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a b s t r a c t

In this work, we consider a general composite iterative method for obtaining an infinite
family of strictly pseudo-contractive mappings in Hilbert spaces. It is proved that the
sequence generated by the iterative scheme converges strongly to a common point of the
set of fixed points, which solves the variational inequality ⟨(γ f −µF)q, p−q⟩ ≤ 0, for p ∈

∩
∞

i=1 F(Ti). Our results improve and extend corresponding ones announced bymany others.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H . A self-mapping f : C −→ C is a
contraction on C if there exists a constant α ∈ (0, 1) such that ‖f (x) − f (y)‖ ≤ α‖x − y‖, ∀x, y ∈ C . We use ΠC to denote
the collection of mappings f verifying the above inequality. That is, ΠC = {f : C → C | f is a contraction with constant α}.
Note that each f ∈ ΠC has a unique fixed point in C .

A mapping T : C → C is said to be λ-strictly pseudo-contractive if there exists a constant λ ∈ [0, 1) such that

‖Tx − Ty‖2
≤ ‖x − y‖2

+ λ‖(I − T )x − (I − T )y‖2, x, y ∈ C,

and F(T ) denotes the set of fixed points of the mapping T ; that is, F(T ) = {x ∈ C : Tx = x}.
Note that the class of λ-strictly pseudo-contractive mappings includes the class of nonexpansive mappings T on C (that

is, ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ C) as a subclass. That is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive.
A mapping F : C → C is called k-Lipschitzian if there exists a positive constant k such that

‖Fx − Fy‖ ≤ k‖x − y‖, ∀x, y ∈ C . (1.1)

F is said to be η-strongly monotone if there exists a positive constant η such that

⟨Fx − Fy, x − y⟩ ≥ η‖x − y‖2, ∀x, y ∈ C . (1.2)

Let A be a strongly positive bounded linear operator on H , that is, there exists a constant γ̃ > 0 such that

⟨Ax, x⟩ ≥ γ̃ ‖x‖2 for all x ∈ H.
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A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on
a real Hilbert space H:

min
x∈F(T )

1
2
⟨Ax, x⟩ − ⟨x, b⟩,

where b is a given point in H .

Remark 1.1. From the definition of A, we note that a strongly positive bounded linear operator A is a ‖A‖-Lipschitzian and
γ̃ -strongly monotone operator.

In 2006, Marino and Xu [1] introduced and considered the following iterative scheme: for x1 = x ∈ C ,

xn+1 = αnγ f (xn) + (I − αnA)Txn, n ≥ 1. (1.3)

They proved that if the sequence {αn} of parameters satisfies appropriate conditions, then the sequence {xn} generated
by (1.3) converges strongly to the unique solution of the variational inequality ⟨(γ f − A)q, p − q⟩ ≤ 0, p ∈ F(T ).

Recently, Jung [2] extended the results of Marino and Xu [1] to the class of k-strictly pseudo-contractive mappings and
introduced an iterative scheme as follows: for the k-strictly pseudo-contractive mapping T : C → H with F(T ) ≠ ∅ and
x1 = x ∈ C ,

yn = βnxn + (1 − βn)PCSxn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 1, (1.4)

where S : C → H is a mapping defined by Sx = kx+ (1− k)Tx. He proved that {xn} defined by (1.4) converges strongly to a
fixed point q of T , which is the unique solution of the variational inequality ⟨γ f (q) − Aq, p − q⟩ ≤ 0, p ∈ F(T ).

Very recently, Tian [3] considered the following iterativemethod: for a nonexpansivemapping T : H → H with F(T ) ≠ ∅,

xn+1 = αnγ f (xn) + (I − µαnF)Txn, n ≥ 1, (1.5)

where F is a k-Lipschitzian and η-strongly monotone operator. He obtained that the sequence {xn} generated by (1.5)
converges to a point q in F(T ), which is the unique solution of the variational inequality ⟨(γ f − µF)q, p− q⟩ ≤ 0, p ∈ F(T ).

In this work, motivated and inspired by the above results, we introduce a new iterative scheme: for x1 = x ∈ C ,
yn = βnxn + (1 − βn)Wnxn,
xn+1 = αnγ f (xn) + (I − µαnF)yn, n ≥ 1, (1.6)

where Wn is a mapping defined by (2.3), and F is a k-Lipschitzian and η-strongly monotone operator with 0 < µ < 2η/k2.
We will prove that if the parameters satisfy appropriate conditions, then {xn} generated by (1.6) converges strongly to a
common element of the fixed points of an infinite family of λi-strictly pseudo-contractive mappings, which is a unique
solution of the variational inequality ⟨(γ f − µF)q, p − q⟩ ≤ 0, p ∈ ∩

∞

i=1 F(Ti). Our results also extend and improve the
corresponding results of Marino and Xu [1], Jung [2], Tian [3] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ‖ · ‖. For the sequence {xn} in H , we write xn ⇀ x to
indicate that the sequence {xn} converges weakly to x. xn → x implies that {xn} converges strongly to x. In a real Hilbert
space H , we have

‖x − y‖2
= ‖x‖2

+ ‖y‖2
− 2⟨x, y⟩ ∀x, y ∈ H. (2.1)

In order to prove our main results, we need the following lemmas.

Lemma 2.1. In a Hilbert space H, the following inequality holds:

‖x + y‖2
≤ ‖x‖2

+ 2⟨y, x + y⟩, x, y ∈ H.

Lemma 2.2. Let F be a k-Lipschitzian andη-stronglymonotone operator on aHilbert spaceH with k > 0, η > 0,0 < µ < 2η/k2
and 0 < t < 1. Then S = (I − tµF) : H → H is a contraction with contractive coefficient 1 − tτ and τ =

1
2µ(2η − µk2).

Proof. From (1.1), (1.2) and (2.1), we have

‖Sx − Sy‖2
= ‖(x − y) − tµ(Fx − Fy)‖2

= ‖x − y‖2
+ t2µ2

‖Fx − Fy‖2
− 2µt⟨Fx − Fy, x − y⟩

≤ ‖x − y‖2
+ t2µ2k2‖x − y‖2

− 2µtη‖x − y‖2

≤ ‖x − y‖2
+ tµ2k2‖x − y‖2

− 2µtη‖x − y‖2

= [1 − tµ(2η − µk2)]‖x − y‖2

≤ (1 − tτ)2‖x − y‖2,



S. Wang / Applied Mathematics Letters 24 (2011) 901–907 903

where τ =
1
2µ(2η − µk2), and

‖Sx − Sy‖ ≤ (1 − tτ)‖x − y‖.

Hence S is a contraction with contractive coefficient 1 − tτ . �

Let C be a nonempty closed convex subset of H such that C ± C ⊂ C . Let F be a k-Lipschitzian and η-strongly monotone
operator on C with k > 0, η > 0, and T : C → C be a nonexpansive mapping. Now given f ∈ ΠC with 0 < α < 1, let us
have t ∈ (0, 1), 0 < µ < 2η/k2, 0 < γ < µ(η −

µk2

2 )/α = τ/α and τ < 1, and consider a mapping St on H defined by

Stx = tγ f (x) + (I − tµF)Tx, x ∈ C .

It is easy to see that St is a contraction. Indeed, from Lemma 2.2, we have

‖Stx − Sty‖ ≤ tγ ‖f (x) − f (y)‖ + ‖(I − tµF)Tx − (I − tµF)Ty‖
≤ tγα‖x − y‖ + (1 − tτ)‖Tx − Ty‖
≤ [1 − t(τ − γα)]‖x − y‖,

for all x, y ∈ H . Hence it has a unique fixed point, denoted as xt , which uniquely solves the fixed point equation

xt = tγ f (xt) + (I − tµF)Txt , xt ∈ C . (2.2)

Lemma 2.3 ([3]). Let H be a Hilbert space and C be a nonempty closed convex subset of H such that C ± C ⊂ C. Assume
that {xt} is defined by (2.2); then xt converges strongly as t → 0 to a fixed point q of T which solves the variational inequality
⟨(µF − γ f )q, q − p⟩ ≤ 0, f ∈ ΠC , p ∈ F(T ). Equivalently, we have PF(T )(I − µF + γ f )q = q.

Lemma 2.4 ([4]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → C a nonexpansive mapping with
F(T ) ≠ ∅; if {xn} is a sequence in C weakly converging to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Lemma 2.5 ([5]). Let {xn} and {zn} be bounded sequences in a Banach space E and {γn} be a sequence in [0, 1] which satisfies
the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that xn+1 = γnxn + (1−γn)zn, n ≥ 0, and lim supn→∞(‖zn+1 − zn‖−‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.6 ([6,7]). Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + γn, n ≥ 0,

where {λn}, {δn} and {γn} satisfy the following conditions: (i) {λn} ⊂ [0, 1] and
∑

∞

n=0 λn = ∞, (ii) lim supn→∞ δn ≤ 0 or∑
∞

n=0 λnδn < ∞, (iii) γn ≥ 0 (n ≥ 0),
∑

∞

n=0 γn < ∞. Then limn→∞ sn = 0.

Lemma 2.7 ([8]). Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → C be a λ-strictly pseudo-
contractive mapping. Define a mapping S : C → C by Sx = αx+(1−α)Tx for all x ∈ C and α ∈ [λ, 1). Then S is a nonexpansive
mapping such that F(S) = F(T ).

In this work, we consider the mappingWn defined by

Un,n+1 = I
Un,n = γnT ′

nUn,n+1 + (1 − γn)I,
Un,n−1 = γn−1T ′

n−1Un,n + (1 − γn−1)I,
· · ·

Un,k = γkT ′

kUn,k+1 + (1 − γk)I,
Un,k−1 = γk−1T ′

k−1Un,k + (1 − γk−1)I,
· · ·

Un,2 = γ2T ′

2Un,3 + (1 − γ2)I,
Wn = Un,1 = γ1T ′

1Un,2 + (1 − γ1)I,

(2.3)

where γ1, γ2, . . . are real numbers such that 0 ≤ γn ≤ 1, T ′

i = θiI + (1 − θi)Ti where Ti is a λi-strictly pseudo-contractive
mapping of C into itself and θi ∈ [λi, 1). By Lemma 2.7, we know that T ′

i is a nonexpansive mapping and F(Ti) = F(T ′

i ). As a
result it can be easily seen thatWn is a nonexpansive mapping.

As regards Wn, we have the following lemmas which are important for proving our main results.
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Lemma 2.8. [Shimoji et al. [9]] Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T ′

1, T
′

2, . . . be
nonexpansive mappings of C into itself such that ∩

∞

i=1 F(T ′

i ) ≠ ∅ and γ1, γ2, . . . be real numbers such that 0 < γi ≤ b < 1, for
every i = 1, 2, . . .. Then, for any x ∈ C and k ∈ N, the limit limn→∞ Un,kx exists.

Using Lemma 2.8, one can define the mappingW of C into itself as follows:

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, x ∈ C .

Such a mappingW is called the modifiedW -mapping generated by T1, T2, . . . , γ1, γ2, . . . and θ1, θ2, . . ..

Lemma 2.9. [Shimoji et al. [9]] Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let T ′

1, T
′

2, . . . be
nonexpansive mappings of C into itself such that ∩

∞

i=1 F(T ′

i ) ≠ ∅ and γ1, γ2, . . . be real numbers such that 0 < γi ≤ b < 1 for
every i = 1, 2, . . .. Then F(W ) = ∩

∞

i=1 F(T ′

i ).

Combining Lemmas 2.7–2.9, one can get that F(W ) = ∩
∞

i=1 F(T ′

i ) = ∩
∞

i=1 F(Ti).

Lemma 2.10 ([10]). Let C be a nonempty closed convex subset of a Hilbert space H, {T ′

i : C → C} be a family of infinite
nonexpansive mappings with ∩

∞

i=1 F(T ′

i ) ≠ ∅, {γi} be a real sequence such that 0 < γi ≤ b < 1, ∀i ≥ 1. If K is any bounded
subset of C, then

lim
n→∞

sup
x∈K

‖Wx − Wnx‖ = 0.

3. Main results

Now, we study the strong convergence results for an infinite family of strictly pseudo-contractive mappings in Hilbert
spaces.

Theorem 3.1. Let H be a Hilbert space, and C be a nonempty closed convex subset of H such that C ± C ⊂ C. Let Ti : C → C be
a λi-strictly pseudo-contractive mapping with ∩

∞

i=1 F(Ti) ≠ ∅ and {γi} be a real sequence such that 0 < γi ≤ b < 1, ∀i ≥ 1. Let

F be a k-Lipschitzian and η-strongly monotone operator on C with 0 < µ < 2η/k2 and f ∈ ΠC with 0 < γ < µ(η −
µk2

2 )/α =

τ/α and τ < 1. Let {αn} and {βn} ⊂ (0, 1) be sequences which satisfy the following conditions:

(A1) limn→∞ αn = 0;
(A2)

∑
∞

n=1 αn = ∞;
(A3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn ≤ a < 1 for some constant a ∈ (0, 1).

Then {xn} defined by (1.6) converges strongly to q ∈ ∩
∞

i=1 F(Ti), which is the unique solution of the following variational inequality:
⟨(γ f − µF)q, p − q⟩ ≤ 0, p ∈ ∩

∞

i=1 F(Ti).

Proof. We proceed with the following steps.
Step 1. We claim that {xn} is bounded. In fact, let p ∈ ∩

∞

i=1 F(Ti); from (1.6), we have

‖yn − p‖ = ‖βn(xn − p) + (1 − βn)(Wnxn − p)‖
≤ βn‖xn − p‖ + (1 − βn)‖Wnxn − p‖
≤ ‖xn − p‖. (3.1)

Then from (1.6) and (3.1) and Lemma 2.2, we obtain

‖xn+1 − p‖ = ‖αnγ f (xn) + (I − µαnF)yn − p‖
= ‖αn(γ f (xn) − µFp) + (I − µαnF)yn − (I − µαnF)p‖
≤ (1 − αnτ)‖yn − p‖ + αn(‖γ f (xn) − γ f (p)‖ + ‖γ f (p) − µFp‖)
≤ (1 − αnτ)‖xn − p‖ + αnγα‖xn − p‖ + αn‖γ f (p) − µFp‖

≤ [1 − αn(τ − γα)]‖xn − p‖ + αn(τ − γα)
‖γ f (p) − µFp‖

τ − γα

≤ max{‖xn − p‖,
‖γ f (p) − µFp‖

τ − γα
}, n ≥ 1.

By induction, we have

‖xn − p‖ ≤ max{‖x1 − p‖,
‖γ f (p) − µFp‖

τ − γα
}, n ≥ 1.
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Therefore, {xn} is bounded. We also obtain that {yn}, {Wnxn}, {µFyn} and f (xn) are all bounded. Without loss of generality,
we may assume that {xn}, {yn}, {Wnxn}, {µFyn}, f (xn) ⊂ K , where K is a bounded set of C .
Step 2. We claim that limn→∞ ‖xn+1 − xn‖ = 0. To this end, define a sequence {zn} by zn = (xn+1 − βnxn)/(1 − βn), such
that xn+1 = βnxn + (1 − βn)zn. We now observe that

zn+1 − zn =
xn+2 − βn+1xn+1

1 − βn+1
−

xn+1 − βnxn
1 − βn

=
αn+1γ f (xn+1) + (I − µαn+1F)yn+1 − βn+1xn+1

1 − βn+1
−

αnγ f (xn) + (I − µαnF)yn − βnxn
1 − βn

=
αn+1

1 − βn+1
(γ f (xn+1) − µFyn+1) +

yn+1 − βn+1xn+1

1 − βn+1
−

αn

1 − βn
(γ f (xn) − µFyn) −

yn − βnxn
1 − βn

=
αn+1

1 − βn+1
(γ f (xn+1) − µFyn+1) +

[βn+1xn+1 + (1 − βn+1)Wn+1xn+1] − βn+1xn+1

1 − βn+1

−
αn

1 − βn
(γ f (xn) − µFyn) −

βnxn + (1 − βn)Wnxn − βnxn
1 − βn

=
αn+1

1 − βn+1
(γ f (xn+1) − µFyn+1) −

αn

1 − βn
(γ f (xn) − µFyn) + Wn+1xn+1 − Wnxn. (3.2)

It follows from (3.2) that

‖zn+1 − zn‖ ≤
αn+1

1 − βn+1
(‖γ f (xn+1)‖ + ‖µFyn+1‖) +

αn

1 − βn
(‖γ f (xn)‖ + ‖µFyn‖) + ‖Wn+1xn+1 − Wnxn‖, (3.3)

for all n ≥ 1. From (2.3), we have

‖Wn+1xn − Wnxn‖ = ‖γ1T ′

1Un+1,2xn − γ1T ′

1Un,2xn‖
≤ γ1‖Un+1,2xn − Un,2xn‖
= γ1‖γ2T ′

2Un+1,3xn − γ2T ′

2Un,3xn‖
≤ γ1γ2‖Un+1,3xn − Un,3xn‖
≤ · · ·

≤ γ1γ2 · · · γn‖Un+1,n+1xn − Un,n+1xn‖

≤ M1

n∏
i=1

γi,

where M1 ≥ 0 is a constant such that ‖Un+1,n+1xn − Un,n+1xn‖ ≤ M1, for all n ≥ 1.
So, we obtain

‖Wn+1xn+1 − Wnxn‖ ≤ ‖Wn+1xn+1 − Wn+1xn‖ + ‖Wn+1xn − Wnxn‖
≤ ‖xn+1 − xn‖ + ‖Wn+1xn − Wnxn‖

≤ ‖xn+1 − xn‖ + M1

n∏
i=1

γi. (3.4)

Substituting (3.4) into (3.3), we obtain

‖zn+1 − zn‖ ≤ M2


αn+1

1 − βn+1
+

αn

1 − βn


+ ‖xn+1 − xn‖ + M1

n∏
i=1

γi, (3.5)

where M2 = sup{‖γ f (xn)‖ + ‖µFyn‖, n ≥ 1}. It follows from (3.5) that

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ M2


αn+1

1 − βn+1
+

αn

1 − βn


+ M1

n∏
i=1

γi. (3.6)

Observing condition (A1), (A3), (3.6) and 0 < γi ≤ b < 1, it follows that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.5 we can obtain

lim
n→∞

‖zn − xn‖ = 0. (3.7)
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It follows from (A3) and (3.7) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1 − βn)‖zn − xn‖ = 0.

Step 3. We claim that limn→∞ ‖xn − Wxn‖ = 0. Observe that

‖xn − Wnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + ‖yn − Wnxn‖
= ‖xn − xn+1‖ + ‖xn+1 − yn‖ + βn‖xn − Wnxn‖.

From (A1), (A3) and using Step 2, we have

(1 − a)‖xn − Wnxn‖ ≤ (1 − βn)‖xn − Wnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖
≤ ‖xn − xn+1‖ + αn‖γ f (xn) − µFyn‖ → 0 (as n → ∞).

This implies that

‖xn − Wnxn‖ → 0 (as n → ∞). (3.8)

On the other hand, we have

‖xn − Wxn‖ ≤ ‖xn − Wnxn‖ + ‖Wnxn − Wxn‖
≤ ‖xn − Wnxn‖ + sup

x∈K
‖Wnx − Wx‖. (3.9)

By (3.8), (3.9) and using Lemma 2.10, we obtain

lim
n→∞

‖xn − Wxn‖ = 0.

Step 4. We claim that lim supn→∞⟨(γ f − µF)q, xn − q⟩ ≤ 0, where q = limt→0 xt with xt = tγ f (xt) + (I − tµF)Wxt .
Since {xn} is bounded, there exists a subsequence {xnk} of {xn} which converges weakly to z. From ‖xn − Wxn‖ → 0, we

obtainWxnk ⇀ z. From Lemma 2.4, we have z ∈ F(W ). Hence by Lemma 2.3, we have

lim sup
n→∞

⟨(γ f − µF)q, xn − q⟩ = lim
k→∞

⟨(γ f − µF)q, xnk − q⟩ = ⟨(γ f − µF)q, z − q⟩ ≤ 0.

Step 5. We claim that {xn} converges strongly to q. From (1.6), we have

‖xn+1 − q‖2
= ‖αnγ f (xn) + (I − µαnF)yn − q‖2

= ‖(I − µαnF)yn − (I − µαnF)q + αn(γ f (xn) − µFq)‖2

≤ ‖(I − µαnF)yn − (I − µαnF)q‖2
+ 2αn⟨γ f (xn) − µFq, xn+1 − q⟩

≤ (1 − αnτ)2‖yn − q‖2
+ 2αn⟨γ f (xn) − γ f (q), xn+1 − q⟩ + 2αn⟨γ f (q) − µFq, xn+1 − q⟩

≤ (1 − αnτ)2‖xn − q‖2
+ αnγα(‖xn − q‖2

+ ‖xn+1 − q‖2) + 2αn⟨γ f (q) − µFq, xn+1 − q⟩.

It then follows that

‖xn+1 − q‖2
≤

(1 − αnτ)2 + αnγα

1 − αnγα
‖xn − q‖2

+
2αn

1 − αnγα
⟨γ f (q) − µFq, xn+1 − q⟩

≤


1 −

2αn(τ − γα)

1 − αnγα


‖xn − q‖2

+
2αn(τ − γα)

1 − αnγα

[
1

τ − γα
⟨γ f (q)

− µFq, xn+1 − q⟩ +
αnτ

2

2(τ − γα)
M3

]
,

whereM3 = supn≥1 ‖xn − q‖2. Put λn =
2αn(τ−γα)

1−αnγα
and δn =

1
τ−γα

⟨γ f (q)−µFq, xn+1 − q⟩+
αnτ

2

2(τ−γα)
M3. From (A1), (A2) and

Step 4, it follows that
∑

∞

n=1 λn = ∞ and lim supn→∞ δn ≤ 0. Hence, by Lemma 2.6, the sequence {xn} converges strongly
to q ∈ ∩

∞

i=1 F(Ti). From q = limt→0 xt and Lemma 2.3, we have that q is the unique solution of the following variational
inequality: ⟨(γ f − µF)q, p − q⟩ ≤ 0, p ∈ ∩

∞

i=1 F(Ti). �

Remark 3.2. Theorem 3.1 extends the corresponding results of Jung [2] from one strictly pseudo-contractive mapping to an
infinite family of strictly pseudo-contractive mappings.

Remark 3.3. Theorem 3.1 generalizes the results of Marino and Xu [1] and Theorem 2.1 of Jung [2] from a strongly positive
bounded linear operator A to a k-Lipschitzian and η-strongly monotone operator F .
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Remark 3.4. If βn = 0, γi = 1 and Ti = T with λi = 0 in Theorem 3.1, we can obtain Theorem 3.2 of Tian [3]. That
is, Theorem 3.1 extends Theorem 3.2 of Tian [3] from one nonexpansivemapping to an infinite family of strictly pseudo-contractive
mappings.

Setting F = A and µ = 1 in Theorem 3.1, we can obtain the following result.

Corollary 3.5. Let H be a Hilbert space, and C be a nonempty closed convex subset of H such that C ± C ⊂ C. Let Ti : C → C be
a λi-strictly pseudo-contractive mapping with ∩

∞

i=1 F(Ti) ≠ ∅ and {γi} be a real sequence such that 0 < γi ≤ b < 1, ∀i ≥ 1. Let
A be a strongly positive bounded linear operator on C with coefficient 0 < γ̃ < 1 and f ∈ ΠC such that 0 < γ < γ̃ /α. Let {αn}

and {βn} ⊂ (0, 1) be sequences which satisfy the conditions (A1), (A2) and (A3). Let {xn} be a sequence generated by x1 = x ∈ C:
yn = βnxn + (1 − βn)Wnxn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 1.

Then {xn} converges strongly to q ∈ ∩
∞

i=1 F(Ti), which is the unique solution of the following variational inequality: ⟨(γ f −

A)q, p − q⟩ ≤ 0, p ∈ ∩
∞

i=1 F(Ti).
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