11,003 research outputs found

    Neural networks, error-correcting codes, and polynomials over the binary n-cube

    Get PDF
    Several ways of relating the concept of error-correcting codes to the concept of neural networks are presented. Performing maximum-likelihood decoding in a linear block error-correcting code is shown to be equivalent to finding a global maximum of the energy function of a certain neural network. Given a linear block code, a neural network can be constructed in such a way that every codeword corresponds to a local maximum. The connection between maximization of polynomials over the n-cube and error-correcting codes is also investigated; the results suggest that decoding techniques can be a useful tool for solving such maximization problems. The results are generalized to both nonbinary and nonlinear codes

    Systematic Codes for Rank Modulation

    Get PDF
    The goal of this paper is to construct systematic error-correcting codes for permutations and multi-permutations in the Kendall's Ï„\tau-metric. These codes are important in new applications such as rank modulation for flash memories. The construction is based on error-correcting codes for multi-permutations and a partition of the set of permutations into error-correcting codes. For a given large enough number of information symbols kk, and for any integer tt, we present a construction for (k+r,k){(k+r,k)} systematic tt-error-correcting codes, for permutations from Sk+rS_{k+r}, with less redundancy symbols than the number of redundancy symbols in the codes of the known constructions. In particular, for a given tt and for sufficiently large kk we can obtain r=t+1r=t+1. The same construction is also applied to obtain related systematic error-correcting codes for multi-permutations.Comment: to be presented ISIT201

    Diameter Perfect Lee Codes

    Full text link
    Lee codes have been intensively studied for more than 40 years. Interest in these codes has been triggered by the Golomb-Welch conjecture on the existence of the perfect error-correcting Lee codes. In this paper we deal with the existence and enumeration of diameter perfect Lee codes. As main results we determine all qq for which there exists a linear diameter-4 perfect Lee code of word length nn over Zq,Z_{q}, and prove that for each n≥3n\geq 3 there are uncountable many diameter-4 perfect Lee codes of word length nn over Z.Z. This is in a strict contrast with perfect error-correcting Lee codes of word length nn over Z Z\,\ as there is a unique such code for n=3,n=3, and its is conjectured that this is always the case when 2n+12n+1 is a prime. We produce diameter perfect Lee codes by an algebraic construction that is based on a group homomorphism. This will allow us to design an efficient algorithm for their decoding. We hope that this construction will turn out to be useful far beyond the scope of this paper

    50 Years of the Golomb--Welch Conjecture

    Full text link
    Since 1968, when the Golomb--Welch conjecture was raised, it has become the main motive power behind the progress in the area of the perfect Lee codes. Although there is a vast literature on the topic and it is widely believed to be true, this conjecture is far from being solved. In this paper, we provide a survey of papers on the Golomb--Welch conjecture. Further, new results on Golomb--Welch conjecture dealing with perfect Lee codes of large radii are presented. Algebraic ways of tackling the conjecture in the future are discussed as well. Finally, a brief survey of research inspired by the conjecture is given.Comment: 28 pages, 2 figure

    List Decoding Algorithm based on Voting in Groebner Bases for General One-Point AG Codes

    Get PDF
    We generalize the unique decoding algorithm for one-point AG codes over the Miura-Kamiya Cab curves proposed by Lee, Bras-Amor\'os and O'Sullivan (2012) to general one-point AG codes, without any assumption. We also extend their unique decoding algorithm to list decoding, modify it so that it can be used with the Feng-Rao improved code construction, prove equality between its error correcting capability and half the minimum distance lower bound by Andersen and Geil (2008) that has not been done in the original proposal except for one-point Hermitian codes, remove the unnecessary computational steps so that it can run faster, and analyze its computational complexity in terms of multiplications and divisions in the finite field. As a unique decoding algorithm, the proposed one is empirically and theoretically as fast as the BMS algorithm for one-point Hermitian codes. As a list decoding algorithm, extensive experiments suggest that it can be much faster for many moderate size/usual inputs than the algorithm by Beelen and Brander (2010). It should be noted that as a list decoding algorithm the proposed method seems to have exponential worst-case computational complexity while the previous proposals (Beelen and Brander, 2010; Guruswami and Sudan, 1999) have polynomial ones, and that the proposed method is expected to be slower than the previous proposals for very large/special inputs.Comment: Accepted for publication in J. Symbolic Computation. LaTeX2e article.cls, 42 pages, 4 tables, no figures. Ver. 6 added an illustrative example of the algorithm executio
    • …
    corecore