

_{;EPV-CV on 

lEAs E volume two Child: two new 

two non-connected new features: A 1, A2 

groups of NFE lEAs features Parent: feature B 

Overlap- lEAsE CF-CF merge Merge Output: new feature C 
hiding Satisfying the Hiding: 

requirements of merger feature A 
feature B 

lEAs= SVEA hiding Output: feature B 

IEAs:t SVEs Hiding: feature A 

lEAs= SVEs Hiding Output: feature A 

IEAs:t SVEA Hiding: feature B 

lEAs= SVEA hiding Output: feature B 

lEAs= SVEs Hiding: feature A 
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lEAs= SVEA Hiding Output: feature A 
lEAs= SVEs Hiding: feature B 
lEAs E volume merge Merge Output: new feature C 

fiE lEAs Hiding: 

fiE CF-NF feature A 

j;E IEAB feature B 

f}EPF-PF 
Satisfying the 
requirements of merger 

lEAs E volume merge Merge Output: new feature C 

j;E IEAB Hiding: 

j;ECF-NF feature A 

j;E IEAB feature B 

f}EPF-PF 
Satisfying the 
requirements of merger 

4.4 Summary 

In this chapter, a novel heuristic algorithm has been devised to recogmse 

interacting features. Basic terms and concepts related to the proposed algorithm 

have been introduced. The algorithm for identifying the relationships between 

feature pairs has been described with examples. The heuristic algorithm analyses 

the Interacting Entity (IE) between each feature pair instead of the new volume 

created by all interacting features, making the process simpler. In addition, the 

proposed algorithm skips features for which no recognition is necessary, and is 

therefore more efficient. 
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Chapter 5. 

ANN-based Feature Recogniser 

A novel neural network-based technique for feature recognition has been 

developed to overcome limitations of the existing methods. This includes a novel 

input representation with two matrices, a suitable hierarchical net topology, a 

conjugate gradient training method and an output node format. This chapter 

discusses the ANN-based methodology proposed. 

5.1 Design of neural network 

The tasks of designing a neural network include: 

1) Designing the appropriate input representation which describes features 

correctly and uniquely. This representation will directly influence the design 

of input neurons in the neural network. 

2) Scaling each feature in a range (e.g. [0, 1]) and determining corresponding the 

output format. This format decides how the neural network communicates 

back to the environment, and therefore potentially devises the output neurons 

of the neural network. 

3) Choosing an appropriate network model (such as multi-layer feedforward 

networks or competitive networks) and determining the topology of neural 
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network. This includes the kind and number of neurons, kind and number of 

connections between these neurons and the activation functions. 

4) Choosing the learning method and specifying the learning parameters, e.g. 

learning rate. 

Once the network has been designed, it has to be trained to produce the expected 

output vectors as a function of a predetermined pattern of input vectors [Santochi 

and Dini, 1996]. The training procedure in a supervised learning concerns a set of 

training examples forming the input and target vectors. With a pre-chosen 

training algorithm, the network can learn by itself. The weights will be modified 

step by step in order to minimise the network error. The capability of the network 

to obtain a low value of the error depends on several aspects such as the network 

architecture, training algorithm, initial values of weights and biases, set of 

proposed examples, number of training epochs (the term 'epoch' means a complete 

loop of acquisition through all the training inputs and the target vectors) [Santochi 

and Dini, 1996]. The following sections will introduce the proposed neural 

network-based techniques for feature recognition considering the above-

mentioned aspects: a novel input representation with two matrices, an output node 

format a suitable hierarchical network topology and a conjugate gradient training 

method. 
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5.2 Input representation 

As a key interface between the feature-based model and the neural network, a 

satisfactory input representation for the neural network has three basic 

characteristics: 

1) Complete information (e.g. faces, edges and vertices) for feature recognition. 

It is extremely important that this representation describes features correctly 

and does not distort any information. 

2) An identifiable format by the input layer of the neural network. 

3) A umque input representation without overlaps. In other words, features 

belonging to different feature classes must have different input 

representations. 

5.2.1 Attributed Adjacency Graph (AAG) 

The Attributed Adjacency Graph (AAG) is a face-edge graph describing the 

geometry and topology of a feature pattern. Its nodes and arcs represent the faces 

and edges of the object's boundary respectively. The convexity information of the 

edge is attached to the arcs. Therefore, AAG can be defined as a graph G={N, C, 

A} [Nezis and Vosniakos, 1997], where N is the set of nodes, Cis the set of 

connection arcs between the nodes and A is the set of connection attributes which 

denote the kind of connection (convex or concave). A number of neural network­

based feature recognition systems use an adjacency matrix (AM) converted from 

the AAG as an input representation, e.g. Nezis and Vosniakos [1997]. Although 
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this method can recognise planar and simple curved faces conectly, it still has 

several problems, namely: 

1) The representation is ambiguous. For instance, the through-slot and the 

through-step shown in Figure 5.1 have the same face-edge graph. It confuses 

the neural network and therefore the recognition output is invalid. 

Through-slot Through-step 

Figure 5.1 Features with the same face-edge graph 

.li .12 h 14 
fi 1 0 1 

.h 1 1 1 
fj 0 1 1 
.14 1 1 1 

Matrix A 

f, f2 / 3 f4 
f, 0 1 1 
.f2 0 1 1 
/3 1 1 1 

.f4 1 1 1 

Matrix B 

Figure 5.2 A feature with two matrices 
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2) The representation is not unique. For example, as shown in Figure 5.2, the 

blind slot can be represented by either Matrix A or Matrix B. 

3) The size of matrix mcreases quickly as the number of faces consisting of 

feature increases. 

4) It not only needs to break AAG into sub-graphs using a heuristic method but 

also needs to convert each matrix into a representation vector by interrogating 

a set of 12 questions about the AM layout and the number of faces in the sub­

graph. 

5) The range of features recognised is limited. Features related to secondary 

feature faces, such as T-slots , cannot be recognised. 

Aiming to solve problems mentioned above, a novel input representation with two 

matrices is proposed in this research. 

5.2.2 Proposed input representation 

As shown in Figure 5.3, a neural network can be trained to differentiate between 

the patterns of the slot and the pocket based on the topological and geometrical 

information of the SVE. Thus, an appropriate input scheme describing the 

topological and geometrical information of a feature SVE can be used for neural 

network-based feature recognition . The proposed input representation works in 

three stages. The first stage employs the depth-first method to search for all face 

in the feature SVE, builds its UndiGraph and determines the Node Sequence. The 

second stage defines the F-adjacency matrix. The third stage constructs a V­

adjacency matrix. 
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SVE 

Feature 

(a) Slot Topology of SVE 

SVE 
Feature 

(b) Pocket 
Topology of SVE 

Figure 5.3 Examples of SVE, where P indicates a planar face 

1) Depth-first search method 

Depth-first search method is a traversal algorithm to reach all the nodes in a 

Graph. When possible, the algorithm always chooses an unvisited node 

adjacent to the current node to visit next until reaching a node that has no 

unvisited adjacent nodes. If all nodes adjacent to the current node have 

already been visited, the algorithm will backtrack to the last node that still has 

unvisited adjacent nodes and pick one. In other words, it always chooses to go 

"deeper" into the graph. The search algorithm will continue until all nodes in 

the graph have been visited. Figure 5.4 illustrates two examples applying the 

depth-first search method, with the arcs labelled in the order they are explored. 
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1 

2 

Order of search: A-B-D-F-C-E 
Process 
1: A (B, C) 
2: A-B (D) 
3: A-B-D (F) 
4: A-B-D-F (NULL) 

ANN-based Feature Recogniser 

4 

5 

5: A-B-D-F-D'(NULL)-B' (NULL)-A'(C) 
6: A-B-D-F-C (E) 
7: A-B-D-F-C-E 

Figure 5.4 

(a) 

(b) 

Order of search: A-C-E-F-D-B 
Process 
1: A (B, C, D) 
2: A-C (B, E, D) 
3: A-C-E (B, F, D) 
4: A-C-E-F (B, D) 
5: A-C-E-F-D (NULL) 
6: A-C-E-F-D-F' (B) 
7: A-C-E-F-D-B 

Examples of Depth-first search method 
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Comparing to breadth-first search method, depth-first search method requires 

less memory because it only needs to record nodes on the current path. It is an 

appropriate search method when there are many possible solutions, and only 

one solution is wanted, such as the node sequence in UndiGraph in thi s 

research. 

2) Pre-processing 

In order to transfer feature UndiGraph into an ordered adjacency list, each 

graph node is first assigned a priority order - Node Sequence. A Node 

Sequence corresponding to each face is defined as the following : 

NSfacei= N/1 0+( 6-Nv)+ Tjiype *0.1 (5- 1) 

where NSfacei is the Node Sequence of face i; 

N1 is the number of adjacent faces of face i; 

Nv is the number of adjacent virtual faces of face i; 

Tftype is the value of the type of face i (the value allocated i shown in 

Table 5.1). 

Table 5.1 Value of face type 

Face type Value 
Cylindrical face 1 
Part-cylindrical face 2 

Conical face 3 
Part-conical face 4 
Semi-spherical face 5 
Planar face 6 
Linear-group 7 
Circular-group 8 
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According to the Node Sequence and the algorithm of the depth-first search , a 

priority order of faces is determined by an adapted depth-first traversal 

method. The process is detailed below. 

Step 0: Let 

• OAL be an Ordered Adjacency List, which is initialized as Null. 

• USet be a set of faces that have not been visited yet. 

Step 1: Choose a starting face, F=face;, where 

• face; is an un-visited face in the feature,face; E USet; 

• face; has the lowest value of Node Sequence among the un-visited faces 
' 

NSfacet<=NSfacekE(facek lfacekEUset}· 

IfF= Null , then go to end. Else, go to Step 2. 

Step 2: Addface; to OAL and delete face; from USet. 

Step 3: If USet = 0, then go to end. Else, go to the next step. 

Step 4: Choose a faceface1 where 

• face1 is an un-visited face in the feature,faceJ E Uset. 

• face1 is adjacent to face;,face1E{jacek I facek is adjacent to face;}. 

• face1 has the lowest value of Node Sequence among the un-visited adjacent 

faces to face;, NSjacej<=NSjacekE(facek I Jacek is adjacent to Jacei &facekEUset} · 
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If there is no face satisfying the above conditions , go to Step I . 

If there exists only one satisfactory face, then F=face; and face;= face1; Go to 

Step 2. 

If there are two or more faces satisfying the above requirements, define a new 

set, FS and add all faces satisfying the conditions to FS. Then go to Step 5. 

Step 5: Choose the face whose angle with F is the smallest. That is 

• face; E FS 

e face} haS the SmalleSt angle, ang[e(facej,facei)< = ang[e(facek,facei)E{facek lfacekEFSj, 

where angle(faceJ.faceiJ is the angle betweenface; andface;. 

Then F= face1 and face;= face;, Go to Step 2. 

Figure 5.5 summarises the above steps and Figure 5.6 shows an example of 

pre-processing. 
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Start 

F= face.facei E Uset 

NS (acei<= NS (aceke {(acek I (aceke Use!} 

Addfacei to OAL 
delete facei from USet 

ChooseY= face1.jaceJ E Uset 

y 

y 

face1 E {facek I facek is adjacent to facei} 

NSracej <= NSraceke {facek lfacek is adjacen11o (acei, (acek e USer} 

choose face1jaceJ E FS 

ang fe(facejJacei) < = angfe((acek.facei) e {facek I (aceke FS} 

~-------J F=face1, facei =face) 

End 

Figure 5.5 Pre-process steps 
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The UndiGraph of Radiused Blind Slot 

./4 (NS: 35.6) 

I fi (NS: 24.6) r--1 .h (NS: 35.2) ~ fj (NS: 24.6) 

Number OAL USet F 
I Null { fi,J2,Ji,j,} fi 
2 ft { h, fj, /4} 11 
3 .fi.h { fj, /4} fj 
4 .fi .. h.h {./4} 14 
5 .fi.h./J . ./4 0 Null 

Figure 5.6 Pre-processing ofRadiused Blind Slot 
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(a) (b) 

(c) 

Figure 5. 7 Simplification of topology 

With the number of faces increased, the size of matrix will become quite large. 

For example, the pocket shown in Figure 5. 7 (a) consists of seven faces and 

the size of the adjacency matrix wi II be 7*7. [n practical cases, the size of the 

matrices can be reasonably decreased. As shown in Figure 5. 7 (a), the 

topological information is similar to the pocket in Figure 5. 7 (b) and can be 

described as the graph shown in Figure 5.7 (c). If the number of faces in the 

OAL is larger than 5, the OAL should be simplified. The rules for 

simplification are described below. 
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Rule 1: A series of faces,facei, facei +J, .. 00 , facei+"' are regarded a a Linear 

Group if they satisfy the following conditions: 

• int(NSi+J) = 35, where j= 1, 0 0 0, n-1; 

• int(NSi+J) = 24, where j=O, n; 

• They are consecutively connected; 

• facei andfacei+ll are not connected with each other. 

Rule 2: A serial of faces, Jacei, facei+f, 0 0 0 0
' facei+"' are regarded as a 

Circular Group if they satisfy the following conditions: 

• int(NSi+J) =35, where j=O, 1, 0 0 0, n; 

• They are consecutively connected; 

• facei andfacei+ll are connected with each other. 

3) F-adjacency Matrix 

F-adjacency matrix is used to recognise five primitive features: round hole, 

conical hole, general hole, slot/step, pocket. It is defined as IF =[auLx;, where 

l<==i<==S and 1<=}<=50 

~[-- tlj2-- tlj3-- OJ4-- O, s 
', I 

a 2, 'al!, a23 a24 aes 
' I 

' a~s IF= a31 a3z 'tis~ a34 
' ' I 

a41 a42 a43 'ti-114 a~s 
' ' I 

as, asz as3 as4 'ti;s 
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The layout of h is ergonomically designed to have a one-to-one 

correspondence between the feature pattern and the input matrix. The middle 

elements of h, i.e. a;;, show the type of the ith face, face; (e.g. 6 for a planar 

face). Table 5.1 denotes the values for various face types. Other element of 

IF (aiJ, where i:f:.j) indicate the connection between the ith and jth faces of the 

object. A numerical value between 0 to 9 is allocated according to the 

relationship between the two faces. The values are given in Figure 5.8. 

The layout presentation of IF is symmetrical so that the input format con ist 

of 15 nodes, au, a12, ... , a1s, an, a23, ... , a2s, ... , ass. Some F-adjacent 

Matrices of features are presented in Table 5.2. 

7: 270° 
0: no relation hip 

Figure 5.8 Values of relationship between two faces 
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Table 5.2 Examples ofF-adjacency Matrix 

Feature F-ad·acency matrix 
Blind conical hole 340 006 000 000 000 

3 4 0 0 0 

6 0 0 0 

IF = 0 0 0 

0 0 

0 

Open pocket 630 406 330 640 600 

6 3 0 4 0 

6 3 3 0 

IF= 6 4 0 

6 0 

0 

4) V-adjacency Matrix 

Based on the above definition of SVE, the V-adjacency matrix l v can be 

determined in the following steps. 

Step 1: Determine three pairs of boundary planes in the x y and z 

directions, which can be represented as +x, -x, +y, -y, +z and -z . 

Step 2: Define the SVE for the given feature, which is completely enclosed 

based on the above six directions. 

Step 3: Attach the attributes ofFF/VF to all faces in the SVE. 

Step 4: Define a 6*6 matrix, l v showing the relationships between VF faces 

in the SVE. The middle element, bii, show whether there is a VF in the 
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corresponding direction . If in the ith direction (e.g. +x ), the given SVE exi t 

a VF face, then b;; = 1; if not, b;; = 0. The elements, bu (i:t-j) , describe whether 

the two VFs, corresponding to direction i and direction j, are connected or not 

(i.e. I or 0). 

b)) bl 2 bl 3 bl4 bl 5 bl 6 

b 21 b22 b23 b24 b25 b26 

I - b 31 b32 b 33 b 34 b 35 b36 
v-

b 41 b42 b43 b44 b45 b46 

b 51 b52 b53 b54 bss b56 

b 61 b62 b63 b64 b65 b66 

Similarly, the symmetric characteristic of V-adjacency matrix i used to the 

simplification of its input. A vector consisting of 21 codes ts input to the 

neural network. That is, bu, b,z, 

examples are provided in Table 5.3 . 

5.3 Output format 

The output of an ANN is the result of many operation with the input and weight . 

Commonly, a good output format should have the following characteri tics: 

1) Representation scheme: It is essential that the output describes the results 

clearly and correctly as expected. In this research, the final result i a feature 

class that the given feature belongs to. 
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Tab le 5.3 Examples of V -adjacency Matrix 

Feature V -adjacency matrix 
Slot 101010101 101 0 1011 0 1 00 

z 
0 L 0 0 

1 0 1 0 

0 0 
J -v - 0 

0 

0 

Step l 0 I 110 000 001010110100 

1 0 1 1 1 0 

0 0 0 0 0 z 
1 0 0 

k:x f v = 0 

0 

0 

2) Appropriate format: Similar to the input format, the output is designed as a 

nodal value in the format of a vector. Because of the proposed hi erarchical 

architecture of ANN-based feature recognition (described further in section 

5.4) , the number of feature classes to be recognised is small. Thus, it i 

possible that each output neuron represents a certain feature class. 

3) Activation method: For feature r ecognition, it is not practicable to activate 

two c lasses at the same time. Therefore, only one of the output neurons wi ll 

be acti vated (i.e. its value will be greater than the threshold value, 0 .5). If one 

or more output neurons are activated, the pattern presented to the network 

does not belong to a known class, while the class with the greatest value is 

considered. 
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5.4 The topology of neural network 

As mentioned before, the proposed feature classification is hierarchical, where the 

sub-class is regarded as an instance of its parent class. Figure 5.9 shows the three-

level hierarchical architecture of ANN-based feature recognition. Di ffe rent 

topologies and learning methods are designed according to different requirement 

of the three levels . The characteristics of the feature recognition are: 

Lever 1 
/Feature recognise 

I 
Lever2 I J 

round hole conical hole slot/step general hole pocket 
recogmser recogniser recogniser recogniser recogniser 

I 
······ ... ... 

Lever 3 

blind round hole through round open pocket clo e pocket 
recogniser hole recogniser recogni er recogni er 

I 1 
through slot blind slot through step blind step 
recogmser recogniser recogmser recogni er 

Figure 5.9 Hierarchical neural networks system 

1) Feature recognition is mainly based on the 3D geometrical and topological 

information of features, not on the input probability. In addition , it i pos ible 

to collect enough samples including inputs and targets due to variou 

machining features existing in practical industry. 
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2) Machining feature recogntion is a complicated process , for which the entire 

information including both geometric and topologic information of feature 

recognised needs to be input. 

According to the above requirements, companng to single-layer feedforward 

network, competitive network and recurrent network, multi-layer feedforward 

network are more suitable for this research. They are also the choices for mo t 

feature recognition systems. 

The first level is set to recogmse the five primitive feature classes. The F­

adjacency Matrix input vector is used, which means a 12-neuron input layer. The 

output layer consists of five neurons, each representing a feature class, i.e. round 

hole, conical hole, general hole, slot/step, and pocket. In order to decide the 

structure of neural network, several different compositions have been tried by 

changing the number of hidden layers, the number of neurons in each hidden 

layer, and also by adjusted learning rate. The structure, which converges to the 

error goal with the fastest speed, should be chosen. Some results of the e 

experiments are given in Figure 5.10 (a-c) and appendix B. Based on the e 

results, the network consisting of three layers with a hidden layer of 17 neuron 

has proved to the most appropriate structure (Figure 5.11 ). 

The second and third levels are used for further recognition ba ed on the first level 

for computer aided process planning (CAPP) applications . The structure of 

neural network for the second level recognition are designed following the arne 

steps. For example, with various experiments, the slot/step classifier is de igned 
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using a V -Matrix as input, which consists of three layers, an input layer of 21 

neurons, a hidden layer of 6 neurons and an output layer of 4 neurons. 

Performance is 0.0119991 , Goal is 0.012 
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Figure 5.10 The training process of neural networks 
(a) structure of 15-17-5 
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Performance is 0.0152442, Goal is 0.012 
10
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________________________ _J 
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(b) 

Figure 5.10 The training process of neural networks (continued) 
(b) structure of 15-16-5 
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Performance is 0.0148279, Goal is 0.012 
10°r-----------.------------.-----------.------------~-----
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Figure 5.10 The training process of neural networks (continued) 
(c) structure of 15-15-5 

Ilk= (gk -/k-l)T gk 
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Input Layer Hidden Layers Output Layer 

Figure 5.11 Three-layer Feedforward neural network for level 1 recogniser 

S.S Error function 

The error function E, can be defined in different ways , for example, the mean 

square error, the absolute error, etc. [Patterson, 1996]. This research use the 

mean square error, which equals the mean of the squares of the deviations from 

target. It can be indicated as 

(5-2) 

(5-3) 
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where 

xi is the ith training pattern. 

m is the number of training pattern. 

Ex, is the squared error for input Xi . 

okx; is the output value of kth neuron in the output layer using input Xi. 

t kx, is the target value of kth neuron in the output layer using input Xi. 

n is the number of neurons in the output layer. 

The factor 1/2 has been included for mathematical convenience [Patter on 
' 

1 996]. The mean square error penalises large deviations and provide a 

differentiable, decreasing function of the difference between the computed 

and desired outputs [Patterson, 1996] . It is one of the most commonly used 

error measures in back propagation neural networks. According to the results 

of experiments, the mean square error is set to 0.01 2. 

5.6 Training of ANN 

Before the process of recognition, the neurons in neural network have to be 

trained with training examples. One of the supervised training methods, 

commonly used in current feature recognition systems, such as Chen and Lee 

[1998], Nezis and Vosniakos [1997], Zulkifli and Meeran [1999], is the back 

propagation algorithm. The basic BP algorithm adjusts the weights in the steepe t 
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descent direction (negative of the gradient) [Demuth and Beale, 2000] . Althou crh 
b 

this direction makes the performance function (Error function E) decrea e mo t 

rapidly, it does not necessarily produce the fastest convergence. Alternative 

approaches, known as conjugate gradient algorithms, make a search alon cr 
. b 

conjugate directions, which produces generally faster convergence than in the 

steepest directions. A set of mutually conjugate directions can be achieved 

through the following steps. 

Step 0: An initial weight vector (W0J) is chosen randomly. 

Step 1: The steepest descent direction (do) is selected on the first iteration 

which is the negative of the gradient (go), 

do= -go (5-4) 

(5-5) 

where E(W) is the error function made up from the outputs of all the input 

patterns, and V E(W) is the the negative of the gradient vector at W. 

Step 2: The weights are updated by an optimal distance (called learning rate, 

ak) along the current search direction, 

(5-6) 

Here, ak is determined using a line search method proposed by Charalambous 

[ 1 992], which minimises the error function along the current search direction. 

Assuming a function IX a) is defined as 
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and it satisfies 

(5-8) 

lf/(rxt.:) =dlj/(a )Ida (5-9) 

Based on the above definition, fXt.: must satisfy two requirement shown below: 

Requirement I: 

lf/(rxt.:) $; lj/(0) + ,ulj/(0) (5-I 0) 

where ,u is a small number less than 0.5. 

Requirement II: 

llf/(rxt.:)l $; -cr lj/(0) (5-11 ) 

where O"E(O,l) and e7$;JL. 

Then, a value of rxt.: is determined by a line search algorithm, which is based on 

the cubic interpolation. The algorithm is described below. 

Suppose that the initial point Pi, a= a,(Pi) and the positive step size taken is a: 

where 

• 2M 
a=--­

q 
So 
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so= d/ VE(Wk) (5-14) 

1/A. a) 
\ 
\ 
\ 
\ 

0 

ap is the value obtained at the previous iteration . 

LfE is the last value of E. At the beginning, LfE mu t be u er-

supplied. 

----------------r--
I ---

1 I 
I ~ 
r-- 0 'bl I perm!SSI e I 
I I 
I I 
I I 

I 1 I 
I I 
I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a, 

dk T denotes the transpose of dk. 

Figure 5.12Illustration of the line search algorithm [Charalambous, 1992] 

Then, the step size for the next point is produced based on the following rules: 

1) If it satisfies both requirements (i.e. P6 in Figure 5.12), the line search will 

stop. 
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2) If the point has negative slope and the function value is greater or equal to 

\jl(aJ) , such as P2 and P3 in Figure 5.12, then a large step size for the next 

repeat is taken. That is 

a=0.1a (5-15) 

3) If the point has negative slope and the function value is less than \jl(aJ), for 

example, P1 and P7 in Figure 5.12, then the next step size is set: 

(5-16) 

a=10a (5-17) 

4) If the point has positive slopes but violating at least one of the requirement 

(e.g. P4 and P5 in Figure 5.12), then 

- - -. -
a= max {ya, min(ac, (1- y)a)} (5-18) 

Where y is usually set in the range (0, 0.1) 

a; is the minimum point of the cubic function C( a) that passes through point 

(0, 1/JfaJ)) and (a,y;"(a,+a))having slopes s, at a=rxt and sat a =a, +a, 

where. 

(5-19) 

(5-20) 

Step 3: The stopping criterion (performance goal to satisfy the error set) i 

examined. If it is satisfied, the training stops; otherwise proceeds to the next tep. 
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Step 4: The new gradient vector of performance (gk+J) is evaluated, which i 

orthogonal to the previous search direction, 

(5-2 1) 

Step 5: Each successive direction (dk+J) is chosen a a linear function of the 

current gradient and the previous search direction (dk), 

(5-22) 

Step 6: Set k=k+ 1, go to Step 2. 

Two search functions have been tested to find the coefficient fJk in order to 

determine the direction to minimise the performance function; they are: 

I) Fletcher-Reeves 

2) Polak-Ribiere 

j]k = (g k -/ k- 1 )"' g k 

g k- 1 g k- 1 

(5-23) 

(5-24) 

It can also be demonstrated that the Polak-Ribiere form provides slightly better 

results than the other expressions because it gives a small value for flk · Figure 

5.10 (a) and Figure 5.13 provides the results of experiments comparing Polak-

Ribiere form with Fletcher-Reeves form. 
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Performance is 0.0119904, Goal is 0.012 
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Figure 5.13 The training process of neural networks (continue) 

structure of 15-17-5 

5.7 Summary 

This chapter has presented new techniques that use neural networks to improve 

the capability of current feature recognition methods. They are different in 

several respects. F-adjacent and V -adjacent matrice not only capture the 

topological information uniquely and clearly but also describe the parallel 

relationships which previous work cannot provide. The representation is suitable 
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for the hierarchical feature classification and has been successful for the fir t level 

and secondary level classifications. The conjugate gradient algorithm train the 

network in the directions with the fastest convergence. 
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Chapter 6. 

Compute Aided Process Planning (CAPP) 

In the production preparations, the first and most important task i making a 

process planning, which provides information to the manufacturing worker on 

how to produce the designed products [Zhao and Wu, 1999]. With the growing 

trend towards quick response to global market changing and flexible automation 

production, fast and flexible generation of process plans has become es entia] in 

the new manufacturing systems. This chapter presents the work on generative 

CAPP for prismatic parts incorporating features technology, artificial intelligence 

techniques and fuzzy evaluation. 

6.1. Requirements of CAPP 

In order to overcome the weaknesses of existing CAPP systems, there are six 

aspects to consider: the level of automation, suitable knowledge representation , 

adaptability, flexibility , integration and efficiency. 

I) Level of automation: Activities in process planning should be ideally carried 

out automatically. However, user intervention is still needed , uch a 

improving the process plan or editing alternatives provided by system, etc . 

2) Suitable knowledge representation: It is difficult to formali e experience of 

many years of manufacturing activities in a knowledge base which can be 

141 



Chapter 6 Computer Aided Process Planning (CA PP) 

modified and updated. Database structure and knowledge definitions are two 

major factors for a suitable knowledge representation . 

3) Adaptability: On the one hand, each company has its own manufacturing 

environment, e .g. products, planning rules, manufacturing resources, tandard 

and documentation , and a CAPP system should be able to adapt to diffe rent 

user requirements. On the other hand, the rapid change in industry ha an 

impact on the planning and requires adaptability in CAPP. Therefore, it is 

necessary for the CAPP system to have an open and flexible architecture and a 

continually updated knowledge base to meet the current and future need . 

6.2. Architecture of CAPP 

This research aims to integrate CAD and CAM through CAPP consi ting of four 

steps. First, each feature input from CAD for each feature generates its 

corresponding machining operations, including the operation type, machine tool 

and cutting tool , etc. It proceeds to determine the precedence relationships among 

the features considering various con traints for design and manufacturing. An 

algorithm is then developed to group machining operations. Finally, the sequence 

of operation groups is obtained with a genetic algorithm. To fulfil the 

requirements and the steps mentioned above, an architecture of a CAPP y tern 

for prismatic components is proposed, which is shown in Figure 6.1. A brief 

description of each sub-module is given below: 
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User CAD 

r·-·- ·- ·- ·-·- ·-·- ·-· ·- ·- ·- ·- ·- ·- ·, 

CAPP interface 

Selection of 
machining operations 

Identification of 
feature precedence 

list 

Grouping of machining 
o erations 

Sequencing of 
machinin rocess 

CAPP System 

!-.-_____, 

Manufacturing 
resource 

,_-------------- -------------- _, 

- ·- ·- ·-·- ·-·- ·- ·- ·-· -·- ·- ·- ·-·- ·- ·-·- ·-·- ·- ·- ·- · 
Output User 

Figure 6.1 The proposed architecture of CAPP 
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1) A sub-module for managing resources. As a core of a CAPP system, 

continually updated and maintained resources are necessary for practical 

applications in industry. 

2) A sub-module for selecting machining operations, machine tools and cuttino-
c 

tools . After determining the operation type for each feature, corresponding 

machine tools and cutting tools are chosen. 

3) A sub-module for identifying feature precedence list. The machining feature 

on the component are recognised by an ANN-based feature recognition 

module built at an earlier stage. A feature precedence Jist is identified based 

on the features' relationships and the design intention. The feature precedence 

list affects process planning greatly. 

4) A sub-module for grouping machining operations. Machining operations are 

grou ped ba ed oq tool approa h dire tion (TAD nd f • tut . Th 

op c m t ion.\l in a g r oup win be sequenced \ater, but the order of operation 

tequlted for each eatute ls ma1 dato1y, e.g. dri lling is executed b for r ming 

for a hole. 

5) A sub-module for process equencing. In this research, a method for 

generating process sequence has been presented that sati sfi es both th 

constraints of the geometry of the component and the re triction due to 

manufacturin rul while at the same time minimising the component 

machining cost and time. The problem has been formulated within a Genetic 

Algorithm (GA) framework . A population of feasible solutions (process 

s qu n es) is g nerat d randomly by a precedence constraint initial algorithm. 
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Then, the population of feasible solutions is bred using selection, cro over 

and mutation operators. The solution with the best fitness is considered a the 

final result. A particular calculation for the fitness function has been 

developed for the proposed GA, which include evaluating degree of 

satisfactory of process sequence rules using the analytical hierarchy proce 

(AHP) which is a technique for fuzzy analysis, approximated calculations for 

manufacturing cost and time, and an intelligent neural network for allocating 

weights based on fuzzy evaluation of features. In the next chapter, the ub­

module is described further. 

All of these sub-modules communicate with each other through a relational 

database. The following section describes four key issues relevant to the 

proposed CAPP: resource management, selection of machining operations, 

identification of feature precedence Jist and grouping machining operation . 

6.3. Resource management 

Resource management maintains all information in an integrated database about 

resources required for process planning. A suitable database needs to be 

designed, which requires a large amount of previous work including analy i , 

formalisation and representation of various manufacturing parameters and 

constraints, expert knowledge and experiences. Based on the data inve tigated 

from two companies, a manufacturing database is defined for this research, which 

contains above information with six libraries: 
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1) Machine-tool library 

It stores all machine tools available in the given industrial environment. Each 

machining tool is attached with several technological parameters that must be 

considered during planning, such as tolerances, spindle rigidity, maximum 

traverse of X, Y and Z axis, and cost. 

2) Cutting-tool library 

The cutting-tool library stores and provides the user with the information of 

cutting tools available for process planning. Cutting tool parameters consists 

of two types: common parameters for all cutting tools, such as cost, maximum 

cutting speed, maximum depth of cut, material, tool rigidity and accuracy; and 

specific parameters, for example, face milling concerns corner angle, axial­

rake angle, radial-rake angle, true-rake angle and inclination angle while 

peripheral milling includes cutter diameter, cutter teeth, flutes, relief angle and 

the width of land. 

3) Material I i brary 

It includes all the materials for both components and cutting tools, material 

properties (e.g. rigidity, intensity and toughness), shape and size of raw 

materials. 

4) Machining operation library 

The machining operation library includes the information for all machining 

operations. Each machining operation contains not only the type of operation, 
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but also corresponding machine tool and cutting tool. In addition, three 

aspects of knowledge are concerned: 

• capabilities, e.g. the achievable roughness 

• constraints, for example, the maximum and minimum machining length 

• machining cost and time 

5) Process route library 

According to various technological standards, manuals and practical industrial 

environments, many standard process routes have been established for typical 

features . In the process route library, each feature has one or more standard 

process routes and a standard process route consists of several machining 

operations in a prescribed sequence. As a collection of these standard process 

routes, the process route library gives a frame of the activities for each process 

route associated with the feature. 

6) Evaluation library 

Evaluation library concerns information for process sequencing evaluation 

including exchanging time, exchanging cost and the precedence 

reward/penalty values between machining operations. 

Aiming to increase the effectiveness, it is necessary to build the relationships 

among the libraries. These relationships are multiple but limited. For example, 

the relationship of the machine tool library and the cutting tool library is multiple, 
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where a machine tool can be associated with a set of cutting tools, and a cutting 

tool can also be used on several machine tools. On the other hand, the number of 

possible combinations between machine tools and cutting tools is limited, only a 

specific set of cutting tools can be assembled on a given machine tool. The 

detailed relations among these libraries are shown in Figure 6.2. 

M-M 

Operation 
Library 

1-~ 

M-1 

M-M 

_/-1 
Evaluation 

Library 

M- M: Many-to-Many relationship. One record in first library can be 
related to many records in second library, and a record in second 
library can have many related records in first library. 

M- 1: Many-to-One relationship. One record in second library can be 
related to many records in first library. 

1- 1: One-to-One relationship. The two libraries can have only one 
record in each that are related to each other. 

Figure 6.2 The relationships between libraries 
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6.4. Selection of machining operations 

This sub-module is designed for selecting machining operations with three 

functions. 

1) Extraction of feature information from the feature-based model 

As described in Chapter 3, an object-oriented feature-based model is used in 

this research, which defines a component in terms of its features. From a 

process planning perspective, a feature can be made in a raw stock by a 

machining operation or a process route consisting of several machining 

operations. In order to choose a machining operation or a process route 

suitable for a feature with specifications, the following information m the 

feature-based model should be extracted and considered: 

• feature class 

• nominal dimensions 

• dimension tolerance 

• surface roughness 

2) Interactive input 

An interactive interface is designed to input some technological data that the 

CAD does not provide but the CAPP requires, such as the shape and size of 

raw material, production batch size, cost and time requirements. 

3) Selection of appropriate process routes 
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Based on the process route library, an appropriate process route can be 

determined according to design specifications. Because the process route 

library has defined related facilities for each machining operation, once the 

operation route has been decided, the required machine tools and cutting tools 

are automatically selected. The task is described in Figure D.7 (in Appendix 

D), which can be divided into three steps: 

Step 1: Find all feasible process routes from the process route library that 

are suitable for the given feature class, which can be defined as: 

(6-1) 

where PRi is a set of all feasible process routes that can be chosen to 

machine the ith feature based on its class, and 

pru is the jth process route candidate to machine the ith feature 

(6-2) 

Ous is the sth machining operation m the jth process route 

candidate to machine the ith feature, and 

OiJs ={P, M, T, TAD, C, MT} (6-3) 

where P is operation type, 

M is machine tool for the operation, 

Tis cutting tool for the operation, 

TAD is machining approach directions for the operation, 
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C is operation cost, and 

MT is machining time of the operation. 

Step 2: Select all feasible process routes that can achieve the requirements 

(dimensions, tolerances and surface finish) of the given feature from the set 

PR;. Based on the comparison between design specifications and machining 

capability available, all those process routes that cannot satisfy the design 

specifications are rejected from the list of feasible process routes, that is 

(6-4) 

where FPR; is a set of all feasible process routes to machine the ith 

feature, which can satisfy the design specifications, and 

FPR; is a subset of PR1. that is, 

(6-5) 

(6-6) 

m5'n (6-7) 

Step 3: Evaluate remaining feasible process routes 

If a feature has more than three remammg feasible process routes , all 

remaining feasible process routes for this feature will be evaluated based on 

their manufacturing costs and three feasible process routes with the minimum 

manufacturing cost are finally chosen. 
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6.5. Identification of feature precedence list 

Tool Approach Direction (TAD) is defined as a direction from which a cutting 

tool can access a machinable volume. Here, a valid TAD for a feature should 

satisfy the following conditions: 

1) Accessibility: Accessibility means that along the TAD, the cutting tool can be 

positioned to machine the feature without any interference. If not, the TAD i 

considered invalid, e.g. interference with other features. The accessibility of 

TAD can be examined based on the feature relationships (e.g. parent feature 

and child feature) and its location relative to the adjacent features. 

2) Tolerance and surface finish requirements: The machining operation along 

the TAD should not violate tolerance and surface finish requirements of the 

machining tools. 

3) Availability of cutting tool: A TAD can be considered valid only if there is a 

cutting tool available to machine the feature along the TAD. 

For a feature, potential T ADs are determined at the design stage, but the validity 

of a TAD depends on the feature class and feature relationships . Here, a feature 

precedence list specifying the order of all features of a component is built by 

considering the feature relationships and design intention. The constraints of 

feature precedence keep all T ADs valid for the following stages of process 

planning. 
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Based on the definition specified in Chapter 4, the feature relationships can be 

used as a basis for the generation of a feature-precedence graph, which can be 

generally defined as 

G=(P, D) (6-8) 

(6-9) 

where P is a set of nodes representing the features, 

D is a set of directed arcs, each of which represents a precedence 

relation between two features, and 

P; represents a precedence subset for the features 

Some features may belong to two or more precedence subsets, which implies that 

the subsets P1, P2, . .. , P;, ... , Pm are not always mutually exclusive. Also, each 

precedence subset is independent of the precedence relations, which means no 

directed arcs exist among precedence subsets. For example, the feature-

precedence graph for the given component is shown in Figure 6.3. There are four 

precedence subsets, which can be represented as P 1 = { 1, 5}, P2 = { 1, 3, 7}, P 3 = { 1, 

3, 4, 2} and P 4 ={ 6, 8, 9}. It can be seen that feature 1 and feature 3 exist in three 

and two subsets, respectively. The non-exclusiveness of precedence subsets may 

lead to some difficulties for operation sequencing. In this research, to eliminate 

such non-exclusiveness and reflect the design intention, a feature precedence 

algorithm has been proposed as the following: 
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Figure 6.3 An example of feature-precedence graph 

Step 0: Initialise feature precedence list, L, based on the design procedme, 
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struct node 

{ 

int no; 

int flag; 

int pNO; 

Computer Aided Process Planning (CAPP) 

//The feature ID 

//The attribute of feature 

independence; '0' represents 

the feature 1s independent, 

while 1' represents the 

feature is dependent on other 

features. 

//The precedence ID; the 

default value is "0" 

struct node *next; //A pointer to the next 

feature 

} 

struct node ft i 

Step 1: Travel through the feature precedence list from ft 1 to ftn, and set iteration 

index i = 1, and the precedence index k = 0 

Step 2: Select the ith feature,ft;, from the feature precedence list. 

Step 2.1: Jift; is an independent feature, then go to the next featureft;+I· 

Step 2.2: If ft; is a dependent feature, then 

1) Jift;.pNO = 0, then k= k+l, andft;.pNO= k 

2) Travel through the feature precedence list fromfti+I to fin· 

If feature jt1 has a precedence relation with feature ft;, (j>i), then 

• If ft1.pNO = 0 then ftJ .pNO = ft; .pNO 
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• lfftJ.pNO -:t. 0 andft;.pNO> ftj.pNO , then 

fts.pNO= ftJ.pNO, whereft5.pNO = Jt;.pNO, and s = 1, ... , n 

fts.pNO= fts.pN0-1, wherefts.pNO > ft; .pNO, and s = 1, . . . , n 

fts.pNO=ft;.pNO, whereft5.pNO=ftJ.pNO, ands= 1, ... ,n 

fts.pNO=ft5.pN0-1, wherefts.pNO > fiJ.pNO, and s = 1, ... , n 

If feature Jt1 needs to be machined prior to feature jt;, (j>i), then exchange 

the positions of feature ft; and feature fiJ , and set i = i-1 

Step 2.3: Set i=i+ 1. If i > n, then go to end. If not, go to Step 2.1. 

Based on the above procedure, a complete feature precedence list is built to reflect 

the design procedure and precedence constraints. Figure D.8 (in Appendix D) 

summarises the detailed procedure and Table 6.1 provides an example based on 

the component shown in Figure 6.3. 

6.6. Grouping of machining operations 

A crucial step in the proposed process planning is to group machining operations. 

To achieve the objective of minimising changes of setups, machine tools and 

cutting tools, features that can be machined in the same orientation of the 

component on the machine table, should be machined together or successively. 

The feature T ADs are closely related to the component orientation on the machine 
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table. Therefore, operations for features, which have the same TAD and the same 

precedence constraints, are collected into a group. 

Table 6.1 An example of building feature precedence list 

Step no Feature 1n ~. r ~~lll.;C 1St 
0 list 1 2 3 4 5 6 7 8 9 

pNo 
1 list 1 2 3 4 5 6 7 8 9 

pNo 1 1 1 
2 list 1 2 

~ 
5 6 7 8 9 

pNo 1 2 1 
3 list 1 4 5 6 7 8 9 

pNo 1 2 1 2 1 
4 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 1 
5 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 1 
6 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 1 
7 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 1 
8 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 I 2 1 2 
9 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 2 1 2 
10 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 2 1 2 2 
11 list 1 3 4 2 5 6 7 8 9 

pNo 1 1 1 1 1 2 1 2 2 
Final list 1 3 4 2 5 6 7 8 9 
result pNo 1 1 1 1 1 2 1 2 2 

Note: 

[I : The ith feature is being checked. 

0 : The ith and the jth features need to be exchanged. 

6.6.1 Determination ofT ADs 

The determination of T ADs is a complicated problem concerning with fixture 

clamping, surface analysis and tolerance. It has been addressed by some 
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researchers . For example, Kim and Jeong [1996] proposed an algorithm to find 

feasible T ADs for sculptured surface manufacture; Sarma and Wright [ 1996] 

presented a method for selecting the access faces to features based on minimising 

the number of setups, and the number of tool changes; and Yang et al [ 1999] 

gave a general algorithm to obtain a feasible TAD for sculptured surface 

machining based on convex analysis. In this research, TAD determination is not a 

main issue, and therefore, it is simplified based on features and setup changes. 

As described in Chapter 3, for prismatic components, TADs are usually specified 

in the world co-ordinates. Thus, six possible T ADs are assumed, i.e. the six 

normal directions of a prismatic block (+x, -x, +y, -y, +z, -z). In order to 

determine feature groups with the same TAD, a six-binary ordered vector is 

defined to represent feature T ADs. For example, if a through hole has two 

candidate T ADs, i.e. +y and -y, then its vector is (0, 0, 1, 1, 0, 0). If a through 

slot has vector of (1, 0, 0, 0, 1, 1), the feature has three candidate T ADs, +x, +z 

and -z. Features with multiple candidate T ADs may be collected into more than 

one group. In order to simplify the situation, features are first evaluated to select 

their individual tool approach direction. The proposed approach toT AD selection 

is based on minimum setup change, which is shown in Figure D.9 (in Appendix 

D). 

Step 0: Let 

VTAD be a set of features whose T ADs have not been determined yet. 

UTAD = if1, .. ,fi, .. ,Jn} 
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where n is the number of the features whose TAD has not been determined 

yet. 

FT; be a set of TAD candidates that the ith feature, .fiE UTAD , has for its three 

candidate process routes. 

FT; = {TADiJ, ... , TAD;k}, i =1, 2, ... , n 

where 0<k.5.3 

Step 1: Calculate the number of features in UTAD, NIJ, which have the 

corresponding candidate TADs,j (j=1, 2, ... , 6) represent six candidate TADs: +x, 

-x, +y, -y, +z and - z. 

Step 2: Choose the TAD1, D=TAD1, where 

Step 3: Determine the TAD for all features,.fi, which have a TAD candidate=D, 

that is , 

Then, delete these features from UTAD. 

Step 4: If UTAD = 0, then go to end. Else, go to Step 1. 

Step 5: End. 
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6.6.2 Grouping algorithm 

The machining operations for the features with the same TAD will be grouped. 

The detailed steps are described below. 

Step 1: Initialise the first group, G"" m= 1, by inserting the first feature f 1 from 

the feature precedence list, L, into Gm. 

Step 2: Select a new feature,.fi. from L. If Lis NULL, then go to end. 

Step 3: Compare the TAD of the new feature .fi with the T ADs of the candidate 

groups. If there exits a group with the same TAD, G1, then go to next step. If not, 

go to the step 5. 

Step 4: If the feature has the same precedence constraints with the features in 

group G1, then insert feature .fi into G1. Delete feature .fi from L, and go to step 2. 

If not, then go to next step. 

Step 5: Let m=m+l. Create a new group Gm and insert feature J; into G111 • 

Delete feature .fi from L. Add Gm into the candidate groups. Go to Step 2. 

The above procedure is summarised in Figure 6.4. 
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/I ~ GI, i = 2, m = 1 
delete ! I from feature precedence list L 

TADG1 = TADJI 

y 

Select.fi from L 

m = m + 1, .fi ~ Gm 

.fi ~ Gi 
delete .fi from feature 

precedence list L 

delete J; from feature precedence list L 
TADGm = TADfi 

Figure 6.4 Procedure of grouping machining operations 
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6.7. Summary 

This chapter has proposed a methodology for CAPP based on features extracted 

from the feature-based component model. After a brief discussion on the 

requirements of CAPP, the proposed CAPP architecture is described with five 

sub-modules: resource management, selection of machining operations, machine 

tools and cutting tools, identification of feature precedence list, grouping of 

machining operations, and process sequencing. The first four sub-modules have 

been described while the last sub-module for process sequencing will be detailed 

in the next chapter. Operation selection, feature precedence list and operation 

grouping are fundamental for process sequencing. Feature precedence list, which 

reflects design intention and precedence constraints, not only maintains the 

validity of T ADs, but also simplifies the sequencing problem. In addition , 

machining operations are grouped based on features and TADs in order to 

minimise the changes of setups, machine tools and cutting tools. The four sub­

modules form a basis for process sequencing, which is described in the next 

Chapter. 
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Chapter 7. 

Process Sequencing 

In developing computer-aided process planning (CAPP) systems, the 

determination of the operation sequence is one of the most important tasks and 

also a bottleneck task in the process [Qiao et al, 2000]. As a complex decision­

making process, process sequencing is influenced by several constraints, such as 

tool accessibility, tolerance requirement, feature relationships, cost and time, etc. 

Therefore, manufacturing feasibility, production economy and optimal utilisation 

of manufacturing resources need to be considered and some artificial intelligence 

(AI) reasoning techniques are required. 

This chapter determines the process sequence required to produce the component 

with the objective of optimising machining cost and time, while satisfying the 

precedence constraints. As described in Chapter 6, process sequencing is based 

on the operation selection made at a previous stage. The process routes for 

features , and machine and tool information are determined in advance and hence 

no process alternatives are considered at the stage of sequencing. It is also 

assumed that the cost and time of machining operations, and the change cost and 

time between any two operations are given in advance and deterministic. In 

addition , the problem of grouping machining operations has been done ( ee 

Chapter 6) and the sequence is based on these machining operation groups . 
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Figure 7.1 

Let n=the number of operation groups 

Let i=l 

y 

N 

Operation sequencing for 
the ith operation group 

i=i+l 

Group sequencing 

Process Sequencing 

The procedure for process sequencing 

As shown in Figure 7.1, the proposed process sequencing includes two stages: 

operation sequencing within a group and sequencing of operation groups. This 

chapter discusses process ·sequencing covering operation sequencing in a group 

and sequencing of operation groups using a genetic algorithm, evaluation of 
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sequencing rules, evaluation of cost and time, determination of relative weights 

and evaluation of feature complexity. 

7.1 Genetic Algorithm 

This research has developed a genetic algorithm for process sequencing, 

considering multiple machining sequence rules, cost and time simultaneously . It 

starts with some valid solutions generated randomly, then makes a random change 

to them and accepts the ones whose fitness function is reduced. The process is 

repeated until no changes for fitness function reduction can be made. Figure D.l 0 

(in Appendix D) depicts a diagram of the proposed genetic algorithm, which 

contains four parts: encoding scheme, initialisation, fitness function calculation 

and operations. 

7.1.1 Encoding scheme 

The first step in formulating a genetic algorithm is to identify an appropriate 

encoding scheme to map the actual problem solution, that is genetic string 

representation scheme. A binary code, which can usually be used in a genetic 

algorithm, is not suitable for direct use in operations sequencing, especially for 

complex components, as longer gene code chains will result. In this case, based 

on the precedence constraints, a numeric code consisting of non-negative numbers 

is devised to solve problem of sequencing, called chromosome. 

1) Chromosomes for machining operations sequencing 
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Supposing there are mi machining operations m a group (e.g. Gi), the 

operations can be denoted as follows: 

where OiJ is the jth machining operation in the ith machining operation 

group 

Any sequence of all machining operations in the group is a possible solution 

for operation sequence of the group. Therefore, a chromosome for operation 

sequence is defined, which consists of m; bits, and each bit represents an 

operation once and only once. A bit (operation) in the chromosome can be 

represented as: 

struct pChromosome_Bit 

{ 

int O_no; 

int feature_ no 

int flag; 

int M_no; 

int T_ no; 

//The ID of the operation 

//The ID of the featur e that the 

operation lS used for 

//The sign of feature 

relationship; '0' represents that 

the feature has no relationships 

with other features, and '1' 

represents that the feature has 

some precedence relationships 

with other features. 

I /The ID of the machine tool to 

execute the operation 

I /The ID of the cutting tool to 

execute the operation 
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direction D_no; //The ID of the TAD for the 

operation 

double pCost; 

double pTime; 

} 

//The cost caused by the operation 

//The time needed for the operation 

pChromosome_Bit pOperation[]=new pChromosome_Bit[mi ]; 

Struct pChromosome 

{ 

int num; //The number of operation groups 

pChromosome_Bit pOperation[]=new pChromosome_Bit[mi ]; 

double pv_fitness; //The value of fitness function 

} 

The number of bits in the operation chromosome (i.e. m;) is equal to the total 

number of operations in the group. The sequence of the bits describes the 

machining operation sequence of the group. Thus, the total number of 

possib le operation sequences for the group ism;!. 

2) Chromosomes for operation group sequencing 

Supposing there are n operation groups for machining a component, the 

operation groups can be denoted as follows: 

Pc ={GJ, G2, ... , G;, ... , G"} 

where Pc is a set of machining operation groups, and 

G; is the ith machining operation group. 
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The sequence for machining operations in each group is generated first , and 

thus, any sequence of all the operation groups in Pa is a possible solution of 

process sequence. Similarly, a chromosome for group sequence is defined , 

which consists of n bits, and each bit represents an operation group once and 

only once. The n is equal to the total number of operation groups. The 

chromosome can be described as: 

struct gChromosome_Bit 

{ 

int G_no; 

int flag; 

int flagno; 

double gCost; 

//The ID of the operation group 

I /The slgn of the group Is state; 

'0 1 represents that the 

group is independent I 

operation 

and '1 1 

represents the operation group has 

some precedence relationships with 

other groups. 

//The ID of precedence constraints 

the ope ration g r oup b e l ongs t o . 

//The cost caused by the group 

double gTime //The time needed for the group 

pChromosome_Bit pOperation[] //Operations sequence 

in the group 

} 

gChromosome_Bit pGroup[]=new Chromosome_Bit[n]; 

Struct gChromosome 

{ 

int num; //The number of operation groups 

Chromosome_Bit pGroup[] =new Chromosome_Bit[n]; 

double gv_ fitness; //The value of fitness f unction 

} 
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Based on the above definitions, the group chromosomes and operation 

chromosomes describe the process sequence. All the combinations of all group 

chromosomes and all operation chromosomes constitute the possible olution 

space. Thus, if there are no precedence requirements, the total number of possible 

process sequences is 

II 

n!fim;! 
i=l 

7.1.2 Initial populations 

An initial population of solutions consists of a population of randomly generated 

solutions to the problem at hand [Yip-Hoi and Dutta, 1996]. Initialisation is a 

process that generates several initial populations for a component with n operation 

groups. The initial populations generated should be spread sufficiently over the 

search space to represent as wide a variety of solutions as possible. In the 

meantime, when an initial solution is created, the precedence constraints should be 

considered . This is because certain operation sequence gained randomly may be 

infeasible with respect to the precedence relationships. In order to eliminate such 

infeasible sequences while obtaining the initial population, this research has 

devised two initial precedence constraint algorithms for operation sequencing and 

group sequencing, respectively. A valid sequence solution is defined as the one 

that satisfies all the precedence constraints, such as geometrical precedence and 

manufacturing precedence. The total number of strings in the initial population is 

set to '18'. 

1) Initial precedence constraint algorithm for operation sequencing 
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As described in Chapter 6, an operation group consists of all operations for the 

features, which have the same TAD and the same precedence constraints. 

Thus, only one precedence constraint needs to be considered here, that is, the 

order of operations required for each feature. 

Assuming a group has m features, and each feature (feature i) hasp; machining 

operations, then the number of machining operations in the group is 

111 

pnum= LPi . 
i=l 

Step 0: Set i=l. 

Step 1: Choose p; positions in the initial chromosome that have not been 

occupied randomly. 

Step 2: Put these p; machining operations for the ith feature into the chosen 

positions in the required order. 

Step 3: Let i=i+ 1, and pnum=pnum- Pi· 

Step 4 : If i~m, then go to Step 1, else go to end. 

Step 5: End. 

2) Initial precedence constraint algorithm for group sequencing 

The proposed initial precedence constraint algorithm is based on the 

precedence relationships determined in Chapter 6. Here, it is illustrated by an 

example. Assuming a process including n operation groups (i.e. n=12), that i 
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GJ, G2, ... , GJ2. Thus, the initial chromosome has n bits . There are K 

constraint precedence relationships (i .e. K=2) as following: 

• Precedence relationship I (k=l): G6-f G5-f Gl-f G9 

• Precedence relationship II (k=2): G12-f G4-f Gil 

For other groups (G2, G3, G7, G8, GJO), there are no constraint precedence 

relationships (k=O). 

Firstly, appropriate positions are obtained for the groups m precedence 

relationship I (k=l): G6-f G5-f Gl-f G9 

• G6: According to precedence relationship I, there must be three unused 

positions after the position of G6. In other words, although twelve 

positions (u=12) have not been used, only mne positions that G6 can 

choose, mE [I ,9], e.g. 3, that is, position 3 in the chromosome. 

• G5: After the position of G6, there are only nine unu ed positions, while 

G5 has to leave two unused positions for Gland G9. Thus, mE [1,7), e.g. 

4, that is, position 7 in the chromosome. 

• GJ: After the position of G5, there are only five unused positions, while 

Gl has to leave one unused position for G9. Thus, mE [ 1 ,4] , e.g. 1, that is , 

position 8 in the chromosome. 

• According to the above process, it can be gained that mE [ 1,4], e.g. 2 for 

G9, that is, position 10 in the chromosome. 
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Then, for the precedence relationship II (k=2) groups, G 12 ---f G4 ---f G 11 , the 

same process is applied. 

• G12: After the arrangement for the precedence relationship I groups , there 

are still eight positions unused (u=8). In order to leave two unused 

positions for G4 and GJJ, mE [1, 6], e.g. 2, that is, position 2 in the 

chromosome. 

• G4: Behind the position of G12, there are SIX positions while five 

positions can be used as candidates for G4, mE [1,5], e.g. 4, that IS , 

position 9 in the chromosome. 

• G 11: likewise, mE [ 1 ,2], e.g. 1, that is, position 11 in the chromosome. 

Finally, appropriate positions are determined for the other groups (G2, GJ, 

G7, G8, G10), for which k=O. Because there are no precedence constraints 

between these groups, the identification for random numbers 

straightforward. 

• G2: There are five candidate positions so that the random number m can be 

identified in the field of [1, 5], e.g. 3, that is, position 5 in the 

chromosome. 

• GJ: Only 4 candidate positions are available for GJ. The random number 

mE [I, 4], e.g. I, that is, position 1 in the chromosome. 
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Similarly, the positions of G7, G8, GJO can be determined in the fields of 

[1 ,3], [1 ,2] and [1,1], respectively. Here, m=3 for G7 (i.e. position 12), m=l 

for G8 (i.e. position 4), and m=l for GJO (i.e. position 6) . 

The detailed process and change of parameters are displayed in Table 7.1 and 

Figure D.ll (in Appendix D). Applying the initial precedence constraint 

algorithm, the initial population is ensured in the feasible domain. 

7.1.3 Fitness function 

In the application of a genetic algorithm to process sequencing, the fitness 

function is a performance criterion, which indicates the degree of objective 

satisfaction of a searched solution. After a certain number of searches, if the 

value of fitness function does not decrease, it can be identified that the fitness 

function has reached the optimal point (the least total value) and the searched 

operation sequence is satisfactory with the goal. Then, the search proces stops. 

Fitness calculation is considered as an essential ingredient and the most critical 

step for a GA method. Several fitness functions are provided for process 

sequencing, which include minimum number of setups, minimum machining cost 

and shortest processing time, etc. However, previous research has only 

considered individual criteria and therefore the outcome solution is not overall 

optimal. This research has developed an integrated optimisation strategy to obtain 

an overall optimal process sequence. 
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T bl 7 1 E 1 f rn · . I d . I . h a e . . xampJe o Itla prece ence constramt a lgont m 
n=12, K=2 

m [xa, x1] .I u 

G6 3 [ 1 ,9] 3 12 W$~&7$~AW~~$~$& 
I I I G61 I I I I I I I I I 

G5 4 [ 1 ,7] 7 ll W~G6~~~AW~ff~~ 
I I I G61 I I I G51 I I I I I 

Gl I [I ,4] 8 10 ~G6WA:7~G5~~~~ 

I I I G61 I I I G5 1 Gil I I I I 
G9 2 [1 ,4] 10 9 ~ G6 w&7'~ G51 01 W$~~ 

I I I G61 I I I G51 Gil I G91 I I 

G12 2 [1 ,6] 2 8 ~G6W.&'~G5 Gl~G9~ 

I IGI21 G61 I I I G5 Gil I G9 1 I I 
G4 4 [ 1 ,5] 9 7 ~0121 G6 ~~ G5 GI~G9~ 

I 1o121 G61 I I I G5 Gl I G41 G91 I I 

Gll 1 [1 ,2] II 6 ~GJ21 G6 W&J'$& G5 G1IG4IG9~ 

I 1o121 G61 I I I G5 G 1 I G41 G9 I G III I 

G2 3 [ 1 ,5] 5 5 ~Gl21 G6 W&J'~ G5 Gl G4IG91Gll~ 

I lo12l G61 I G21 I G5 Gl G4 G9IGIII I 
G3 1 [ 1 ,4] 1 4 ~GI21 G6 ~ G2 ~ G5 Gl G4 G91Gll~ 

I G31Gl21 G61 I G21 I G5 Gl G4 G9IG11J I 
G7 3 [ 1 ,3] 12 3 

I G3,Gl21 G6 ~ G2 ~ G5 G9 ,G11~ Gl G4 

I G31GI21 G61 I G21 I G5 Gl G4 G91Gtll G7 J 

G8 1 [1 ,2] 4 2 I G3jcnl G6 ~ 02 ~as Gl G4 G9,G11J G7 j 

I G3 jG 121 G6 1 GB I G2 1 I G5 G J G4 G9 ,G J II G7 1 

GIO 1 [ 1 ' 1] 6 1 
1 G3jGI21 G61 G81 02 ~as! GI I G41 G91Glll G7 j 

I G31G 121 G61 G81 G2 1G 101 as I G I I G41 G9IG Ill G7 1 
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1) Fitness function for operation sequencing in a group 

This is executed prior to group sequencing, and therefore, its fitness function 

is described as the degree that the sequence satisfies process sequence rule . 

An evaluation is proposed based on an evaluating indicator hierarchy and 

analytical hierarchy process method. The details are presented in Section 7.2. 

2) Fitness function for group sequencing 

Group sequencing is the last stage of process sequencing. The fitness function 

for group sequencing should be the final objective of process sequencing, that 

is, to find an optimal point satisfying process sequence rules, minimum 

machining cost and shortest processing time simultaneously. Thus, the fitne 

function is defined by the following expression: 

F = Wnfm+ wJc + wtf, (7-1) 

where F is the fitness, 

f, 11 is the degree of satisfaction with process sequence rules, 

f c is the relative evaluating value for manufacturing co t, 

f, is the relative evaluating value for manufacturing time, and 

W 111 , We, and w1 are the weights for the above evaluations, respectively. 

A calculation supporting the fitness function has been developed based on the 

above expression. It consists of three parts, that is, evaluation for proces 

sequence rules, evaluation for manufacturing cost and time, and collation of 
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weights. The first two parts are described in Sections 7.2 and 7.3, 

respectively. In Sections 7.4 and 7.5, a trained neural network and a fuzzy 

evaluation are presented for the collation of weights . 

7 .1.4 Operators 

The design of appropriate genetic operators including the selection, crossover and 

mutation plays a major role for the successful genetic algorithm. 

1) Selection: Selection is the genetic operator that chooses parents for 

reproduction in the next generation. The chosen parents will have the chance 

to be used in the next genetic operation, such as crossover and mutation. 

Three selection strategies are usually chosen. They are: 

• Roulette wheel selection: The chance of a chromosome to be selected is 

based on their fitness value. The chromosomes are more likely to be 

selected if they are fitter. 

• Tournament: First, a small subset of chromosomes is selected at random 

from the population. After the selection, the one with the best fitnes s in 

the tournament is selected to be a parent. 

• Random: Parents are simply selected completely at random from the 

population. 

In this algorithm, the 'roulette wheel selection' strategy is employed to 

expedite the search and guarantee the search in an increased trend. 
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2) Crossover: After the parents are selected, the crossover is applied to the 

population of the selected parents. Crossover is the genetic operator that 

creates a new solution in the next generation by splitting and recombining 

between two parents. There are many types of crossover. Here, three most 

commonly used crossovers are introduced: 

• Single-point crossover: Two parents are split at the same position and 

recombined with the left of one and the right of the other. For example, if 

the split point was chosen randomly as 3, two parents used for generating 

new chromosomes are: 

Parent 1: G l-G2-G3-G4-G5 

Parent II: 04-02-01-05-03 

Then, the new children created are: 

Child 1: Gl-G2-G31-G5-G3 

Child II: 04-02-011-04-05 

As the classic form of the crossover, single-point crossover is simple but 

very slow. 

• Multi -point crossover: Two parents are split at several randomly cho en 

sites and recombined into two new children. For instance, if there are two 

split points 6 and 10, and the parents used for generating new 

chromosomes are: 
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' Parent I: 01-02-03-04-05-06-07-08-09-010-011-012-013 

Parent II: 06-02-03-07-01-05-010-04-013-011-012-08-09 

Then, the new children created are: 

Child I: 01-02-03-04-05-061-010-04-013-0111-011-012-013 

Child II: 06-02-03-07-01-051-07-08-09-0101-012-08-09 

Comparing to single-point crossover, multi-point crossover will produce 

more mixing, although it may be more disrepute. 

• Uniform crossover: Each bit on the child is selected randomly from the 

corresponding bit of the parents. A mask is used to determine which 

parent contributes its bit value to which child at the same position. An 

example is provided, where the parents used for generating new 

chromosomes are: 

Parent I: 01-02-03-04-05-06-07-08 

Parent II: G6-G2-G7 -G3-G 1-G5-G8-G4 

Mask: 11 010010 

Then, the new chi ldren created are: 

Child I: 01 -02-07-04-01 -05-07-04 

Child II: 06-02-03-03-05-06-08-08 
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' 
By employing above crossover operators, it is clear that such exchanges may 

result in an invalid sequence because 

• Some operations may appear in the child chromosomes more than once; 

• Some operations may not appear in the child chromosomes; 

• The precedence constraints may be violated. 

In order to overcome the above limitation and gain a valid process sequence, a 

modified crossover operator is proposed by Li et al [2002]: 

Step 1: Two chromosomes in the populations are randomly chosen as two 

parents (e.g. Parent I and Parent II). 

Step 2: A splitting point IS randomly determined, and each parent 

chromosome is separated as left and right parts from the splitting point, that i , 

Parent !-Left, Parent !-Right, Parent II-Left, and Parent II-Right. 

Step 3: The left part of Parent I (Parent !-Left) is copied as the left part of 

child I. 

Step 4: The bits in the right part of Parent I are copied to the right part of 

child I according to their sequences in Parent II. 

Step 5: Similarly, child II can be obtained with the left part of Parent II and 

the bits in the right part of Parent II in their sequences in Parent I. 

The above precedence is illustrated in the following example: 
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Supposing there is a split point 5, and the parents u~ed for generating new 

chromosomes are: 

Parent I: G 1-02-03-04-05-06-07-08-09-010-011-012-013 

Parent II: 08-02-03-07-01-05-010-04-013-011-012-06-09 

Then, the new children created are: 

Child I: 01-02-03-04-051-08-07-010-013-011-012-06-09 

Parent II: ~01{04-0~3-0~ l-0)2-~-J9 
Child II: 08-02-03-0~/6-t9-<r 0-0,11-tl2-t 13 

Parent I: 01-02-03-04-05-06-07-08-09-010-011-012-013 

Based on the above process, it can be proved that the modified crossover not only 

guarantees that each operation or operation group appears in a child chromosome 

once and only once, but also follows the precedence constraint relationships 

between operations or operation groups in parents with maximum possibilities. 

Combining with a fitness function considering precedence constraints between 

operations or operation groups, the precedence constraint adjustment is not 

required for the modified crossover operator. 

3) Mutation: After the parents are crossovered, the mutation operator is applied 

to the population of selected child chromosomes. Mutation is the genetic 

operator that randomly changes one or more of the chromosomes' gene. It i 

carried out according to the rate of mutation. The mutation rate should be kept 

very low (usually about 0.1) as a high mutation rate will destroy fit strings and 

degenerate the algorithm into a random walk, with all the associated problems. 
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' The purpose of mutation is to provide the populations with new possible 

solutions that may have been lost during successive generations and prevent 

the genetic population from converging to a local optima. In the proposed 

method, one type of mutation strategy is applied: two operation positions are 

chosen randomly in a chromosome, and then the values in the two position 

are exchanged. For example, if the two random operation positions are 3 and 

6, and the chromosome to be mutated is: 

Before mutation: G 1-G2-G7-G4-G3-G5-G8-G6 

After mutation: G l-G2-G5-G4-G3-G7-G8-G6 

In theory, a constraint adjustment should be applied after the mutation 

operator. However, considering the fitness function having included 

precedence constraints, it seems not necessary to adjust the process sequence 

in a feasible domain using an extra algorithm. 

7.1.5 Stop criteria 

There are several stop criteria for the search process of a GA. Usually, the fitnes 

function is considered near optimal if its value does not decrease, and the search 

process stops. The final searched solution is regarded as the result satisfying the 

goal. According to the result of experiments, this stop criterion is the most 

suitable for process sequencing. 
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7.2 Evaluation of manufacturing rules for process sequence 

This research uses an analytical hierarchy process (AHP) [Saaty, 1980, 1990, 

1994] to evaluate machining sequence rules for process sequencing. As a 

systematic method for comparing a list of objectives, AHP makes it possible to 

evaluate objects based on a large number of qualitative and quantitative factors . 

The proposed AHP model for evaluation is depicted in Figure D.l2 (in Appendix 

D). 

Step 1: Identifying all relevant and important process sequence rules as 

evaluating criteria. 

Step 2: Structuring these criteria into hierarchy levels from an overall 

objective to various criteria and sub-criteria. 

Step 3: Determining the relative weights of structured criteria through pairwise 

comparison, which is built by the judgements of experts . 

Step 4: Employing Eigenvalue technique for computing the weights under the 

AHP. According to the characteristics of the AHP hierarchy, the calculating 

procedure is in the downward direction along the hierarchy, which means that the 

weights of higher-level criteria are first computed, and then used by the weight 

calculation for the lower level criteria. 

Step 5: Identifying the evaluating value for the satisfactory degree for proce 

sequence rules. 
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7.2.1 Process sequence rules 

The process sequence rules are derived from both manufacturing requirements 

and geometrical and topological information. In order to accommodate the 

complex rules, an evaluating indicator hierarchy for process sequence rules needs 

to be defined. The evaluating indicator hierarchy should have: 1) appropriate 

number and levels of criteria, which provides an overall view of the complex 

relationship inherent in the manufacturing rules; and 2) an open and adaptive 

structure, which ensures the possibility to modify and scale the hierarchy with 

ease to adapt environment changes. The data structure for evaluation criteria is 

defined in Figure 7.2. 

Qiao et al [2000] proposed four types of process planning rules, including 

precedence rules, clustering rules, adjacent order rules and objectives . In the 

present research, an evaluating criteria hierarchy has been developed based on 

their work. It consists of two levels, and three main manufacturing sequence 

constraints are included in the first level. 

1) Precedence constraints 

• A parent feature should be processed before its child features. Parent and 

child features have been defined in Chapter 4. 

• Rough machining operations should be done before finish machining 

operations. 
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Process sequence (ID) 

Le vel 0 Number of rules in Level 1 

Pointer to rules in Level 1 

......................................................... ················· ···················································· ·· ·· ······ ············· ······ ················································································· 

L evel 1 

Rule code Rule code 

Rule name Rule name 

Weight Weight 

Evaluating value Evaluating value 

Number of next level Number of next level 

Pointer to next rule - Pointer to next rule 

Pointer to next level Pointer to next level 

·· ········································ ........................................................ ............................................................................... ......................................................... 

L evel 2 ... 

Rule code Rule code 

Rule name Rule name 

Weight Weight 

Evaluating value Evaluating value 

Number of next level Number of next level 

Pointer to next rule - - Pointer to next rule 

Pointer to next level Pointer to next level 

... .. ............................... .1.. ...................................................... .. ......................... ................................................... ............ .................................................. 

Level 3 

Figure 7.2 Data structure of evaluation criteria 
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• Primary surfaces should be machined prior to secondary surfaces . Primary 

surfaces are usually defined as surfaces with high accuracy or having 

higher impact on the design specifications, such as a datum plane. The 

rest of the surfaces are regarded as secondary surfaces, e .g. a threaded 

hole. 

• Planes should be machined prior to holes and slots. 

• Edge cuts should be machined last. 

2) Successive constraints 

• Features or operations, which can be machined within the same setup 

should be machined successively. 

• Features to be machined with the same cutting tool , should be machined 

successively. 

• Operations with the same machining type, such as rough , semi-finish and 

finish machining, should be executed successively. 

• Features with similar tolerance requirements should be machined 

successively on the same machine tool. 

3) Auxiliary constraints 

• Annealing, normalising and ageing operations of ferrous metal component 

should be arranged before rough machining or between rough and semi-

finish machining. 
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• Quenching for ferrous metal workpieces should be arranged between semi­

finish and finish machining or between rough and semi-finish machining if 

it is followed by high temperature tempering. Quenching for non-ferrous 

metals should be arranged between rough and semi-finish machining or 

before rough machining. 

• Carburizing would be arranged between semi-finish and finish machining. 

7.2.2 Analytical hierarchy process (AHP) 

In practice, it can be impossible to satisfy all sequence rules in a process 

sequence. For example, a high accuracy hole as the datum surface should be 

machined with a high priority according to the primary surfaces rule, but it may be 

in conflict with the rule of planes prior to holes and slots. Therefore, it is 

necessary to derive a set of numerical weights representing the relative importance 

of the rules with respect to the manufacturing environment. The importance 

weights are determined by AHP. Essentially, AHP employs pariwise compari on 

of selection criteria so as to enhance objectivity and downplay too much 

subjectivity [Saaty, 1990]. In the following section, AHP is discussed further 

with three points: construction of pariwise comparison matrix , calculation of 

relative weights, and calculation of evaluating value. 

1) Construction of pairwise comparison matrix 

The pauw1se companson is formed by companng each rule with all the 

remaining ones at a certain level. Correspondingly, a pairwise comparison 
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matrix, called R-matrix , is defined, where the number in the ith row and jth 

column, ru, gives the relative importance of the ith process sequence rule as 

compared with the jth process sequence rule. This can be described as: 

fj, fj; l'jm 

R= r;, r;; 'im (7-2) 

r,ll , r,lli r,nm 

where i = 1, 2, ... , m; 

m is the number of selected rules. 

Tii =]; 

ru = 1/rJi 

Table 7.2. Evaluating criteria for the pairwise comparison matrix 

Definition Intensity of Intensity of 
importance(rii) importance(rii) 

The ith rule and the jth rule 1 1 
have equal importance 

The ith rule is slightly more 3 1/3 
important than the jth rule 

The ith rule is more important 5 1/5 
than the jth rule 

The ith rule is much more 7 117 
important than the jth rule 

The ith rule is absolutely more 9 1/9 
important than the jth rule 

Intermediate values between 2,4,6, 8 1/2, 1/4, 1/6, 1/8 
adjacent scale values 
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Table 7.2 presents the evaluating criteria based on a 1-9 scale for the pairwise 

comparison matrix used in this study. For example, considering the 

following rules i and j. 

Rule i: Primary surfaces should be machined prior to secondary surfaces. 

Rule j: Planes should always be machined prior to holes and slots . 

If Rule i is considered to be much more important than Rule j in the 

evaluation, a weight of '7' is inserted in the juncture cell (r;j) between Rule i 

and Rule j. On the contrary, the value of in the juncture cell (rj;) between 

Rule) and Rule i is set to '1/7'. Based on the evaluating indicator hierarchy, 

four R-matrices have been built, that is R1 (3x3), R21 (4x4) , R22 (4x4), and R23 

(3x3). The value for each element of the four R-matrices is determined based 

on the experts' experience and knowledge. 

2) Calculation of importance weights 

There are a number of mathematical techniques to calculate relative 

importance weights based on the pairwise comparison matrix, such as 

Eigenvalue, Mean Transformation, or Row Geometric Mean. Considering 

simplification and implementation on the computer, an approximate method of 

Eigenvalue approach is used in this research. The process is discussed below. 

Step 1: Calculate multiplication (M) of all elements in each row of the 

pairwise compari son matrix. For the ith row, it is defined as; 
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where 

II 

M;=flrii 
j=l 

Process Sequencing 

(7-3) 

j is the index of column which elements are in , j = 1, 2, ... , n 

i is the index of row which the elements are in , i = 1, 2, ... , n, 

and 

n is the number of the rows in the pairwise comparison matrix , 

which is equal to the number of the columns. 

Step 2: Calculate the n-th root of M, that is : 

W. =~~~ 
1 ijlYl i (7-4) 

where i is the row number in the pairwise comparison matrix, i =I, 2, 

. .. , n. 

Therefore, the relative importance weight vector can be built as the following: 

Step 3: Normalise the weight vector, w 

W.=~ 
I fwj 

j =l 

Thus, the eigenvector for the R-matrix, W can be obtained: 
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Step 4: Calculate the maximum Eigenvalue of R-m'atrix, Amax: 

A = ~ (RW); 
max ~ W 

•=I I 

(7-8) 

Step 5: Monitor the consistency of the pairwise comparison matrix. 

Consistency means that the decision exhibits coherent judgement in specifying 

the pairwise comparison of the criteria or alternatives [Taha, 1997] . For the 

pairwise comparison matrix, R-matrix, the consistency can be described in 

mathematics as the following: 

for all i , j and k (7-9) 

According to the definition of actually logical meanings for each element in 

the pairwise comparison matrix (R-matrix), R-matrix should be consistent. 

Mathematically, for any 2x2 matrix, it is always consistent because the 

columns of any 2x2 comparison matrix are dependent. However, for all nxn 

comparison matrices (n>2), they are usually inconsistent, as the comparison 

matrix is usually constructed based on human judgement from which orne 

degree of inconsistency is expected. Therefore, the problem of consistency 

can be converted into determining whether or not a level of consistency is 

"reasonable" . 

Assuming A1, A2, •.• , An are the Eigenvalues of R-matrix , which satisfy the 

following equation: 

RW=AW (7-10) 
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According to linear algebra, the following expression is obtained: 

where r;; = 1. 

If R-matrix is consistent, then 

Otherwise, 

n-1 

LA; =n-Amax 
i=l 

(7 -11 ) 

(7-12) 

(7- 13) 

(7- 14) 

In this case, the closer Amax is to n, the more consistent is the comparison 

matrix. As a measure, an inconsistency ratio (CR) is calculated to monitor the 

consistency of the comparison matrix: 

CR= CI 
Rl 

where C/ is a consistency index of R-matrix, 

C/ = Amax -n 
n - 1 

and Rl is a random consistency index of R-matrix. 

(7-15) 

(7-16) 

Rl is determined 

empirically [Golden et al, 1989] as the average C/ of a large sample of 
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randomly generated comparison matrices. Table 7.3 gives the values of Rl 

corresponding to n. 

Table 7.3. The values of RI 

N 1,2 3 4 5 6 7 8 
RI 0.00 0.58 0.90 1.12 1.24 1.32 1.4 1 
N 9 10 11 12 13 14 15 
RI 1.45 1.49 1.51 1.54 1.56 1.57 1.59 

The ratio CR is used to monitor consistency in the following way. If CR ~ 

0.10, the level of consistency is acceptable. Otherwise, the inconsistency in 

R-matrix is very high and the decision-maker is advised to check the element 

ru of R-matrix to produce a more consistent matrix. 

Indeed, consistency of the comparison matrix is important because all other 

data can be deduced logically from this basic data. 

Step 6: Calculate the weights in the lower level. For the lower level, the 

weights relating to the total objective can be given by the following 

expression: 

Ill 

W; = IwjoW;j (7-17) 
j = l 

where wi is the importance weight of the ith sub-criteria for the total 

objective; 

Vllj0 is the importance weight of the jth criteria in the higher level 

for the total objective; and 
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W/ is the importance weight of the ith sub'-criteria for the jth 

criteria in the higher level. 

7.2.3 Construction of evaluating matrix 

Each rule has a precedence matrix named V -matrix. As mentioned in Chapter 6, 

each operation pair has a reward/penalty precedence value for a corresponding 

rule, which is stored in the evaluation library. The reward/penalty precedence 

scale used is identified as: 

A reward: If the precedence in the operation pair (e.g. operation i and operation j) 

satisfies the manufacturing rule k, then a positive decimal value 

(reward) is given according to the satisfying degree: 0< vkiJ ~ 1. 

A penalty: If the precedence in the operation pair (e.g. operation i and operation j) 

does not satisfy the manufacturing rule k, then a large positive value 

(penalty) is given according to the destruction degree: vkiJ > 1. 

According to the reward/penalty precedence values, the V -matrix for rule k can be 

defined as: 

vktt Vkl; vkln 

vk = vkil vkii vkin (7-18) 

vknl vkni vk"'' 

where vk is the v -matrix for rule k; 

i=1,2, ... ,n; 
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n 1s the number of machining operations in 'a group (for operation 

sequencing) or the number of machining operation groups (for group 

sequencing); 

k=l , 2, .. . , m; 

m is the number of selected rules , and 

VkiJ is the reward/penalty precedence value for rule k if operation i is prior 

to operation j (for operation sequencing). For group sequencing, VkiJ i 

the reward/penalty precedence value based on rule k if operation s i 

priors to operation t, while operations s and t are the last operation in 

group i and the first operation in group j, respectively. 

Because the penalty/rewards precedence matrix has considered precedence 

constraint relationships, it is not necessary to recheck a process sequence after its 

genetic operators. With the penalty/rewards precedence matrix, the basic 

optimisation problem is transferred into an alternative formulation , that is , a 

numerical solution is sought by solving a sequence of unconstrained minimisation 

problems. 

7.2.4 Evaluation result 

The synthesis evaluation can be set up based on the following linear addition 

expression: 

(7-19 ) 
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where fm is the degree of satisfaction with process seq~ence rules, 

wk is the relative weight for the kth constraint rule, 

VkiJ is the reward/penalty precedence value for rule k if operation i is prior 

to operation j (for operation sequencing) or the reward/penalty 

precedence value for rule k if group i is prior to group j (for group 

sequencing), and 

Gi>GJ means operation i is arranged before operation} (for operation 

sequencing) or group i is arranged before group j (for group sequencing). 

fm is a positive decimal value, that is j 111"?.0. The lower the value is, the higher the 

sequencing satisfies with process sequence rules. 

7.3 Evaluation of time and cost 

Because detailed information on tool paths and machining parameters have not 

been determined so far, instead of accurate cost and time, estimation function are 

used to calculate a process plan 's cost and time. 

1) Cost 

The cost for a process plan consists of five main elements described below. 

• Machine cost ( CM) 

Machine cost is the total cost of the machines used in an operation. 
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• Tool cost (CT) 

Tool cost is the total cost of the cutting tools used in an operation. 

• Machine change cost (CMC) 

It is includes the total cost spent to change the machine tools occurring when 

two adjacent operations are performed on different machines. 

• Tool change cost ( CTC) 

Similarly, it is the total cost spent for cutting tool changing occurring when 

two adjacent operations are performed on the same machine but with different 

tools . 

• Setup change cost ( CSC) 

It is the total cost for setup changing occurring when two adjacent operations 

are performed on the same machine but with different setups. 

Based on the above elements, the cost for a process sequence can be expressed 

as: 

" n 
C = "GC. + "GCC .. L.. I L.. I} 

(7-20) 
i=l i=l 

j =i+ l 

p 

GC. = "CCM . +CT.) 
I L.. lfJ lfJ 

(7-21 ) 
p=l 

GCCij = CMC\'1 + CTCSI + CSCSI (7-22) 
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where Cis the total cost for the process plan. 

GC is the machining cost for the ith operation group. 

GCCu is the changing cost for two adjacent groups, the ith group and 

the jth group. Here, the index of the group represents the proce s 

sequence of the group, e.g the 1st group is processed first , and 

then the 2nd group, and so on. 

CMip is the machine cost for the pth operation in the ith group. 

CTip is the tool cost for the pth operation in the ith group. 

P is the number of the operations in the ith group. 

CMC.1·r is the machine change cost for the last operation in ith group to 

the first operation in jth group. 

CTC51 is the tool change cost for the last operation in ith group to the 

first operation in jth group. 

CSCsr is the setup change cost for the last operation in ith group to th 

first operation in jth group. 

Then, the relative evaluating value for manufacturing cost, fc, can be gained 

as: 

(7-23) 
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' 
where C,11ax is the maximum manufacturing cost for the component that the 

company can accept. The C,11a.x for a component is given by user. 

2) Time 

Similar to the calculation of manufacturing cost, the time of a process plan 

includes the following elements: 

• Machining time (TM) 

Machining time is the total time needed when a component is machined in 

one operation. It consists of the cutting time, machine idle time due to 

preparation and idle tool motion, such as loading, unloading, tool approach 

and depart. 

• Machine change time (TMC) 

It refers to the time occurring when two adjacent operations are performed 

on different machines. 

• Tool change time (ITC) 

It is the time spent on changing tools when two adjacent operations are 

performed on the same machine but with different tools. 

• Setup change time (TSC) 

It occurs when two adjacent operations are performed on the same 

machine but with different setups. 
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Therefore, the time for a process sequence can be expressed as: 

n '' 
T = "GT + "GTC. ~ I ~ I} 

(7-24) 
i= l i= l 

j=i+ l 

p 

GT; = L™ip (7-25) 
p =l 

GTCu = TMC.,.1 +TTC,.1 +TSC,1 
(7-26) 

where Tis the total time for the process plan. 

GT; is the machining time for the ith group. 

GTCu is the changing time for two adjacent groups, the ith group and 

jth group. Here, the index of the group represents the proces 

sequence of the group, e.g. the 1st group is processed first, and then 

the 2nd group, and so on. 

TM;p is the machining time for the pth operation in the ith group. 

P is the number of the operations in the ith group. 

TMCs1 is the machine change time from the last operation in ith group 

to the first operation in jth group. 

TTCs1 is the tool change time from the last operation in ith group to the 

first operation injth group. 

TSCs1 is the setup change time from the last operation in ith group to 

the first operation injth group. 

199 



Chapter 7 Process Sequencing 

Then, the relative evaluating value for manufacturing time, fr, can be gained 

as: 

T 
f=-

~nax 
(7-27) 

where Tmax is the longest manufacturing time for the component that 

the company can accept. The Tmax for a component is given by user. 

7.4 Weight calculation 

Considering the disparities of product types and production conditions, different 

values of w111, W e and w1 can be assigned using an artificial neural network. The 

following three aspects are discussed to construct the network: input 

representation, output format, network topology. 

7.4.1 Input representation 

The relative weights for process sequence rules, manufacturing cost and 

manufacturing time are always dependent on the component design and 

technological requirements, and manufacturing circumstances. Thus, three main 

factors are considered for the input. 

1) Complexity of component 

It can be difficult to evaluate the complexity of a component because of a 

number of considerations including; 
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• The classes of features in the component 

• The relationships among features in the component 

• The technological and design requirements for the component, such as 

dimension tolerance, surface roughness 

• The material of the component 

In the meantime, the evaluation is non-linear and multi-dimensioned. For 

example, the difficulty of component manufacture increases with the number 

of features. On the other hand, features do not contribute equally to the 

manufacturing difficulty. Moreover, all these considerations affect each other. 

For instance, complex feature relationships may result in high technological 

requirements . In addition, some vague factors are included, such a 

geometrical complexity and material , so that expert knowledge and experience 

are needed. Fuzzy evaluation techniques are employed with the neural 

network to tackle such complicated evaluation of a component. The proposed 

fuzzy evaluation (to be discussed further in the next section) focuses on 

evaluating the complexity of a feature according to its geometrical complexity, 

technological requirements and machining capability. Table 7.4 shows five 

levels of feature complexity. 

Table 7 .4. Evaluation for feature complexity 

Evaluating value Description Type 
<0.25 Very easy to be manufactured Type I 
0.25-0.5 Easy to be manufactured Type II 
0.5-0.75 Not difficult to be manufactured Type III 
0.75-1 Difficult to be manufactured Type IV 

:::::1 Very difficult to be manufactured Type V 
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Based on the output of the fuzzy evaluation of features, 20 input neurons are 

designed, of which each four neurons represent a binary number, detailed 

below. 

Neurons 1-4: the number of features in the component, which are very easy to 

manufacture (Type I). 

Neurons 5-8: the number of features in the component, which are easy to 

manufacture (Type II). 

Neurons 9-12: the number of features in the component, which are not 

difficult to manufacture (Type III). 

Neurons 13-16: the number of features in the component, which are difficult 

to manufacture (Type IV). 

Neurons 17-20: the number of features in the component, which are very 

difficult to manufacture (Type V). 

For example, if a component has 10 features and 5, 1, 3 and 1 features belong 

to Type I, Type II, Type III and Type IV, respectively, the values for the 20 

input neurons are shown in Table 7.5. 

Table 7.5 . An example of input neurons 1 to 20 

Input neurons 1--120 

o I 1 I o I 1 o I o I o I 1 o I o I 1 I 1 OJOJOI 1 o I o I o I o 
Type I Type II Type III T_}'Qe IV T_l'lJ_e V 

5 1 3 1 0 
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2) Production batch size 

In practice, the process plan of a component for mass production, medium 

production, small production or single production may be different 

significantly because of different production objectives. For example, in rna s 

production, the process plan is repeated many times with a new workpiece. 

Because production batch size has a great effect on process planning, it is 

taken as a crucial consideration for the input. The evaluating values of the 

production batch size are allocated in Table 7.6. 

Table 7.6. The evaluating values for production batch size 

Production batch size Quantity Evaluating value 
Single production <20 1 
Small production 20-200 0.6 
Medium production 201-5000 0.3 
Mass production >5000 0 

3) Production urgency 

An indicator is designed to represent how urgent the component is needed. 

The evaluating values are allocated in Table 7.7. The production urgency 

indicator is an important parameter affecting the relative importance of timing. 

Table 7.7. The evaluating values for production urgency 

Production urgency Time (days) Evaluating_ value 
Very urgent <7 1 
Urgent 7-14 0.6 
Normal 15-30 0.3 
Not urgent >30 0 
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7.4.2 Output format 

According to the problem to be solved, the output consists of three neurons, which 

represent Wm, W e and w 1, respectively. A real number between 0 and 1 is a igned 

to them. As relative weights, W 111 , W e, and w 1, are normalised before they are input 

into the final fitness calculation, that is Wm+we+w1=1. 

7 .4.3 Topology and the training method of the neural network 

The proposed neural network uses a typical three-layer BP (back-propagation) 

structure, consisting of an input layer, a hidden layer and an output layer. There 

are 22 neurons and 3 neurons in the input layer and the output layer, respectively. 

The number of neurons in the hidden layer is a result of experiments using various 

architectures, and a hidden layer of 10 neurons has proved to be the most 

'appropriate'. 

7.5 Fuzzy evaluation of feature complexity 

Based on the above characteristics of feature complexity, a feature evaluation 

method is proposed using fuzzy mathematics. 

7.5.1 Fuzzy evaluation model 

Based on the theory of fuzzy mathematics for synthesis evaluation, an analytical 

model is established for evaluating feature complexity. The model is described 

below. 
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Assume that the domain of the evaluation factors is A: 

(7-28) 

where ai represents the factor of evaluation , and i= l , 2, 3, . .. , n. 

The domain of the evaluati n rad s is V: 

7-2 ) 

where v1 expresses the evaluation results of complex degree for each factor, and 

)= 1, 2, 3, .. . , m. The current method adopts five-grades: very simple, imple, 

general, complex, very complex. That is, 

V = {very simple, simple, general, complex, very complex }, 

Accordingly, a vector with five values is defined as: 

VI 0 
- 0.25 v2 

V= - 0.5 (7-30) v3 = 
v4 0.75 

Vs 1 

Supposing a fuzzy evaluation matrix U can be established by: 

u,, u, J u, s 

U = uil uij uis (7-3 1) 

u,Ji u,J u,s 
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where uu indicates the evaluation value of the ith evaluation factor, a; to the 

membership degree of the jth evaluation grade, v1. 

Then, a fuzzy vector U can be calculated as: 

5 

u, i)u, j xv) 
j=l 

5 

U= U; =UV = Icu,j xvj) (7-32) 
j=l 

u, 5 

Icu ,j xv) 
j=l 

In order to consider the influence of interactions among the evaluation factors , a 

weight is introduced for performing the synthesis evaluation on each factor. The 

fuzzy set of weights, W is normalised: 

(7-33) 

where wi denotes the corresponding weight of the ith factor, a;, and 

(7-34) 

The Analytical Hierarchical Process is also used to identify the weights based on 

the expert knowledge. 

Finally, the fuzzy synthesis evaluation can be performed with the fuzzy operation 

(7-35) 
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7.5.2 Feature evaluation 

Because different feature class has different geometrical parameters and different 

technological indicators, it is not easy to obtain a unique and efficient evaluating 

matrix to satisfy various features. At the same time, because there is a number of 

machining features on one component and feature classes are varied, the 

evaluation matrix will become lager and the identification of weights will become 

inefficient. Additionally, the evaluation matrix must be rebuilt when a new 

feature category is added. Thus a feature evaluation method is structured, which 

consists of a control interface and several feature evaluators. The control interface 

is used for recognising the feature class and processing it, then putting it into the 

corresponding feature evaluator, which is used for evaluating the complexity for 

specifically feature class. All feature evaluators are separately built, which can 

improve its efficiency and effective. When a new feature category is added on a 

component, the corresponding feature evaluator is added or modified but the other 

feature evaluators need not be changed. The integrated architecture of this 

evaluation method is shown in Figure 7.3. 

For the objective of evaluation for feature complexity, the following factors are 

considered. 

1) Feature class 

Feature class is about typical geometrical characteristics, which is one of 

major factors that determine the feature complexity. The corresponding grade 

memberships are given with expert knowledge. For example, Table 7.8 how 

the grades of round holes. 

207 



Chapter 7 Process Sequencing 

r·- ·- ·- ·-· - ·- ·- ·- ·- ·- ·- ·- ·- ·-·- ·-·- ·- ·- ·-·- ·- ·- ·-·- ·- ·- ·-· - ·-·, 
! Feature-based modelling i 

I 
- . - · 

Manufac turing 
attributes 

r - -~ ~-~ - ------- ~--~ -~ -~ -~-r ~ ---~ -~ --~~ -~~---- ----------- ------
I 

------1 

I 

I I I Interface I 
I 
I 

j 
Fuzzy evaluation of feature complexity 

Round hole ~ I Pocket I ~ 
I 
I 
I 
I Conical hole General hole I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

l--------------- ---------------------- ---- - - ------- - ----- ------ -

i ~ t 
very easy not difficult very 

difficult difficult ~ ----easy 
Manufacturing 

I I I Library 

~ 

Production 

Artificial neural network 
hatch si ze 

Urgency 
index 

j Weights 

r- · - · -·- ·-·-·-·- · - ·-·- ·-·- ·- · - · -· -

ProceSS sequencing 
' ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·-· 

Figure 7.3 The structure of weights collated 

208 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Chapter 7 Process Sequencing 

Table 7.8. Grades for round holes 

Class Sub-class Very Easy general difficult Very 
easy difficult 

Through 0.63 0.2 1 0.10 0.03 0.03 
Blind Conical 0.37 0.25 0.20 0.12 0.06 

Spherical 0.18 0.20 0.37 0.12 0. 11 
Flat with radius 0.08 0.16 0.42 0.20 0.14 
Flat 0.02 0.08 0.20 0.36 0.34 

The fuzzy value of feature complexity u,ype is calculated using the above data, 

and shown in Table 7.9 to Table 7.12. 

Table 7.9. u,ype of round holes 

Class Sub-class Expression u ,ype 

Through 0.63 *0+0.21 *0.25+0.1 0*0.5+0.03 *0.7 5+0.03 0.155 
Blind Conical 0.37*0+0.25*0.25+0.20*0.5+0.12*0.75+0.06 0.3 125 

Spherical 0.18*0+0.20*0.25+0.37*0.5+0.12*0.75+0.11 0.435 
flat with radius 0.08 *0+0.16*0.25+0.42*0.5+0.20*0. 75+0.14 0.54 
Flat 0.02*0+0.08*0.25+0.20*0.5+0.36*0.75+0.34 0.73 

Table 7.1 0. u ,ype of slot 

Class Sub-class Expression -
u ,ype 

Through 0.13*0+0.47*0.25+0.29*0.5+0.08*0.75+0.03 0.3525 
Blind Flat 0.05*0+0.11 *0.25+0.42*0.5+0.26*0.75+0.16 0.5925 

Radiused 0.11 *0+0.32*0.25+0.26*0.5+0.20*0.75+0.11 0.47 
Woodraff 0.08*0+0.21 *0.25+0.32*0.5+0.26*0.75+0.13 0.5375 

Table 7.11. u,ype of step 

Class Expression u,ype 

Through 0.21 *0+0.45*0.25+0.26*0.5+0.05*0.75+0.03 0.31 
Blind 0.08*0+0.39*0.25+0.45*0.5+0.05*0.75+0.03 0.39 
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Table 7.12. iirype of pocket 

Class Sub-class Expression 
u l\pe 

Open 0.08*0+0.13*0.25+0.37*0.5+0.31 *0.75+0.11 0.56 
pocket 
Closed Polygon closed 0.11 *0+0.16*0.25+0.21 *0.5+0.29*0.75+0.23 0 .5925 

_pocket pocket 
Part-circle 0.03*0+0.08*0.25+0.26*0.5+0.29*0.75+0.34 0.7075 
closed pocket 
Double-semi- 0.16*0+0.23*0.25+0.34*0.5+0.19*0.75+0.08 0.45 
circle closed 
pocket 

2) Nominal dimensions 

Dimensions are a very important factor for process planning because they not 

only relate to the machining time and tool changes, but al o constraint the 

accessibility and fix turing of the feature. 

• For round holes, there are two nominal dimensions: diameter and depth 

and there is a related factor: the ratio between depth and diameter, 

depth/diameter (Figure 7.4 ). 

• For slots, there are depth, length, width and character angle (defined in 

Chapter 3). 

• For pockets, the nominal dimensions include depth, minimum edge length, 

maximum edge length, maximum angle between faces , and minimum 

angle between faces. 

• For steps, the nominal dimensions include length, depth and width. 
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3) Dimensional accuracy 

As described by Gu, et al [1997], the numerical value of dimensional accuracy 

can be fuzzified with the human expert experience. 

1.0 O~x~w 

-w 0.6 w<x~w+3 
u = (7-36) X 0.3 w+3<x~w+7 

0.0 x>w+7 

where xis the IT tolerance grade (Figure 7.4). 

The parameter w can be specified by the highest possible accuracy of the 

machine tool in the machine-tool library. 

4) Surface roughness 

Surface roughness requirements are an important constraints in the decision 

making process. The specification of high quality surface often increases the 

number of operations required, more frequent tool changes and the use of 

more expensive equipment, etc, and results in a sharp increase of 

manufacturing difficulty. The fuzzy value of surface roughness, usr, is 

defined based on the Roughness average, Ra (shown in Figure 7.4 and Table 

7.13) 

Table 7.13. Fuzzy value for surface roughness 

Machining type Ra()lm) u sr 

Rough machining 100-12.5 0 
Semi-finish machining 6.3-1.6 0.3 
Finish machining 0.80-0.20 0.6 
Fine-finish machining_ 0.100-0.006 1 
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5) Material 

The present method uses the hardness of material to represent its 

characteristics. The fuzzy evaluating value of material u can be calculated m 

with the function for specific cutting force kc (N/mm2
) on the workpiece 

- (kc- Kcmin) 
u, = 

(Kcmax - Kcmin) 
(7-37) 

where K cmin and K cmax are the minimum and maximum values of k c, stored in 

the material library. 

6) Tolerance 

Tolerance also dominates the manufacturing difficulty. In term of design , 

there are six geometric tolerances and eight location tolerances. However, not 

all tolerances are necessary to specify a feature, i.e. dependent on the feature 

class. 

• Round hole: straightness, roundness, cylindricity, paralleli m, 

perpendicularity, concentricity and symmetry (Figure 7.4). 

• Slot: flatness, parallelism, perpendicularity and symmetry. 

• Pocket: flatness, perpendicularity and symmetry. 

• Step: flatness , parallelism, perpendicularity and symmetry. 

7) Feature relationships 
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Feature relationships can affect process planning seriously, especially proces 

sequence. For example, the parent feature should be machined prior to its 

child feature, or it may be difficult to access the child feature, or a special tool 

or special fixture may be required, or it is even impossible to machine the 

child feature. Based on the relationships defined, three cases are considered: 

parent feature, child feature and connect feature . The value u1,. is determined 

below 

N parent + N child + N connect 
ufr = 

Nmax 

(7-38) 

where Nparenr is the number that the feature is regarded as a parent feature . 

N child is the number that the feature is regarded as a child feature . 

N connecr is the number that the feature has a connect relationship with 

other features. 

Nnwx is the maximum number of relationships between the feature and 

other features, which is currently set to 8. 

Based on the above analysis, the domain of the evaluation factors for each feature 

class is determined. 

I) for round hole, A= {a, , a2, ... , a;, ... , a,s} 

2) for slot, A= {a1, a2, .. . , a;, ... , a13} 
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3) for pocket, A= {a1, a2, ... , ai, .. . , a13 } 

The vanous relative weights are calculated with the AHP, which has been 

described before. Finally, the result for feature evaluation is calculated in the 

fuzzy synthesis evaluation described at the end of Section 7.5 .1 (i.e. 

Y=W•U =max(w1 Xu1,w2 Xu2 , ... ,w5 xu5 )). Figure 7.6 shows the flow of the 

evaluation results fed into the artificial neural network with weights allocated. 

7.6 Summary 

This chapter has described the optimisation strategy developed for process 

sequencing. The most important characteristics is that the strategy is based on 

multi-objective fitness: minimum manufacturing cost, shortest manufacturing time 

and best satisfaction of process sequence rules, which pervious research does not 

consider. A hybrid approach is employed to incorporate genetic algorithm and 

fuzzy analysis techniques for process sequencing. After a brief introduction of 

GA, the proposed GA is discussed covering encoding scheme, initialisation, 

genetic operators, fitness function and stop criteria. Four key issues are discussed 

to further explain fitness function. Firstly, the analytical hierarchical proces is 

proposed to evaluate the satisfaction degree of process sequence rules . AHP not 

only transfers the manufacturing sequence constraints into a numerical solution, 

but also makes the evaluation more flexible and more adaptive. Then , two 

functions to calculate manufacturing cost and time are designed. Thirdly, relative 
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weights are allocated for the three maJor factors , process sequence rules, 

manufacturing cost and time is presented. Finally, an evaluation for feature 

complexity is solved with fuzzy techniques. 
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Chapter 8 

Implementation and Testing of Prototype System 

8.1 Facilities 

A prototype system has been implemented for the proposed work with the 

following facilities: 

1) Computer: Pill 500 PC, 8.4Gb HD, 128Mb Memory 

2) Operating system: Windows 2000 

3) ACIS geometric modeller version 7.0 

4) Visual C++ 6.0 

5) Visual Basic 6.0 

6) Microsoft Access 97 

7) The MATLAB neural network toolbox (Release 12) 

8.2 System implementation 

The block diagram of the prototype system is shown in Figure 8.1. It consists of 

the following four major phases. 
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Phase II 

Implementation and Testing of Prototype System 

Design by features 
using ACIS and C++ 

Interacting features 
recognition and recognition 

in C++ with ACIS APis 

I Interacting features I Non-connecting and 
connecting features 

I 
• l ~''-----------.., r--'----, I Class change II DTde II Dimension change II Merge I 
I I Inout vector 

- · - · - · - · - · -·- · -·-·- · -·- · ~·- · - · -·- · -·- · - · - · - - ·- ·-- ·- ·- ·-·-·- - ·-

Feature recogniser 
using neural network 

Training 
features 

-·- · - · - · - · - · - · - · -·-·- · - · ~ · - · -·- · -·- · -·-·-·- · - · - · - · ·- ·-·-·- -·-

I Feature-based CAPP 

Output 

Figure 8.1 The block diagram of the prototype system 
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8.2.1 Phase 1: Design by features 

In Phase I, the system builds the feature-based model by creating parameterised 

features with the feature definition stored in the feature library, calling functions 

through the Application Programming Interfaces (APis) of ACIS. 

As a three-dimensional modelling kernel produced by Spatial Technology, Inc, 

ACIS integrates wireframe·, surface, and solid modelling functionality with both 

manifold and non-manifold topology, and provides a rich set of geometric 

operations. Along with the open data structure and object-oriented C++ interface, 

ACIS is therefore suitable for feature-based modelling and its applications. ACIS 

has been used to implement the design by features module to create feature-based 

models of three-dimensional prismatic components. The feature-based model is 

used for design analysis and downstream applications. The following example is 

the code in C++ for generating the entity of a hole feature . 

BODY* BodySave; 

BODY* hole=NULL; 

II The stock of the component 

//SVE of feature 

pt s [O] =pos ition(xO,yO, z O); 

pts[l] =position(xl,yl,zl); 

double pR; 

//Position at bottom 

//Position at top 

//Radius 

res=api_solid_cylinder_cone(pts[O] ,pts[l] ,pR,pR,pR,NULL 

, hole); 

if (!res. ok () ) 

{ 

} 

AfxMessageBox( _T("Error Making hole")); 

exit ( 1); 

res =api_subtract(hole, BodySave); 
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Figure 8.2 shows the interface of the design by features module and Figure 8.3 

gives an example of the interface for a parameterised feature class. 

""r. - ""'- ,..,_ o...,. <- • ,_.a,o - - - · ~....,....-
~_L~~ :::..,._ 
~~~_m; ~ _,_J ii;~ = .. 
... :L'!L~i!IJ ~~'"'' 
'.11 !!-:v;:!:~bl'' ·l t:id fi •lsl.~l~ £l±l!~J r7. ~J ..l. l t..l =--

Figure 8.2 The design by features interface 

><0 ~ '1/lllHr---­

.,..llr- L[,'llliMr-
oll'llllfr r······ .. ~--~··· our~ 

""' r-

Figure 8.3 The interface for input of feature parameters for a Through Slot 

8.2.2 Phase II: Interacting features recognition 

In phase II, the system takes the advantage of ACIS to implement the algorithm 

(detailed in Chapter 4) for searching and checking the interacting features based 

on Boolean operations. The process is repeated until all the interacting features 
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are tackled considering the conditions of merge, class change, divide, dimension 

change and connecting. The implementation is also done in C++ with ACIS 

APis. Examples of the API calls include api_intersect(), api_unite(), 

api_subtract(), and api_apply_transf(). 

8.2.3 Phase III: ANN-based feature recogniser 

.. 
Phase III deals specifically with the interacting features to be merged. It is 

divided into two parts. The first part involves neural network training with input-

output sets of training features. The MATLAB neural network toolbox (Release 

12), a useful tool to develop neural networks provided by Mathworks is used. 

As described as Chapter 5, ANN-based feature recogniser is designed for a three-

level hierarchical architecture. The first level is to recognise five primitive feature 

classes: round hole, conical hole, general hole, slot/step and pocket. The second 

and third levels are used for further recognition based on the first level for CAPP. 

For the first level, the input (F-adjacency Matrix input vector) and output matrices 

of the training features are stored in files "inputtestOl.txt" and "outputtestOl.txt". 

Table 8.1 shows some examples of training features. 

The input data P and the output data T are loaded as follows: 

P=load('inputtestOl.txt'); 

T=load( ' outputtestOl.txt'); 

P=ctranspose(P); 

T=ctranspose(T); 
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The code for specifying the size of input matrix is given as: 

minmax(P); 

Table 8.1 Examples of training features 

Input Output 

100 000 000 000 00 0 10000 

130 006 000 000 00 0 10000 

110 005 000 000 00 0 10000 

140 003 000 000 00 0 10000 

300 000 000 000 00 0 01000 

340 006 000 000 00 0 01000 

622 006 300 600 00 0 00100 

622 006 400 600 00 0 00100 

623 006 2 00 600 00 0 00100 

624 006 200 600 00 0 00100 

639 006 300 600 00 0 00010 

620 006 000 000 00 0 00010 

630 006 000 000 00 0 00010 

640 006 000 000 00 0 00010 

632 306 230 630 60 0 00001 

623 306 230 630 60 0 00001 

622 306 330 630 60 0 00001 

642 306 23 0 630 60 0 00001 

630 3 06 430 630 60 0 00010 

640 306 430 630 60 0 00010 

640 306 330 630 60 0 00010 

640 306 230 630 60 0 00010 
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Based on the MATLAB command of 'newff', the corresponding multi-layer 

feedforward neural network architecture is built. For example, the following 

command creates a three-layer neural network. There are 17 neurons in the 

hidden layer and five neurons in the output layer. The transfer function is tan­

sigmoid (Bipolar sigmoid function) for both the hidden output layers. The 

training function is traincgp, which is Polak-Ribiere Update. 

net=newff(minmax(P),[ 17 ,5], { 'tansig' ,'tansig'}, 'traincgp'); 

Then training function is used to minimise the error and update the weights using 

the following code: 

[net,tr]=train(net,P,T); 

After the training process, the final weights and biases are stored in two files , 

respectively. For example, for the first level, the two files are "featurefaw.txt" 

and "featurefab.txt". 

The second part uses the trained network to recognise and classify new input 

patterns or matrices as specific features. The simulating process is run in C++ 

using the trained network. The F-adjacent vector and V -adjacent vector 

(described in Chapter 5) are input to the network for the feature pair to be merged. 

Finally, according to the weights and biases obtained from the training, the final 

feature class is identified. 
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8.2.4 Phase IV: CAPP 

Phase IV carries out the tasks for CAPP, which include selecting machining 

operations, identifying feature precedence relations, groupmg machining 

operations and process sequencing. Details have been described in Chapters 6 

and 7. Visual Basic, MATLAB neural network toolbox and Microsoft Access are 

used to implement the feature-based CAPP functions. A design data file 

(Design.mdb) and manufacturing data file (Manufacturing Jibrary.mdb) have been 

built with Microsoft Access. Design.mdb consists of nine tables, which are li sted 

in Table 8.2. For Manufacturing Iibrary.mdb (Table 8.3) has eighteen tables to 

store information for the manufacturing environment (e.g. materials, machining 

operations and accuracy). 

Table 8.2 Design.mdb 

Table name Information stored 

partdata General information of the component, such as 
material, component name, component code and 
production batch 

featuredata Features belong to the component, including all 
dimensions, tolerances and features ' relationships 

partnumber Code of the component 

fdatamerge Merged features 

feature li st Sequenced features list 

tprocess Processes selected for the features 

tgroup Machining groups 

rulegroup Evaluating information of the machining groups 
for the corresponding manufacturing rules 

lastvalue Evaluation information for process planning for the 
component 
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Table 8.3 Manufacturing Jibrary.mdb 

Table name Information stored 

featureprocessplan Process planning generated 

setupdata Setups, including machine tools, cutting tools , 
operation type, accuracy, roughness 

Material Information of materials , such as the hardness, 
code and name 

Cutting speed Speed for all operations 

Stock Types of stock 

Machine tools Machine tools that can be provided 

Cutters Cutting tools that can be provided 

Accuracy Information of accuracy 

urgencytable Production urgency index 

roughevaluation Evaluation for roughness 

setupchangcost Costs due to setup changes 

processchange Costs due to process changes 

featureweigh t Weights for evaluating feature complexity 

holeevaluation Evaluating information for feature class of hole 

slotevaluation Evaluating information for feature class of slot 

stepevaluation Evaluating information for feature class of step 

pocketevaluation Evaluating information for feature class of pocket 

mtweight Weights for evaluating process according to 
manufacturing rules 

An ActiveX control for the implementation of a genetic algorithm developed by 

Jeff Goslin, Xgenetic [Goslin, 2000], is used to assist the implementation of 

machining operations sequence. A new population of genomes is created by the 

following code: 
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XGenetic.GenomeLength = lengthg 

XGenetic.RangeMaximum = maxrang 

XGenetic.RangeMinimum = minrang 

XGenetic .PopulationSize = pSize 

XGenetic.Create 

// The number of bits 

of a chromosome 

// The last bit of 

chromosome 

//The first bit of 

chromosome 

//The total number 

in the initial 

population 

Based on the command of evolution of an existing set of genomes: 

XGenetic.Evolve 

An extra modified (crossover described in Chapter 7) is added and executed in 

Visual Basic. 

8.3 File management 

The system output is a feature-based model and its corresponding process plan. 

The feature-based model contains the information of all machining features 

defining the component, such as geometry, feature class, dimensions and feature 

relationships. This information is written to four output files: featureresult.sat, 

lastresult.txt, savelfinal.txt and testfinal.txt. The process plan about machining, 

such as operation type and operations sequence, is stored in the table 

finalprocessplan in design.mdb. 
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8.4 Examples 

A number of components have been tested with the prototype system. This 

section presents typical examples to demonstrate the capabilities of the system. 

8.4.1 Example 1 

This component has been ct,esigned in the procedure shown in Figure 8.4. Figure 

8.5 shows the tolerance, surface finish of the features . 

Feature 1 (Through Step) n Feature 2 (Blind Slot): 

The interacting entity is a face, which is of the PF-CV type: 

~For Feature 1: PF 
~ For Feature 2: CV 

There is a parent-child relationship between Feature 1 (parent feature) and 

Feature 2 (child feature). 

Feature 1 (Through Step) n Feature 3 (Through Slot): 

The interacting entity is a face, which is of the PF-CV type: 

For Feature I: PF 
~For Feature 3: CV 

There is a parent-child relationship between Feature 1 (parent feature) and 

Feature 3 (child feature) . 

227 



Chapter 8 Implementation ami Testing of Prototype System 

Stock 

Feature 1: Through Step 

Feature 2: Blind Slot 

Feature 3: Through Slot 

Feature 4: Through Hole I 

0 

/ 
Feature 5: Blind Hole I 

Point A 
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/ PointA 

Feature 6,7: Blind Hole II-III 

Figure 8.4 Modelling of test component l 

feature no tolerance surface finish shape/location tolerance( referencefeature) 

(IT) (Rain ~-tm) 

1 12 16 NULL 

2 8 0.8 NULL 

3 8 0.8 NULL 

4 6 0.63 concentricity 0.03(5) 

5 6 0.63 NULL 

6 8 0.8 NULL 

7 8 0.8 NULL 

Figure 8.5 Tolerance and surface finish ofthe features of test component 1 
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Feature 2 (Blind Slot) n Feature 3 (Through Slot): 

The interacting entity is a volume, which contains a face of CF-NF type 

(shown in Figure 8.6). Therefore, the class of the feature with CF (Feature 

2) is changed from Blind Slot to Through Slot. 

Feature 2 and Feature 3 has a parent-child relationship: Feature 2 (child 

feature) and Feature 3 (parent feature). 

For Feature 2: CF 

For Feature 3: NF 

Figure 8.6 Interacting entity between Feature 2 and Feature 3 

Feature 3 (Through Slot) n Feature 4 (Through Hole): 

The interacting entity is a face, which type is PF-CV: 

~For Feature 3: PF 

For Feature 4: CV 

It is a parent-child relationship between Feature 3 (parent feature) and 

Feature 4 (child feature). 

Feature 3 (Through Slot) n Feature 5 (Blind Hole): 
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The interacting entity is a face, which type is PF-CV: 

~For Feature 3: PF 

For Feature 5: CV 

It is a parent-child relationship between Feature 3 (parent feature) and 

Feature 5 (child feature). 

Feature 4 (Through Hole) n Feature 5 (Blind Hole): 

The interacting entity is a volume, which contains a face of CV -PV type 

(shown in Figure 8.7). Thus, the dimension of the feature with CV 

(Feature 4) is changed. 

Feature 4 and Feature 5 has a parent-child relationship: Feature 4 (child 

feature) and Feature 5 (parent feature). 

For Feature 4: CV 

For Feature 5: PV 

Figure 8.7 Interacting entity between Feature 4 and Feature 5 

Figure 8.8 shows the feature recognition result of this example. It can be seen that 

the proposed heuristic algorithm analyses the Interacting Entity between each 

feature pair instead the new volume created by all interacting features, making the 

process simpler. For example, the system only needs to analyse a face (e.g. 
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Feature 1 and Feature 2) and a volume (e.g. Feature 2 and Feature 3) and does not 

need complex computation to decompose and reunite edges and faces . 

The feature precedence list, machining operation groups and process planning of 

this example are given in Figure 8.9, Figure 8.10 and Figure 8.11. From the 

result, it can be seen that a suitable process plan has been produced. For example, 

Features 6 and 7, which have the same TAD and contraints, are grouped; features 

of the same class: Features 4 and 5, are to be manufactured successively because 

they have the same TAD and the parent -child relationship; and Feature 3 is 

machined prior to Features 2, 4 and 5. 
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the 1 feature 
the original feature class is Thought Step 
the last feature class is Though Step 
the feature is the parent feature of feature 2 
the feature is the parent feature of feature 3 

the 2 feature 
the original feature class is Blind Slot 
the last feature class is Though Slot 
the feature is the child feature of feature 1 
the feature has been ~hanged feature class and become child feature of the 3 
feature 

lhc lcalur 
the or ginal feawr Jus iS T hough Slot 

the last feature class is Though Slot 
the feature is the child feature of feature 1 
the fe tur has chan d the Z featur 's class and is parent f ature of th Z f at r 
the feature is the parent feature of feature 4 
Lh e f en tur iH l h pu r e nt f eu tut·e q f f eu tu r 

the 4 feature 
the o r i •in a l fcatur ~ c lass is Throug h Hole 

the last feature class is Through Hole 
the feature is the chi ld feature of feature 3 
the dimension of feature is changed and become child feature of the 5 

the 5 feature 
t11c rigi nal feature c lass is B l ind U lc 
the last feature class is Blind Hole 
the feature is the child feature of feature 3 

feature 

the feature changed the dimension of the 4 feature and is parent feature of the 4 

featur -

the 6 feature 
the original feature class is Blind Hole 
the last feature class is Blind Hole 

the 7 feature 
the original feature class e is Blind Hole 
the last feature class is Blind Hole 

Figure 8.8 Result of feature recognition for test component 1 

233 



ChapterS Implementation and Testing of Prototype System 

Index feature no type no flagno 
1 

1 Through Step 

2 
3 Blind Slot 1 

3 
2 Through Slot 

4 
5 Blind Hole 1 

5 
4 Through Hole 1 

6 
6 Blind Hole 0 

7 
7 Blind Hole 0 

Figure 8.9 Feature precedence list of test component 1 

Groupno flagno featureno process no dx dy dz 
1 

1 
1002 0 0 -1 

2 

3 1016 0 0 -1 
3 

1 
2 1016 0 0 -1 

4 

5 1039 0 0 -1 
5 

1 
4 1026 0 0 -1 

6 
0 

6 1037 0 0 -1 
7 1037 0 0 -1 

Figure 8.10 Machining operation groups test component 1 
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operationindex group no setupno setupname featureno 

1 

1 

10601 roughshaping 

2 

2 

10111 rough slot milling 3 

20111 semirough slot milling 3 

30112 semifine slot milling 3 

3 

3 

10111 rough slot milling 2 

20111 semirough slot milling 2 

30112 semifine slot milling 2 

4 

6 

10201 drilling 6 

10201 drilling 7 

70401 reaming 7 

70401 reaming 6 

5 

4 

10201 drilling 5 

10501 rough boring 5 

10401 rough reaming 5 

40401 finish reaming 5 

6 

5 

10201 drilling 4 

10501 rough boring 4 

10401 rough reaming 4 

40401 finish reaming 4 

Figure 8.11 Process plan generated for test component 1 
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8.4.2 Example 2 

Stock 

Feature 1: Through Slot 

Feature 2: Through Step 

Feature 3: Through Hole I 

g 
Feature 4: Blind Hole 

Feature 5: Blind Slot 

Point A 
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Point A 

J 
Feature 6: Through Hole II 

Feature 7: Through Hole III 

Fi gure 8.12 Modell ing oftest component 2 

As shown in Figure 8 .12, the system creates the test component in the following 

procedure. 

Feature 1 (Through Slot) n Feature 2 (Through Step): 

The interacting entity is a volume, which includes a face of CV -PV type 

(shown in Figure 8.13). Therefore, the dimension of the feature with CV 

(Feature 1) is mociHicd. 

237 



ChapterS Implementation and Testing of Prototype System 

(Feature 1) CV-PV(Feature 2) 

/ 

Figure 8.13 Interacting entity between Feature 1 and Feature 2 

Feature 1 and Feature 2 has a parent-child relationship: Feature 1 (child 

feature) and Feature 2 (parent feature). 

Feature 2 (Through Step) n Feature 3 (Through Hole 1): 

The interacting entity is a face, which type is PF-CV: 

~ For Through Step: PF 

For Through Hole: CV 

There is a parent-child relationship between Feature 3 (child feature) and 

Feature 3 (parent feature). 

Feature 4 (Blind Hole) n Feature 5 (Blind Slot): 

The interacting entity is a volume, which has a face of NF-CF and a face 

of PF-PF shown in Figure 8.14. Thus, Feature 4 and Feature 5 are merged 

into one feature: Blind Slot. The F-Adjacent vector and V -Adjacent vector 

of the merged feature are stored in files of neurlin.txt and neuravf.txt, 

respectively: 
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(Feature 4) NF-CF (Feature 5) 

( 
PV-PV 

PF-CF 
PF-PF 

Figure 8.14Interacting entity between Feature 4 and Feature 5 

File neurlin.txt (F-Adjacent vector): 

6 1 9 3 0 2 1 3 0 6 

3 0 6 0 0 

File neuravf.txt (V-Adjacent vector): 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 

The tolerance and surface finish of the features are shown in Figure 8.15. 

Figure 8.16 gives the feature recognition result of this example. It can be shown 

that the proposed methodology skips features for which no recognition is 

necessary, and is therefore more efficient. For example, the neural network-based 

feature recogniser is only executed for interacting features: Feature 4 and Feature 

5, with satisfactory outcome of recognition. 
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featureno tolerance surface finish shape/location tolerance( referencefeature) 
(IT) (Rain ~m) 

10 3.2 NULL 

2 10 3.2 NULL 

3 6 0.63 cylindricity 0.05 

4 8 0.8 NULL 

5 8 0.8 NULL 

6 8 0.63 NULL 

7 8 0.63 NULL 

Figure 8.15 Tolerance and surface finish of the features of test component 2 

The feature procedence list, machining operation groups and process planning of 

this example are shown in Figure 8.17, Figure 8.18 and Figure 8.19. The result 

shows that the final process plan is appropriate, where Feature 2 is machined prior 

to Feature 1; Features 5 and 6 are grouped; and Features 1 and 4 are machined 

successively. 
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the 1 feature 
the original feature class is Though Slot 
the last feature class is Though Slot 
the dimension of feature is changed and become child feature of the 2 

the 2 feature 
the original feature class is Though Step 
the last feature class is Though Step 

feature 

the feature changed the dimension of the 1 feature and is parent feature of the 1 
feature 
the feature is the parent .feature of feature 3 

the 3 feature 
the original feature class is Through Hole 
the last feature class is Through Hole 
the feature is the child feature of feature 2 

the 4 feature 
the original feature class is Blind Hole 
the last feature class is Blind Hole 
the feature is merged with the 5 

the 5 feature 
the original feature class is Blind Slot 
the last feature class is Blind Slot 
the feature is merged with the 4 

the 6 feature 

feature 

feature 

the original feature class is Through Hole 
the last feature class is Through Hole 

the 7 feature 
the original feature class is Through Hole 
the last feature class is Through Hole 

type is Blind Slot 

type is Blind Slot 

Figure 8.16 Feature recognition result of test component 2 
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index featureno typeno flagno 

2 Through Step 

2 
1 Through Slot 1 

3 
3 Through Hole 1 

4 
(4,5 merge) 4 Blind Slot 0 

5 
(original 6) 5 Through Hole 0 

6 
(original 7) 6 Through Hole 0 

Figure 8.17 Feature precedence list of test component 2 

group no flagno featureno process no dx dy dz 
I 

2 1005 0 0 

2 
1 

1 1016 0 0 -1 

3 

3 1026 0 0 

4 
0 

4 1056 0 0 -1 

5 
0 

5 1024 0 0 - I 
6 1024 0 0 - l 

Figure 8.18 Machining operation groups test component 2 
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operationindex group no setup no setup name featureno 

1 

1 
10131 rough step milling 2 
20131 semirough step milling 2 
30132 semifine step milling 2 

2 

2 
10111 rough slot milling 

20111 semirough slot milling I 

30112 semifine slot milling 

3 

4 
10112 rough slot milling 4 
20112 semirough slot milling 4 

30114 semifine slot milling 4 

4 

5 
10201 Drilling 5 
10201 Drilling 6 

70401 reammg 6 

70401 reammg 5 

5 

3 
10201 DriJiing 3 
10501 rough boring 3 

10401 rough reaming 3 

40401 finish reaming 3 

Figure 8.19 Process planning for test component 2 
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8.4.3 Example 3 

-----Stock 

Feature 1: Blind Slot I 

Feature 2: Blind Slot II 

Feature 3: Pocket I 

u u 
u u 

Feature 4-7: Through 
Hole I-IV 

Figure 8.20Modelling of test component 3 
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The test component has been designed in the procedure given in Figure 8.20. The 

tolerance and suface finish of the features are shown in Figure 8.21. 

featureno tolerance surface finish shape/location tolerance( referencefeature) 
(IT) (Ra in J.Lm) 

8 0.8 NULL 

2 8 0.8 NULL 

3 8 0.8 NULL 

4 10 2.5 NULL 

5 10 2.5 NULL 

6 10 2.5 NULL 

7 10 2.5 NULL 

Figure 8.21 Tolerance and surface finish of the features of test component 3 

Feature l(Blind Slot I) n Feature 3 (Pocket): 

The interacting entity is a face, which type is PF-PF: 

For Feature 3: PF --v----For Feature 1 : PF 

The relationship between Feature 1 and Feature 3 is connection. 

Feature 2(Blind Slot II) n Feature 3 (Pocket): 

The interacting entity is a face, which type is CF-PF: 

For Feature 2: CF y~ For Feature 3: PF 
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The class of Feature 2 is changed from Blind Slot to Through Slot. There 

is a parent-child relationship between Feature 2 (child feature) and Feature 

3 (parent feature). 

Figure 8.22 shows the feature recognition result of this example. From this 

example, it can be found that the proposed method can differentiate between the 

two interacting situations .. efficiently: Features 1 and 3, and Features 2 and 3. 

The feature precedence list, machining operation groups and process planning of 

this example are given in Figure 8.23, Figure 8.24 and Figure 8.25. It can be seen 

that the results are good, e.g. Features 4 to 7 form a group because they have the 

same class and tool approach directions, accuarcy requirements and can be 

manufactered by the same processes. 
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the 1 feature 

the original feature class is Blind Slot 

the last feature class is Blind Slot 

Implementation and Testing of Prototype System 

the feature has a connect relationship with the feature 3 

the 2 feature 

the original feature class is Blind Slot 

the last feature class is Through Slot 

the feature has been changed feature class and become child feature of the 3 feature 

the 3 feature 

the original feature class is Pocket 

the last feature class is Pocket 

the feature has a connect relationship with the feature 1 

the feature has changed the 2 feature's class and is parent feature of the 2 feature 

the 4 feature 

the original feature class is Through Hole 

the last feature class is Through Hole 

the 5 feature 

the original feature class is Through Hole 

the last feature class is Through Hole 

the 6 feature 

the original feature class is Through Hole 

the last feature class is Through Hole 

the 7 feature 

the original feature class is Through Hole 

the last feature class is Through Hole 

Figure 8.22 Feature recognition result of test component 3 
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index featureno typeno flagno 
1 

1 Blind Slot 0 

2 
3 Closed Pocket 

3 
2 Through Slot 

4 
4 Through Hole 0 

5 
5 Through Hole 0 

6 
6 Through Hole 0 

7 
7 Through Hole 0 

Figure 8.23 Feature precedence list of test component 3 

group no flagno featureno processno dx dy dz 
1 

0 
1056 0 0 -1 

2 
1 

3 1067 0 0 -1 

3 

2 1016 0 0 -1 

4 
0 

4 1024 0 0 -1 
5 1024 0 0 -1 
6 1024 0 0 -1 
7 1024 0 0 -1 

Figure 8.24 Machining operation groups test component 3 
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operationindex groupno setupno setupname featureno 

I 

4 

10201 Drilling 5 

10201 Drilling 6 

10201 Drilling 4 

10201 Drilling 7 

70401 reammg 7 

70401 reammg 4 

70401 reammg 5 

70401 reammg 6 

2 

2 

10121 rough pocket milling 3 

20121 semirough pocket milling 3 

30121 semifine pocket milling 3 

3 

3 

10111 rough slot milling 2 

20111 semirough slot milling 2 

30112 semifine slot milling 2 

4 

10112 rough slot milling 

20112 semirough slot milling 

30114 semi fine slot milling 

Figure 8.25 Process planning of test component 3 

249 



ChapterS Implementation and Testing of Prototype System 

8.5 Summary 

This chapter has described the experimental implementation of a CAD/CAPP 

prototype system with typical examples to demonstrate system capabilities. The 

implementation has shown genuine integration of CAD and CAPP under the 

proposed methodology using various contemporary techniques. 
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Chapter 9. 

Conclusions 

Conclusion 

To summarise the research presented in this thesis, this chapter draws conclusions 

and proposes recommendations for further work. 

9.1 Research contributions 

This thesis has detailed the research on integrated CAD/CAM through CAPP 

using feature technology. An experimental implementation of a prototype system 

has been carried out for prismatic components. A number of test components 

have been presented to demonstrate the capabilities of the methodology. 

Main activities considered include 

1) Component design based on a number of standard feature classes with validity 

check. 

2) Search of interacting features and identification of features relationships. 

3) Recognition of new features formed by interacting features. 

4) Production of a feature based model for the component. 

5) Generation of a suitable process plan covenng selection of machining 

operations, grouping of machining operations and process sequencing. 
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In order to carry out above activities, a number of algorithms and methods have 

been proposed. 

1) Machining feature extraction 

The existing methods did not solve problems of the interacting features efficiently 

and concisely. The research has led to a more efficient and simpler solution. The 

proposed method has the following highlights: 

• A new feature classification for machining application. The mam 

characteristic is the adoption of STEP AP224 and multi-viewpoint of design 

and manufacture. 

• Feature-based model management dealing with adding, editing and deleting 

features. Constraints for feature validity are checked to effectively maintain 

the model validity for the component in terms of geometry and topology. 

• A novel heuristic algorithm to recognise interacting features. The Interacting 

Entity between each feature pair is analysed instead of the new volume created 

by all interacting features used in conventional approaches, simplifying the 

process. In addition, the algorithm skips features for which no recognition i 

necessary, and is therefore more efficient. All interacting entities between 

feature pairs can be detected, reported and handled in an appropriate way. 

Invalid operations that cause constraint violation of the model validity are 

tackled effectively. 

• Neural network-based techniques for feature recognition to improve the 

capability of current methods. The proposed input representation, F-adjacent 
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matrix and V -adjacent matrix , not only solves the problems of ambiguity and 

overlaps successfully, but also describes the parallel relationships which 

previous work cannot provide. The conjugate gradient algorithm trains the net 

in the directions with the fastest convergence. The hierarchical structure for 

feature classifiers is more suitable for feature classification. The successful 

results for classification at both the first and secondary levels demonstrate the 

ability to generate the required cluster from the proposed input representation. 

• A unified data structure for feature class in the feature-based model. New 

feature classes can be defined using the same data structure. 

2) Feature-based CAPP 

CAPP requires a suitable representation of the component to be manufactured. A 

method for CAPP has been proposed making use of the features extracted from 

the feature based component model. 

• A suitable process planning database containing six libraries. A management 

module has been developed with an open and flexible structure, making the 

CAPP system adaptive to dynamic environments. 

• A precedence algorithm to identify feature precedence relations based on the 

precedence constraints. Simplification has been made by considering the 

design intention. 
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• A strategy for optimal process sequencing. The most important characteristic 

is the multi-objective fitness function designed to consider minimum 

manufacturing cost, shortest manufacturing time and the best satisfaction of 

process sequence rules, which pervious research does not consider 

simultaneously. 

• The application of the analytical hierarchical process (AHP) to evaluating the 

satisfaction degree of process sequence rules for process sequencing. AHP 

not only transfers the manufacturing sequence constraint problems into a 

numerical solution, but also makes the evaluation more adaptive. 

• A method to allocate the relative weights for the three main evaluating factors 

for process sequencing, using intelligent neural network and fuzzy technique. 

The method can adapt the relative weights for the evaluating factors according 

to various component, customer and production requirements, offering greater 

flexibility. 

9.2 Limitations 

The methodology presented in the thesis, however, has certain limitations, which 

are described below. 

1) Restricted component geometry, I.e. only 3D prismatic components are 

considered. 
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2) Limited standard feature classes. Currently, the work deals only with internal 

features . 

3) Lack of consideration of fixturing. 

4) Lack of optimisation of the machining parameters for individual operations. 

9.3 Recommendations for future work 

This thesis has proposed a methodology for CAD/CAM integration based on 

feature technology and artificial intelligence techniques. It is apparent from the 

results and limitations of the research that further work is necessary. 

1) Further work on neural network-based feature recognition 

As demonstrated in Chapter 5, neural network-based feature recognition has been 

successful to recognise and classify feature at both the first and second levels. 

The features can be further classified at the third level according to CAPP 

requirements for further optimisation. 

2) Extension of the domain of component geometry 

Although the proposed method considers the majority of features - internal 

features which are likely to be of interest for the application of process planning, 

external features and attaching features should be covered in the future. 

3) Consideration of fixturing 
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Fixturing may affect dramatically process planning. Future effort should be paid 

to fixturing constraints and corresponding clamping strategy. 

4) Interfacing with NC systems 

The research can be extended to interface with NC systems to cover toolpath 

generation and planning.for a complete process plan. 

In conclusion, the research carried out will help to resolve feature interactions and 

to further automate process planning, thus achieving genuine integration of design 

and manufacturing. 
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Feature Classification 

Internal feature 

Internal features are those geometric entities which form the internal 
structure of a part and can be created with restricted tool and tool 
accessibility directions. 

Round 
hole. 

Conical 
hole 

Drilling 

Plunge­
milling 

Reaming 

Boring 

Taper 
boring 

Through 
round 
hole 

Blind 
row1d 
hole 

Through 

Flat 

Flat with 
radius 

Spherical 

Conical 
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General 
hole 

Reaming 

Internal 
grinding 

Broach 

Internal 
shaping 

Broading 

Milling 

Internal 
Shaping 

Blind 

Polygon 
hole 

Part­
circle 
hole 

End Double-
Milling semi-

circle 
hole 

Feature Classification 
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Slot Milling Through 
slot 
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Blind 
slot 

Flat 

Radiused 

Woodraff 
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Pocket End 
milling 

Milling 

Closed 
pocket 

Open 
pocket 

Polygon 
closed 
pocket 

Part-circle 
closed 
pocket 

Double­
semi­
circle 
closed 
pocket 
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Step Milling/ 
Shaping 
(Planing) 

Through 
step 
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step 

Feature Classification 
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External feature 

External features are these geometric entities which form the external shape of a 
part and can be created with more tool accessibility directions and less 
restrictions oftools. However, the part should provide the place for fixture. 

Revolved- Contour 
feature turning 

Profile 
fo~·.ming 

turning 

Boss Turning 

Grinding 

General 
revolution 

Groove 

Revolved 
flat 

Revolved 
round 

Cylinder 
boss 

Conical 
boss 
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General Milling Close 
outside 

CSJ) 
Open 

8 . 

.. . 

Round end Milling 

[] 
Spherical Profile-

cap forming r\ turning 

·J Lapping 
----

Protrusion Milling 

-....., ~ // 

~ ~ ~ 
Surface Milling 

machining 

Attaching feature 
Attaching features are special shapes that are attached to other geometrical 
features and can be created by a special machining process. 
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Knurl 
surface 

Thread 

Marking: 
text on a 
metal 
surface 

Knurling 

External 
threading 

Internal 
threading 

Threading 
milling 

Tapping 

Feature Classification 

Moo~inLU 

Compound feature 
Compound features are certain complex entities which are created by a special 
union of two or more machining features. 
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Experiments of neural networks 

Performance Is 0.0119991 , Goal Is 0.012 
10" ,---,--.-- -,-- ---,---,.---r----.--,---.-----,--, 

1 a·' '-------'--::-'-::---:-'-:--~---:-'-::------::-'-::-----:::~--::::-:-----:~-__j_J 
0 100 200 300 400 500 600 700 BOO 900 1000 

1039 Epochs 
Stop T ro:ning I 

Figure B.1 The Polak-Ribiere conjugate gradient backpropagation training process 
of 15-17-5 neural network (Level 1) 

Performance is 0.0119904, Goal is 0.012 
10° ,--,---.--.--,---,--,-----,---.--,.---.-~ 

-
10'2 L__ .J.___ -L:---:::-:----:::-:---:=:- = ::--= ::--= :--= :----:::::::----' 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
2177 Epochs 

Stop Tr...o,g I 

Figure B.2 The Fletcher-Powell conjugate gradient backpropagation training 
process of 15-17-5 neural network (Level I) 
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Performance is 0.0654961 , Goal is 0.012 
10°,-------.--------.-------.--------,-------,-------. 

10-2 L__ ______ _L_ ______ .......J_ ______ ___l ________ ..l...,_ ______ _J_ ______ ___J 

0 500 1 000 1500 2000 2500 3000 
3000 Epochs 

Stop T r~irW!g I 

Figure B .3 Gradient descent backpropagation training process of 15- I 7-5 neural 
network (Level 1) 

Performance is 0.0152442, Goal is 0.012 
10',-------,--------.--------.-------,-------.--------, 

1 o·2 L_ ______ _L ______ ___i:-:---------:-::':-:-------::-:':-::---------::-:~-------=-:' 
0 500 1 000 1500 2000 2500 3000 

3000 Epochs 

Slop T rrilg I 

Figure B.4 The Polak-Ribiere conjugate gradient backpropagation training process 
of 15-16-5 neural network (Level 1) 
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Performance is 0.014721 7, Goal is 0.012 
10°.-------,--------,-------,--------.--------,-------, 

1 o·2 
'----------'--------'----------'--------_.__---------'---------' 
0 500 1000 

Stop T r$ling I 

1500 
3000 Epochs 

2000 2500 3000 

Figure B.5 The Fletcher-Powell conjugate gradient backpropagation training 
process of 15-16-5 neural network (Level 1) 

Performance is 0.068181 , Goal is 0.01 2 
10°.-------.--------,-------,-------,--------,-------, 

10'2 L_ _______ ..L-------= -------=-=-------==--------=:'!=--------:::-:' 
0 500 1 000 1500 2000 2500 3000 

3000 Epochs 

Stop 1 ralrtlg I 

Figure B.6 Gradient descent backpropagation training process of 15-16-5 neural 
network (Level 1) 

282 



Appendix B Experiments of neural networks 

Performance is 0.0119981 , Goal is 0.012 
10°,----,-----,-----,----,-----,-----,----.-----.----~ 

10'2 L_ __ __J, ____ __t_ ____ __._ ____ _c_ ____ _L_ ____ J_ __ _J ____ __J_ ____ _LJ 

0 1 00 200 300 400 500 600 700 800 900 
916 Epochs 

Stop T r~ining I 

Figure B.7 The Polak-Ribiere conjugate gradient backpropagation training process 
of 15-18-5 neural network (Level 1) 

Performance is 0.0134579, Goal is 0.012 
1if .-------,--------,-------,--------.-------.-------~ 

10'2 L_ ______ .J_ ______ -!:-:--------:-!:-::---------::-:'":-:--------:::':-:::-------::-:' 
0 500 1000 1500 2000 2500 3000 

3000 Epochs 

Stop T l~lning I 

Figure B.8 The Fletcher-Powell conjugate gradient backpropagation training 
process of 15-18-5 neural network (Level 1) 
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Performance is 0.0739426, Goal is 0.01 2 
10°,-------.--------.-------.--------.-------~------~ 

10-2 L_ ______ _,_ ______ ___J_ ______ ----'---------'---------'------------' 

0 500 1 000 1500 2000 2500 3000 
3000 Epochs 

Stop T r4ini'lg I 

Figure B.9 Gradient descent backpropagation training process of 15-18-5 neural 
network (Level 1) 

Performance is 0.0148279, Goal is 0.012 
10° .----------.-----------.----------.-----------.---~ 

1 o·2 L------------'---------------'-:-----------:':-:-----------~-----' 
0 500 1000 1500 2000 

2237 Epochs 

Stop T r~ni'lg I 

Figure B .1 0 The Polak -Ribiere conjugate gradient backpropagation training 
process of 15-15-5 neural network (Level 1) 
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Performance is 0.0222087, Goal is 0.012 
10°,-------,--------,--------,-------.--------,--------. 

""' 0 ., 
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1500 
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2000 2500 3000 

Figure B .ll The Fletcher-Powell conjugate gradient backpropagation training 
process of 15-15-5 neural network (Level 1) 

Performance is 0.0823785, Goal is 0.012 
10° .-------,-------,-------r-------.--------,-------, 

10'2 '---------'--------::'::-:-------:-::':--::--------=-::'::-:-------:-::'--:---------::-:' 
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3000 Epochs 

Stop T r~ining I 

Figure B.12 Gradient descent backpropagation training process of 15-15-5 
neural network (Level 1) 
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Performance is 0.0154285, Goal is 0.012 
10°,-------.-------.-------.-------.-------.-------. 

1 o·> '--------L-------L-------·L--------,---'--------..L_ ____ ____, 
0 500 1000 1500 2000 2500 3000 

3000 Epochs 

Stop T roi,;,g I 

Figure B.13 The Polak-Ribiere conjugate gradient backpropagation training 
process of 15-14-5 neural network (Level 1) 

Performance is 0.0275302, Goal is 0.012 
10°,-------.--------.------~--------.-------.-------~ 
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Slop T rairing I 

Figure B.14 The Fletcher-Powell conjugate gradient backpropagation training 
process of 15-14-5 neural network (Level 1) 
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Performance is 0.0776826, Goal is 0.012 
10°,-------.--------.------~--------~------~-------

10"2 '-----------'---------'---------'---------'----------'--------' 
0 

Stop 1 1~1ning I 

Figure B.15 

500 1000 1500 
3000 Epochs 

2000 2500 3000 

Gradient descent backpropagation training process of 15- 17-5 
neural network (Level I) 

Performance is 0.277299, Goal is 0.0001 
10 1 .-------.-------.--------,-------.--------,-----~ 

10"' L-------'------'------'-------''-----..J..----_J 
0 0.5 1.5 2 2 5 3 

3 Epochs 

Stop T r~lning I 

Figure B.16 The Polak-Ribiere conjugate gradient backpropagation training 
process of 21 -1-2 neural network (Round Hole) 
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Performance is 9.64488e-005, Goal is 0.0001 
10°,--------,---------,---------,--------.---------,. 

10'' f--------------------------:! 
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0 50 100 150 200 250 
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Stop T r~ini'lg I 

Figure B.17 The Polak-Ribiere conjugate gradient backpropagation training 
process of 21-2-2 neural network (Round Hole) 

Performance is 9.9891 e-005, Goal is 0.0001 
10 1 ,------,~----.----.----.----.----,--, 

10'' L_ ___ _j _____ --:'::-----:'::-------:':--- -:-:-:------:-:-:---' 

0 20 40 60 80 100 120 
129 Epochs 

Stop T r$ni'lg I 

Figure B.18 The Polak-Ribiere conjugate gradient backpropagation training 
process of21-3-2 neural network (Round Hole) 
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Performance is 9.64488e-005, Goal is 0.0001 
10°.--------,---------.--------.---------.--------.~ 

10'' f:--------------------------! 

10~ ~------~---------L--------~--------~------~~ 
0 

Stop Tr~rtl~ I 
Figure B.19 

50 100 150 200 250 
257 Epochs 

The Fletcher-Powell conjugate gradient backpropagation training 
process of 21 -2-2 neural network (Round Hole) 

Performance is 9.80936e-005, Goal is 0.0001 
1if.------.------.------.------.------.------.------n 

10''1:------------------------......loj 

10'5 i_ ___ _L ____ --:-:L:-----~------:-:L:----~------=-L:----~ 
0 100 200 300 400 500 600 700 

711 Epochs 

Stop T r~mg I 

Figure B.20 The Polak-Ribiere conjugate gradient backpropagation training 
process of 21-6-4 neural network (Slot/Step) 

289 



Appendix B Experiments of neural networks 

Performance is 0.0193668, Goal is 0.0001 
1 ~ r---.----.----.----,---,,---,----.----~---.---, 

---

1 a·• '-----'-------'-----'----'-----'---'------'----'------'-----' 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

2000 Epochs 

Stop Training I 

Figure B.21 The Polak-Ribiere conjugate gradient backpropagation training 
process of 21-5-4 neural network (Slot/Step) 

Performance is 0.0214925, Goal is 0.0001 
10°r----.-----.----,-----,----,-----,----,-----,---, 

10'4 L-------'-----'----'----'-------'-----'----'----'-----' 
0 ~ ~ ~ ~ 1~ 1~ 1~ 1~ 

1762 Epochs 

Stop T reining I 

Figure B.22 The Fletcher-Powell conjugate gradient backpropagation training 
process of 21-6-2 neural network (Slot/Step) 

290 



Appendix B Experiments of netiral networks 

Performance is 7.8596e-005, Goal is 0.0001 
1 ~ ,------,------,------,,------,------,------,,---~ 

10"' l----------------------====..J 

10·5 '--------'---------'-------'--------'---------'-------'-----' 
0 10 20 30 40 50 60 

67 Epochs 
Stop T rainilg I 

Figure B.23 The Polak-Ribiere conjugate gradient backpropagation training 
process of 21-2-2 neural network (Pocket) 

Performance Is 9.9258e-005, Goal Is 0.0001 
1 ~ ,----,----,---,,---,----.---,----~---.---.----~ 

10"' '-----'-----'------'-----'------'----__.Jl__ __ ...L._ __ _J_ __ ____j ____ _J__J 

0 5 10 15 20 25 30 35 40 45 50 
52 Epochs 

Stop T rainilg I 

Figure B.24 The Polak-Ribiere conjugate gradient backpropagation training 
process of 21-1-2 neural network (Pocket) 
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Performance is 9.91703e-005, Goal is 0.0001 
10°,------·.-----,-----,-----.-----,-----.-----~-----

10·'~:-----------------------~ 

10~~----~----~----~----~----~----~----~--~ 
0 10 20 30 40 50 60 70 

77 Epochs 
Stop T r~ining I 

Figure B.25 The Fletcher-Powell conjugate gradient backpropagation training 
process of 21-1 -2 neural network (Pocket) 
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Appendix C 

Set theory 

' Set theory 

The set theory provides a powerful mathematical support for the proposed 

methodology, especially in design by features and the interacting features 

identifying algorithm. Basic concepts of the set theory are described briefly. 

1) Set 

The foundation of the set theory is set, which can be defined as a collection of 

things (elements). In this research, set refers to a volume consisting of face , 

edges and points. To indicates that x is an element of a set A, it can be written 

by 

XEA (C-1) 

Whenever xis not an element of a set A, it can be written by 

xe:' A (C-2) 

A set (say A) is called an empty set if it contains no element, that is 

A=<j> (C-3) 

If every element of set A is also an element of set B, then A is called a subset 

of B. It can be indicated that 

(C-4) 
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If set A and set B satisfy A {;; B and B !,;; A , then A and B are equal. Thi can 

be denoted by 

A=B (C-5) 

If A and Bare not equal, then it can be denoted by 

A::t=B (C-6) 

If set A and set B satisfy A !,;; B and A ;t B, then set A is called a proper subset 

of set B, that is 

AcB (C-7) 

2) Metric space 

In this research, W is a nonempty point set which represents a three­

dimensional space. The points in W satisfy the following conditions 

If x ;ty, then d(x, y) > 0 

If x = y, then d(x, y) = 0 

d(x, y) = d(y, x) 

d(x, y) + d(y, z) :? d(x, z) 

where d(x, y) is a real distance function on point x and pointy. 

x, y, z are the points of W, xEW, yEW, zEW 
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3) Set operations 

Usually, there are four basic set operations used in CAD: union u, intersection 

n, et complement A and set difference -. Supposing two sets of A and B, 

then 

• union u 

The union of sets A and B is the set containing all the points that belong to 

either set A, set B, or both set A and set B. 

Au B ={xl xE W: xEA or xEB} (C-8) 

• intersection n 

The intersection of sets A and B is the set containing all the points that belong 

to both set A and set B. 

An B ={xl xE W: xEA and xEB} (C-9) 

• set complement A 

The set complement is the set containing all the points that do not belong to 

set A. 

A ={xl xE W: xf! A} (C-1 0) 
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• set difference -

The set difference of sets A and B is the set containing all the points that 

belongs to set A but does not belong to set B. 

A- B ={xi xE W: xEA and x~B} (C-11 ) 
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Flowchats 

Input parameters for the 
new feature 

Flowchats 

Check the validity of feature to be added based 
on geometrical. topological and constraints 

N 

Determine the relationships between the new feature and 
the existing features in the feature-based model 

y 

Add the new feature and 
update the feature-based model 

N 

Figure D.l Process of adding a new feature instance 

297 



Appendix D 

Select feature to be edited 

Input modifying parameters 

Check the validity of feature to be edited based on 
·geometrical, topological constraints 

N 

Re-check the features, which have a relationship with 
the feature to be edited 

Child features of the feature to be edited 
without class or dimension change 

Features changed by the 
feature to be edited 

N Restore original 
classes or dimensions 

of these features 

Delete these child features 

Delete all previous relationships between features to 
be edited and features in the feature-based model 

Determine the relationships between the 
feature to be edited and the existing 

features with new parameters 

Flowe hats 

Restore feature-based model 
~------------------+--------+ before this editing operation 

Figure D.2 Process of editing feature 
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Select feature to be deleted 

y 

Re-check the features, which have a relationship 
with the feature to be deleted 

Flowe hats 

Child features of the feature to be deleted 
without class or dimension change 

Features changed by the 
feature to be deleted 

N Restore original classes 
or dimensions of these 

features 

Delete these child features 

Delete the chosen feature 

Update the feature-based model 

Figure D.3 Process of deleting feature 
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Figure D.4 Interacting feature identify algorithm 
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Figure D.5 Situation II, lEe= face, interacting feature recogniser 
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Figure D.6 Situation III, /Ec=volume, interacting feature recogniser 
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S e l e c t a ll pr oce s s ro ute pr 
fr o m pr o ces s r o u te library 

where .ftryp~ pr=ft;yp~ ft 
pr--'> PR, 

N 

Erro r : N o 
oro c ess route 

Not so.ti s fy 

Se t C 1 = C m ax . .JPro = NULL 
C1 = Cmax . .h;>r a = NULL 
CJ= Cma x . .h;>r,J = NULL 

l'{fpri = 0 

y 

i =i + 1 

Figure D.7 Process of selecting machining operations 
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k=k+l 
.fi;pNO=k 

N o recedence 

Sel ect th e ith feature, .ft1, 

fro m feature precedence li st 
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N 

y 

N 

--------------------------------------------------------------------

! 

y 

Figure D.8 Process of building a feature precedence list 
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Set UTAD = U'1 . .. . f, • . • .In ) 
F7; = (TAD,1 , . .• TAD,.k). 0 < k ~ 3 

j;E UTAD 
NT,·=O, )=1,2, .. . , 6 

Set TAD of the featuref.· = D 
Delete featuref,· from UTAD 

1n = 1?'l - 1 

N 

Figure D.9 Procedure for generating a tool approach direction 
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Gene encoding scheme 

Initialing populations 

Calculating fitness function 

y 

N 

Selection 

Crossover 

Figure D.lO Diagram of the proposed genetic algorithm process 
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i = 0 . K = O. num[K]=O 
n . the number o f operati on gr oups 

y 

C H[i]=O. eflag[i]=l 
num[pGr oup[i] .flagn o]=num[ pGr oup[i ].flagno ] +1 

i=i+1 

u =n, i=O, k= l 

i=O 

Flowe hats 

Note: 
num[K): the number of machining operation 
groups in the Kth precedence relationship 
CH[i] : the position in initial population 
u: the number of operation groups whose 
position has not been determined. 
eflag[i] : the fl ag whether the position for the 
ith operation groups has been determined. 

Figure D.ll Initial precedence constraint algorithm 
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-
start 

Step 1: Identifying all 
manufacturing sequence rules 

(evaluating criteria) 

Step 2: Constructing all rules into a 
hierarchy structure 

Step 3: Building pairwise 
comparison matrices and collecting 

experts' judgements 

Step 4: Computing relative weights 
of Rules using Eigenvalue 

technique 

Step 5: Analysing and evaluating for 
process sequence with 

manufacturing sequence rules 

-'-

End 
-

Figure D.12 The proposed AHP model for evaluation 
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