A general iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces

Shuang Wang*
School of Mathematical Sciences, Yancheng Teachers University, Yancheng, 224051, Jiangsu, PR China

ARTICLE INFO

Article history:

Received 7 July 2010
Received in revised form 29 December 2010
Accepted 29 December 2010
Keywords:
Strong convergence
Strictly pseudo-contractive mapping
Fixed points
k-Lipschitzian
η-strongly monotone

Abstract

In this work, we consider a general composite iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces. It is proved that the sequence generated by the iterative scheme converges strongly to a common point of the set of fixed points, which solves the variational inequality $\langle(\gamma f-\mu F) q, p-q\rangle \leq 0$, for $p \in$ $\cap_{i=1}^{\infty} F\left(T_{i}\right)$. Our results improve and extend corresponding ones announced by many others. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. A self-mapping $f: C \longrightarrow C$ is a contraction on C if there exists a constant $\alpha \in(0,1)$ such that $\|f(x)-f(y)\| \leq \alpha\|x-y\|, \forall x, y \in C$. We use Π_{C} to denote the collection of mappings f verifying the above inequality. That is, $\Pi_{\mathcal{C}}=\{f: C \rightarrow C \mid f$ is a contraction with constant $\alpha\}$. Note that each $f \in \Pi_{C}$ has a unique fixed point in C.

A mapping $T: C \rightarrow C$ is said to be λ-strictly pseudo-contractive if there exists a constant $\lambda \in[0,1)$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\lambda\|(I-T) x-(I-T) y\|^{2}, \quad x, y \in C,
$$

and $F(T)$ denotes the set of fixed points of the mapping T; that is, $F(T)=\{x \in C: T x=x\}$.
Note that the class of λ-strictly pseudo-contractive mappings includes the class of nonexpansive mappings T on C (that is, $\|T x-T y\| \leq\|x-y\|, x, y \in C$) as a subclass. That is, T is nonexpansive if and only if T is 0 -strictly pseudo-contractive.

A mapping $F: C \rightarrow C$ is called k-Lipschitzian if there exists a positive constant k such that

$$
\begin{equation*}
\|F x-F y\| \leq k\|x-y\|, \quad \forall x, y \in C . \tag{1.1}
\end{equation*}
$$

F is said to be η-strongly monotone if there exists a positive constant η such that

$$
\begin{equation*}
\langle F x-F y, x-y\rangle \geq \eta\|x-y\|^{2}, \quad \forall x, y \in C . \tag{1.2}
\end{equation*}
$$

Let A be a strongly positive bounded linear operator on H, that is, there exists a constant $\tilde{\gamma}>0$ such that

$$
\langle A x, x\rangle \geq \tilde{\gamma}\|x\|^{2} \quad \text { for all } x \in H .
$$

[^0]A typical problem is that of minimizing a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H :

$$
\min _{x \in F(T)} \frac{1}{2}\langle A x, x\rangle-\langle x, b\rangle,
$$

where b is a given point in H.
Remark 1.1. From the definition of A, we note that a strongly positive bounded linear operator A is $a\|A\|$-Lipschitzian and $\tilde{\gamma}$-strongly monotone operator.

In 2006, Marino and Xu [1] introduced and considered the following iterative scheme: for $x_{1}=x \in C$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) T x_{n}, \quad n \geq 1 . \tag{1.3}
\end{equation*}
$$

They proved that if the sequence $\left\{\alpha_{n}\right\}$ of parameters satisfies appropriate conditions, then the sequence $\left\{x_{n}\right\}$ generated by (1.3) converges strongly to the unique solution of the variational inequality $\langle(\gamma f-A) q, p-q\rangle \leq 0, p \in F(T)$.

Recently, Jung [2] extended the results of Marino and Xu [1] to the class of k-strictly pseudo-contractive mappings and introduced an iterative scheme as follows: for the k-strictly pseudo-contractive mapping $T: C \rightarrow H$ with $F(T) \neq \emptyset$ and $x_{1}=x \in C$,

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) P_{C} S x_{n} \tag{1.4}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) y_{n}, \quad n \geq 1
\end{array}\right.
$$

where $S: C \rightarrow H$ is a mapping defined by $S x=k x+(1-k) T x$. He proved that $\left\{x_{n}\right\}$ defined by (1.4) converges strongly to a fixed point q of T, which is the unique solution of the variational inequality $\langle\gamma f(q)-A q, p-q\rangle \leq 0, p \in F(T)$.

Very recently, Tian [3] considered the following iterative method: for a nonexpansive mapping $T: H \rightarrow H$ with $F(T) \neq \emptyset$,

$$
\begin{equation*}
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\mu \alpha_{n} F\right) T x_{n}, \quad n \geq 1, \tag{1.5}
\end{equation*}
$$

where F is a k-Lipschitzian and η-strongly monotone operator. He obtained that the sequence $\left\{x_{n}\right\}$ generated by (1.5) converges to a point q in $F(T)$, which is the unique solution of the variational inequality $\langle(\gamma f-\mu F) q, p-q\rangle \leq 0, p \in F(T)$.

In this work, motivated and inspired by the above results, we introduce a new iterative scheme: for $x_{1}=\bar{x} \in C$,

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) W_{n} x_{n}, \tag{1.6}\\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\mu \alpha_{n} F\right) y_{n}, \quad n \geq 1,
\end{array}\right.
$$

where W_{n} is a mapping defined by (2.3), and F is a k-Lipschitzian and η-strongly monotone operator with $0<\mu<2 \eta / k^{2}$. We will prove that if the parameters satisfy appropriate conditions, then $\left\{x_{n}\right\}$ generated by (1.6) converges strongly to a common element of the fixed points of an infinite family of λ_{i}-strictly pseudo-contractive mappings, which is a unique solution of the variational inequality $\langle(\gamma f-\mu F) q, p-q\rangle \leq 0, p \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$. Our results also extend and improve the corresponding results of Marino and Xu [1], Jung [2], Tian [3] and many others.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. For the sequence $\left\{x_{n}\right\}$ in H, we write $x_{n} \rightharpoonup x$ to indicate that the sequence $\left\{x_{n}\right\}$ converges weakly to $x . x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x. In a real Hilbert space H, we have

$$
\begin{equation*}
\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle \quad \forall x, y \in H \tag{2.1}
\end{equation*}
$$

In order to prove our main results, we need the following lemmas.
Lemma 2.1. In a Hilbert space H, the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle, \quad x, y \in H
$$

Lemma 2.2. Let F be a k-Lipschitzian and η-strongly monotone operator on a Hilbert space H with $k>0, \eta>0,0<\mu<2 \eta / k^{2}$ and $0<t<1$. Then $S=(I-t \mu F): H \rightarrow H$ is a contraction with contractive coefficient $1-t \tau$ and $\tau=\frac{1}{2} \mu\left(2 \eta-\mu k^{2}\right)$.
Proof. From (1.1), (1.2) and (2.1), we have

$$
\begin{aligned}
\|S x-S y\|^{2} & =\|(x-y)-t \mu(F x-F y)\|^{2} \\
& =\|x-y\|^{2}+t^{2} \mu^{2}\|F x-F y\|^{2}-2 \mu t\langle F x-F y, x-y\rangle \\
& \leq\|x-y\|^{2}+t^{2} \mu^{2} k^{2}\|x-y\|^{2}-2 \mu t \eta\|x-y\|^{2} \\
& \leq\|x-y\|^{2}+t \mu^{2} k^{2}\|x-y\|^{2}-2 \mu t \eta\|x-y\|^{2} \\
& =\left[1-t \mu\left(2 \eta-\mu k^{2}\right)\right]\|x-y\|^{2} \\
& \leq(1-t \tau)^{2}\|x-y\|^{2},
\end{aligned}
$$

where $\tau=\frac{1}{2} \mu\left(2 \eta-\mu k^{2}\right)$, and

$$
\|S x-S y\| \leq(1-t \tau)\|x-y\|
$$

Hence S is a contraction with contractive coefficient $1-t \tau$.
Let C be a nonempty closed convex subset of H such that $C \pm C \subset C$. Let F be a k-Lipschitzian and η-strongly monotone operator on C with $k>0, \eta>0$, and $T: C \rightarrow C$ be a nonexpansive mapping. Now given $f \in \Pi_{C}$ with $0<\alpha<1$, let us have $t \in(0,1), 0<\mu<2 \eta / k^{2}, 0<\gamma<\mu\left(\eta-\frac{\mu k^{2}}{2}\right) / \alpha=\tau / \alpha$ and $\tau<1$, and consider a mapping S_{t} on H defined by

$$
S_{t} x=t \gamma f(x)+(I-t \mu F) T x, \quad x \in C .
$$

It is easy to see that S_{t} is a contraction. Indeed, from Lemma 2.2, we have

$$
\begin{aligned}
\left\|S_{t} x-S_{t} y\right\| & \leq t \gamma\|f(x)-f(y)\|+\|(I-t \mu F) T x-(I-t \mu F) T y\| \\
& \leq t \gamma \alpha\|x-y\|+(1-t \tau)\|T x-T y\| \\
& \leq[1-t(\tau-\gamma \alpha)]\|x-y\|
\end{aligned}
$$

for all $x, y \in H$. Hence it has a unique fixed point, denoted as x_{t}, which uniquely solves the fixed point equation

$$
\begin{equation*}
x_{t}=t \gamma f\left(x_{t}\right)+(I-t \mu F) T x_{t}, \quad x_{t} \in C . \tag{2.2}
\end{equation*}
$$

Lemma 2.3 ([3]). Let H be a Hilbert space and C be a nonempty closed convex subset of H such that $C \pm C \subset C$. Assume that $\left\{x_{t}\right\}$ is defined by (2.2); then x_{t} converges strongly as $t \rightarrow 0$ to a fixed point q of T which solves the variational inequality $\langle(\mu F-\gamma f) q, q-p\rangle \leq 0, f \in \Pi_{C}, p \in F(T)$. Equivalently, we have $P_{F(T)}(I-\mu F+\gamma f) q=q$.

Lemma 2.4 ([4]). Let H be a Hilbert space, C a closed convex subset of H, and $T: C \rightarrow C$ a nonexpansive mapping with $F(T) \neq \emptyset$; if $\left\{x_{n}\right\}$ is a sequence in C weakly converging to x and if $\left\{(I-T) x_{n}\right\}$ converges strongly to y, then $(I-T) x=y$.

Lemma 2.5 ([5]). Let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be bounded sequences in a Banach space E and $\left\{\gamma_{n}\right\}$ be a sequence in $[0,1]$ which satisfies the following condition:

$$
0<\liminf _{n \rightarrow \infty} \gamma_{n} \leq \limsup _{n \rightarrow \infty} \gamma_{n}<1
$$

Suppose that $x_{n+1}=\gamma_{n} x_{n}+\left(1-\gamma_{n}\right) z_{n}, n \geq 0$, and $\lim \sup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0$. Then $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$.
Lemma 2.6 ([6,7]). Let $\left\{s_{n}\right\}$ be a sequence of non-negative real numbers satisfying

$$
s_{n+1} \leq\left(1-\lambda_{n}\right) s_{n}+\lambda_{n} \delta_{n}+\gamma_{n}, \quad n \geq 0
$$

where $\left\{\lambda_{n}\right\},\left\{\delta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ satisfy the following conditions: (i) $\left\{\lambda_{n}\right\} \subset[0,1]$ and $\sum_{n=0}^{\infty} \lambda_{n}=\infty$, (ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$ or $\sum_{n=0}^{\infty} \lambda_{n} \delta_{n}<\infty$, (iii) $\gamma_{n} \geq 0(n \geq 0), \sum_{n=0}^{\infty} \gamma_{n}<\infty$. Then $\lim _{n \rightarrow \infty} s_{n}=0$.

Lemma 2.7 ([8]). Let C be a nonempty closed convex subset of a real Hilbert space H and $T: C \rightarrow C$ be a λ-strictly pseudocontractive mapping. Define a mapping $S: C \rightarrow C$ by $S x=\alpha x+(1-\alpha) T x$ for all $x \in C$ and $\alpha \in[\lambda, 1)$. Then S is a nonexpansive mapping such that $F(S)=F(T)$.

In this work, we consider the mapping W_{n} defined by

$$
\left\{\begin{array}{l}
U_{n, n+1}=I \tag{2.3}\\
U_{n, n}=\gamma_{n} T_{n}^{\prime} U_{n, n+1}+\left(1-\gamma_{n}\right) I, \\
U_{n, n-1}=\gamma_{n-1} T_{n-1}^{\prime} U_{n, n}+\left(1-\gamma_{n-1}\right) I, \\
\cdots \\
U_{n, k}=\gamma_{k} T_{k}^{\prime} U_{n, k+1}+\left(1-\gamma_{k}\right) I, \\
U_{n, k-1}=\gamma_{k-1} T_{k-1}^{\prime} U_{n, k}+\left(1-\gamma_{k-1}\right) I, \\
\cdots \\
U_{n, 2}=\gamma_{2} T_{2}^{\prime} U_{n, 3}+\left(1-\gamma_{2}\right) I, \\
W_{n}=U_{n, 1}=\gamma_{1} T_{1}^{\prime} U_{n, 2}+\left(1-\gamma_{1}\right) I,
\end{array}\right.
$$

where $\gamma_{1}, \gamma_{2}, \ldots$ are real numbers such that $0 \leq \gamma_{n} \leq 1, T_{i}^{\prime}=\theta_{i} I+\left(1-\theta_{i}\right) T_{i}$ where T_{i} is a λ_{i}-strictly pseudo-contractive mapping of C into itself and $\theta_{i} \in\left[\lambda_{i}, 1\right)$. By Lemma 2.7, we know that T_{i}^{\prime} is a nonexpansive mapping and $F\left(T_{i}\right)=F\left(T_{i}^{\prime}\right)$. As a result it can be easily seen that W_{n} is a nonexpansive mapping.

As regards W_{n}, we have the following lemmas which are important for proving our main results.

Lemma 2.8. [Shimoji et al. [9]] Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let $T_{1}^{\prime}, T_{2}^{\prime}, \ldots$ be nonexpansive mappings of C into itself such that $\cap_{i=1}^{\infty} F\left(T_{i}^{\prime}\right) \neq \emptyset$ and $\gamma_{1}, \gamma_{2}, \ldots$ be real numbers such that $0<\gamma_{i} \leq b<1$, for every $i=1,2, \ldots$. Then, for any $x \in C$ and $k \in N$, the limit $\lim _{n \rightarrow \infty} U_{n, k}$ exists.

Using Lemma 2.8, one can define the mapping W of C into itself as follows:

$$
W x:=\lim _{n \rightarrow \infty} W_{n} x=\lim _{n \rightarrow \infty} U_{n, 1} x, \quad x \in C .
$$

Such a mapping W is called the modified W-mapping generated by $T_{1}, T_{2}, \ldots, \gamma_{1}, \gamma_{2}, \ldots$ and $\theta_{1}, \theta_{2}, \ldots$.
Lemma 2.9. [Shimoji et al. [9]] Let C be a nonempty closed convex subset of a strictly convex Banach space E. Let $T_{1}^{\prime}, T_{2}^{\prime}, \ldots$ be nonexpansive mappings of C into itself such that $\cap_{i=1}^{\infty} F\left(T_{i}^{\prime}\right) \neq \emptyset$ and $\gamma_{1}, \gamma_{2}, \ldots$ be real numbers such that $0<\gamma_{i} \leq b<1$ for every $i=1,2, \ldots$. Then $F(W)=\cap_{i=1}^{\infty} F\left(T_{i}^{\prime}\right)$.

Combining Lemmas 2.7-2.9, one can get that $F(W)=\cap_{i=1}^{\infty} F\left(T_{i}^{\prime}\right)=\cap_{i=1}^{\infty} F\left(T_{i}\right)$.
Lemma 2.10 ([10]). Let C be a nonempty closed convex subset of a Hilbert space $H,\left\{T_{i}^{\prime}: C \rightarrow C\right\}$ be a family of infinite nonexpansive mappings with $\cap_{i=1}^{\infty} F\left(T_{i}^{\prime}\right) \neq \emptyset$, $\left\{\gamma_{i}\right\}$ be a real sequence such that $0<\gamma_{i} \leq b<1, \forall i \geq 1$. If K is any bounded subset of C, then

$$
\lim _{n \rightarrow \infty} \sup _{x \in K}\left\|W x-W_{n} x\right\|=0 .
$$

3. Main results

Now, we study the strong convergence results for an infinite family of strictly pseudo-contractive mappings in Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space, and C be a nonempty closed convex subset of H such that $C \pm C \subset C$. Let $T_{i}: C \rightarrow C$ be $a \lambda_{i}$-strictly pseudo-contractive mapping with $\cap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$ and $\left\{\gamma_{i}\right\}$ be a real sequence such that $0<\gamma_{i} \leq b<1, \forall i \geq 1$. Let F be a k-Lipschitzian and η-strongly monotone operator on C with $0<\mu<2 \eta / k^{2}$ and $f \in \Pi_{C}$ with $0<\gamma<\mu\left(\eta-\frac{\mu k^{2}}{2}\right) / \alpha=$ τ / α and $\tau<1$. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\} \subset(0,1)$ be sequences which satisfy the following conditions:
(A1) $\lim _{n \rightarrow \infty} \alpha_{n}=0$;
(A2) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(A3) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n} \leq a<1$ for some constant $a \in(0,1)$.
Then $\left\{x_{n}\right\}$ defined by (1.6) converges strongly to $q \in \bigcap_{i=1}^{\infty} F\left(T_{i}\right)$, which is the unique solution of the following variational inequality: $\langle(\gamma f-\mu F) q, p-q\rangle \leq 0, p \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$.
Proof. We proceed with the following steps.
Step 1. We claim that $\left\{x_{n}\right\}$ is bounded. In fact, let $p \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$; from (1.6), we have

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|\beta_{n}\left(x_{n}-p\right)+\left(1-\beta_{n}\right)\left(W_{n} x_{n}-p\right)\right\| \\
& \leq \beta_{n}\left\|x_{n}-p\right\|+\left(1-\beta_{n}\right)\left\|W_{n} x_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\| . \tag{3.1}
\end{align*}
$$

Then from (1.6) and (3.1) and Lemma 2.2, we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\mu \alpha_{n} F\right) y_{n}-p\right\| \\
& =\left\|\alpha_{n}\left(\gamma f\left(x_{n}\right)-\mu F p\right)+\left(I-\mu \alpha_{n} F\right) y_{n}-\left(I-\mu \alpha_{n} F\right) p\right\| \\
& \leq\left(1-\alpha_{n} \tau\right)\left\|y_{n}-p\right\|+\alpha_{n}\left(\left\|\gamma f\left(x_{n}\right)-\gamma f(p)\right\|+\|\gamma f(p)-\mu F p\|\right) \\
& \leq\left(1-\alpha_{n} \tau\right)\left\|x_{n}-p\right\|+\alpha_{n} \gamma \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-\mu F p\| \\
& \leq\left[1-\alpha_{n}(\tau-\gamma \alpha)\right]\left\|x_{n}-p\right\|+\alpha_{n}(\tau-\gamma \alpha) \frac{\|\gamma f(p)-\mu F p\|}{\tau-\gamma \alpha} \\
& \leq \max \left\{\left\|x_{n}-p\right\|, \frac{\|\gamma f(p)-\mu F p\|}{\tau-\gamma \alpha}\right\}, \quad n \geq 1 .
\end{aligned}
$$

By induction, we have

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{1}-p\right\|, \frac{\|\gamma f(p)-\mu F p\|}{\tau-\gamma \alpha}\right\}, \quad n \geq 1 .
$$

Therefore, $\left\{x_{n}\right\}$ is bounded. We also obtain that $\left\{y_{n}\right\},\left\{W_{n} x_{n}\right\},\left\{\mu F y_{n}\right\}$ and $f\left(x_{n}\right)$ are all bounded. Without loss of generality, we may assume that $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{W_{n} x_{n}\right\},\left\{\mu F y_{n}\right\}, f\left(x_{n}\right) \subset K$, where K is a bounded set of C.
Step 2. We claim that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. To this end, define a sequence $\left\{z_{n}\right\}$ by $z_{n}=\left(x_{n+1}-\beta_{n} x_{n}\right) /\left(1-\beta_{n}\right)$, such that $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) z_{n}$. We now observe that

$$
\begin{align*}
z_{n+1}-z_{n}= & \frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1} \gamma f\left(x_{n+1}\right)+\left(I-\mu \alpha_{n+1} F\right) y_{n+1}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\mu \alpha_{n} F\right) y_{n}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\gamma f\left(x_{n+1}\right)-\mu F y_{n+1}\right)+\frac{y_{n+1}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\left(\gamma f\left(x_{n}\right)-\mu F y_{n}\right)-\frac{y_{n}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\gamma f\left(x_{n+1}\right)-\mu F y_{n+1}\right)+\frac{\left[\beta_{n+1} x_{n+1}+\left(1-\beta_{n+1}\right) W_{n+1} x_{n+1}\right]-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}} \\
& -\frac{\alpha_{n}}{1-\beta_{n}}\left(\gamma f\left(x_{n}\right)-\mu F y_{n}\right)-\frac{\beta_{n} x_{n}+\left(1-\beta_{n}\right) W_{n} x_{n}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\gamma f\left(x_{n+1}\right)-\mu F y_{n+1}\right)-\frac{\alpha_{n}}{1-\beta_{n}}\left(\gamma f\left(x_{n}\right)-\mu F y_{n}\right)+W_{n+1} x_{n+1}-W_{n} x_{n} . \tag{3.2}
\end{align*}
$$

It follows from (3.2) that

$$
\begin{equation*}
\left\|z_{n+1}-z_{n}\right\| \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(\left\|\gamma f\left(x_{n+1}\right)\right\|+\left\|\mu F y_{n+1}\right\|\right)+\frac{\alpha_{n}}{1-\beta_{n}}\left(\left\|\gamma f\left(x_{n}\right)\right\|+\left\|\mu F y_{n}\right\|\right)+\left\|W_{n+1} x_{n+1}-W_{n} x_{n}\right\|, \tag{3.3}
\end{equation*}
$$

for all $n \geq 1$. From (2.3), we have

$$
\begin{aligned}
\left\|W_{n+1} x_{n}-W_{n} x_{n}\right\| & =\left\|\gamma_{1} T_{1}^{\prime} U_{n+1,2} x_{n}-\gamma_{1} T_{1}^{\prime} U_{n, 2} x_{n}\right\| \\
& \leq \gamma_{1}\left\|U_{n+1,2} x_{n}-U_{n, 2} x_{n}\right\| \\
& =\gamma_{1}\left\|\gamma_{2} T_{2}^{\prime} U_{n+1,3} x_{n}-\gamma_{2} T_{2}^{\prime} U_{n, 3} x_{n}\right\| \\
& \leq \gamma_{1} \gamma_{2}\left\|U_{n+1,3} x_{n}-U_{n, 3} x_{n}\right\| \\
& \leq \cdots \\
& \leq \gamma_{1} \gamma_{2} \cdots \gamma_{n}\left\|U_{n+1, n+1} x_{n}-U_{n, n+1} x_{n}\right\| \\
& \leq M_{1} \prod_{i=1}^{n} \gamma_{i},
\end{aligned}
$$

where $M_{1} \geq 0$ is a constant such that $\left\|U_{n+1, n+1} x_{n}-U_{n, n+1} x_{n}\right\| \leq M_{1}$, for all $n \geq 1$.
So, we obtain

$$
\begin{align*}
\left\|W_{n+1} x_{n+1}-W_{n} x_{n}\right\| & \leq\left\|W_{n+1} x_{n+1}-W_{n+1} x_{n}\right\|+\left\|W_{n+1} x_{n}-W_{n} x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\left\|W_{n+1} x_{n}-W_{n} x_{n}\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+M_{1} \prod_{i=1}^{n} \gamma_{i} . \tag{3.4}
\end{align*}
$$

Substituting (3.4) into (3.3), we obtain

$$
\begin{equation*}
\left\|z_{n+1}-z_{n}\right\| \leq M_{2}\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}+\frac{\alpha_{n}}{1-\beta_{n}}\right)+\left\|x_{n+1}-x_{n}\right\|+M_{1} \prod_{i=1}^{n} \gamma_{i} \tag{3.5}
\end{equation*}
$$

where $M_{2}=\sup \left\{\left\|\gamma f\left(x_{n}\right)\right\|+\left\|\mu F y_{n}\right\|, n \geq 1\right\}$. It follows from (3.5) that

$$
\begin{equation*}
\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq M_{2}\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}+\frac{\alpha_{n}}{1-\beta_{n}}\right)+M_{1} \prod_{i=1}^{n} \gamma_{i} \tag{3.6}
\end{equation*}
$$

Observing condition (A1), (A3), (3.6) and $0<\gamma_{i} \leq b<1$, it follows that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence by Lemma 2.5 we can obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

It follows from (A3) and (3.7) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)\left\|z_{n}-x_{n}\right\|=0
$$

Step 3. We claim that $\lim _{n \rightarrow \infty}\left\|x_{n}-W x_{n}\right\|=0$. Observe that

$$
\begin{aligned}
\left\|x_{n}-W_{n} x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\left\|y_{n}-W_{n} x_{n}\right\| \\
& =\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\|+\beta_{n}\left\|x_{n}-W_{n} x_{n}\right\| .
\end{aligned}
$$

From (A1), (A3) and using Step 2, we have

$$
\begin{aligned}
(1-a)\left\|x_{n}-W_{n} x_{n}\right\| & \leq\left(1-\beta_{n}\right)\left\|x_{n}-W_{n} x_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-y_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-\mu F y_{n}\right\| \rightarrow 0(\text { as } n \rightarrow \infty) .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\left\|x_{n}-W_{n} x_{n}\right\| \rightarrow 0(\text { as } n \rightarrow \infty) . \tag{3.8}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\left\|x_{n}-W x_{n}\right\| & \leq\left\|x_{n}-W_{n} x_{n}\right\|+\left\|W_{n} x_{n}-W x_{n}\right\| \\
& \leq\left\|x_{n}-W_{n} x_{n}\right\|+\sup _{x \in K}\left\|W_{n} x-W x\right\| . \tag{3.9}
\end{align*}
$$

By (3.8), (3.9) and using Lemma 2.10, we obtain

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-W x_{n}\right\|=0
$$

Step 4. We claim that $\lim \sup _{n \rightarrow \infty}\left\langle(\gamma f-\mu F) q, x_{n}-q\right\rangle \leq 0$, where $q=\lim _{t \rightarrow 0} x_{t}$ with $x_{t}=t \gamma f\left(x_{t}\right)+(I-t \mu F) W x_{t}$.
Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ which converges weakly to z. From $\left\|x_{n}-W x_{n}\right\| \rightarrow 0$, we obtain $W x_{n_{k}} \rightharpoonup z$. From Lemma 2.4, we have $z \in F(W)$. Hence by Lemma 2.3, we have

$$
\limsup _{n \rightarrow \infty}\left\langle(\gamma f-\mu F) q, x_{n}-q\right\rangle=\lim _{k \rightarrow \infty}\left\langle(\gamma f-\mu F) q, x_{n_{k}}-q\right\rangle=\langle(\gamma f-\mu F) q, z-q\rangle \leq 0
$$

Step 5 . We claim that $\left\{x_{n}\right\}$ converges strongly to q. From (1.6), we have

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2} & =\left\|\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\mu \alpha_{n} F\right) y_{n}-q\right\|^{2} \\
& =\left\|\left(I-\mu \alpha_{n} F\right) y_{n}-\left(I-\mu \alpha_{n} F\right) q+\alpha_{n}\left(\gamma f\left(x_{n}\right)-\mu F q\right)\right\|^{2} \\
& \leq\left\|\left(I-\mu \alpha_{n} F\right) y_{n}-\left(I-\mu \alpha_{n} F\right) q\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-\mu F q, x_{n+1}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \tau\right)^{2}\left\|y_{n}-q\right\|^{2}+2 \alpha_{n}\left\langle\gamma f\left(x_{n}\right)-\gamma f(q), x_{n+1}-q\right\rangle+2 \alpha_{n}\left\langle\gamma f(q)-\mu F q, x_{n+1}-q\right\rangle \\
& \leq\left(1-\alpha_{n} \tau\right)^{2}\left\|x_{n}-q\right\|^{2}+\alpha_{n} \gamma \alpha\left(\left\|x_{n}-q\right\|^{2}+\left\|x_{n+1}-q\right\|^{2}\right)+2 \alpha_{n}\left\langle\gamma f(q)-\mu F q, x_{n+1}-q\right\rangle .
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\left\|x_{n+1}-q\right\|^{2} \leq & \frac{\left(1-\alpha_{n} \tau\right)^{2}+\alpha_{n} \gamma \alpha}{1-\alpha_{n} \gamma \alpha}\left\|x_{n}-q\right\|^{2}+\frac{2 \alpha_{n}}{1-\alpha_{n} \gamma \alpha}\left\langle\gamma f(q)-\mu F q, x_{n+1}-q\right\rangle \\
\leq & \left(1-\frac{2 \alpha_{n}(\tau-\gamma \alpha)}{1-\alpha_{n} \gamma \alpha}\right)\left\|x_{n}-q\right\|^{2}+\frac{2 \alpha_{n}(\tau-\gamma \alpha)}{1-\alpha_{n} \gamma \alpha}\left[\frac{1}{\tau-\gamma \alpha}\langle\gamma f(q)\right. \\
& \left.\left.-\mu F q, x_{n+1}-q\right\rangle+\frac{\alpha_{n} \tau^{2}}{2(\tau-\gamma \alpha)} M_{3}\right]
\end{aligned}
$$

where $M_{3}=\sup _{n \geq 1}\left\|x_{n}-q\right\|^{2}$. Put $\lambda_{n}=\frac{2 \alpha_{n}(\tau-\gamma \alpha)}{1-\alpha_{n} \gamma \alpha}$ and $\delta_{n}=\frac{1}{\tau-\gamma \alpha}\left\langle\gamma f(q)-\mu F q, x_{n+1}-q\right\rangle+\frac{\alpha_{n} \tau^{2}}{2(\tau-\gamma \alpha)} M_{3}$. From (A1), (A2) and Step 4, it follows that $\sum_{n=1}^{\infty} \lambda_{n}=\infty$ and $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$. Hence, by Lemma 2.6, the sequence $\left\{x_{n}\right\}$ converges strongly to $q \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$. From $q=\lim _{t \rightarrow 0} x_{t}$ and Lemma 2.3, we have that q is the unique solution of the following variational inequality: $\langle(\gamma f-\mu F) q, p-q\rangle \leq 0, p \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$.

Remark 3.2. Theorem 3.1 extends the corresponding results of Jung [2] from one strictly pseudo-contractive mapping to an infinite family of strictly pseudo-contractive mappings.

Remark 3.3. Theorem 3.1 generalizes the results of Marino and Xu [1] and Theorem 2.1 of Jung [2] from a strongly positive bounded linear operator A to a k-Lipschitzian and η-strongly monotone operator F.

Remark 3.4. If $\beta_{n}=0, \gamma_{i}=1$ and $T_{i}=T$ with $\lambda_{i}=0$ in Theorem 3.1, we can obtain Theorem 3.2 of Tian [3]. That is, Theorem 3.1 extends Theorem 3.2 of Tian [3] from one nonexpansive mapping to an infinite family of strictly pseudo-contractive mappings.

Setting $F=A$ and $\mu=1$ in Theorem 3.1, we can obtain the following result.
Corollary 3.5. Let H be a Hilbert space, and C be a nonempty closed convex subset of H such that $C \pm C \subset C$. Let $T_{i}: C \rightarrow C$ be $a \lambda_{i}$-strictly pseudo-contractive mapping with $\cap_{i=1}^{\infty} F\left(T_{i}\right) \neq \emptyset$ and $\left\{\gamma_{i}\right\}$ be a real sequence such that $0<\gamma_{i} \leq b<1$, $\forall i \geq 1$. Let A be a strongly positive bounded linear operator on C with coefficient $0<\tilde{\gamma}<1$ and $f \in \Pi_{C}$ such that $0<\gamma<\tilde{\gamma} / \alpha$. Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\} \subset(0,1)$ be sequences which satisfy the conditions (A1), (A2) and (A3). Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{1}=x \in C$:

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) W_{n} x_{n}, \\
x_{n+1}=\alpha_{n} \gamma f\left(x_{n}\right)+\left(I-\alpha_{n} A\right) y_{n}, \quad n \geq 1 .
\end{array}\right.
$$

Then $\left\{x_{n}\right\}$ converges strongly to $q \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$, which is the unique solution of the following variational inequality: $\langle(\gamma f-$ A) $q, p-q\rangle \leq 0, p \in \cap_{i=1}^{\infty} F\left(T_{i}\right)$.

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments which improved the presentation of the original version of this work.

The author was supported by the Natural Science Foundation of Yancheng Teachers University under Grant (10YCKLO22).

References

[1] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006) 43-52.
[2] J.S. Jung, Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in Hilbert spaces, Appl. Math. Comput. 215 (2010) 3746-3753.
[3] M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 73 (2010) 689-694.
[4] K. Geobel, W.A. Kirk, Topics in Metric Fixed Point Theory, in: Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, 1990, pp. 473-504.
[5] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integral, J. Math. Anal. Appl. 35 (2005) 227-239.
[6] L.S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995) $114-125$.
[7] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Sov. 66 (2002) 240-256.
[8] Y. Zhou, Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008) 456-462.
[9] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math. 5 (2) (2001) 387-404.
[10] S.-S. Chang, A new method for solving equilibrium problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009) 3307-3319.

[^0]: * Tel.: +86 13921872433.

 E-mail address: wangshuang19841119@163.com.

