114 research outputs found

    A general iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces

    Get PDF
    AbstractIn this work, we consider a general composite iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of fixed points, which solves the variational inequality 〈(γf−μF)q,p−q〉≤0,forp∈∩i=1∞F(Ti). Our results improve and extend corresponding ones announced by many others

    Approximation solvability of nonlinear equations

    Get PDF

    New Hybrid Steepest Descent Algorithms for Equilibrium Problem and Infinitely Many Strict Pseudo-Contractions in Hilbert Spaces

    Get PDF
    We propose an explicit iterative scheme for finding a common element of the set of fixed points of infinitely many strict pseudo-contractive mappings and the set of solutions of an equilibrium problem by the general iterative method, which solves the variational inequality. In the setting of real Hilbert spaces, strong convergence theorems are proved. The results presented in this paper improve and extend the corresponding results reported by some authors recently. Furthermore, two numerical examples are given to demonstrate the effectiveness of our iterative scheme

    Iterative methods for approximating solutions of certain optimization problems and fixed points problems.

    Get PDF
    Master of Science in Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban 2017.Abstract available in PDF file

    Iterative schemes for approximating common solutions of certain optimization and fixed point problems in Hilbert spaces.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In this dissertation, we introduce a shrinking projection method of an inertial type with self-adaptive step size for finding a common element of the set of solutions of Split Gen- eralized Equilibrium Problem (SGEP) and the set of common fixed points of a countable family of nonexpansive multivalued mappings in real Hilbert spaces. The self-adaptive step size incorporated helps to overcome the difficulty of having to compute the operator norm while the inertial term accelerates the rate of convergence of the propose algorithm. Under standard and mild conditions, we prove a strong convergence theorem for the sequence generated by the proposed algorithm and obtain some consequent results. We apply our result to solve Split Mixed Variational Inequality Problem (SMVIP) and Split Minimiza- tion Problem (SMP), and present numerical examples to illustrate the performance of our algorithm in comparison with other existing algorithms. Moreover, we investigate the problem of finding common solutions of Equilibrium Problem (EP), Variational Inclusion Problem (VIP)and Fixed Point Problem (FPP) for an infinite family of strict pseudo- contractive mappings. We propose an iterative scheme which combines inertial technique with viscosity method for approximating common solutions of these problems in Hilbert spaces. Under mild conditions, we prove a strong theorem for the proposed algorithm and apply our results to approximate the solutions of other optimization problems. Finally, we present a numerical example to demonstrate the efficiency of our algorithm in comparison with other existing methods in the literature. Our results improve and complement contemporary results in the literature in this direction

    Iterative algorithms for approximating solutions of variational inequality problems and monotone inclusion problems.

    Get PDF
    Master of Science in Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban, 2017.In this work, we introduce and study an iterative algorithm independent of the operator norm for approximating a common solution of split equality variational inequality prob- lem and split equality xed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating an element in the intersection of the set of solutions of a split equality variational inequality problem and the set of solutions of a split equality xed point problem for demicontractive mappings in real Hilbert spaces. We then considered nite families of split equality variational inequality problems and proposed an iterative algorithm for approximating a common solution of this problem and the multiple-sets split equality xed point problem for countable families of multivalued type-one demicontractive-type mappings in real Hilbert spaces. A strong convergence re- sult of the sequence generated by our proposed algorithm to a solution of this problem was also established. We further extend our study from the frame work of real Hilbert spaces to more general p-uniformly convex Banach spaces which are also uniformly smooth. In this space, we introduce an iterative algorithm and prove a strong convergence theorem for approximating a common solution of split equality monotone inclusion problem and split equality xed point problem for right Bregman strongly nonexpansive mappings. Finally, we presented numerical examples of our theorems and applied our results to study the convex minimization problems and equilibrium problems

    Approximation methods for solutions of some nonlinear problems in Banach spaces.

    Get PDF
    Doctor of Philosophy in Mathematics. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file

    Theory and Application of Fixed Point

    Get PDF
    In the past few decades, several interesting problems have been solved using fixed point theory. In addition to classical ordinary differential equations and integral equation, researchers also focus on fractional differential equations (FDE) and fractional integral equations (FIE). Indeed, FDE and FIE lead to a better understanding of several physical phenomena, which is why such differential equations have been highly appreciated and explored. We also note the importance of distinct abstract spaces, such as quasi-metric, b-metric, symmetric, partial metric, and dislocated metric. Sometimes, one of these spaces is more suitable for a particular application. Fixed point theory techniques in partial metric spaces have been used to solve classical problems of the semantic and domain theory of computer science. This book contains some very recent theoretical results related to some new types of contraction mappings defined in various types of spaces. There are also studies related to applications of the theoretical findings to mathematical models of specific problems, and their approximate computations. In this sense, this book will contribute to the area and provide directions for further developments in fixed point theory and its applications

    General Iterative Methods for System of Equilibrium Problems and Constrained Convex Minimization Problem in Hilbert Spaces

    Get PDF
    We propose an implicit iterative scheme and an explicit iterative scheme for finding a common element of the set of solutions of system of equilibrium problems and a constrained convex minimization problem by the general iterative methods. In the setting of real Hilbert spaces, strong convergence theorems are proved. Our results improve and extend the corresponding results reported by Tian and Liu (2012) and many others. Furthermore, we give numerical example to demonstrate the effectiveness of our iterative scheme
    • …
    corecore