1,317 research outputs found

    Transient Analysis of High-Speed Channels via Newton-GMRES Waveform Relaxation

    Get PDF
    This paper presents a technique for the numerical simulation of coupled high-speed channels terminated by arbitrary nonlinear drivers and receivers. The method builds on a number of existing techniques. A Delayed-Rational Macromodel is used to describe the channel in compact form, and a general Waveform Relaxation framework is used to cast the solution as an iterative process that refines initial estimates of transient scattering waves at the channel ports. Since a plain Waveform Relaxation approach is not able to guarantee convergence, we turn to a more general class of nonlinear algebraic solvers based on a combination of the Newton method with a Generalized Minimal Residual iteration, where the Waveform Relaxation equations act as a preconditioner. The convergence of this scheme can be proved in the general case. Numerical examples show that very few iterations are indeed required even for strongly nonlinear termination

    A multidomain spectral method for solving elliptic equations

    Get PDF
    We present a new solver for coupled nonlinear elliptic partial differential equations (PDEs). The solver is based on pseudo-spectral collocation with domain decomposition and can handle one- to three-dimensional problems. It has three distinct features. First, the combined problem of solving the PDE, satisfying the boundary conditions, and matching between different subdomains is cast into one set of equations readily accessible to standard linear and nonlinear solvers. Second, touching as well as overlapping subdomains are supported; both rectangular blocks with Chebyshev basis functions as well as spherical shells with an expansion in spherical harmonics are implemented. Third, the code is very flexible: The domain decomposition as well as the distribution of collocation points in each domain can be chosen at run time, and the solver is easily adaptable to new PDEs. The code has been used to solve the equations of the initial value problem of general relativity and should be useful in many other problems. We compare the new method to finite difference codes and find it superior in both runtime and accuracy, at least for the smooth problems considered here.Comment: 31 pages, 8 figure

    High performance implementation of MPC schemes for fast systems

    Get PDF
    In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance.Tesi

    A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars

    Full text link
    Context: The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Result:. The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.Comment: 13 pages, 9 figure

    Efficient parallelization strategy for real-time FE simulations

    Full text link
    This paper introduces an efficient and generic framework for finite-element simulations under an implicit time integration scheme. Being compatible with generic constitutive models, a fast matrix assembly method exploits the fact that system matrices are created in a deterministic way as long as the mesh topology remains constant. Using the sparsity pattern of the assembled system brings about significant optimizations on the assembly stage. As a result, developed techniques of GPU-based parallelization can be directly applied with the assembled system. Moreover, an asynchronous Cholesky precondition scheme is used to improve the convergence of the system solver. On this basis, a GPU-based Cholesky preconditioner is developed, significantly reducing the data transfer between the CPU/GPU during the solving stage. We evaluate the performance of our method with different mesh elements and hyperelastic models and compare it with typical approaches on the CPU and the GPU
    corecore