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ABSTRACT 

Manufacturers strive for efficiently managing the consequences arising from the product 

proliferation during the entire product life cycle. New manufacturing trends such as smart 

manufacturing (Industry 4.0) present a substantial opportunity for managing variety. The 

main objective of this research is to help the manufacturers with handling the challenges 

arising from the product variety by utilizing the technological advances of the new 

manufacturing trends. This research focuses mainly on the process planning phase. This 

research aims at developing novel process planning methods for utilizing the technological 

advances accompanied by the new manufacturing trends such as smart manufacturing 

(Industry 4.0) in order to manage the product variety. The research has successfully 

addressed the macro process planning of a product family for two manufacturing domains: 

assembly and hybrid manufacturing.  

A new approach was introduced for assembly sequencing based on the notion of soft-wired 

galled networks used in evolutionary studies in Biological and phylogenetic sciences.  A 

knowledge discovery model was presented by exploiting the assembly sequence data records 

of the legacy products in order to extract the embedded knowledge in such data and use it to 

speed up the assembly sequence planning. The new approach has the capability to overcome 

the critical limitation of assembly sequence retrieval methods that are not able to capture 

more than one assembly sequence for a given product. A novel genetic algorithm-based 

model was developed for that purpose. The extracted assembly sequence network is 

representing alternative assembly sequences. These alternative assembly sequences can be 

used by a smart system in which its components are connected together through a wireless 

sensor network to allow a smart material handling system to change its routing in case any 

disruptions happened.  
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A novel concept in the field of product variety management by generating product family 

platforms and process plans for customization into different product variants utilizing 

additive and subtractive processes is introduced for the first time. A new mathematical 

programming optimization model is proposed. The model objective is to provide the 

optimum selection of features that can form a single product platform and the processes 

needed to customize this platform into different product variants that fall within the same 

product family, taking into consideration combining additive and subtractive manufacturing. 

For multi-platform and their associated process plans, a phylogenetic median-joining 

network algorithm based model is used that can be utilized in case of the demand and the 

costs are unknown. Furthermore, a novel genetic algorithm-based model is developed for 

generating multi-platform, and their associated process plans in case of the demand and the 

costs are known. The model's objective is to minimize the total manufacturing cost.   

The developed models were applied on examples of real products for demonstration and 

validation. Moreover, comparisons with related existing methods were conducted to 

demonstrate the superiority of the developed models. The outcomes of this research provide 

efficient and easy to implement process planning for managing product variety benefiting 

from the advances in the technology of the new manufacturing trends. The developed models 

and methods present a package of variety management solutions that can significantly 

support manufacturers at the process planning stage. 
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NOMENCLATURE  

K    the set of product variants in the product family, k ∈ K. 

J   the features set j ∈ J. 

I represents the platforms,  i ∈ I. 

Cs the setup cost of one platform. 

VCk the manufacturing cost of variant k  

SC the total setup cost of manufacturing multiple platforms 

Dk   the demand of the kth product variant (units). 

Cpj   the cost of mass production of the jth feature using a platform. 

Caj  the cost of adding the jth feature/material to form a product variant (Caj>Cpj) 

Crj  the cost of removing the jth feature/material (Crj > Cpj) from the platform to form a 

product variant  

V  the product matrix with 

vjk = {
1 if product k requires feature j

0 otherwise                                           
 

fjlk  elements in the features precedence  

fjlk = {
1 if feature j preceds feature l

0 otherwise                                           
 

The binary decision variables are: 

 xj to indicate that feature j is included in the platform;  

xj = {
1 if the platform contains feature j 

0 otherwise                                                  
 

ajk to denote that feature j is added to the platform to customize it to form product k; 

ajk = {
1 if feature j is  added  to the platform to form product k 

0 otherwise                                                                                                
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rjk to show that feature k is removed from the platform to customize to form product k.   

rjk = {
1 if featurej is removed from the platform to form product k

0 otherwise                                                                                                        
 

Zi to indicate that feature j is included in the platform i;  

Zi = {
1 if the platform i is used to produce at least one variant 
0 otherwise                                                                                     
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GLOSSARY 

Term Definition 

Additive Manufacturing As per ISO/ASTM standard, additive manufacturing is defined 

as a “process of joining materials to make parts from 3D model 

data, usually layer upon layer as opposed to subtractive 

manufacturing and formative manufacturing methodologies” 

(Rashid 2019). 

Hybrid Manufacturing The International Academy for Production Engineering (CIRP) 

has suggested an open and a narrow definition of Hybrid 

Manufacturing: 

(1) Open definition: a hybrid manufacturing process combines 

two or more established manufacturing processes into a new 

combined set-up whereby the advantages of each discrete 

process can be exploited synergistically; 

(2) Narrow definition: Hybrid processes comprise a 

simultaneous acting of different (chemical, physical, 

controlled) processing principles on the same processing zone 

(Zhu et al. 2013b). 

In this dissertation, hybrid manufacturing refers to combining 

additive and subtractive manufacturing. 

Master Assembly 

Network 

A master assembly network is generic multiple alternative 

assembly sequences for a group of product variants belonging 

to a family where they share some parts and have common 

product structure (Moussa and ElMaraghy 2019). 

Median Joining 

Phylogenetic Network 

(MJPN) 

The MJPN is a branch of unrooted phylogenetic networks used 

to trace and classify DNA sequences, according to their 

relationship to hypothetical ancestral nodes (Bandelt et al. 

1999). 
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Multi-Platform Product platforms are a collection of modules or parts that are 

common to a number of product variants. Using more than one 

platform is a means to reduce costs and obtain access to 

multiple market segments by developing different product 

variants. (Harland et al. 2020) 

Process Planning Process planning, in the manufacturing context, is the 

determination of processes and resources needed for 

completing any of the manufacturing processes required for 

converting raw materials into a final product to satisfy the 

design requirements and intent and respect the geometric and 

technological constraints. 

At the “macro” process planning level, the sequence of 

operations and the selection of appropriate resources are the 

main concerns, whereas at the “micro” process planning level, 

the focus is on defining parameters of each operation, 

determining the time it takes to perform that operation, and 

selecting tools and fixtures as needed. (ElMaraghy and Nassehi 

2019) 

This dissertation focuses on the macro process planning level.  

Product Platform Product platform is defined as a set of sub-systems and 

interfaces that form a common structure from which a stream 

of derivative products can be efficiently produced and 

developed (Meyer and Lehnerd 1997). 

Product Variant A product variant represents a specific item for purchase, and 

is contained within a parent Product. At least one Product 

Variant is required for each Product. The variants are different 

from each other in either the components or features that 

formed them.  

Reticulation A node in a rooted phylogenetic network that has more than 

one in-edge 
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Smart Manufacturing Smart manufacturing, also sometimes referred to as IIoT 

or  Industry 4.0, marries physical production and operations 

with smart digital technology, machine learning, and big data 

to create a more holistic and better connected ecosystem for 

companies that focus on manufacturing and supply chain 

management (Davis et al. 2012).  

Soft-Wired Galled 

Network 

The soft-wired galled network is a network that represents all 

of the clusters in a given set of trees. The cluster represents a 

group of closely related species, which share a trait, or suite of 

traits. The clusters are represented by links in the network, 

each of which represents one or more clusters depending on 

which reticulation links are “on” and “off” (Huson et al. 2010). 

Subtractive 

Manufacturing 

Subtractive manufacturing processes are the processes that 

involve removing particles of material in the form of the chips 

from a solid block of starting raw material or from an 

unfinished part by the cutting edges of a tool to create or 

modify shapes (Toenshoff 2014). 
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 INTRODUCTION 

1.1 Motivation 

Nowadays, manufacturers are facing many challenges as the result of changing demands, 

global competition, customer requirements, regional legislation and environmental issues 

(ElMaraghy et al. 2013). Failure to meet these market demands responsively and efficiently 

will lead to potential loss of manufacturers’ market share to their competitors. In light of that, 

manufacturers strive to produce an entire spectrum of products in order to survive in the 

competitive market and satisfy different market segments. This product proliferation will 

result in high costs for manufacturers if it is not managed well. Mass customization is the 

main manufacturing strategy that manufacturers use to attain the competitive edge of 

decreasing the costs while keeping the quality and prevent loss of functionality of the 

products. Mass customization aims to produce a wide range of product variants to satisfy 

different market segments with efficiency approaching mass production by focusing on the 

commonality within the product/part family. 

Process planning is a crucial intermediate and integrating phase between the design and 

manufacturing of a product (Jain and Jain 2001) as it is responsible for the efficiency of the 

production (Denkena and Mörke 2017). It comprises the selection and sequencing of 

processes and operations to transform a chosen raw material into a finished product (Scallan 

2003). Product variety has a significant effect on the complexity of planning in general. Thus, 

well-designed strategies and models are needed to handle the variety observed in parts, 

products and families as well as changes in manufacturing resources utilization and 

inventory. The efficient generation of process plans plays a crucial role as an enabler of 

manufacturing systems needed to successfully manage variety (ElMaraghy 1993, ElMaraghy 

and Wiendahl 2009, ElMaraghy 2009). 

Meanwhile, new manufacturing trends/initiatives such as smart manufacturing (Industry 

4.0), and Made in China 2025 arise. These manufacturing trends aim at driving solutions to 

manufacturing challenges. They have huge potential for meeting customer requirements and 

increasing flexibility and resource productivity and efficiency (Kagermann et al. 2013). 

Figure 1-1 shows the four main characteristics of industry 4. Among these characteristics is 

the impact of exponential technologies as an accelerant or catalyst that allows individualized 
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solutions, flexibility and cost savings in industrial processes (Schläpfer et al. 2015). Additive 

manufacturing and sensor technology are among the examples of these exponentially 

growing technologies, as shown in Figure 1-2. Sensor technology has the potential to increase 

autonomy and to speed up individualization and flexibilization (Lu 2017, Li et al. 2017),  while 

additive manufacturing allows new manufacturing solutions (Dilberoglu et al. 2017, Vaidya 

et al. 2018, Cotteleer and Joyce 2014). Although many of these technologies are not very new 

and available from 2 or 3 decades, utilizing these technologies was limited due to their 

unsuitability of industrial use. Recently, there is a breakthrough in computing power 

(Moore’s law) and the reduction in cost for acquiring and use these technologies makes them 

capable of industrial use (Hagel III et al. 2015, Schläpfer et al. 2015, Xu et al. 2018). These 

technologies will open the way for radically changing industrial processes, accelerating them 

and making them more flexible.  

The new trends will not only pose an exclusively technological or IT-related challenge to the 

manufacturers. It will have far-reaching implications on the entire product lifecycle 

from inception, through engineering design, process planning and manufacture, to service 

and disposal of manufactured products (Kagermann et al. 2013, Tohmatsu 2018).  

 

Figure 1-1 The four characteristics of Industry 4.0 (Schläpfer et al. 2015) 

 



  

3 

 

 

 

Figure 1-2 Exponential technologies (Schläpfer et al. 2015) 

Accordingly, this research is motivated by the product proliferation as the result of the 

aforementioned reasons, the exponential advances in technologies accompanied by the new 

manufacturing trends and the role of the process planning in managing variety. This 

motivation leads to a growing need for more efficient process planning methods that could 

help manufacturers in managing the product variety responsively by utilizing technological 

advances such as hybrid manufacturing and the wireless sensor network.  

This research exploits the existing process planning methods and builds on the new 

technological advances to provide novel methods that could help manufacturers in managing 

the product variety responsively. 

1.2 Engineering problem statement 

The increasing product variety and the dynamic fluctuation in the production volumes 

constitute a financial burden on manufacturing companies and could deteriorate 
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manufacturing performance. Process planning methods have a significant effect on the cost 

and efficiency of managing variety. Advances in technologies open new avenues to handle the 

variety. Thus, process planning methods that benefit from the advances in technologies to 

overcome the complexities arise from variety is required. 

1.2.1.  Assembly Domain 

The assembly sequence is one of the crucial aspects of process planning. The assembly 

sequence is the sequence in which product parts are to be assembled together to form a 

product. During production, the planned assembly sequence may need to be changed due to 

various shop-floor changes as a result of machine breakdown, tool failure, machine overload, 

etc. Hence, there is a need for planning alternative assembly sequences for the same product 

for use in adaptive manufacturing systems, which include smart AGVs that can deal with the 

introduction of different product variants as well as allow product-station re-assignment if a 

workstation is down. These smart AGVs have built-in intelligence to act on requests for 

changing operations sequence, parts workstation assignments and routes received digitally 

or via distributed sensors, and change the processing routes according to pre-planned flow 

sequence alternatives.   

1.2.2. Hybrid Manufacturing Domain 

Over the last decade, 3D printing has evolved from prototyping with basic materials and 

equipment to produce low tolerance components with limited use, to what we know of today 

as additive manufacturing. Additive manufacturing can provide industrial components 

composed of advanced materials and meeting today's stringent quality requirements. This 

additive manufacturing evolution will lead to a change in the way of manufacturing. 

Combining additive manufacturing with subtractive manufacturing may introduce new 

solutions for manufacturing problems, including product variety management. Hence, 

process planning for hybrid manufacturing in order to efficiently manage the product variety 

is needed. 

1.3 Objectives 

Based on the engineering problem statement, the research objective is to develop 

models/tools/methods for the macro process planning of product families, taking into 



  

5 

 

consideration the current advances in technologies.  This research is accomplished within 

two main manufacturing domains, the assembly and hybrid manufacturing domains. 

1.3.1. Assembly Domain 

The objective of the assembly domain is to develop a novel knowledge-based approach. This 

approach is capable of determining alternative assembly sequences for product families that 

can be utilized in any manufacturing system that allows alternative assembly sequences 

including but not limited to those utilizing Smart AGVs in Industry 4.0 environment.   

1.3.2. Hybrid Manufacturing Domain  

The objective of the hybrid manufacturing domain is to develop novel approaches that are 

capable of determining the product platform(s) and the process plans of product families, 

taking into consideration the additive and subtractive manufacturing processes.  

1.4 Research Scope 

This research focuses on macro process plans. The macro process planning addressed in this 

dissertation is concerned with the family of products. A family of products consists of either 

single part variants with features (e.g. guiding bushes), or multi-part variants (e.g. valves) is 

considered. Each variant shares some common and similar features and/or parts with other 

variants that fall within the same considered product family. The research scope focuses on 

families of mechanical products/parts such as families of valves, guiding bushes, flanges and 

gear shafts.  

Different types of manufacturing processes are required to produce the considered product 

families that include hybrid manufacturing processes (Additive manufacturing and 

Subtractive manufacturing) and assembly processes. This research focuses on mass 

customization. The demand for the product falls within medium to low volume with medium 

variety. The considered manufacturing system types are flexible manufacturing system, and 

reconfigurable manufacturing system that utilizes advances technology, and smart 

manufacturing systems. The considered manufacturing system components include machine 

tools for additive and subtractive manufacturing and assembly machines (e.g. CNC machines, 

Laser deposition welding machines, 3D hybrid machines, industrial robots,…etc.). Material 
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handling units that allow change of assembly sequence in case of shop floor disruption or 

introducing a new product such as smart AGVs are taken into consideration. 

1.5 Dissertation Structure 

The models and methods presented in this research are a package of product variety 

management solutions that can significantly help manufacturers in saving a lot of effort and 

time at the process planning stage. Figure 1-3 shows the structure and flow of the research 

carried out in this proposal report. The report is presented in seven chapters, where the 

literature review is presented in chapter 2. Chapter 3 presents the knowledge-based 

assembly sequence method based on the soft-wired galled network method used in Biological 

Sciences. The Integer Programming model for single-platform design and process planning 

for hybrid manufacturing of product family are presented in Chapter 4. Chapter 5 and Chapter 

6 are addressing the multi-platform generation and product family process plan for hybrid 

manufacturing problem using the median-joining phylogenetic network and genetic 

algorithm-based model respectively. Finally, Chapter 7 includes the summary and 

conclusions as well as the future work of this research. 

 

Figure 1-3 Research map. 
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1.6 Research Hypothesis 

This research is based on the hypothesis that: 

“Managing product variety by process planning of product family while utilizing the 

benefits of the technological advances such as additive could overcome the 

complexities arising from variety, enhance the effectiveness of mass customization; 

and decrease manufacturing costs.”  
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 LITERATURE REVIEW 

2.1 Overview 

This chapter provides a detailed summary and explanation of the state of knowledge on the 

most relevant topics within this dissertation. The process planning has gained considerable 

attention from industry and academia over decades. Thus, a considerable amount of research 

has been carried out in that field. This is why several authors have published literature review 

papers that offer an overview of key observations, principles and developments regarding 

the process planning, such as (Niebel 1965, Weill et al. 1982, Alting and Zhang 1989, 

ElMaraghy 1993, Xu et al. 2011). The literature review of process planning, covered in this 

chapter, is limited to the literature related to assembly sequence and process planning of 

hybrid manufacturing. The first section reviews the previous research work in the area of 

assembly sequence, especially the retrieval methods. The next sections are concerned with the 

literature in the topics process planning for hybrid manufacturing, product platform and product 

delayed differentiation, respectively. Finally, these sections are followed by discussions that 

highlight the research gaps in the literature that result in the origination of this research.  

2.2 Assembly Sequence 

Since the eighties, a large amount of research was carried out in the area of automating or 

semi-automating assembly sequence planning. ElMaraghy (1993) classified the approaches 

used for assembly sequence planning into three main categories; generic, generative, 

retrieval and hybrid. In the generative approach, a new assembly sequence and process plan 

are generated from scratch based on planning knowledge rules and mathematical models as 

well as interpretation of the component/product model/drawing in terms of assembly 

features and requirements (Sadaiah et al. 2002).  Rashid et al. (2012) presented a review on 

soft computing approaches to optimize assembly sequence planning and assembly line 

balancing problems. Genetic Algorithm, Ant Colony Optimization and Particle Swarm 

Optimization were the most frequent approaches utilized to solve the considered problems. 

Wang and Liu (2010) proposed a method to generate optimal or near-optimal assembly 

sequence of products by combining chaos method with particle swarm optimization model. 

Kardos et al. (2017) decomposed feature-based assembly planning into a macro level master 

problem and a micro-level sub-problem. The macro-level master problem determines 
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optimal sequencing and resource assignment while the micro-level sub-problem checks for 

the plan feasibility regarding technology, fixturing, tooling and collision. A case study for a 

medium-sized mechanical assembly from the automotive industry was used to demonstrate 

the efficiency of the proposed algorithms. Pintzos et al. (2016) presented an algorithm for 

generating assembly precedence diagrams of products directly from its design CAD files. 

They introduced the assembly tiers concept in which parts to be assembled were separated 

into groups based on their geometric characteristics. This algorithm generated all the 

possible sequences that can be used rather than the optimum one. The algorithm was applied 

as a software extension to a commercial CAD software. Several industrial case studies were 

used for illustration. The difficulty in the generative planning is the  identification of useable 

assembly features and in representing, managing, and utilizing relevant human expertise 

(Yusof and Latif 2014). Su (2007) proposed a geometric constraint analysis method that was 

capable of generating geometric feasible assembly sequence. A software system was 

developed based on this method and integrated with a CAD system. Wang et al. (2005) 

presented an ant colony algorithm-based approach to assembly sequence generation where 

parallel assembly operations are not allowed. 

The retrieval approach is one in which a new assembly plan is generated based on the 

similarity between the new and existing product variants with respect to the common 

product parts and/or assembly structure (Dong et al. 2005). The assembly plan of the most 

similar existing product variant is used as the starting plan for the new product variant. Some 

researchers focus on the similarity between products based on the bill of material. Hegge and 

Wortmann (1991) introduced the concept of generic bill of material. The generic bill of 

material compromises the product structure of all variants within a product family. Thus, it 

could be used to search for similar parts. Romanowski and Nagi (2004) developed text and 

tree mining approach to generate the generic bill of material to facilitate the search for a 

similar design.  A case study from a manufacturer of nurse call devices was used for 

illustration.   Based on the generic bill of material concept, Shu et al. (2014) evaluated the 

disruption risk and uncertainty of production in supply chain construction. Shih (2011) 

proposed an orthogonal Procrustes approach to measure the product similarity in order to 

match product structures (Bills of Material) of different product variants and data for the 

variant similar to the new one can be utilized to generate the new variant assembly sequence.  

The drawback of this method that the new variant may have a combination of parts that exist 

in more than one existing variants. 
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To avoid this drawback, some researchers developed a method to generate a master 

assembly sequence for products that have similar parts or forming a family, then retrieve the 

data for the new product variant from the master assembly sequence. Kashkoush and 

ElMaraghy (2014) proposed a retrieval method for assembly planning. A genetic algorithm 

was developed to generate a binary consensus tree that represents the set of all assembly 

sequence trees with minimum total dissimilarity distance. The generated consensus tree 

represented the master assembly sequence of a given product family. The Robinson-Foulds 

distance, which is one of the most common methods to measure the dissimilarity distance, 

was used.  The objective function was to minimize the total dissimilarity distance between all 

assembly sequence trees of the considered product family. A family of three control valves 

was used as a case study for demonstration. 

In order to guarantee the optimality of the results, Kashkoush and ElMaraghy (2015) 

extended their previous work by developing a knowledge-based mixed-integer programming 

model for generating the master (consensus) assembly sequence tree for a product family. 

The developed mathematical model guaranteed finding the optimal consensus tree. The 

assembly sequence for a new product family variant can be generated from the master 

assembly sequence tree.  The developed method was demonstrated using a family of pilot 

valves.  However, the developed method generates only one assembly sequence for the new 

variant. Navaei and ElMaraghy (2018) developed two mixed integer programming (MIP) 

models for generating master operation/assembly sequence with the objective of minimizing 

the total dissimilarity distance between the existing variants of a considered product family. 

The first MIP model dealt with variants that have a serial operation/assembly sequence. The 

second MIP model is a generalization of the first model and can handle variants with serial 

and/or networked operation/assembly sequence. The mathematical model was efficient in 

solving small and medium-size problems. Its efficiency decreases for the large-size problem 

as the number of operations increase; however, a heuristic algorithm was developed to 

handle the large-size problem efficiently. Two case studies, pilot control valves assembly, and 

ejecting and coupling parts/components machining, were presented for demonstration. 

2.3 Discussion of the Studied Literature for the Assembly Domain  

Extensive research has been conducted in the field of assembly sequence generation; 

however, there is no work considers the generation of a master assembly network composed 
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of multiple assembly sequences. A generic master assembly network is composed of multiple 

alternative assembly sequences for a group of product variants belonging to a family in which 

they share common parts and product structure. This master assembly network can be used 

for constructing an assembly sequence network for a new product variant belonging to the 

considered product family. The critical limitation of the assembly sequence retrieval methods 

in the literature is that only one assembly sequence can be retrieved for a product variant. 

Table 2-1 shows the research gaps regarding the assembly sequence in the literature.  

Table 2-1 Research in the assembly sequence summary 

Author 

Approach Output 

Retrieved 
Assembly 
sequence 

S
in

g
le

 

M
u

ltip
le

 

Navaei and ElMaraghy (2018) 
Mathematical model, 

Heuristic model 
Master assembly 

sequence 
X  

Kashkoush and ElMaraghy 
(2015) 

Mathematical model 
Master assembly 

sequence 
X  

Shu et al. (2014) 
Simulation and neural 

network 
Generic bill of material X  

Kashkoush and ElMaraghy 
(2014) 

Genetic Algorithm 
Master assembly 

sequence 
X  

Shih (2011) 
Orthogonal Procrustes 

approach 
Bill of material X  

Romanowski and Nagi (2004) Text and tree mining Generic bill of material X  

2.4 Process Planning for Hybrid Manufacturing  

There is a growing number of manufacturers across multiple industries use 3D printing (aka 

additive manufacturing) for more than creating prototypes (Gao et al. 2015, Cortina et al. 

2018). There are many reasons for the additive manufacturing/ 3D printing hype. Now, 

additive manufacturing is capable of producing parts with better quality than before to the 

extent of producing ready to use parts (Wimpenny et al. 2017, Khorram Niaki and Nonino 

2017). The time of the printing/processing has been significantly reduced to an acceptable 

point (Kumar et al. 2019). The printable materials have evolved from a limited number of 

plastic types to metals and plastics that are commonly used in industrial parts manufacturing. 

Almost every year has seen an exponential rise in available systems, technologies, and 

materials for additive manufacturing (Hashmi 2014, Sahasrabudhe et al. 2018).   
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Although this significant increase in utilizing additive manufacturing in manufacturing, 

additive manufacturing, in some cases, is still more expensive and takes more time per part 

than subtractive manufacturing. Additive manufacturing is proven to be cost-effective in 

product customization (Goodridge and Ziegelmeier 2017). Thus, additive manufacturing is 

not going to replace the traditional (subtractive) manufacturing (Stewart 2019). In contrast, 

additive and subtractive manufacturing can complement each other in order to benefit from 

the combined advantages of both and overcome their individual drawbacks. This is known as 

hybrid manufacturing. Hybrid manufacturing can be defined as the combinations of two or 

more manufacturing operations, each of which is from different manufacturing technologies 

such as joining, subtractive, transformative and additive manufacturing, and has interactions 

with and influences on each other (Zhu et al. 2013b). 

The research in the area of hybrid manufacturing can be categorized into four major 

categories based on the different combinations/incorporation of manufacturing 

technologies. These areas are hybrid additive and subtractive (e.g. Laser cladding and 

mechanical machining), hybrid joining and subtractive (e.g. CNC milling and welding 

technology), hybrid additive and transformative (e.g. selective laser melting (SLM) and laser 

erosion process) and hybrid subtractive and transformative (e.g. Turning and rolling). UK 

government reported in one of its white paper on the future of manufacturing that hybrid 

manufacturing can shorten or simplify value chains and/or enable novel processing 

(O’Sullivan and Mitchell 2013). Combining additive and subtractive manufacturing is among 

the most common hybrid manufacturing and is expected to shape the future of 

manufacturing. Hybrid manufacturing extends the application areas and achieves a higher 

performance of the combined manufacturing technologies (Zhu et al. 2013b) and has the 

opportunity to develop new solutions for the manufacturing challenges such as product 

proliferation.  

Hybrid manufacturing technologies have been subject of extensive research and 

implementation in academia and industry for the last decade; however, research concerning 

process planning for hybrid manufacturing has been limited.  There are three main categories 

of process planning for hybrid manufacturing in the literature. ElMaraghy (1993) classified 

the methodologies used for process planning into: generative, retrieval and combination of 

both generative and retrieval. 
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Methods for generic process planning and manufacturability evaluation for subtractive or 

additive manufacturing processes have been developed (e.g. (Kerbrat et al. 2011, Behandish 

et al. 2018)). ElMaraghy (1993) defined generic process planning as the highest level of 

planning in which the selection of the most suitable technology for producing a feature, a part 

or a product takes place. Kerbrat et al. (2011) extended the Design for Manufacturing (DFM) 

approaches in order to consider more than one manufacturing process within CAD software. 

Kerbrat et al. (2010)  proposed a methodology to estimate manufacturing complexity for 

subtractive and additive manufacturing. Manufacturing indices values were proposed to 

assess in determining the features that are to be machined or fabricated by layers. Behandish 

et al. (2018) presented a computational framework for manufacturability analysis and 

generic process planning of Hybrid manufacturing. The manufacturability analysis and 

process planning were decomposed into purely symbolic reasoning through a finite Boolean 

algebra (FBA) that enumerates the entire search space for planning. The work in this 

approach focus on the selection of the process type based on technological constraints.  

 Another group of researchers (e.g. (Ren et al. 2010, Basinger et al. 2018)) developed process 

planning methodologies for hybrid manufacturing of a single part in two separate steps 

where a near-net shape part is built by additive manufacturing followed by subtractive 

machining for finishing. Ren et al. (2010) introduced an integrated process planning 

framework for 3D laser-aided deposition and five-axis surface finish machining. The paper 

focused on automating components of the process planning, including decomposition of the 

computer-aided design (CAD) model, improvement of the toolpath generation pattern, and 

collision detection algorithms. Basinger et al. (2018) developed a feature-based planning 

method for hybrid manufacturing of pockets, holes, and flat surfaces. A heuristic model was 

developed to minimize tool and orientation changes to improve process times. 

Finally, several studies have focused on developing process planning methodologies in which 

both additive and subtractive technologies are used alternatively to remanufacture a single 

part. Newman et al. (2015) introduced a Re-Plan process planning system based on a hybrid 

process framework named iAtractive, proposed by  (Zhu et al. 2013a, Zhu et al. 2014), in 

which different plans to re-incarnate existing/legacy plastic products into new products were 

generated. The iAttractive framework is a combination of subtractive (i.e. CNC machining), 

additive (i.e. fused filament fabrication, FFF) and inspection processes for manufacturing 

plastic parts. Zhu et al. (2017) developed a feature-based decision-making logic to restrict the 
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number of process plans generated by the Re-Plan system based on the geometry and 

dimensions of features of both existing and final parts. (Le et al. 2017b, Le et al. 2018a) 

proposed a similar direct material reuse approach but for metallic parts.  End of Life (EOL) 

metallic parts or existing parts were recovered by combining metal-based additive such as 

powder bed fusion (PBF) and directed energy deposition (DED) with subtractive processes.  

2.5 Product Platform and Delayed Differentiation 

Postponement strategy is an effective strategy for variety management (ElMaraghy et al. 

2013, Ferreira et al. 2018). It can be described as that manufacturing the final product is 

deferred as much as possible. The postponement strategy is categorized into time 

postponement and form postponement (Lee and Billington 1994). The time postponement is 

described as reallocating the differentiation tasks/process from the central plant to regional 

distribution centers for reacting to localization needs (Su et al. 2005, Shao and Ji 2008). The 

time postponement is commonly used for high-technology products, and many companies 

such as Dell and Gateway adapted this strategy. For instance, Fujitsu opened a configuration 

center in Tennessee to perform the final assembly (Hsu and Wang 2004).   

On the other hand, the form postponement is based on standardizing the upstream stages as 

much as possible and deferring the product differentiation at the downstream stages. It can 

be described as that various product variants share some common processes, features, 

and/or parts that can be manufactured in the upstream manufacturing stages to produce 

generic products (Harrison and Skipworth 2008, Skipworth and Harrison 2006). Then, at 

some point in the manufacturing process known as the point of product differentiation, 

differentiating processes are utilized to customize the generic product, up to that point, into 

different product variants. The form postponement centers upon redesigning the process to 

delay the point of differentiation as much as possible. As an example, Compaq adapted the 

form postponement and redesigned its process. It achieved 98% of customer service level 

and 3 days of order fulfillment as a result of utilizing form postponement (Hsu and Wang 

2004). The delayed product differentiation strategy falls under the form postponement 

category. 

During the last decades, the product platform design has gained much attention from the 

industry and academia. Thus, there has been a significant amount of research conducted in 
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that area. This was the reason that derived many authors to publish literature review papers 

that gives an overview of key findings, concepts and developments concerning the product 

platform such as (Simpson 2004), (Jose and Tollenaere 2005), (Jiao et al. 2007), (Pirmoradi 

and Wang 2011), (Zhang 2015), (Otto et al. 2016), (Facin et al. 2016)  and (Han et al. 2019).  

Jiao and Tseng (1999) proposed a methodology for designing product platform architecture. 

The customer requirement was mapped to the facility capabilities based on three consecutive 

views: functional, technical and physical views. The proposed methodology was applied to a 

family of power supplies for the demonstration. Martin and Ishii (2002) developed a method 

to design a decoupled product platform architecture based on two indices, namely; the 

generational variety index (GVI) and the coupling index (CI). The GVI was used to assess the 

redesign effort needed for future designs of the product while the CI assessed the coupling 

among the product components. A case study of a family of water cooler was used to 

demonstrate the developed method. 

Jose and Tollenaere (2005) reviewed various product platform development methods. The 

methods used to produce specific platforms for a group of products were categorized into 

groups: Clustering methods (e.g. MADROC, Production Flow Line, Rank Order Clustering, 

etc.), Graph and matrix partitioning methods and Mathematical Programming methods.  

Besides, the paper showed the high impact of developing product platforms on the easiness 

of managing variety and product life cycle savings. Jiao et al. (2007) presented a 

comprehensive review of the state-of-the-art research in the areas of product family design 

optimization, product family configuration, modular architectures, and product portfolio 

planning. Moreover, they provided a decision framework for a holistic view of product family 

design and platform-based product development, comprising both front-end and back-end 

issues. 

Yu et al. (2007) developed a clustering method to produce common platforms for complex 

products based on the design structure matrix (DSM). The developed method used a simple 

genetic algorithm (GA) with the minimum description length (MDL) principle-based 

objective function to cluster DSMs. Three real-world case studies (turbofan engine at Pratt 

and Whitney (P&W), engine at GM and gas turbine-driven electrical generator set (GAS)) 

were used for demonstration of the method and show its effectiveness. Ben-Arieh et al. 

(2009) introduced the notion of assembling and disassembling components to and from 
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platforms to customize products. A multiple platforms configuration problem was 

formulated as a mixed-integer program. The model requires specifying the expected number 

of platforms a priori. It suffers from instability and nonlinearity and is not able to form 

platforms and families in cases where the demand of one of the products is zero. A family of 

cordless drills was employed to demonstrate the proposed approach. 

Rojas Arciniegas and Kim (2011) presented a framework to identify the optimal set of 

components to be shared among a group of products based on the architectural information 

contained in the product Design Structure Matrix (DSM) and the Functional-Component 

Matrix (FCM). A genetic algorithm was implemented based on the framework. The objective 

function includes the minimum description length representation of the product, which 

provides a global score of how compact the structure and the impact metric (IM) score of the 

selected components for sharing.   The framework was applied to a family of digital cameras 

for illustration. Jiao (2012) proposed a hybrid real options analysis framework for product 

platform flexibility planning.  The framework integrated the financial and technical analyses 

of product platforms, taking into consideration the product-related and project-related 

flexibility.  A bi-level optimization problem was formulated in order to support optimal 

product platform planning. The first level focuses on maximizing the expected profits of 

possible configurations of platform options for a particular target market segment, while the 

second level focuses on satisfying the equilibrium constraints related to the market and 

manufacturing concerns of platform planning. The rationale of the proposed hybrid approach 

for supporting optimal product platform planning was manifested using an example of 

vibration motor platform planning. 

Simpson et al. (2012) proposed a framework in order to translate user needs and 

requirements into commonality specifications during product family design. The framework 

integrated different platform-based product development tools: market segmentation grid, 

Generational Variety Index (GVI), Design Structure Matrix (DSM), commonality indices, 

mathematical modelling and optimization, and multi-dimensional data visualization. The 

framework aimed at determining the unique and common components and their best 

parameter settings in the product family. The proposed approach was illustrated through the 

design of a family of unmanned ground vehicles (UGVs). AlGeddawy and ElMaraghy (2013) 

proposed a reactive design methodology for the product platform. The methodology was 

based on physical commonality rather than the commonality index.  Cladistics was used to 
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design a core platform by hierarchically clustering common components as well as combine 

the common parts into integral parts and modules, if possible. The model was capable of 

balancing between the Design for Manufacturing and Assembly (DFMA) and product 

modularity. The proposed model was applied to household kettles family. 

ElMaraghy and Abbas (2015) introduced for the first time, the concept of co-platforming in 

which the product feature platform is mapped with the corresponding manufacturing system 

machines platform. For the demonstration, the fabrication of automobile cylinder blocks was 

used as a case study. Abbas and ElMaraghy (2017) developed a mixed integer linear 

programing (MILP) model to synthesize manufacturing systems based on the co-platforming 

methodology , which maps the platform and non-platform features of the product to the 

platform and non-platform features of its manufacturing system. It takes into consideration 

machine level changes including addition or removal of machine axes and changing setup as 

well as system level changes such as addition or removal of machines. The objective is to 

minimize the cost of change needed for transition between product families and production 

periods by maintaining the core/platform machines and only changing the non-core 

machines or machine components. An illustrative numerical example and an industrial case 

study from tier I automotive supplier are used for verification. Abbas and ElMaraghy (2018) 

extended their work to assembly domain. An integrated methodology for synthesizing 

assembly systems for customized products through mapping between products platform and 

the assembly system platform was presented. A matrix-based formulation and mixed integer 

linear programming optimization models were developed. For illustration, the methodology 

was applied to a case study for an automotive cylinder head assembly line. 

Hanafy and ElMaraghy (2015a) used median-joining phylogenetic networks (MJPN) to 

generate delayed product differentiation (DPD) platform network taking into consideration 

the concept of assembly/disassembly modular platforms. Hanafy and ElMaraghy (2015b) 

developed a mathematical model for modular product multi-platform configuration. The 

model takes into consideration both assembly and disassembly of components to customize 

platforms into product variants.  A family of touch screen tablets was used as a case study to 

demonstrate the model application. 

Schuh et al. (2018) proposed a methodology for function-oriented design of the modular 

product platforms for mechatronic systems.  The proposed approach was illustrated through 
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a case study of an electric vehicle. Zhang et al. (2019) presented a product platform planning 

method by utilizing the existing product data in the product lifecycle management (PLM) 

database. Galizia et al. (2019) presented a decision support system for multiple product 

platforms design in high-variety manufacturing. The median-joining phylogenetic networks 

(MJPN) was used in order to generate platforms that can further assemble and/or 

disassemble the derived final products. This decision support system was applied to a case 

study of a large family of plastic valves. 

2.6 Discussion of the studied literature for the Hybrid Manufacturing 

Domain 

Although hybrid manufacturing has gained much attention in the literature as it benefits from 

combining additive and subtractive processes in recent years, no research work considers 

the utilization of hybrid manufacturing to produce a family of product.  

Table 2-2 Research in Product Platform and delayed product differentiation summary 
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Kerbrat et al. (2010) X   Process selection X  

Ren et al. (2010)  X  Manufacturing X  

Kerbrat et al. (2011) X   Process selection X  

Newman et al. (2015)   X Remanufacturing X  

Zhu et al. (2017)   X Remanufacturing X  

Le et al. (2017b)   X Remanufacturing X  

Basinger et al. (2018)  X  Manufacturing X  

Behandish et al. (2018) X   Process selection X  

Le et al. (2018a)   X Remanufacturing X  
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The conducted research in the field of process planning for hybrid manufacturing was limited 

to process selection, manufacturing of a single item, or remanufacturing of an old part.  Table 

2-2 shows the research gaps regarding the process planning for hybrid manufacturing in the 

literature. 

Besides, most of the literature in the area of the product platform focuses on the assembly 

domain. For the hybrid manufacturing domain, the researchers consider only subtractive 

manufacturing while designing the product platform. In other words, only successive 

machining of features of the product platform is considered to produce product variants. 

Table 2-3 shows the research gaps regarding the product platform in the literature.  

Table 2-3 Research in Product Platform and delayed product differentiation summary 
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Galizia et al. (2019) 
Phylogentic Median 

Joining Algorithm 
 X X  Assembly 

Schuh et al. (2018) 
Systemic evaluation 

methodolgy 
X   X Assembly 

Abbas and ElMaraghy 

(2018) 
Mathematical Model X  X X Assembly 

ElMaraghy and Abbas 

(2015) 
Mathemtical model X  X X 

Subtractive 

Manufacturing 

Only 

Hanafy and ElMaraghy 

(2015a) 

Phylogentic Median 

Joining Algorithm 
 X   

Assembly 

 

Hanafy and ElMaraghy 

(2015b) 
Mathematical model X X X X Assembly 

Simpson et al. (2012) Mathematical model X  X  Assembly 

Rojas Arciniegas and Kim 

(2011) 
Genetic algorithm 

 

X 
   Assembly 

Ben-Arieh et al. (2009) 
Mathematical model, 

Genetic Algorithm 
 X X X Assembly 
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 MASTER ASSEMBLY NETWORK FOR 

ALTERNATIVE ASSEMBLY SEQUENCES 

3.1 Overview 

The fourth industrial revolution (I 4.0) is paving the way for change in manufacturing 

systems. A logical enabler for dynamic and adaptive manufacturing systems, including smart 

automated guided vehicles (AGVs), is presented. It can respond to requests for changing 

operations sequences received digitally or via distributed sensors and change the processing 

route according to pre-planned flow sequences and pre-determined alternatives. A novel 

method for generating a master assembly network with alternative sequences based on 

legacy assembly data for a product family is developed. A master assembly network is generic 

multiple alternative assembly sequences for a group of product variants belonging to a family 

where they share some parts and have common product structure. The assembly network 

with alternative sequences for a new variant is extracted from the master assembly network. 

These alternative sequences increase the flexibility and adaptability of the assembly system 

to handle workshop disruptions such as change orders, machine breakdowns and tool 

failures. The developed method is inspired by the phylogenetic networks used in biology, 

namely the soft-wired galled network. A Genetic Algorithm based model is developed to 

generate the master assembly network that summarizes a set of conflicting rooted assembly 

sequence trees. A family of three control valves is used as a case study. The proposed method 

can be utilized in any manufacturing system that uses alternative assembly sequences 

including those utilizing smart AGVs in and Industry 4.0 dynamic environment. The 

developed method decreases the time and cost of introducing a new product variant as well 

as increases the responsiveness of the manufacturing system. 

3.2 Introduction 

The wide scope of product variants driven by customers’ preferences, regional requirements, 

certification specifications and dynamic fluctuation in the annual demands per variant 

introduces manufacturing challenges (ElMaraghy et al. 2013, ElMaraghy et al. 2017). These 

challenges have a direct impact on manufacturing systems design and operation to cope with 

products and markets changes efficiently and cost-effectively. Thus, the manufacturers are 
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facing an urgent need to make changes to their manufacturing/assembly systems to increase 

production and implement the required product changes.  

Industry 4.0 aims at creating a smart manufacturing environment that can cope with 

manufacturing challenges (Lee et al. 2015, Lasi et al. 2014). It focuses on making 

manufacturing/assembly systems more modular, reconfigurable, adaptable and more 

intelligent. It utilizes the recent innovations in sensing technology and the Internet of Things 

(IoT) (Lu 2017, Lee et al. 2014). In contrast to conventional manufacturing systems, the 

application of sensing technology and the Internet of Things (IoT) in the manufacturing 

system results in a significant increase in the degree of automation and autonomy where 

intelligent machines can collect real-time information needed for dynamic and synchronized 

behaviour (Fu et al. 2018). Such a smart manufacturing system can provide unprecedented 

opportunities for improving productivity and adaptability.  

The assembly sequence is the most crucial part of an assembly plan (Zhou et al. 2011). It 

represents the feasible assembly sequence of different parts and sub-assemblies in the 

product and has a significant impact on operation time, cost and the system control 

complexity. The difficulty of assembly steps, need for fixturing, potential for parts damage 

during assembly, ability to do in-process testing, and rework are also affected by the 

assembly sequence choices (De Fazio and Whitney 1987).  

Powered conveyors and traditional racks with free rollers conveyor have been used for 

decades to move pallets, parts, products and sub-assemblies between stations and are 

sequenced and operated synchronously or asynchronously to maintain the desired cycle 

time. Traditional Automated Guided Vehicles, used in more modern assembly lines, offer 

more automation but limited flexibility. They still follow a pre-determined path using moving 

chains embedded in the floor, painted floor stipes or frequency-controlled zones.  

During production, the planned assembly sequence may need to be changed, as mentioned 

earlier. Hence, the way parts and sub-assemblies flow in the assembly systems must also 

change without violating the assembly precedence constraints. Industry 4.0 shows 

considerable promise to change the rigid, structured transport paradigm not only by using 

Automatic Guided Vehicles (AGVs) but also by embedding intelligence into the product 

transport system, including the AGVs, to allow more flexibility and adaptability. The Smart 

AGVs represent a new transportation system based on industry 4.0 principles. They have 
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built-in intelligence to act on requests for changing operations sequence, parts-workstation 

assignments and routes received digitally or via distributed sensors, and change the 

processing routes according to pre-planned flow sequence alternatives. This smart system 

would add flexibility to the assembly system to deal with the introduction of different product 

variants as well as allow product-station re-assignment if a workstation is down, hence, 

preventing blocking and starving stations, delays and costly downtime. Figure 3-1 shows two 

examples of smart AGVs by Locus Robotics (Locus Robotics 2018) and Otto Motors (Otto 

Motors 2018).    

 
Figure 3-1(a) Smart AGV produced by Locus Robotics (Locus Robotics 2018) (b)  Smart AGV produced by 
Otto Motors (Otto Motors 2018) 

This research focuses on developing generic assembly networks for generating alternative 

assembly sequences for a given product for use in adaptive manufacturing systems, which 

include smart AGVs.  Adaptable, flexible and reconfigurable alternate routing is a logical 

enabler of the new smarter transportation system for moving parts, sub-assemblies and 

products between stations that is capable of changing assembly routes as needed without 

stopping for reprogramming. The multiple assembly sequence alternatives to assemble a 

product are generated in the form of an assembly network. All sequences represented by the 

assembly network lead to the same final assembled product family.  

Extensive research has been conducted in the field of assembly sequence generation; 

however, there is no work considering the generation of a master assembly network 

composed of multiple assembly sequences. A generic master assembly network is composed 

of multiple alternative assembly sequences for a group of product variants belonging to a 

family in which they share common parts and product structure. This master assembly 
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network can be used for constructing an assembly sequence network for a new product 

variant belonging to the considered product family.  

A novel master assembly network generation method is presented. It is inspired by problems 

studied in phylogenetics to construct a network that summarizes a set of conflicting rooted 

phylogenetic trees. Conflicting data is not uncommon; it is part of the legacy products 

assembly sequence plans reality that should be dealt with (Kashkoush and ElMaraghy 2015, 

Navaei and ElMaraghy 2017). The proposed method utilizes conflict found in assembly 

sequences of different variants in the product family in order to find alternative assembly 

sequences for the same product. The generated network is called soft-wired galled network 

and represents the master assembly network of a given product family. A new soft-wired 

galled network generation method based on the genetic algorithm has been developed to deal 

with the specific characteristics of products’ assembly sequences. The generated assembly 

network, used to extract and generate a network for a new product variant, capitalizes on the 

existing similarity between new and legacy product variants, which decreases the time and 

cost needed for assembly sequence planning. The new variant assembly sequence is 

extracted from the master assembly network by removing the parts which do not exist in the 

new variant from the generated master assembly sequence. If new parts introduced in the 

new variant which do not exist in the previous variants, a planner will decide its position 

within the extracted network. A real case study for a family of back flushing control valves is 

used to illustrate the use of the developed method and compare its results with other 

methods found in the literature. 

This research targets product families which consist of different product variants (instances), 

all of which are perfectly valid and feasible products regardless of differences in geometry or 

other attributes which make them different variants of the same product family. The 

assembly sequence problem and its precedence constraints should not be confused with 

technological assembly issues such as tools and fixtures to be used in assembly. 

3.3 Master Assembly Network Generation 

3.3.1. Problem Description 

For a given set of N assembly sequences for N variants of a product family with a total number 

of n different parts, it is required to find multiple alternative assembly sequences for all the 
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n parts. These multiple alternative assembly sequences are achieved by minimizing a 

modified Robinson Foulds distance, which represents the difference between the generated 

master assembly network and the given trees, as detailed in section 3.4.4. 

The following assumptions are made: 

• Non-linear assembly with parallel operations is allowed. 

• Assembly operations are sequential, with one part added at a time. 

• Assembly sequences data for existing product variants are available. 

• The same name or part number is used for various versions or variants of the same part in 

the product family. 

3.3.2. Soft-Wired Galled Network as Assembly Network  

Many elegant solutions to engineering problems have been inspired by biological phenomena 

(Shu et al. 2011). The proposed method for constructing the master assembly network is 

inspired by a method for constructing a soft-wired galled network that is used in biological 

and phylogenetic contexts. A non-traditional approach for assembly sequence generation is 

proposed. Each individual assembly sequence for a product variant of a given product family 

that shares a number of parts and has a common product structure is represented as a partial 

assembly tree (Miller and Hoffman 1989). The partial assembly tree which is an unordered 

rooted binary tree used in literature to represent the assembly sequence. These assembly 

trees are merged together into one master assembly network. Then, the master assembly 

network is used to extract the assembly network of a new variant that lies within the 

boundary of the considered product family. The master assembly network is a network that 

represents a combination of assembly sequence trees. Each tree represents a complete 

product assembly sequence. Thus, the network represents alternate assembly sequences for 

the same product. 

Traditionally, the galled network is a directed acyclic graph that models evolutionary 

histories with reticulation events  (Huson et al. 2010). It is a rooted phylogenetic network in 

which each reticulation has a tree cycle.  The evolutionary histories trace the processes by 

which living and fossil organisms by indicating the presence of a common ancestor from 

which species have diverged. Reticulation events happen when the origination of 

an ancestry is the result of a partial merging of two ancestor lineages leading to relationships 

better described by a phylogenetic network than a tree. Examples of reticulation events 

https://en.wikipedia.org/wiki/Fossil
https://en.wikipedia.org/wiki/Species
https://en.wikipedia.org/wiki/Phylogenetic_tree
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are hybridization, horizontal gene transfer, recombination, or gene duplication and loss. 

These phylogenetic networks are richly linked networks where hybrid nodes (nodes with 

two parents or more) exist instead of only tree nodes (a hierarchy of nodes, each with only 

one parent) that exist in phylogenetic trees. The phylogenetic trees are a subset of the 

phylogenetic networks. The galled network has become very popular due to its biological 

significance (Cardona et al. 2011). These networks can be represented in a soft-wired 

network form. The soft-wired galled network is a network that represents all of the clusters 

in a given set of trees. The cluster represents a group of closely related species, which share 

a trait, or suite of traits. The clusters are represented by links in the network, each of which 

represents one or more clusters depending on which reticulation links are “on” and “off” 

(Huson et al. 2010). A soft-wired network is a rooted phylogenetic network interpreted in the 

soft-wired sense in which reticulate edges can be switched on or off while hard-wired 

network is a rooted phylogenetic network interpreted in the hardwired sense in which all 

reticulate edges are considered to be on. Figure 3-2 shows an example of a soft-wired 

network of five leaves. Leaves 3 and 4 are included in the cluster represented by the link 

labelled “a” if the x link is switched on, and y link is thus switched off, and it is not included if 

y link is switched on, and x link is thus switched off. In the assembly network, the “on” and 

“off” feature of the soft-wired network can be used to represent assembly sequence 

alternatives, as discussed in the following paragraphs.  

Figure 3-2 A soft-wired network 

In this chapter, these assembly trees are combined to form a network based on the features 

of the soft-wired galled network. A special soft-wired galled network, in which the network 

can have hybrid (reticulation) nodes with only two parents, is proposed based on the stated 

assumption to represent the assembly network. These reticulation nodes are utilized to 

represent the different alternative sequences.  

https://en.wikipedia.org/wiki/Phylogenetic_trees
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This paragraph illustrates the representation of an assembly network with multiple 

alternative sequences by the soft-wired galled network. The root of the network represents 

the final product (complete assembly), and the leaves represent individual parts. Two types 

of intermediate nodes can exist. The first type is a hierarchy of nodes; each with only one 

parent represents the subassembly resulting from adding its two sub-nodes while the second 

type is reticulation (hybrid) nodes with two parents in the case of alternative (reticulation) 

links. Figure 3-3a shows the assembly network representing the multiple alternative 

assembly sequences for a product consisting of five parts. Two alternative assembly 

sequences are available depending on which reticulation links are “on” and “off.” The first 

assembly sequence is shown in Figure 3-3b, and its precedence graph is shown in Figure 3-3d. 

Four assembly operations are done. Assembly operation (A1) in which part 1 and part 2 are 

assembled forming sub-assembly (1-2), before or after assembly operations (A3) and (A4) 

are performed. Assembly operation (A3) of parts 4 and 5 to form sub-assembly (4-5) while 

assembly operation (A4) of part 3 to the sub-assembly (4-5) forms sub-assembly (3-4-5). The 

final assembly operation is A5 in which the two sub-assemblies (1-2) and (3-4-5) are 

assembled together. The second assembly sequence is shown in Figure 3-3c, and its 

precedence diagram is shown in Figure 3-3e. It includes assembly operations (A1) and (A3) 

in addition to two new assembly operations (A2) and (A6). Assembly operation (A2) is 

assembling part 3 to the sub-assembly (1-2) to form sub-assembly (1-2-3). Assembly 

operation (A6) produces the final product by assembling the two sub-assemblies (1-2-3) and 

(4-5). 
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Figure 3-3  (a) Multiple alternative assembly network; (b) First assembly sequence alternative; (c) 
Second assembly sequence alternative; (d) First alternative precedence diagram; (e) Second 

alternative precedence diagram 

3.4 Generation of Master Assembly Network using Genetic Algorithm 

This section presents the developed method for constructing the master assembly network 

(soft-wired galled network) for a given set of assembly sequence trees. Constructing the soft-

wired galled network is an NP-hard problem (Van Iersel and Kelk 2011).  Many algorithms 

and methods have been developed in the biology and phylogenetics literature for 

constructing soft-wired Galled networks (Gusfield 2015, Van Iersel et al. 2010, Wang et al. 

2013, Huson et al. 2009). However, the master assembly network is considered as a special 

case of the soft-wired galled network in which the maximum number of links coming out 

directly from any node is limited to two links. This constraint is needed to prevent any 

confusion that may happen in the order of the assembly operations within any generated 

assembly sequence. None of the algorithms and methods found in the literature deals with 

this special case. In addition, they did not consider trees with a different number of leaves.  

A Genetic Algorithm (GA) based model was developed for this purpose and is presented in 

this section. GA is an evolutionary optimization meta-heuristic originally introduced by 

(Holland 1992), inspired by the process of natural selection. The GA-based model is 

developed to construct the master assembly sequence network for a given set of individual 

partial assembly sequence trees. This set of assembly trees represents the assembly sequence 

of different variants in a specific product family. The number and type of parts in each variant 

may be different. The master assembly network is equivalent to the soft-wired galled 
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network for the given set of individual assembly trees. The developed model is implemented 

using the MATLAB® numerical computing environment and proprietary programming 

language.     

3.4.1. Methodology 

Each of the available assembly trees is encoded into a m x m square matrix form where m is 

the number of leaves (parts) in each tree. This matrix captures the same information about 

the sequence of parts and the tree topology (assembly processes) provided by the trees. 

Hence, the tree corresponding to any encoded matrix can be easily restored. The master 

assembly network is represented by a n x n square matrix where n is the total number of 

different parts. The developed genetic algorithm-based model is used to derive the matrix 

that represents the master assembly network. The resulting network must consist of all the 

parts that appear in the considered set of assembly trees. A set of n x n matrices (initial 

population) representing the initial set of assembly networks (solutions) is randomly 

generated. A detailed explanation for the encoding/decoding scheme is covered in the next 

subsections. In other words, the diagonals of these matrices are formed of the n parts with 

random order and the upper triangles are filled with ones randomly. The GA is applied to this 

set to find the optimal assembly network matrix that has the minimum fitness function. 

Figure 3-4 shows an IDEF0 model of the proposed genetic algorithm illustrating its main 

activities as well as inputs, outputs, controls and mechanisms for each activity. 

 
 

Figure 3-4 IDEF0 model of the GA for finding the master assembly network 
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3.4.2. Network Encoding/Decoding Scheme 

The performance of the GA is profoundly affected by the chromosome (individual) 

representation. A matrix-based representation is chosen for the network. A new 

encoding/decoding scheme is developed to convert the network and the given set of trees 

(the trees are a special case of the network) into a matrix. This encoding matrix captures two 

types of network information: network topology or structure and the sequence of leaves 

(parts). It is a m x m square matrix where m is the number of leaves (parts) of the network. 

The topology of the network is encoded in the form of binary values (0-1) in the upper 

triangular of the matrix, and the diagonal elements of the matrix encode the assembly parts. 

The developed network encoding/decoding scheme is capable of representing the soft-wired 

galled networks, unlike other encoding/decoding schemes such as those found in references 

(Kashkoush and ElMaraghy 2015, Kashkoush and ElMaraghy 2014, ElMaraghy and 

AlGeddawy 2012). 

 

 

 

Figure 3-5 Proposed network-to-matrix encoding/decoding scheme 

Figure 3-5 illustrates the encoding/decoding scheme. The network shown in Figure 3-5 

includes five (5) nodes. Each node is represented by 1 in the upper triangular of the encoding 

matrix. Thus, the sum of the 1s in the upper triangular of the encoding matrix is the node 

count. The location of the 1s in the matrix represents the location of the nodes in the network. 

In order to encode the network in figure 5 into a matrix, the leaves (parts) are placed on the 

diagonal of the encoded matrix maintaining their sequence. Then the 1s on the upper 

triangular of the matrix are allocated. First, the nodes that contain clusters of two leaves 

(parts) are allocated, followed by nodes of clusters of three leaves and so on until reaching 

the final node that contains all the leaves (parts). Thus, nodes 1 and 2 are the first ones to 
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locate their 1s. For node 1 that represents the parts 1 and 2, the 1 is located in the matrix at 

the intersection of the vertical line from 1 on the diagonal (representing part 1) and the 

horizontal line from the 2 on the diagonal (representing part 2). This is the 1 at the fourth 

row and the first column cell in the matrix. 

Similarly, the 1 for node 2 is located in the second row and third column cell. Then, node 3 to 

which the three leaves (parts) 3, 4 and 5 belong in the network is represented by locating 1 

at the first row and third column cell. This location of the 1 for node 3 is the intersection of 

the vertical line from the 1 in the second row and third column cell ( representing the cluster 

of parts 3 and 4  node 2) and the horizontal line from 5 on the diagonal (representing part 5).  

The same process is done for the rest of the nodes until node 5 that contains all the parts is 

reached. Hence, the encoded matrix maintains the hierarchy and grouping relationships 

among parts and the sub-assemblies. For all encoded matrices, the cell at the intersection of 

the first row and the first column (left) must be equal to one as it represents the network 

(final assembly) root node to which all leaves (parts) belong. 

3.4.3. Generating the Initial Population of the Master Assembly Network 

The developed GA starts with an initial population, which is an initial set of solutions 

randomly generated from the search space contains all the possible (feasible) solutions. The 

initial population is a set of n x n square matrices where n is the total number of different 

parts. To generate the initial population from 1 to n is generated in the diagonal cells, and a 

random number of 1s are located in different cells above the diagonal. The main challenge in 

using this approach is that the resulting matrices may represent infeasible assembly 

sequence networks (solutions). Thus, checking the feasibility of the resulting matrices and 

converting infeasible ones into valid matrices is needed. The permutations of the matrix 

diagonal and the random number of 1s located in the different cells above the diagonal both 

help in exploring more points that fall the solution space. 

Turning unfeasible matrix into a feasible matrix is done on two steps. The first step is 

checking that all n parts in the network are included in the encoded matrix by ensuring that 

each element on the diagonal has at least a 1 in the cell on its left or the cell above it. If not, 

then a 1 is added either to a cell on its left or above it. The 1 is selected to be filled left or above 

in a random way. Figure 3-6a & c  show an infeasible matrix and its corresponding network, 
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respectively, and Figure 3-6b & d show the matrix after adding 1 to include part 2 and its 

corresponding network, respectively. 

 

 

Figure 3-6 First feasibility checks 

 

 

Figure 3-7 Second feasibility check 

 
The second step is to ensure that all the nodes (1s) are connected to at least one parent node 

(one in cells on its left or cells above it). A check is performed by ensuring that each 1 in the 

upper triangular of the matrix has at least a 1 on the cells on its left or the cells above it. In 

case that check fails, a 1 is randomly added to a cell on its left or the cells above it that has a 

1 on its left and the cells above it. Figure 3-7 graphically shows this step for further 
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illustration. Figure 3-7a & c  show an infeasible matrix and its corresponding network, 

respectively, and Figure 3-7b & d show the matrix after adding 1 to include part 2 and its 

corresponding network, respectively.  

3.4.4. Modified Robinsons-Foulds Distance and Fitness Function 

The Robinson-Foulds distance (Robinson and Foulds 1981) is the most widely used metric 

for comparing phylogenetic trees (Pattengale et al. 2007). It can be defined as a normalized 

count of the nodes (i.e. clusters of leaves) not shared by two trees. 

In this research, a modification of the Robinson-Foulds distance is proposed to compare 

phylogenetic trees representing the assembly sequence trees, and the network representing 

the master assembly network. This Robinson-Foulds modification assigns a higher weight to 

the nodes (clusters) which exist only in a given assembly tree compared to those that are only 

found in the master assembly network.  This modification ensures that the resulting network 

has all the clusters (nodes) in the existing assembly trees with reticulation nodes. The 

modified Robinson-Foulds is considered as a difference measure and is no longer a distance 

function according the distance function definition, since the difference between network 1 

and 2 is not the same as the difference between network 2 and 1.   

Given two networks NT1 and NT2, both having m number of leaves, then C1 is a set that 

includes subsets of NT1 (each node of NT1), and each subset includes the leaves (parts) 

belonging to the node represented by this subset. Similarly, C2 contains subsets representing 

the nodes of NT2. The modified Robinson-Foulds distance (MRF) is given by equation (3.1), 

where ‘w’ is the weight to be given for the difference between the sets of the C1 and C2 and 

‘\’ refers to set difference operation. As the objective is to minimize the MRF, the assumption 

of the weight ‘w’ value should be large enough to force the algorithm to minimize the first 

term of equation (3.1) then the second term. The first term in the equation (w 

C1\C2)represents the number of nodes in the first network and not in the second network 

while the second term (C1\C2) represents the opposite. The first term's role is to ensure 

that the network will contain as many of the nodes in the given trees while the second term 

prevents the addition of extra nodes to the network. 
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MRF (N1,N2) = w C1\C2+C2\C1 (3.1) 

A reasonable assumption for the weight is to be equal to the maximum number of nodes for 

an assembly network, which is defined by the following equation (3.2): 

𝑤 =
𝑛 ( 𝑛−1)

2
  (3.2) 

where n is the total number of different parts.  

For instance, the two networks NT1 and NT2 shown in Figure 3-8 each has five leaves (parts). 

NT1 is representing a tree which is a special case of a network. For NT1, C1 = {{4, 5, 1, 2, 3}Le 

et al. (2017a), {5, 1, 2, 3}, {1, 2, 3}, {2, 3}} and for NT2, C2 = {{5, 4, 1, 2, 3}, {4, 1, 2, 3}, {4, 2, 3}, 

{1, 2, 3}, {2, 3}}. The order of sets within C1 and C2 or order of leaves (parts) within any of 

their subsets have no significance. By substituting in equations 3.1 and 3.2, MRF (NT1, NT2) 

= 28 (1)+(2)= 30. 

 
Figure 3-8 Two Networks NT1 and NT2 with MRF (NT1, NT2) = 30 

 

An algorithm using the encoded matrix representation is developed to calculate the MRF. 

Based on the proposed encoding/decoding scheme, getting the C set for any given network is 

straightforward. The parts that are included in any subset of the set C can be determined by 

checking the values to the right and below the 1 representing the considered node till the 

diagonal values are reached. For example, in Figure 3-9, the subset of the C set that represents 

node A of the shown network includes part 4 as there are no 1s below the 1 of the considered 

node till we reach the diagonal at the value of 4. In addition, the subset includes parts 1 and 

3 as the 1 to the right of the considered 1 includes the cluster of parts 1 and 3. Thus, the subset 

of node A is {1,3,4}, identified by the location of the cell representing A in the corresponding 

matrix. 
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Figure 3-9 Obtaining the subsets of the C set for a given network 

Throughout the developed GA iterations, a fitness function is applied for evaluating the 

fitness of each candidate master assembly network (solution). For a given set of existing 

assembly sequence trees N, with a total of n different parts, and a candidate master network 

MNT, the fitness function is the average of the modified Robinson-Foulds (MRF) distances 

between every individual tree T out of the N available trees and the candidate master 

network MNT. The fitness function is given by equation 3.3. The objective is to minimize the 

fitness function. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
∑ 𝑀𝑅𝐹(𝑀𝑁𝑇, 𝑇𝑖)𝑖=𝑁

𝑖=1

𝑁
 (3.3) 

MNT has more parts than T in the majority of cases. Hence, in calculating Modified Robinson-

Foulds distance between a candidate master network MNT and any individual tree T, only 

the parts that exist in T are considered. In other words, only the parts that exist in  MNT but 

not in T are ignored and temporarily removed from the C set of MNT.  

3.4.5. Selection 

Selection simulates the natural law of survival of the fittest in the population evolutionary 

process (El Hassani et al. 2015). It is the process of selecting parents for forming the new 

generation. Tournament selection is applied where the two individuals are chosen at random, 

and the better of the two is selected with fixed probability (Goldberg and Deb 1991).  

3.4.6. Genetic Algorithm Operators 

 Crossover 

The crossover operator plays a vital role in searching for better solutions from generation to 

generation.  Two special matrix-based crossover operators were developed to ensure 

generating feasible offspring solution matrix. The crossover mechanism is based on 

combining/mating two randomly selected parents (matrices from the current generation) to 
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form a new matrix (offspring) representing a new solution in the next generation. The first 

crossover procedure is that the upper triangular of the offspring matrix, which is responsible 

for the network topology is taken (inherited) from one of the parent matrices, and the 

diagonal of the offspring matrix, which is responsible for the sequence is taken (inherited) 

from the other parent. The second crossover procedure is that the upper triangular of the 

offspring is taken (inherited) from one of the parent matrices as in the previous crossover 

operation. The diagonal of the offspring matrix is considered as a string as well as the 

diagonal of the two parent matrices and the popular Position-based crossover by Syswerda 

(1991)  is applied. It is applied to the diagonal of the offspring by selecting a random set of 

positions in one of the parent diagonals, and it imposes the values in the selected positions 

on the corresponding positions of the other parent diagonal. Using these two crossover 

operators guarantees producing feasible offspring matrices. The developed crossovers are 

presented graphically in the matrix and network forms in Figure 3-10 and Figure 3-11 for 

illustration. 

 

 

Figure 3-10 First proposed crossover operator 
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Figure 3-11 Second proposed crossover operator 

 Mutation 

The mutation is another crucial GA operator that helps in searching for better solutions. A 

well-designed mutation eases the convergence towards a local optimum solution. Three 

special matrix-based mutation operators were developed. The first two mutation operators 

deal with the topology while the third operator deals with the sequence. The first mutation 

procedure is that a 1 is added in a random location in the upper triangular of the parent 

matrix to form the upper triangular of the offspring matrix. The two-feasibility checks, 

applied to the initial population, are applied to ensure the feasibility of the offspring matrix. 

For the first mutation, the diagonal of the offspring is similar to the diagonal of the parent. 

The second mutation procedure is similar to the first mutation operator except a 1 is removed 

from a random location in the upper triangular of the parent matrix instead of added to form 

the upper triangular of the offspring matrix. The third mutation procedure is that the well-

known swapping mutation, proposed by Oliver et al. (1987), is applied to the parent matrix 

diagonal to produce the offspring diagonal while the upper triangular of the matrix of the 

offspring remains the same as the parent matrix. The swapping mutation is applied to the 

parent matrix diagonal by considering it as a string, then selecting two random positions and 
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exchanging them to produce the offspring matrix diagonal. The matrix form and network 

form of the developed mutation operators are presented in Figure 3-12, Figure 3-13 and 

Figure 3-14. 

 

 

Figure 3-12 First proposed mutation operator 

 

 

Figure 3-13 Second proposed mutation operator 
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Figure 3-14 Third proposed mutation operator 

 

3.4.7. Stopping Criteria 

The stopping criteria specify when to terminate the genetic search according to pre-defined 

stopping conditions. In the developed GA, the stopping conditions are reaching either a 

previously determined number of generations or no change in the value of the objective 

function of the best solution during a fixed number of successive generations. 

3.5 Illustrative Example 

 
Figure 3-15 Assembly sequence trees for a family of ten variants. 

A simple hypothetical example is presented to demonstrate the generation of the master 

assembly network and its utilization to obtain the assembly network for a new product family 

variant. The example is for a product family consisting of ten variants. The assembly sequence 
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for each variant of the given product family, involving a total of ten different parts, is 

represented as a partial assembly tree, as shown in Figure 3-15. The ten trees are encoded in 

the matrix form, and the developed GA is applied. The following GA parameters: 0.35 for each 

crossover operator, 0.1 for each mutation operator, and population size of 100 are used. The 

stopping condition was reaching 500 generations (iterations) or no change in the best 

solution for 100 generations.  The weight is calculated based on equation 2 and is equal to 45. 

This weight forces the algorithm to generate a network that includes as many of the nodes in 

the given trees while taking the constraints into account.   The optimal master assembly 

network for the product family (Figure 3-16a) with 11.9 average Modified Robinson-Foulds 

distance from any of the ten trees was obtained in 84 seconds on a PC of Intel Core i7 3.40 

GHz processor and 16 GB Ram. 

Assume that a new variant consists of the following parts: 1, 2, 4, 5, 6, 8 and 10 is introduced. 

The new variant has a new combination of parts that does not exist in the ten existing 

variants. Thus, the assembly network for the new variant is extracted from the master 

assembly network. The assembly network for the new variant is shown in Figure 3-16b. This 

network is extracted from the master network shown in Figure 3-16a by removing any parts 

that are not present in the new variant.  

 

 

Figure 3-16 (a) Generated Master Assembly network; (b) Extracted Assembly network. 

The assembly network for the new variant could be decomposed into four alternative 

assembly trees.  For the first sequence (Figure 3-17a), parts 1 and 2 are assembled together 

to form sub-assembly [1-2], then part 5 is assembled to the sub-assembly [1-2]. Afterwards, 

part 10 is assembled to sub-assembly [1-2-5]. At the same time, before or after, part 8 and 4 

are assembled together to form subassembly [4-8], then part 6 is assembled to the sub-

assembly [4-8]. Finally, the two sub-assemblies [1-2-5-10] and [4-8-6] are assembled to form 
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the new variant. For the second sequence (Figure 3-17b), part 8 is assembled to part 6 to 

form the sub-assembly [6-8]. Then, part 4 is assembled to the sub-assembly [6-8] to form sub-

assembly [4-6-8]. The rest of the parts (1, 2, 5 and 10) are assembled similar to the first 

sequence.    For the third sequence (Figure 3-17c), part 2 is assembled to part 10 to form sub-

assembly [2-10]. At the same time or before or later, parts 1 and 5, as well as parts 4 and 8, 

are assembled to form sub-assemblies [1-5] and [4-8], respectively. Part 6 is assembled to 

sub-assembly [4-8]. The two sub-assemblies [1-5] and [2-10] are assembled. The final step is 

the two sub-assemblies [1 2 5 10] and [4 6 8] are assembled to form the final assembly. The 

fourth sequence is shown in Figure 3-17d, which is the same as the third sequence except 

that part 8 is assembled to part 6, then sub-assembly [6-8] is assembled with part 4.  

  

 

Figure 3-17 (a) First assembly sequence alternative; (b) Second assembly sequence alternative; (c) 
Third assembly sequence alternative; (d) Fourth assembly sequence alternative 

3.6 Family of Control Valves Case Study  

A family of back-flushing valves, adapted from (Kashkoush and ElMaraghy 2014), is used as 

a case study to illustrate the benefits of generating a master assembly network. Figure 3-18 

shows the family of valves, which consists of three (3) product variants with thirteen (13) 

different parts. The considered family is a family of a modular product. The parts’ names and 

numbers are representing modules, and some modules have more than one instance. The 

assembly sequence tree for each variant shown in Figure 3-19 was encoded into a matrix. The 

matrices of the product variants are the input to the developed GA.  The output is a network 

that represents the master assembly network showing the alternative assembly sequences 

that may be used. 
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Figure 3-18 Exploded views for the family of control valves (Kashkoush and ElMaraghy 2014) 

The master assembly network with average MRF = 78.5 was obtained in less than 4 

minutes on the same PC used in the illustrative example using the same values of the 

algorithm parameters. Figure 3-20a shows the obtained master assembly network for the 

considered family of valves.  

 

 

Figure 3-19 Assembly sequence trees for a family of three back-flushing control valves (Kashkoush 
and ElMaraghy 2014) 
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It is informative to compare the results obtained using the proposed method and the 

consensus tree method developed by (Kashkoush and ElMaraghy 2014) for the same case 

study. The consensus tree method formed a master assembly tree (Figure 3-20b) that 

includes only one assembly operation for each part or sub-assembly even if alternate 

assembly operations exist across the different product variants’ tree. On the other hand, the 

soft-wired galled network method formed a network that includes as many of the assembly 

operation alternatives for each part or sub-assembly while taking into consideration the 

defined assembly constraints.  

 

Figure 3-20  (a) Generated Master Assembly network (soft-wired galled network-based method), and (b) 
Generated Master Assembly tree (consensus tree-based method)   

To illustrate the advantage of the proposed method over the consensus tree-based method, 

consider retrieval of an assembly sequence for a new back-flushing valve variant.  The new 

variant (back-flushing control valve—62) consists of eight parts: bonnet (1), diaphragm (3), 

chamber (14), spring (2), shaft (4), body (6), seat (10), and adapter (12). The assembly 

sequence for the new variant is extracted from the master assembly network produced by 

the soft-wired galled network method is shown in Figure 3-21a, and the master assembly tree 

produced by the consensus tree method is shown in Figure 3-21b. Two assembly sequences 

were identified from the network extracted from the master assembly network. For the first 

sequence (Figure 3-21c), the subassembly [6-10] is assembled to part 2 then subassembly [6-

10-2] is assembled to part 12. In the second sequence (Figure 3-21d), the subassembly [6-

10] is assembled to part 12 then the subassembly [6-10-12] is assembled to part 2.  
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Figure 3-21 (a) Assembly network extracted from the Master assembly network for the new variant; 
(b) Assembly tree extracted from the Master Assembly tree for the new variant; (c) First assembly 

sequence alternative; (d) Second assembly sequence alternative 

The tree extracted from the consensus tree-based method is one of the two alternative trees 

embedded in the network extracted using the soft-wired galled network-based method. 

Based on this case study, the soft-wired galled network-based method produced more 

alternative sequences than the consensus tree method. These alternative sequences increase 

the flexibility and adaptability of the system to handle workshop disruptions such as machine 

breakdowns and tool failure. For both methods, a planner will decide the position of the 

chamber (14) within the extracted assembly sequence, as this new part does not exist in the 

previous variants 

3.7 Summary and Conclusions  

This study presents a logical enabler (i.e. soft support function) for smart AGVs to allow them 

to change their routes to handle any real-time workshop disruptions in Industry 4.0 type of 

assembly systems. A novel method is developed for generating a master assembly network 

with multiple alternative assembly sequences. The master assembly network is constructed 

based on legacy data of the given assembly sequences for the set of variants of a product 

family. An assembly sequence for any new variant that falls within, or significantly overlaps 

with, the scope of the considered family of products can be extracted from the developed 
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master assembly network. The proposed method is inspired by generating soft-wired galled 

networks used in biology and phylogenetic contexts. A Genetic Algorithm is developed for 

building the master assembly network. The developed method is a retrieval type assembly 

sequence generator. 

Using retrieval process sequence planning, as in the presented method, avoids re-generating 

new assembly sequence every time a new product variant is considered, hence, contributes 

to reducing the overall process planning time and cost. Moreover, the extracted assembly 

network has multiple alternative assembly sequences that increase the flexibility and 

adaptability of the system to deal with real-time workshop disruptions. These disruptions 

may include, but are not limited to, new process-machine assignments, machines breakdown, 

tool failure and machine overload.  

Compared with the traditional assembly sequence retrieval methods in the literature (e.g. the 

works presented in (Kashkoush and ElMaraghy 2015, Navaei and ElMaraghy 2018, 

Kashkoush and ElMaraghy 2014), the proposed method is capable of retrieving multiple 

alternative assembly sequences for the product variants. In contrast, the other methods were 

limited to only one assembly sequence. In comparison with the heuristic approach 

(Dendroscope) applied in (Moussa and ElMaraghy 2018), the proposed Genetic Algorithm 

approach generates near-optimal master assembly networks, while the Dendroscope 

program used in (Moussa and ElMaraghy 2018) provides a feasible solution but optimality 

or near optimality is not guaranteed.  

It is worth mentioning that the quality of the generated master assembly network and the 

subsequently extracted sequences depend on the quality of the assembly sequences of the 

product family. The proposed method can be utilized in any manufacturing system that 

allows alternative assembly sequences including but not limited to Smart AGVs in Industry 

4.0 environment. 

Finally, the future work may include applying the concept of the soft-wired galled network to 

machining (metal cutting) operations. In the proposed method, if a new part is introduced in 

the new variant, a planner assigns the new part location within the network manually. 

Developing a method for autonomously allocating the new part in the network can be a 

possible subject for future research. Another direction for research work is developing a 

mathematical optimization model to guarantee the optimality of the solution. Assigning 
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higher weights to the existing sequences of the product variants with higher demand can be 

studied for future research. The proposed method can be extended by adding a pre-defined 

set of precedence and technological constraints to ensure the feasibility of the generated 

sequences. A merit-based ranking of alternative process sequences to select the best 

candidate in case of disruptions is potential future research. 
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 OPTIMAL PLATFORM DESIGN AND PROCESS 

PLAN USING HYBRID MANUFACTURING  

4.1 Overview 

A novel generic process planning concept is introduced to manage the variety of product 

families produced by hybrid manufacturing. An optimal product family platform containing 

the core features of all variants is first developed. A combination of additive and subtractive 

processes of a product variant differentiating features determines its optimal process plan 

and minimizes manufacturing cost.  The developed mixed-integer linear programming model 

and a case study used for demonstration are presented. This novel planning approach is 

adaptable to changes in product design and demands. It will impact the use of additive 

manufacturing to produce a family of product and its manufacturing cost. 

4.2 Introduction 

Product variety management is one of the most severe challenges manufacturing companies 

face nowadays (ElMaraghy et al. 2013). New manufacturing paradigms such as Smart 

Manufacturing (Industry 4.0), and Made in China 2025 consider additive manufacturing to be 

a key enabler. Combining additive and subtractive manufacturing technologies, known as 

hybrid manufacturing, has the potential to change the methods of realizing products. It can 

overcome some technological constraints while benefiting from the advantages of both 

techniques.  The product platform concept is one of the most effective methods to deal with 

challenges arising from product variety (ElMaraghy et al. 2013).  

This research introduces a novel approach for product variety management by utilizing the 

product platform concept and hybrid manufacturing for producing product variants by 

customizing the product platform. A macro process planning methodology capable of 

adapting to design and demand changes within a considered product family, and minimizing 

the total manufacturing cost is proposed. 
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4.3 Variety Management Utilizing Hybrid Manufacturing 

A novel variety management concept utilizing hybrid additive and subtractive technologies 

is introduced. The product variants are produced by customizing the product family platform. 

The proposed concept is based on combining additive manufacturing processes such as direct 

metal deposition (DMD) or fused filament fabrication (FFF)) and subtractive manufacturing 

processes such as CNC machining in the same manufacturing system. The DMD and FFF are 

capable of building new features onto existing parts (Le et al. 2017b, Newman et al. 2015).  

A product platform for the considered product family is produced in large quantity (i.e. mass 

production) to reduce cost and time, and then it is customized into individual variants as 

needed. The product platform is defined as a set of features (sub-parts) that forms a common 

structure from which a stream of derivative products can be efficiently produced and 

developed (Meyer and Lehnerd 1997). This product platform is further manufactured using 

additive and/or subtractive processes by which it can be transformed into different product 

variants. The product platform features (PPFs) may or may not all be required by a given 

product variant. The PPFs may be preserved or processed further by adding and/or 

subtracting material if they are not required in the considered product variant. 

The philosophy behind this concept is depicted in Figure 4-1, where the product platform can 

be further manufactured into each product variant (1, 2 or 3) using either additive or 

subtractive processes. This approach can change the existing ways of manufacturing product 

families. The variants thus produced are near-net-shape that may require some finishing for 

the critical features only not the whole geometry.  

 

Figure 4-1 The philosophy of the proposed Variety Management concept 
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4.4 Hybrid Manufacturing and Process Planning for Variety 

Hybrid Manufacturing Process Planning for Variety, named HMPPV, is proposed. It 

determines the product platform from which the product variants are derived as well as the 

types of processes required (additive or subtractive) in order to produce the different 

product variants at a minimum cost. The workflow of the HMPPV methodology consists of 

three steps outlined as follows: 

4.4.1. Feature Extraction and Identification of the Relationship between 

Features 

The product variants are decomposed into features (sub-parts). These features are defined 

as geometric shapes that can be built and/or machined without tool collisions. The features 

are identified and extracted based on the available information and drawings of all the 

variants within the considered family. A detailed explanation of the extraction procedure is 

covered in the next section.   

4.4.2.  Product Platform Design  

A mixed-integer linear programming (MILP) model is used to build the platform with 

minimum cost based on the extracted features, relationships between features, associated 

manufacturing cost for each feature and the demand for each variant. The mathematical 

model identifies the features that form the product platform. 

4.4.3.  Determining Process Type 

The MILP identifies the features to be added and/or removed (if needed) from the platform 

to produce each variant. This is the basis of the process planning approach for determining 

the subsequent process. The MILP used for designing the product platform design and 

determining the process type is explained in detail in section 4.6.    

An IDEF-0 representation of the proposed HMPPV methodology is shown in Figure 4-2. The 

inputs are the product mix, which is determined by the demand for each product variant (i.e. 

the required units of each variant over a single production period), features within each 

product variant and features precedence as well as manufacturing costs for mass-producing 
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the platform, adding feature by additive manufacturing and removing it by subtractive 

technologies. The constraints are the additive and the subtractive processes capabilities, 

which determine whether a feature can be manufactured by an additive process (e.g. DMD, 

FFF), subtractive process (e.g. CNC) or both. The mechanism is the MILP model. The output 

is the product family platform, as well as the type and sequence of processes to realize each 

product variant starting with the product family platform. 

 

 

Figure 4-2 IDEF0 representation of HMPPV 

4.5 Feature Extraction Procedure  

Even though extensive research work has been conducted in the area of feature extraction in 

the context of CAPP (computer-aided process planning), as reported in ((Madurai and Lin 

1992, Liu et al. 1996, Perng et al. 1990, Pal et al. 2005, Aslan et al. 1999, Holland et al. 2002, 

Sivakumar et al. 2019, Sateesh and Mahesh 2017, Kumar et al. 2017)), the majority of the 

feature extraction methods are limited to the extraction of the machining features only and 

do not consider the additive features. The subtractive (machining) feature can be defined as 

a geometrical shape and a set of specifications for which at least a subtractive manufacturing 

(machining) process is known (Terrazas et al. 2014) while the additive feature is defined as 

a geometrical shape and associated technological attributes for which at least an additive 

manufacturing process is known (Le et al. 2017a).   Extracting feature for both additive and 

Demand of each variant

Features in each variant

Features precedence
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processes capabilities 
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subtractive manufacturing was only considered in (Le et al. 2018b, Le et al. 2017a).  Le et al. 

(2018b) and proposed a feature extraction procedure that extracts both subtractive and 

additive features between a legacy part and a final product. On the contrary, in this chapter, 

product platforms are formed from the majority common features within a considered 

product family and then additive, and subtractive manufacturing processes are performed on 

the platforms to produce different product variants. This work is different from (Le et al. 

2018b, Le et al. 2017a). Consequently, a new feature extraction procedure is proposed to 

identify and extract subtractive and additive features for a considered family of product. 

Hence, the feature in this work is defined as the geometrical volume that can be added/built 

by at least one additive manufacturing process and be subtracted/removed/machined by at 

least one subtractive manufacturing process as well.  

 

Figure 4-3 Product Family Features Extraction Procedure 

The proposed feature extraction procedure consists of seven (7) steps as shown in Figure 

4-3. The information including the dimensions, material, quality, and shape of all the product 
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variants of the considered family as well as their CAD drawings are available for the feature 

extraction process and represent the input of the procedure. First, two product variants are 

selected for pairwise comparison. Then, the two selected product variants are oriented in the 

way that their local coordinates are parallel and the common volume between them is 

maximized. The intersect Boolean operation in the CAD software is used to determine the 

common volume between the two product variants, as shown in Figure 4-4 and equation 4.1.  

{Common volume} = {1st selected variant} INTERSECT {2nd selected variant} (4.1) 

 

Figure 4-4 The intersect Boolean operation between two product variants 

Afterwards, the difference in volume between the common volume and each product variant 

is determined using the subtract Boolean operation in the CAD software, as shown in Figure 

4-5 and equations 4.2 and 4.3. 

 {1st Difference in volumes} = {1st selected variant} SUBTRACT {Common volume}         (4.2)   

{2nd Difference in volumes}= {2nd selected variant} SUBTRACT {Common volume}        (4.3)  

 

Figure 4-5 The subtract Boolean operations between both selected product variants and the common 
volume 
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These steps of the pairwise comparison are repeated until all the product variants within the 

product family are compared to each other, and three volumes are determined, namely the 

common volume, the volume difference between the common volume and the 1st selected 

product variant, and the volume difference between the common volume and the 2nd 

selected product variant. The output of the pairwise comparisons is studied in order to 

determine the features. This feature interpretation step is based on that each feature is 

represented by a unique volume and the volume of one feature cannot be included in other 

features. After the feature interpretation step, which is done manually, the final step is that 

the features are modified based on the knowledge of the existing additive and subtractive 

manufacturing processes. In other words, feature modification is performed to ensure that 

the generated feature can be manufactured by at least one additive manufacturing process 

and at least one subtractive manufacturing process. The required knowledge of both additive 

and subtractive manufacturing to perform the final step is covered in the following 

subsections. In many cases, the features from the interpretation step are decomposed into 

basic shapes such as cylinders and cuboids in the feature modification step. In addition, the 

final step helps in deciding which type of additive and subtractive manufacturing processes 

should be used and capable of manufacturing the feature. This decision is made based on the 

knowledge about the additive and subtractive manufacturing processes.  

 

4.5.1. Knowledge of additive manufacturing processes and their capabilities  

Additive manufacturing is a solid free-form fabrication technology that allows physical 

models and functional components to be made from virtual three-dimensional (3D) 

computer models by building the component layer-by-layer until the part is complete 

(Hashmi 2014, Adeyeri et al. 2019). The additive manufacturing technologies can be 

classified based on the building material as plastic-based, metal-based and paper-based 

(Singh and Singh 2017). In this work, the metal-based additive manufacturing is considered. 

The most popular metal-based additive manufacturing processes are the powder bed fusion 

(PBF) processes (e.g. EBM and SLM) and the directed energy deposition (DED) processes (e.g. 

DMD). In the following paragraphs, a discussion that covers the process descriptions and the 

main advantages and disadvantages of each process. The main characteristics that are 

considered in the discussion are the building direction, number of different materials used in 
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a single build, surface roughness, part volume constraint and ability to build overhanging 

features. 

Directed energy deposition (DED) refers to a category of additive manufacturing techniques 

in which a material in the form of wire or powder is deposited on to a base or component 

from a nozzle mounted on a multi-axis arm.  Then, a focused energy source (plasma arc, laser 

beam, and electron beam) is utilized to melt the feed material into a pool of molten metal on 

the previous layer within an inert atmosphere; and the parts are then built layer by layer. 

Figure 4-6 shows the DED process. 

 

Figure 4-6 Schematic of direct energy deposition (DED) process (Koike et al. 2018) 

The DED is capable of producing larger build volume and has higher build rate than other 

additive manufacturing technologies. Moreover, it has flexible build directions due to the fact 

that the nozzle can be installed to a 3-axis or 5-axis CNC machine configuration. Furthermore, 

multiple materials can be used in a single build. The building direction is the normal vector 

of planar surfaces or a local normal vector of 3D surfaces. This gives an advantage to the DMD 

in building on exiting parts. The surface roughness of the products built by DMD depends on 

the beam size, and it ranges between 20 and 50 μm, which is acceptable in many industries 

(Dutta and Froes 2015). The main limitations of the DMD are in building internal structures 

and overhanging structures (Herzog et al. 2016, Smith et al. 2016). 

Commercial machines for the DED techniques are available in the market. For instance, DMG 

Mori produces the LASERTEC 65 3D which is a machine that is geared solely towards laser 

deposition welding which is one of the DED techniques. In addition, DMG Mori has performed 

successfully on the market since 2013 with the combination of laser deposition welding and 

metal-cutting machining on the machines of the LASERTEC 3D hybrid series (DMG Mori 

2020a).  Figure 4-7 shows the LASERTEC 3D series.  
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Figure 4-7 DMG Mori LASERTEC 3D series (DMG Mori 2020a) 

The kinematics of the DED machine, which represents the axes of motion of the machine, 

plays a crucial role in both the accessibility during the process and the resulting accuracy 

(Cortina et al. 2018). Figure 4-8 shows the most common kinematic schemes of 5-axis DED 

machines. The schemes are classified from left to right based on their ability to manufacture 

heavier parts.   

 

Figure 4-8 Most common kinematic schemes of DED machines (Cortina et al. 2018). 



  

55 

 

On the other hand, powder bed fusion is a subset of additive manufacturing whereby a build 

platform containing powder material is used. A heat source (laser or electron beam) is 

applied to particles contained within a powder bed to selectively melt or sinter these particles 

together at specific points and once a layer of the object is completed, the platform gradually 

indexes down and new powder is spread over the build area till the part is completed. Figure 

4-9 shows a schematic diagram of the bed fusion process. 

 

Figure 4-9 Schematic of Powder Bed Fusion process (Bai et al. 2019) 

The PBF has an outstanding ability in building parts with complex geometries and 

overhanging features. The surface roughness ranges from 9 – 26 μm for SLM-built parts (Yap 

et al. 2015) and 25–35μm EBM-built parts (Suard et al. 2015, Vayre et al. 2012, Froes and 

Dutta 2014). It has only one building direction, which is the normal vector of a planar surface, 

on which materials will be deposited. Thus, the part building must start from a flat surface, 

which may result in some cases to machine the existing part to obtain such a surface.  Only 

one material can be used in a single build, and the volume of the built part is limited to the 

machine build envelope.  

Commercial machines that utilize the PBF techniques are available in the market. For 

instance, DMG Mori produces LASERTEC 12 SLM and LASERTEC 30 DUAL SLM. The 

LASERTEC SLM series are additive manufacturing machines that uses selective laser melting 

(SLM) which is one of the PBF techniques (DMG Mori 2020b). In addition, Sodick , a Japanese 

company, produces the OPM series, comprised by OPM250L and OPM350L which perform 

both SLM and high-speed milling (Sodick 2020). Figure 4-10 shows the OPM series. 
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Figure 4-10 Sodick OPM series (Sodick 2020) 

It is worth to mention that DED is extremely well suited to add new material to the existing 

parts and component repair since a flat starting surface is not necessarily the case (Zenou 

and Grainger 2018). Thus, DED is suitable for more cases than PBF. 

 

4.5.2. Knowledge of subtractive manufacturing processes and their 

capabilities  

Subtractive manufacturing processes are the processes that involve removing particles of 

material in the form of the chips from a solid block of starting raw material or from an 

unfinished part by the cutting edges of a tool to create or modify shapes (Toenshoff 2014). It 

has been used for decades for the production of parts made from a wide variety of different 

materials. Turning and milling are the most common subtractive manufacturing processes 

that are used. Turning processes are used for machining/cutting rotational/cylindrical parts, 

while milling processes are used for the non-rotational and prismatic parts.  
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The main characteristics to be considered concerning the usage of subtractive manufacturing 

in removing a feature from the platform are depending on the machine capability such as 

machine axes and working envelope dimensions. 

The machine axes refer to the degree of freedom or a collection of all allowable motions of a 

manufacturing instrument. The available machine axes can be 3 axes transitional in the 

Cartesian directions X, Y and Z and 3 rotational about the Cartesian directions A, B and C. 

Examples for 5-axis and 3-axis machines are shown in Figure 4-11. The working envelope 

dimensions represent the maximum allowable workpiece volume to be machined by the 

machine tool, as shown in Figure 4-11.  

 

Figure 4-11 Machining capabilities for 5-axis CNC machine (left) and 3-axis CNC machine (right) (Abbas 
2016) 

Finally, the knowledge of the additive and subtractive manufacturing is used in determining 

the required process based on the feature geometry, surface finish and feature position 

within the workpiece. It is essential to mention that the main issue considered in selecting 

the process type is the ability of the tool (nozzles in DED processes, or powder distributors 

in PBF processes, or cutting tools in machining) to avoid with parts during the manufacturing 

processes.  
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4.6 Mathematical Model for Generating Single Platform and Macro 

Process Plans   

A MILP model is developed based on the proposed methodology to generate the product 

platform and determine the types of processes required (either additive or subtractive) to 

transform the product platform into the different product variants. The model parameters 

include: 

K    the set of product variants in the product family, k ∈ K. 

J   the features set j ∈ J. 

Dk   the demand of the kth product variant (units). 

Cpj   the cost of mass production of the jth feature using a platform. 

Caj  the cost of adding the jth feature/material to form a product variant (Caj>Cpj) 

Crj  the cost of removing the jth feature/material (Crj > Cpj) from the platform to form a 

product variant  

V  the product matrix with 

vjk = {
1 if product k requires feature j

0 otherwise                                           
 

fjlk  elements in the features precedence  

fjlk = {
1 if feature j precedes feature l

0 otherwise                                           
 

The binary decision variables are: 

 xj to indicate that feature j is included in the platform;  

xj = {
1 if the platform contains feature j 

0 otherwise                                                  
 

ajk to denote that feature j is added to the platform to customize it to form product k; 

ajk = {
1 if feature j is  added  to the platform to form product k 

0 otherwise                                                                                                
 

rjk to show that feature k is removed from the platform to customize to form product k.   

rjk = {
1 if featurej is removed from the platform to form product k

0 otherwise                                                                                                        
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The optimal platform design and required hybrid manufacturing processes determination 

problem can be formulated as: 

Minimize  

∑ ∑ Cpj xj Dk
k ∈ Kj ∈ J

+  ∑ ∑ Caj ajk Dk

K

k ∈ K

J

j ∈ J
+ ∑ ∑ Crj rjk Dk

K

k ∈ K

J

j ∈ J
 (4.4) 

      

Subject to 

ajk + xj ≤ 1     ∀j, ∀k (4.5) 

ajk + xj ≥ vjk    ∀j , ∀k (4.6) 

vjk ≥ ajk             ∀j, ∀k (4.7) 

xj ≥ rjk             ∀j, ∀k  (4.8) 

rjk+xj + vjk ≤ 2             ∀j, ∀k (4.9) 

1 + xj ≥ fjlk + xl             ∀j, ∀k (4.10) 

ajk + rjk ≤ 1     ∀j, ∀k (4.11) 

xj, ajk, rjk ∈ {0,1}     ∀j, ∀k (4.12) 

    

The objective function (4.4) minimizes the total cost of manufacturing the different product 

variants according to the demands. It has three main terms representing the cost of: mass-

producing the platform features and platform customization either by adding features with 

additive manufacturing (e.g. DMD, FFF) or by removing features with subtractive 

manufacturing (e.g. CNC technology). 

Constraints (4.5), (4.6) and (4.7) restrict feature j to be added to the platform to make product 

k only if it is not already part of the platform. Thus, feature j is required for product variant k. 

Constraints (4.8) and (4.9) state that a feature j may be removed from the platform if it is not 

required in product variant k, and it is already present in the platform. Constraint (4.10) 

checks the manufacturing (technological) feasibility so that if feature l is included in the 

platform and it precedes feature j in product variant k, then feature j must be included in the 

platform.  Constraint (4.11) prevents the same feature from being added and removed from 
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the platform to produce the same product variant. Constraint (4.12) ensures that those 

decision variables are binary. 

4.7 Family of Guiding Bushes Case study  

A case study for the guiding bushes family is presented for illustration. They are used in 

different applications such as automotive, power transmission, locomotive, manufacturing 

machinery and conveyors to align parts together. The considered guiding bushes family 

consists of five variants, and its relevant information has been retrieved from Rabourdin 

Industry (http://www.rabourdin.fr/) with minor changes in some variants for better 

illustration of the model application. Figure 4-12 shows the five variants of the guiding 

bushes family. Figure 4-13 presents the decomposed features and the features composition 

of each variant. Table 4-1represents the overall dimensions of the considered variants. 

 

Figure 4-12 Guiding Bushes Product Family 
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Table 4-1 Overall dimensions of the guiding bush variants  

Product 
Variant 

Max. Outer 
Diameter (mm) 

Min. Outer 
Diameter (mm) 

Overall 
length (mm) 

Inner Diameter 
(mm) 

V1 55 40 60 25 
V2 40 35 80 25 
V3 40 35 110 25 
V4 40 35 105 25 
V5 40 35 105 25 

Table 4-2 provides the features in each variant and their precedence relations. The 

corresponding costs for mass producing, adding (additive manufacturing) or removing 

(subtractive manufacturing) of each feature is provided in Table 4-4. The corresponding costs 

for using each manufacturing method/process  (mass production, additive and subtractive)  

are assumed based on the cost study of (Manogharan et al. 2016) and the 3D hubs network 

online platform (https://www.3dhubs.com/). The 3D Hubs network is a global network 

that has over 240 partners offering CNC Machining, 3D printing, Injection Molding and Sheet 

Metal Fabrication in over 60 different materials. The 3D hubs network has an online platform 

that provides automated Design for Manufacturing (DfM), which helps in determining the 

manufacturability of each feature, instant pricing and allowing for efficient quote 

management.  

 

Figure 4-13 (a) Decomposed Features (b) the features composition of the guiding bush variants. 

https://www.3dhubs.com/
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Table 4-2 Features Precedence, costs and features/ variants relationships   

Feature Precedence   Cp Ca Cr V1 V2 V3 V4 V5 

F1 F2 1 7 2 X     

F2  2 12 4 X X X X X 

F3  F2 0.5 5 2 X X X X X 

F4 F5 1 7 3  X   X 

F5 F2 1.5 8 2  X X X X 

F6 F2 2 10 3   X   

F7 F5 2 10 3    X X 

F8 F5, F7 1.5 12 2     X 

 

4.8 Results and discussion 

The five variants are decomposed into features, and the precedence relationships between 

features are determined. The mathematical model generated the product platform and 

determined the features to be added and/or removed and minimized the total manufacturing 

cost for the specified product variants' demands while observing the stated constraints. It is 

written in AMPL – A Mathematical Programming Language (http://ampl.com/). The optimal 

result (minimum cost) is obtained in about 1 second, on a PC of Intel Core i7 3.40 GHz 

processor and 16 GB RAM, using Gurobi Optimizer 8.1 solver (http://www.gurobi.com/). 

Various cases of demand scenarios are examined to illustrate the effect of the demand on the 

product platform and its features. The demand scenarios, optimum platform and the 

minimum cost for each scenario are presented in Table 4-3. 

For scenario 1, when the demand for each product variant is the same, the PPFs are F2, F3, 

F5 and F7. For scenarios 2,3,4,5 and 6, when the demand for a specific product variant is 

significantly higher than other product variants, the product platform contains more features 

of that product variant. The model is capable of determining the type of the required 

processes (additive or subtractive or both) to form each product variant. Figure 4-14 

illustrates graphically how the five variants are produced based on demand in scenario 1 

where 250 units of each variant is required. 

  

http://www.gurobi.com/


  

63 

 

Table 4-3 Demand scenarios and the results 

Scenario 
Demand Product 

Platform (PPF) 
Cost ($) 

V1 V2 V3 V4 V5 

1 250 250 250 250 250 F2,F3,F5,F7 21000 

2 750 250 250 250 250 F1,F2,F3,F5 26250 

3 250 750 250 250 250 F2,F3,F4,F5 23750 

4 250 250 750 250 250 F2,F3,F5,F6 27250 

5 250 250 250 750 250 F2,F3,F5,F7 24000 

6 250 250 250 250 750 
F2,F3,F4,F5,F7,

F8 
26125 

7 100 500 500 100 50 F2,F3,F4,F5,F6 16100 

The model is capable of determining the type of the required processes, either additive, 

subtractive or both, to form each product variant. The sequence of the processes are 

determined based on the output of the mathematical model and the features precedence. The 

feature precedence is determined from the procedure explained in section 4.5. Considering 

the results of scenario 1, the following processes are needed for each variant:  

 V1 will be produced from the platform. F7 and F5 features are required to be removed 

from the platform using CNC technology. Afterwards, F1 is added through additive 

manufacturing. Additive layers will be directly deposited on the outer surface of F2 

feature until the F1 feature is obtained.  

 V2 will be produced from the platform by cutting F7 feature through subtractive 

manufacturing (CNC technology). F4 feature is added by DMD technology to the outer 

surface of F5 feature. 

 V3 will be produced from the platform by using CNC technology to cut F7 feature then 

using DMD technology to add F6 feature on the head of feature F2. 

 V4 will not need any further processing as the platform is similar to this variant. 

 V5 will be produced by using DMD technology to add F4 feature to the outer surface 

of F5 feature, then add F8 feature to the outer surface of F7 feature.   

It is worth mentioning that, in some cases, some of these processes may be combined together 

in one process on one machine during the micro process planning.   
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Figure 4-14 Manufacturing the five variants from scenario 1 Product Platform 

 



  

65 

 

 

Figure 4-15 Manufacturing of Variant 5 from Scenario 7 Product Platform 

The total demand for all variants in both scenario 1 and 7 is the same (1250 units); however, 

the product variant mix is different which leads to a difference in the features that form the 

product platform and the required processes to produce each variant from a different 

platform in both scenarios. Figure 4-15 shows the product platform and required processes 

for manufacturing variant 5, as an example, from scenario 7 platform. Both figures 4 and 5 

illustrate the difference in the platform and the required process based on the change in the 

product variant mix. 

4.9 Summary and Conclusions 

 This chapter introduces a novel concept in the field of product variety management by 

designing product family platforms for customization into different product variants utilizing 

additive and subtractive processes. Such a concept supports product design changes, and 

variants demand fluctuations.  Hybrid manufacturing macro process planning for product 

family was presented. A feature extraction procedure was developed to extract the additive 

and subtractive features that form the different product variants within a considered family. 

The procedure is based on the additive and subtractive manufacturing process capabilities. 

A mixed-integer linear programming model was formulated for designing the optimal 

product platform and determining the type and sequence of additive and/or subtractive 

processes to transform the product platform into different product family variants and 

minimizing the total manufacturing cost. The proposed methodology can be enhanced by 

adding automated pre-processing modules to extract the product variants’ features and 

establish the precedence relationships, which would be helpful particularly for large product 

families and more complex shapes of features. Inventory costs for storing the platforms until 

customization into product variants may also be investigated as future work.       
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 MULTI-PLATFORM GENERATION AND PRODUCT 

FAMILY PROCESS PLAN FOR HYBRID MANUFACTURING 

USING MEDIAN-JOINING PHYLOGENETIC NETWORK     

5.1 Overview 

After obtaining a single platform and process plan for the product family in chapter 4, this 

chapter aims to generate multi-platforms and their associated process plans. The advantage 

of using multi-platforms over a single platform is the ability to optimally match variants to a 

particular platform. The Median Joining Phylogenetic Network Algorithm, typically used in 

biology, is utilized to generate the multi-platforms and their process plans.  

5.2 Introduction 

Benefiting from the combination of additive and subtractive manufacturing, a product variety 

management methodology based on the delayed product differentiation strategy is proposed. 

One or more platforms are mass-produced and stored until customers’ orders are placed. 

These platforms represent the most common features between different product variants. 

Based on the customers’ orders, additive and/or subtractive manufacturing may be used for 

further processing the platforms into different product variants. Thus, some features may be 

added to the platform by additive manufacturing and other features may be removed from 

the platform by subtractive manufacturing. This work focuses on the metal-based additive 

manufacturing; however, the same methodology can be applied to plastic-based additive 

manufacturing.  

The proposed methodology is achieved through three main steps phases. Figure 5-1 shows 

the proposed variety management methodology and its three steps. In the first step, the 

product family features and their precedence relationships are extracted from the available 

information and CAD models of the product variants. This step is detailed in section 4.5 and 

is performed taking into account the available additive and subtractive manufacturing 

capabilities. The second step is concerned by the multiple product platforms design based on 

the extracted features and their precedence. The last step focuses on assigning product 

variants to product platforms and determining the additive and/or the subtractive 
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manufacturing processes to realize each product variant starting with its assigned product 

platform(s). Each step answers one of the following major questions:  

 How the product family features and their precedence relationships are extracted? 

 How many platforms should be formed? What are the features that the platform is 

made from?  

 What are the macro process plans to further manufacture the platform into different 

product variants? 

 

Figure 5-1 Delayed Product Differentiation utilizing Additive and Subtractive Manufacturing 

An IDEF-0, shown in Figure 5-2, is used to represent the inputs, outputs, constraints and 

mechanisms for each step of the proposed methodology. The input of the IDEF0 is the CAD 

model of features of each variant. These features are extracted from the variants based on the 

manufacturing capabilities. Thus, the manufacturing capabilities represent the controls. The 

mechanisms are the feature extraction procedure and the median-joining phylogenetic 

network algorithm. The output is the number of the platforms, the features that form each 

platform and the required processes for platform customization into different product 

variants within the considered product family. Afterwards, the sequence of the processes is 

determined manually taking into consideration the features precedence and the model 
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output. For instance, if feature A is built on feature B, then feature B must be built first. The 

following section discusses the second and third steps of the methodology in detail.  

 

Figure 5-2 IDEF0 of the proposed product variety management methodology  

 

5.3 Multi-Platform Design and Macro Process Planning of Hybrid 

Manufacturing Using Median Joining Phylogenetic Network    

Networks have gained much attention in the phylogenetic and biological studies. The 

phylogenetic networks can be categorized based on the objective into explicit and abstract 

networks. The explicit network narrates the evolutionary history, i.e. ancestor-descendant 

relationships, while the explicit network visualizes the incompatible data sets. Moreover, 

these networks can be classified depending on the shape into rooted and unrooted networks. 

The rooted network is a Direct Acyclic Graph (DAG) that can be either abstract or explicit 

based on their construction algorithm and interpretation. The unrooted network is an 

undirected graph that represents an abstract network.  

Median-joining phylogenetic networks (MJPNs) are among the most widely used unrooted 

network due to their simple computation and visual attractiveness. They are distance-based 

un-rooted branching networks that infer phylogenetic relationships.  
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The network consists of two types of nodes. The first type represents the different DNA 

sequences that the relationship between them is required to be determined. The other type 

represents the median vector, which represents the common characteristics between 

different sequences connected to this node. Each sequence is connected to at least one 

median vector by a link. From a biological analogy point of view, the median vector can be 

considered as an ancestral sequence, i.e. intermediates. The differentiating characteristics 

between the sequences and the median vectors appear on each link. Figure 5-3 shows an 

example of the MJPN network. 

 

Figure 5-3 Example of Median-Joining Phylogenetic Network 

This sub-section illustrates how the MJPN network can be interpreted to determine the 

features that form platforms based on the commonality of the product variants and the 

required processes to customize the platform into different variants. The DNA sequence 

alignment represents a product variant within the considered family. Thus, the different 

product variants are represented in the form of string made of cells (characters). Each cell 

(character) represents a specific feature of the product family. Hence, the number of cells is 

equal to the total number of the product family features. The cell can take either value of 1 in 

case of the feature corresponding to this cell exists or value of zero in case the feature does 

not exist.  The median vectors represent the product platforms with the common features 

among product variants. The differentiating characteristics on the links can represent the 

differentiating features between the product variant and the product platform. Thus, the 

features to be added to the product platform and the feature to be removed from the product 
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platform to produce different product variants are determined. Accordingly, the type of the 

required processes, either additive or subtractive, that are needed to customize the platform 

to different product variants can be easily figured out. If the feature is not in the product 

platform and in the product variant, then an additive manufacturing process is needed, and 

if it is included in the product platform and not a part of the product variant, then a 

subtractive manufacturing process is needed. Figure 5-4 shows a MJPN network that is 

interpreted as discussed before.  

 

Figure 5-4 Example of Median-Joining Network for a Product Family 

The MJPN network is generated by a median-joining (MJ) algorithm. The MJ was introduced 

for the first time in 1999. It is developed based on the integration of the Minimum Spanning 

Network (MSN) and Quasi-Median Network algorithms to create the network. 

The input of the algorithm is the multiple product variants strings. The number of differences 

between product variants’ strings is measured by the ‘Hamming distance’ technique. The 

Hamming distance is a method used to quantify the extent to which two strings of the same 

dimension differ (Bookstein et al. 2002). Based on the Hamming distance, links between 

sequence pairs are created. The median vector that represents a product platform is 

generated between every three strings with at least two links. The median vector represents 

the commonality between every three sequences. Then, these median vectors are added to 

the pool of strings. This process is repeated until no further median vectors (product 
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platforms) can be generated. The output is the MJPN network with links in minimal length 

connections. The algorithm is detailed in (Bandelt et al. 1999). 

The Network program is a software used by the biologists to construct phylogenetic 

networks, infer ancestral types, and potential types and evolutionary branchings. Two 

different methods are implemented in this program to generate the network, including the 

MJ algorithm proposed by Bandelt et al. (1999).  

 

 

Figure 5-5 Median Joining Algorithm proposed by Bandelt et al. (Bandelt et al. 1999) 
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5.4 Family of Guiding Bushes Case Study  

A family of guiding bushes, presented in Chapter 4, is used as a case study. The guiding bushes 

are used in different applications such as automotive, power transmission, locomotive, 

manufacturing machinery and conveyors to align parts together. The network software is 

used to generate the MJPN for the guiding bushes family. Each product variant is represented 

as a string of 8 cells. Each cell represents one of the features. The five product variant strings 

are shown in Table 5-1. These strings are the input for the Network program.  

 

Table 5-1 Strings of the Guiding Bushes Variants  

 Features 

Variants F1 F2 F3 F4 F5 F6 F7 F8 

V1 1 1 1 0 0 0 0 0 

V2 0 1 1 1 1 0 0 0 

V3 0 1 1 0 1 1 0 0 

V4 0 1 1 0 1 0 1 0 

V5 0 1 1 1 1 0 1 1 

 

 
Figure 5-6 Median Joining Phylogenetic Network for the Guiding bushes family 

The output is a network that generates two product platforms (median vectors) and maps 

the relationship between the five product variants and the two generated product platforms, 

as shown in Figure 5-6. The first platform is formed from features F2, F3 and F5 while the 
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other platform is formed from features F2, F3, F4, F5 and F7. Platform 1 can be customized 

into variants V1, V2, V3 and V4, while platform 2 can be customized into variants V2, V4 and 

V5.  

For product platform 1, feature F1 would be added using additive manufacturing and feature 

F5 would be machined (cut) by subtractive manufacturing to produce product variant V1. 

Only feature F3 would be added to product platform 1 to obtain variant V3. For product 

platform 2, product variant V5 is obtained by adding feature F8 to the platform. Product 

variant V2 can be produced either by adding feature F4 to product platform 1 or by machining 

(removing) feature F7 from product platform 2. Similarly, product variant V4 can be 

produced using either product platform 1 by adding feature F7 or product platform 2 by 

machining (removing) feature F4.  

 

Figure 5-7 Network obtained using the mathematical model in chapter 4  

It is informative to compare the results obtained using the mathematical model in Chapter 4 

and the proposed MJPN method for the same case study. The mathematical model formed 

only one common product platform for the five product variants with an equal demand of 

100 parts for each product variant as shown in Figure 5-7, while the MJPN method formed 

two product platforms. To assess the quality of both methods, a metric is contrived to 

compare the effectiveness of the methods to respond to customer demands. Responsiveness 

is the ability of the system to quickly and efficiently respond to the fluctuation in demand 

(Gindy et al. 1999). Thus, responsiveness can be measured by determining the average 
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number of manufacturing processes needed to customize the platform since the platform is 

stored until customer orders are placed. The responsiveness metric can be expressed as the 

summation of all the processes needed in customizing the product platform(s) divided by the 

number of the product variants in the considered family as in equation 5.1:  

                                               𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑒𝑡𝑟𝑖𝑐 =  
∑ 𝑄𝑖𝑋𝑖

𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

                                       (5.1) 

Where,  

n  Total number of product variants 

i index of product variants 

Qi Quantity needed of product variant i 

Xi minimum number of features to be added to and/or removed from the product platforms to 

produce the product variant i 

The above equation is the general form for the responsiveness metric. The MJPN method is 

used in cases when the manufacturer is uncertain about the demand or when equal variants’ 

demand is required. Therefore, the quantity needed of the product variant (Q) can be 

removed from the equation for this case, and equation is modified to   

                                             𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑒𝑡𝑟𝑖𝑐 =  
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
                                       (5.2) 

The responsiveness metric is a relative measure. The smaller the value of the metric means 

better responsiveness to the customer demand. By applying equation 5.2 on both results: 

 For the MJPN result: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑒𝑡𝑟𝑖𝑐 =
2 + 1 + 1 + 1 + 1

5
=

6

5
= 1.2 

For the mathematical model result: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑒𝑡𝑟𝑖𝑐 =  
3 + 2 + 2 + 0 + 2

5
=

9

5
= 1.8 

The responsiveness metric value for the MJPN result is less than the value for the 

mathematical model result. Thus, the MJPN model result is superior over the result of the 

mathematical model in terms of responsiveness.  
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Another point that shows the superiority of the results of the MJPN is the product mix 

flexibility. Since variants V2 and V4 can be produced from both platforms, this increases the 

flexibility in producing these variants as selecting which platform to use can depend on the 

current production status and inventory level on the shop floor. For example, if there is an 

increase in the demand for variant V2, both platforms can be utilized in varying proportions 

in order to produce the demand.   

5.5 Family of Flanges Case Study  

Another case study for a family of flanges is considered. Flanges are used in connecting pipes, 

valves, pumps and other equipment to form a piping system, and they facilitate the cleaning, 

inspection or modification of the system. Flanges are commonly used in the petro and 

chemical industry. A real case company, Maass Flange Corporation 

(www.maassflange.com/), that specializes in producing flanges with different types and 

sizes, is considered. The company's mission is to supply its worldwide customers with the 

highest quality product along with fast delivery, all at a competitive price. Thus, the company 

follows the make-to-stock (MTS) strategy in which it stores a combination of products to suit 

the needs of their customers. The result of the implementation MTS strategy has led to a high 

level of inventory, which forms a large portion of the company costs. Since customers order 

medium volume batches of the flanges, applying the delayed product differentiation strategy 

will result in increasing operational efficiency and reducing production and storage costs. 

The flange types considered in the case study are: Slip On Flange, Lap Joint Flange and Blind 

Flange. Many users prefer the slip-On flange because of the reduced accuracy required in 

cutting the pipe to length, and the ease of the assembly alignment. They have raised face on 

one side and hub on the other side. Lap Joint Flanges are used in systems that require 

frequent inspection and cleaning. Moreover, they have all the same common dimensions as 

any other flange, but it does not have a raised face.  Blind Flanges are used to blank off the 

ends of piping, valves and pressure vessel openings. They have raised face on one side and 

no hub, and manufactured without a bore. Figure 5-8 shows the three considered types of 

flanges. The slip-on flange and the blind have the same raised face while the slip-on and lap 

joint flanges both have hubs. 
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Figure 5-8 Three types of flanges: Slip-On, Blind and Lap Joint 

 

Figure 5-9 main dimensions for all the product variants of the flanges family 

Each flange type has a number of standard dimensions that vary with the nominal pipe size 

(NPS) and pressure classes. The flanges with higher pressure class are constructed with more 

metal (larger volume/dimensions) and can withstand more pressure. The pressure classes 

considered in the case study are 150 and 300, and the NPSs 0.5, 0.75, 1 and 1.25 inches. 
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Considering three types, two pressure classes and four NPSs leads to 24 variants. The main 

dimensions for all the product variants are represented in Figure 5-9.  

By applying the feature extraction procedure, 43 features are extracted. These features 

represent variation in the flanges that includes the changes in the thickness of the flange (C1-

C7 features), outer diameter (O1-O6 features), with or without raised face (R1-R4 features) 

and/or hub (X1-X25 features) and the basic feature (B feature) which is a cylinder with 

diameter 3.5’’ and thickness 0.44’’ and appears in all variant. Based on the feature 

modification step, all the drilling process for the inner diameter (bores) and the holes pattern 

are processed at the last manufacturing stage (i.e. after the product platform customization). 

Figure 5-10 shows an example of one of the flanges (Slip-on Flange for 150 class and NPS 

0.75) decomposed into its features.   

 

Figure 5-10 Slip on Flange for 150 class and NPS 0.75 decomposed into features 
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Table 5-2 Strings for the Flanges Product Family 
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Figure 5-11 MJPN network for Flanges Product Family 
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The variants are written in strings of zeros and ones based on the features' existence in each 

variant and shown in Table 5-2. Then, these strings are inputted into the network program. 

The output is the MJPN network formed of eight (8) product platforms, and the relation 

between the variants and platforms, as shown in Figure 5-11. These eight product platforms 

can be customized into the 24 variants for the considered family by utilizing additive and 

subtractive manufacturing processes. 

Compared to the current production strategy (MTS), in which the company stocks the 24 

variants of flanges, following the strategy proposed in this chapter, 8 flange platforms are 

manufactured and stored till the customers place their orders. This will lead to a reduction of 

66% of the stored item and, consequently, significant savings in storage and handling costs.  

5.6 Summary and Conclusions  

Product proliferation, as a result of the changes in customer needs, technology, regional and 

environmental regulations, is one of the main challenges that the manufacturers are facing in 

recent decades. A new delayed product differentiation strategy benefiting from the 

integration of two manufacturing technologies (additive manufacturing and subtractive 

manufacturing) is proposed. The concept of multi-platform and their process plans to 

produce a family of product by combining additive, and subtractive manufacturing is 

addressed for the first time. In many cases, using more than a single platform to produce the 

part/product family is cheaper.  A method of generating a Median-joining Phylogenetic 

network, used in biology and phylogenetic contexts, is used to design the multiple product 

platforms and generate the process plans required to customize these platforms into 

different product variants based on the customer demands. This method was capable of 

determining the features that form the platform, assignment of the product variants to each 

platform and the required manufacturing processes either to add features to the platform 

through additive manufacturing or remove features from the platform through subtractive 

manufacturing to produce different variants. 

Two case studies are considered. The first case study highlights the superiority of the 

network generated from the proposed MJPN model over the network generated from a model 

from literature in terms of flexibility and responsiveness. The second case study shows the 

ability of the MJPN model to handle a large number of product variants and their associated 
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features.  Moreover, it illustrates the benefit of the proposed delayed product differentiation 

strategy in decreasing the holding and inventory costs. The proposed method is well suited 

to the cases when the manufacturer is uncertain about demand or the manufacturing costs 

for the product variants or when an equal demand for the product variants is required as it 

generates product platforms formed from the majority consensus of features.   It is worth 

mentioning that the manufacturing costs and demand are not considered while determining 

the platforms in this chapter.   
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 MULTI-PLATFORM GENERATION AND PRODUCT 

FAMILY PROCESS PLAN FOR HYBRID MANUFACTURING 

CONSIDERING DEMAND AND COSTS   

6.1 Overview 

The drawback of the method explained in the previous chapter is that it only considers the 

commonality between the product variants. Other aspects should be considered, such as 

manufacturing costs and the demand that will definitely affect the decision on which features 

should be included in the platform, number of the platforms and the macro process planning 

of the product family. Therefore, the problem with the consideration of theses aspects is 

addressed in this chapter. 

6.2 Introduction 

The purpose of this chapter is to develop a model in order to manufacture a product family 

using multiple product platforms cost-effectively. Thus, this model aims at determining the 

optimal number of the product platforms and their configurations (i.e. the features that form 

each platform), the assignment of each product variant to a particular product platform, while 

minimizing the overall family manufacturing costs. 

Since the quantity of the platform is large, the manufacturer could invest in the product 

platform setup cost, such as preparing dedicated fixtures and jigs, automated production 

methods, etc. This setup cost inhibits/ holds back the manufacturer from having a separate 

product platform for each product variant.  

The model is capable of designing product platforms that are responsive to the changing 

market demand. In other words, the product platform features changes based on the 

customer demands. 

6.3 Problem Description  

Consider a given set of product variants of a product family with different features. It is 

required to find the optimal set of features that form product platforms and determine the 

manufacturing processes needed to customize the platforms into the different variants. The 

platforms configurations are determined based on the commonality of the features among 
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the different product variants, each variant demand, feature precedence constraints, the 

manufacturing costs associated with different manufacturing processes (mass production, 

additive and subtractive) and the platform setup costs. 

 

Figure 6-1 IDEF0 for Multi-Platform Generation and Product Family Process Plan for Hybrid 
Manufacturing using Genetic Algorithm 

Figure 6-1 illustrates the proposed methodology in the form of an IDEF0 diagram showing 

the main activities along with inputs, outputs, controls and mechanisms. The main outputs 

are the number of the platforms, set of features that form the platforms and the required 

processes for customizing the platform into different variants while minimizing the total 

manufacturing cost for the product family. The distinctive characteristic of this model is the 

inclusion of variants’ demand, feature precedence constraints, the manufacturing costs 

associated with different manufacturing processes (mass production, additive and 

subtractive) and the platform setup costs. The feature extraction was detailed in chapter 4. 

6.4 Genetic Algorithm-based Model for Generating Multi-Platform and 

Macro Process Plans 

A genetic algorithm-based model is used to handle the addressed problem. The following 

subsections illustrate how the genetic algorithm-based model is used to find the optimal/ 

near-optimal solution of the problem.  
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6.4.1. Encoding/ Decoding Scheme 

A solution for the problem is encoded in a finite length string called a chromosome. Each 

chromosome is formed of fragments (i.e., substrings) represent candidate platform(s). The 

number of the substrings is equal to the maximum possible number of platforms that can be 

used to produce each variant of the considered product family. The maximum possible 

number of platforms is equal to the number of product variants as each product variant is 

assigned to a separate platform in this case. Each substring comprises a set of elements called 

genes. Each gene represents a feature in the considered product family.  A binary value (0-1) 

is assigned to each gene. The gene has a value of one (1) if the feature represented by this 

gene is included in the platform represented by this substring. A value of zero (0) is assigned 

to the gene if the platform does not contain the feature represented by this gene. There may 

be some empty substrings (substrings with all its genes equal to zero). The actual number of 

platforms (non-empty substrings) is automatically determined by the GA.  Figure 6-2 

illustrates the encoding scheme.  

 

Figure 6-2 The encoding scheme illustration 

For more illustration, an example of a product family consists of three (3) variants and 

includes five (5) features is shown in Figure 6-3. The maximum possible number of platforms 

equals to 3 (maximum number of variants). Thus, the chromosome would be formed of 15 

genes (3 possible platforms multiply 5 features). 
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Figure 6-3 Candidate Platforms chromosome 

6.4.2.   Initial Population  

The initial population is an initial set of solutions in which the GA starts with. It is randomly 

generated candidate platforms (feasible solutions) that lies within the search space. Each 

solution is encoded in the form of a chromosome, as described in the previous section. The 

initial population is formed of u chromosomes, where u is the population size. The population 

size is decided based on the number of variants and the total number of different features 

within the considered family.  A random binary value is assigned for each feature (gene) of 

the candidate platforms chromosome.  To ensure that every candidate platforms 

chromosome is feasible, a feasibility check is needed. The infeasibility of the chromosome 

may occur as a result of the violation of the precedence constraints. In other words, some 

features are created which depend on other features. Thus, the dependant features cannot 

exist in the platform unless the features, that the dependant features are depend/created on, 

are in the platform. This means that if the dependent feature (B) gene takes value 1 then the 

gene representing the feature (D) that the feature (B) depends on must be equal 1. The 

feasibility correction is working as the following, based on the feature precedence, if a 

dependant feature takes a value of 1 then a 1 is added to the feature that the dependant 

feature depends on.   For example, the generated chromosome is shown in Figure 6-4a for a 

family of 3 variants and 5 features. Feature 3 is dependent on feature 5 and for candidate 

platform 1 and 3, feature 3 takes a value of 1 while feature 5 takes a value of 0. Then, a 1 must 

be added to the feature 5 genes in both candidate platforms 1 and 3. Figure 6-4a shows an 

infeasible chromosome and Figure 6-4b shows the chromosome after adding 1 to include 

feature 5 in both platforms. 
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Figure 6-4 Feasibility Correction mechanism 

 

6.4.3. Fitness Function 

The fitness function is a function that is used to evaluate the fitness of each candidate 

platforms chromosome as a solution with respect to the problem in consideration. The 

calculation of the fitness value is repeatedly performed for each chromosome within the 

population for the entire generations until the GA search stops, and an optimal or near-

optimal solution is reached. The fitness function is to minimize the total cost of manufacturing 

the considered family. Figure 6-5 shows the flowchart of the fitness function. 

The first cost that should be included in the fitness function is the manufacturing cost for each 

product variant from each candidate platform (extracted from the chromosome). The variant 

manufacturing cost consists of three terms. The first term is the cost of mass manufacturing 

the features of the platform. The cost of customizing the platform into the product variant by 

adding features to the platform by additive manufacturing is represented by the second term, 

while the third term is for the cost of customizing the platform into the product variant by 

removing some features from the platform by subtractive manufacturing.  

The variant manufacturing cost is the minimum summation of these three terms among the 

candidate platforms. Equation  (6.1) represents the variant manufacturing cost: 
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𝑉𝐶𝑘 = min
∀𝑖

(∑ Cpj xij Dk
j ∈ J

+ ∑ Caj aijk Dk
j ∈ J

+ ∑ Crj rijk Dk
j ∈ J

)  (6.1) 

where, 

VCk the manufacturing cost of variant k  

K    the set of product variants in the product family, k ∈ K. 

J   the features set, j ∈ J. 

I represents the platforms, i ∈ I. 

Dk   the demand of the kth product variant (units). 

Cpj   the cost of mass production of the jth feature using a platform. 

Caj  the cost of adding the jth feature/material to form a product variant (Caj>Cpj) 

Crj  the cost of removing the jth feature/material (Crj > Cpj) from the platform to form a 

product variant  

xij to indicate that feature j is included in the platform i;  

xij = {
1 if the platform i contains feature j 

0 otherwise                                                  
 

aijk to denote that feature j is added to the platform i to customize it to form product k; 

aijk = {
1 if feature j is  added  to the platform i to form product k 

0 otherwise                                                                                                
 

rijk to show that feature k is removed from the platform i to customize to form product k.   

rjk = {
1 if featurej is removed from the platform i to form product k

0 otherwise                                                                                                        
 

Another cost that should be considered in the fitness function is the total setup cost of 

manufacturing multiple platforms. It includes the costs associated with preparing the 

required machine tool, cutting tools, fixtures, automated production methods/ programming 

and labour training,…etc for constructing each platform. This cost controls the formation of 

new platforms. Equation (6.2) represents the total setup cost: 

𝑆𝐶 = ∑ Cs Zi

I

i=1
 (6.2) 
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where, 

SC the total setup cost of manufacturing multiple platforms 

Cs the setup cost of one platform. 

Zi to indicate that feature j is included in the platform i;  

Zi = {
1 if the platform i is used to produce at least one variant 
0 otherwise                                                                                     

 

Based on equations  (6.1) and (6.2), the fitness function can be formulated as in equation 

(6.3): 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝑉𝐶𝑘

K

k=1
+ 𝑆𝐶 (6.3) 

 

 

Figure 6-5 Fitness Function Flowchart  
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6.4.4. Selection 

The selection is the process in which the candidate platforms chromosomes are selected from 

the current population to be the parents used for mating (crossover and mutation) to 

generate the next generation population (offspring). The selected parents are added to a 

mating pool according to their total manufacturing cost of the family (fitness value). In this 

model, the Roulette wheel selection is applied where all chromosomes in the current 

population are placed on a roulette wheel. The area of the section of the wheel corresponding 

to each chromosome is proportional to its fitness value. Thus, the chromosome with a lower 

total manufacturing cost of the family (higher fitness) has a higher probability of being 

selected more times. Then, a random number is generated to select one of the candidate 

platforms chromosomes.  

6.4.5. Elitism 

The elitism is the process in which the best candidate platforms chromosome or a few best 

chromosomes of the current population, the chromosome(s) with the lowest total 

manufacturing cost of the family (highest fitness value) in the current population, are added 

to the next population. The elitism process prevents the loss of the best-found 

chromosome(s) during the creation of the next population’s chromosomes by crossover and 

mutation processes. Thus, the elitism may have a significant effect on the performance of the 

GA.  

6.4.6. Genetic algorithm operators 

Two genetic operators, namely crossover and mutation, are used in order to generate the 

next generation population.  The crossover and mutations operators have an influence on the 

performance of a genetic algorithm. The choice of crossover and mutation types is based on 

the encoding and the problem nature. In the following subsections, the proposed crossover 

and mutation for the addressed problem are discussed. 
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 Crossover 

The crossover is analogous to the reproduction process in which two selected parents 

(product platforms chromosomes) produce two offspring. The offspring inherit their parents’ 

features (genes). Two crossover operators are applied. 

The first crossover operator is a problem specific crossover operator, developed by the 

authors, is applied. As mentioned before, each chromosome is divided into substrings that 

represent the potential platforms. These platforms can take numbers from 1 to the total 

number of variants. The developed crossover procedure is that a random set of numbers with 

values between 1 and the total number of variants is generated. The generated numbers 

represent the platforms (substrings) from one of the parents that are inherited into the 

offspring, and the rest of the offspring’s platforms (substrings) are taken from the other 

parent. For example, consider parents 1 and 2 for a family of four variants, and the total 

number of features is six, as shown in Figure 6-6. The randomly generated numbers are 2 and 

3. This means that the offspring will inherit substrings representing platform 2 and platform 

3 from one of the parents and the rest of the substrings that represents platform 1 and 

platform 4 from the other parent.   

Another crossover operator, namely, the position based crossover proposed by Syswerda 

(1991), is applied. The proposed crossover operator works as follows. First, a random set of 

feature positions in one of the parent candidate platforms chromosomes is selected. The 

values of the selected features in that parent are imposed into the corresponding feature 

positions of the other parent. For example, consider parents 1 and 2 for a family of three 

product variants with a total number of five features as in Figure 6-7, and suppose that the 

third, fifth and eighth positions are selected. The offspring will have the values of 1, 0, and 1 

at the third, fifth and eighth positions respectively taken from parent 1 and the rest of the 

offspring genes take their values from parent 2.  This example of applying the proposed 

crossover is illustrated in Figure 6-7. 
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Figure 6-6 The first proposed crossover 

 

 

Figure 6-7 The second proposed crossover 



  

92 

 

 Mutation 

The mutation is the process in which a small random modification is applied to one selected 

parent in order to produce offspring. The mutation plays a crucial role in the exploration of 

the search space by introducing diversity in the genetic population. It is crucial for the 

convergence of the genetic algorithm. Since the chromosome is encoded in binary form, the 

bit flip mutation operator is applied. The bit flip mutation procedure is that a random set of 

positions in the parent candidate platforms chromosomes is selected.  The value of the 

features (genes) corresponding to these positions in the parent is flipped (0 to 1 and 1 to 0) 

to form an offspring. For example, consider a parent for a family of three variants with a total 

number of five features. The generated numbers are for the second, seventh and twelfth 

positions. This will lead to an offspring similar to the parent in all features (gene) except for 

the second, ninth and eleventh features (genes) will be changed from 1, 0 and 1 to 0, 1 and 0, 

respectively.  This example is shown in Figure 6-8. 

 

Figure 6-8 The proposed mutation 

It is worth to mention that the same feasibility check and correction mechanism discussed in 

initial population section is applied for the crossover and mutation offspring 

6.4.7. Stopping Criteria  

The genetic search operations are repeated until pre-defined stopping conditions are 

reached. The stopping conditions considered in the proposed algorithm are reaching a pre-

selected number of generations, or the best solution remains unchanged for a certain number 

of successive generations. Similar to the population size, the decision regarding the stopping 

criteria are based on the number of the variants and the total number of features within the 

considered family.   
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6.5 Family of Guiding Bushes Case Study 

The same case study of the guiding bushes family from chapter 4 will be considered in this 

chapter. The input parameters are taken from Table 4-2. The setup cost of one platform (Cs) 

for the guiding bushes’ case study is estimated to be $1500 based on the industrial experts’ 

opinion. No special fixture is needed since the fixation of the product variants can be done 

using a universal chuck.  The factors that are considered during the setup cost estimation 

platform includes but not limited to the costs associated with preparing the required machine 

tool, cutting tools, fixtures, automated production methods/ programming and labour 

training,…etc.  

The developed model is implemented using MATLAB®. The following GA parameters are 

used: 0.8 for the crossover ratio, 0.15 for the mutation ratio and the population size is 1000. 

The stopping criteria are either reaching 100 generations or no change in the best solution 

for 300 generations. The guiding bushes case study is solved optimally, and the results for 

the various scenarios of demand were obtained in 10 seconds using a PC of Intel Core i7 3.40 

GHz processor and 16 GB Ram. The prices for the variants from the manufacturer 

(www.rabourdin.fr/en/home/) are $41.83, $51.08, $51.72, $51.72 and $58.25 for V1, V2, V3, 

V4 and V5 respectively. Hence, the average price of these variants is $50.92. 

Table 6-1 compares the results from having a single platform obtained by the mathematical 

model in chapter 4 and the results from having multiple platforms using the proposed genetic 

algorithm-based model. Furthermore, it should be noted that the mathematical model does 

not consider the platform setup cost. Thus, the results from the mathematical model have 

been modified by adding the setup cost of one platform in order to enable the comparison of 

the results of both models.  In this comparative study, different demand scenarios are 

considered. 

http://(www.rabourdin.fr/en/home/
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Table 6-1 Comparison between Multiple Platform Model and Single Platform Model 

Scen
ario

 

Product Variant 

Demand 

[V1, V2, V3, V4, 

V5] 

 

Multiple Platform Single Platform 

Product Platforms 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per guiding 

bush ($) 

Product Platform 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per guiding 

bush ($) 

1 
[100, 100, 100, 

100, 100] 

 Variants V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5, F7, F8] 

 Variants V1 and V3 are served 

by one platform of features [F1, 

F2, F3, F5, F6] 

8650 17.3 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F5, F7] 

9900 19.8 

2 
[700, 100, 100, 

100, 100] 

 Variants V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5] 

 All other variants (V1, V3) are 

produced in separate platforms. 

11100 10.1 

 All variants are 

served by one 

platform of 

features [F1, F2, 

F3, F5] 

14800 13.45 

3 
[100, 700, 100, 

100, 100] 

 Variants V4 and V5 are served 

by one platform of features [F2, 

F3, F4, F5, F7, F8] 

 Variants V1, V2 and V3 are 

served by one platform of 

features [F2, F3, F4, F5] 

12200 11.1 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F4, F5] 

13000 11.82 

4 
[100, 100, 700, 

100, 100] 

 Variants V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5, F7, F8] 

 Variants V1 and V3 are served 

by one platform of features [F2, 

F3, F5, F6] 

12550 

 
11.40 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F5, F6] 

14800 13.45 
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Scen
ario

 

Product Variant 

Demand 

[V1, V2, V3, V4, 

V5] 

 

Multiple Platform Single Platform 

Product Platforms 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per guiding 

bush ($) 

Product Platform 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per guiding 

bush ($) 

5 
[100, 100, 100, 

700, 100] 

 Variants V2 and V5 are served 

by one platform of features [F2, 

F3, F4, F5, F7, F8] 

 Variants V1 and V3 are served 

by one platform of features [F1, 

F2, F3, F5, F6] 

 Variant (V4)  is produced in a 

separate platform 

13000 11.82 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F5, F7] 

13500 12.27 

6 
[100, 100, 100, 

100, 700] 

 Variants V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5, F7, F8] 

 Variants V1 and V3 are served 

by one platform of features [F1, 

F2, F3, F5, F6] 

13750 

 
12.5 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F4, F5, F7,F8] 

15350 13.95 

7 
[100, 500, 500, 

100, 50] 

 Variants V1, V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5] 

 Variant (V3)  is produced in a 

separate platform 

13350 

 
10.68 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F4, F5, F6] 

17600 14.08 

8 
[50, 100, 50, 50, 

50] 

 All variants are served by one 

platform of features [F2, F3, F4, 

F5] 

6000 20 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F4, F5] 

6000 20 
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Scen
ario

 

Product Variant 

Demand 

[V1, V2, V3, V4, 

V5] 

 

Multiple Platform Single Platform 

Product Platforms 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per guiding 

bush ($) 

Product Platform 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per guiding 

bush ($) 

9 
[10, 10, 10, 10, 

10] 

 No platform (All variants are 

built completely by additive 

manufacturing) 

1800 36 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F5, F7] 

2340 46.8 

10 
[500, 500, 500, 

500, 500] 

 Each variant is produced by a 

separate platform 
22000 8.8 

 All variants are 

served by one 

platform of 

features [F2, F3, 

F5, F7] 

43500 17.4 

 

 



97 

 

 

The results of the study show that the total cost of the single platform model is larger than 

that of multiple platform model. For the first demand scenario, all the product variants have 

equal demand of 100 units. For scenario 1, two platforms are formed, and only subtractive 

manufacturing is used for customization. The first platform is formed of features F1, F2, F3, 

F5, and F6 that serves the production of variants 1 and 3 by only removing both,  features F5 

and F6 to obtain variant 1, and by only removing feature F1 to obtain variant 3. The second 

platform is formed of features F2, F3, F4, F5, F7, and F8 that produces variant 5 without any 

further processing Variant 2 is obtained by machining features F7 and F8, and variant 4 by 

machining feature F7.  

Moreover, the scenarios from 2 to 6 each, has one variant with a very high demand with 

respect to other variants. In the aforementioned scenarios, the platform obtained from the 

mathematical model is formed from the features of the product variant with the very high 

demand with respect to the other product family variants. Furthermore, the multiple 

platform model for scenarios 2-6 produces one platform similar to the very high demand 

product variant and one or two platforms that serve other variants.  

In scenario 7, two platforms are formed to produce the variants. Variants (V2, V4 and V5) are 

produced using the first platform [F2, F3, F4, F5, F7, F8].  Variant V2 is produced by machining 

feature F7 and F8; while machining features F4 and F8 from the platform leads to producing 

variant V4. Variant V5 has the same features of the first platform. The second platform [F1, 

F2, F3, F5, F6] is customized into variant V1 by machining features F5 and F6, and into variant 

V3 by machining F1. Thus, in this scenario, the product variants are customized using only 

subtractive manufacturing, 

The demand for variants in scenario 7 is 100, 500, 500, 100, 50 units for variants V1, V2, V3, 

V4 and V5, respectively.  In this demand scenario, product variant 3 is produced separately, 

and product variants V1, V2, V4 and V5 are produced using platform [F2, F3, F4, F5], which is 

identical to variant V2. Variant V1 is produced by machining features F4 and F5, and adding 

feature F1. Variant V4 is produced by machining feature F4 and adding feature F7; while 

adding features F7 and F8 to the platform leads to producing variant V5. The large demand 

for Product variants V2 and V3 forces the model to recommend producing each one of them 

separately.  
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The multiple platform model results in lower total manufacturing cost for all the scenarios 

compared to the single platform model. Since the multiple platform model has the ability to 

produce one or more platforms; hence, if having a single platform is the optimum solution, 

then the multiple platform model will produce the single platform as in scenario 8. This 

concludes that both models will produce a single platform. Thus, the multiple platform model 

will allow more freedom in deciding the number of platforms by neither specifying it a priori 

nor limiting it to one platform. In addition, having single platform requires more 

customization processes than having multiple platforms. Since in case of multiple platforms 

are required, this means that each platform shares more features with the variants assigned 

than the single platform. Thus, the total manufacturing cost of the product variants is lower 

in the case of using multiple platforms. 

The demand for all variants in scenario 9 is very low. This is an example of typical cases where 

manufacturing all the variants by additive manufacturing without utilizing platforms is 

recommended. As mentioned earlier, the single platform model produces one platform 

whatever the demand is, as the setup cost of one platform was not considered in the objective 

function. This is why for this scenario the single platform model produces variants with 

relatively high manufacturing cost. In scenario 10, the demand for all variants is high; each 

product variant is produced in a separate platform.  

6.5.1. Cost Sensitivity Analysis 

A one-at-a-time sensitivity analysis in which variations in base values of the input costs; 

namely, the setup of one platform, feature additive, subtractive, and mass-producing costs, is 

performed to measure their effect on the total manufacturing cost. Graphs are constructed to 

express the impact on the total manufacturing cost caused by these variations in these input 

costs. All these studies are performed on the guiding bushes product family. However, it is 

important to mention that this section will include hypothetical assumptions for the studied 

costs for the sole propose of analyzing and studying the trends of changing these costs.  In 

other words, the decrease and the increase of these costs with respect to the actual estimated 

costs (in the above section) are not calculated but they are assumed only for showing the 

effect of these changes on the results.  
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 Effect of changing setup cost of one platform (Cs) 

The data presented in Table 6-2 is plotted in the graph shown in Figure 6-9 to illustrate 

further the effect of the setup cost of one platform (Cs) on the total manufacturing cost and 

the number of platforms. The effect of the setup cost of one platform is tested by changing its 

value as a percentage of the cost previously considered in the case study. All other costs 

remain the same as mentioned before in the case study and demand scenario 1, which is 100 

units is required for each variant, is used.      

Table 6-2 Effect of changing the setup cost of one platform 

Percentage of Setup 

cost of one platform 

(Cs) 

 

Product Platform 

[Considered Demand: (100, 100, 

100, 100, 100) for (V1, V2, V3, V4, 

V5)]    

Total 

Manufacturing 

Cost ($) 

No. of Platforms 

50% 

 All variants (V1, V2, V3, V4, V5) 

are produced in separate 

platforms. 

6650 5 

55% 

 Variants V4 and V5 are served 

by one platform of features [F2, 

F3, F4, F5, F7, F8] 

 All other variants (V1, V2, and 

V3) are produced in separate 

platforms. 

6950 4 

60% 

 Variants V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5, F7, F8] 

 Variant (V1 and V3)  are 

produced in separate platforms 

7200 3 

100% 

 Variants V2, V4 and V5 are 

served by one platform of 

features [F2, F3, F4, F5, F7, F8] 

  Variants V1 and V3 are served 

by one platform of features [F1, 

F2, F3, F5, F6] 

8650 2 

175% 

 All variants are served by one 

platform of features [F2, F3, F5, 

F7] 

11025 1 

  

The data presented in Table 6-2 shows that when the setup cost of one platform (Cs) 

increases, it is more economical to reduce the number of platforms. Similarly, in the case 

where the setup cost of one platform (Cs) is reduced, having more platforms results in a lower 
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manufacturing cost. Furthermore, in the case where the setup cost of one platform (Cs) is 

very high (around six times the setup cost for this considered demand scenario), building the 

product variants completely by additive manufacturing without platforms leads to lower 

manufacturing cost. 

 

Figure 6-9 Effect of changing setup cost of one platform (Cs) 

 Effect of changing feature additive cost (Ca) 

The effect of changing the feature additive cost on the total cost is also studied. In this study, 

different percentages of feature additive cost mentioned in the case study are considered.  

The considered demand scenario in this study is scenario 7 in which 100, 500, 500, 100 and 

50 units are needed for product variants V1, V2, V3, V4 and V5, respectively.  Thus, the results 

of the study, shown in Figure 6-10 and Table 6-3, prevailed that the increase of the feature 

additive cost increases the total manufacturing cost and the number of platforms to a point 

where the platforms are customized by subtractive manufacturing only. At this point, any 

increase in the additive cost will neither affect the total manufacturing nor the number of 

platforms (as in considering 130% of the feature additive cost in this case study scenario). As 

for the decrease in feature additive costs, it leads to that some variants are built by additive 

manufacturing without platforms until it reaches a point where all variants are built by 

additive manufacturing without platforms.  
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Table 6-3 Effect of changing feature additive cost (Ca) 

Percentage of 

feature 

additive cost 

(Ca) 

Product Platform 

[Considered Demand: (100, 500, 500, 100, 50) for (V1, V2, V3, V4, 

V5)]    

Total 

Manufacturing 

Cost ($) 

50% 

 Variants V2 ,V4 and V5 are served by one platform of features [F2, 

F3, F4, F5] 

 Variant V3  is produced in a separate platform 

 Variant V1 is entirely built by additive manufacturing 

11800 

60% 
 Variants V1, V2 ,V4 and V5 are served by one platform of features 

[F2, F3, F4, F5] 

 Variant (V3)  is produced in a separate platform 

12230 

70% 
 Variants V1, V2 ,V4 and V5 are served by one platform of features 

[F2, F3, F4, F5] 

 Variant (V3)  is produced in a separate platform 

12510 

80% 
 Variants V1, V2 ,V4 and V5 are served by one platform of features 

[F2, F3, F4, F5] 

 Variant (V3)  is produced in a separate platform 

12790 

90% 
 Variants V1, V2 ,V4 and V5 are served by one platform of features 

[F2, F3, F4, F5] 

 Variant (V3)  is produced in a separate platform 

13070 

100% 
 Variants V1, V2 ,V4 and V5 are served by one platform of features 

[F2, F3, F4, F5] 

 Variant (V3)  is produced in a separate platform 

13350 

110% 

 Variants V1 and V2 are served by one platform of features [F2, F3, 

F4, F5] 

 Variants V4 and V5 are served by one platform of features [F2, F3, 

F5, F7, F8] 

 Variant (V3)  is produced in a separate platform 

13480 

120% 

 Variants V1 and V2 are served by one platform of features [F2, F3, 

F4, F5] 

 Variants V4 and V5 are served by one platform of features [F2, F3, 

F5, F7, F8] 

 Variant (V3)  is produced in a separate platform 

13585 

130% 
 Variants V4 and V5 are served by one platform of features [F2, F3, 

F4, F5, F7, F8] 

 All other variants (V1, V2, V3) are produced in separate platforms. 

13625 

140% 
 Variants V4 and V5 are served by one platform of features [F2, F3, 

F4, F5, F7, F8] 

 All other variants (V1, V2, V3) are produced in separate platforms. 

13625 

150% 
 Variants V4 and V5 are served by one platform of features [F2, F3, 

F4, F5, F7, F8] 

 All other variants (V1, V2, V3) are produced in separate platforms. 

13625 
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Figure 6-10 Effect of changing feature additive cost 

 

 Effect of changing feature subtractive cost (Cr) 

Similarly, the effect of feature subtractive cost is tested by changing its value as a percentage 

of the cost previously considered in the case study. All other costs remain unchanged and the 

considered demand for the product variants V1, V2, V3, V4 and V5 is 100, 500, 500, 100 and 

50 units. The increase in the feature subtractive cost directly increases the total 

manufacturing cost indicating a direct proportional relationship between them. This is 

because, in many cases, the model uses subtractive manufacturing for customizing the 

product platform for its lower cost.      
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Table 6-4 Effect of changing feature subtractive cost (Cr) 

Percentage of 

feature 

subtractive cost 

(Cr) 

Product Platform  

[Considered Demand: (100, 500, 500, 100, 50) for (V1, V2, 

V3, V4, V5)]    

Total 

Manufacturing 

Cost ($) 

50% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

12950 

60% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13030 

70% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13110 

80% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13190 

90% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13270 

100% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13350 

110% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13430 

120% 
 Variants V1, V2 ,V4 and V5 are served by one platform of 

features [F2, F3, F4, F5] 

  Variant (V3)  is produced in a separate platform 

13510 

130% 

 Variants V1 and V2 are served by one platform of features 

[F2, F3, F4, F5] 

 Variants V4 and V5 are served by one platform of features 

[F2, F3, F5, F7, F8] 

 Variant (V3)  is produced in a separate platform 

13585 

140% 

 Variants V4 and V5 are served by one platform of features 

[F2, F3, F5, F7, F8] 

  All other variant (V1, V2, V3) are produced in separate 

platforms. 

13605 

150% 

 Variants V4 and V5 are served by one platform of features 

[F2, F3, F5, F7, F8] 

  All other variant (V1, V2, V3) are produced in separate 

platforms. 

13625 
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Figure 6-11 Effect of changing feature subtractive costs (Cr) 

 

 

 Effect of changing feature mass production cost (Cp) 

The effect of feature mass production cost the features on the total manufacturing cost is 

studied in the same way the feature additive and subtractive costs effects have been studied.  

The demand scenario 7, in which 100, 500, 500, 100 and 50 units are needed for product 

variants V1, V2, V3, V4 and V5 respectively, is considered.   In this study, only the feature mass 

production cost is considered to be changing while the other costs remain the same. The 

results show that both the total manufacturing cost and the feature mass production cost are 

directly proportional.  
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Table 6-5 Effect of changing feature mass production cost (Cp) 

Percentage of 
feature mass 

production cost 
(Cp) 

Product Platform 
[Considered Demand: (100, 500, 500, 100, 50) for (V1, 

V2, V3, V4, V5)]    

Total 
Manufacturing Cost 

($) 

50% 

 Variants V1 and V2 are served by one platform of 
features [F2, F3, F4, F5] 
 Variants V4 and V5 are served by one platform of 
features [F2, F3, F5, F7, F8] 
 Variant (V3)  is produced in a separate platform 

9812.5 

60% 

 Variants V1 and V2 are served by one platform of 
features [F2, F3, F4, F5] 
 Variants V4 and V5 are served by one platform of 
features [F2, F3, F5, F7, F8] 
 Variant (V3)  is produced in a separate platform 

10525 

70% 

 Variants V1 and V2 are served by one platform of 
features [F2, F3, F4, F5] 
 Variants V4 and V5 are served by one platform of 
features [F2, F3, F5, F7, F8] 
 Variant (V3)  is produced in a separate platform 

11237.5 

80% 

 Variants V1 and V2 are served by one platform of 
features [F2, F3, F4, F5] 
 Variants V4 and V5 are served by one platform of 
features [F2, F3, F5, F7, F8] 
 Variant (V3)  is produced in a separate platform 

11950 

90% 

 Variants V1 and V2 are served by one platform of 
features [F2, F3, F4, F5] 
 Variants V4 and V5 are served by one platform of 
features [F2, F3, F5, F7, F8] 
 Variant (V3)  is produced in a separate platform 

12662.5 

100% 
 Variants V1, V2 ,V4 and V5 are served by one 
platform of features [F2, F3, F4, F5] 
  Variant (V3)  is produced in a separate platform 

13350 

110% 
 Variants V1, V2 ,V4 and V5 are served by one 
platform of features [F2, F3, F4, F5] 
 Variant (V3)  is produced in a separate platform 

14025 

120% 
 Variants V1, V2 ,V4 and V5 are served by one 
platform of features [F2, F3, F4, F5] 
 Variant (V3)  is produced in a separate platform 

14700 

130% 
 Variants V1, V2 ,V4 and V5 are served by one 
platform of features [F2, F3, F4, F5] 
 Variant (V3)  is produced in a separate platform 

15375 

140% 
 Variants V1, V2 ,V4 and V5 are served by one 
platform of features [F2, F3, F4, F5] 
 Variant (V3)  is produced in a separate platform 

16050 

150% 
 Variants V1, V2 ,V4 and V5 are served by one 
platform of features [F2, F3, F4, F5] 
  Variant (V3)  is produced in a separate platform  

16725 
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Figure 6-12 Effect of changing feature mass production cost (Cp) 

6.6 Family of Gear Shafts Case study  

A case study of a family of gear shafts, adopted from www.gearmotions.com, is used to 

demonstrate the developed model. Gear shafts provide the rotation that allows one gear to 

engage with and turn another and contain gear teeth integrated into the shaft. Gear shafts are 

commonly found in engines and have many applications in the automotive and aerospace 

industries.  The considered family consists of 8 product variants composed of 21 different 

features. The features that form the product family are determined using the feature 

extraction procedure discussed in chapter 4. Figure 6-13 shows the product variants, while 

Figure 6-14 shows the 21 features. Table 6-6 represents the overall dimensions of the 

considered variants. 

Table 6-7 shows the features from which each product variant is formed. Table 6-8 shows the 

precedence relationship between the features of the gear shaft family. The DMD is utilized 

since many of the addition of the features will be built on a non-planner surface. CNC turning 

and milling machines are required for cutting the cylindrical geometries and opening the gear 

teeth. Based on the prices from McMASTER-CARR company (www.mcmaster.com) for similar 

products, the prices for variants V1, V2, V3, V4, V5, V6, V7 and V8 are $161, $189, $228, $176, 

$203, $262, $163, and $192 respectively.  Thus, the average price of these variants is $196.75. 
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The costs for mass producing, additive manufacturing and subtractive manufacturing of 

features are shown in Table 6-9 and determined based on quotations from the 3D Hubs 

network (https://www.3dhubs.com/) and the cost study of (Manogharan et al. 2016).  

 

 

Figure 6-13 The eight variants of the gear shaft product family 

Table 6-6 Overall dimensions of the gear shaft variants 

Product 
Variant 

Max. Diameter 
(mm) 

Min. Diameter 
(mm) 

Overall length 
(mm) 

V1 100 40 50 
V2 100 20 130 
V3 100 20 150 
V4 100 40 110 
V5 100 16 150 
V6 100 30 180 
V7 40 40 90 
V8 90 30 90 

 

 

 

https://www.3dhubs.com/
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Table 6-7 Product variant / feature relationships for the gear shaft family 

  Feature 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 

P
ro

d
u

ct
 V

ar
ia

n
t 

V1 1   1                  

V2 1   1  1 1 1 1 1 1           

V3 1 1  1 1 1 1  1    1 1 1 1   1   

V4 1   1 1 1 1 1 1 1   1        1 

V5 1 1  1  1   1    1 1     1   

V6 1 1 1 1 1 1 1 1 1    1 1 1 1 1 1 1 1  

V7    1 1 1 1 1 1 1           1 

V8            1 1 1 1 1 1  1 1  

 

 

Figure 6-14 Features of the Gear Shafts product family 
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The setup cost of a platform for the gear shafts case study is $5000. This value for the setup 

cost is determined based on discussions with industry experts. This setup cost is estimated 

taken into consideration the costs associated with preparing the required machine tool, 

cutting tools, fixtures, automated production methods/ programming and labour 

training,…etc .  

 

Table 6-8 Features precedence for the gear shaft family 

  Feature 

  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 

F
ea

tu
re

 

F1                      

F2    X                  

F3    X X X                

F4                      

F5    X  X                

F6                      

F7         X             

F8       X               

F9                      

F10                      

F11          X            

F12                X      

F13                      

F14                      

F15                   X   

F16             X X        

F17                X      

F18                 X     

F19                      

F20               X  X     

F21         X X            

 

Various cases of demand scenarios are examined to illustrate the effect of the demand on the 

product platform. The demand scenarios, optimum platforms and the minimum 

manufacturing cost for each scenario are presented in Table 6-10. The following GA 

parameters are used: 0.75 for the crossover ratio, 0.1 for the mutation ratio and the 

population size is 1000. The stopping criteria are either reaching 500 generations or no 
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change in the best solution for 100 generations.  Each solution was obtained in 255 seconds 

using a PC of Intel Core i7 3.40 GHz processor and 16 GB Ram. 

Table 6-9 Mass production, additive manufacturing, subtractive manufacturing costs for features of the 
gear shaft family 

Feature Ca ($) Cp ($) Cr ($) 

F1 53.9 11.19 12.2 
F2 39.8 9.9 10.8 
F3 80.1 11.94 12.4 
F4 25 4.65 5.8 
F5 21.4 5.35 6.7 
F6 19.9 3.87 4.9 
F7 17.6 5.01 6.5 
F8 19.4 5.62 6.9 
F9 16.4 3.2 4.7 

F10 16.6 3.26 4.8 
F11 18 6.25 7.4 
F12 33.9 10.31 11.6 
F13 16.9 2.83 3.9 
F14 19.8 3.15 4.3 
F15 17.6 5.01 6.5 
F16 26.6 6.15 7.7 
F17 19.4 5.62 6.9 
F18 18.9 5.76 6.8 
F19 16.4 3.2 4.7 
F20 20.6 5.93 6 
F21 25.5 7.12 8 
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Table 6-10 Demand Scenarios for Gear Shaft Family, the optimal platforms and the results 

S
ce

n
a

rio
 

Product Variants 

Demand 

[V1, V2, V3, V4, 

V5, V6, V7, V8] 

Optimal multiple platforms 

Total 

Manufacturing 

Cost ($) 

Average Cost 

per gear 

shaft ($) 

1 

[100, 100, 100, 

100, 100, 100, 

100, 100] 

 Variants V3 and V5 are served 
by one platform of features [F1, F2, 
F4, F5, F6, F7, F9, F13, F14, F15, 
F16, F19] 
 Variants  V2, V4 and V7 are 
served by one platform of features 
[F1, F4, F5, F6, F7, F8, F9, F10, F13, 
F21] 
 All other variants (V1, V6, and 
V8) are in separate platforms. 

76984 96.23 

2 
[100, 25, 50, 150, 

200, 25, 250, 50] 

 Variants V2 and V4 are served 
by one platform of features [F1, F4, 
F5, F6, F7, F8, F9, F10, F13, F21] 
 Variants V3, V5 and V6 are 
served by one platform of features 
[F1, F2, F4, F6, F9, F13, F14, F19] 
 All other variants (V1, V7, and 
V8) are in separate platforms. 

69993.8 82.35 

3 
[25, 50, 200, 50, 

25, 100, 50, 250] 

 Variants V2, V4 and V7 are 
served by one platform of features 
[F1, F4, F5, F6, F7, F8, F9, F10, F13, 
F21] 
 Variants V3 and V5 are served 
by one platform of features [F1, F2, 
F4, F5, F6, F7, F9, F13, F14, F15, 
F16, F19] 
 Variants (V6 and V8) are in a 
separate platforms 
 Variants V1 is built completely 
by additive manufacturing 
 

67785.3 90.38 

4 

[500, 150, 100, 

200, 100, 250, 

100, 500] 

 Variants V3 and V5 are served 
by one platform of features [F1, F2, 
F4, F5, F6, F7, F9, F13, F14, F15, 
F16, F19] 
 Variants  V4 and V7 are served 
by one platform of features [F1, F4, 
F5, F6, F7, F8, F9, F10, F13, F21] 
 All other variants (V1, V2, V6, 
and V8) are in separate platforms. 

122755 64.61 
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The following conclusions can be drawn from the results of both case studies and the cost 

sensitivity analysis: 

 The average manufacturing costs per guiding bushes and the gear shafts are less than 

their average prices of the considered guiding bushes and gear shafts respectively. 

Thus, using platforms is economically justified.  The difference between the average 

manufacturing costs and the average price can be explained as the price includes 

other elements such as profit margin, administrative overheads and manufacturing 

overheads in addition to the manufacturing cost.  

 In the case where the demand of a particular product variant is very high with respect 

to other variants, one of the platforms is formed from the features of that variant and 

is dedicated to it; even if other variants do not share these features. For example, if 

the demand of V2 is very high with respect to others in the family, one of the 

platforms, in this case, is the product V2 itself. 

 The decrease in the additive manufacturing cost, the increase in setup cost and the 

decrease in the demand are among the factors that promote the use of additive 

manufacturing to build the product variants without platforms. 

 The model may select using only one manufacturing technology in customization of 

the product platform or even not using platform at all. Such decisions are affected by 

various factors such as the demand for each variant, the manufacturing costs and the 

features decomposition of the variants.   

 The results are naturally case-specific and dependent on the values of different 

parameters such as the demand, the features of each variant and different costs. This 

is why the use of the developed model would be helpful in deciding on which is the 

best mass customization approach to use. 

6.7 Summary and Conclusions  

A novel genetic algorithm-based model was developed. Additional aspects were considered, 

such as all associated manufacturing costs, precedence constraints and the product demand.  

This model was successfully able to determine the optimal number of platforms, the set of 

features that forms each platform, assignment of the product variants to each platform and 

the manufacturing processes either additive or subtractive that is needed to customize the 

platforms into different product variants. The model benefits from the increase of 
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commonalities between the variants as the result of utilizing additive and subtractive 

manufacturing for customizing the platforms. However, it is worth mentioning that the 

number of the platform, the platform configuration and accordingly, the process plans are 

changed by considering more aspects in the genetic model that was not considered in the 

phylogenetic median-joining network.  Two case studies for a guiding bushes family and a 

gear shaft family were used for demonstration. 

The benefits of combining additive and subtractive manufacturing are strongly emphasized 

by the genetic algorithm-based model results. The model can choose whether to either 

include platforms that will be customized by either subtractive only, additive only, with both 

subtractive and additive, or without platforms by building the variants with additive 

manufacturing only depending on the interaction and trade-off between the various criteria 

and variables. 
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 DISCUSSION AND CONCLUSION  

7.1 Overview 

This chapter presents the synopsis of the novelty and contribution achieved, as well as 

highlights the industrial significance of the research. The future work and the conclusions are 

presented in this chapter as well.   

7.2 Discussion  

In the assembly domain, the research work focuses on finding alternative assembly 

sequences for product variants. This work is a retrieval method that depends on utilizing the 

available legacy data. The research in the hybrid manufacturing covers designing the product 

platforms and generating process plans for hybrid manufacturing. The developed methods 

and models in hybrid manufacturing domain are generative process planning methods in 

which decisions related to the type of process either subtractive or additive processes and 

the sequence of the processes are generated. Finally, the research work for both domains falls 

under the macro process planning type.   

Although the additive manufacturing, sensor technology and data availability, that the 

current work is based on, are not very new and were available during the 3rd industrial 

revolution, utilizing these technologies was limited due to their unsuitability for industrial 

use. With the introduction of the 4th industrial revolution, there is a breakthrough in 

computing power and the reduction in cost for acquiring and use these technologies makes 

them capable of industrial use. The developed models and methods can be utilized in any 

manufacturing systems that allow alternative assembly sequences in case of assembly 

domain and have the capabilities for additive and subtractive manufacturing in case of hybrid 

manufacturing. Thus, they are more suitable for the 4th Industrial revolution. Moreover, the 

developed methods and models can also be used in the coming 5th industrial revolution by 

making the process plans more interactive. This can be made by allowing more real-time 

human inputs for reviewing and feedbacks on the process plans decisions.     
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7.3 Engineering Thesis Questions 

In this sub-section, it would be useful to conclude with the answer of the typical engineering 

thesis questions based on the conducted research as follow: 

7.3.1. What Is the Engineering Problem to Be Solved? 

Nowadays, the manufacturers face several challenges to responsively and cost-effectively 

handle the product proliferation.  Meanwhile, various technological advances are introduced 

in manufacturing associated with the rise of new manufacturing paradigms such as Smart 

Manufacturing (Industry 4.0). These technological advances could provide great support to 

the manufacturers to cope with the increasing product variety management challenges; 

however, there is a lack of utilizing these technologies to support the rapid changes of the 

products. Accordingly, two manufacturing domains, namely assembly and hybrid 

manufacturing, have been addressed through process planning models in a smart 

manufacturing environment that allow changes in the routing of the material handling 

equipment or hybrid manufacturing.  

7.3.2. In What Sense Are Previous Solutions to this Problem Insufficient? 

Assembly Domain: Generating assembly sequence from scratch without benefit from the 

legacy data is a time-consuming and exhaustive activity. On the other hand, the existing 

retrieval based assembly sequence methods are not able to retrieve multiple different 

assembly sequences for the same combination of parts. In addition, some of them are limited 

to retrieving the most similar existing product variant with respect to the commonality of product parts.  

Thus, they are not able to retrieve assembly sequence containing groups of parts that did not 

exist together in any of the considered individual variants. Hence, the used material handling 

system has limited flexibility as it follows a single pre-determined path. 

Hybrid Manufacturing Domain: Only a few methods developed in the literature regarding the 

process planning for both additive and subtractive processes. All of these works focus on the 

manufacturing or remanufacturing of a single part. None of them considers the 

manufacturing of a product family, considering both additive and subtractive processes.  
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7.3.3. What Are the Developed Solutions in this Research? 

Assembly domain: a new approach has been developed for assembly sequence retrieval 

inspired by the concept of soft-wired galled networks found in phylogenetics and 

evolutionary studies. It is able to retrieve alternative assembly sequences for products 

containing groups of parts that did not exist together in any of the considered individual 

variants. Thus, material handling such as smart AGVs with built-in intelligence can act on 

requests received digitally or via distributed sensors for changing assembly sequence, and 

change the processing routes according to pre-planned flow sequence alternatives generated 

by the new approach.   

Hybrid Manufacturing Domain: Three models and approaches are proposed to handle the 

addressed problem. A novel Mixed Integer Programming model has been developed that 

generates a process plan for hybrid manufacturing of a product family. Moreover, the model 

is capable of determining a single product family platform taking into consideration 

combining both additive and subtractive processes. The other two approaches consider the 

generation of multi-platform and their process plans to produce the product family variants.  

The advantage of using multi-platforms over a single platform is the ability to optimally match 

variants to a particular platform. The Median-Joining Phylogenetic Network Algorithm, which 

is used in biology to infer the relations between DNA sequence alignment, is utilized to solve 

the problem. This method depends on only the commonality between the variants. A novel 

genetic algorithm model has been developed, taking into consideration all associated 

manufacturing costs, precedence constraints and the product demand.  

7.4 Novelty and Contribution 

The following sub-sections summarize the novelty and contribution achieved in this research 

at each addressed domain. As mentioned before, this research addressed two manufacturing 

domains namely assembly and hybrid manufacturing. 
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7.4.1. Assembly Domain 

This domain was covered in Chapter 3. The contributions are as follows: 

 A new approach for the knowledge-based assembly was developed in chapter 2 

inspired by the concept of soft-wired galled networks found in biology and 

phylogenetics.  

 A master assembly network that contains alternative assembly sequences for a 

specific product family is derived from a set of existing assembly sequence trees for 

variants of the considered family.  

 An assembly sequence network for a new product variant that falls within, or 

significantly overlap with, the boundary of the considered product family can be 

extracted from the generated master assembly network. 

 Alternative assembly sequences for already existing variants can be extracted from 

the master assembly network. 

 A novel GA based model, with a custom-designed crossover and mutation operators, 

has been developed for generating the master assembly sequence network. 

 

7.4.2. Hybrid Manufacturing Domain 

 A novel concept was introduced for the first time in the field of product variety 

management by designing product family platforms for customization into different 

product variants utilizing additive and subtractive processes.  

 The considered problem of generating product platform(s) for hybrid manufacturing 

has never been addressed in the literature. 

 Hybrid manufacturing macro process planning for product family (variety) was 

presented for the first time.  

 A novel mixed-integer linear programming model was formulated for designing the 

optimal product platform and determining the type and sequence of additive and/or 

subtractive processes to transform the product platform into different product family 

variants and minimizing the total manufacturing cost. 

 A novel genetic algorithm based model was developed for determining the optimal 

number of platforms, the set of features that forms each platform, assignment of the 
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product variants to each platform and the manufacturing processes either additive or 

subtractive that is needed to customize the platforms into different product variants. 

 A new approach for generating multi-platform and product family process plan 

utilizing hybrid manufacturing inspired by the concept of median joining 

phylogenetic networks found in biology and phylogenetics is developed. 

7.5 Significance 

For the assembly domain, the proposed research presents a logical enabler for adaptive 

assembly systems by allowing smart AGVs to change their routes to handle any real-time 

workshop disruptions in Industry 4.0 type of assembly systems. The proposed retrieval 

process sequence planning method avoids re-generating new assembly sequences every time 

a new product variant is considered. Hence, it contributes to reducing the overall process 

planning time and cost. Moreover, the extracted assembly network has multiple alternative 

assembly sequences that increase the flexibility and adaptability of the system to deal with 

real-time workshop disruptions. These disruptions may include, but are not limited to, new 

process-machine assignments, machines breakdown, and machine overload causing 

bottlenecks and delays. Manufacturers of assembled products (such as valves, household 

appliances, power tools,…etc.) can apply the developed process planning models 

For the hybrid manufacturing domain, the proposed research presents a logical enabler for 

the manufacturers to combine two technological processes, namely additive and subtractive 

manufacturing processes, to better manage the product variety. The delayed product 

differentiation strategy is enhanced by increasing the commonality of features by using 

additive and subtractive platform concept. Thus, manufacturers become more responsive 

and adaptable to fluctuating markets and customer demands. The developed models can 

handle with complex shapes (e.g. gear shafts family) with rotational and prismatic features. 

Hence, they can be utilized in automotive, aerospace, hydraulic components, instrumentation 

and medical industries.  

Generally, the proposed models have significant benefits as they act as logical enablers for 

manufacturers to utilize technological advances of the new manufacturing system paradigms 

such as smart manufacturing (Industry 4.0) to manage the product variety effectively through 

process planning of product families. The application of this research work would enhance 
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productivity and decrease the manufacturing cost and, hence, provide manufacturers with a 

competitive edge in responding to the product proliferation. 

7.6 Limitations 

The models introduced have some limitations. For the assembly sequence model, the GA 

model does not guarantee the optimality of the solution; however, it is capable of handling 

large size problems. Like any retrieval method, the quality of the proposed solutions is always 

subject to the quality of existing data. Hence, planning for future products based on extracted 

knowledge from these data does not necessarily guarantee the best outcome. The developed 

method is limited to the products that fall within the scope of available data; human 

intervention is required for new products that involve new parts that are not existing 

database. However, continuous updating of available data should improve the quality and 

widen the scope of extracted knowledge. For the hybrid manufacturing domain, human 

intervention is required for determining the features and their precedence for the different 

product variants. The mathematical model is capable of finding the optimum single platform 

for different product variants. The median-joining phylogenetic algorithm does not consider 

the demand and the manufacturing costs. The demand for the product family for all models 

is for a single period. Some features cannot be manufactured by additive manufacturing or 

subtractive manufacturing. For instance, additive manufacturing cannot fill the small holes 

with material in case that is needed for customization. Another example, internal features 

cannot be manufactured by subtractive processes.   

7.7 Future work 

In this section, several extensions can be considered as a part of future work. These 

extensions can be summarized in the following points: 

7.7.1. Assembly Domain 

 Applying the concept of the soft-wired galled network to other manufacturing 

processes such as machining operations.  

 Developing a method for automatically allocating the new parts in the network. In the 

proposed method, if a new part is introduced in the new variant, a planner assigns 

the new part location within the network manually. 
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 Developing a mathematical optimization model to guarantee the optimality of the 

solution (Master assembly network). 

 Assigning higher weights to the existing assembly sequences of those product 

variants with higher demand. 

  Applying a merit-based ranking of generated alternative process sequences to select 

the best candidate to use when disruptions occur on the shop floor. 

 Considering the production volumes in the developed model for knowledge-based 

assembly sequencing. 

 Quantifying cost saving realized by using the developed knowledge-based model 

compared to traditional (e.g. generative) methods. 

 Adding module for allowing real time human feedback on the changing in routing 

decisions as part of making the method ready for the 5th industrial revolution. 

7.7.2. Hybrid Manufacturing Domain 

 Adding automatic pre-processing modules to extract the product variants features 

and establish the precedence relationships that would be helpful particularly for large 

product families and more complex shapes of features. 

 Considering probabilistic demand scenarios for the different product variants be 

included in the proposed model. 

 Investigating the inventory costs for storing the platforms until customization into 

product variants. 

 Quantifying cost saving realized by manufacturing using the proposed hybrid 

manufacturing platform concept compared to the traditional manufacturing 

methods.  

 Adding module for making the decisions related to the process plans more interactive 

and user- centered as a need for the 5th industrial revolution. 

 Working on integrating hybrid manufacturing and assembly process plans by 

studying the product architecture to identify which parts should be assembled and 

which parts should be hybrid manufactured to produce the product family.  
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