Since 1968, when the Golomb--Welch conjecture was raised, it has become the
main motive power behind the progress in the area of the perfect Lee codes.
Although there is a vast literature on the topic and it is widely believed to
be true, this conjecture is far from being solved. In this paper, we provide a
survey of papers on the Golomb--Welch conjecture. Further, new results on
Golomb--Welch conjecture dealing with perfect Lee codes of large radii are
presented. Algebraic ways of tackling the conjecture in the future are
discussed as well. Finally, a brief survey of research inspired by the
conjecture is given.Comment: 28 pages, 2 figure