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Abstract

Computer aided design and manufacturing (CAD/CAM) has been a focal research
area for the manufacturing industry. Genuine CAD/CAM integration is necessary
to make products of higher quality with lower cost and shorter lead times.

Although CAD and CAM have been extensively used in industry, effective

CAD/CAM integration has not been implemented. The major obstacles of

CAD/CAM integration are the representation of design and process knowledge

and the adaptive ability of computer aided process planning (CAPP).

This research is aimed to develop a feature-based CAD/CAM integration
methodology. Artificial intelligent techniques such as neural networks, heuristic

algorithms, genetic algorithms and fuzzy logics are used to tackle problems. The

activities considered include:

1) Component design based on a number of standard feature classes with validity

check. A feature classification for machining application is defined adopting

ISO 10303-STEP AP224 from a multi-viewpoint of design and manufacture.

2) Search of interacting features and identification of features relationships. A

heuristic algorithm has been proposed in order to resolve interacting features.

The algorithm analyses the interacting entity between each feature pair,

making the process simpler and more efficient.

3) Recognition of new features formed by interacting features. A novel neural
network-based technique for feature recognition has been designed, which

solves the problems of ambiguity and overlaps.
4) Production of a feature based model for the component.

5) Generation of a suitable process plan covering selection of machining
operations, grouping of machining operations and process sequencing. A
hybrid feature-based CAPP has been developed using neural network, genetic

algorithm and fuzzy evaluating techniques.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1. Background

With the growing trend towards global market, industry is facing fierce
competition. Traditional design and manufacturing practice is no longer suitable
for the new requirements. It has been widely recognised that genuine integration
of design and manufacturing is needed to make products of higher quality with
lower cost and shorter lead times. Although CAD and CAM have been
extensively used in industry, effective CAD/CAM integration has not been
implemented and human intervention is often required to interpret design data for

downstream applications.

One of the major obstacles of CAD/CAM integration is the representation of
design and process knowledge. Geometrical models only provide the geometric
and topological information of a component, which is not sufficient for
manufacturing applications, e.g. process planning. Thus, features encapsulating
the engineering significance are considered as a key element in the integration of
design and manufacturing and feature-based models have been widely used.
Although considerable work has been done in feature technology, progress has

been hindered by interacting features and inability of self-learning for feature

recognition.

Computer-aided process planning (CAPP) is considered as another key element

for CAD/CAM integration, which automates to some extent, the decision making
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in process selection, sequencing and parameter calculation. A considerable
number of CAPP systems have been developed, but only a few of them have the

abilities of adaptation and self-learning for certain tasks.

1.1.1. Definition of features

A feature cannot be defined without considering its applications. That is, features
are application dependent. Numerous definitions of features according to the
application are given by various researchers, such as “any geometric form or
entity uniquely defined by its boundaries, or any uniquely defined geometric
attribute of a part that is meaningful to any life cycle issue” [Dixon er al, 1987];
“regions of a part having some machining significance” [Joshi and Chang, 1988];
“solid removable by operations typically performed in a 3-axis machining centre”
[Vandenbrande and Requicha, 1990], “a set of geometric entities (faces, edges
and vertices) together with specifications of the bounding relationships between
them that together imply an engineering function on an object” [Kang and Nnaji,
1993]; “a feature represents the engineering meaning or significance of the

geometry of a part or assembly” [Shah and Mantyla, 1995], “form features can be

defined as a part geometry associated with process planning entities such as slots
and pockets” [Zhang et al, 1997], “a geometric feature is traditionally defined as

any subset of the geometric model of the object that is of interest in a particular

context (e.g. in CAPP)” [Yue and Venuvinod, 1999]. From the design and

manufacturing point of view, features referred to in this thesis is defined as a
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geometrical entity, which may be associated with a group of particular machining

processes and can be used to reason about a suitable machining method.

1.1.2. Feature technology

Feature technology has been considered an indispensable tool for integrating
design and manufacturing processes. Feature recognition and design by features
are the two major approaches to creating feature models [Bronsvoort and Jansen
1993]. Feature recognition makes direct use of geometric models and generates
application-specific feature models using various recognition rule sets regarding
the application. A principal advantage of the feature recognition is the possibility
of using conventional CAD systems directly. However, there are problems with
feature recognition such as feature interactions hindering its practical applications.
With a design by features approach, the designer specifies a design model using a
set of design features defined in a feature-based model system [Lee and Kim
1998]. In contrast to feature recognition, design by features can capture the
design and manufacturing information during the design stage. It reduces
remarkably the amount of work for recognising features, but does not eliminate
the need for feature recognition [Gindy et al 1998]. Thus feature recognition
techniques are required in all systems that use features for analysis and decision

making.
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1.1.3. Neural networks

Artificial neural networks (ANNSs) are information processing devices consisting
of many interconnected processing elements (neurons) based on the neural
structure of the brain. An ANN is configured for a specific application by a
learning process, such as classification, pattern recognition, optimisation or
prediction. Neural network techniques regarded as an adaptive method has

advantages on the applications of both feature recognition and CAPP:

1) A neural network can tolerate slight errors from input;

2) The techniques are faster because the process is limited to simple

mathematical computations and does not use either a search or logical rules to

parse information;

3) An ANN feature recogniser possesses experience to recognise and classify
similar features since it is trained and there is no need to predefine every

instance of a feature as in most traditional systems.

Although much has been done with various approaches and certain success
achieved in feature recognition and CAPP, most of the methods do not have the
learning capabilities of neural networks. Neural network techniques which have
been prevalent in recent years, offer a new promising solution in these areas of

research.
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1.1.4. CAPP

Process planning establishes a set of manufacturing operations and their sequence,
and specifies the appropriate tools and process parameters in order to produce a
component from its initial raw state to a final form predetermined from an
engineering drawing. The use of computer techniques to automate the tasks of
process planning - computer aided process planning (CAPP) has been the subject
of extensive research for CAD/CAM integration. A CAPP system usually
performs the determination of machining operations, selection of suitable setups
and machining resources, and process sequencing. As a key technology for
computer aided design and manufacturing integration, CAPP strongly influences
the cost of production and the quality of a product. The greater the degree of
automation of a CAPP system, the shorter the time from design to machining, and

the better the quality of the final product owing to the elimination of human error

[Yip-Hoi and Dutta, 1996].

Two approaches have been developed in CAPP: variant and generative. Variant
process planning systems use group technology concepts to aid a process planner.
Features sharing common manufacturing characteristics are classified into the
same group. This approach may cut down process planning time dramatically,
especially for similar components. However, there is a main drawback that
process plans are limited to those that were previously created. In generative
process planning systems, a process plan is created by utilising rules of expert
knowledge. In comparison to the variant method, the generative method needs

less human intervention and new parts may be planned as easily as existing
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components. The main problem is that it cannot adapt to change in manufacturing
practice and technology.  Further, expert knowledge acquisition is time-

consuming, costly and error-prone.

I.1.5. Genetic algorithms

A genetic algorithm (GA) being one of the most popular combinatorial algorithms
and artificial intelligence (AI) technique, is a search technique for solving
optimisation problems based one the mechanics of the survival of the fittest
[Dereli and Filiz, 1999]. The algorithm incrementally converges to an optimal or
near-optimal solution based on a series of biological operations including
selection, crossover and mutation. A GA has certain favourable characteristics,

which make it an attractive tool for use in process sequencing:

1) It is relatively easy to adapt for process planning due to its characteristics such

as suitable encoding scheme and effective fitness function.

2) It is flexible in improving on poor performance by varying its input

parameters including the initial population size and mutation rate.

3) It permits a straightforward amendment of the heuristic embodying in the

fitness function of the algorithm.
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1.2. Overview of this research

The aim for this research is to develop a feature-based CAD/CAM integration

methodology. Specific objectives include a) a novel feature-based modelling

approach, b) machining feature extraction by solving interacting features

individually, c¢) intelligent CAPP based on the features extracted. The work

consists of four main stages shown in Figure 1.1.

1)

2)

3)

4)

The first stage uses a design by features approach to build a feature-based

model of a component. Based on standard feature library, it maintains the

feature-based model automatically.

The second stage applies feature recognition techniques to extracting
machining features from the feature-based model. The focus is on interacting
features. Incorporating a heuristic algorithm, a neural network-based feature

recogniser is used to recognise and resolve interacting features.

The third stage carries out the task of process planning based on the
machining features extracted. It starts with the application of the feature-
based model and uses the extracted machining feature information directly for
selecting and grouping machining operations, and optimising process

sequence.

The fourth stage builds and enhances the system’s capability through

incremental learning.
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Feature recognition, design by features, neural network techniques, genetic
algorithms, and fuzzy evaluation are employed aiming at resolving feature

interactions and automating process planning.

Design information l T Feature validation

Design by features [«

.

Feature recognition

Feature
based
model

Feature
library

h 4
Process planning (@¢——

Feature
database

Incremental learning

database

Figure 1.1 Proposed architecture of CAD/CAM integration

1.3 Organisation of the thesis
The thesis is presented in nine chapters as follows.
Chapter 1 introduces the background and scope of the research.

Chapter 2 reviews the work in conventional and ANN-based feature recognition,

design by features, ANN-based CAPP and CAPP using genetic algorithms.

Chapter 3 proposes a design by features approach and its system organisation.
Feature classification, feature library, feature-based model and feature-based

model management are described.
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Chapter 4 presents a novel heuristic algorithm for the identification, analysis and

processing of interacting features.

Chapter 5 describes the neural network techniques adopted in the research,
covering four main aspects: input format, topology, learning method and output

format.

Chapter 6 develops intelligent CAPP consisting of five sub-modules. Four sub-
modules are detailed: process planning database, machining operations selection,

feature precedence algorithm, and machining operations grouping.

Chapter 7 introduces the fifth sub-module for the intelligent CAPP - a strategy
for determining optimal feature-based process sequence using the proposed GA,
analytical hierarchical process, estimation of cost and time of a process plan and

allocation of relative weights by a neural network and fuzzy evaluation.

Chapter 8 implements proposed methodology, and presents the testing results

with a range of components.

Chapter 9 discusses the contributions and limitations, and suggests

recommendations for future work for the research.

1.4 Thesis related publications

This thesis presents the author’s original work except for the acknowledged where

appropriate. Some of the work described here has been published previously in

journal or conferences. These include:
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e Ding, L., Yue, Y. and Ahmet, K., “A Novel Input Representation for ANN-
Based Features Recognition”, Frontiers in Artificial Intelligence and
Applications, Vol 82, Knowledge-Based Intelligent Information Engineering

Systems and Allied Technologies, KES 2002, Part I, pp 311-315, 2002

e Yue, Y. Ding, L., Ahmet, K., Painter, J. and Walters, M., “Study into Neural
Network Techniques for Computer Integrated Manufacturing”, Engineering

Computations, Vol. 19, No. 1-2, pp. 136-157, 2002

e Ding, L. and Yue, Y., “An ANN approach to Feature Recognition”,
Proceedings of the 8th Conference of the Chinese Automation and Computer
Society in the UK and CASIA Annual conference on Automation and

Information Technology, pp.26-31, Beijing, 21-22 September 2002

e Ding, L. and Yue, Y., “An Intelligent Hybrid Approach for Design-by-
Features”, Proceedings of the 10" International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision, Plzen, Czech

Republic, pp. 4-8, 2-4 February 2002

e Ding, L., Yue, Y. and Ahmet, K., “Artificial Neural Network Applications to
Process Planning”, Proceedings of the 2001 International Conference on
Imaging Science, Systems, and Technology, Las Vegas, Nevada, Vol. II, pp.

778-783, June 2001

e Ding, L., Yue, Y. and Ahmet, K., “An integrated approach to integrating
CAD/CAM”, 6th Conference of the Chinese Automation and Computer

Society in the UK, pp. 91-96, Loughborough, 23-24 September 2000
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e Ding, L., Yue, Y., Painter, J. and Walters, M., “Artificial neural network
applications to feature recognition”, 16th National Conference on

Manufacturing Research, pp. 41-46, London, 5-7 September 2000

* Yue, Y., Ding, L. and Ahmet, K., “Neural Network Systems Technology and
Applications in Computer Integrated Manufacturing”, Business and
Technology of the New Millennium, Cornelius T. Leondes (ed), Kluwer

Academic Press, Accepted, 2003

A further journal paper is under preparation for submission shortly.

1.5 Summary

This chapter has given a brief introduction of the author’s research, including the
background, scope, organisation of the thesis and the related publications. The

research will be described in detail in the next eight chapters.
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Chapter 2.

Literature Review

There are two key issues with CAD/CAM integration: representation of design
information, and acquisition and representation of process knowledge, especially
empirical knowledge, which is useful for analysis and decision making. Features
encapsulate the engineering significance of portions of the product geometry and,
as such, are applicable in product design, product definition, and reasoning about
the product in a variety of applications such as manufacturing planning [Shah and
Mintyld, 1995]. Thus, features have been used as a means of interface in
computer integrated manufacturing (CIM) through computer aided process
planning (CAPP), and feature technology has been considered an indispensable
tool for integrating design and manufacturing processes. Feature recognition and
design by features are the two major approaches to creating feature models
[Bronsvoort and Jansen 1993]. This chapter reviews the work related to the

feature recognition, design by features and process planning systems.

2.1 Conventional approaches of feature recognition

Feature recognition generates an application-specific feature model using various
recognition rule sets, by searching the component geometric model. It is a

preferred method but there are problems such as feature interactions and high

12
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algorithmic complexity. Various feature recognition methods have been proposed

in the last decade. There have been four common approaches.
2.1.1 Graph matching method

Graph matching method organises a B-rep model of a part into a stereotypical
sub-graphs structure where the nodes represent faces, edges or vertices and the
arcs represent the relationships of any two entities. Joshi and Chang [1988], De
Floriani and Bruzzone [1989], Lentz and Sowerby [1993] have pursued this
method. The graph-based recognition approach has an advantage over the others
due to the graph nature of B-rep-based solid model [Lam and Wong, 2000]. It is
effective, but suffers from two significant drawbacks: the large computational
expenditure of dealing with complex components, and the deficiency of dealing

with interacting features.
2.1.2 Rule-base method

Rule-base method uses artificial intelligence techniques to develop a set of feature
rules. Choi er al [1984], and Donaldson and Corney [1993] have employed this
approach. The major difficulty with the rule-based method is that it is impossible

to define all rules for manufacturing features in reality [Wong and Lam, 2000].
2.1.3 Volume decomposition method

Volume decomposition method divides the three-dimensional space surrounding
an object into cells with all the geometric surfaces of an object. Several
researchers, such as Woo [1982], Tang and Woo [1991], Kim [1992], and Woo

and Sakurai [2002], have adopted this approach. The process of volume

13
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decomposition method is complex and the computational cost of the method is
high. In addition, two aspects still need further efforts, which are multiple feature
interpretations for interacting features and the limited recognising domain due to

the problems of non-converging decomposition.

2.1.4 Hybrid approach

Hybrid approach combines several basic techniques to increase the recognition
power [Shah and Méntyld 1995]. There have been instances of work using this
approach, such as Vandenbrande and Requicha [1990], Laakko and Mantyla
[1991], Sreevalsan and Shah [1992], Lam and Wong [2000] and Miao et al
[2002]. Hybrid approaches enhance the ability to handle feature interactions, but

considerable efforts are still needed.

Although the above methods have their own advantages and limitations, there are
four principal drawbacks with conventional feature recognition approaches that
can be summarised as: the inability to recognise inexact or incomplete features,
slow execution speed, inability to recognise all interacting features completely

and correctly, and the inability to learn.

2.2 Neural network-based feature recognition

An ANN is an interconnected assembly of simple processing elements, units or
nodes, whose functionality is loosely based on the animal neuron [Gurney 1997].
The function of an ANN-based system is determined by four parameters: the net

topology, training or learning rules, input node characteristics and output node

14
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characteristics [Prabhakar and Henderson 1992].

Neural network-based methods can eliminate some drawbacks of the conventional
approaches, and therefore have attracted research attention particularly in recent
years. This section discusses the following aspects of ANN applications to
feature recognition: the network topology, input representation, output format,

training or learning method, and a summary of the results.
2.2.1 The topology of artificial neural network

There are three main ANN architectures: feed-forward, recurrent and competitive
networks [Gurney 1997]. An ANN applied to feature recognition is generally a
feed-forward model which is a layered network, either fully interconnected from
layer to layer or containing hidden units. The typical topology can be defined by
an input layer of neurons that receive binary or continuously valued input signals,
an output layer with a corresponding number of neurons, and a number of hidden
layers that are highly interconnected [Nezis and Vosniakos 1997]. Hence, the
design of network topology can be reduced to three problems: the number of
hidden layers, the optional number of neurons in the hidden layer, and the use of
networks with incompletely connected layers. At present, three main feed-
forward architectures have been developed for feature recognition as described

below.
1) The five-layer, perceptrons quasi-neural network

Prabhakar and Henderson [1992] developed a five-layer, perceptrons quasi-

neural network system called PRENET. The system has five layers which

15
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respectively, consist of N nodes, N groups of M nodes, N nodes with a
threshold non-linearity, M nodes corresponding to the M conditions for a
feature, and one node, where N is the number of faces in the test part and M is
the number of conditions required for the feature. Corresponding to the

network architecture, there are four steps in the recognition process:

e converting the input vectors of a row into single integers called codes,
e searching for the integers corresponding to the feature definition,

e finding the faces satisfying the conditions specified for a feature, and

e producing the recognition result to the node in the 5th layer by an AND

operation.
2) The three-layer feed-forward neural network

This model has an input, a hidden and an output layer (shown in Figure 2.1).

Neurons on the hidden and output layers are defined from the neurons on the
previous layer, the weights and a processing algorithm. For example, in

Chuang's system [Chuang et al 1999], the /th neuron on the current layer, N,

can be calculated as:
N,:Zukwk,, (2-1)
k=l

where u, is the kth neuron on the previous layer, and
w,, is the weight representing the strength of the relationship

between the kth neuron on the previous layer and the /th neuron

16
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on the current layer.

In order to constrain the value of each neuron on the current layer ranging

from O to 1, a sigmoid function is used as a transfer function:

1

e

(2-2)

..NI

F(N,):]

Further, for the neuron on the output layer, the value is converted into 0 or 1
by an appropriate thresholding scheme. There have been other instances of
using three-layer feed-forward neural networks, such as Peters' work [1992]

on 2D feature recognition and Hwang's work [1991] on 3D feature

recognition.

Output layer

Hidden layer

Input layer

Figure 2.1 Three-layer feed-forward neural network model

3) The four-layer feed-forward neural network

This approach uses four layers: an input, a hidden, an output, and a threshold

layer, which is added to the network as the training is completed. The

threshold layer performs the function of activating the neurons of the output

17
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layer by a threshold, e.g. 0.5. In Nezis and Vosniakos' work [1997], there are
20 neurons in the input layer, each representing an element of the input vector,
and eight output neurons, each corresponding to a feature class. There are
also eight neurons in the threshold layer, corresponding to the output layer
neurons. Ten neurons are assigned to the hidden layer by experimentation.
All elements of the hidden and output layers are connected with a bias element
that can be considered as an activation threshold. The topology of the neural
network in Nezis’ system is shown in Figure 2.2. The other example of this

architecture is the work of Oztiirk N. and Oztiirk F. [2001].

Threshold layer

Output layer

Hidden layer

Input layer

Figure 2.2 Four-layer feed-forward neural network model

2.2.2 Input representation

Neural nets typically, although not necessarily, receive a set of integer values.

The problem then is how to convert a solid model to a format suitable for neural

net input in a convenient and efficient way. There are three basic characteristics

for a satisfactory input representation:

18
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1) the solid model information (e.g. faces, edges and vertices) for feature

recognition,
2) a format identifiable by the input layer, and
3) aunique input representation without overlaps.

The input representation can be broadly classified into the following types:

1) 2D feature representation

In engineering drawings, the wire-frame profiles of shapes can be subdivided
into connected loops of edges. Peters [1992] proposed an ordered triplet (C;,
A;, L)) to represent each edge of a connected loop, where C;, A; and L; are the
curvature, interior angle and arc length of the ith element respectively. An

encoded feature vector of the triplet (Ci, A;, L;) for a given profile is used as

the input.

Chen and Lee [1998] developed an improved encoded feature vector, in which
the representation of each edge is expanded from an ordered 3-tuple to an
ordered 7-tuple in the form: (L;, A;, Ci, Ji, OL; OA; OC;) where J; is the
intersection type between the line segment and its subsequent line segment,
and OL;, OA; and OC; are the ordinal values assigned to L; A; and C,
respectively. The ordinal values are assigned to the parameter in order to
capture the magnitudes. The input layer has thirty-five neurons corresponding
to five edges, seven neurons representing each edge. Although this method
can recognise three and four-sided features, more neurons are needed in the

input, output and hidden layers when the number of edges of a feature is

19
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2)

3)

increased.
Face adjacency matrix code

A face adjacency matrix is a 2D array of integer vectors converted from a
solid model. Each integer vector represents a face and its relationship to
another face, i.e. adjacency or common edge. The length of an integer vector
depends on the number of parameters considered for the recognition of a
feature. In Prabhakar and Henderson's work [1992], the vector has eight
integers indicating characteristics such as edge type, face type, face angle
type, number of loops, etc. This method is limited to features defined by a
primary face and a set of secondary faces. It cannot differentiate between

features with the same topology but different dimensions of compound faces.

Face score vector

This represents the relationship between the main face of a feature and its
neighbouring faces [Hwang 1991]. The eight-element face score vector is

formed in three steps.

* A face score is defined as F; = f (Fy, E,, Vi, A), where Fi is the face score,
F,, E, and V, are the information about the face, edge and vertex
geometry, and A, is the adjacency among the faces, edges and vertices. A
high face score indicates a likely feature face, which in turn indicates the

addition or removal of material.

e A face score graph representing the relationship of face scores between a

face and its neighbouring faces is drawn based on the face scores for all

20
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4)

faces of the given object. A non-zero difference between a face score and
its neighbouring face score indicates a geometric or topological change

between these faces, which form a region. The region may be defined as a

feature.

e An eight-element face score vector is formed and input to the net. Chan's
work [1994] is another example of a face score vector while Srinath

[1993] tackled partial features.

This representation can recognise a very limited number of compound

features, and there is no one-to-one correspondence between feature patterns

and features.
Attributed adjacency matrix

An attributed adjacency matrix [Nezis and Vosniakos1997 and Gu er al 1995]
describing the geometry and topology of a feature pattern is converted from
the attributed adjacency graph (AAG) [Joshi and Chang 1988]. In Nezis and
Vosniakos' research [1997], the adjacency matrix (AM) is a 2D, square, binary
matrix with two triangular areas: an upper and a lower which are the convex
and concave spaces respectively. AM([i, j] and AM([j, i] indicate the connection
between the ith and jth faces of the object. One of them belongs to the
concave space and the other to the convex space. The representation vector is

formed as follows:

e the AAG is broken into sub-graphs which are converted into AM using a

heuristic method;
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5)

6)

* each matrix is converted into a representation vector (RV) by interrogating
a set of 12 questions about the AM layout and the number of faces in the

sub-graph; and

e abinary vector is formed combining the 12 positive answers and the other

8 elements corresponding to the number of external faces linked to the

sub-graph.

This method can recognise planar and simple curved faces, but not features

related to secondary feature faces, such as T-slots.

2D input patterns of 3D feature volume

Zulkifli and Meeran [1999] presented an input matrix based on a cross-
sectional method. The B-rep solid model is searched through cross-sectional
layers and converted into 2D feature patterns, which are then translated into a
matrix appropriate to the network. Four input matrices correspond to four
feature classes: simple primitive, circular, slanting, and non-orthogonal
primitive features. There are several disadvantages, e.g. simple primitive
features are limited to four rectangular vertices, and features with non-

orthogonal faces in the z direction cannot be dealt with.
A vector based on the partitioned view-contours of a given object

The given object is represented by nine partitioned view-contours from +x, -x,

+y, -y, +2, -z, x, y and z respectively. The vector is built in three steps.
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A graph with a representative ring code is defined from a partitioned view-
contour in which the nodes represent the regions and the arcs the
adjacency relations among the regions; the representative ring code is a
cyclic string of digits formed for each region based on both the graph and

a two-layer octal coding system.

Based on the weighting value computed with the representative ring code,
the graphs are converted to a reference tree in which each node is
associated with 6+m values using heuristics from several experiments,

assuming each graph node has at most m+/ adjacent nodes.

The vector is then generated with the first 6+m elements for the tree root

and the next 6+m elements for the second tree node ranked, and so on.

This method is only suitable for block-shaped objects with rectangular view-

contour boundaries. The work of Chuang et al [1999] provides an example.

7) Simplified skeleton

A simplified skeleton is a tree structure with line segments [Wu and Jen 1996]

represented by an input vector that is formed in the following process:

A standard tree structure in which each parent branch has the same number

of descendants is predefined;

A simplified skeleton with several standard trees is represented;
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e Six attributes of a branch in the standard tree to describe each real link
(non-null assignment branch) and the spatial relationships among them are

defined; and

e The standard tree is converted into a vector in which each element

corresponds to a branch; there can be several standard trees for a

simplified skeleton.

This representation can be used to classify 3D prismatic parts, but only the

contour information of the part is considered.

2.2.3 The output format

The output of an ANN is the result of many operations with the inputs and

weights. Commonly, it is a nodal value in the format of a vector. Based on the

information in the output vector, there are three types of output format.
1) Each neuron corresponding to a feature class

Many systems adopt this output format. In Chen and Lee's work [1998], for
example, the six neurons on the output layer represent six feature classes:
rectangle, slot, trapezoid, parallelogram, v-slot and triangle. Nezis and
Vosniakos' system [1997] provides eight output neurons corresponding to

eight feature classes.
2) Neurons representing the information of the recognised feature

Hwang [1991] uses six neurons for the output, representing the class, name,

confidence factor, the main-face name, the list of associated faces of the
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feature found, and the total execution time. A file storing the information of
different features is constructed. In the file, each vector corresponding to a
feature has thirteen elements as follows: the feature name, the number of
elements in the weight vector, eight elements representing the weights, a
threshold factor, a gain factor, and the number of iterations before converging

to an acceptable value.

3) A matrix file containing the code for each recognised feature and its

machining directions

The output has the information on tool access direction, which in turn reflects
the feature orientation. Zulkifli and Meeran's system [1999] is a typical
example: the output is a binary matrix O=[b ;], 1< 1 < 2, 1< j <5, with b
representing the code for the feature recognised, and by showing the tool

accessibility to machine the feature, namely +x, -x, +y, -y and -z directions.

2.2.4 The training method

The training or learning method determines how the network will react when an
unknown input is presented [Prabhakar and Henderson 1992]. Before the process
of recognition, the neurons in the network have to be trained with some set of
training features. The training process is generally classified as supervised
learning or unsupervised learning. During supervised training, the correct class
corresponding to the training pattern is given. The net produces an output based
on its current weights, and compares it with the correct output. If there is a
difference, the weights are adjusted according to a learning algorithm based on the

output difference. Most ANN-based feature recognition work employs supervised
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training with a back propagation algorithm [Nezis and Vosniakos 1997, Chen and
Lee 1998 and Zulkifli and Meeran 1999]. During back propagation a given input,
called the training input, is mapped to a specified target output. The training

process comprises of four stages:

1) the weights are initialised;

2) training vectors/matrices are presented to the network;

3) the actual and desired outputs are compared, and the network's error is
calculated as the difference between its output and target - the mean squared
error is commonly used as the test norm. In the system developed by Chen

and Lee [1998], the root-mean-square (RMS) error is defined by the equation:

’
Npho

. tj)— ip &
RMS:\/Z"Z’(I v (2-3)

where 7, is the target value for output neuron j after presentation of pattern p

a;, is the output value produced by output neuron j after presentation of

pattern p,

n, is the number of patterns in the training set, and

n, is the number of neurons in the output layer.

4) information about this error is propagated backwards to the hidden neurons

and the weights adjusted accordingly.

After a number of iterations, the output will converge towards the target. The

delta rule, also known as the Widrow-Hoff learning rule is used to modify the
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weights [Nezis and Vosniakos 1997 and Chen and Lee 1998].

Prabhakar and Henderson [1992] developed a system that allows the feature class
to be stored in the net as it is defined. Although in a sense it used a supervised
training method, it is not receptive to traditional neural net training. During a
training session, the trained feature is presented only once, and the weights and

other parameters are set at the same time. Thus there is a lack of fundamental

quality to the learning.

At present, the results of neural network-based methodologies are limited to a
range of particular features which are outlined in Table 2.1. From the previous
discussions, it can be seen that neural networks have the potential to devise
general methods of feature recognition that are effective and robust. Most of the
neural network-based systems have shown a higher recognition speed, and any

features that are moderately similar to the training examples can be recognised.
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Table 2.1. Capabilities of ANN-based feature recognition systems

System

Features Recognised

Prabhakar and
Henderson [1992]

3-D features that can be defined by one primary face and a set
of secondary faces, e.g. flat bottom hole, through-slot,
through-hole

Peters [1992]

2-D features: square, rectangle, parallelogram, slot

Hwang [1991]

a. Simple and partial features whose main face must be
directly connected to all its associated faces, e.g. pocket,
slot, through-hole, blind hole and step

b. Compound features formed by two or more non-
intersecting simple features

Dagli et al [1993]

2-D features: bracket, circle

Chan [1994]

3-D features: block, hole, slot, pocket, groove, cylinder and
boss

Gu et al [1995] Depression features: step, slot, blind step, blind slot, pocket,
inverted dove tail slot, blind hole

Wu and Jen Some 3-D prismatic components

[1996]

Nezis and a. Features such as slot, blind slot, step, pocket and hole

Vosniakos [1997]

which only have planar faces

b. Simple curved faces

Chen and Lee
[1998]

2-D features: rectangle, slot, trapezoid, parallelogram, V-slot
and triangle

Zulkifli and
Meeran [1999]

a. Simple primitive features defined by four rectangular
vertices, such as step, slot, blind slot and pocket

b. Circular features

c. Z-slanting features

d. Non-orthogonal faces in the x and y directions

Chuang et al 3-D block-shaped components
[1999]

taijrk N. and Non-Standard feature recognition
Oztiirk F [2001].
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2.3 Design by features

In the mid-1980s feature-based design was proposed to interface CAD and CAPP
[Cay and Constantin 1997]. Since then, a number of integrated CAD/CAPP
systems using design by features were implemented, which can be broadly
classified into two categories [Lee and Kim 1998]: Destruction by machining
features, in which a design model is built by subtracting depression features from
a raw stock and the machining features are derived simultaneously. Because only
depression features are used, the designer’s creative work is restricted; Synthesis
by design features, in which a design model is generated by adding protrusion

features and subtracting depression features.
2.3.1 Design by features systems

Several design by features systems have been implemented since the mid-1980s,
for rotational components, prismatic components, 3D casting and sheet metals,

and mechanical assemblies.

Shah and Rogers [1988] developed an expert form feature modelling shell, which
supports user definition of form features. This system consists of two shells:
feature modelling shell (FMDS) and feature mapping shell (FMPS). FMDS
provides the necessary facilities for creating a product database except the actual
definition of features, while FMPS extracts and reformulates product data as
needed by the application. This work focuses on form features and is limited to

3D rotational component design.
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Desai and Pande [1991] designed a feature modelling system (GFM) for CAPP
for rotationally symmetric components. The modular structure of GFM consists

of feature modeller, feature validator, and dimensioning and tolerancing modules.

Li et al [1993] presented a methodology of incorporating composite features and
variational designs into a feature-based design system. Composite features are
created with only a handful of primitive feature commands. Variational feature-
based designs are composed of dimensional operation unit, and relative positional
operator for position and feature change. This system increases the flexibility of
design commands creation and the capability of variational designs, but is

implemented for rotational components.

Chan and Nhieu [1993] proposed a framework for implementing a feature-based
application with a CAD system, in which a user-defined external feature database
was built, based on a hierarchical structure containing all feature information for

the downstream application. This system is restricted to cabinet manufacturing.

Jasthi et al [1994] presented a methodology for developing feature-based part-
modelling systems. A part description system, called TURBO-MODEL is
designed to represent geometrical, technological and global data. However, only

2D rotational components can be modelled.

De Martino et al [1994] proposed a system consisting of a feature modeller and a
feature-boundary processor. The user can design a component model directly
with features defined in the common feature library. An intertwined data
structure, called intermediate model is defined as a communication link between

the geometric model and the feature-based model. Interacting features are
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considered through the feature-boundary processor, but the result is limited. In

addition, multi-mapping will result in inconsistency of information.

Perng and Chang [1997] proposed a feature-based design system for prismatic
parts. The system uses high-level 3D features as basic design entities and
provides a graphical-user-interface design environment with two functions: a new
construction function and a dynamic editing function. The predefined 3D features
considered consist of Arch, Filler, Hole, Tslot, Uslot, Vslot and Wedge.

However, some technological information, such as tolerance, surface finish is not

included in the feature definition.

Lee and Kim [1998] employed an incremental approach for extracting machining
features from a feature-based design. Consequently, they [Lee and Kim 1999]
proposed a feature-based approach to generate alternative interpretation of 3-axis
milling machining features from a feature-based design model. A set of
alternative generation operators, i.e., reorientation, reduction and splitting, are
applied to generate alternative machining feature models. This approach uses a
STEP-based feature representation scheme, but it does not integrate with design

rules and constraints.

Tseng [1999] presented a modular modelling approach by strengthening the
technical support provided to the designer. Because this approach creates a new
component based on the existing functional modules, it cannot accommodate new

components which are completely different.

Case and Harun [1999] provided a design tool to create a mechanical assembly in

terms of features. A feature-based assembly modelling system is proposed and
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embedded in the ACIS object-oriented solid modeller kernel. This approach
shows that features can be used in multiple applications, such as process planning

and assembly.

Bidarra and Bronsvoort [2000] proposed a semantic feature modelling approach to
defining and maintaining the semantics of feature during all the modelling
operations. Feature class specification, feature model structure and functionality,
and model validity maintenance scheme are included. The semantic feature
modelling is defined by high-level programming languages, such as object-
oriented languages, and therefore contains fewer errors. However, the imposing

rigid validity rules reduce the modelling freedom of the user.

Other work includes Turner and Anderson [1988], Chang [1989], Anderson and

Chang [1990], Pratt [1990], and Chung et al [1990].
2.3.2 Design by features techniques

Two important techniques for design by features have been reported: feature

representation and feature validation.
1) Feature representation

Feature representation including feature definition and data structure, is an
important aspect for design by features. Kang and Nnaji [1993] presented a
generalised feature definition, classification and representation in the domains
of mechanical assembly and sheet metal fabrication. A face-based feature
graph was proposed to represent features by a face-face adjacency graph and

face-edge incidence matrix in their research. Hounsell and Case [1999]
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applied a method to identifying structured spatial geometric feature
interactions based on a broad multilevel classification. Simple Boolean
expressions are used to identify the relationship between any two entities, such
as disconnected entities and connected entities. Wu et al [2001] proposed a
face-based mechanism for naming, recording and retrieving topological

entities to replay the design history.

2) Feature validation

Feature validation is another important issue addressed in design by features.
Gindy et al [1998] proposed a Boolean operation-based systematic
methodology of automating feature validation. The feature validation
concerns with feature interactions, feature dimensions and feature class.
Three procedures of feature validation are includes; they are adding a new
feature, deleting an existing feature and modifying an existing feature. Case
and Hounsell [2000] presented a methodology to validate the feature-based
representation by capturing and using the designer’s intents related to

functional, relational and volumetric aspects of the component geometry.

In contrast to feature recognition, design by features can capture the design
and manufacturing information during the design stage. It reduces remarkably
the amount of work for recognising features, but does not eliminate the need

for feature recognition.

In summary, previous research on design by features have gained some
achievements in system development, feature definition, data structure of

modelling and feature validation. However, several problems need to be tackled:
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1) Feature interactions are yet to be fully resolved.
2) Standard feature classification and universal feature taxonomy are needed.

3) Enhancement is necessary in feature validation.

2.4 Neural network-based CAPP

Process planning is a function that establishes a set of manufacturing operations
and their sequence, and specifies the appropriate tools (machine tools, cutting
tools, jigs and fixtures, etc.) and process parameters in order to convert a part
from its initial raw state to a final form predetermined from an engineering
drawing [Devireddy and Ghosh 1999]. In the past, process plans were often
generated by human process planners, which led to inconsistency, low efficiency
and slow response to the changes in design and production environment. In recent
decades, with the advents of computer technologies and artificial intelligence (Al)
techniques, it has become easier to undertake process planning on the computer,
that is, computer-aided process planning (CAPP). The use of computer
techniques to automate the tasks of process planning has been the subject of
extensive research. Although there are a huge amount CAPP system have been
reported over the past two decades, the results are still far from being a practical

industrial application.

In recent years, ANNs have offered an encouraging approach to CAPP because of

their learning ability. This section details the ANN techniques used in CAPP in
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the following areas: the network topology, input representation, output

representation, training method and a discussion of achievements.

2.4.1 The topology of artificial neural network

To date, four main ANN architectures have been used in CAPP: Feed-Forward

network (FF), Hopfield network, Brain-State-in-a-Box (BSB) and MAXNET.

1) Feed-Forward network (FF)

Most neural network-based CAPP systems use the feed-forward architecture
[e.g. Li et al 1994]. In general, the appropriate structure is identified through
several experiments during the learning process. The structure with the
minimum errors and the fastest learning rate is chosen. According to the

number of hidden layers, the net topology can be classified into three

architectures.

e Three-layer feed-forward network

As described in Section 1, it comprises the input, hidden and output layers.
This structure is suitable for a mapping in a continuous decision region [Mei
et al 1995]. Osakada and Yang [1991] related the shape of rotationally
symmetric products to their forming methods. The network consists of a 256-
unit input layer, an 8-unit hidden layer and a 4-unit output layer. Gu et al
[1997] employed a three-layer feed-forward network with a 5-neuron hidden
layer for manufacturing evaluation. Santochi and Dini [1996] proved in their

experiment that a three-layer feed-forward network with a suitable number of
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2)

neurons for each layer is the best architecture for selecting technological

parameters for a cutting tool using the hyperbolic tangent sigmoid function.

e Four-layer feed-forward network with two hidden layers

Park et al [1996] developed a 4-layer neural network to modify cutting
condition based on several tests. Their network has a 15-neuron input layer,
two 15-neuron hidden layers and a single-neuron output layer. Although four-
layer feed-forward networks are more versatile than three-layer feed-forward
networks, they train more slowly due to the attenuation of errors through the

non-linearities [Principe et al 2000].

e Five-layer feed-forward network

Le Tumelin er al [1995] proposed a S5S-layer feed-forward network to

determine appropriate sequence of operations for machining holes.

Hopfield network

The Hopfield network is a single layer recurrent network that uses threshold
process elements and an interconnect symmetric matrix as shown in Figure 2.3
[Principe ef al 2000]. A minimum point or attractor has been demonstrated to
be existence in this network, which corresponds to one of the stored patterns.

It can be described as the following [Principe et al 2000]:
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N
y(n+1)=sgn( > wiyi(n) = bi+ xi(n)) (2-4)

J=1

where i=1,....N,
sgn represents the threshold nonlinearity (-1,1), and

b; is a bias.
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Figure 2.3 Example of a Hopfield network

The dynamics of the Hopfield network can be described by the state of
an energy function which eventually gets to a minimum point.
Therefore, optimal operation sequencing can be expected with the
continuous download trend of a global energy function. Shan et al
[1992] adapted the Hopfield network to the operation sequencing
problem. Supposing the number of operations is n, the network is then
composed of n° neurons, each identified by double subscripts: the

operation and the sequence to be executed.

37



Chapter 2 Literature review

3)

The Hopfield network provides one of the strongest links between information
processing and dynamics. However, spurious memories limit its capacity to

store patterns.

Brain-State-in-a-Box (BSB)

As a discrete-time recurrent network with a continuous state, the output values
of a BSB, consisting of interconnected neurons, depend on the learnt patterns,
the initial values of given patterns and the recall coefficients. The motion of a

BSB network can be described by the following equation [Principe et al

2000]:
N
yi(n+1) = f(xi(n) + oy wixi(n) 2-5)
j=1
| if wel
f(u)=1u fr =12us1 (2-6)
=1 if ws-1

A BSB can be used as a subnet for decision feedback applications because it
amplifies the present input until all neurons saturate, and eventually converges

to one of the corners of the hypercube [-1,1]"

Sakakura and Inasaki [1992] adapted a BSB network in a CAPP system. The
number of neurons assigned for the dressing depth of cut, dressing feed and
surface roughness are 5, 5 and 9 respectively. The initial values are given by a
feed-forward network run at the same time. The BSB repeats, performing a

calculation using the following equation until the output value of each neuron

converges to a certain value:
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Om = LIMIT(CZ,,,) (2-7)

am = Clz WmnOn + C20m + C30m(0) (2_8)

n#m

where LIMIT() is the function which limits the value in the parentheses

between -1.0 to +1.0;
c},Cy, c3 are recall coefficients; and
on(0) is initial value of neuron m.

The limitation of the BSB network is that the location of the attractors must be

predefined as the vertices of the hypercube.

4) MAXNET

MAXNET is a competitive network in which only one neuron will have a
non-zero output when the competition is completed. The network consists of
interconnected neurons and symmetric weights.  There is no training
algorithm for MAXNET and the weights are fixed as depicted in Figure 2.4

[Fausett 1994]. Its application procedure includes two steps:
e activation and initialisation of weights, and

e updating the activation of each unit until only one unit responds.
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Figure 2.4 Example of MAXNET
MAXNET is suitable for situations where more information is needed than
can be incorporated. Knapp and Wang [1992] used a MAXNET to force a
decision between the competing operation alternatives. In their work, a
sequence of operations for machining each feature of the part is generated

independently by the MAXNET.

However, few systems use only BSB or MAXNET independently. BSB and
MAXNET are typically used in multi-type architectures, e.g. Sakakura and
Inasaki [1992] used a BSB with a three-layer feed-forward network while
Knapp and Wang [1992] utilised a co-operating architecture combining a

three-layer feed-forward network and a MAXNET.

2.4.2 Input representation

The input representation for neural network-based CAPP involves the conversion

of design data into a proper input format. There are three aspects to be resolved.

1) Input information. Process planning deals with a number of detailed
activities, such as selecting manufacturing operations, determining setups,
specifying appropriate tools and so on. Each activity requires a different set of

information.  For example, setup generation requires information about
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2)

3)

tolerance, material and operations.

The need for unique input. Each piece of the input information for a neural

network must be uniquely represented in a proper format.

Numerical encoding. Based on the characteristics of neural networks, the

input parameters need to be converted into numerical values.

There are four main types of input representation.

y)

2)

Standardised image data

Osakada and Yang [1991] converted the cross-sectional shape data of the
product into standardised image data for the input. They use 12 "colours" to
represent 12 outer or inner geometric primitives, such as cylinder and cone.

Half of the product shapes are converted into a 1616 "colour" data image.

These 256 units are regarded as the input to the neural network. This

representation can only be used for rotationally symmetric products.
Input vector with value ranging from O to 1

It is one of n-unit vector input formats, whose units are coded with numerical
values ranging between 0 and 1. Certain special transformations have to be
performed, which different formulae need to be established for different units.
For instance, a unit related to the workpiece material is calculated from the
cutting force per unit area, k. using the following formula [Santochi and Dini's

work,1996]:
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3)

4)

l_6:kc—1900 (2-9)
2600

Park et al [2000] defined the input values from O to 1 according to its real
values, e.g. 0.5000 for a hardness unit for a real value of 225 BHN, and

0.4366 for a cutting speed unit for a real value of 80 m/min.

Input vector with integer value

Each input unit is given a particular integer instead of the original value. A
common method is to classify the value for each parameter and assign a
discrete integer to the corresponding unit. Park er al [1996] used 15 input
parameters concerning seven factors, such as the feature type, ratio of feature
width to depth, tool length, tool material. A class number is given for each
parameter based on its real value, e.g. the class number is 6 if the ratio of
selected tool length over standard length is 2. Similarly, in the system by
Sakakura and Inasaki [1992], the unit of dressing depth of cut is assigned a
value of 4 for a real value of 11.0 um. Mei et al [1995] developed a scheme
for rotational parts in which the surface orientations (i.e. right, left or both) are

represented by values -1, 1 and 0.
Input vector in binary form

The value of each unit uses only two characters (i.e. 0 and 1) representing
whether the corresponding parameter is needed or not. In order to determine

feature clusters, Chen and LeClair [1993] represented a feature with a (6+n)-
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unit vector in binary form, which defines the six approach directions and n

tool types.

2.4.3 Output representation

Five main output formats have been proposed which are summarised below.

1) Output vector in ordered binary form

2)

The output vector consists of a number of neurons, each with a value (i.e. 0 or
1) showing whether the corresponding item (e.g. machining operation, tool
and so on) belongs to the process plan or not. The output vector in the first
stage consists of eight neurons representing respectively drilling, reaming,
boring, turning, taper turning, grooving, grinding and precision. If the value
of a neuron is 'l', the corresponding operation is needed for the feature:;
otherwise, the value is '0'. For instance, a hole requires the drilling operation,
so the first neuron is assigned the value 'l'. The sequence of the vector
represents the sequence of the operations, e.g. reaming is usually performed
after drilling. Li et al [1994] used a 4-neuron vector corresponding to the
abrasive type, grade, grit size and bond. Le Tumelin ef al [1995] designed a

23-neuron vector.
Output vector with special values

Each neuron in the output vector has a possible value that the corresponding
parameter may assume. Santochi and Dini [1996] developed a system for

selecting the eight technological parameters of a cutting tool. For example, to

select a normal clearance angle ¢, the number of output neurons is 5 which
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represents 4, 5, 6, 7, 8 respectively. The neuron with the value ‘1’

represents the optimal value and ‘0.5’ a second choice.

3) One-unit output in binary form

This output format has only one unit whose value is either 0 or 1 [Mei er al
1995]. The output shows which surfaces should be used as manufacturing
datums. For instance, 'l' means that the surface will be used for the part

setups and '0' means that it has nothing to do with part setups.

4) One-unit output in integer form

Each discrete integer is concerned with a special class [Chen and LeClair
1993]. The output integer represents a cluster of features according to the

approach directions and the tool types.
5) Output matrix

Shan et al [1992] devised a binary incidence matrix V (n*n) in which the rows
denote operations and the columns correspond to sequences. The value ‘1’
indicates that a specified operation is performed. Because each operation is
performed only once and only one operation is carried out at a time, one and
only one of the entries in each row and column should take the value of 1

whereas the rest should be set to 0.
2.4.4 Training method

In CAPP applications, the training method usually employs either an unsupervised

learning algorithm or back-propagation.
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1) Unsupervised learning algorithms

With an unsupervised learning algorithm, the training set only contains input
samples; no desired or sample outputs are available. The neural network must
construct an internal model that captures regularities in input training patterns
instead of measuring its predictive performance for a given input. Hence this
method is also called self-organisation. In CAPP applications, a logical
AND/OR operation-based unsupervised learning approach is used. Chen and
LeClair [1993] clustered features based on the approach direction and tool
type and then generated a process plan using an Episodal Associative Memory
(EAM) approach. The AND operation was applied to solve multiple approach
directions for some features. If the digit is 1 for the corresponding approach

direction, the update weight for the cluster j is
“bi(s+1)="x" AND “byj(s)="x"“byj(s) (2-10)

where “x/”’ is the approach direction sub-pattern, <+x,+y,+z,-x,-y,-z2>,

of pattern p.

In the meantime, the OR rule is used to update the weight so that the
probability of common tools can be increased. If the digit is 1 for the
corresponding tool, then by (s+1) is modified according to the following

equation [Chen and LeClair 1993]:
'bij(s+1)="x" OR 'byj(s)=f('x{"+ 'bij(s)) (2-11)
where ‘x;” is the tool sub-pattern, and

fin)=1if n=1, else f(1)=0.
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2) Back-propagation

A back-propagation algorithm is a form of supervised learning. The algorithm

consists of two basic steps:

initialisation of weights. In Gu er al's work [1997] all the weights were

initially randomly set in the range O to 0.1;

repetition of training until the error is acceptably low. Gu et al [1997]
mapped the selected pattern pairs to reinforce the weights until the
deviation between the training output and the target output of each sample

converged to a pre-defined error goal (e.g. 0.05).

Back-propagation methods have proven highly successful in CAPP

applications [Osakada and Yang 1991, Dong et al 1995 and Mei et al 1995].

These method can be classified into three groups.

The delta rule

One of the back-propagation learning algorithms is the delta rule based on
the cumulative error. It is also known as the least mean squares (LMS) or
Windrow-Hoff rule. The learning rule changes the connection weights so
as to minimise the mean squared error between the network output and the

target over all training patterns.

Sakakura and Inasaki [1992] chose the delta rule for both a feed-forward
network and a BSB network. In the three-layer feed-forward network, the

weight connecting neuron j in the hidden layer to neuron k in the output
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layer is updated as follows:

Awi =11 ) Gkop) (2-12)
p

Opk = (tpk — opk) f ' (apk) (2-13)

where f{) is the output function of neuron,
7yis the learning coefficient of the FF network,

p is the learning pattern number,
1,i is the learning value of neuron i for learning pattern p,
api is the status value of neuron i for learning pattern p, and

opi 18 the output value of neuron i for learning pattern p.

For the BSB network, the modified value of the weight which

interconnects neuron m and neuron n is calculated as the following:

AwWm = ﬂhz (tpm — Wnm tpn)tpn (2_14)

P

where 7, is the learning coefficient of BSB network, and

tji is the learning value of neuron i for learning pattern j.

e Levemberg-Marquardt approximation

A back-propagation algorithm using the approximation of Levemberg-
Marquardt is also used in some applications [Santochi and Dini 1996].
This algorithm allows a better performance in terms of training time in

comparison with other training methods. However, it may require a very
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large storage space for some complex situations.

The matrix of the connection weights is updated through the following

equation:
w=J"T+uU)"'J"e (2-15)

where J is the Jacobian matrix of derivatives of the errors to each
weight w;j,
M is a scalar,
U is the unit matrix, and

e is the error vector of the network.

e Batch training

Either the delta rule or the Levemberg-Marquardt approximation is used as
the on-line learning rule. The batch training is an off-line training process.
Rather than adjust the weights after each pattern presentation, batch

training accumulates the errors over the whole training set and adjusts each
weight according to the accumulated errors. It can generally be expressed

as follows [Principe et al 2000]:

AWji = 772 . d}ulHin (2‘ 1 6)

where the subscripts in and out refer to the net input and output signals

associated with a given unit, and

i and j refer to the connection from unit 7 to unit j.
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The form of & will vary depending on the type of layer to which the
formula applies. In some cases it is advantageous because of its
smoothing effect on the correction terms and increasing of convergence to
a local minimum [Fausett 1994]. Devireddy and Ghosh [1999] trained a

system with a batch training back-propagation algorithm.

The achievements of neural network-based CAPP systems are summarised in

Table 2.2. The major drawbacks of the existing neural network-based CAPP

systems are:

)

2)

3)

Lack of systematic investigation of the framework and methodology of CAPP.
Most of solutions are designed for specific activities (e.g. tool parameters
selection, cutting condition generation) and specific applications (e.g. cold

forging, grinding operations), which cannot be used in different industrial

environments.

Low efficiency and quality of process planning. For a process planning

system based on the machined surface, with the number of machined surface

increasing, the efficiency and quality of reasoning can not guarantee,

especially for a complex component.

There have not been so many systems considering prismatic components. It is
mainly due to the complex geometrical representation of the 3D prismatic

components and the intricate nature of cutting mechanism in milling. It is

difficult for a CAPP system to plan a solution for all possible components.

Although the capabilities are limited at present, there is great potential for the
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application of neural networks to CAPP. The review has shown that neural

network techniques can significantly improve the performance of CAPP systems.

The self-learning functions allow empirical rules to be learnt through typical

examples. Faster processing makes systems more effective, especially in parallel

environments.

Table 2.2. Achievements of ANN-based CAPP systems

System Functions NN type Manufacturing
processes / components
Osakada and Yang | Generation of | Three-layer Cold forging for axis-
[1991] process plan Feed-Forward | symmetric components
network
Roy et al [1994] Generation of | Feed-Forward | Cold forging
process plan network
Knapp and Wang Operation Three-layer Machining operations
[1992] selection and | Feed-Forward
operation network and
sequencing MAXNET
Devireddy and Operation Three-Layer | Machining operations for
Ghosh [1999] selection and | Feed-Forward | rotational components
operation network
sequencing
Shan et al [1992] Operation Hopfield Cutting operations for
sequencing components machined
on single spindle Swiss-
type automatics
Le Tumelin et al Operation Five-layer Machining operations for
[1995] sequencing Feed-Forward | holes
network
Dong et al [1995] Operation Feed-Forward | Machining operations
sequencing network and
Hopfield
Gu et al [1997] Operation Three-layer Machining operations for
sequencing Feed-Forward | prismatic components
network with regular machining
features
Giusti et al [1986] | Tool selection | Unknown Rotational components
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Chen and LeClair Generation of | Unknown Machining operations
[1993] setups
Santochi and Dini | Selection of Three-layer Turning operations
[1996] optimal values | Feed-Forward
of a tool network
parameter
Mei et al [1995] Selection of Three-layer Rotational components
manufacturing | Feed-Forward
datums network

Li et al [1994] Selection of Feed-Forward | Grinding operations for
grinding network ground components
wheels

Sakakura and Selection of BSB/Three- | Grinding operations for

Inasaki [1992] dressing layer Feed- ground components
conditions Forward

network

Park et al [1996] Generation of | Four-layer Milling and turning for
modified Feed-Forward | sheet metal
cutting network
conditions

Park et al [2000] Generation of | Fuzzy Milling operations
cutting ARTMAP
conditions network

2.5 CAPP using genetic algorithms

Operation sequencing is a task responsible for arranging the selected operations in
a suitable order to fabricate the part [Shan et al, 1992]. An optimal process

sequence could largely increase the efficiency and decrease the cost of production.

Therefore, operation sequencing is always the major concern among process

planning activities. It is influenced by various constraints and factors, such as the

selection of machining operations, the machine tool chosen, tools accessibility,
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geometrical tolerance and manufacturing rules. Thus, the task of sequencing is a
problem to consider different choices and constraints. Genetic algorithms (GAs)
are a technique for seeking to ‘breed’ good solutions to complex problems by
survival of the fittest. ~They have been successfully applied to various
optimisation problems since the mid-1960s. Some attempts using GAs have been

made on operations sequencing optimisation, .

Vancza and Markus [1991] applied a genetic algorithm to optimising sequence of
operations for machining a component composed of milling features, i.e. slots and
holes. In their system, each string is represented by elements corresponding to
feature states that are produced by machining operations. Three factors are
considered in their optimisation criteria, that is, the number of setups of each plan,

the total number of tool changes, and the total cost of individual operations.

Yip-Hoi and Dutta [1996] used a genetic algorithm to generate plans for
machining a milled /turned component for parallel machining that satisfied both
the constraints of the geometry of the component and the restriction due to the
configuration of the machine-tool environment. A new coding method that allows
the generation of only valid operation strings is developed, but operation features
with multiple parents are not considered. The planning criterion they used is to

minimise the component processing time.

Dereli and Filiz [1999] developed an optimisation system for process planning
using genetic algorithms. In their research, a reward/penalty matrix called

REPMAX for each setup is determined based on the selected criterion, such as
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safety or minimum tool change, and the objective of optimisation is to gain the

least total penalty or largest total reward.

Bhaskara et al [1999] proposed a quick identification of optimal or near optimal
operation sequences in a dynamic planning environment using a genetic
algorithm. They identified the feasible sequences based on a Feature Precedence
Graph and used minimum production cost as the objective function, which was
calculated from a precedence cost matrix. The precedence cost matrix is
generated for any pair of features based on the relative costs corresponding to the
number of tasks that need to be performed in each category of attributes such as
machining parameter change, tool change, setup change, machine change and the

type of constraint one feature has with the other.

Qiao er al [2000] presented a genetic algorithm method to select the machining
operation sequence for prismatic parts. A combination fitness expression F is

defined as the following:
F=W,F,+ WF+ WooF oo+ WopFop (2-17)
where F), is the fitness of precedence rules;
F.is the fitness of clustering rules;
F . 1s the fitness of adjacent order rule;

F,, is the fitness of optimisation objectives (In the practical system

developed by Qiao et al [2000], F,, is not considered); and

Wy, We, Wao, W,y are the weights of F), F¢, Fu,, F,p, respectively.
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In addition, some biological parameters are discussed, including the number of

individuals, the number of parent individuals and the mutation ratio.

Li et al [2002] developed a hybrid genetic algorithm and simulated annealing
approach for optimising process plans for prismatic components. A modified

fitness function FF is defined as:

FF=A*(UL-TWC)*(UL-TWC) (2-18)

where UL is an upper limit constant for TWC;

TWC is the total weighted cost;

A is a positive coefficient.

In addition, Shunmugam et al [2000] and Dereli et al [2001] used genetic
algorithm for selecting optimal machining parameters, respectively. Li er al
[2002] also designed a constraint adjustment algorithm to rearrange the process

plan according to the constraints while some random properties in it are kept.

In conclusion, GAs are quite promising in identifying optimal operation
sequences. The effectiveness of a GA depends on the fitness function, appropriate
crossover and mutation operators. The problems with existing GA-based methods

for process planning include

1) Few systems have intended to provide a globally-optimised fitness function
definition. As we know, operation sequencing is a comprehensive problem
concerning various factors, such as processing cost, processing time and

manufacturing rules. Although there have been several fitness functions for
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2)

3)

process sequencing, e.g. minimum number of setups, minimum machining
cost, shortest processing time or satisfaction of manufacturing rules, etc., they

are used only for local optimisation for the chosen object.

Lack of adaptability. Most of GA-based CAPP systems proposed up to date
are designed for specific industrial environment and it is difficult to adapt

them for different industrial applications.

Inability to learn. GA-based CAPP systems cannot learn to adapt themselves

automatically from the external environment.

From the discussions, it still can be seen prospectively that GAs can be further

applied to process planning, e.g. incorporating other techniques such as ANNs for

global optimisation.

2.6 Summary

This chapter has presented a state of the art review of three key research issues in

CAD/CAM integration: feature recognition, design by features and CAPP. The

research reviewed above demonstrates that

1

2)

There are still some problems to be solved with current methods, such as poor
ability to recognise intersecting features and adaptability to CAPP. Therefore,

new methods to recognise intersecting features and adapt CAPP are needed;

There are potential benefits for using neural networks in feature recognition
with a design by features approach. Input representation of features for neural

network-based feature recognition is a main problem that needs to be solved.
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3) A hybrid GA method with neural network and fuzzy logic in CAPP is

applicable.

Therefore, a CAD/CAM integration methodology using a neural network, GA and

fuzzy logic is presented in this thesis in order to overcome the limitations in

current methods.
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Chapter 3.

Design by Features Module

As mentioned in Chapter 2, to take advantages of both design by features and
feature recognition, the current research has employed both approaches,
incorporating a new identification algorithm of interacting features with ANN
techniques. The ANN-based feature recogniser is used for the identification of
new classes from interacting features while design by features techniques keep
record of all feature information. This chapter will discuss the proposed design by
features module. Chapters 4 and 5 will detail the identification algorithm for

interacting features and ANN-based feature recogniser.

3.1 Architecture of the design by features module

Taking into account the advantages and disadvantages of design by features (see
Section 2.3) and the requirements for integrating feature recognition, an
architectural framework for a design by features module has been proposed in
terms of certain fundamental design decisions that influence the overall system
performance. As shown in Figure 3.1, the proposed architecture includes a
standard feature library, feature library management, feature-based model and

feature-based model management. Important characteristics are described below.
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USER INTERFACE

=L ﬂ ........................ ﬂ __________________ @ ...........

Feature-based model management

Model validity Interactive functions
maintenance of feature model

el J

Feature library
management

0: Non-connection

Feature, —| Feature, 1: Parent-child
5 \ 2: Connection:
3: Overlap-hiding
Feature;
Feature-based model

Heuristic Interacting
feature Identifier !

|

Neural network-based
feature recogniser

Interacting feature recogniser

_____________________________________________

____________

Feature
library

Design by features
module

Figure 3.1 Architecture of the design-by-features module
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I) Feature classification: The aim of feature classification is to acquire and

process similar geometric and technological data for design and manufacturing
process planning, thus further supporting CAD/CAM integration. With a
suitable feature classification, a universal feature taxonomy can be developed,
where features are grouped into several classes according to some shared or
similar characteristics, such as geometry, machining attributes. Although the
number of possible features and feature classes is not finite, it may be possible
to categorise feature classes into families that are relatively independent of the
intended application domain of the features [Shah and Mintyld, 1995]. This

module provides a set of prismatic-part feature classes based on STEP AP224

standard.

2) Feature Definition: One characteristic of design by features is the use of

3)

4)

generic feature definitions as a template for creating individual feature
instances. The choice of a feature representation scheme is the most
significant issue. A genetic representation scheme for features containing

geometric and manufacturing information has been proposed in this module.

Support for feature validation: Feature validation is a critical property
necessary for design by features systems. It is highly desirable that feature is
validated when it is placed into the model and that the validity is maintained

afterwards. In this research, pre-designed validity constraints are applied

during the feature instancing stage.

Feature-based model: The basic entity in feature-based model is feature. Two

main problems that a feature-based model has to be solved are:
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e Definition of feature semantics and the relationships among features.

e Maintenance of the feature-based model.

Data structure definition and feature-based model management provide solutions

to these problems.

3.2 Feature classification

There are a number of feature classification schemes. Among them are those
based on geometrical properties of the features, such as the work of Gindy [1989].
Others are based on machining methods associated with features that include
rotational features created by machining operations on a lathe or a turning
machine, and prismatic features created by machining operations on a milling
machine or a three-axis machining centre [Tseng and Joshi, 1998]. There also are
those based on the number of possible tool approach directions that can be used to
machine them: STAD (single tool axis direction) and MTAD (multiple tool axis
direction) [Chu and Gadh, 1996]. These classification schemes have advantages
in certain respects, but major problems (e.g. non-standard and incompleteness)

hinder their practical applications in integrated environments for design and

manufacturing.

An important feature classification different from above mentioned is provided by
STEP (STandard for External representation of Product data) [STEP, 1999].
Some researchers have developed feature recognition methods based on STEP.

For example, Bhandarkar and Nagi [2000] developed a Boundary-representation
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(B-rep) based feature extraction system that takes a STEP file as input and
produces a form-feature STEP file; and Han ef al [2001] proposed a geometric
reasoning feature recognition kernel using STEP as input and output formats. In
ISO 10303 STEP-AP224 (Mechanical product definition for process planning
using form features), machining features are defined as a type of manufacturing
feature that identifies a volume of material to be removed to obtain the final
geometry from the initial stock [STEP, 1999]. Sixteen machining feature classes
are defined, such as hole, slot, etc. As an international standard, STEP has some
advantages of feature classification. For example, the feature definition is
universal and includes both geometric and manufacturing information. However,

there are still some limitations discussed below.

1) The classification is not rigorous. Some overlapping or duplication situations

exist. For example, the following definitions are provided by STEP.

Rectangular-open-pocket. A rectangular-open-pocket is a type of pocket that
is an open profile with opposite sides that are of equal length and with one
side that does not make contact with the part. A pocket is a type of
machining-feature that is a volume with a specific shape, removed from the

part.

Flat-slot-end-type: A flat-slot-end-type is a type of slot-end-type that is an
end condition of a slot that shall be a planar shape perpendicular to both of the
adjacent slot wall surface. The intersection of the slot wall surfaces and the

end planar shape need not be blended by a radius. A slot is a type of
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2)

machining-feature that is a channel or depression with continuous direction of

travel.

Based on the above definitions, the entity shown in Figure 3.2 can be regarded
as either a blind slot with a flat-slot-end-type or a rectangular-open-pocket.
Since feature overlap or duplication can make feature recognition more
difficult and feature libraries larger and unmanageable, it is desirable to

reconcile and remove such overlapped distinctions between features.

Figure 3.2 Example 1 of STEP classification

The classification is incomplete. Completeness is an important characteristic
of classification, which implies that the defined feature classes are sufficient
for creating models that the system is intended. In an integrated design and
manufacturing system, it should include all primitive machining features. But

STEP does not cover the full range, e.g. the feature shown in Figure 3.3.

s
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Figure 3.3 Example 2 of STEP classification
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3)

The definition of machining features is not precise. STEP defines machining

features as a volume of removal material while protrusion features, which are

not removed volumes, are included.

In order to overcome these limitations, a hierarchical classification (see Table 3.1)

is proposed based on the following principles.

)

2)

3)

4)

5)

A machining feature is defined as a geometrical entity, which is related to a
group of particular machining processes and can be used to reason about a
suitable machining method. In this research, the features considered cover a
majority of the primitive features, which are likely to be of interest for the

application of machining process planning.

The feature classification and its validity are based on a multi-viewpoint

considering manufacturing requirements with topological information.

If a set of features have the similar geometric and topological characteristics
and can be machined with the similar process, they are called a feature class.

A sub-class is regarded as an instance of its main class.

The classification is hierarchical, where a subclass inherits common properties
from a higher class. This reduces the number of properties that have to be
independently specified for each new feature. Object-oriented programming

language - C++ is used to implement the feature taxonomy.

The feature definition in the ISO STEP AP224 standard is considered as

guideline for industrial extended.
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Table 3.1 Classification of machining features

Internal feature Round hole Through round
hole
Blind round hole Flat
Flat_with_radius
Spherical
Coincal
Conical hole
General hole
Slot Through slot
Blind slot Flat
Radiused
Woodraff
Pocket Closed pocket
Open pocket
Step Through step
Blind step
External feature | Revolved-feature | General_revolution
Groove

Revolved._flat

Revolved_round

Boss Cylinder boss
Conical boss
General_outside Close
Open
Round_end
Spherical_cap
Protrusion

Surface machining

Attaching feature

Knurl

Thread

Marking
Compound (not applicable in
feature this work)
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The classification has some advantages as listed below.

1) With a finite feature library, it includes the majority of the primitive features

likely to be of interest for the application of machining process planning.

2) It is more suitable for integrated CAD/CAM environments because the

requirements of both design and manufacturing are considered.

3) It enables the use of a code representation and a computationally efficient

feature recognition strategy.

The feature definition in the taxonomy is described in Appendix A.

3.3 Feature class definition

3.3.1 The requirements of feature class definition

In order to ensure a valid component model and suitable data for future process

planning, feature definition must satisfy the following requirements.

1) Completeness: Completeness implies that a component C can be fully

produced by a set of machining features F={ft,, ft2, ..., ftn }, that is

C=5-|]fu (3-1)

JueF

where § represents the stock.
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2) Connection: Each feature, ft; should have at least one face connecting with C,

that is

(ft; NC) = Face/Faces # @ (3-2)
and
(ft; N(S-C)) = volume # @ (3-3)

3) Comprehensiveness: In order to pave the way for further applications (e.g.
process planning), feature definition needs to store both geometric and process
data relevant to the application. Several types of attributes and the permissible
attribute values for feature instantiation must be determined: geometric,

manufacturing data and validation constraints.
3.3.2 The parameters of feature class definition

The parameters in feature definition are used for determining not only how a
feature class is presented to the user but also how the user interacts with the
system. A set of parameters of a feature class is defined based on the
requirements for both design and machining purposes. The feature class in the
module, which is either additive or subtractive, is represented by the feature
volume or its boundary elements as a whole. As illustrated in Figure 3.4, a
standard feature class can be explicitly defined with five describers: identifier,

interface parameters, validity constraints, machining attributes and UndiGraph.

1) Identifier: A number of basic terms understandable to both the designers and

the system, namely, feature name, feature code and feature class type.
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Feature Class
l | | |
Identifier Interface Validity Machining Feature
Parameters Constraints Attributes UndiGraph
Name Shape Geometry Tolerance/accuracy
Code Position Topology Machining Process
Type Orientation Machining Tool Access Direction
Intersections Machine tools
Cutting tools

2) Interface parameters:

Figure 3.4 Definition of feature class

A set of parameters relating to its basic shape and

spatial relationships to the world co-ordinate system by fixing its degrees of

freedom. It provides an interface between the design module and the user.

These parameters will be specified at the time that the feature is created.

There are two major categories.

e Geometric shape

The basis of a feature is its geometric shape, which indicates the volume of

material added to or removed from the model. In the proposed design by

features method, geometric shapes of features are determined directly by

specifying geometric shape parameters predefined in the feature class

templates. The parameter set must be sufficient to construct but not over

constraint a feature. For example, two geometric parameters of feature

hole, radius and depth, constitute its basic shape - a cylinder (Figure 3.5).
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Another example is the slot shown in Figure 3.6, which is described as a

block with parameters of length, width, depth, angle a, etc.

surface A ’

Figure 3.5Geometric parameters of a hole

centre line
V(vx, vy, vz)

angle a

Figure 3.6 Geometric parameters of a slot
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Position and orientation parameters

Position and orientation parameters identify the spatial relationship
between a feature and the stock. To establish the position and orientation,
a reference is needed between the feature and the stock. For example,
before a blind hole can be added to a stock (shown in Figure 3.5), the
designer needs to specify the surface on which the feature is placed (i.e.
surface A), and the location (point O (x, y, z)) and the centre line (vector

V(vx, vy, vz)) need to be determined.

3) Machining attributes: A set of parameters related to the specific machining

operations corresponding to a feature class, such as tool access direction,

machine tools, etc. As an example, considering process planning data for a

through hole, it may include items such as the following:

Roughness and tolerances (e.g. IT10, R, 3.2um).
Applicable machining operations (e.g. drilling, boring, reaming).

Machine tools and manufacturing condition information (e.g., radial

drilling machine, depth hole drilling machine).
Tool and fixture information (e.g. materials of cutting tools and fixtures).
Tool access directions (e.g., direction I (0, 0, 1) and direction II (0, 0, -1)).

Manufacturing cost information (e.g., operation cost, machine tool cost,

tool and fixture cost, set-up change cost.)
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4) Validity constraints: A set of constraints checked automatically at the feature

instantiation stage to ensure the feature validity. There are three types of

constraints: geometric and topological, machining, and interacting constraints.

All these constraints are important for feature validation and their values can

be decided using algebraic expressions (see pages 80-87), the manufacturing

environment and features relationships.

Geometric and topological constraints

Usually, these constraints appear as a standard range for specifying the
size limits, which can be calculated using mathematical equations based
on the shape parameters, class, and position and orientation of the feature.
For example, the dimension of a hole cannot be larger than the size of the
stock on which it is being placed; the depth of a blind hole must be
restricted to be less than the size of the stock where the hole is to be added,

otherwise the blind hole would become a through-hole.

Machining constraints

It is possible that some features have valid geometric shapes and topology
but still are invalid features because of their non-machinability. Different
from other constraints, machining constraints mainly depend on the
machining attributes of features and the specific workshop environment
that features will be manufactured (e.g. machine tools can be available).
For instance, long and thin holes may be regarded invalid if no machining
methods are available for their manufacturing. At the design stage, the

check for machining constraints is limited to constraints that can be
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defined by algebraic expressions, e.g. the ratio of height to radius. Other
machining attributes (e.g. tolerance and accuracy) are examined at the

process planning stage, i.e. during selection of machining operations.

e Interacting constraints

Geometrical, topological and machining constraints are insufficient to
fully retain feature validity when feature interactions occur. As known,
feature interactions can cause serious constraint violations of valid feature
instances. Therefore, the constraints for feature interactions must be
defined, such as the dependent properties between parent and child
features. An example is shown in Figure 3.7 that pocket B is added based
on pocket A and becomes a child feature of pocket A. Due to this
interacting constraint, pocket B will be invalid if pocket A is deleted.
Unlike the other two constraints, there are no appropriate mathematical
ways to determine the interacting validity. However, it is possible to
develop some heuristic rules based on interacting rules for these
constraints. These constraints are considered in a heuristic algorithm for

interacting features recognition, which is discussed further in chapter 4.
5) UndiGraph: A face graph defining a feature pattern. It can be defined as
UndiGraph = (F, R), where
F is the finite non-NULL set of faces consisting of the feature:

F={face; | face; € Feature} (3-4)
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R is a set of relationships between faces: R={FR}.
FR is a relationship with no specific direction between two faces:
FR={<face,, face>|P(face;, face,)A(face;, face,e F)} (3-5)

P(face,, face)) is a path with no specific direction between

face; and facey;
FR is symmetrical, i.e. <face,, face,>=<face,, face,>.

Figure 3.8 shows an example of UndiGraph.

ocket A
(added before pocket B)

ocket B
(added after pocket A)

Figure 3.7 Example of interacting constraints

" (907, 270°)/ PLANE W’ 270°)

\E )y PLANE 90° PLANE
m /90{
PLANE

Figure 3.8 Example of feature Undigraph
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3.4 Feature-based model

The proposed feature-based model allows the user to design a component directly
with features predefined in the feature library. Unlike conventional geometrical
models, it is designed for high-level data, i.e. feature instances. Therefore all the
model operations are feature-based. As depicted in Figure 3.1, the highest level
can be presented as a graph, where the nodes correspond to feature instances (e.g.,
Feature, and Feature,) and the arcs store interaction relationships between feature
pairs (e.g., 1 and 2). Figure 3.9 presents the detailed data structure of the proposed
hierarchical feature-based model, whose data spans over four levels. The highest
or the first level is about the basic entities and the information (such as feature
relationship, feature location and so on) required for feature recognition and model
manipulation. The second level maintains all the constraint parameters for feature
validity. The third level contains the geometric (e.g. face attributes) and
topological information about the adjacency between pairs of vertices, edges,

faces, etc. Finally, the lowest or fourth level is used for low level geometric data

such as tolerance, etc.

Four types of feature relationships are defined within the feature-based model:
parent-child relationship, connection relationship, non-connection relationship and

overlap-hiding relationship [Ding et al 2000].

1) Parent-child relationship. A feature ft; is considered to be a child feature of

feature ft, if ft, directly depends on ff,. The parameters of child feature ft, are
constrained by the parent feature, ft;. The parent feature, f#, is independent of

feature ft;,. In other words, the validity of the child feature, ff, needs to be re-

73



Chapter 3

Design by Features Module

checked and necessary change made when the parent feature, f7, changes. On

the contrary, the parent feature, f#, needs not change when the child feature, ft,

changes.
Feature-based model
Feature ] |+ =eniiimeet Feature n
iti osition
Level | [|Position p | ‘
.......... P Pointer —» Related Relationships
Relation type feature with adjacent
- - features
interaction
type
Constraints Constraints
Dimensions Dimensions
Leweld § o o e e s
Interaction Interaction
1 |
v \ 4
Ligometry | 5 . Ny Geometry
Level 3 Topollogy Topollogy
\ 4 v
o Tolerance | = e Tolerance

Figure 3.9 Structure of feature model

2) Connection relationship. If two features have a connection relationship, the

validity of both features need not be re-checked. However, the relationship

should be identified for downstream applications (e.g. CAPP).

3) Non-connection relationship.

between two features, they are not dependant on each other.
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4) Overlap-hiding relationship: If a feature f7; is regarded as a hiding feature of
feature ft,, it means ft, overlaps ft; completely. In this situation, ft, is deleted

from the final result and only f#, is considered in the model.

Examples of feature relationships are shown in Figure 3.10.

3.5 Feature-based model management

Feature-based model management provides several interacting functions for the
user to create and manipulate the feature-based model, and maintain model
validity. It is considered an important tool supporting feature-based design.

There are three main operations: adding new feature instance, editing and deleting

existing feature instance.
3.5.1 Adding a new feature instance to the model

With a full set of interface parameter values, a pre-defined feature class template
can be initialised as a new feature instance. When the validity check process is
successfully performed, the new feature instance is added and the model data is

updated. As shown in Figure D.1 (Appendix D), this process is detailed as:
Step 1: Input a set of parameters defining a feature.

Step 2: Check the validity of the defined feature according to geometric and
topological constraints using corresponding mathematical calculations described

in section 3.5.4.
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\//,//
L

ﬁ.’ ﬁz A

(a) Example of parent-child relationship ~ (b) Example of connection relationship

Jft;: blind slot (child) Jiy: blind slot
ft2: blind slot (parent) Jft2: blind slot
St
Jt2

(c) Example of non-connection relationship
fi;: blind slot
fi2: pocket

Ju P

(d) Example of overlap-hiding relationship:
ft;: through slot (hide)
ft>: through slot

Figure 3.10 Examples of feature relationships
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If the checking fails, then go to end. Else, go to Step 3.

Step 3: Determine relationships between the new feature and existing features

in the feature-based model.

If any change (i.e. class or dimension change) is necessary, which user cannot

agree, then go to end. Else, go to next step.

Step 4: Add the new feature instance and update the model.

Step 5: End.
3.5.2 Editing a feature instance in the model

Existing feature instances can be modified by changing the values of their
parameters. The validity checking process consists of two parts: validity checking
for the feature to be edited and validity checking for the existing features in the
feature-based model. If the validity checking succeeds, the change to the feature
is accepted and relevant parameters are updated accordingly; otherwise, the

editing operation will be terminated. The editing process is given below (Figure

D.2 in Appendix D).
Step 1: Select the feature to be edited.
Step 2: Input the modified parameters.

Step 3: Check the validity of the modified parameters using corresponding

mathematical calculations.

If the checking fails, then go to end. Else, go to the next step.
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Step 4: Re-check the features, which have a relationship with the feature to be

edited. Two situations needs attention:

Situation 1: Features that had been changed class or dimension due to the

addition of the feature to be edited. These features will be restored to their

original classes or dimensions.

Situation 2: Features that are child features of the feature to be edited but their
class or dimension had not been changed due to the addition of the feature to be

edited. These features will be deleted, or they will be invalid.
If the user does not agree with above changes, then go to end. Else, go to step 5.

Step 5. Delete all previous relationships between the feature to be edited and

existing features in the feature-based model.

Step 6. Determine new relationships between the feature to be edited and

existing features in the feature-based model based on new editing parameters.

If the user doses not agree with any changes which are necessary, then go to step

7. Else, go to step 8.

Step 7. Restore all information of the feature-based model before this editing
operation, including features, feature relationships, feature classes and feature

dimensions. Then, go to end.
Step 8. Accept the modification and update the feature-based model.

Step 9. End.
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Figure 3.7 gives an example where pocket A is the parent of pocket B. When the
depth of pocket A is shortened, pocket B must be deleted. The request of editing

will be cancelled if user does not agree with the deletion of pocket B.
3.5.3 Deleting a feature instance from the model

When a feature instance is deleted from the model, all its parameters and
interaction relationships with other features will be deleted completely. This
process is simpler than editing a feature as there is no need to identify new

interacting relationships. However, all child features of the feature to be deleted

must be checked:

1) Features that had been changed class or dimension due to the addition of the

feature to be deleted. These features will be restored to their original classes

or dimensions.

2) Features that are child features of the feature to be edited but their class or
dimension had not been changed due to the addition of the feature to be

deleted. These features will be deleted as well.

If the user does not agree with above changes, then the deleting operation will be

cancelled. Figure D.3 in Appendix D describes the deleting process.
3.5.4 Checking validity of feature

As described in section 3.3, the restricting values of geometrical and topological

constraints can be calculated by algebraic expressions on the feature parameters

and the relevant dimensions of the stock. Tables 3.2 to 3.6 give some
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mathematical expressions for constraints used in this research. The corresponding

checking processes are implemented in the module using the C++ language.

Table 3.2 Calculating expressions for blind slot

Primitive L=\/(xmax_ xx)2 +0 maro“y)z

variables LA:\RXX_OX)Z +(ymara,)2

o= arcsin( width / L) (0<90°)
[o = arcsin( width [ LA) (0>90°)

|x max— XX

o= arCCtg ((X<90°)

Iy max— Oy

|xx -0y

oo = arCCIg (a>900)

‘y max— Oy
Liax: the maximum length

W nax: the maximum width

Case 1 (90°-0t9-Bo)>0=20°

W max =|(Xmax-XX)*COS(X I

Linax= Li+L,,

L,=width*tgo

Lo=(Ymax-0y)/cOSOL

Case 2

(90°-0t9)>0: (90°-0to-Bo)

W max =|(Xmax'XX)*COS(X [

Lmax= L*cos(90°-0-0)
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Table 3.2 Calculating expressions for blind slot (continued)

Case 3 *Y

Ymax

90°>0. 2> (90°-0)

Winax =|(Xmax'XX)*COSQ |

L= Xmax-XX @

Linax= L1/c0s(90°-at)

XX Xmax

=Y

Case 4 Yot
(90°+01) > o > 90°
W nax =l(xx-05)*cos(180°-o0)l

L= xx-0x \ X
Lmax= Li/cos(a-90°) Ml e X

Case 5

(90°+0,+Po) >0= (90°+0k)

W nax =l(xx-05)*cos(180°-o0)l

Linax= LA*cos(0-90°-0)

X max X

A
Case 6 180°>0> (90°+0t+P0) Yk W

W nax =l(xx-0x)*cos(180°-0)
Lmax= L1+L2,
L,=width*tg(180°-a)

L2=()'max'oy)/cos( 1 80°-0() LM(X o g,
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Table 3.3 Calculating expressions for through slot

Primitive
variables

& =J(;1narx.X)2 y (ymax—Oy)2

o0 = arcctg| -

Qo = arcctg

Luin: the minimum length

W the maximum width

X max— XXI
Y max— 0,\"
-0,

Y max— Oy

LA= JZxx—Q‘,)Z '|'(ymax—0_\-)2
o= arcsin(width/ L) (a<90°)
[o = arcsin(width/ LA) (0>90°)

(0<90°)

(0>90°)

Case 1

(90°-0tg-Bo)>020° Yous
Winax =|(Xmax-XX)*COS(X|

Lmin= Li+Lo,

YA

L1:width*tg0L Ol

L2=()'max'0y)/cosa

Case 2

AY
Ymay
(90°-01)>0=> (90°-0t9-Bo)
Wisax =I(Xnax-%% ) cOS0H
Lunin= L*c0s(90°-0t-0t)
0]
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Table 3.3 Calculating expressions for through slot (continued)

Case 3 *Y
90°>0 2 (90°-0tp) ¥ max

Wnax =|(Xmax—XX)*COS(X I

L|==Xmax-XX

Lnax= L1/cos(90°-0t) 0

Case 4

(90°+0) > oL > 90°

W max =l(xx-05)*cos(180°-a)l

L;==xX-0y \ XX
Lmin-: Ll/COS(a'90°) \ o Xmax X

Case 5

(90°+0tp+P0o) >0= (90°+00)

W nax =l(xX-05)*cos(180°-a0)!
Lin= LA*cos(0-90°-0l)

Xmax X

Y.
Case 6 180°>0 (90°+0t+P0) 4 P i

Ymax

W max =l(xx-0x)*cos(180°-00)l
Lin= Li+L2,

L;=width*tg(180°-o) -
L>=(Ymax-0y)/cos(180°-at) LY B X
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Table 3.4 Calculating expressions for through step

Primitive Lz\RXmarx.Xf)z +(Ymax—0y)2
variables
Ix max— XX\
a’o:arCCtg ‘T—O_I (a<900)
max— Oy
xx—o,|
Qo = arCCtg m (a>900)
max— Oy

LA={(xx-0,)" +(ym0))’

Luin: the minimum length

Ay
Case 1 Ymfe
(90°-0p)>0= 0°

Width =l(Xmax-XX)*cosct |

Lmin= L*COS(90°'(X—(X())
o max

Case 2

90°>0. = (90°‘a()) Ymax

Width =l(Xmax-Xx)*cosat |

L1==Xmax'xx

Lnin= L1/c0s(90°-at)

Case 3

(90°+01) > o> 90°

Width =I(xx-0x)*cos(180°-c)

Lin= LA*cos(0t-90°-0p)
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Chapter 3
Table 3.4 Calculating expressions for through step (continued)
) d
Ym
Case 4
180° >0 (90°+0)
W nax =l(xx-05)*cos(180°-c)
Xz
L;= xx-0 >
l h O a Xmax
Lumin= Li/cos(0-90°)
idth
Table 3.5 Calculating expressions for closed pocket
Primitive
variables L= \ﬁlength)z + (width)*
width
Qo = arctg
length
Case 1 90°>0> 0°
p2x=p lx+length*cosa K
leIBX

p2y=pl+length*sino

p3:=p lx+L*cos(a+0)

p3y=ply+ L*sin(0+0)

phe=pl ~width*cos(90°-at) (0]
p4y=ply+ width*sin(90°-ot)
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Table 3.5 Calculating expressions for closed pocket (continued)

Case 2

(180°-0tg)>0> 90°

p2,=p1-length*cos(180°-a)
p2,=ply+ length*sin(180°-o)
p3,=p1lx-L*cos(180°-ao-0t)
p3y=ply+ L¥*sin(180°-0t0-00)
p4=p1,-width*cos(a-90°)
p4,=pl-width*sin(a-90°)

Ymax

Case 3

180°>a> (180°-tp)

p2,=ply-length*cos(180°-)
p2,=ply+ length*sin(180°-a)
p3,=p1-L*cos(at+og-180°)
p3,=ply- L¥sin(o+o-180°)
p4=p1-width*cos(a-90°)
p4,=p1,-width*sin(a-90°)

y g

Ymay]

Value
limitations

Ox< plx Xmax
O,< p2x <Xmax
0,< p3x Xmax

Ox< p4x <Xmax

Oy<ply <Ymax
Oy< P2y <Ymax
Oy<p3y <Ymax
Oy< p4y <Ymax
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Table 3.6 Calculating expressions for blind/through hole

through hole | depth > 1Z0x-Ol
Xo+d/2< Xmax
Xo-d/2> Oy
Yo+d/2< Ymax
Yo-d/2> Oy
depth/d<Rjipmit
Riimit is determined by 9) Yo P X

manufacturing environment

blind hole depth < [Zpax-O,l
Xo+d/2< Xmax
Xo-d/2> Oy
Yotd/2< Yimax

Yo-d/2> O, _.._.
0s )'0)

depth/d<R“mi, i
O Xmax) X

3.6 Summary

This chapter has described the design by features module. Firstly, a new
architecture has been introduced for design by features with a feature library,
feature-based model, feature library management and feature-based model
management.  Secondly, a classification scheme has been presented for
manufacturing features based on the ISO STEP standard. The main characteristic
of the classification is the consideration of STEP AP224 and a viewpoint of both

manufacturing and design. Thirdly, a data structure for the feature class has been
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designed. Although at the current stage, the work deals only with primitive
features, new feature classes can be defined according to the defined data
structure.  Fourthly, a feature-based model is described with a hierarchical
structure. The model can reflect the design intent of the user because the
modelling history can be traced through a top-down approach. Finally, the
feature-based model management deals with adding, editing and deleting features.
Mathematical calculations are used to check validity constraints and thus to

effectively maintain the feature validity in terms of geometry and topology.
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Chapter 4.

Interacting Features Recogniser

Although design by features does not need to recognise the primitive features
defined in the feature library, it is imperative to apply feature recognition
techniques to deal with interacting features. Figures 4.1 and 4.2 show two
situations of interacting features, which lead to different results. Most methods
for interacting feature recognition used to date are based on analysing the
geometrical and topological information of the new volume created by all of the
interacting features, such as the Graph Matching showing in Figures 4.1 and 4.2.
They are possibly successful in some conditions, e.g. two simple interacting
features which may be merged to one feature. However, these methods are not
very efficient or useful in many situations. For instance, the blind slot and the
closed pocket shown in Figure 4.3 should not be recognised as a whole entity
though they interact. This research presents a new identification algorithm of

interacting features aiming to overcome the drawbacks of existing methods.

Comparing the two illustrations shown in Figures 4.3 and 4.4, it can be seen that
the two situations have different interacting entities, A and B. In Figure 4.4, the
interacting entity B has a face f1' which represents the entire face f/ of feature B2
(closed pocket), which causes the loss of a face of feature B2 completely and
consequently a class change to feature B2. On the contrary, in Figure 4.3, the
interacting entity A does not contain a face similar to face fI" in the interacting

entity B. Therefore, the validity of feature A/ and A2 remains and no further
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recognition is needed. In other words, it is possible to solve the interacting
problem by analysing the interacting entity because different interacting entities
will lead to different interacting results. Thus, unlike conventional approaches
directly recognising the new volume created by all interacting features, the
proposed heuristic algorithm focuses on analysing the relationships between pairs
of features and determines an appropriate manipulation (e.g. merge, divide, class

change). This avoids unnecessary feature recognition work and resolves

interacting features more efficiently.

A\ 7N
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7 / /
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S Al >/ N\ A /\‘ 5 4.@ . )
oo S 2 4 . Y f\// | e——— \ N
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N N\ 8 / o d \\ / ) ,/,» 2 \ \[ 4 N J
. F // \ o X N 7
\\ \\\ // / \ A / // \ \l\ g
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\

Open Pocket Blind Slot Combined graph

Figure 4.1 Type I feature interaction
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Closed Pocket Through Slot

Combined graph

Figure 4.2 Type II feature interaction

/’//\
0
//
d
[N
Feature A2 Interacting
Feature Al entity (A)

Figure 4.3 Example of interacting features, L;> L, ,d; < d,
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Feature B1 Feature B2

Interacting
(blind slot) (closed pocket) A entity (B)

Figure 4.4 Example of interacting features, ;> L, d; = d>

4.1 Basic terms and concepts

In order to simplify the problem complexity at this stage, the research reported in

this thesis is based on the following assumptions for the downstream application

of CAPP.

1) The features belong to the internal features defined in chapter 3, such as slot,

pocket, and so on.
2) The feature instances are machinable on 3-axis machines.

3) The location vectors of interacting features are the same, parallel or

orthogonal.

4) The feature model is non-manifold. That is, every feature geometrical

interpretation must be satisfied with the following rules [Shah and M:intyla,

1995];

® All edges separate exactly two faces
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¢ All vertices are surrounded by a single circuit of faces.

Figures 4.5 and 4.6 show some examples of valid features and non-valid features

for the proposed algorithm.

v
=
v 0

%

P

Figure 4.6 Invalid component due to a sloping hole

A number of terms are used for describing the interacting features recognition

algorithm.

1) SVE (Spatial Virtual Entity): SVE is defined as an entity, which is equivalent
to the volume removed from the initial material stock to obtain the final

boundary of a feature.
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2) FF (Feature Face): FF is a face that physically constitutes the basic shape of a
feature on the model. It can be further classified into two types.
e PF: apartial FF of its feature.

e (CF: awhole FF of its feature.

3) VF (Virtual Face): VF is a face that forms the boundary of its SVE along with

the FFs. Two subtypes can be classified.
e PV: apartial VF of its feature.

e (CV: awhole VF of its feature.

4) NF (None Face): NF is an internal face in SVE and does not constitute the

boundary of SVE.

An example of SVE, FF, VF and NF is shown in Figure 4.7.

Interacting feature

Feature:through slot SVE

Figure 4.7 Example of SVE, FF, VF and NF
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5) IE (Interacting Entity): IE is an entity defining the intersection of a features

pair. Figure 4.8 shows an example of IE. Based on the above definitions.

Interacting Features Recogniser

there are thirteen types of faces for IE (shown in Table 4.1).

PF-NF
PF-PF
NF-PF
PV-PV
(a) pair of features (b) IE
Figure 4.8 Example of IE
Table 4.1. Face types for IE
The type of face in IE The type of face of The type of face of
Feature ff; Feature f7,
CF-CF CF CF
CF-PF CF PF
PF-PF PF PF
CV-CV CV CV
CV-PV % PV
PV-PV PV PV
CF-CV CF CV
CF-PV g PV
PF-PV PF PV
CF-NF CF NF
PF-NF PF NF
CV-NF CV NF
PV-NF PV NF
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4.2 The types of feature interactions
The following five types of interactions are normally encountered:

1) Non-result interaction: The interacting entity is none, which means the two

features are not interacted.

2) Point-result interaction: The interacting entity is a point. According to the
manufacturing requirements and the constraints of non-manifold model, point-

result interactions are not valid so that they are not considered in this research.

3) Edge-result interaction (ERI): The interacting entity is an edge. The two

features can be determined without further processing.

4) Face-result interaction (FRI): The interacting entity is one face. It can be

further classified into four types: CF-CF, CF-PF (or PF-CF), PF-PF and PF-

CV (or CV-PF).

CF-CF: For either feature ft, or feature f1,, the types of the interacting face

are both CF faces.

CF-PF (or PF-CF): The intersecting face appears as a CF face of feature

Jt; while a PF face of feature f,.

PF-PF: The intersecting face is regarded as a PF face for both features.

PF-CV (or CV-PF): The intersecting face represents a PF face of feature

ft; and a CV face of feature f2,.
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5) Volume-result interaction (VRI): The interacting entity is a volume. This

type of intersection is more complicated and needs to be analysed further.

Examples of the above interacting situations are shown in Figures 4.9 to 4.20.

4.3 Herustics algorithm for interacting feature recognition

The basic mechanism of the proposed algorithm is to make use of /Es of pairs of
interacting features. The first step is to traverse all features in the hierarchical
feature-based model. Then, Boolean set intersections are performed on each
feature pair. Finally, the /E is analysed till a relationship is determined for each

pair of features. The algorithm is described below.

Assume two features, 4 and B satisfy the conditions mentioned before, whose

interacting entity is /E 3= SVE,NSVEg. Four possible situations exist.

Situation 1: The interacting entity is none: /E45 = @ (e.g. Figure 4.9).

The relationship between feature 4 and feature B has a non-connection

relationship. No further recognition is needed.

Figure 4.9 Example of IE 3= O
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Situation 2: The interacting entity is an edge: /E 5 = edge.

The two features have a connection relationship (e.g. Figure 4.10). Although
the two features share one edge, their individual validity is not affected.

Therefore, there is no further feature re-recognition.

Rlind Slnt

\\\ ¥
Through Step

Figure 4.10 Example of ERI
Situation 3: The interacting entity is a face: /E 45 = face.

Step 1: If IE, = facee PF-PF, the relationship between the two features is
a connection relationship (e.g. Figure 4.11). The validity of both features is not

affected though there may be some impact on their machining planning.

//

T;

Figure 4.11 Example of FRI (PF-PF)

Step 2: If IE4 = facee CF-PF (or PF-CF), a parent-child relationship is

built with a feature class changed. For example, in Figure 4.12, a blind slot (4 )
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intersects with a through slot (B). The interacting entity /E 5 = CFyjing.sio and
IE 15 = PFrough-siors, Which means a FF face in the blind slot (4) disappears
completely due to the interaction. Thus, the class of feature 4 (blind slot)

changes to a through slot which is a child feature of feature B (through slot).

/
—
/
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Figure 4.12 Example of [Ec =facee CF-PF, L,=1L,
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\\:/ /// 8 7~ , i )

Step 3: If /E,p = facee CF-CF, the two features are merged into a new
feature class or a parent-child relationship is identified according to the
requirements of merger. For instance, two interacting blind slots shown in
Figure 4.13(a) can be merged into one new through slot and become hiding
features of the new feature (a through slot). Another example is two pockets
intersecting a faceeCF-CF. As shown in Figure 4.13(b), although both
features lose a FF face completely, they cannot be unite together because the
new shape created does not belong to any feature class defined in this research.
Therefore, a parent-child relationship is built and one of them becomes the
child feature with a new feature class — through slot. A neural network-based

feature recogniser has been designed to analyse the possibility of merger,

which is described in chapter 5.
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Figure 4.13 Examples of IE¢ =facee CF-CF, IEc =CF,, IEc=CFjy
@) Li=Lydi=d) wi=w;
(b) L3= Ly, ds=dy ws=wy

Step 4: If IE43 = faceeCV-PF (or PF-CV), there is a parent-child
relationship between the two features. A good example of two interacting

pockets is shown in Figure 4.14, which /E 3= CV;and /E 3 = PFy;.

Pocket [

ocket II

Figure 4.14 Examples of IEc =facee CV-PF, IEc =CV|, IEc=PF
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Situation 4: The interacting entity is a volume: /E43= volume.

Step 1: If IE4p = SVE4 or IEsp= SVEp, one feature overlaps the other feature
completely. There is an overlap-hiding relationship. Supposing IE,z = SVE,
and /Ejp # SVEp, then SVE4 < SVEp, that is, feature A belongs to feature B.
Therefore, feature A is called a hiding feature of feature B and will not be

stored in the model data structure. Feature B is the only feature considered

during process planning stage.

Step 2: If IE4p =SVE, and IE;p = SVEp, (i.e. SVE4=SVE}), the two features
overlap each other entirely, and one feature is chosen. There is an overlap-

hiding relationship, and the feature not chosen becomes a hiding feature and

does not being considered later.

Step 3: If f; € IEss, fi € CF-NF (or NF-CF), f; € IEsp and f; € PF-PF, they
are merged to form a new feature if they meet the requirements of merger, i.c.
the new feature belongs to a certain feature class that the system can recognise.
Otherwise, a parent-child relationship is detected. Figure 4.15 shows an
example. The blind hole and the blind slot are merged into a new feature: blind
slot (radiused_slot_end_type). Another instance is shown in Figure 4.16 where
feature A and feature B cannot be merged to form a new feature, the feature B

(closed pocket) is changed to a blind slot and becomes a child feature of the

feature A (parent feature).
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/ PV-PV

/

NF-CF PF-NF

IE \ PF-PF /

Figure 4.15  Examplel of IExg = Volume,

f e IEn, f, € IEas, f; €CF-NF, f €PF-PF,
Li=Lydi=wy h=h;

feature A:through slot feature B:closed pocket

<O

PF-NF

Figure 4.16 Example2 of [Exg =Volume,
f € IEag, /; € IEas, fi eNF-CF, J; €PF-PF
LAw;<Ly+wywo>wy, hy=h;
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Step 4: If f; € IE, and f; eCF-PF (or PF-CF), the class of the feature to
which CF belongs to, is modified and a parent-child relationships is added. For
instance, in the case of Figure 4.17, there exists a face f; €/E i3, fi =CFyjing-sion
and f; =PF\prough-sior.  The blind slot is recognised as a through slot because the

FF face becomes a VF.

PF-NF [

IEAB \

Figure 4.17 Example of IExg = Volume,
f1€ IEag, f1€PF-CF, L;=L;

Step 5 If f; € IE4s, fi €CF-NF (or NF-CF), f; € IE45, and f; ¢PF-PF, e.g. f;
=CF, and f; =NFy, then the class of feature A is changed and the two features
have a parent-child relationship, i.e. feature A becomes a child feature of
feature B. For example, two blind steps (I and II) intersecting in Figure 4.18,

their interacting entity [Exp contains a NF-CF face and does not include a PF-
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PF face; the class of blind step I changes through step due to loss of an entire

face 4 (CF). The through step is a child feature of blind step I.

NN AW,
N '

”’_\tw\{

: . Face A
Blind step | Blind step 11 o
PV-PV
SR |
PF-NF
IE/\R |

NF-PF NF-PF [ PV-PV

\ NFl-CF

Figure 4.18 Example of [Exg = Volume, f;€ 1Eag, fie CF-NF
L <L,w;>wy h;>h
Step 6: If f; € IE 5 and f; e CV-PV (or PV-CV), then the dimension of the
feature with CV is modified while the feature class remains unchanged. Based
on this modification, a parent-child relationship is built. An example is a
through slot interacting with a blind slot (Figure 4.19), where f; € IE 3 , f;
=CVihrough-siot and f; =PViyjingsior.  In this case, the through slot is shortened and

becomes a child feature of the blind slot.
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[EAr

NF-PF

Figure 4.19 Example of [Exg = Volume, fie IEag, fi e CV-PV
d;> ({_7. d, +L < drtLs, hy < h;

[EAn NF-PF PF-NF

Figure 4.20 Example of IEAg = Volume with
two non-connected NFs

Step 7: If IE,p has two non-connected groups o f NF' in one feature (say
feature 4 ), feature 4 is divided into two parts. Figure 4.20 shows a p ocket

(with two non-connected NF's) divided into two blind slots by a through slot.
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Step 8: Otherwise, the relationship between the two features is a connection

relationship.

The above procedure is summarised in Figure D.4, Figure D.5 and Figure D.6 (in

Appendix D). The relationships applied to the interacting features are illustrated

in Table 4.2.
Table 4.2. Relationship between interacting features
Relationship | Conditions feature | Feature | Output
A B
Non- IEpAg =0 Feature A
connection feature B
Connection IEAg =edge feature A
feature B
IEAg =facee PF-PF feature A
feature B
IEAg € volume feature A
fi€ IEaB feature B
fi¢ CF-X, fig CV-X,
two non-connected
groups of NF¢ IExp
IEAg# SVE4
IEAg# SVEg
Parent-child | IEsg=facee CF-PF new Child: new feature A'
class Parent: feature B
IEag=facee PF-CF New | Child: new feature B'
class | Parent: feature A
IEsg =facee CV-PF Child: feature A
Parent: feature B
IEAg =facee PF-CV Child: feature B
Parent: feature A
IEAg =facee CF-CF new Child: new feature A'
Out of requirements of class Parent: feature B
merger
[EAg =facee CF-CF new Child: new feature B'
Out of requirements of class Parent: feature A
merger
IEAg € volume new Child: new feature A'
f€IEas class Parent: feature B
fi€ CF-PF
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IEAg € volume new Child: new feature B'
fi€IEag class | Parent: feature A
fie PE-CF
IEAg € volume new Child: new feature A’
fieIBap class Parent: feature B
f;€ CE-NF
fi€IEas
fie PF-PF
Out of requirements of
merger
IEAg € volume new Child: new feature B'
Ji€IEaB class | Parent: feature B
f; € NF-CF
fi€ IEap
fi€PF-PF
Out of requirements of
merger
IEAg € volume new Child: new feature A'
fi€ IEag class Parent: feature B
f;€ CF-NF
fi€ IExp
f; ¢ PF-PF
IEAg € volume new Child: new feature B'
f€1EaB class | Parent: feature A
fie NF-CF
fi€IEx
f; ¢ PE-PF
IEAg € volume new Child: new feature A'
fi€ IEag dimensi Parent: feature B
f;i€ CV-PV on
IEAB € volume new Child: new feature B'
fie IEag dimensi | Parent: feature A
[, €ePV-CV on
IEAR € volume two Child: two new
two non-connected new features: Ay, Aj
groups of NFe IExp features Parent: feature B

Overlap- IEag € CF-CF merge | Merge | Output: new feature C
hiding Satisfying the Hiding:
requirements of merger feature A
feature B
IEAg = SVEA hiding Output: feature B
IEAg# SVEgR Hiding: feature A
IEAg = SVE3g Hiding | Output: feature A
IEAg# SVEA Hiding: feature B
IEag = SVEx hiding Output: feature B
IEAsg = SVEg Hiding: feature A
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IEAg = SVE, Hiding | Output: feature A
IEAg = SVEg Hiding: feature B
IEAg € volume merge | Merge | Output: new feature C
fie IEag Hiding:

f; € CF-NF feature A

felbw feature B

Jfi€e PE-PF

Satisfying the

requirements of merger

IEAs € volume merge | Merge | Output: new feature C

fi€ [Exp

fi€ CE-NF

Jie IEap

f;e PF-PF

Satisfying the
requirements of merger

Hiding:
feature A
feature B

4.4 Summary

In this chapter, a novel heuristic algorithm has been devised to recognise

interacting features. Basic terms and concepts related to the proposed algorithm

have been introduced. The algorithm for identifying the relationships between

feature pairs has been described with examples. The heuristic algorithm analyses

the Interacting Entity (/E) between each feature pair instead of the new volume

created by all interacting features, making the process simpler. In addition, the

proposed algorithm skips features for which no recognition is necessary, and is

therefore more efficient.
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Chapter S.

ANN:-based Feature Recogniser

A novel neural network-based technique for feature recognition has been
developed to overcome limitations of the existing methods. This includes a novel
input representation with two matrices, a suitable hierarchical net topology, a
conjugate gradient training method and an output node format. This chapter

discusses the ANN-based methodology proposed.

5.1 Design of neural network

The tasks of designing a neural network include:

1) Designing the appropriate input representation which describes features
correctly and uniquely. This representation will directly influence the design

of input neurons in the neural network.

2) Scaling each feature in a range (e.g. [0, 1]) and determining corresponding the
output format. This format decides how the neural network communicates
back to the environment, and therefore potentially devises the output neurons

of the neural network.

3) Choosing an appropriate network model (such as multi-layer feedforward

networks or competitive networks) and determining the topology of neural
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network. This includes the kind and number of neurons, kind and number of

connections between these neurons and the activation functions.

4) Choosing the learning method and specifying the learning parameters, e.g.

learning rate.

Once the network has been designed, it has to be trained to produce the expected
output vectors as a function of a predetermined pattern of input vectors [Santochi
and Dini, 1996]. The training procedure in a supervised learning concerns a set of
training examples forming the input and target vectors. With a pre-chosen
training algorithm, the network can learn by itself. The weights will be modified
step by step in order to minimise the network error. The capability of the network
to obtain a low value of the error depends on several aspects such as the network
architecture, training algorithm, initial values of weights and biases, set of
proposed examples, number of training epochs (the term 'epoch' means a complete
loop of acquisition through all the training inputs and the target vectors) [Santochi
and Dini, 1996]. The following sections will introduce the proposed neural
network-based techniques for feature recognition considering the above-
mentioned aspects: a novel input representation with two matrices, an output node
format a suitable hierarchical network topology and a conjugate gradient training

method.
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5.2 Input representation

As a key interface between the feature-based model and the neural network, a
satisfactory input representation for the neural network has three basic

characteristics:

1) Complete information (e.g. faces, edges and vertices) for feature recognition.
It is extremely important that this representation describes features correctly

and does not distort any information.
2) An identifiable format by the input layer of the neural network.

3) A unique input representation without overlaps. In other words, features

belonging to different feature classes must have different input

representations.
5.2.1 Attributed Adjacency Graph (AAG)

The Attributed Adjacency Graph (AAG) is a face-edge graph describing the
8eométry and topology of a feature pattern. Its nodes and arcs represent the faces
and edges of the object's boundary respectively. The convexity information of the
edge is attached to the arcs. Therefore, AAG can be defined as a graph G={N, C,
A} [Nezis and Vosniakos, 1997], where N is the set of nodes, C is the set of
connection arcs between the nodes and A is the set of connection attributes which
denote the kind of connection (convex or concave). A number of neural network-
based feature recognition systems use an adjacency matrix (AM) converted from

the AAG as an input representation, e.g. Nezis and Vosniakos [1997]. Although
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this method can recognise planar and simple curved faces correctly, it still has

several problems, namely:

1) The representation is ambiguous. For instance, the through-slot and the
through-step shown in Figure 5.1 have the same face-edge graph. It confuses

the neural network and therefore the recognition output is invalid.

e i

Ji

12

Through-slot Through-step

Figure 5.1 Features with the same face-edge graph

Ji || il fe
I7 1101
f2 | 1 L] 1 5, f3
| 0|1 1
RS e ] Tl
Matrix A
Je: 1t
ArArANZ f3. 71
7 HEEE
1A 1|1
Fi g 1 1
R s
Matrix B

Figure 5.2 A feature with two matrices
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2) The representation is not unique. For example, as shown in Figure 5.2, the

blind slot can be represented by either Matrix A or Matrix B.

3) The size of matrix increases quickly as the number of faces consisting of

feature increases.

4) It not only needs to break AAG into sub-graphs using a heuristic method but
also needs to convert each matrix into a representation vector by interrogating
a set of 12 questions about the AM layout and the number of faces in the sub-

graph.

5) The range of features recognised is limited. Features related to secondary

feature faces, such as T-slots, cannot be recognised.

Aiming to solve problems mentioned above, a novel input representation with two

matrices is proposed in this research.

5.2.2 Proposed input representation

As shown in Figure 5.3, a neural network can be trained to differentiate between
the patterns of the slot and the pocket based on the topological and geometrical
information of the SVE. Thus, an appropriate input scheme describing the
topological and geometrical information of a feature SVE can be used for neural
network-based feature recognition. The proposed input representation works in
three stages. The first stage employs the depth-first method to search for all faces
in the feature SVE, builds its UndiGraph and determines the Node Sequence. The
second stage defines the F-adjacency matrix. The third stage constructs a V-

adjacency matrix.
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. o5
! 1 N
S s
e SVE
Feature
(a) Slot
ik /N\\\
AR
‘ \‘\\‘Q)\/ \/ \
s o i ’( N\
R
SVE
Feature
(b) Pocket

Topology of SVE

Figure 5.3 Examples of SVE, where P indicates a planar face
1) Depth-first search method

Depth-first search method is a traversal algorithm to reach all the nodes in a
Graph. When possible, the algorithm always chooses an unvisited node
adjacent to the current node to visit next until reaching a node that has no
unvisited adjacent nodes. If all nodes adjacent to the current node have
already been visited, the algorithm will backtrack to the last node that still has
unvisited adjacent nodes and pick one. In other words, it always chooses to go
"deeper" into the graph. The search algorithm will continue until all nodes in
the graph have been visited. Figure 5.4 illustrates two examples applying the

depth-first search method, with the arcs labelled in the order they are explored.
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Order of search: A-B-D-F-C-E

Process

I: A@B,C)

2: A-B (D)

3: A-B-D (F)

4: A-B-D-F (NULL)

5: A-B-D-F-D'(NULL)-B' (NULL)-A'(C)
6: A-B-D-F-C (E)

7. A-B-D-F-C-E

(a)

Order of search: A-C-E-F-D-B
Process
1:A(B,C, D)

Q e e 2: A-C (B, E, D)
3. A-C-E (B, F. D)
4: A-C-E-F (B, D)

5: A-C-E-F-D (NULL)
6: A-C-E-F-D-F' (B)

: G ) 7: A-C-E-F-D-B

(b)

Figure 5.4 Examples of Depth-first search method
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2)

Comparing to breadth-first search method, depth-first search method requires
less memory because it only needs to record nodes on the current path. It is an
appropriate search method when there are many possible solutions, and only
one solution is wanted, such as the node sequence in UndiGraph in this

research.
Pre-processing

In order to transfer feature UndiGraph into an ordered adjacency list, each
graph node is first assigned a priority order - Node Sequence. A Node

Sequence corresponding to each face is defined as the following:
NSpucei= N 104(6-N, )+ Tjrype*0.1 (5-1)
where NSyc.i is the Node Sequence of face i
Nyis the number of adjacent faces of face i;
N, is the number of adjacent virtual faces of face i;

Thype is the value of the type of face i (the value allocated is shown in

Table 5.1).

Table 5.1 Value of face type

Face type Value
| Cylindrical face
Part-cylindrical face
Conical face
Part-conical face
Semi-spherical face
Planar face
Linear-group
Circular-group

R IQ[AN N[ |WIN|—
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According to the Node Sequence and the algorithm of the depth-first search. a
priority order of faces is determined by an adapted depth-first traversal

method. The process is detailed below.
Step 0: Let
® (OAL be an Ordered Adjacency List, which is initialized as Null.

USet be a set of faces that have not been visited yet.

Step 1: Choose a starting face, F=face;, where

face; is an un-visited face in the feature, face; € USet,

Jace; has the lowest value of Node Sequence among the un-visited faces,

NStucei<=NSjuceke{facek | facekeUset)-
If F = Null, then go to end. Else, go to Step 2
Step 2: Add face; to OAL and delete face; from USet.
Step 3: If USet = &, then go to end. Else, go to the next step.
Step 4: Choose a face face; where
* face; is an un-visited face in the feature, face; € Uset.
* face;is adjacent to face;, face;€{facei | facey is adjacent to face;}.

he un-visited adj
* face; has the lowest value of Node Sequence among t djacent

faces to face;, NSpuce]<=NSfacekefacek | facek is adjacent 1o facei & faceke Uset)-
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If there is no face satisfying the above conditions, go to Step 1.

If there exists only one satisfactory face, then F=face; and face; = facej; Go to

Step 2.

If there are two or more faces satisfying the above requirements, define a new

set, FS and add all faces satisfying the conditions to F'S. Then go to Step 5.
Step 5: Choose the face whose angle with F is the smallest. That is

* faceje FS

® face;has the smallest angle, anglefacej, facei) <= anglegace, facei)e{facek | faceke FS)s

where angle gce;, jaceiy i the angle between face; and face;.

Then F= face; and facej= face;, Go to Step 2

Figure 5.5 summarises the above steps and Figure 5.6 shows an example of

pre-processing.
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OAL=Null

ol

=Y.
F=face:facei € Uset
NS facei<= NS faceke {facek | faceke Uset)

“NullT>—Y

N 1 N
Add face;to OAL
delete face; from USet

USet=J? L
N

Choose Y= face;:face; € Uset
face;j € {facey | facey is adjacent to face;}
N Sfacei <= N. Sfaceke {facek | facek is adjacent to facei, facek € USet)

FS={y/,. ces ynum)ﬂ
v

choose face;j;face; € FS
angle fucej faceiy <= angle fucek facei) € (facek | faceke FS)

[

J, F=face;, face; =face; J

End

Figure 5.5 Pre-process steps
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14 (NS: 35.6) s
90° 90°

[1:(NS:24.6) FC{7Ns: 35.2) FE{ A (NS: 24.6) |

The UndiGraph of Radiused Blind Slot

| f1(NS: 35.6)
L/ (NS: 24.6) = /2(NS:35.2) [ £:(NS: 24.6) |

ber | OAL | USet B
Li\lum ]NU” Untafs i} | fi 7
B Ji (oS3, 14} /2
3 VIR {5 f} fs
4 VINENE {/4} fi
5 J1.l215.14 @ Null

Figure 5.6 Pre-processing of Radiused Blind Slot
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PLANE

Figure 5.7 Simplification of topolog

With the number of faces increased, the size of matrix will become quite large.
For example, the pocket shown in Figure 5.7 (a) consists of seven faces and
the size of the adjacency matrix will be 7#7. In practical cases, the size of the
matrices can be reasonably decreased. As shown in Figure 5.7 (a), the
topological information is similar to the pocket in Figure 5.7 (b) and can be
described as the graph shown in Figure 5.7 (¢). If the number of faces in the

OAL is larger than 5, the OAL should be simplified. The rules for

simplification are described below.
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Rule 1: A series of faces, face;, faceisy,...., face,,, are regarded as a Linear

Group if they satisfy the following conditions:

int(NS,,;) = 35, where j=1, ..., n-1;

int(NS;,;) = 24, where j=0, n;
®  They are consecutively connected;

face; and face,, are not connected with each other.

Rule 2: A serial of faces, face; faceiss,...., faceiy,, are regarded as a

Circular Group if they satisfy the following conditions:
L int(NS,-+j) =35, where j=0, | - -
® They are consecutively connected;

*  face; and face;,, are connected with each other.

F-adjacency Matrix

F-adjacency matrix is used to recognise five primitive features: round hole,

conical hole, general hole, slot/step, pocket. It is defined as I =[ajjlixj, where

l<=i<=5 and 1<=j<=5.
[y~ ety - ey -~ hg -~ s

I
Ay dg Gy Gy s

% \
I, =|a; a3 Gy Gy O

~

~ |
a, ay Ay d“\ a;tS

S
Sal
a;, ds; ds dsy s |
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The layout of Ir is ergonomically designed to have a one-to-one
correspondence between the feature pattern and the input matrix. The middle
elements of Ir, i.e. a; show the type of the ith face, face; (e.g. 6 for a planar
face). Table 5.1 denotes the values for various face types. Other elements of
Ir (a; where i#)) indicate the connection between the ith and jth faces of the
object. A numerical value between 0 to 9 is allocated according to the

relationship between the two faces. The values are given in Figure 5.8.

The layout presentation of I is symmetrical so that the input format consists
of 15 nodes, a;), ap, ..., ais, ax, @, ..., G ..., ass. Some F-adjacent

Matrices of features are presented in Table 5.2.

3: 90°

o o 2 O ,90

5: 180 9: parallel

8:(270°,360°)
6: (180°270°)

0: no relationship
1: 2P

Figure 5.8 Values of relationship between two faces

123



Chapter 5 ANN-based Feature Recogniser

Table 5.2 Examples of F-adjacency Matrix

| Feature F-adjacency matrix
Blind conical hole [340 006 000 000 000 o
(3 4 0 0 0] /] : '
6 0 0 0 ‘Ii
l,= 0 0 0 od
0 0 /
i 0.
Open pocket 630406330640600
(6 3 0 4 0]
6308 0
I, = 6 4 0
6 0
0]

4) V-adjacency Matrix
Based on the above definition of SVE, the V-adjacency matrix /; can be

determined in the following steps.

Step 1: Determine three pairs of boundary planes in the x, y and -

directions, which can be represented as +x, -x, +, -y, tzand -z.

Step 2: Define the SVE for the given feature, which is completely enclosed

based on the above six directions.

Step 3: Attach the attributes of FF/VF to all faces in the SVE.

Step 4: Define a 6*6 matrix, /, showing the relationships between VF faces

in the SVE. The middle element, b;, show whether there is a VF in the
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corresponding direction. If in the ith direction (e.g. +x ), the given SVE exists
a VF face, then b; = 1; if not, b; = 0. The elements, b;; (i#/), describe whether

the two VFs, corresponding to direction i and direction j, are connected or not

(i.e. 1 or0).
"bll b12 bl'% bl4 bli b16 ]
b?. 1 b22 b21 b24 bZi b26
I = b"l b32 b33 b‘M b"ﬁ b36
T by by by by bis by
by, by, by by bss by
_bﬁl b62 b63 b64 b65 b66 _‘

Similarly, the symmetric characteristic of V-adjacency matrix is used to the

simplification of its input. A vector consisting of 21 codes is input to the
neural network. That is, b;;, b1z ..., bis b2 b2 ..., by, ..., bss. Two

examples are provided in Table 5.3.

53 Output format

The output of an ANN is the result of many operations with the input and weights.

Commonly, a good output format should have the following characteristics:

1) Representation scheme: It is essential that the output describes the results
clearly and correctly as expected. In this research, the final result is a feature

class that the given feature belongs to.
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 Feature | V-adjacency matrix

Table 5.3 Examples of V-adjacency Matrix

Slot 101 010101101010110100
b /4
1 01 0 1 0 A
0110 — % Q
Tl dF 6 R X
I, = e
; 11 0 | |
0_

Step 101110000001 010110100

2)

1

S D

By
/ \\\\1 7

f\\[,r": '!/’ \\ Q

N D ‘ X

J

_—0 =

Eetll S S
—_— e e O

SO SIS

Appropriate format: Similar to the input format, the output is designed as a

nodal value in the format of a vector. Because of the proposed hierarchical

architecture of ANN-based feature recognition (described further in section

5.4), the number of feature classes to be recognised is small. Thus, it is

possible that each output neuron represents certain feature class.

Activation method: For feature recognition, it is not practicable to activate

two classes at the same time. Therefore, only one of the output neurons will

be activated (i.c. its value will be greater than the threshold value, 0.5). If one

or more output neurons arc activated, the pattern presented to the network

does not belong to a known class, while the class with the greatest value is

considered.
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5.4 The topology of neural network

ANN-based Feature Recogniser

As mentioned before, the proposed feature classification is hierarchical, where the

sub-class is regarded as an instance of its parent class. Figure 5.9 shows the three-

level hierarchical architecture of ANN-based feature recognition.

Different

topologies and learning methods are designed according to different requirements

of the three levels. The characteristics of the feature recognition are:

Lever 1

Lever 2

eature recognise

[

round hole conical hole
recogniser recogniser

slot/step general hole
recogniser recogniser

pocket
recogniser

Lever 3

blind round hole
recogniser

through round
hole recogniser

open pocket
recogniser

close pocket
recogniser

through slot
recogniser

blind slot

recogniser

through step blind step
recogniser recogniser

Figure 5.9 Hierarchical neural networks system

1) Feature recognition is mainly based on the 3D geometrical and topological

information of features, not on the input probability. In addition, it is possible

to collect enough samples including inputs and targets due to various

machining features existing in practical industry.
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2) Machining feature recogntion is a complicated process, for which the entire

information including both geometric and topologic information of features

recognised needs to be input.

According to the above requirements, comparing to single-layer feedforward
network, competitive network and recurrent network, multi-layer feedforward

network are more suitable for this research. They are also the choices for most

feature recognition systems.

The first level is set to recognise the five primitive feature classes. The F-
adjacency Matrix input vector is used, which means a 12-neuron input layer. The
output layer consists of five neurons, each representing a feature class, i.e. round
hole, conical hole, general hole, slot/step, and pocket. In order to decide the
structure of neural network, several different compositions have been tried by
changing the number of hidden layers, the number of neurons in each hidden

layer, and also by adjusted learning rate. The structure, which converges to the

error goal with the fastest speed, should be chosen. Some results of these

experiments are given in Figure 5.10 (a-c) and appendix B. Based on these

results, the network consisting of three layers with a hidden layer of 17 neurons

has proved to the most appropriate structure (Figure 5.11).

The second and third levels are used for further recognition based on the first leve]
for computer aided process planning (CAPP) applications. The structures of
neural network for the second level recognition are designed following the same

steps. For example, with various experiments, the slot/step classifier is designed
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using a V-Matrix as input, which consists of three layers, an input layer of 21

neurons, a hidden layer of 6 neurons and an output layer of 4 neurons.

10

Training-Blue Goal-Black

10”
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Performance is 0.0119991, Goal is 0.012

T T T T

0
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Performance is 0.0152442, Goal is 0.012
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Input Layer Hidden Layers Output Layer

Figure 5.11 Three-layer Feedforward neural network for level 1 recogniser

5.5 Error function

The error function E, can be defined in different ways, for example, the mean
square error, the absolute error, etc. [Patterson, 1996]. This research uses the

mean square error, which equals the mean of the squares of the deviations from

target. It can be indicated as

E =ii E% (5-2)

EX =%Z":(o,§" -’ (5-3)
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where
Xi is the ith training pattern.
m is the number of training pattern.
E* is the squared error for input X;.

o,f‘" is the output value of kth neuron in the output layer using input X,
th' is the target value of kth neuron in the output layer using input X;.

n is the number of neurons in the output layer.

The factor 1/2 has been included for mathematical convenience [Patterson,
1996]. The mean square error penalises large deviations and provides a
differentiable, decreasing function of the difference between the computed
and desired outputs [Patterson, 1996]. It is one of the most commonly used

error measures in back propagation neural networks. According to the results

of experiments, the mean square error is set to 0.012.

5.6 Training of ANN

Before the process of recognition, the neurons in neural network have to be

trained with training examples. One of the supervised training methods,

commonly used in current feature recognition systems, such as Chen and Lee

[1998], Nezis and Vosniakos [1997], Zulkifli and Meeran [1999], is the back

Propagation algorithm. The basic BP algorithm adjusts the weights in the steepest
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descent direction (negative of the gradient) [Demuth and Beale, 2000]. Although
this direction makes the performance function (Error function E) decrease most
rapidly, it does not necessarily produce the fastest convergence. Alternative
approaches, known as conjugate gradient algorithms, make a search along

conjugate directions, which produces generally faster convergence than in the

Steepest directions. A set of mutually conjugate directions can be achieved

through the following steps.
Step 0: An initial weight vector ( W% is chosen randomly.

Step 1: The steepest descent direction (dp) is selected on the first iteration.

which is the negative of the gradient (go),
do=-go (5-4)

go=VE(W?) (5-5)

where E(W) is the error function made up from the outputs of all the input

patterns, and VE(W) is the the negative of the gradient vector at W.

Step 2: The weights are updated by an optimal distance (called learning rate,

&) along the current search direction,

W= W +od. (5-6)

Here, ¢4 is determined using a line search method proposed by Charalambous

[1992], which minimises the error function along the current search direction.

Assuming a function (@) is defined as
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(o) = E (WY +ady) (5-7)
and it satisfies
(@) <y () (5-8)
v () =dy(a) da (5-9)

Based on the above definition, ¢4 must satisfy two requirements shown below:
Requirement I:
v (a) < y(0)+ 1y’ (0) (5-10)
where # is a small number less than 0.5.
Requirement II:
ly’ (o)l < -0 ¥’ (0) (5-11)
where o€ (0,1) and o< 4.

Then, a value of ¢ is determined by a line search algorithm, which is based on

the cubic interpolation. The algorithm is described below.

Suppose that the initial point 7;, o = a;(P;) and the positive step size taken is -

a= max(e,,2,) (5-12)
where
a =- i (5-13)
q so
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Chapter 5
so=di’ VE(Ws) (5-14)
oL, is the value obtained at the previous iteration.
AE is the last value of E. At the beginning, AE must be user-
supplied.
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d," denotes the transpose of dx.

Figure 5.12Illustration of the line search algorithm [Charalambous, 1992]

Then, the step size for the next point is produced based on the following rules:

1) If it satisfies both requirements (i.e. Ps in Figure 5.12), the line search will

stop.
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2) If the point has negative slope and the function value is greater or equal to

y(0), such as P, and P;in Figure 5.12, then a large step size for the next

repeat is taken. That is

a=0.la (5-15)

3) If the point has negative slope and the function value is less than (), for
example, P; and P;in Figure 5.12, then the next step size is set:

o, =a+a (5-16)

a=10a (5-17)
4) If the point has positive slopes but violating at least one of the requirements

(e.g. P;and Psin Figure 5.12), then

or = max (ye, min(a.,(1- 7)) (5-18)

Where v is usually set in the range (0, 0.1)

Ex? is the minimum point of the cubic function C( @) that passes through points
0, ©y)) and (c_v,c//(a,+c—x)) having slopes s; at a=0; and s at « =0!,+c—r,
where.

s, =d;VEW® +a,d,) (5-19)

s=d'VEW™ +(a, +a)d,) (5-20)

Step 3: The stopping criterion (performance goal to satisfy the error set) is

examined. If it is satisfied, the training stops; otherwise proceeds to the next step.
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Step 4: The new gradient vector of performance (gi;) is evaluated, which is

orthogonal to the previous search direction,

di gr1=0 (5-21)

Step 5: Each successive direction (dy+;) is chosen as a linear function of the

current gradient and the previous search direction (dy),

dys1 = -G 1+ Bidi. (5-22)

Step 6: Set k=k+1, go to Step 2.

Two search functions have been tested to find the coefficient /& in order to

determine the direction to minimise the performance function; they are:

1) Fletcher-Reeves

.
R (5-23)
8r-18k-1
2) Polak-Ribiere
2
ﬁz(gk —Tgk—l) 8k (5-24)
8r18k

It can also be demonstrated that the Polak-Ribiere form provides slightly better

results than the other expressions because it gives a small value for f. Figure

5.10 (a) and Figure 5.13 provides the results of experiments comparing Polak-

Ribiere form with Fletcher-Reeves form.
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5.7 Summary

This chapter has presented new techniques that use neural networks to improve

the capability of current feature recognition methods. They are different in

several respects. F-adjacent and V-adjacent matrices not only capture the

topological information uniquely and clearly but also describe the parallel

relationships which previous work cannot provide. The representation is suitable
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for the hierarchical feature classification and has been successful for the first level
and secondary level classifications. The conjugate gradient algorithm trains the

network in the directions with the fastest convergence.
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Chapter 6.

Compute Aided Process Planning (CAPP)

In the production preparations, the first and most important task is making a
process planning, which provides information to the manufacturing workers on
how to produce the designed products [Zhao and Wu, 1999]. With the growing
trend towards quick response to global market changing and flexible automation
production, fast and flexible generation of process plans has become essential in
the new manufacturing systems. This chapter presents the work on generative

CAPP for prismatic parts incorporating features technology, artificial intelligence

techniques and fuzzy evaluation.

6.1. Requirements of CAPP

In order to overcome the weaknesses of existing CAPP systems, there are six
aspects to consider: the level of automation, suitable knowledge representation.

adaptability, flexibility, integration and efficiency.

1) Level of automation: Activities in process planning should be ideally carried

out automatically. However, user intervention is still needed, such as

improving the process plan or editing alternatives provided by system, etc.

2) Suitable knowledge representation: It is difficult to formalise experience of

many years of manufacturing activities in a knowledge base which can be
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modified and updated. Database structure and knowledge definitions are two

major factors for a suitable knowledge representation.

3) Adaptability: On the one hand, each company has its own manufacturing
environment, e.g. products, planning rules, manufacturing resources, standards
and documentation, and a CAPP system should be able to adapt to different
user requirements. On the other hand, the rapid change in industry has an
impact on the planning and requires adaptability in CAPP. Therefore, it is
necessary for the CAPP system to have an open and flexible architecture and a

continually updated knowledge base to meet the current and future needs.

6.2.  Architecture of CAPP

This research aims to integrate CAD and CAM through CAPP consisting of four
steps.  First, each feature input from CAD for each feature generates its
corresponding machining operations, including the operation type, machine tool
and cutting tool, etc. It proceeds to determine the precedence relationships among
the features considering various constraints for design and manufacturing. An
algorithm is then developed to group machining operations. Finally, the sequence
of operation groups is obtained with a genetic algorithm.  To fulfil the

requirements and the steps mentioned above, an architecture of a CAPP system

for prismatic components is proposed, which is shown in Figure 6.1. A brief

description of each sub-module is given below:
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Figure 6.1 The proposed architecture of CAPP
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D

2)

3)

4)

S)

A sub-module for managing resources. As a core of a CAPP system,

continually updated and maintained resources are necessary for practical

applications in industry.

A sub-module for selecting machining operations, machine tools and cutting

tools. After determining the operation type for each feature, corresponding

machine tools and cutting tools are chosen.

A sub-module for identifying feature precedence list. The machining features
on the component are recognised by an ANN-based feature recognition
module built at an earlier stage. A feature precedence list is identified based

on the features’ relationships and the design intention. The feature precedence

list affects process planning greatly.

A sub-module for grouping machining operations. Machining operations are
grouped based on tool approach directions (TADs) and features. The

operations in a group will be sequenced later, but the order of operations

tequired for each feature is mandatory, e.g. drilling is executed before reaming

for a hole.

A sub-module for process sequencing. In this research, a method for

generating process sequence has been presented that satisfies both the
constraints of the geometry of the component and the restrictions due to
manufacturing rules, while at the same time minimising the component
machining cost and time. The problem has been formulated within a Genetic
Algorithm (GA) framework. A population of feasible solutions (process

sequences) is generated randomly by a precedence constraint initial algorithm.
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Then, the population of feasible solutions is bred using selection, crossover
and mutation operators. The solution with the best fitness is considered as the
final result. A particular calculation for the fitness function has been
developed for the proposed GA, which include evaluating degree of
satisfactory of process sequence rules using the analytical hierarchy process
(AHP) which is a technique for fuzzy analysis, approximated calculations for
manufacturing cost and time, and an intelligent neural network for allocating

weights based on fuzzy evaluation of features. In the next chapter, the sub-

module is described further.

All of these sub-modules communicate with each other through a relational

database. The following section describes four key issues relevant to the

proposed CAPP: resource management, selection of machining operations,

identification of feature precedence list and grouping machining operations.

6.3.  Resource management

Resource management maintains all information in an integrated database about

resources required for process planning. A suitable database needs to be

designed, which requires a large amount of previous work including analysis,
formalisation and representation of various manufacturing parameters and

Constraints, expert knowledge and experiences. Based on the data investigated

from two companies, a manufacturing database is defined for this research, which

contains above information with six libraries:
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1)

2)

3)

4)

Machine-tool library

It stores all machine tools available in the given industrial environment. Each
machining tool is attached with several technological parameters that must be
considered during planning, such as tolerances, spindle rigidity, maximum

traverse of X, Y and Z axis, and cost.
Cutting-tool library

The cutting-tool library stores and provides the user with the information of
cutting tools available for process planning. Cutting tool parameters consists
of two types: common parameters for all cutting tools, such as cost, maximum
cutting speed, maximum depth of cut, material, tool rigidity and accuracy; and
specific parameters, for example, face milling concerns corner angle, axial-
rake angle, radial-rake angle, true-rake angle and inclination angle while

peripheral milling includes cutter diameter, cutter teeth, flutes, relief angle and

the width of land.
Material library

It includes all the materials for both components and cutting tools, material
properties (e.g. rigidity, intensity and toughness), shape and size of raw

materials.
Machining operation library

The machining operation library includes the information for all machining

operations. Each machining operation contains not only the type of operation,
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but also corresponding machine tool and cutting tool. In addition, three

aspects of knowledge are concerned:
e capabilities, e.g. the achievable roughness
e constraints, for example, the maximum and minimum machining length

e machining cost and time
5) Process route library

According to various technological standards, manuals and practical industrial
environments, many standard process routes have been established for typical
features. In the process route library, each feature has one or more standard
process routes and a standard process route consists of several machining
operations in a prescribed sequence. As a collection of these standard process
routes, the process route library gives a frame of the activities for each process

route associated with the feature.
6) Evaluation library

Evaluation library concerns information for process sequencing evaluation
including exchanging time, exchanging cost and the precedence

reward/penalty values between machining operations.

Aiming to increase the effectiveness, it is necessary to build the relationships
among the libraries. These relationships are multiple but limited. For example,

the relationship of the machine tool library and the cutting tool library is multiple,
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where a machine tool can be associated with a set of cutting tools, and a cutting
tool can also be used on several machine tools. On the other hand, the number of
possible combinations between machine tools and cutting tools is limited, only a
specific set of cutting tools can be assembled on a given machine tool. The

detailed relations among these libraries are shown in Figure 6.2.

Machine- Cutting- Material
tool tool Library

Library Library

Process
route
Library

Operation
Library

Evaluation
Library

M — M: Many-to-Many relationship. One record in first library can be
related to many records in second library, and a record in second
library can have many related records in first library.

M — 1: Many-to-One relationship. One record in second library can be
related to many records in first library.

1 —1: One-to-One relationship. The two libraries can have only one
record in each that are related to each other.

Figure 6.2 The relationships between libraries
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6.4.  Selection of machining operations

This sub-module is designed for selecting machining operations with three

functions.

1) Extraction of feature information from the feature-based model

As described in Chapter 3, an object-oriented feature-based model is used in
this research, which defines a component in terms of its features. From a
process planning perspective, a feature can be made in a raw stock by a
machining operation or a process route consisting of several machining
operations. In order to choose a machining operation or a process route
suitable for a feature with specifications, the following information in the

feature-based model should be extracted and considered:

feature class

nominal dimensions

dimension tolerance
e surface roughness

2) Interactive input

An interactive interface is designed to input some technological data that the
CAD does not provide but the CAPP requires, such as the shape and size of

raw material, production batch size, cost and time requirements.

3) Selection of appropriate process routes
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Based on the process route library, an appropriate process route can be
determined according to design specifications. Because the process route
library has defined related facilities for each machining operation, once the
operation route has been decided, the required machine tools and cutting tools
are automatically selected. The task is described in Figure D.7 (in Appendix

D), which can be divided into three steps:

Step 1: Find all feasible process routes from the process route library that

are suitable for the given feature class, which can be defined as:

PRi={prilapri29---,prlj"’pri"} (6-1)

where PR; is a set of all feasible process routes that can be chosen to

machine the ith feature based on its class, and
prij is the jth process route candidate to machine the ith feature
prij ={Oyj1, Oyz,..., Ojjs,., Ojip } (6-2)

Oyjs is the sth machining operation in the jth process route

candidate to machine the ith feature, and
Oys ={P, M, T, TAD, C,-MT} (6-3)
where P is operation type,
M is machine tool for the operation,

T is cutting tool for the operation,

TAD is machining approach directions for the operation,
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C is operation cost, and

MT is machining time of the operation.

Step 2: Select all feasible process routes that can achieve the requirements
(dimensions, tolerances and surface finish) of the given feature from the set
PR;. Based on the comparison between design specifications and machining
capability available, all those process routes that cannot satisfy the design

specifications are rejected from the list of feasible process routes, that is

FPR;={pri1, priz,..., DTijss PTim} (6-4)

where FPR; is a set of all feasible process routes to machine the ith

feature, which can satisfy the design specifications, and

FPR;is a subset of PR;, that is,

FPR;c PR, (6-5)
pri€ PR, (6-6)
ms<n (6-7)

Step 3: Evaluate remaining feasible process routes

If a feature has more than three remaining feasible process routes, all
remaining feasible process routes for this feature will be evaluated based on

their manufacturing costs and three feasible process routes with the minimum

manufacturing cost are finally chosen.
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6.5. Identification of feature precedence list

Tool Approach Direction (TAD) is defined as a direction from which a cutting

tool can access a machinable volume. Here, a valid TAD for a feature should

satisfy the following conditions:

1) Accessibility: Accessibility means that along the TAD, the cutting tool can be
positioned to machine the feature without any interference. If not, the TAD is
considered invalid, e.g. interference with other features. The accessibility of
TAD can be examined based on the feature relationships (e.g. parent feature

and child feature) and its location relative to the adjacent features.

2) Tolerance and surface finish requirements: The machining operation along

the TAD should not violate tolerance and surface finish requirements of the

machining tools.

3) Availability of cutting tool: A TAD can be considered valid only if there is a

cutting tool available to machine the feature along the TAD.

For a feature, potential TADs are determined at the design stage, but the validity
of a TAD depends on the feature class and feature relationships. Here, a feature

Precedence list specifying the order of all features of a component is built by

considering the feature relationships and design intention. The constraints of
feature precedence keep all TADs valid for the following stages of process

planning.
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Based on the definition specified in Chapter 4, the feature relationships can be
used as a basis for the generation of a feature-precedence graph, which can be

generally defined as

G=(P, D) (6-8)

P=| |E (6-9)

where P is a set of nodes representing the features,

D is a set of directed arcs, each of which represents a precedence

relation between two features, and
P; represents a precedence subset for the features

Some features may belong to two or more precedence subsets, which implies that
the subsets P;, P,,..., P,,..., P, are not always mutually exclusive. Also, each
precedence subset is independent of the precedence relations, which means no
directed arcs exist among precedence subsets. For example, the feature-
precedence graph for the given component is shown in Figure 6.3. There are four
precedence subsets, which can be represented as P; ={1, 5}, P, ={1, 3, 7}, P; ={]1,
3,4,2} and P, =(6, 8, 9}. It can be seen that feature 1 and feature 3 exist in three
and two subsets, respectively. The non-exclusiveness of precedence subsets may
lead to some difficulties for operation sequencing. In this research, to eliminate
such non-exclusiveness and reflect the design intention, a feature precedence

algorithm has been proposed as the following:
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Figure 6.3 An example of feature-precedence graph

Step 0: Initialise feature precedence list, Z, based on the design procedure,

Lzﬁ]—)ﬁz,...,ﬁﬁn
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struct node

{

int no; //The feature ID
int flag; //The attribute of feature
independence; ‘0’ represents

the feature 1is independent,
while 1 represents the
feature 1is dependent on other
features.

int pNO; //The precedence 18D the
default value is “0”

struct node *next; //A pointer to the next

feature

}

struct node £ty

Step 1: Travel through the feature precedence list from ft; to ft,, and set iteration

index i =1, and the precedence index k = 0
Step 2: Select the ith feature, f#;, from the feature precedence list.
Step 2.1: If ft; is an independent feature, then go to the next feature ft; .
Step 2.2: If f1; is a dependent feature, then
1) If ft,pNO = 0, then k= k+1, and f1;,pNO= k
2) Travel through the feature precedence list from f7;,; to f,.

If feature ft; has a precedence relation with feature f#;, (j>i), then

e If ft;,pNO =0 then ft,pNO = ft,pNO
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e If f#;,pNO # 0 and ft;pNO> f;.pNO, then

ft.pNO= ft;,pNO,  where ft,pNO =f1,pNO, and s =1, ..., n

Jt.pNO= ft,.pNO-1, where ft,,pNO > f#,pNO, ands=1, ..., n

e If ft;,pNO< ft;.pNO, then

fte.pNO= f1;,pNO,  where ft;,pNO = ft;,pNO, and s=1, ..., n

fts.pNO= f1,.pNO-1, where ft;,,pNO > ft;,pNO,ands=1, ..., n

If feature ft; needs to be machined prior to feature f#;, (j>i), then exchange

the positions of feature f; and feature ft; and set i = i-1

Step 2.3: Set i=i+1. If i > n, then go to end. If not, go to Step 2.1.

Based on the above procedure, a complete feature precedence list is built to reflect

the design procedure and precedence constraints. Figure D.8 (in Appendix D)
summarises the detailed procedure and Table 6.1 provides an example based on

the component shown in Figure 6.3.

6.6.  Grouping of machining operations

A crucial step in the proposed process planning is to group machining operations.
To achieve the objective of minimising changes of setups, machine tools and
cutting tools, features that can be machined in the same orientation of the
component on the machine table, should be machined together or successively.

The feature TADs are closely related to the component orientation on the machine
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table. Therefore, operations for features, which have the same TAD and the same

precedence constraints, are collected into a group.

Table 6.1 An example of building feature precedence list

Step no Feature precedence list
0 list 1 & 3 4 5 6 7 8 9
pNo
1 list i 2 3 4 5 6 7 8 9
pNo 1 1 1
3 list 1 [ 3 5 6 7 8 9
pNo | 2 1 2 1
3 list 1 (4 2 5 6 7 8 9
pNo 1 2 1 2 1
i st | 1 I 4 | 2 | 5 | 6 | 7 | 8 | 9
pNo | 1 1 1 1 1 1
5 list 1 3 [ 2 5 6 7 8 9
pNo | 1 1 1 1 1 1
6 list 1 3 4 [ 5 6 7 8 9
R pNo 1 1 1 1 1 1
7 list 1 3 4 2 B 6 7 8 9
pNo | 1 1 1 | 1 1
8 | st | 1] 3] 4] 25 B 7 | 8 |9
oo pNo 1 1 1 1 1 2 1 2
9 list 1 3 4 2 S5 6 B 8 9
pNo | 1 1 1 1 1 2 1 2
10 list 1 3 4 P 5 6 ' 8 9
pNo | 1 1 1 1 1 2 1 2 2
list 1 3 4 2 5 6 7 8 9
pNo 1 1 1 1 1 2 1 2 2
list 1 3 4 2 5 6 7 8 9
pNo | 1 I 1 1 I 2 I 2 2

: The ith feature is being checked.

| i - : The ith and the jth features need to be exchanged.

6.6.1 Determination of TADs

The determination of TADs is a complicated problem concerning with fixture

clamping, surface analysis and tolerance. It has been addressed by some
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researchers. For example, Kim and Jeong [1996] proposed an algorithm to find
feasible TADs for sculptured surface manufacture; Sarma and Wright [1996]
presented a method for selecting the access faces to features based on minimising
the number of setups, and the number of tool changes; and Yang er al [1999]
gave a general algorithm to obtain a feasible TAD for sculptured surface
machining based on convex analysis. In this research, TAD determination is not a

main issue, and therefore, it is simplified based on features and setup changes.

As described in Chapter 3, for prismatic components, TADs are usually specified
in the world co-ordinates. Thus, six possible TADs are assumed, i.e. the six
normal directions of a prismatic block (+x, -x, +y, -y, +z, -z). In order to
determine feature groups with the same TAD, a six-binary ordered vector is
defined to represent feature TADs. For example, if a through hole has two
candidate TADs, i.e. +y and -y, then its vector is (0, 0, 1, 1, 0, 0). If a through
slot has vector of (1, 0, 0, 0, 1, 1), the feature has three candidate TADs, +x, +z
and —z. Features with multiple candidate TADs may be collected into more than
one group. In order to simplify the situation, features are first evaluated to select
their individual tool approach direction. The proposed approach to TAD selection
is based on minimum setup change, which is shown in Figure D.9 (in Appendix

D).

Step 0: Let

UTAD be a set of features whose TADs have not been determined yet.

UTAD = {f1, s fi s s J }
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where n is the number of the features whose TAD has not been determined

yet.

FT; be a set of TAD candidates that the ith feature, f; € UTAD, has for its three

candidate process routes.

FTi= {TAD,'], wsioy TADik}, i=1, 2, e ()

where 0<k<3

Step 1: Calculate the number of features in UTAD, NT;, which have the
corresponding candidate TADs, j (j=1, 2, ..., 6) represent six candidate TADs: +x,

-X, +y, -y, +z and —z.

Step 2: Choose the TAD;, D=TADj, where

NT;> NTy

Step 3: Determine the TAD for all features, f;, which have a TAD candidate=D,

that is,

De FT,~

Then, delete these features from UTAD.

Step 4: If UTAD = O, then go to end. Else, go to Step 1.

Step 5: End.
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6.6.2 Grouping algorithm

The machining operations for the features with the same TAD will be grouped.

The detailed steps are described below.

Step 1: Initialise the first group, G,, m=1, by inserting the first feature f; from

the feature precedence list , L, into G.

Step 2: Select a new feature, f; from L. If L is NULL, then go to end.

Step 3: Compare the TAD of the new feature f; with the TADs of the candidate
groups. If there exits a group with the same TAD, Gj, then go to next step. If not,

go to the step 5.

Step 4: If the feature has the same precedence constraints with the features in
group Gj, then insert feature f; into G;. Delete feature f; from L, and go to step 2.

If not, then go to next step.

Step 5: Let m=m+1. Create a new group G, and insert feature f; into G,,.

Delete feature f; from L. Add G,,into the candidate groups. Go to Step 2.

The above procedure is summarised in Figure 6.4.
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f/—)Gl‘ i=2,m=1
delete f; from feature precedence list L
TADg; = TADy

Select f; from L

\
-

)

TADg; = TAD;?

Y

. N f, 4 Gj
Restraint? delete f; from feature
precedence list L

-y Y

j=j+l1

#

j>m?

N

b 4

m=m+l,fi > Gy
delete f; from feature precedence list L
TADGm = TADﬁ

=

=i+l

i

Figure 6.4 Procedure of grouping machining operations
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6.7.  Summary

This chapter has proposed a methodology for CAPP based on features extracted
from the feature-based component model. After a brief discussion on the
requirements of CAPP, the proposed CAPP architecture is described with five
sub-modules: resource management, selection of machining operations, machine
tools and cutting tools, identification of feature precedence list, grouping of
machining operations, and process sequencing. The first four sub-modules have
been described while the last sub-module for process sequencing will be detailed
in the next chapter. Operation selection, feature precedence list and operation
grouping are fundamental for process sequencing. Feature precedence list, which
reflects design intention and precedence constraints, not only maintains the
validity of TADs, but also simplifies the sequencing problem. In addition,
machining operations are grouped based on features and TADs in order to
minimise the changes of setups, machine tools and cutting tools. The four sub-
modules form a basis for process sequencing, which is described in the next

Chapter.
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Chapter 7.

Process Sequencing

In developing computer-aided process planning (CAPP) systems, the
determination of the operation sequence is one of the most important tasks and
also a bottleneck task in the process [Qiao et al, 2000]. As a complex decision-
making process, process sequencing is influenced by several constraints, such as
tool accessibility, tolerance requirement, feature relationships, cost and time, etc.
Therefore, manufacturing feasibility, production economy and optimal utilisation
of manufacturing resources need to be considered and some artificial intelligence

(AI) reasoning techniques are required.

This chapter determines the process sequence required to produce the component
with the objective of optimising machining cost and time, while satisfying the
precedence constraints. As described in Chapter 6, process sequencing is based
on the operation selection made at a previous stage. The process routes for
features, and machine and tool information are determined in advance and hence
no process alternatives are considered at the stage of sequencing. It is also
assumed that the cost and time of machining operations, and the change cost and
time between any two operations are given in advance and deterministic. In
addition, the problem of grouping machining operations has been done (see

Chapter 6) and the sequence is based on these machining operation groups.
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Let n=the number of operation groups

Let i=1

Operation sequencing for
the ith operation group

i=i+1/

|

Group sequencing

Figure 7.1 The procedure for process sequencing

As shown in Figure 7.1, the proposed process sequencing includes two stages:
Operation sequencing within a group and sequencing of operation groups. This
chapter discusses process sequencing covering operation sequencing in a group

and sequencing of operation groups using a genetic algorithm, evaluation of
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sequencing rules, evaluation of cost and time, determination of relative weights

and evaluation of feature complexity.

7.1 Genetic Algorithm

This research has developed a genetic algorithm for process sequencing,
considering multiple machining sequence rules, cost and time simultaneously. It
starts with some valid solutions generated randomly, then makes a random change
to them and accepts the ones whose fitness function is reduced. The process is
repeated until no changes for fitness function reduction can be made. Figure D.10
(in Appendix D) depicts a diagram of the proposed genetic algorithm, which
contains four parts: encoding scheme, initialisation, fitness function calculation

and operations.

7.1.1 Encoding scheme

The first step in formulating a genetic algorithm is to identify an appropriate
encoding scheme to map the actual problem solution, that is genetic string
representation scheme. A binary code, which can usually be used in a genetic
algorithm, is not suitable for direct use in operations sequencing, especially for
complex components, as longer gene code chains will result. In this case, based
on the precedence constraints, a numeric code consisting of non-negative numbers

is devised to solve problem of sequencing, called chromosome.

1) Chromosomes for machining operations sequencing
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Supposing there are m; machining operations in a group (e.g. Gi), the

operations can be denoted as follows:

G,'={0i/, 0,'2, iy 0,'1-, sioiey Oim,-}

where Oj; is the jth machining operation in the ith machining operation

group

Any sequence of all machining operations in the group is a possible solution
for operation sequence of the group. Therefore, a chromosome for operation
sequence is defined, which consists of m; bits, and each bit represents an
operation once and only once. A bit (operation) in the chromosome can be

represented as:

struct pChromosome_Bit

{

int O no; //The ID of the operation

int feature_no //The ID of the feature that the
operation is used for

int f£lags; //The sign of feature
relationship; ‘0’ represents that
the feature has no relationships
with other features, and i
represents that the feature has
some precedence relationships
with other features.

int M_no; //The ID of the machine tool to
execute the operation

int TEne: //The ID rof the cutting tool to

execute the operation
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2)

direction D_no; l/Thew ID of ' the TAD for '@ the
operation

double pCost; //The cost caused by the operation

double pTime; //The time needed for the operation

}

pChromosome_Bit pOperation|[]=new pChromosome_Bit [m;];

Struct pChromosome

{
int num; //The number of operation groups
pChromosome_Bit pOperation|[]=new pChromosome_Bit [m;];

double pv_fitness; //The value of fitness function

}

The number of bits in the operation chromosome (i.e. m;) is equal to the total
number of operations in the group. The sequence of the bits describes the
machining operation sequence of the group. Thus, the total number of

possible operation sequences for the group is m;!.

Chromosomes for operation group sequencing

Supposing there are n operation groups for machining a component, the

operation groups can be denoted as follows:

Pe={G1, Goy vy Gpyovey Ky}

where Pg is a set of machining operation groups, and

Gi is the ith machining operation group.
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The sequence for machining operations in each group is generated first, and
thus, any sequence of all the operation groups in P is a possible solution of
process sequence. Similarly, a chromosome for group sequence is defined,
which consists of n bits, and each bit represents an operation group once and
only once. The n is equal to the total number of operation groups. The

chromosome can be described as:

struct gChromosome_Bit

{

int G_no; //The ID of the operation group

int flag; //The sign of the group’s state;
‘0’ represents that the operation
group 1is 1ndependent, and i
represents the operation group has
some precedence relationships with
other groups.

int flagno; //The ID of precedence constraints

the operation group belongs to.

double gCost; //The cost caused by the group
double gTime //The time needed for the group
pChromosome_Bit pOperation|] //Operations sequence

in the group

gChromosome_Bit pGroup[]=new Chromosome_Bit [n];

Struct gChromosome

{
int num; //The number of operation groups

Chromosome_Bit pGroup|[]=new Chromosome_Bit [n];
double gv_fitness; //The value of fitness function

}
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Based on the above definitions, the group chromosomes and operation
chromosomes describe the process sequence. All the combinations of all group
chromosomes and all operation chromosomes constitute the possible solution
space. Thus, if there are no precedence requirements, the total number of possible

process sequences is

n
n[Tm:!
i=l

7.1.2  Initial populations

An initial population of solutions consists of a population of randomly generated
solutions to the problem at hand [Yip-Hoi and Dutta, 1996]. Initialisation is a
process that generates several initial populations for a component with n operation
groups. The initial populations generated should be spread sufficiently over the
search space to represent as wide a variety of solutions as possible. In the
meantime, when an initial solution is created, the precedence constraints should be
considered. This is because certain operation sequences gained randomly may be
infeasible with respect to the precedence relationships. In order to eliminate such
infeasible sequences while obtaining the initial population, this research has
devised two initial precedence constraint algorithms for operation sequencing and
group sequencing, respectively. A valid sequence solution is defined as the one
that satisfies all the precedence constraints, such as geometrical precedence and
manufacturing precedence. The total number of strings in the initial population is

set to ‘18,

1) Initial precedence constraint algorithm for operation sequencing
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As described in Chapter 6, an operation group consists of all operations for the
features, which have the same TAD and the same precedence constraints.
Thus, only one precedence constraint needs to be considered here, that is, the

order of operations required for each feature.

Assuming a group has m features, and each feature (feature i) has p; machining

operations, then the number of machining operations in the group is

pnum= i D, a

i=1
Step 0: Set i=1.

Step 1: Choose p; positions in the initial chromosome that have not been

occupied randomly.

Step 2: Put these p; machining operations for the ith feature into the chosen

positions in the required order.
Step 3: Let i=i+1, and pnum=pnum- p;.
Step 4: If i<m, then go to Step 1, else go to end.
Step 5: End.
2) Initial precedence constraint algorithm for group sequencing

The proposed initial precedence constraint algorithm is based on the
precedence relationships determined in Chapter 6. Here, it is illustrated by an

example. Assuming a process including n operation groups (i.e. n=12), that is
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Gl, G2, ..., GI2. Thus, the initial chromosome has n bits. There are K

constraint precedence relationships (i.e. K=2) as following:

Precedence relationship I (k=1): G6—- G5— GI1— G9

Precedence relationship II (k=2): GI12— G4— G11

For other groups (G2, G3, G7, G8, G10), there are no constraint precedence

relationships (k=0).

Firstly, appropriate positions are obtained for the groups in precedence

relationship I (k=1): G6— G5— GI - G9

G6: According to precedence relationship I, there must be three unused
positions after the position of G6. In other words, although twelve
positions (u=12) have not been used, only nine positions that G6 can

choose, me [1,9], e.g. 3, that is, position 3 in the chromosome.

G5: After the position of G6, there are only nine unused positions, while
G5 has to leave two unused positions for G/ and G9. Thus, me[1,7], e.g.

4, that is, position 7 in the chromosome.

G1: After the position of G5, there are only five unused positions, while

G1 has to leave one unused position for G9. Thus, me[1,4], e.g. 1, that is,

position 8 in the chromosome.

According to the above process, it can be gained that me [1,4], e.g. 2 for

G9, that is, position 10 in the chromosome.
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Then, for the precedence relationship II (k=2) groups, G12— G4— G11, the

same process is applied.

* G12: After the arrangement for the precedence relationship I groups, there
are still eight positions unused (¥=8). In order to leave two unused
positions for G4 and GI1, me[1, 6], e.g. 2, that is, position 2 in the

chromosome.

® (G4: Behind the position of GI2, there are six positions while five
positions can be used as candidates for G4, me[l1,5], e.g. 4, that is,

position 9 in the chromosome.
e Gl likewise, me[1,2], e.g. 1, that is, position 11 in the chromosome.

Finally, appropriate positions are determined for the other groups (G2, G3,
G7, G8, G10), for which k=0. Because there are no precedence constraints
between these groups, the identification for random numbers is

straightforward.

® (2: There are five candidate positions so that the random number m can be
identified in the field of [1, 5], e.g. 3, that is, position 5 in the

chromosome.

® (3: Only 4 candidate positions are available for G3. The random number

me[1,4], e.g. 1, that is, position 1 in the chromosome.

172



Chapter 7 Process Sequencing

Similarly, the positions of G7, G8, G10 can be determined in the fields of
[1,3], [1,2] and [1,1], respectively. Here, m=3 for G7 (i.e. position 12), m=1

for G8 (i.e. position 4), and m=1 for G10 (i.e. position 6).

The detailed process and change of parameters are displayed in Table 7.1 and
Figure D.11 (in Appendix D). Applying the initial precedence constraint

algorithm, the initial population is ensured in the feasible domain.

7.1.3 Fitness function

In the application of a genetic algorithm to process sequencing, the fitness
function is a performance criterion, which indicates the degree of objective
satisfaction of a searched solution. After a certain number of searches, if the
value of fitness function does not decrease, it can be identified that the fitness
function has reached the optimal point (the least total value) and the searched
operation sequence is satisfactory with the goal. Then, the search process stops.
Fitness calculation is considered as an essential ingredient and the most critical
step for a GA method. Several fitness functions are provided for process
sequencing, which include minimum number of setups, minimum machining cost
and shortest processing time, etc. However, previous research has only
considered individual criteria and therefore the outcome solution is not overall
optimal. This research has developed an integrated optimisation strategy to obtain

an overall optimal process sequence.
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Table 7.1. Example of Initial precedence constraint algorithm
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1) Fitness function for operation sequencing in a group

This is executed prior to group sequencing, and therefore, its fitness function
is described as the degree that the sequence satisfies process sequence rules.
An evaluation is proposed based on an evaluating indicator hierarchy and

analytical hierarchy process method. The details are presented in Section 7.2.

2) Fitness function for group sequencing

Group sequencing is the last stage of process sequencing. The fitness function
for group sequencing should be the final objective of process sequencing, that
is, to find an optimal point satisfying process sequence rules, minimum
machining cost and shortest processing time simultaneously. Thus, the fitness

function is defined by the following expression:
F =wyfut wfe + wi (7-1)
where F is the fitness,

Jm 18 the degree of satisfaction with process sequence rules,

fe 1s the relative evaluating value for manufacturing cost,

[t is the relative evaluating value for manufacturing time, and

W, We, and w, are the weights for the above evaluations, respectively.

A calculation supporting the fitness function has been developed based on the

above expression. It consists of three parts, that is, evaluation for process

sequence rules, evaluation for manufacturing cost and time, and collation of
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weights.  The first two parts are described in Sections 7.2 and 7.3,
respectively. In Sections 7.4 and 7.5, a trained neural network and a fuzzy

evaluation are presented for the collation of weights.

7.1.4  Operators

The design of appropriate genetic operators including the selection, crossover and

mutation plays a major role for the successful genetic algorithm.

1) Selection:  Selection is the genetic operator that chooses parents for
reproduction in the next generation. The chosen parents will have the chance
to be used in the next genetic operation, such as crossover and mutation.

Three selection strategies are usually chosen. They are:

e Roulette wheel selection: The chance of a chromosome to be selected is
based on their fitness value. The chromosomes are more likely to be

selected if they are fitter.

e Tournament: First, a small subset of chromosomes is selected at random
from the population. After the selection, the one with the best fitness in

the tournament is selected to be a parent.

e Random: Parents are simply selected completely at random from the

population.

In this algorithm, the 'roulette wheel selection' strategy is employed to

expedite the search and guarantee the search in an increased trend.
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2) Crossover: After the parents are selected, the crossover is applied to the
population of the selected parents. Crossover is the genetic operator that
creates a new solution in the next generation by splitting and recombining

between two parents. There are many types of crossover. Here, three most

commonly used crossovers are introduced:

e Single-point crossover: Two parents are split at the same position and
recombined with the left of one and the right of the other. For example, if
the split point was chosen randomly as 3, two parents used for generating

new chromosomes are:

Parent I: G1-G2-G3-G4-G5

Parent II: G4-G2-G1-G5-G3

Then, the new children created are:

Child I: G1-G2-G3I-G5-G3

Child II: G4-G2-G1I-G4-G5

As the classic form of the crossover, single-point crossover is simple but

very slow.

e  Multi-point crossover: Two parents are split at several randomly chosen
sites and recombined into two new children. For instance, if there are two

split points 6 and 10, and the parents used for generating new

chromosomes are:
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Parent I: G1-G2-G3-G4-G5-G6-G7-G8-G9-G10-G11-G12-G13

Parent II: G6-G2-G3-G7-G1-G5-G10-G4-G13-G11-G12-G8-G9

Then, the new children created are:

Child I: G1-G2-G3-G4-G5-G6l-G10-G4-G13-G11I-G11-G12-G13

Child II: G6-G2-G3-G7-G1-G5I-G7-G8-G9-G10I-G12-G8-G9

Comparing to single-point crossover, multi-point crossover will produce

more mixing, although it may be more disrepute.

e Uniform crossover: Each bit on the child is selected randomly from the
corresponding bit of the parents. A mask is used to determine which
parent contributes its bit value to which child at the same position. An
example is provided, where the parents used for generating new

chromosomes are:

Parent I: G1-G2-G3-G4-G5-G6-G7-G8

Parent II: G6-G2-G7-G3-G1-G5-G8-G4

Mask: 11010010

Then, the new children created are:

Child I: G1-G2-G7-G4-G1-G5-G7-G4

Child II: G6-G2-G3-G3-G5-G6-G8-G8
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By employing above crossover operators, it is clear that such exchanges may

result in an invalid sequence because

e Some operations may appear in the child chromosomes more than once;

e Some operations may not appear in the child chromosomes;

e The precedence constraints may be violated.

In order to overcome the above limitation and gain a valid process sequence, a

modified crossover operator is proposed by Li et al [2002]:

Step 1: Two chromosomes in the populations are randomly chosen as two

parents (e.g. Parent I and Parent II).

Step 2: A splitting point is randomly determined, and each parent
chromosome is separated as left and right parts from the splitting point, that is,

Parent I-Left, Parent I-Right, Parent II-Left, and Parent II-Right.

Step 3: The left part of Parent I (Parent I-Left) is copied as the left part of

child L.

Step 4: The bits in the right part of Parent I are copied to the right part of

child I according to their sequences in Parent 1.

Step 5: Similarly, child II can be obtained with the left part of Parent II and

the bits in the right part of Parent II in their sequences in Parent 1.

The above precedence is illustrated in the following example:
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Supposing there is a split point 5, and the parents used for generating new

chromosomes are:
Parent I: G1-G2-G3-G4-G5-G6-G7-G8-G9-G10-G11-G12-G13
Parent II: G8-G2-G3-G7-G1-G5-G10-G4-G13-G11-G12-G6-G9
Then, the new children created are:

Child I: Gl-GZ-G3-G4-G5I-G8-G7—SJl 0-G l\i-Gl 1-G 1\2—G€\-G:
Parent II: G8-G2-G3-G7-G1-G5-G10-G4-G1 3-G\ 1-G12-G6-G9

Child II: G8-G2-G3-G7-G1 I-G4-G5-G6-?9-C}l O-G*] 1 —G; 2-31 3

Parent I: Gl—G2-G3-G4-G£%(:8-G9-G10-G1 1-G12-G13

Based on the above process, it can be proved that the modified crossover not only
guarantees that each operation or operation group appears in a child chromosome
once and only once, but also follows the precedence constraint relationships
between operations or operation groups in parents with maximum possibilities.
Combining with a fitness function considering precedence constraints between
operations or operation groups, the precedence constraint adjustment is not

required for the modified crossover operator.

3) Mutation: After the parents are crossovered, the mutation operator is applied
to the population of selected child chromosomes. Mutation is the genetic
operator that randomly changes one or more of the chromosomes' gene. It is
carried out according to the rate of mutation. The mutation rate should be kept
very low (usually about 0.1) as a high mutation rate will destroy fit strings and

degenerate the algorithm into a random walk, with all the associated problems.
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The purpose of mutation is to provide the populations with new possible
solutions that may have been lost during successive generations and prevent
the genetic population from converging to a local optima. In the proposed
method, one type of mutation strategy is applied: two operation positions are
chosen randomly in a chromosome, and then the values in the two positions
are exchanged. For example, if the two random operation positions are 3 and

6, and the chromosome to be mutated is:

Before mutation: G1-G2-G7-G4-G3-G5-G8-G6

After mutation: G1-G2-G5-G4-G3-G7-G8-G6

In theory, a constraint adjustment should be applied after the mutation
operator.  However, considering the fitness function having included

precedence constraints, it seems not necessary to adjust the process sequence

in a feasible domain using an extra algorithm.

7.1.5 Stop criteria

There are several stop criteria for the search process of a GA. Usually, the fitness
function is considered near optimal if its value does not decrease, and the search
process stops. The final searched solution is regarded as the result satisfying the
goal. According to the result of experiments, this stop criterion is the most

suitable for process sequencing.
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7.2 Evaluation of manufacturing rules for process sequence

This research uses an analytical hierarchy process (AHP) [Saaty, 1980, 1990,
1994] to evaluate machining sequence rules for process sequencing. As a
systematic method for comparing a list of objectives, AHP makes it possible to
evaluate objects based on a large number of qualitative and quantitative factors.
The proposed AHP model for evaluation is depicted in Figure D.12 (in Appendix

D).

Step 1: Identifying all relevant and important process sequence rules as

evaluating criteria.

Step 2: Structuring these criteria into hierarchy levels from an overall

objective to various criteria and sub-criteria.

Step 3: Determining the relative weights of structured criteria through pairwise

comparison, which is built by the judgements of experts.

Step 4: Employing Eigenvalue technique for computing the weights under the
AHP. According to the characteristics of the AHP hierarchy, the calculating
procedure is in the downward direction along the hierarchy, which means that the
weights of higher-level criteria are first computed, and then used by the weight

calculation for the lower level criteria.

Step 5: Identifying the evaluating value for the satisfactory degree for process

sequence rules.
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7.2.1 Process sequence rules

The process sequence rules are derived from both manufacturing requirements,
and geometrical and topological information. In order to accommodate the
complex rules, an evaluating indicator hierarchy for process sequence rules needs
to be defined. The evaluating indicator hierarchy should have: 1) appropriate
number and levels of criteria, which provides an overall view of the complex
relationship inherent in the manufacturing rules; and 2) an open and adaptive
structure, which ensures the possibility to modify and scale the hierarchy with
ease to adapt environment changes. The data structure for evaluation criteria is

defined in Figure 7.2.

Qiao et al [2000] proposed four types of process planning rules, including
precedence rules, clustering rules, adjacent order rules and objectives. In the
present research, an evaluating criteria hierarchy has been developed based on
their work. It consists of two levels, and three main manufacturing sequence

constraints are included in the first level.

1) Precedence constraints

e A parent feature should be processed before its child features. Parent and

child features have been defined in Chapter 4.

e Rough machining operations should be done before finish machining

operations.
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* Primary surfaces should be machined prior to secondary surfaces. Primary
surfaces are usually defined as surfaces with high accuracy or having
higher impact on the design specifications, such as a datum plane. The
rest of the surfaces are regarded as secondary surfaces, e.g. a threaded

hole.

e Planes should be machined prior to holes and slots.

e [Edge cuts should be machined last.

2) Successive constraints

e Features or operations, which can be machined within the same setup

should be machined successively.

e Features to be machined with the same cutting tool, should be machined

successively.

e Operations with the same machining type, such as rough, semi-finish and

finish machining, should be executed successively.

e Features with similar tolerance requirements should be machined

successively on the same machine tool.

3) Auxiliary constraints

e Annealing, normalising and ageing operations of ferrous metal component

should be arranged before rough machining or between rough and semi-

finish machining.
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e Quenching for ferrous metal workpieces should be arranged between semi-
finish and finish machining or between rough and semi-finish machining if
it is followed by high temperature tempering. Quenching for non-ferrous
metals should be arranged between rough and semi-finish machining or

before rough machining.

e Carburizing would be arranged between semi-finish and finish machining.

7.2.2  Analytical hierarchy process (AHP)

In practice, it can be impossible to satisfy all sequence rules in a process
sequence. For example, a high accuracy hole as the datum surface should be
machined with a high priority according to the primary surfaces rule, but it may be
in conflict with the rule of planes prior to holes and slots. Therefore, it is
necessary to derive a set of numerical weights representing the relative importance
of the rules with respect to the manufacturing environment. The importance
weights are determined by AHP. Essentially, AHP employs pariwise comparisons
of selection criteria so as to enhance objectivity and downplay too much
subjectivity [Saaty, 1990]. In the following section, AHP is discussed further
with three points: construction of pariwise comparison matrix, calculation of

relative weights, and calculation of evaluating value.

1) Construction of pairwise comparison matrix

The pairwise comparison is formed by comparing each rule with all the

remaining ones at a certain level. Correspondingly, a pairwise comparison
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matrix, called R-matrix, is defined, where the number in the ith row and jth
column, rj;, gives the relative importance of the ith process sequence rule as

compared with the jth process sequence rule. This can be described as:

—ri] rli rlm |
R = ril rii i rim (7-2)
_rml rmi g rmm n
wherei=1,2, ..., m;
m is the number of selected rules.
ri=1;
iy = l/rj,-
Table 7.2. Evaluating criteria for the pairwise comparison matrix
Definition Intensity of Intensity of
importance(r;) importance(r;;)
The ith rule and the jth rule 1 1
have equal importance
The ith rule is slightly more 3 1/3
important than the jth rule
The ith rule is more important 5 1/5
than the jth rule
The ith rule is much more 7 1/7
important than the jth rule
The ith rule is absolutely more 9 1/9
important than the jth rule
Intermediate values between 2,4,6,8 1/2, 1/4, 1/6, 1/8
adjacent scale values
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Table 7.2 presents the evaluating criteria based on a 1-9 scale for the pairwise
comparison matrix used in this study. For example, considering the

following rules i and j.

Rule i: Primary surfaces should be machined prior to secondary surfaces.

Rule j: Planes should always be machined prior to holes and slots.

If Rule i is considered to be much more important than Rule j in the
evaluation, a weight of '7' is inserted in the juncture cell (r;) between Rule i
and Rule j. On the contrary, the value of in the juncture cell (r;) between
Rule j and Rule i is set to '1/7'. Based on the evaluating indicator hierarchy,
four R-matrices have been built, that is R; (3x3), R,; (4%4), Ry, (4x4), and R;;
(3x3). The value for each element of the four R-matrices is determined based

on the experts' experience and knowledge.

2) Calculation of importance weights

There are a number of mathematical techniques to calculate relative
importance weights based on the pairwise comparison matrix, such as
Eigenvalue, Mean Transformation, or Row Geometric Mean. Considering
simplification and implementation on the computer, an approximate method of

Eigenvalue approach is used in this research. The process is discussed below.

Step 1: Calculate multiplication (M) of all elements in each row of the

pairwise comparison matrix. For the ith row, it is defined as:
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M, =]]r, (7-3)

where Jj is the index of column which elements are in, j =1, 2, ..., n

i is the index of row which the elements are in, i =1, 2, ..., n,

and

n is the number of the rows in the pairwise comparison matrix,

which is equal to the number of the columns.
Step 2: Calculate the n-th root of M, that is:

W, =4/M, (7-4)

where i is the row number in the pairwise comparison matrix, i =1, 2,

g

Therefore, the relative importance weight vector can be built as the following:

w=Ww, W, -, W, (7-5)

W = (7-6)

Thus, the eigenvector for the R-matrix, W can be obtained:

W=, W, - W[ (7-7)
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Step 4: Calculate the maximum Eigenvalue of R-matrix, Apay:

d (7-8)

Step 5: Monitor the consistency of the pairwise comparison matrix.

Consistency means that the decision exhibits coherent judgement in specifying
the pairwise comparison of the criteria or alternatives [Taha, 1997]. For the
pairwise comparison matrix, R-matrix, the consistency can be described in

mathematics as the following:

P — for all i, j and k (7-9)

According to the definition of actually logical meanings for each element in
the pairwise comparison matrix (R-matrix), R-matrix should be consistent.
Mathematically, for any 2x2 matrix, it is always consistent because the
columns of any 2x2 comparison matrix are dependent. However, for all nxn
comparison matrices (n>2), they are usually inconsistent, as the comparison

matrix is usually constructed based on human judgement from which some
degree of inconsistency is expected. Therefore, the problem of consistency

can be converted into determining whether or not a level of consistency is

“reasonable”.

Assuming A;, A, ..., A4, are the Eigenvalues of R-matrix, which satisfy the

following equation:

RW=AW (7-10)
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According to linear algebra, the following expression is obtained:

&=n (7-11)
i=1
where r;; = 1.
If R-matrix is consistent, then
A= Amar=h (7-12)
Otherwise,
Ar=Aamcon (7-13)
n-l
D A=n—Ay, (7-14)

i=1

In this case, the closer Ama is to n, the more consistent is the comparison
matrix. As a measure, an inconsistency ratio (CR) is calculated to monitor the

consistency of the comparison matrix:

_a

CR 7-15
RI (7-15)
where CI is a consistency index of R-matrix,
Gl = i'&a_x____n (7-16)
n=1

and RI is a random consistency index of R-matrix. Rl is determined

empirically [Golden et al, 1989] as the average CI of a large sample of
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randomly generated comparison matrices. Table 7.3 gives the values of RI

corresponding to n.

Table 7.3. The values of R/

N L2 3 + 5 6 7 8

RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41
N 9 10 11 12 13 14 15
RI 1.45 1.49 151 1.54 1.56 1.57 1.59

The ratio CR is used to monitor consistency in the following way. If CR <
0.10, the level of consistency is acceptable. Otherwise, the inconsistency in
R-matrix is very high and the decision-maker is advised to check the element

rij of R-matrix to produce a more consistent matrix.

Indeed, consistency of the comparison matrix is important because all other

data can be deduced logically from this basic data.

Step 6: Calculate the weights in the lower level. For the lower level, the
weights relating to the total objective can be given by the following

expression:

m

W= gl (7-17)

where W; is the importance weight of the ith sub-criteria for the total

objective;

Wjo is the importance weight of the jth criteria in the higher level

for the total objective; and
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W, is the importance weight of the ith sub-criteria for the jth

criteria in the higher level.

7.2.3 Construction of evaluating matrix

Each rule has a precedence matrix named V-matrix. As mentioned in Chapter 6,
each operation pair has a reward/penalty precedence value for a corresponding
rule, which is stored in the evaluation library. The reward/penalty precedence

scale used is identified as:

A reward: If the precedence in the operation pair (e.g. operation i and operation j)
satisfies the manufacturing rule k, then a positive decimal value

(reward) is given according to the satisfying degree: O< vy; < 1.

A penalty: If the precedence in the operation pair (e.g. operation i and operation j)
does not satisfy the manufacturing rule k, then a large positive value

(penalty) is given according to the destruction degree: vy;; >1.

According to the reward/penalty precedence values, the V-matrix for rule k can be

defined as:

Ve " Y " Vi
Vi={Va " Vi " Vi (7-18)
_vknl N vkni b vknu N

where V, is the V-matrix for rule ;

l& 12,08
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n is the number of machining operations in a group (for operation
sequencing) or the number of machining operation groups (for group

sequencing);
k=1 2ot
m 1s the number of selected rules, and

Viij 1s the reward/penalty precedence value for rule & if operation i is prior
to operation j (for operation sequencing). For group sequencing, vy is
the reward/penalty precedence value based on rule k if operation s is
priors to operation ¢, while operations s and ¢ are the last operation in

group i and the first operation in group j, respectively.

Because the penalty/rewards precedence matrix has considered precedence
constraint relationships, it is not necessary to recheck a process sequence after its
genetic operators. With the penalty/rewards precedence matrix, the basic

optimisation problem is transferred into an alternative formulation, that is, a

numerical solution is sought by solving a sequence of unconstrained minimisation

problems.
7.2.4 Evaluation result

The synthesis evaluation can be set up based on the following linear addition

expression:

Ifn= Azwkvkij (7-19)
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where f,, is the degree of satisfaction with process sequence rules,
wy 18 the relative weight for the kth constraint rule,

vkij 18 the reward/penalty precedence value for rule k if operation i is prior
to operation j (for operation sequencing) or the reward/penalty
precedence value for rule k if group i is prior to group j (for group

sequencing), and

G,;>G; means operation i is arranged before operation j (for operation

sequencing) or group i is arranged before group j (for group sequencing).

Jfm 18 a positive decimal value, that is f,,20. The lower the value is, the higher the

sequencing satisfies with process sequence rules.

7.3 Evaluation of time and cost

Because detailed information on tool paths and machining parameters have not
been determined so far, instead of accurate cost and time, estimation functions are

used to calculate a process plan’s cost and time.

1) Cost
The cost for a process plan consists of five main elements described below.
e Machine cost (CM)

Machine cost is the total cost of the machines used in an operation.
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e Tool cost (CT)

Tool cost is the total cost of the cutting tools used in an operation.

e Machine change cost (CMC)

It is includes the total cost spent to change the machine tools occurring when

two adjacent operations are performed on different machines.

e Tool change cost (CTC)

Similarly, it is the total cost spent for cutting tool changing occurring when
two adjacent operations are performed on the same machine but with different

tools.

e Setup change cost (CSC)

It is the total cost for setup changing occurring when two adjacent operations

are performed on the same machine but with different setups.

Based on the above elements, the cost for a process sequence can be expressed

as:

€=% 0C + > 6CC, (7-20)
i in
i
GC, =) (CM,+CT,) (7-21)
p=1
GCC; = CMC, +CTC,, +CSC, (7-22)
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where C is the total cost for the process plan.

GC; is the machining cost for the ith operation group.

GCCj; is the changing cost for two adjacent groups, the ith group and
the jth group. Here, the index of the group represents the process
sequence of the group, e.g the /st group is processed first, and

then the 2nd group, and so on.

CM,, is the machine cost for the pth operation in the ith group.

CT;, is the tool cost for the pth operation in the ith group.

P is the number of the operations in the ith group.

CMCy, is the machine change cost for the last operation in ith group to

the first operation in jth group.

CTCy, is the tool change cost for the last operation in ith group to the

first operation in jth group.

CSCy, is the setup change cost for the last operation in ith group to the

first operation in jth group.

Then, the relative evaluating value for manufacturing cost, f,, can be gained

as:

sl (7-23)
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2)

where C,, is the maximum manufacturing cost for the component that the

company can accept. The C,,, for a component is given by user.

Time

Similar to the calculation of manufacturing cost, the time of a process plan

includes the following elements:

Machining time (TM)

Machining time is the total time needed when a component is machined in
one operation. It consists of the cutting time, machine idle time due to
preparation and idle tool motion, such as loading, unloading, tool approach

and depart.

Machine change time (TMC)

It refers to the time occurring when two adjacent operations are performed

on different machines.

Tool change time (77C)

It is the time spent on changing tools when two adjacent operations are

performed on the same machine but with different tools.

Setup change time (7SC)

It occurs when two adjacent operations are performed on the same

machine but with different setups.
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Therefore, the time for a process sequence can be expressed as:

T =) GT,+ ) GIC, (7-24)
i ij:=li+1
P
GI=> TM, (7-25)
p=l
GTC; =TMC, +TIC,, +TSC, (7-26)

where T is the total time for the process plan.

GT,; is the machining time for the ith group.

GTCj; is the changing time for two adjacent groups, the ith group and
jth group. Here, the index of the group represents the process
sequence of the group, e.g. the /st group is processed first, and then

the 2nd group, and so on.

TM;, is the machining time for the pth operation in the ith group.

P is the number of the operations in the ith group.

TMCy, is the machine change time from the last operation in ith group

to the first operation in jth group.

TTC, is the tool change time from the last operation in ith group to the

first operation in jth group.

TSC,, is the setup change time from the last operation in ith group to

the first operation in jth group.
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Then, the relative evaluating value for manufacturing time, f,, can be gained

as:

| (7-27)

where T, 1s the longest manufacturing time for the component that

the company can accept. The 7, for a component is given by user.

7.4 Weight calculation

Considering the disparities of product types and production conditions, different
values of w,, w, and w, can be assigned using an artificial neural network. The
following three aspects are discussed to construct the network: input

representation, output format, network topology.

7.4.1 Input representation

The relative weights for process sequence rules, manufacturing cost and
manufacturing time are always dependent on the component design and

technological requirements, and manufacturing circumstances. Thus, three main

factors are considered for the input.

1) Complexity of component

It can be difficult to evaluate the complexity of a component because of a

number of considerations including:

e The number of features in the component
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e The classes of features in the component

The relationships among features in the component

The technological and design requirements for the component, such as

dimension tolerance, surface roughness

The material of the component

In the meantime, the evaluation is non-linear and multi-dimensioned. For
example, the difficulty of component manufacture increases with the number
of features. On the other hand, features do not contribute equally to the
manufacturing difficulty. Moreover, all these considerations affect each other.
For instance, complex feature relationships may result in high technological
requirements. In addition, some vague factors are included, such as
geometrical complexity and material, so that expert knowledge and experience
are needed. Fuzzy evaluation techniques are employed with the neural
network to tackle such complicated evaluation of a component. The proposed
fuzzy evaluation (to be discussed further in the next section) focuses on
evaluating the complexity of a feature according to its geometrical complexity,
technological requirements and machining capability. Table 7.4 shows five

levels of feature complexity.

Table 7.4. Evaluation for feature complexity

Evaluating value | Description Type
<0.25 Very easy to be manufactured Type 1
0.25-0.5 Easy to be manufactured Type 11
0.5-0.75 Not difficult to be manufactured Type 111
0.75-1 Difficult to be manufactured Type IV
>1 Very difficult to be manufactured Type V
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Based on the output of the fuzzy evaluation of features, 20 input neurons are
designed, of which each four neurons represent a binary number, detailed

below.

Neurons 1-4: the number of features in the component, which are very easy to

manufacture (Type I).

Neurons 5-8: the number of features in the component, which are easy to

manufacture (Type II).

Neurons 9-12: the number of features in the component, which are not

difficult to manufacture (Type III).

Neurons 13-16: the number of features in the component, which are difficult

to manufacture (Type IV).

Neurons 17-20: the number of features in the component, which are very

difficult to manufacture (Type V).

For example, if a component has 10 features and 5, 1, 3 and 1 features belong
to Type I, Type II, Type III and Type IV, respectively, the values for the 20

input neurons are shown in Table 7.5.

Table 7.5. An example of input neurons 1 to 20

Input neurons 1—-20

Bl dadei] 1

01010411

BERENE

0/lolo]1

Type I

Type 11

Type 111

Type IV

5

1

3

1
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2) Production batch size

Process Sequencing

In practice, the process plan of a component for mass production, medium

production, small production or single production may be different

significantly because of different production objectives. For example, in mass

production, the process plan is repeated many times with a new workpiece.

Because production batch size has a great effect on process planning, it is

taken as a crucial consideration for the input. The evaluating values of the

production batch size are allocated in Table 7.6.

Table 7.6. The evaluating values for production batch size

Production batch size Quantity Evaluating value
Single production <20 1

Small production 20-200 0.6

Medium production 201-5000 0.3

Mass production >5000 0

3) Production urgency

An indicator is designed to represent how urgent the component is needed.

The evaluating values are allocated in Table 7.7. The production urgency

indicator is an important parameter affecting the relative importance of timing.

Table 7.7. The evaluating values for production urgency

Production urgency Time (days) Evaluating value
Very urgent <7 1

Urgent 7-14 0.6

Normal 15-30 0.3

Not urgent >30 0
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7.4.2 Output format

According to the problem to be solved, the output consists of three neurons, which
represent w,,, w. and w,, respectively. A real number between 0 and 1 is assigned
to them. As relative weights, w,,, w,, and w;, are normalised before they are input

into the final fitness calculation, that is w,+w+w=1.

7.4.3 Topology and the training method of the neural network

The proposed neural network uses a typical three-layer BP (back-propagation)
structure, consisting of an input layer, a hidden layer and an output layer. There
are 22 neurons and 3 neurons in the input layer and the output layer, respectively.
The number of neurons in the hidden layer is a result of experiments using various
architectures, and a hidden layer of 10 neurons has proved to be the most

‘appropriate’.

7.5 Fuzzy evaluation of feature complexity

Based on the above characteristics of feature complexity, a feature evaluation

method is proposed using fuzzy mathematics.

7.5.1 Fuzzy evaluation model

Based on the theory of fuzzy mathematics for synthesis evaluation, an analytical
model is established for evaluating feature complexity. The model is described

below.
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Assume that the domain of the evaluation factors is A:

Az[a/,az,...,a,,...,a,,} (7-28)

where a; represents the factor of evaluation, and i=1, 2, 3, ..., n.

The domain of the evaluation grades is V:

V={vi,va, ..o, Vjs oors Ui} (7-29)

where v; expresses the evaluation results of complex degree for each factor, and

J=1, 2, 3, ..., m. The current method adopts five-grades: very simple, simple,

general, complex, very complex. That is,

V = {very simple, simple, general, complex, very complex},

Accordingly, a vector with five values is defined as:

Eolen
v,| |0.25
V=% = 05 (7-30)
v,| 10.75
_VS_ L 1 .

Supposing a fuzzy evaluation matrix U can be established by:

) Uy Uys
U=|uy, - Uy - Uy (7-31)
_unl unj unS_
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where u;; indicates the evaluation value of the ith evaluation factor, a; to the

membership degree of the jth evaluation grade, v;.

Then, a fuzzy vector U can be calculated as:

[ 5
5 (uy; X7,)
Ful ; 1j J

S|
I
=|
I
<
<
I

E : :
i D (uy; X)) (7-32)
: - SR

M

(u, X7,)

| /=1

In order to consider the influence of interactions among the evaluation factors, a
weight is introduced for performing the synthesis evaluation on each factor. The

fuzzy set of weights, W is normalised:
W= (wi, wa,..., Wis..., Wy) (7-33)

where w; denotes the corresponding weight of the ith factor, a;, and

w. =1 (7-34)

The Analytical Hierarchical Process is also used to identify the weights based on

the expert knowledge.

Finally, the fuzzy synthesis evaluation can be performed with the fuzzy operation

Y =W eU = max(w, Xit;,,w, Xily,..., Ws X i) (7-35)
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7.5.2 Feature evaluation

Because different feature class has different geometrical parameters and different
technological indicators, it is not easy to obtain a unique and efficient evaluating
matrix to satisfy various features. At the same time, because there is a number of
machining features on one component and feature classes are varied, the
evaluation matrix will become lager and the identification of weights will become
inefficient. ~Additionally, the evaluation matrix must be rebuilt when a new
feature category is added. Thus a feature evaluation method is structured, which
consists of a control interface and several feature evaluators. The control interface
is used for recognising the feature class and processing it, then putting it into the
corresponding feature evaluator, which is used for evaluating the complexity for
specifically feature class. All feature evaluators are separately built, which can
improve its efficiency and effective. When a new feature category is added on a
component, the corresponding feature evaluator is added or modified but the other
feature evaluators need not be changed. The integrated architecture of this

evaluation method is shown in Figure 7.3.

For the objective of evaluation for feature complexity, the following factors are

considered.

1) Feature class

Feature class is about typical geometrical characteristics, which is one of
major factors that determine the feature complexity. The corresponding grade
memberships are given with expert knowledge. For example, Table 7.8 shows

the grades of round holes.
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Table 7.8. Grades for round holes

Process Sequencing

Class Sub-class Very Easy general | difficult | Very
easy difficult
Through 0.63 0.21 0.10 0.03 0.03
Blind Conical 0,37 0.25 0.20 0.12 0.06
Spherical 0.18 0.20 0.37 0.12 0.11
Flat with radius 0.08 0.16 0.42 0.20 0.14
Flat 0.02 0.08 0.20 0.36 0.34

The fuzzy value of feature complexity u

npe

and shown in Table 7.9 to Table 7.12.

is calculated using the above data,

Table 7.9. u,,, of round holes
Class Sub-class Expression e
Through 0.63*0+0.21*0.25+0.10*0.5+0.03*0.75+0.03 | 0.155
Blind Conical 0.37*0+0.25*0.25+0.20*0.5+0.12*0.75+0.06 | 0.3125
Spherical 0.18*0+0.20*0.25+0.37*0.5+0.12*0.7540.11 | 0.435
flat with radius | 0.08*%0+0.16*0.25+0.42*0.5+0.20*0.75+0.14 | 0.54
Flat 0.02*0+0.08*0.25+0.20*0.5+0.36*0.75+0.34 | 0.73
Table 7.10. u,,, of slot
Class Sub-class Expression Ly
Through 0.13*0+0.47*0.25+0.29*0.5+0.08*0.75+0.03 | 0.3525
Blind Flat 0.05*0+0.11*0.25+0.42*0.5+0.26*0.75+0.16 | 0.5925
Radiused 0.11*0+0.32*0.25+0.26*0.5+0.20*0.75+0.11 | 0.47
Woodraff 0.08*0+0.21*0.25+0.32*0.5+0.26*0.75+0.13 | 0.5375
Table 7.11.  u,,, of step
Class Expression iy,
Through | 0.21*040.45*0.25+0.26*0.5+0.05*0.75+0.03 | 0.31
Blind 0.08*0+0.39*0.25+0.45*0.5+0.05*0.7540.03 | 0.39
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Table 7.12. u, , of pocket

type

Class Sub-class Expression Uy
Open 0.08*0+0.13*0.25+0.37*0.5+0.31*0.75+0.11 | 0.56
ocket
Closed | Polygon closed | 0.11*0+0.16*0.25+0.21*0.54+0.29*0.75+0.23 | 0.5925
ocket | pocket
Part-circle 0.03*0+0.08*0.25+0.26*0.5+0.29*0.75+0.34 | 0.7075

closed pocket

Double-semi- | 0.16*0+0.23*0.25+0.34*0.54+0.19*0.75+0.08 | 0.45
circle closed
pocket

2) Nominal dimensions

Dimensions are a very important factor for process planning because they not

only relate to the machining time and tool changes, but also constraint the

accessibility and fixturing of the feature.

For round holes, there are two nominal dimensions: diameter and depth

and there is a related factor: the ratio between depth and diameter,

depth/diameter (Figure 7.4).

For slots, there are depth, length, width and character angle (defined in

Chapter 3).

For pockets, the nominal dimensions include depth, minimum edge length,
maximum edge length, maximum angle between faces, and minimum

angle between faces.

For steps, the nominal dimensions include length, depth and width.
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Through hole L x|
CENTER X ] RADIUS
Nominal
CENTERY ,-————' O dimensions

Cancel l

Hole Property
E Radius Depth
} Tolerancellpper I Tolerancellpper I
i
{ Tolerancel.ow I Tolerancel.ow I
r Geometrical Tolerance - Location Tolerance
|
. Roundness | Perpendicularity l |
i |
| fi f
| ity l reference feature ’
| Parallelism I
S l reference feature l
i \ |
\ Concentricity I
ToerancelT) | |
/ gference feature [ ;
r
Roughness Symngtry [
referenceYeature l
O

IT tolerance grade Surface roughness Tolerance

Figure 7.4  Examples of norminal dimensions, dimensionaal accuracy, surface

roughness and tolerances
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3) Dimensional accuracy

As described by Gu, er al [1997], the numerical value of dimensional accuracy

can be fuzzified with the human expert experience.

1.0 0<x<w
" 0.6 w<x<w+3
uy = (7-36)
' 0.3 w+3<x<w+7
0.0 x>w+7

where x is the IT tolerance grade (Figure 7.4).

The parameter w can be specified by the highest possible accuracy of the

machine tool in the machine-tool library.

4) Surface roughness

Surface roughness requirements are an important constraints in the decision
making process. The specification of high quality surface often increases the
number of operations required, more frequent tool changes and the use of
more expensive equipment, etc, and results in a sharp increase of
1s

manufacturing difficulty. The fuzzy value of surface roughness, u

sr?

defined based on the Roughness average, R, (shown in Figure 7.4 and Table

7.13)

Table 7.13. Fuzzy value for surface roughness
Machining type R,(um) u,
Rough machining 100-12.5 0
Semi-finish machining | 6.3-1.6 0.3
Finish machining 0.80-0.20 0.6
Fine-finish machining | 0.100-0.006 1
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5) Material

The present method uses the hardness of material to represent its

characteristics. The fuzzy evaluating value of material u, can be calculated

with the function for specific cutting force k. (N/mm?) on the workpiece

i, = T ng“ - K;;‘"‘“) (7-37)

cmax cmin )

where K.pin and K. are the minimum and maximum values of k., stored in

the material library.
6) Tolerance

Tolerance also dominates the manufacturing difficulty. In terms of design,
there are six geometric tolerances and eight location tolerances. However, not
all tolerances are necessary to specify a feature, i.e. dependent on the feature

class.

e Round hole: straightness, roundness, cylindricity, parallelism,

perpendicularity, concentricity and symmetry (Figure 7.4).
e Slot: flatness, parallelism, perpendicularity and symmetry.
e Pocket: flatness, perpendicularity and symmetry.
o Step: flatness, parallelism, perpendicularity and symmetry.

7) Feature relationships
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Feature relationships can affect process planning seriously, especially process
sequence. For example, the parent feature should be machined prior to its
child feature, or it may be difficult to access the child feature, or a special tool
or special fixture may be required, or it is even impossible to machine the
child feature. Based on the relationships defined, three cases are considered:

parent feature, child feature and connect feature. The value u, is determined

fr

below

N N o TN e
Z[f,. L parent A;hlld connect (7-38)

max

where Npurens 18 the number that the feature is regarded as a parent feature.

N_pita 1 the number that the feature is regarded as a child feature.

Neonnee: 18 the number that the feature has a connect relationship with

other features.

Noax 18 the maximum number of relationships between the feature and

other features, which is currently set to 8.

Based on the above analysis, the domain of the evaluation factors for each feature

class is determined.

1) for round hole, A = {ay, a,..., ai..., as}

2) forslot, A = {ay, az,..., ai,..., a;3}
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3) for pOCkCt,A = {a,, A0 s Qoo a13}
4) for step, A= {a/, Asvvasy Aisssiis alg}

The various relative weights are calculated with the AHP, which has been
described before. Finally, the result for feature evaluation is calculated in the
fuzzy synthesis evaluation described at the end of Section 7.5.1 (ie.

Y =W U =max(w, Xii,,w, Xit,,...,ws Xits)). Figure 7.6 shows the flow of the

evaluation results fed into the artificial neural network with weights allocated.

7.6 Summary

This chapter has described the optimisation strategy developed for process
sequencing. The most important characteristics is that the strategy is based on
multi-objective fitness: minimum manufacturing cost, shortest manufacturing time
and best satisfaction of process sequence rules, which pervious research does not
consider. A hybrid approach is employed to incorporate genetic algorithm and
fuzzy analysis techniques for process sequencing. After a brief introduction of
GA, the proposed GA is discussed covering encoding scheme, initialisation,
genetic operators, fitness function and stop criteria. Four key issues are discussed
to further explain fitness function. Firstly, the analytical hierarchical process is
proposed to evaluate the satisfaction degree of process sequence rules. AHP not
only transfers the manufacturing sequence constraints into a numerical solution,

but also makes the evaluation more flexible and more adaptive. Then, two

functions to calculate manufacturing cost and time are designed. Thirdly, relative
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weights are allocated for the three major factors, process sequence rules,
manufacturing cost and time is presented. Finally, an evaluation for feature

complexity is solved with fuzzy techniques.
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Chapter 8

Implementation and Testing of Prototype System

8.1 Facilities

A prototype system has been implemented for the proposed work with the

following facilities:

1) Computer: PIII 500 PC, 8.4Gb HD, 128Mb Memory
2) Operating system: Windows 2000

3) ACIS geometric modeller version 7.0

4) Visual C++ 6.0

5) Visual Basic 6.0

6) Microsoft Access 97

7) The MATLAB neural network toolbox (Release 12)
8.2 System implementation

The block diagram of the prototype system is shown in Figure 8.1. It consists of

the following four major phases.
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Design by features
using ACIS and C++

Interacting features
Phase II recognition and recognition
in C++ with ACIS APIs
Y Y
Interacting features Non-connecting and

connecting features

Y + Y Y

Class change Divide ||Dimension change || Merge

!

Input vector

Feature recogniser
using neural network

Training
features

Feature-based CAPP

Y
Output

Figure 8.1 The block diagram of the prototype system
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8.2.1 Phase I: Design by features

In Phase I, the system builds the feature-based model by creating parameterised
features with the feature definition stored in the feature library, calling functions

through the Application Programming Interfaces (APIs) of ACIS.

As a three-dimensional modelling kernel produced by Spatial Technology, Inc,
ACIS integrates wireframe, surface, and solid modelling functionality with both
manifold and non-manifold topology, and provides a rich set of geometric
operations. Along with the open data structure and object-oriented C++ interface,
ACIS is therefore suitable for feature-based modelling and its applications. ACIS
has been used to implement the design by features module to create feature-based
models of three-dimensional prismatic components. The feature-based model is
used for design analysis and downstream applications. The following example is

the code in C++ for generating the entity of a hole feature.

BODY* BodySave; // The stock of the component
BODY* hole=NULL; //SVE of feature
pts[0]=position(x0,y0,z0); //Position at bottom
pts[l]l=position (xl,¥l,2zl):; //Position at top
double pR; //Radius

res=api_solid_cylinder_cone(pts[0],pts[1l],pR,PR,pPR, NULL
,hole) ;
1f(Ires.ok())

{
AfxMessageBox (_T ("Error Making hole"));

exit (1) ;
}

res=api_subtract (hole, BodySave) ;
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Figure 8.2 shows the interface of the design by features module and Figure 8.3

gives an example of the interface for a parameterised feature class.

L Wil - (Tt 1)

X
13 Af n )

AT Caied X048 V1302 4 i

Figure 8.2 The design by features interface

o i i aloix
Ol#i@] - [+|o @it|
L8] Wa = 1@ @ iy

Wd Cooed 3650 Vi 1 149 i
ady

Figure 8.3  The interface for input of feature parameters for a Through Slot

8.2.2 Phase II: Interacting features recognition

In phase II, the system takes the advantage of ACIS to implement the algorithm
(detailed in Chapter 4) for searching and checking the interacting features based

on Boolean operations. The process is repeated until all the interacting features
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are tackled considering the conditions of merge, class change, divide, dimension
change and connecting. The implementation is also done in C++ with ACIS
APIs. Examples of the API calls include api_intersect(), api_unite(),

api_subtract(), and api_apply_transf().
8.2.3 Phase III: ANN-based feature recogniser

Phase III deals specificaliy with the interacting features to be merged. It is
divided into two parts. The first part involves neural network training with input-
output sets of training features. The MATLAB neural network toolbox (Release

12), a useful tool to develop neural networks provided by Mathworks is used.

As described as Chapter 5, ANN-based feature recogniser is designed for a three-
level hierarchical architecture. The first level is to recognise five primitive feature
classes: round hole, conical hole, general hole, slot/step and pocket. The second
and third levels are used for further recognition based on the first level for CAPP.
For the first level, the input (F-adjacency Matrix input vector) and output matrices
of the training features are stored in files “inputtestO1.txt” and “outputtest01.txt”.

Table 8.1 shows some examples of training features.

The input data P and the output data T are loaded as follows:
P=lpad ('inputtestll .txt"') ;
T=load('outputtestOl.txt"') ;

P=ctranspose (P) ;

T=ctranspose (T) ;
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The code for specifying the size of input matrix is given as:

minmax(P);
Table 8.1 Examples of training features

Input Output

100 000000000000 10000
130006 000000000 10000
110005000000000 10000
140003 000000000 10000
300000000000000 01000
340006 000000000 01000
622006 300600000 00100
622006400600000 00100
623 006200600000 00100
624 006200600000 00100
639006 300600000 00010
620006 000000000 00010
630006 000000000 00010
640 006 000000000 00010
632306230630600 00001
623306230630600 00001
622306330630600 00001
642306230630600 00001
630306 430630600 00010
640306430630600 00010
640306330630600 00010
640306230630600 00010
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Based on the MATLAB command of ‘newff’, the corresponding multi-layer
feedforward neural network architecture is built. For example, the following
command creates a three-layer neural network. There are 17 neurons in the
hidden layer and five neurons in the output layer. The transfer function is tan-
sigmoid (Bipolar sigmoid function) for both the hidden output layers. The

training function is traincgp, which is Polak-Ribiere Update.

net=newff(minmax(P),[17,5],{'tansig','tansig'},'traincgp');

Then training function is used to minimise the error and update the weights using

the following code:

[net,tr]=train(net,P,T);

After the training process, the final weights and biases are stored in two files,
respectively. For example, for the first level, the two files are “featurefaw.txt”

and “featurefab.txt”.

The second part uses the trained network to recognise and classify new input
patterns or matrices as specific features. The simulating process is run in C++
using the trained network. The F-adjacent vector and V-adjacent vector
(described in Chapter 5) are input to the network for the feature pair to be merged.
Finally, according to the weights and biases obtained from the training, the final

feature class is identified.
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8.2.4 Phase IV: CAPP

Phase IV carries out the tasks for CAPP, which include selecting machining
operations, identifying feature precedence relations, grouping machining
operations and process sequencing. Details have been described in Chapters 6
and 7. Visual Basic, MATLAB neural network toolbox and Microsoft Access are
used to implement the feature-based CAPP functions. A design data file
(Design.mdb) and manufacturing data file (Manufacturing library.mdb) have been
built with Microsoft Access. Design.mdb consists of nine tables, which are listed
in Table 8.2. For Manufacturing library.mdb (Table 8.3) has eighteen tables to
store information for the manufacturing environment (e.g. materials, machining

operations and accuracy).

Table 8.2 Design.mdb

Table name Information stored

partdata General information of the component, such as
material, component name, component code and
production batch

featuredata Features belong to the component, including all
dimensions, tolerances and features’ relationships

partnumber Code of the component

fdatamerge Merged features

featurelist Sequenced features list

tprocess Processes selected for the features

tgroup Machining groups

rulegroup Evaluating information of the machining groups
for the corresponding manufacturing rules

lastvalue Evaluation information for process planning for the
component
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Table 8.3 Manufacturing library.mdb

Table name Information stored

featureprocessplan Process planning generated

setupdata Setups, including machine tools, cutting tools,
operation type, accuracy, roughness

Material Information of materials, such as the hardness,
code and name

Cutting speed Speed for all operations

Stock Types of stock

Machine tools Machine tools that can be provided

Cutters Cutting tools that can be provided

Accuracy Information of accuracy

urgencytable Production urgency index

roughevaluation Evaluation for roughness

setupchangcost Costs due to setup changes

processchange Costs due to process changes

featureweight Weights for evaluating feature complexity

holeevaluation Evaluating information for feature class of hole

slotevaluation Evaluating information for feature class of slot

stepevaluation Evaluating information for feature class of step

pocketevaluation Evaluating information for feature class of pocket

mtweight Weights for evaluating process according to
manufacturing rules

An ActiveX control for the implementation of a genetic algorithm developed by
Jeff Goslin, Xgenetic [Goslin, 2000], is used to assist the implementation of

machining operations sequence. A new population of genomes is created by the

following code:
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XGenetic.GenomeLength = lengthg //The number of bits

of a chromosome

XGenetic.RangeMaximum = maxrang //The » last ' dit ‘of
chromosome

XGenetic.RangeMinimum = minrang [/The first b1t of
chromosome

XGenetic.PopulationSize = pSize //The total number
in the initial
population

XGenetic.Create

Based on the command of evolution of an existing set of genomes:

XGenetic.Evolve

An extra modified (crossover described in Chapter 7) is added and executed in

Visual Basic.

8.3 File management

The system output is a feature-based model and its corresponding process plan.

The feature-based model contains the information of all machining features
defining the component, such as geometry, feature class, dimensions and feature
relationships. This information is written to four output files: featureresult.sat,
lastresult.txt, savelfinal.txt and testfinal.txt. The process plan about machining,

such as operation type and operations sequence, is stored in the table

finalprocessplan in design.mdb.
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8.4 Examples

A number of components have been tested with the prototype system. This

section presents typical examples to demonstrate the capabilities of the system.
8.4.1 Example 1

This component has been designed in the procedure shown in Figure 8.4. Figure

8.5 shows the tolerance, surface finish of the features.
Feature 1 (Through Step) N Feature 2 (Blind Slot):

The interacting entity is a face, which is of the PF-CV type:

For Feature 1: PF
Q/ For Feature 2: CV
There is a parent-child relationship between Feature 1 (parent feature) and
Feature 2 (child feature).
Feature 1 (Through Step) M Feature 3 (Through Slot):

The interacting entity is a face, which is of the PF-CV type:

For Feature 1: PF
For Feature 3: CV

There is a parent-child relationship between Feature 1 (parent feature) and

Feature 3 (child feature).
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Feature 1: Through Step

e

A
SN

Feature 2: Blind Slot

¥

P

K~

Feature 3: Through Slot

i

Feature 4: Through Hole |

O

Feature 5: Blind Hole |

Point A
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Point A

Feature 6,7: Blind Hole II-11I

Figure 8.4 Modelling of test component 1

featureno tolerance  surface finish shape/location tolerance(referencefeature)
(IT) (R, in pum)

| 1 16 NULL

2 8 0.8 NULL

3 8 0.8 NULL

4 6 0.63 concentricity  0.03(5)

5 6 0.63 NULL

6 8 0.8 NULL

7 8 0.8 NULL

Figure 8.5 Tolerance and surface finish of the features of test component 1
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Feature 2 (Blind Slot) m Feature 3 (Through Slot):

The interacting entity is a volume, which contains a face of CF-NF type
(shown in Figure 8.6). Therefore, the class of the feature with CF (Feature

2) is changed from Blind Slot to Through Slot.

Feature 2 and Feature 3 has a parent-child relationship: Feature 2 (child

feature) and Featuré 3 (parent feature).

PV-PV

For Feature 2: CF NFE-PF

For Feature 3: NF W |

PF-NF [ PF-NF [ PF-NF

g

CF-NF

Figure 8.6  Interacting entity between Feature 2 and Feature 3
Feature 3 (Through Slot) N Feature 4 (Through Hole):
The interacting entity is a face, which type is PF-CV:

~a— For Feature 3: PF
For Feature 4. CV

It is a parent-child relationship between Feature 3 (parent feature) and

Feature 4 (child feature).

Feature 3 (Through Slot) M Feature 5 (Blind Hole):
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The interacting entity is a face, which type is PF-CV:

O/ For Feature 3: PF

For Feature 5: CV

It is a parent-child relationship between Feature 3 (parent feature) and

Feature 5 (child feature).

Feature 4 (Through Hole) m Feature 5 (Blind Hole):

The interacting entity is a volume, which contains a face of CV-PV type
(shown in Figure 8.7). Thus, the dimension of the feature with CV

(Feature 4) is changed.

Feature 4 and Feature 5 has a parent-child relationship: Feature 4 (child

feature) and Feature 5 (parent feature).

CV-PV
For Feature 4: CV ~ |
For Feature 5: PV PF-INF

NF-PF

Figure 8.7 Interacting entity between Feature 4 and Feature 5

Figure 8.8 shows the feature recognition result of this example. It can be seen that

the proposed heuristic algorithm analyses the Interacting Entity between each
feature pair instead the new volume created by all interacting features, making the

process simpler. For example, the system only needs to analyse a face (e.g.
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Feature 1 and Feature 2) and a volume (e.g. Feature 2 and Feature 3) and does not

need complex computation to decompose and reunite edges and faces.

The feature procedence list, machining operation groups and process planning of
this example are given in Figure 8.9, Figure 8.10 and Figure 8.11. From the
result, it can be seen that a suitable process plan has been produced. For example,
Features 6 and 7, which have the same TAD and contraints, are grouped; features
of the same class: Features 4 and 5, are to be manufactured successively because
they have the same TAD and the parent-child relationship; and Feature 3 is

machined prior to Features 2, 4 and 5.
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the 1 feature

the original feature class is Thought Step
the last feature class is Though Step

the feature is the parent feature of feature 2
the feature is the parent feature of feature 3

the 2 feature

the original feature class is Blind Slot

the last feature class is Though Slot

the feature is the child feature of feature 1

the feature has been changed feature class and become child feature of the 3

feature

the 3 feature
the original feature class is Though Slot

the last feature class is Though Slot
the feature is the child feature of feature 1
the feature has changed the 2 feature's class and is parent feature of the 2 feature

the feature is the parent feature of feature 4
the feature is the parent feature of feature 5

the 4 feature

the original feature class is Through Hole

the last feature class is Through Hole

the feature is the child feature of feature 3

the dimension of feature is changed and become child feature of the 5 feature

the 5 feature

the original feature class is Blind Hole

the last feature class is Blind Hole

the feature is the child feature of feature 3

the feature changed the dimension of the 4  feature and is parent feature of the 4

feature

the 6 feature
the original feature class is Blind Hole
the last feature class is Blind Hole

the 7 feature
the original feature class e is Blind Hole

the last feature class is Blind Hole

Figure 8.8 Result of feature recognition for test component 1
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Index featureno typeno flagno
1

1 Through Step 1
2

3 Blind Slot 1
3

2 Through Slot 1
4

2 Blind Hole 1
5

4 Through Hole 1
6

6 Blind Hole 0
7

7 Blind Hole 0

Figure 8.9 Feature precedence list of test component 1

Groupno flagno featureno processno dx dy dz
1
1
1 1002 0 0 -1
&
1
3 1016 0 0 -1
3
1
2 1016 0 0 -1
4
1
5 1039 0 0 -1
5
1
4 1026 0 0 -1
6
0
6 1037 0 0 -1
7 1037 0 0 -1

Figure 8.10  Machining operation groups test component |
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operationindex groupno setupno setupname featureno
1
1
10601 roughshaping 1
2
2
10111 rough slot milling 3
20111 semirough slot milling 3
30112 semifine slot milling 3
3
3
10111 rough slot milling
20111 semirough slot milling 2
30112 semifine slot milling 2
4
6
10201 drilling 6
10201 drilling 7
70401 reaming 7
70401 reaming 6
3
4
10201 drilling 5
10501 rough boring 5
10401 rough reaming 5
40401 finish reaming 5
6
5
10201 drilling 4
10501 rough boring 4
10401 rough reaming 4
40401 finish reaming 4
Figure 8.11  Process plan generated for test component 1
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8.4.2 Example 2

—— Stock :
\

Feature 1: Through Slot

Feature 2: Through Step

Feature 3: Through Hole I

S

Feature 4: Blind Hole

@ Feature 5: Blind Slot

Point A

236



Chapter 8 Implementation and Testing of Prototype System

Point A

]

Feature 6: Through Hole II

L

Feature 7: Through Hole 111

/\\ \\\ /
/‘ \ \

l L 3

Figure 8.12  Modelling of test component 2

As shown in Figure 8.12, the system creates the test component in the following

procedure.

Feature 1 (Through Slot) N Feature 2 (Through Step):

The interacting entity is a volume, which includes a face of CV-PV type

(shown in Figure 8.13). Therefore, the dimension of the feature with CV

(Feature 1) is modified.
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(Feature 1) CV-PV(Feature 2)

NF-PF [

Figure 8.13 Intéracting entity between Feature 1 and Feature 2

Feature 1 and Feature 2 has a parent-child relationship: Feature 1 (child

feature) and Feature 2 (parent feature).
Feature 2 (Through Step) N Feature 3 (Through Hole I):

The interacting entity is a face, which type is PF-CV:

@i For Through Step: PF

For Through Hole: CV

There is a parent-child relationship between Feature 3 (child feature) and

Feature 3 (parent feature).
Feature 4 (Blind Hole) M Feature 5 (Blind Slot):

The interacting entity is a volume, which has a face of NF-CF and a face
of PF-PF shown in Figure 8.14. Thus, Feature 4 and Feature 5 are merged
into one feature: Blind Slot. The F-Adjacent vector and V-Adjacent vector

of the merged feature are stored in files of neurlin.txt and neuravf.txt,

respectively:
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(Feature 4) NF-CF (Feature 5)

/ A

=

\ NF-CF PF-NF

PF-CF \ /
PF-PF

Figure 8.14 Interacting entity between Feature 4 and Feature 5

File neurlin.txt (F-Adjacent vector):

The tolerance and surface finish of the features are shown in Figure 8.15.

Figure 8.16 gives the feature recognition result of this example. It can be shown
that the proposed methodology skips features for which no recognition is
necessary, and is therefore more efficient. For example, the neural network-based
feature recogniser is only executed for interacting features: Feature 4 and Feature

5, with satisfactory outcome of recognition.
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featureno tolerance surface finish shape/location tolerance(referencefeature)
(IT) (R, in pm)

1 10 3.2 NULL

2 10 3.2 NULL

3 6 0.63 cylindricity  0.05

4 8 0.8 NULL

5 8 0.8 NULL.

6 8 0.63 NULL

7 8 0.63 NULL

Figure 8.15  Tolerance and surface finish of the features of test component 2

The feature procedence list, machining operation groups and process planning of
this example are shown in Figure 8.17, Figure 8.18 and Figure 8.19. The result
shows that the final process plan is appropriate, where Feature 2 is machined prior
to Feature 1; Features 5 and 6 are grouped; and Features 1 and 4 are machined

successively.
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the 1 feature
the original feature class is Though Slot
the last feature class is Though Slot

the dimension of feature is changed and become child feature of the 2 feature

the 2 feature

the original feature class is Though Step
the last feature class is Though Step

the feature changed the dimension of the 1
feature

the feature is the parent feature of feature 3

the 3 feature

the original feature class is Through Hole
the last feature class is Through Hole

the feature is the child feature of feature 2

the 4 feature

the original feature class is Blind Hole

the last feature class is Blind Hole

the feature is merged with the 5 feature

the 5 feature

the original feature class is Blind Slot

the last feature class is Blind Slot

the feature is merged with the 4 feature

the 6 feature
the original feature class is Through Hole
the last feature class is Through Hole

the 7 feature
the original feature class is Through Hole
the last feature class is Through Hole

feature and is parent feature of the 1

type is Blind Slot

type is Blind Slot

Figure 8.16 Feature recognition result of test component 2
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index featureno

1
2

2
1

-
3

4
(4,5 merge) 4

5
(original 6) 5

6

(original 7) 6

typeno
Through Step
Through Slot
Through Hole
Blind Slot
Through Hole

Through Hole

flagno

Figure 8.17 Feature precedence list of test component 2

groupno flagno featureno processno
1
1
p) 1005
2
1
1 1016
3
1
3 1026
4
0
4 1056
.
0
5 1024
6 1024

dx

o O

o O

dz

-1
-1

Figure 8.18 Machining operation groups test component 2
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operationindex groupno setupno
z

10131
20131
30132

10111
20111
30112

10112
20112
30114

10201
10201
70401
70401

10201
10501
10401
40401

setupname

rough step milling
semirough step milling
semifine step milling

rough slot milling
semirough slot milling
semifine slot milling

rough slot milling
semirough slot milling
semifine slot milling

Drilling
Drilling
reaming
reaming

Drilling

rough boring
rough reaming
finish reaming

featureno

(SO I (S I \S

~ B~ B

L N O W

W W W W

Figure 8.19  Process planning for test component 2
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8.4.3 Example 3

/ ffe e Stock ]

P ™~ Vi

P 4 \\'\ /,/ﬂ
P

e
A B
[ \\\\‘ /////] Q‘r/ o
b \\'\ / =
\'\\l// Feature 1: Blind Slot I

e
&

Feature 2: Blind Slot II

Feature 3: Pocket I

i el
e

Feature 4-7: Through
Hole I-1V

Figure 8.20 Modelling of test component 3
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The test component has been designed in the procedure given in Figure 8.20. The

tolerance and suface finish of the features are shown in Figure 8.21.

featureno tolerance surface finish shape/location tolerance(referencefeature)
T) (R in pm)
1 8 0.8 NULL
2 8 0.8 NULL
3 8 0.8 NULL
4 10 2.9 NULL
5 10 2:3 NULL
6 10 2.5 NULL
7 10 2.5 NULL

Figure 8.21  Tolerance and surface finish of the features of test component 3
Feature 1(Blind Slot I) N Feature 3 (Pocket):

The interacting entity is a face, which type is PF-PF:

For Feature 3: PF %/ For Feature 1: PF

The relationship between Feature 1 and Feature 3 is connection.

Feature 2(Blind Slot II) N Feature 3 (Pocket):

The interacting entity is a face, which type is CF-PF:

For Feature 2: CF \%/ For Feature 3: PF
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The class of Feature 2 is changed from Blind Slot to Through Slot. There
is a parent-child relationship between Feature 2 (child feature) and Feature

3 (parent feature).

Figure 8.22 shows the feature recognition result of this example. From this
example, it can be found that the proposed method can differentiate between the

two interacting situations efficiently: Features 1 and 3, and Features 2 and 3.

The feature procedence list, machining operation groups and process planning of
this example are given in Figure 8.23, Figure 8.24 and Figure 8.25. It can be seen
that the results are good, e.g. Features 4 to 7 form a group because they have the
same class and tool approach directions, accuarcy requirements and can be

manufactered by the same processes.
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the 1 feature
the original feature class is Blind Slot
the last feature class is Blind Slot

the feature has a connect relationship with the feature 3

the 2 feature
the original feature class is Blind Slot
the last feature class is Through Slot

the feature has been changed feature class and become child feature of the 3 feature

the 3 feature

the original feature class is Pocket

the last feature class is Pocket

the feature has a connect relationship with the feature 1

the feature has changed the 2 feature's class and is parent feature of the 2 feature

the 4 feature
the original feature class is Through Hole

the last feature class is Through Hole

the 5 feature
the original feature class is Through Hole

the last feature class is Through Hole

the 6 feature

the original feature class is Through Hole

the last feature class is Through Hole

the 7 feature

the original feature class is Through Hole

the last feature class is Through Hole

Figure 8.22  Feature recognition result of test component 3
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index featureno typeno flagno
1
1 Blind Slot 0
2
3 Closed Pocket 1
3
2 Through Slot 1
4
4 Through Hole 0
5
5  Through Hole 0
6
6  Through Hole 0
7
7  Through Hole 0
Figure 8.23  Feature precedence list of test component 3

groupno  flagno
1
0
2
1
3
1
4
0

featureno processno

1 1056
3 1067
2 1016
4 1024
5 1024
6 1024
i 1024

dx

o © OO

=R=le g =

dz

-1

-1
&/

Figure 8.24 Machining operation groups test component 3
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operationindex groupno setupno setupname featureno
1
4
10201 Drilling S
10201 Drilling 6
10201 Drilling 4
10201 Drilling 7
70401 reaming 7
70401 reaming 4
70401 reaming 5
70401 reaming 6
@
2
10121 rough pocket milling 3
20121 semirough pocket milling 3
30121 semifine pocket milling 3
3
5
10111 rough slot milling 2
20111 semirough slot milling
30112 semifine slot milling 2
4
1
10112 rough slot milling 1
20112 semirough slot milling 1
30114 semifine slot milling 1

Figure 8.25  Process planning of test component 3
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8.5 Summary

This chapter has described the experimental implementation of a CAD/CAPP
prototype system with typical examples to demonstrate system capabilities. The
implementation has shown genuine integration of CAD and CAPP under the

proposed methodology using various contemporary techniques.
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Chapter 9.

Conclusions

To summarise the research presented in this thesis, this chapter draws conclusions

and proposes recommendations for further work.

9.1 Research contributions

This thesis has detailed the research on integrated CAD/CAM through CAPP
using feature technology. An experimental implementation of a prototype system
has been carried out for prismatic components. A number of test components

have been presented to demonstrate the capabilities of the methodology.
Main activities considered include

1) Component design based on a number of standard feature classes with validity

check.

2) Search of interacting features and identification of features relationships.
3) Recognition of new features formed by interacting features.
4) Production of a feature based model for the component.

5) Generation of a suitable process plan covering selection of machining

operations, grouping of machining operations and process sequencing.
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In order to carry out above activities, a number of algorithms and methods have

been proposed.

1) Machining feature extraction

The existing methods did not solve problems of the interacting features efficiently

and concisely. The research has led to a more efficient and simpler solution. The

proposed method has the following highlights:

A new feature classification for machining application. = The main
characteristic is the adoption of STEP AP224 and multi-viewpoint of design

and manufacture.

Feature-based model management dealing with adding, editing and deleting
features. Constraints for feature validity are checked to effectively maintain

the model validity for the component in terms of geometry and topology.

A novel heuristic algorithm to recognise interacting features. The Interacting
Entity between each feature pair is analysed instead of the new volume created
by all interacting features used in conventional approaches, simplifying the
process. In addition, the algorithm skips features for which no recognition is
necessary, and is therefore more efficient. All interacting entities between
feature pairs can be detected, reported and handled in an appropriate way.
Invalid operations that cause constraint violation of the model validity are

tackled effectively.

Neural network-based techniques for feature recognition to improve the

capability of current methods. The proposed input representation, F-adjacent
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matrix and V-adjacent matrix, not only solves the problems of ambiguity and
overlaps successfully, but also describes the parallel relationships which
previous work cannot provide. The conjugate gradient algorithm trains the net
in the directions with the fastest convergence. The hierarchical structure for
feature classifiers is more suitable for feature classification. The successful
results for classification at both the first and secondary levels demonstrate the

ability to generate the required cluster from the proposed input representation.

A unified data structure for feature class in the feature-based model. New

feature classes can be defined using the same data structure.

2) Feature-based CAPP

CAPP requires a suitable representation of the component to be manufactured. A

method for CAPP has been proposed making use of the features extracted from

the feature based component model.

A suitable process planning database containing six libraries. A management
module has been developed with an open and flexible structure, making the

CAPP system adaptive to dynamic environments.

A precedence algorithm to identify feature precedence relations based on the

precedence constraints. Simplification has been made by considering the

design intention.
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e A strategy for optimal process sequencing. The most important characteristic
is the multi-objective fitness function designed to consider minimum
manufacturing cost, shortest manufacturing time and the best satisfaction of
process sequence rules, which pervious research does not consider

simultaneously.

e The application of the analytical hierarchical process (AHP) to evaluating the
satisfaction degree of process sequence rules for process sequencing. AHP
not only transfers the manufacturing sequence constraint problems into a

numerical solution, but also makes the evaluation more adaptive.

e A method to allocate the relative weights for the three main evaluating factors
for process sequencing, using intelligent neural network and fuzzy technique.
The method can adapt the relative weights for the evaluating factors according
to various component, customer and production requirements, offering greater

flexibility.

9.2 Limitations

The methodology presented in the thesis, however, has certain limitations, which

are described below.

1) Restricted component geometry, i.e. only 3D prismatic components are

considered.
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2) Limited standard feature classes. Currently, the work deals only with internal

features.

3) Lack of consideration of fixturing.

4) Lack of optimisation of the machining parameters for individual operations.

9.3 Recommendations for future work

This thesis has proposed a methodology for CAD/CAM integration based on
feature technology and artificial intelligence techniques. It is apparent from the

results and limitations of the research that further work is necessary.

1) Further work on neural network-based feature recognition

As demonstrated in Chapter 5, neural network-based feature recognition has been
successful to recognise and classify feature at both the first and second levels.
The features can be further classified at the third level according to CAPP

requirements for further optimisation.

2) Extension of the domain of component geometry

Although the proposed method considers the majority of features - internal
features which are likely to be of interest for the application of process planning,

external features and attaching features should be covered in the future.

3) Consideration of fixturing
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Fixturing may affect dramatically process planning. Future effort should be paid

to fixturing constraints and corresponding clamping strategy.

4) Interfacing with NC systems

The research can be extended to interface with NC systems to cover toolpath

generation and planning for a complete process plan.

In conclusion, the research carried out will help to resolve feature interactions and
to further automate process planning, thus achieving genuine integration of design

and manufacturing.
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Appendix A

Feature Classification

Internal feature

Internal features are those geometric entities which form the internal

structure of a part and can be created with restricted tool and tool
accessibility directions.
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hole. round /
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Feature Classification
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Feature Classification

Slot
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Feature Classification
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Feature Classification

Pocket
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Step

Feature Classification
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Feature Classification

Blind
step
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Feature Classification

External feature

External features are these geometric entities which form the external shape of a
part and can be created with more tool accessibility directions and less
restrictions of tools. However, the part should provide the place for fixture.
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General Milling Close
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/ /' \\
L
\ 1
T .
Spherical Profile- i
cap forming //’”
turning ,"’ \\
Lapping ‘\ E
Protrusion | Milling
¢ ele TS
Surface Milling
machining
Attaching feature
Attaching features are special shapes that are attached to other geometrical
features and can be created by a special machining process.
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metal
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Compound feature
Compound features are certain complex entities which are created by a special
union of two or more machining features.
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Experiments of neural networks
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Figure B.1 The Polak-Ribiere conjugate gradient backpropagation training process
of 15-17-5 neural network (Level 1)
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Figure B.2 The Fletcher-Powell conjugate gradient backpropagation training
process of 15-17-5 neural network (Level 1)
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Performance is 0.0654961, Goal is 0.012
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Figure B.3 Gradient descent backpropagation training process of 15-17-5 neural
network (Level 1)
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Figure B.4 The Polak-Ribiere conjugate gradient backpropagation training process
of 15-16-5 neural network (Level 1)
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Figure B.5 The Fletcher-Powell conjugate gradient backpropagation training
process of 15-16-5 neural network (Level 1)

Performance is 0.068181, Goal is 0.012

1 0 T T T T
x
E
i
8
o 1
gt ]
53]
2
=
@
(=

10-7 1 | | 1 1

0 500 1000 1500 2000 2500 3000

3000 Epochs

Figure B.6 Gradient descent backpropagation training process of 15-16-5 neural
network (Level 1)
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Experiments of neural networks
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Figure B.7 The Polak-Ribiere conjugate gradient backpropagation training process

of 15-18-5 neural network (Level 1)
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Figure B.8 The Fletcher-Powell conjugate gradient backpropagation training

process of 15-18-5 neural network (Level 1)
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Performance is 0.0739426, Goal is 0.012
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Figure B.9 Gradient descent backpropagation training process of 15-18-5 neural
network (Level 1)
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Figure B.10  The Polak-Ribiere conjugate gradient backpropagation training
process of 15-15-5 neural network (Level 1)
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Figure B.11  The Fletcher-Powell conjugate gradient backpropagation training
process of 15-15-5 neural network (Level 1)
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Figure B.12  Gradient descent backpropagation training process of 15-15-5
neural network (Level 1)
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Performance is 0.0154285, Goal is 0.012
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Figure B.13  The Polak-Ribiere conjugate gradient backpropagation training
process of 15-14-5 neural network (Level 1)
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Figure B.14  The Fletcher-Powell conjugate gradient backpropagation training
process of 15-14-5 neural network (Level 1)
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Figure B.15 Gradient descent backpropagation training process of 15-17-5
neural network (Level 1)
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Figure B.16  The Polak-Ribiere conjugate gradient backpropagation training
process of 21-1-2 neural network (Round Hole)
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Figure B.19  The Fletcher-Powell conjugate gradient backpropagation training
process of 21-2-2 neural network (Round Hole)
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Figure B.20  The Polak-Ribiere conjugate gradient backpropagation training
process of 21-6-4 neural network (Slot/Step)

289



Appendix B Experiments of neural networks
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Figure B.21  The Polak-Ribiere conjugate gradient backpropagation training
process of 21-5-4 neural network (Slot/Step)
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Figure B.22  The Fletcher-Powell conjugate gradient backpropagation training
process of 21-6-2 neural network (Slot/Step)
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Figure B.23  The Polak-Ribiere conjugate gradient backpropagation training
process of 21-2-2 neural network (Pocket)
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Figure B.24  The Polak-Ribiere conjugate gradient backpropagation training
process of 21-1-2 neural network (Pocket)
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Figure B.25  The Fletcher-Powell conjugate gradient backpropagation training
process of 21-1-2 neural network (Pocket)
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Appendix C
Set theory

The set theory provides a powerful mathematical support for the proposed
methodology, especially in design by features and the interacting features

identifying algorithm. Basic concepts of the set theory are described briefly.
1) Set

The foundation of the set theory is set, which can be defined as a collection of
things (elements). In this research, set refers to a volume consisting of faces,

edges and points. To indicates that x is an element of a set A, it can be written

by
xe A (C-1)
Whenever x is not an element of a set A, it can be written by
xX& A (C-2)
A set (say A) is called an empty set if it contains no element, that is
A=¢ (C-3)

If every element of set A is also an element of set B, then A is called a subset

of B. It can be indicated that

AcB (C-4)
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2)

If set A and set B satisfy A € B and B C A, then A and B are equal. This can

be denoted by

A=B (C-5)

If A and B are not equal, then it can be denoted by

A#B (C-6)

If set A and set B satisfy A < B and A # B, then set A is called a proper subset

of set B, that is

AcCB (C-7)

Metric space

In this research, W is a nonempty point set which represents a three-

dimensional space. The points in W satisfy the following conditions

If x #y, then d(x, y) > 0

If x=y,thend(x, y)=0

d(x, y) = d(y, x)

d(x, y) +d(y, z) 2d(x, z)

where d(x, y) is a real distance function on point x and point y.

x, y, z are the points of W, xe W, ye W, ze W
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3) Set operations

Usually, there are four basic set operations used in CAD: union U, intersection
M, set complement 4 and set difference —. Supposing two sets of A and B,

then

e union v

The union of sets A and B is the set containing all the points that belong to

either set A, set B, or both set A and set B.

A U B ={xl xe W: xe A or xe B} (C-8)

e intersection M

The intersection of sets A and B is the set containing all the points that belong

to both set A and set B.

A N B ={xl xe W: xe A and xe B} (C-9)

e set complement 4

The set complement is the set containing all the points that do not belong to

set A.

A={xlxeW: xg A} (C-10)
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e set difference —

The set difference of sets A and B is the set containing all the points that

belongs to set A but does not belong to set B.

A — B ={xl xe W: xe A and x#B} (C-11)
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Flowchats
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Figure D.1 Process of adding a new feature instance
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Figure D.2 Process of editing feature
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Select feature to be deleted
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\
N Restore original classes
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Delete these child features
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Figure D.3 Process of deleting feature
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i=i+1

Flowchats
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| face interacting analysis —————

Figure D.4 Interacting feature identify algorithm
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Figure D.5 Situation II, IE¢ = face, interacting feature recogniser
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Figure D.6  Situation III, /Ec=volume, interacting feature recogniser
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Figure D.8 Process of building a feature precedence list
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Figure D.9 Procedure for generating a tool approach direction
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Diagram of the proposed genetic algorithm process
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7. the number of operation groups
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Figure D.11
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Note:

num[K): the number of machining operation
groups in the Kth precedence relationship
CHUIi]: the position in initial population

u: the number of operation groups whose
position has not been determined.

eflag[i]: the flag whether the position for the
ith operation groups has been determined.

Initial precedence constraint algorithm
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Figure D.12
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The proposed AHP model for evaluation
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