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Abstract

In this dissertation, we present an iterative method for approximating a common element
of the set of solutions of split equalities for generalized equilibrium problem, monotone
variational inclusion problem and fixed point problem for k demi-contractive mapping in
Hilbert space without prior knowledge of the operator norms. We also give numerical
example of our main theorem and use Matlab version 2014a to show how the sequence
values, that is, ||xn+1−xn|| are affected by the number of iterations. This is done in order
to see how the initial values affect the number of iterations.
Also, we introduce another iterative scheme which do not require a prior knowledge of the
operator norms for approximating a common element of the set of solutions of split equal-
ities for finite family of generalized mixed equilibrium problems and fixed point problem
for k-strictly pseudo-nonspreading multi-valued mapping of type-one in Hilbert space. We
also give numerical example of our main theorem and use Matlab version 2014a to show
how the sequence values are affected by the number of iterations.
Furthermore, we extend our work to reflexive Banach space by introducing an iterative
method for approximating a common fixed point of quasi-Bregman nonexpansive mapping
which also solve finite system of variational inequality problems and convex minimization
problems. We give application of our result to approximating a common zeroes of an infi-
nite family of Bregman inversely strongly monotone operators which are also solutions to
the set of finite system of convex minimization problems and variational inequality prob-
lems and for approximating a common solution of finite system of equilibrium problems
in real reflexive Banach space. Our results in this dissertation extend and improve some
recent results in literature.
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CHAPTER 1

Introduction

1.1 General Introduction

An optimization problem is one where the values of a given function f : R → R are
to be maximized or minimized over a given nonempty set D ⊂ R. The function f is
called the objective function and the set D is called the constraint set. Optimization
problems can be formulated as minimization problems, variational inequality problems,
equilibrium problems, min-max problems, etc. Examples of optimization problems include
utility maximization, expenditure minimization, profit maximization, cost minimization,
portfolio choice, electricity value maximization, among others.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The Variational
Inequality Problem (VIP) is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C, (1.1.1)

where A : C → H is a nonlinear mapping. The set of solutions of (1.1.1) is denoted
by VI(C,A). The variational inequality theory was introduced by Stampacchia [112] in
the early 1960’s to study some problems in partial differential equations with applications
drawn from elasticity and potential theory. The first general theorem for the existence
and uniqueness of solution of VIP was proved by Lions and Stampacchia [72] in 1967.
Since then, the VIP have played fundamental and important roles in the study of wide
range of problems arising in optimization, control theory, economics, operation research,
management science, physics, mechanics, elasticity, transportation and other branches of
mathematical and engineering sciences, (see [2], [5], [13], [19], [39], [42], [45], [46], [65],
[81], [96]).
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Also, the Equilibrium Problem (EP) is to find x ∈ C such that

g(x, y) ≥ 0, ∀y ∈ C, (1.1.2)

where g : C × C → R is a bifunction and C is a nonempty closed convex subset of a
Hilbert space H. The set of solutions of (1.1.2) is denoted by EP(g).
The EP was first introduced by Blum and Oettli [15] in 1994 as generalization of op-
timization and variational inequality problems. They discussed existence theorems and
variational principle for the equilibrium problem. Since then, various generalizations of
equilibrium problem have been introduced and studied by many authors. The EP has a
great influence in the study of several problems arising in engineering and sciences such as
nonlinear analysis, optimization, economics, finance, game theory, physics, image recon-
struction, etc, (see [15], [40], [46], [59], [62], [76], [83]).

Let X be a nonempty set and T a mapping of X into X. A point x ∈ X is called a fixed
point of T if Tx = x. However, if T is a multi-valued mapping, that is, T is mapping X
into the collection of nonempty subsets of X, then a point x ∈ X is called a fixed point
of T if x ∈ Tx. The set of fixed points of T is denoted by F (T ). Also, a topological space
(X, τ) is said to have a fixed point property if every continuous mapping T : X → X on
it has a fixed point. The problem of investigating sufficient conditions for the existence of
a fixed point for a mapping is one of the most vigorous among the fundamental branches
of topology and functional analysis.
In particular, fixed point theorems have extensive applications in proving existence and
uniqueness of solutions of various functional equations. These theorems have found ap-
plications in the theory of differential and integral equations, dynamical systems, game
theory and mathematical economics among others (see [7], [90], [118], [123], [64], [44]).
One of the cornerstones in the history of fixed point theorems is the work of Banach [7] in
1922 which states that every contraction mapping T (i.e, T satisfying d(Tx, Ty) ≤ kd(x, y),
0 ≤ k < 1, ∀ x, y ∈ X) of a complete metric space (X, d) into itself has a unique fixed
point (we shall give a further explanation on this theorem in Chapter 2).
This theorem is known as the Banach contraction mapping principle. The theorem is
constructive in its nature and provides a procedure to arrive at the required fixed point
by using the convergence of the Picard’s iteration. This theorem has been broadly used
in the study of solutions of various operator equations, including numerical approxima-
tions (cf. Agarwal et al. [3, 4], Kirk and Sims [66] and Zeidler [123]). Some important
generalizations of the above theorem include contractive mappings by Edelstein [43] and
nonexpansive mappings by Browder [24]. These generalizations lead to the introduction
of other fixed point iteration procedures such as the Krasnoselskij iteration, the Mann
iteration and the Ishikawa iteration.

In 1967, Bregman [18] introduced a nice and effective method for designing and analyzing
the feasibility and optimization algorithms using the so called Bregman distance func-
tion Df (see, Definition 2.3.9). This method opened a growing area of research in which
Bregman’s technique is applied in various ways in order to design and analyze iterative
algorithms for solving various optimization problems and for computing fixed points of
nonlinear mappings (see eg. [101, 102, 103, 104, 114]).
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In 2003, Butnariu, Iusem and Zalinescu [27] studied several notions of convex analysis,
uniformly convexity at a point, total convexity on bounded sets and sequential consistency
which are useful in establishing convergence properties for fixed point and optimization al-
gorithms in infinite-dimensional Banach spaces. They established the connections between
these concepts and used these relations in order to obtain improved convergence results
concerning the outer-Bregman projection algorithm for solving convex feasibility problems
and the generalized proximal point algorithm for optimization problems in Banach spaces.
Also, in 2005, Butnariu and Resmerita [29] presented a Bregman-type iterative algorithms
and studied the convergence of the Bregman-type iterative method for solving operator
equations. Resmerita [105] further investigated the existence of totally convex functions
in Banach spaces and established continuity and stability properties of the Bregman pro-
jections.

1.2 Research Motivation

In [82], Moudafi introduced the notion of Split Equality Problem (SEP) which is a general-
ization of the split feasibility problem introduced by Censor and Elfving [33]. Let C and Q
be two nonempty closed and convex subsets of real Hilbert spaces H1 and H2 respectively,
let A : H1 → H3 and B : H2 → H3 be two bounded linear operators and let U : H1 → H1

and T : H2 → H2 be two nonlinear mappings with F (U) 6= ∅, F (T ) 6= ∅ respectively. The
SEP is to find x ∈ C := F (U), y ∈ Q := F (T ) such that:

Ax = By, (1.2.1)

where F (U) and F (T ) denote the fixed point sets of U and T respectively. The SEP allows
asymmetric and partial relations between the variables x and y. The interest is to cover
many situations, for instance, in decomposition method for PDE’s, applications in game
theory and in intensity-modulated radiation therapy.
For solving the SEP, Moudafi [82] introduced the following alternating iterative method:{

xk+1 = U(xk − γkA∗(Axk −Byk)),
yk+1 = T (yk + γkB

∗(Axk+1 −Byk)), (1.2.2)

for firmly quasi-nonexpansive operators U and T , where

{γk} ⊂
(
ε,min( 1

λA
, 1
λB

)− ε
)

is a nondecreasing sequence and λA, λB stand for the spectral radii of A∗A and B∗B
respectively.
Furthermore, Moudafi and Al-Shemas [86] introduced the following simultaneous iterative
method which also solve the SEP for firmly quasi-nonexpansive operators U and T :{

xk+1 = U(xk − γkA∗(Axk −Byk)),
yk+1 = T (yk + γkB

∗(Axk −Byk)), (1.2.3)

and {γk} is a nondecreasing sequence such that
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γk ∈
(
ε, 2

λA+λB
− ε
)
,

where λA and λB are spectral radii of A∗A and B∗B respectively.
Note that in the iterative methods (1.2.2) and (1.2.3), the determination of the step-size
{γk} depends on the operator (matrix) norms ||A|| and ||B|| (or the largest eigenvalues of
A∗A and B∗B). In order to implement the iterative schemes for solving the SEP, one has
to first compute or estimate the operator norms of A and B which is not an easy work in
practice.
To overcome this difficulty, López et al. [74] and Zhao and Yang [125] presented helpful
methods for estimating the step-sizes which does not require a prior knowledge of the
operator norm for solving the SEP. In this direction, Zhao [124] studied the SEP and pre-
sented the following step-size which guarantee convergence of the iterative scheme without
a prior information about the operator norms of A and B,

γk ∈
(

0,
2||Axk −Byk||2

||A∗(Axk −Byk)||2 + ||B∗(Axk −Byk)||2
)

.

In 2011, Shehu [108] introduced an iterative scheme for finding a common element of
the set of fixed points of a nonexpansive mapping, the set of solutions of a generalized
equilibrium problem and the set of solutions of a variational inclusion problem in a real
Hilbert space. In particular, he obtained the following algorithm and proved a strong
convergence theorem under suitable conditions: F (un, y) + 〈ψxn, y − un〉+

1

rn
〈y − un, un − xn〉 ≥ 0 y ∈ C,

xn+1 = βnxn + (1− βn)T [αnf(xn) + (1− αn)JTλ (un − λfun)] ∀n ≥ 1.
(1.2.4)

Motivated by the results mentioned above, we present a new iterative scheme for finding a
common element of the set of solutions of split equality generalized equilibrium problem,
split equality monotone variational inclusion problem and split equality fixed point prob-
lem for demi-contractive mappings in Hilbert space and we prove a strong convergence
theorem for the sequence generated by our iterative scheme without a prior knowledge of
the operator norms.

Recently, Ma et al. [75] introduced the following scheme for obtaining a weak and a strong
convergence results for a set of solutions of split equality mixed equilibrium problem under
some certain conditions:

F (un, u) + φ(u)− φ(un) +
1

rn
〈u− un, un − xn〉 ≥ 0 ∀u ∈ C,

G(vn, v) + ψ(u)− ψ(vn) +
1

rn
〈v − vn, vn − yn〉 ≥ 0 ∀v ∈ Q,

xn+1 = αnun + (1− αn)T (un − ρnA∗(Aun −Bvn)),
yn+1 = αnvn + (1− αn)S(vn − ρnB∗(Aun −Bvn)) ∀n ≥ 1,

(1.2.5)

where T : H1 → H1, S : H2 → H2 are single-valued nonexpansive mappings. Also, Li
and Liu [73] obtained a weak convergence result for approximating a common element of

4



the set of solutions of equilibrium problem and the set of common fixed point of k-strictly
pseudo-nonspreading multi-valued mappings in Hilbert space.
Motivated by the works of [75] and [73], we introduce a new iterative scheme for finding
a common element of the set of solutions of split equality for finite family of generalized
mixed equilibrium problems and the set of common fixed points of k-strictly pseudo-
nonspreading multi-valued mappings of type-one without prior knowledge of the operator
norms in real Hilbert space.

Furthermore, Kassay, Reich and Sabach [58] proposed the following algorithms for solving
systems of variational inequality problems corresponding to finitely many Bregman inverse
strongly monotone mappings, pseudo-monotone mappings and hemi-continuous mappings:

x0 ∈ C = ∩Ni=1Ci,
yin = T in(xn + ein),
Ci
n = {z ∈ Ci : Df (z, y

i
n) ≤ Df (z, xn + ein)},

Cn = ∩Ni=1C
i
n,

Qn = {z ∈ C : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0},
xn+1 = ProjfCn∩Qn

(x0), n ≥ 1,

(1.2.6)

and 

x0 ∈ C = ∩Ni=1Ci,
yin = ResλinBi

(xn + ein),
Ci
n = {z ∈ Ci : Df (z, y

i
n) ≤ Df (z, xn + ein)},

Cn = ∩Ni=1C
i
n,

Qn = {z ∈ C : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0},
xn+1 = ProjfCn∩Qn

(x0), n ≥ 1,

(1.2.7)

where T in : E → E and Bi : E → 2E
∗

are given operators for each i = 1, 2, ..., N and
the sequence of errors {en} ⊂ E satisfies ||ein|| < ε and limn→∞ e

i
n = 0 for each x0 ∈ C.In

particular, they proved the following theorem.

Theorem 1.2.1. Let Ci, i = 1, 2, ..., N be N nonempty, closed and convex subsets of E such
that C := ∩Ni=1Ci. Let Bi : Ci → E∗, i = 1, 2, ..., N be N monotone and hemicontinuous
mappings with V := V I(Ci, Bi) 6= ∅. Let {λin}n∈N, i = 1, 2, ..., N be N sequence of positive
real numbers and satisfy lim infn→∞ λ

i
n > 0. Let f : E → R be a Legendre function

which is bounded uniformly Fréchet differentiable and totally convex on bounded subsets
of E. Suppose ∇f ∗ is bounded on bounded subsets of E∗. If for each i = 1, 2, ..., N the
sequence of errors {ein} ⊂ E satisfies limn→∞ e

i
n = 0, then for each x0 ∈ C there are

sequence {xn}n∈N which satisfy (1.2.7). Each of such sequence {xn}n∈N converges strongly
as n→∞ to ProjfV (x0).

Motivated by the result mentioned above, we propose a new iterative algorithm for finding
a common element of the set of fixed points of infinite family of quasi-Bregman nonex-
pansive mappings which is a common solution to a finite system of variational inequalities
problems and also a solution to a finite system of convex minimization problems for convex
and lower semicontinuous functions φi : C → R ∪ {+∞} such that domφi∩ domf 6= ∅,
i = 1, 2, ..., N in reflexive Banach space.

5



1.3 Objectives

The main objectives of this study are:

i. to introduce an iterative scheme that solves the split equality generalized equilibrium
problem, split equality variational inclusion problem and split equality fixed point
problem for demi-contractive mappings without prior knowledge of the operator
norm and also give numerical example that justify our result in a real Hilbert space.

ii. to introduce an iterative scheme for solving the split equality generalized mixed
equilibrium problem and split equality fixed point problem for k-strictly pseudo-
nonspreading multi-valued mappings of type-one without prior knowledge of the
operator norm and also give numerical example that justify our result in a real
Hilbert space.

iii. to generate an iterative scheme that solve the variational inequality problem, convex
minimization problem and quasi-Bregman nonexpansive mapping in a real reflexive
Banach space and also give applications of our result to solutions of other problems
in a real reflexive Banach space.

1.4 Organization of study

This dissertation is organize as follow.

In Chapter 2, we give a background overview of some definitions and results required in
achieving our results. We also give a brief survey of some classes of equilibrium problem
and variational inequality problem. Further, we discuss some iterative methods for solving
fixed point problems, equilibrium problems and variational inequality problems.

In Chapter 3, we introduce an iterative scheme for finding a common element of the
set of solutions of split equality generalized equilibrium problem, split equality monotone
variational inclusion problem and split equality fixed point problem for demi-contractive
mappings in Hilbert space. We state and prove a strong convergence theorem for the
sequence generated by our scheme. We also give numerical example of our main theorem
in the realm of two-dimensional real Hilbert space and we use matlab version R2014a to
show how the sequence values are affected by the number of iterations.

In Chapter 4, we introduce a new iterative scheme for finding a common element of the set
of solutions of split equality for finite family of generalized mixed equilibrium problem and
the set of common fixed point of k-strictly pseudo-nonspreading multi-valued mappings of
type-one without prior knowledge of the operator norm in Hilbert space. We state and
prove a strong convergence theorem for the sequence generated by our scheme and we give
numerical example of our main theorem. We also use matlab version R2014a to show how

6



the sequence values are affected by the number of iterations.

In Chapter 5, we consider the real reflexive Banach space. We propose a new iterative
scheme for finding a common element of the set of fixed points of infinite family of quasi-
Bregman nonexpansive mappings which is also a common solution to a finite system of
variational inequality problems and finite system of convex minimization problems for con-
vex and lower semicontinuous functions. Using the proxφλ operator introduce by Bauschke
et al. [10], we show that this iterative scheme converges strongly to a common element
of the three sets. Furthermore, we apply our results to the approximation of the common
zeroes of a finite family of Bregman inverse strongly monotone operators and also to a
finite system of equilibrium problems in real reflexive Banach space.

In Chapter 6, we give the conclusion, contributions to knowledge and some area of further
research of our work.
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CHAPTER 2

Preliminaries

In this chapter, we present some basic concepts that are relevant to this study. Throughout
this dissertation, unless stated otherwise, H denotes a real Hilbert space and H∗ the
topological dual space of H.

2.1 Basic Definitions

We recall some basic definitions and results in functional analysis that are required for our
work.

Definition 2.1.1. Let C be a nonempty, closed and convex subset of H. A function
f : C → R ∪ {+∞} is said to be

i. convex, if for any x, y ∈ C and t ∈ [0, 1], we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

ii. lower semicontinuous on C, if for α ∈ R, the set {x ∈ C : f(x) ≤ α} is closed in C,

iii. concave if −f is convex,

iv. upper semicontinuous on C, if −f is lower semicontinuous on C.

Lemma 2.1.1. Let C be a nonempty closed convex subset of H, then the following result
holds ∀x, y ∈ H and t ∈ (0, 1]:

i. ||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉,
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ii. ||tx+ (1− t)y||2 = t||x||2 + (1− t)||y||2 − t(1− t)||x− y||2.
Definition 2.1.2. Let X be a normed linear space. A mapping T : X → X is said to be:

i. continuous at an arbitrary point x0 ∈ X, if for each ε > 0, there exist a real number
δ > 0 such that for x ∈ X

||x− x0|| < δ =⇒ ||T (x)− T (x0)|| ≤ ε, (2.1.1)

ii. L-Lipschitz if there exists a real constant L > 0 such that

||T (x)− T (y)|| ≤ L||x− y||, ∀x, y ∈ X, (2.1.2)

iii. contraction if it is Lipschitz with L ∈ [0, 1),

iv. strict contractive if it is Lipschitz with L ∈ (0, 1).

Definition 2.1.3. Let T : H → H be a nonlinear mapping. Then T is called

i. monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H, (2.1.3)

ii. α-strongly monotone, if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α||x− y||2, x, y ∈ H, (2.1.4)

iii. β-inverse strongly monotone, if there exists a constant β > 0 such that

〈Tx− Ty, x− y〉 ≥ β||Tx− Ty||2, ∀x, y ∈ H, (2.1.5)

iv. firmly nonexpansive, if it is β-inverse strongly monotone with β = 1.

Remark 2.1.2. It is easy to observe that every β-inverse strongly monotone mapping T is

monotone and
1

β
Lipschitz.

Definition 2.1.4. A multi-valued mapping M : H → 2H is called monotone if for all
x, y ∈ H such that u ∈Mx and v ∈My, then

〈x− y, u− v〉 ≥ 0. (2.1.6)

Definition 2.1.5. A multi-valued monotone mapping M : H → 2H is said to be maximal
if the graph of M (denoted by G(M)) is not properly contained in the graph of any other
monotone mapping. It is known that a multi-valued mapping M is maximal if and only
if for (x, u) ∈ H ×H, 〈x− y, u− v〉 ≥ 0 for every (y, v) ∈ G(M) implies that u ∈Mx.

We recall that a point x ∈ H is said to be a fixed point of a mapping T : H → H if Tx = x
and the set of fixed points of T is denoted by F (T ).
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Example 2.1.3.

i. If H = R and T (x) = x2 + 9x+ 16, then F (T ) = {−4};

ii. If H = R and T (x) = x, then F (T ) = R;

iii. Given an initial value problem
dx(t)

dt
= f(t, x(t)),

x(t0) = x0.

(2.1.7)

This system can be transformed into the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

To establish the existence of solution to system (2.1.7), we consider the operator
T : X → X (X := C[a, b]) defined by

Tx = x0 +

∫ t

t0

f(s, x(s))ds.

Then finding a solution to the initial value problem (2.1.7) amounts to finding a
fixed point of T .

Definition 2.1.6. Let H be a real Hilbert space. The mapping T : H → H is said to be:

i. nonexpansive if

||Tx− Ty|| ≤ ||x− y|| ∀x, y ∈ H,

ii. quasi-nonexpansive if, F (T ) 6= ∅ and

||Tx− Tp|| ≤ ||x− p||, ∀x ∈ H, p ∈ F (T ),

iii. firmly nonexpansive, if

||Tx− Ty||2 ≤ ||x− y||2 − ||(x− y)− (Tx− Ty)||2, ∀x, y ∈ H, (2.1.8)

iv. k-strictly pseudo-contractive mapping if for k ∈ [0, 1), we have

||Tx− Ty||2 ≤ ||x− y||2 + k||(x− y)− (Tx− Ty)||2, ∀x, y ∈ H,

v. k demi-contractive if F (T ) 6= ∅ and for k ∈ [0, 1), we have

||Tx− Tp||2 ≤ ||x− p||2 + k||x− Tx||2, ∀x ∈ H, p ∈ F (T ). (2.1.9)
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Remark 2.1.4.

i. It is clear that in a real Hilbert space H, (2.1.8) is equivalent to the definition of
firmly nonexpansive mapping in Definition 2.1.3(iv).

ii. Also (2.1.9) is equivalent to

〈Tx− p, x− p〉||x− p||2 ≥ 1− k
2
||x− Tx||2, ∀x ∈ H, p ∈ F (T ).

We note that the following inclusions hold for the classes of the mappings:

firmly nonexpansive ⊂ nonexpansive ⊂ quasi nonexpansive ⊂ k strictly

pseudo-contractive ⊂ k demi-contractive. (2.1.10)

We illustrate these by the following examples.

Example 2.1.5. Let X = l∞ and C := {x ∈ l∞ : ||x||∞ ≤ 1}. Define T : C → C by
Tx = (0, x2

1, x
2
2, x

2
3, ...) for x = (x1, x2, x3, ...) in C. Then, it is clear that T is continuous

and maps C into C. Moreover, Tp = p if and only if p = 0.
Futhermore,

||Tx− p||∞ = ||Tx||∞ = ||(0, x2
1, x

2
2, x

2
3, ...)||∞

≤ ||(x1, x2, x3, ...)||∞ = ||x||∞
= ||x− p||∞, x ∈ C. (2.1.11)

Therefore, T is quasi-nonexpansive. However, T is not nonexpansive.

For if x = (
3

4
, 0, 0, 0, ...) and y = (

1

2
, 0, 0, 0, ...), it is clear that x and y belong to C.

Furthermore, ||x− y||∞ = ||(1

4
, 0, 0, 0, ...)||∞ =

1

4
and ||Tx−Ty||∞ = ||(0, 5

16
, 0, 0, ..)||∞ =

5

16
>

1

4
= ||x− y||∞. Thus T is quasi-nonexpansive but not nonexpansive.

The following example is a k strictly pseudo-contractive mapping which is not quasi-
nonexpansive for k ∈ [0, 1).

Example 2.1.6. Let H be the real line together with the usual norm and C = R. Define
T : C → C by

T (x) = −3x. (2.1.12)

Indeed, F (T ) = {0}. Thus for x ∈ R, we have

|Tx− 0|2 = | − 3x− 0|2 = 9|x− 0|2 > |x− 0|2,

which implies that T is not quasi-nonexpansive. Also

|Tx− Ty|2 = | − 3x+ 3y|2 = 9|x− y|2,
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and

|x− Tx− (y − Ty)|2 = |x+ 3x− (y + 3y)|2 = 16|x− y|2.

Thus

|Tx− Ty|2 = |x− y|2 + 8|x− y|2

= |x− y|2 +
1

2
|x− Tx− (y − Ty)|2. (2.1.13)

Hence, T is 1
2

strictly pseudo-contractive mapping.

The following example is k demi-contractive mapping which is not k strictly pseudo-
contractive mapping.

Example 2.1.7. [109] Let H = R and C = [−1, 1]. Define T : C → C by

Tx =


2
3
x sin ( 1

x
) x 6= 0,

0 x = 0.
(2.1.14)

Clearly F (T ) = {0}. For x ∈ C, we have

|Tx− 0|2 = |2
3
x sin (

1

x
)|2

≤ |2
3
x|2

≤ |x|2
≤ |x− 0|2 + k|Tx− x|2 ∀k ∈ [0, 1).

Thus T is k demi-contratcive for k ∈ [0, 1). To see that T is not k strictly pseudo-
contractive, choose x = 2

π
and y = 2

3π
, then

|Tx− Ty|2 = | 4

3π
sin (

π

2
)− 4

9π
sin (

3π

2
)|2

≤ | 4

3π
+

4

9π
|2

=
256

81π2
.

However,

|x− y|2 + |x− Tx− (y − Ty)|2 =
∣∣∣ 2
π
− 2

3π

∣∣∣2 +
∣∣∣ 2
π
− 4

3π
sin (

π

2
)− (

2

3π
− 4

9π
sin (

3π

2
))
∣∣∣2

≤
∣∣∣ 4

3π
|2 +

∣∣∣ 4

9π

∣∣∣2
=

160

81π2
.

Thus, |Tx − Ty|2 > |x − y|2 + |x − Tx − (y − Ty)|2. Hence T is not k strictly pseudo-
contractive mapping for k ∈ [0, 1).
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2.2 Metric Projection

The theory of metric projection is very important in fixed point theory. In this section,
we briefly look at the characterization of the metric projection.

Definition 2.2.1. Let C be a nonempty, closed and convex subset of H. For every point
x ∈ H, there exists a unique nearest point in C denoted by PCx such that

||x− PCx|| ≤ ||x− y||, ∀y ∈ C, (2.2.1)

where PC is called the metric projection of H onto C.

A very important inequality that characterizes the metric projection is stated below.

Proposition 2.2.1. [9] Let C be a nonempty closed convex subset of a Hilbert H. For
arbitrary x ∈ H and z ∈ C. Then, z = PCx if and only if

〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (2.2.2)

From Proposition 2.2.1, we deduce that:

i. The metric projection is firmly nonexpansive, that is, for all x, y ∈ H

||PCx− PCy||2 ≤ 〈x− y, PCx− PCy〉.

ii. For all x ∈ H and y ∈ C,

||x− PCx||2 + ||PCx− y||2 ≤ ||x− y||2. (2.2.3)

iii. If C is a closed subspace, then PC coincides with the orthogonal projection from H
onto C, that is, x− PCx is orthogonal to C. Thus, for any y ∈ C,

〈x− PCx, y〉 = 0.

If C is a closed convex subset with a particular simple structure, then the projection PC
has a closed form expression as describe below (see [80]):

1. If C = {x ∈ H : ||x − u|| ≤ r} is a closed ball centred at u ∈ H with radius r > 0,
then

PCx =


u+ r(x−u)

||x−u|| , if x /∈ C,

x, if x ∈ C.

2. If C = [a, b] is a closed rectangle in Rn, where a = (a1, a2, . . . , an)T and b =
(b1, b2 . . . , bn)T , then for 1 ≤ i ≤ n, PCx has the ith coordinate given by

(PCx)i =


ai, if xi ≤ ai,
xi, if xi ∈ [ai, bi],
bi, if xi > bi.
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3. If C = {y ∈ H : 〈a, y〉 = α}is a hyperplane with a 6= 0 and α ∈ R, then

PCx = x− 〈a, x〉 − α||a||2 a.

4. If C = {y ∈ H : 〈a, y〉 ≤ α} is a closed halfspace, with a 6= 0 and α ∈ R, then

PCx =


x− 〈a,x〉−α||a||2 a, if 〈a, x〉 > α,

x, if 〈a, x〉 ≤ α.

5. If C is the range of a m× n matrix A with full cloumn rank, then

PCx = A(A∗A)−1A∗x,

where A∗ is the adjoint of A.

2.3 Some Notions on Geometric Properties of Banach

Spaces

We recall that a Banach space E is a complete normed vector space.

Example 2.3.1.

i. The space lp(R) defined by

lp(R) = {x̄ = (x1, x2, x3, ...), xi ∈ R :
∞∑
i=1

|xi|p <∞}, (2.3.1)

together with norm ||.||p : lp(R)→ [0,∞), defined by

||x̄||p =

(
∞∑
i=1

|xi|p
)1/p

,

is a Banach space for 1 < p <∞.

ii. The space l∞(R) defined by

l∞(R) := {x̄ = (x1, x2, x3, ...), xi ∈ R : x̄ is bounded}, (2.3.2)

together with the function ||.||∞ : l∞(R)→ [0,∞), defined by

||x̄||∞ = sup
i≥1
|xi|,

is a Banach space.
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ii. The space C[a, b] of all real-valued continuous function on [a,b] together with the
function ||.|| : C[a, b]→ R defined by

||f ||2 =

(∫ b

a

|f(t)|2dt
)1/2

,

is not complete and thus, not a Banach space.

Definition 2.3.1. A Banach space E is called uniformly convex if given any ε > 0, there
exist δ > 0 such that for all x, y ∈ E satisfying ||x|| ≤ 1, ||y|| ≤ 1 and ||x − y|| ≥ ε, we
have

||x+ y||
2

< 1− δ.

Proposition 2.3.2. [41] The lp spaces are uniformly convex for 1 < p <∞.

Definition 2.3.2. A normed linear space X is called strictly convex if for all x, y ∈ X
with x 6= y, ||x|| = ||y|| = 1, we have ||αx+ (1− α)y|| < 1, for all α ∈ (0, 1).

Proposition 2.3.3. [35] Every uniformly convex space is strictly convex.

Remark 2.3.4. The space l∞ is not strictly convex. To see this, if we consider ū =
(1, 1, 0, 0, 0, ...) and v̄ = (−1, 1, 0, 0, 0, ...). Both ū, v̄ ∈ l∞. Taking ε = 1, then ||ū||∞ = 1 =

||v̄||∞ and ||ū− v̄||∞ = 2 > ε. However, || ū+ v̄

2
||∞ = 1. Thus l∞ is not strictly convex.

Definition 2.3.3. Let E be a real Banach space. The space E∗ of all linear continuous
functionals on E is called the dual space of E. For f ∈ E∗ and x ∈ E, the value of f at x
is denoted by 〈f, x〉.

Remark 2.3.5.

1. The dual E∗ is a Banach space with respect to the norm

||f ||E∗ = sup{〈f, x〉 : ||x|| ≤ 1}.

2. The dual space of E∗ is E∗∗, the bidual space of E. Since, in general, E ⊆ E∗∗, we
say that E is reflexive if E = E∗∗.

3. A uniformly convex Banach space is strictly convex and reflexive. The concept of
uniformly convex and strictly convex Banach spaces are equivalent in finite dimen-
sional spaces.

Definition 2.3.4. Let E∗ be the dual space of a real Banach space. The multi-valued
mapping J : E → 2E

∗
defined by

Jx = {f ∈ E∗ : 〈f, x〉 = ||x||.||f ||, ||x|| = ||f ||} (2.3.3)

is called the normalized duality mapping of E.
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Remark 2.3.6.

1. It is well known that if E∗ is strictly convex, then J is single-valued. We shall denote
this by j in the sequel.

2. For reflexive Banach spaces, the assumption on strict convexity is not an essential
restriction, since E and E∗ can be equivalently re-normed as strictly convex spaces
such that the duality mapping is preserved.

In a Banach space E, beside the strong convergence defined by the norm, that is, {xn} ⊂ E
converges strongly to a if and only if ||xn − a|| −→ 0, as n → ∞, we shall often consider
the weak convergence, corresponding to the weak topology in E. We say that {xn} ⊂ E
converges weakly to a if for any f ∈ E∗,

〈f, xn〉 −→ 〈f, a〉, n→∞. (2.3.4)

We shall denote by xn ⇀ x and xn −→ x, the weak and the strong convergence of {xn}
to x respectively.

Remark 2.3.7. Every weak convergence sequence {xn} in a Banach space is bounded. Fur-
ther, if xn ⇀ a, then ||a|| ≤ lim inf ||xn||.

Definition 2.3.5. A Banach space E is called smooth if for every x ∈ E with ||x|| = 1,
there exists a unique f ∈ E∗ such that ||f || = 〈f, x〉 = 1. The modulus of smoothness of
E is the function ρE : [0,∞)→ [0,∞) defined by

ρE(t) := sup
{ ||x+ y||+ ||x− y||

2
− 1 : x, y ∈ E, ||x|| = 1, ||y|| = t

}
. (2.3.5)

The Banach space E is called uniformly smooth if

lim
t→0

ρE(t)

t
= 0, (2.3.6)

see [14]. Henceforth, E denotes a real reflexive Banach space with the dual space E∗ and
C a nonempty closed convex subset of E. We shall also denote the value of the functional
y∗ ∈ E∗ at x ∈ E by 〈y∗, x〉 and assume that the mapping f : E → R ∪ {+∞} is proper,
convex and lower semi-continuous. We also denote the domain of f by domf , where
domf = {x ∈ E : f(x) <∞}.

Definition 2.3.6. Let x ∈ int(domf), the subdifferential of f at x is the convex set
defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ E}

and the Frénchet conjugate of f is the function f ∗ : E∗ → R ∪ {+∞} defined by

f ∗(y∗) = sup{〈y∗, x〉 − f(x) : x ∈ E}.
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Definition 2.3.7. Let x ∈ int(domf), for any y ∈ E, the directional derivative of f at x
is defined by

f o(x, y) := lim
t→0+

f(x+ ty)− f(x)

t
. (2.3.7)

If the limit in (2.3.7) exists as t→ 0 for each y, then the function f is said to be Gâteaux
differentiable at x. In this case, the gradient of f at x is the linear function ∇f(x),
which is defined by 〈∇f(x), y〉 := f o(x, y) for all y ∈ E. The function f is said to be
Gâteaux differentiable if it is Gâteaux differentiable at each x ∈ int(domf). When the
limit as t→ 0 in (2.3.7) is attained uniformly for any y ∈ E with ||y|| = 1, we say that f is
Fréchet differentiable at x. It is well known that f is Gâteaux (resp. Fréchet) differentiable
at x ∈ int(domf) if and only if the gradient ∇f is norm-to-weak∗ (resp. norm-to-norm)
continuous at x (see [11]).

Definition 2.3.8. The function f is called Legendre if it satisfies the following two con-
ditions:

(C1) the function f is Gâteaux differentiable, int(dom f) 6= ∅ and dom ∇f = int(dom f),

(C2) the function f ∗ is Gâteaux differentiable, int(dom f ∗) 6= ∅ and dom ∇f ∗ = int(dom
f ∗).

The notion of Legendre function in infinite dimensional spaces was first introduced by
Bauschke, Borwein and Combettes in [11]. Their definition is equivalent to conditions
(C1) and (C2) because the space E is assumed to be reflexive (see [11], Theorem 5.4 and
5.6, p. 634). It is also well known that in reflexive Banach space ∇f = (∇f ∗)−1 (see [16],
p. 83). When this fact is combined with conditions (C1) and (C2), we obtain

ran∇f = dom∇f ∗ = int(domf)∗,

ran∇f ∗ = dom∇f = int(domf).

It also follows that f is Legendre if and only if f ∗ is Legendre (see [11], Corollary 5.5,
p. 634) and that the functions f and f ∗ are Gáteaux differentiable and strictly convex in
the interior of their respective domains. When the Banach space E is smooth and strictly
convex, in particular, a Hilbert space, the function 1

p
||.||p with p ∈ (1,∞) is Legendre (cf.

[8], Lemma 6.2, p. 639). For further details on Legendre functions, see, [8, 11].

Definition 2.3.9. Let f : E → R∪{+∞} be a convex and Gâteaux differentiable function.
The function Df : domf× int(domf)→ [0,+∞) defined by

Df (y, x) := f(y)− f(x)− 〈∇f(x), y − x〉 (2.3.8)

is called the Bregman distance with respect to f , (see [18, 34]).

The Bregman distance does not satisfy the well-known properties of a metric, but it has
the following important property which is called the three point identity: for any x ∈
domf and y, z ∈ int(domf),

Df (x, y) +Df (y, z)−Df (x, z) = 〈∇f(z)−∇f(y), x− y〉. (2.3.9)
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Definition 2.3.10. Let f : E → R ∪ {+∞} be a convex and Gâteaux differentiable
function. The function f is called:

i. totally convex at x if its modulus of totally convexity at x ∈ int(domf), that is, the
bifunction vf : int(domf)× [0,+∞)→ [0,+∞), defined by

vf (x, t) := inf{Df (y, x) : y ∈ domf, ||y − x|| = t}, (2.3.10)

is positive for any t > 0,

ii. totally convex if it is totally convex at every point x ∈ int(dom f),

iii. totally convex on bounded subset B of E, if vf (B, t) is positive for any nonempty
bounded subset B, where the function vf : int(dom f)×[0,+∞)→ [0,+∞] is defined
by

vf (B, t) := inf{vf (x, t) : x ∈ B ∩ int(domf)}, t > 0. (2.3.11)

For further details and examples on totally convex functions, see [17, 26, 29].

Definition 2.3.11. [26, 103] Let f : E → R ∪ {+∞} be a convex and Gâteaux differen-
tiable function. The function f is called:

i. cofinite if domf ∗ = E∗,

ii. coercive if lim
||x||→+∞

∣∣∣f(x)
||x||

∣∣∣ = +∞,

iii. sequentially consistent if for any two sequences {xn} and {yn} in E such that {xn}
is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

||yn − xn|| = 0. (2.3.12)

Definition 2.3.12. Let T : C → C be a mapping, a point x∗ ∈ C is called an asymptotic
fixed point of T if C contains a sequence {xn}∞n=1 which converges weakly to x∗ and
limn→∞ ||xn − Txn|| = 0. The set of asymptotic fixed points of T is denoted by F̂ (T ).

Definition 2.3.13. Let C be a nonempty, closed and convex subset of E. A mapping
T : C → int(dom f) is called

i. Bregman Firmly Nonexpansive (BFNE for short) if

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉 ∀x, y ∈ C. (2.3.13)

ii. Bregman Strongly Nonexpansive (BSNE) with respect to a nonempty F̂ (T ) if

Df (p, Tx) ≤ Df (p, x), (2.3.14)

for all p ∈ F̂ (T ) and x ∈ C and if whenever {xn}∞n=1 ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(
Df (p, xn)−Df (p, Txn)

)
= 0,

it follows that

lim
n→∞

Df (Txn, xn) = 0.
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iii. Quasi-Bregman Nonexpansive (QBNE) if F (T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x) ∀x ∈ C, p ∈ F (T ). (2.3.15)

From the Definition 2.3.9, it is clear that (2.3.13) is equivalent to

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x).(2.3.16)

It was remarked in [58] that in the case where F̂ (T ) = F (T ), the following inclusion holds

BFNE ⊂ BSNE ⊂ QBNE. (2.3.17)

2.4 Equilibrium and Variational Inequality Problems

In this section, we give brief survey of some classes of equilibrium and variational inequality
problems. Throughout this section, C is a nonempty closed and convex subset of a Hilbert
space H.

2.4.1 Equilibrium problem

In 1994, Blum and Oettli [15] introduced the following abstract Equilibrium Problem (in
short EP). Given a bifunction F : C × C → R, the EP is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (2.4.1)

In solving the EP, it is assumed that the bifunction F satisfied the following:

L1. F (x, x) = 0 ∀ x ∈ C,

L2. F is monotone, i.e F (x, y) + F (y, x) ≤ 0 ∀ x, y ∈ C,

L3. lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y) for each x, y, z ∈ C,

L4. for each x ∈ C, the function y 7−→ F (x, y) is convex, lower semicontinuous.

The set of solution to (2.4.1) is denoted by EP(F ).

Generalized Equilibrium Problem (GEP)
In 1999, Moudafi and Théra [87] introduced the GEP which is to find x ∈ C such that :

F (x, y) + 〈Ax, y − x〉 ≥ 0, y ∈ C, (2.4.2)

where A : C → H is a nonlinear mapping. The set of solutions to (2.4.2) is denoted by
GEP(F ).

The EP and GEP have potential and useful applications in nonlinear analysis and math-
ematical economics as seen below (see Blum and Oettli [15]):
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(1) Optimization: Let φ : C → R be a convex and lower semi-continuous function, the
minimization problem is to find x̄ ∈ C such that

φ(x̄) ≤ φ(y) ∀y ∈ C. (2.4.3)

Setting F (x, y) := φ(y)− φ(x), problem (2.4.3) coincides with (2.4.1). The function
F is monotone in this case.

(2) Saddle point problem: Let ϕ : C1 × C2 → R. Then x̄ = (x̄1, x̄2) is called a saddle
point of the function ϕ if and only if for (x̄1, x̄2) ∈ C1 × C2,

ϕ(x̄1, y2) ≤ ϕ(y1, x̄2) ∀(y1, y2) ∈ C1 × C2. (2.4.4)

Setting C = C1 × C2 and define F : C × C → R by

F
(

(x1, x2), (y1, y2)
)

:= ϕ(y1, x2)− ϕ(x1, y2).

Then x̄ = (x̄1, x̄2) is a solution of (2.4.1) if and only if (x̄1, x̄2) satisfies (2.4.4). F is
monotone in this case.

(3) Nash equilibria in non-cooperative game: Let I be a finite index set (the set of
players). For every i ∈ I, let there be given a set Ci (the strategy set of the i − th
player). Let C :=

∏
i∈I Ci. For every i ∈ I, let there be given a function fi : C → R

(the loss function of the ith player depending on the strategies of all players). For
x = (xi)i∈I ∈ C, we define xi = (xj)j∈I,j 6=i. The point x̄ = (x̄i)i∈I ∈ C is called Nash
equilibrium if and only if for all i ∈ I, there holds

fi(x̄i) ≤ fi(x̄
i, yi) ∀yi ∈ Ci, (2.4.5)

(that is, no player can reduce his loss by varying his strategy alone).
Define F : C × C → R by

F (x, y) :=
∑
i∈I

(
fi(x

i, yi)− fi(x)
)
.

Then x ∈ C is a Nash equilibrium if and only if x fulfills (2.4.1). Indeed: If (2.4.5)
holds for all i ∈ I, then it is obvious that (2.4.1) is fulfilled. If for some i ∈ I, we
choose y ∈ C in such a way that x̄i = yi. Then

F (x̄, y) = fi(x̄
i, yi)− fi(x̄).

Hence, (2.4.1) implies (2.4.5) for all i ∈ I. F in this case is not automatically
monotone.

(4) Fixed Point Problem (FPP): Let T : C → C be a given mapping. The fixed point
problem is to find x ∈ C such that

x = Tx. (2.4.6)
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Setting F (x, y) = 〈x− Tx, y− x〉. Then x solves (2.4.6) if and only if x is a solution
of (2.4.1). Indeed: (2.4.6) ⇒ (2.4.1) is obvious. And if (2.4.1) is satisfied, then
choose ȳ = T x̄ to obtain

0 ≤ F (x̄, ȳ) = −||x̄− T x̄||2, (2.4.7)

hence, x̄ = T x̄. So (2.4.1) ⇒ (2.4.6). In this case F is monotone if and only if

〈Tx− Ty, x− y〉 ≤ ||x− y||2 ∀x, y ∈ C,

hence in particular if T is nonexpansive.

(5) Convex differentiable optimization: Besides the straightforward connection between
optima and equilibria given in (1), there is a more subtle connection in the convex
differentiable case. Let Φ : C → R be convex and Gáteaux differentiable, with
Gáteaux differential DΦ(x) ∈ H∗ at x. Consider the problem

min{Φ(x) : x ∈ C}. (2.4.8)

It is well known from convex analysis that x̄ is a solution of (2.4.8) if and only if x̄
satisfy the variational inequality

x̄ ∈ C, 〈DΦ(x̄), y〉 ≥ 0 ∀y ∈ C.

Upon setting F (x, y) := 〈DΦ(x), y − x〉 this becomes an example of our equilibrium
problem (2.4.1). The function F is monotone in this case, since the mapping
x 7−→ DΦ(x) is monotone, i.e

〈DΦ(y)−DΦ(x), y − x〉 ≥ 0 ∀x, y ∈ C.

(6) Variational operator inequalities: Let E : C → H∗ be a given mapping. It is required
to find x̄ ∈ H such that

x̄ ∈ C, 〈Ex̄, y − x̄〉 ≥ 0 ∀y ∈ C. (2.4.9)

We set F (x, y) := 〈Ex, y − x〉. Then clearly (2.4.9) ⇐⇒ (2.4.1).

(7) Complementarity problems: This is a special case of the previous example (6). Let
C be a closed convex cone with C∗ := {x∗ ∈ H∗ : 〈x∗, y〉 ≥ 0 ∀y ∈ C} denoting its
polar cone. Let A : C → H∗ be a given mapping. It is required to find x̄ ∈ H such
that

x̄ ∈ C, Ax̄ ∈ C∗, 〈Ax̄, x̄〉 ≥ 0. (2.4.10)

It is easily seen that (2.4.10) is equivalent with (2.4.9). Obviously, (2.4.10)⇒ (2.4.9).
If (2.4.9) holds, then setting in turn y := 2x̄ and y := 0, we obtain from (2.4.9) that
〈Ax̄, x̄〉 = 0 and thereby, 〈Ax̄, y〉 ≥ 0, ∀y ∈ C. Hence (2.4.9)=⇒ (2.4.10).
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Mixed Equilibrium Problem(MEP)
In 2008, Ceng and Yao [32] studied the MEP which is to find x ∈ C, such that

F (x, y) + φ(y)− φ(x) ≥ 0 ∀y ∈ C, (2.4.11)

where φ : C → R ∪ {+∞} is a nonlinear functional. The set of solutions of the MEP is
denoted by MEP(F, φ).

Generalized Mixed Equilibrium Problem(GEMEP)
Also, Peng and Yao [97] studied the GEMEP which is to find x ∈ C, such that

F (x, y) + 〈Ax, y − x〉+ φ(y)− φ(x) ≥ 0, ∀y ∈ C, (2.4.12)

where A : C → H is a nonlinear mapping and φ : C → R∪{+∞} is a nonlinear functional.
The set of solutions of GEMEP is denoted by GEMEP(F,A, φ).

2.4.2 Variational inequality problem

In 1967, Lions and Stampacchia [72] studied the following problem: For a given f ∈ H∗,
find x ∈ C such that

φ(x, y − x) ≥ 〈f, y − x〉 ∀y ∈ C, (2.4.13)

where φ(·, ·) : H × H → R is a bilinear form. The inequality (2.4.13) is termed as
variational inequality which characterizes the classical Signorini problem of electro-statics,
that is, the analysis of a linear elastic body in contact with a rigid frictionless foundation.
If the bilinear form is continuous, then by Riesz - Fréchet theorem, we have

φ(x, y) = 〈Ax, y〉 ∀x, y ∈ H, (2.4.14)

where A : H → H∗ is a continuous linear operator. Then Problem 2.4.13 is equivalent to
the following problem: Find x ∈ C such that

〈Ax, y − x〉 ≥ 〈f, y − x〉 ∀y ∈ C. (2.4.15)

If f ≡ 0 ∈ H∗, then (2.4.15) reduces to the following classical Variational Inequality
Problem (VIP) studied by Hartmann and Stampachia [50]: Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, y ∈ C, (2.4.16)

where A : C → H is a nonlinear mapping. The set of solutions of the VIP is denoted by
VIP(C,A). In many important applications, the convex set C also depends implicitly on
the solution of the VIP.

Mixed Variational Inequality Problem
In 2001, Noor [91] consider the following mixed variational inequality problem: Find x ∈ C
such that

〈Ax, y − x〉+ φ(y)− φ(x) ≥ 0, ∀y ∈ C, (2.4.17)

22



where φ : C → R ∪ {+∞} is a nonlinear functional.

Monotone Variational Inclusion Problem(MVIP)
The monotone variational inclusion problem is to find x ∈ H such that

0 ∈ f(x) + T (x), (2.4.18)

where 0 is the zero vector in H, f : H → H is a single-valued nonlinear mapping and
T : H → 2H is a set-valued mapping. The set of solutions to the MVIP (2.4.18) is denoted
by I(f, T ) and note that for f = 0 in (2.4.18), we obtain the Variation Inclusion Problem.
The MVIP generalizes the classical variational inequality problem and the zero problem
for nonlinear mapping. For more information on MVIP and VIP (see, [25, 48, 61, 71, 83,
91, 92, 93, 94, 95, 110, 111] and the references therein).

2.5 Iterative Methods

In this section, we give a brief survey of some iterative methods for solving fixed point
problems, variational inequalities and equilibrium problems.

2.5.1 Picard iteration

The Banach contraction mapping principle whose short form was given in Section 1.1 will
be reformulated here in its complete form.

Lemma 2.5.1. [14] Let (X, d) be a complete metric space and T : X → X be a contraction
mapping satisfying

d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ X, (2.5.1)

with k ∈ [0, 1) fixed. Then:

a. T has a unique fixed point;

b. The Picard iteration associated to T , i.e, the sequence {xn} defined by

xn = T (xn−1) = T n(x0), n = 1, 2, . . . (2.5.2)

converges to x∗, for any initial guess x0 ∈ X;

c. The following a prior and a posterior error estimates holds:

d(xn, x
∗) ≤ kn

1− k · d(x0, x1), n = 0, 1, 2, . . . (2.5.3)

d(xn, x
∗) ≤ k

1− k · d(xn−1, xn), n = 0, 1, 2, . . . (2.5.4)
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d. The rate of convergence is given by

d(xn, x
∗) ≤ k · d(xn−1, x

∗) ≤ knd(x0, x
∗), n = 1, 2, . . . (2.5.5)

Remark 2.5.2. [14]

i. The a prior estimate (2.5.3) shows that, when starting from an initial guess x0 ∈ X,
the approximation error of the nth iterate is completely determined by the contraction
coefficient k and the initial displacement d(x0, x1).

ii. Similarly, the a posterior estimate (2.5.4) shows that, in order to obtain the desired
error approximation of the fixed point by means of Picard iteration, that is, to have
d(xn, x

∗) < ε, we need to stop the iterative process at the first n for which the dis-

placement between the two consecutive iterates is at most
(1− k)ε

k
.

So, the a posterior estimation offers a direct stopping criterion for the iterative ap-
proximation of fixed point by Picard iteration.

By slightly weakening the contraction condition in Lemma 2.5.1, the Picard iterations
need not converge to a fixed point of the operator T as seen in the following example.

Example 2.5.3. [14] If X = [1,∞) and let T : X → X be defined by

T (x) = x+
1

x

then:

i. T is not a contraction mapping,

ii. T is strict contractive,

iii. F (T ) = ∅,

iv. The Picard iteration associated to T does not converge for any x0 ∈ [1,∞). Indeed,

if the Picard iteration {xn}, xn+1 = xn +
1

xn
, n ≥ 0 would be convergent, then its

limit l would satisfy
1

l
= 0 which is not possible.

2.5.2 Krasnoselskij iteration

If the Picard iteration formula (2.5.2) is replaced by the following formula: For x0 ∈ C,

xn+1 =
1

2
(xn + Txn) n ≥ 0, (2.5.6)

then, the iterative sequence converges to the unique fixed point. In general, if X is a
normed linear space and T is a nonexpansive mapping, the following generalization of
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(2.5.6) which has proved successful in the approximation of a fixed point of T (when it
exists) was given by Schaefer [107]: For x0 ∈ C,

xn+1 = (1− λ)xn + λTxn, n ≥ 0, (2.5.7)

and λ ∈ (0, 1). This formula is known as the Krasnoselskij iteration.

Remark 2.5.4.

i. It is easy to see that the Krasnoselskij iteration {xn} given by (2.5.7) is exactly the
Picard iteration corresponding to the averaged operator

Tλ = (1− λ)I + λ · T, (2.5.8)

where I is the identity operator.

ii. For λ = 1, the Krasnoselskij iteration reduces to Picard iteration.

2.5.3 Mann iteration

The most general iterative formula for approximation of fixed points of nonexpansive
mapping called the Mann iteration formula due to Mann [79] is the following: For x0 ∈ C

xn+1 = (1− αn)xn + αnTxn, n ≥ 0, (2.5.9)

where {αn} is a sequence in (0, 1) satisfying the following conditions:

i. limn→∞ αn = 0,

ii.
∑∞

n=0 αn =∞.

Remark 2.5.5. If the sequence {αn} = {λ}, then the Mann iteration process obviously
reduces to the Krasnoselskij iteration.

2.5.4 Ishikawa iteration

In 1974, Ishikawa [54] enlarged and improved the Mann iterative algorithm to a new
iterative algorithm which generates the sequence {xn} defined by: For x0 ∈ C

xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], (2.5.10)

where

i. 0 ≤ αn ≤ βn ≤ 1,
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ii. limn→∞ βn = 0,

iii.
∑

n≥1 αnβn =∞.

If we write (2.5.10) in a system form as:{
yn = (1− βn)xn + βnTxn,
xn+1 = (1− αn)xn + αnTyn,

(2.5.11)

then, we can regard the Ishikawa iteration as a two-step Mann iteration with two different
parameter sequences.
In the last three decades, both the Mann and the Ishikawa schemes have been successfully
used by various authors to approximate fixed points of various classes of operators in
Banach spaces. As a matter of fact, the Mann iteration may fail to converge while the
Ishikawa iteration can still converge for a Lipschitz pseudo-contractive mapping in Hilbert
space. To obtain strong convergence of Mann iteration to a fixed point of k-strictly pseudo-
contractive maps, additional conditions (such as compactness) are required on the operator
T or the subset C.

2.5.5 Implicit iteration

An iterative method for solving the problem of approximating a fixed point of a mapping
T which may have multiple solutions is to replace it by a family of perturbed problems
admitting a unique solution, and then to get a particular solution as the limit of these
perturbed solutions as the perturbation varnishes. For example, given a nonempty closed
and convex set C ⊆ H, T : C → C, u ∈ C and t ∈ (0, 1), Browder [21, 22, 23] studied the
approximating curve {zt} defined by

zt = tu+ (1− t)Tzt, (2.5.12)

that is, zt is the unique fixed point of the contraction tu+ (1− t)T . He proved that if the
underlying space H is Hilbert, {zt} converges strongly to the fixed point of T closest to u
as t→ 0.

2.5.6 Halpern explicit iteration

Halpern [49] introduced the explicit iterative algorithm which generates a sequence via
the recursive formula

xn+1 = αnu+ (1− αn)Txn, n ≥ 0, (2.5.13)

where the initial guess x0 ∈ C and u ∈ C are arbitrarily fixed and the sequence {αn} is
contained in (0, 1), for finding a fixed point of a nonexpansive mapping T : C → C with
F (T ) 6= ∅. This iterative method is commonly know as the Halpern iteration.
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2.5.7 Viscosity approximation method

In [85], Moudafi presented the following implicit and explicit recursions as generalization
of the results of Browder [21] and Halpern [49]:

zt = tf(xt) + (1− t)Txt (2.5.14)

and

xn+1 = αnf(xn) + (1− αn)Txn, (2.5.15)

where {αn} ⊂ [0, 1), t ∈ (0, 1], f : C → C is a contraction mapping and T : C → C is a
nonexpansive mapping. He proved that if the set of fixed point of T F (T ) is not empty,
the recursions (2.5.14) and (2.5.15) converge strongly to the fixed point of T which solve
the variational inequality:

〈(I − f)x∗, x− x∗〉 ≥ 0 ∀x ∈ F (T ), (2.5.16)

where I is the identity operator. This method has been developed and generalized by
Takahashi and Takahashi [115] and Xu [120].

2.5.8 Hybrid iteration

The hybrid iterative method is also known as the outer-approximation method. This type
of algorithm was introduced by Haugazeau [51] in 1968 and was successfully generalized
and extended by Bauschke and Combettes [12], Combettes [37], Nakajo and Takahashi [88],
Kikkawa and Takahashi [63]. In 2004, Nakajo and Takahashi [88] introduced and studied
the following iterative method for a nonexpansive mapping T over a Hilbert space:

x0 = x ∈ C ⊆ H,
wn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ||wn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn∩Qnx.

(2.5.17)

They proved that the sequence {xn} generated by (2.5.17) converges strongly to PF (T )x0,
where PF (T ) denotes the metric projection from H onto F (T ).

The classical VIP that was introduced by Lions and Stampacchia [72] can be re-written
as a fixed point problem of the form: find x ∈ C such that

x = PC(I − λT )x, (2.5.18)

where λ > 0 and I is the identity mapping. Using this fixed point formulation, we can
have an iterative algorithm which generates the sequence {xn} given by

xn+1 = PC(I − λT )xn, (2.5.19)
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where x0 ∈ C is given and λ > 0, (see, [6] and [47]).

There are several iterative methods that have been developed for approximating solutions
of the fixed point problem for nonlinear mappings, variational inequality problem and
equilibrium problem. It is of further interest to develop and study iterative methods
for approximating common element of the set of solutions of these problems. In this
direction, Takahashi and Toyoda [116] in 2003, considered the problem of finding a common
element of the set solutions of a fixed point problem for nonexpansive mapping T on C
and variational inequality with α-inverse strongly monotone mappings and developed the
following algorithm:{

x0 ∈ C;
xn+1 = αnxn + (1− αn)TPC(xn − λnAxn),

(2.5.20)

where {αn} and {λn} are sequence of real numbers. They proved that under certain ap-
propriate conditions on {αn} and {λn}, the sequence {xn} generated by (2.5.20) converges
strongly to z ∈ F (T ) ∩ V IP (C,A).
On the other hand, Takahashi and Takahashi [115] in 2007, proposed the following itera-
tive scheme for approximating the common element of the set of solutions of EP and fixed
point problem for a nonexpansive mapping T in Hilbert space: F (un, y) +

1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1− αn)Tun,
(2.5.21)

where f : C → C is a contraction mapping and {αn} ⊂ [0, 1), rn > 0. They proved that
under some suitable conditions on {αn} and {rn}, the sequence {xn} and {un} generated
by (2.5.21) converges strongly to z ∈ F (T ) ∩ EP (F ), where z = PF (T )∩EP (F )f(z).
For more related works on iterative methods for approximating common solutions of fixed
point problem, variational inequality problem and equilibrium problem, see [1, 36, 38, 57,
60, 78, 100, 121] and reference therein.

We now state a very important result which will be used to established the strong conver-
gence of our iterative schemes introduce in this dissertation.

Lemma 2.5.6. [119] Assume {an} is a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− tn)an + tnδn ∀n ≥ 0,

where {tn} is a sequence in (0, 1) and {δn} is a sequence in R such that:

i.
∑∞

n=o tn =∞,

ii. lim supn→∞ δn ≤ 0.

Then limn→∞ an = 0.
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CHAPTER 3

Approximation of Common Solution of Split Equalities for

Generalized Equilibrium Problem, Monotone Variational Inclusion

Problem and Fixed Point Problem in Hilbert Spaces

In this chapter, we introduce an iterative algorithm for finding a common element of the
set of solutions of split equality generalized equilibrium problem, split equality monotone
variational inclusion problem and split equality fixed point problem for k demi-contractive
mapping without a prior knowledge of the operator norm in a real Hilbert space. We obtain
a strong convergence result and give numerical example of our result in two-dimensional
real Hilbert space.

3.1 Introduction

In 2011, Moudafi [84] introduced the following Split Monotone Variational Inclusion Prob-
lem (SMVIP): Find x ∈ H1 such that

0 ∈ f1(x) +B1(x),

and

y = Ax ∈ H2 solves 0 ∈ f2(y) +B2(y),

where f1 : H1 → H1 and f2 : H2 → H2 are given single-valued operators, A : H1 → H2 is
a bounded linear operator, B1 : H1 → 2H1 and B2 : H2 → 2H2 are multi-valued maximal
monotone mappings. He introduced an iterative method for solving SMVIP which can be
seen as an important generalization of an iterative method by Censor et al. [33] for solving
split variational inequality problem.
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Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty, closed and convex
subsets of H1 and H2 respectively. Let A : H1 → H3 and B : H2 → H3 be nonlinear
mappings. Assume F : C × C → R and G : Q × Q → R are nonlinear bifunctions,
φ : C → H1, and ψ : Q → H2 are nonlinear mappings, f1 : C → H1 and f2 : Q → H2

are inverse strongly monotone mappings and T1 : H1 → 2H1 , T2 : H2 → 2H2 are maximal
monotone mappings. Let S1 : C → H1 and S2 : Q→ H2 be demi-contractive mappings.
We define the following:

I. The Split Equality Monotone Variational Inclusion Problem (SEMVIP) is to find
x∗ ∈ C and y∗ ∈ Q such that

0 ∈ f1(x∗) + T1(x∗), (3.1.1)

0 ∈ f2(y∗) + T2(y∗), (3.1.2)

and

Ax∗ = By∗.

If we consider (3.1.1) and (3.1.2) separately, we have that (3.1.1) is a MVIP with its
solution set I(f1, T1) and (3.1.2) is a MVIP with its solution set I(f2, T2).

II. The Split Equality Generalized Equilibrium Problem (SEGEP) is to find x∗ ∈ C and
y∗ ∈ Q such that

F (x∗, x) + 〈φx∗, x− x∗〉 ≥ 0, (3.1.3)

G(y∗, y) + 〈ψy∗, y − y∗〉 ≥ 0, (3.1.4)

and

Ax∗ = By∗.

If we also consider (3.1.3) and (3.1.4) separately, we have that (3.1.3) is a GEP with
its solution set EP (F, φ) and (3.1.4) is a GEP with its solution set EP (G,ψ).

III. The Split Equality Fixed Point Problem (SEFPP) is to find x∗ ∈ C and y∗ such that

S1x
∗ = x∗, (3.1.5)

S2y
∗ = y∗, (3.1.6)

and

Ax∗ = By∗.

If we consider (3.1.5) and (3.1.6) separately, we have that (3.1.5) is a FPP with its
solution set F (S1) and (3.1.6) is a FPP with its solution set F (S2).
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3.2 Preliminaries

In this section, we present some lemmas which are needed for our result in this chapter.
We denote the strong convergence and weak convergence of a sequence {xn} to a point
x ∈ H by xn → x and xn ⇀ x, respectively.

Lemma 3.2.1. [52](Demiclosedness principle) Let C be a nonempty, closed and convex
subset of H and S : C → C be a k demi-contractive mapping with F (S) 6= ∅, then I − S
is demiclosed at 0, i.e if xn ⇀ x∗ ∈ C and xn − Sxn → 0, then x∗ = Sx∗.

For solving the equilibrium problem, we assume that the bifunction F : C × C → R
satisfies the assumptions L1 - L4 in Section 2.4.1.

Lemma 3.2.2. [15] Let C be a nonempty closed and convex subset of H and let F be a
bifunction which satisfies conditions (L1) - (L4). Let r > 0 and x ∈ H, then there exist
u ∈ C such that

F (u, y) +
1

r
〈y − u, u− x〉 ≥ 0 ∀y ∈ C.

Lemma 3.2.3. [38] Assume that F : C × C → R satisfies (L1) - (L4). For r > 0 and
x ∈ H, define a resolvent function Tr : H → C as follows

Tr(x) = {u ∈ C : F (u, y) +
1

r
〈y − u, u− x〉 ≥ 0, ∀y ∈ C}

Then the following holds:

i. Tr is single-valued;

ii. Tr is firmly nonexpansive, i.e for any x, y ∈ H,

||Trx− Try||2 ≤ 〈Trx− Try, x− y〉;

iii. F (Tr) = EP (F );

iv. EP (F ) is closed and convex.

We recall that a set-valued mapping T : H → 2H is monotone if for all x, y ∈ H, with
u ∈ T (x) and v ∈ T (y) then

〈x− y, u− v〉 ≥ 0,

and T is maximal monotone if the graph of T (G(T ) = {(x, y) : y ∈ T (x)}) is not properly
contain in the graph of any other monotone mapping. It is also known that T is maximal
if and only if for (x, u) ∈ H ×H, 〈x− y, u− v〉 ≥ 0 for all (y, v) ∈ G(T ) implies u ∈ T (x).
The resolvent operator JTλ associated with T and λ is the mapping JTλ : H → H defined
by

JTλ (u) = (I + λT )−1(u), u ∈ H, λ > 0. (3.2.1)
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It is well-known that the resolvent operator JTλ is single-valued, nonexpansive and 1-
inverse strongly monotone (see, [20]) and that a solution of MVIP is a fixed point of
JTλ (I − λf), ∀λ > 0, that is,

0 ∈ f(x) + T (x) ⇔ x = JTλ (I − λf)(x).

If f is α-inverse strongly monotone mapping with 0 < λ < 2α, then JTλ (I − λf) is
nonexpansive and I(f, T ) is closed and convex.

Lemma 3.2.4. [69] Let T : H → 2H be a maximal monotone mapping and f : H → H be
a Lipschitz continuous mapping. Then the mapping G := T + f : H → 2H is a maximal
monotone mapping.

3.3 Main Results

In this section, we state and prove a strong convergence theorem for approximating a
common solution of SEMVIP, SEGEP and SEFPP without prior knowledge of the operator
norms.

Theorem 3.3.1. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed
and convex subsets of H1 and H2 respectively, A : H1 → H3 and B : H2 → H3 be two
bounded linear operators. Let F : C×C → R and G : Q×Q→ R be bifunctions satisfying
(L1)-(L4). Let φ : C → H1 be α1-inverse strongly monotone mapping, ψ : Q → H2

be α2-inverse strongly monotone mapping, f1 : C → H1 be µ-inverse strongly monotone
mapping, f2 : C → H2 be ν-inverse strongly monotone mapping, T1 : H1 → 2H1 and
T2 : H2 → 2H2 be two multi-valued maximal monotone mappings. Let S1 : H1 → H1 and
S2 : H2 → H2 be demi-contractive mappings with constants k1 and k2 respectively such

that I − S1 and I − S2 are demiclosed at 0 and F (S1) 6= ∅, F (S2) 6= ∅. Let
(
{xn}, {yn}

)
be the sequence generated for (x0, y0) ∈ C ×Q defined by

wn = JT1λ (I − λf1)((1− tn)xn − γnA∗(A(1− tn)xn −B(1− tn)yn)),

zn = JT2λ (I − λf2)((1− tn)yn + γnB
∗(A(1− tn)xn −B(1− tn)yn)),

F (un, u) + 〈φwn, u− un〉+
1

rn
〈u− un, un − wn〉 ≥ 0 ∀u ∈ C,

G(vn, v) + 〈ψzn, v − vn〉+
1

rn
〈v − vn, vn − zn〉 ≥ 0 ∀v ∈ Q,

xn+1 = (1− βn)S1un + βnun; ∀n ≥ 0,
yn+1 = (1− δn)S2vn + δnvn, ∀n ≥ 0,

(3.3.1)

{γn} is a positive real sequence such that

γn ∈
(
ε,

2||Axn −Byn||2
||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2 − ε

)
, n ∈ Ω,

otherwise, γn = γ(γ being any nonnegative value), where the set of indexes Ω = {n :
Axn−Byn 6= 0}, A∗ and B∗ are adjoints of A and B respectively. Suppose {rn} ⊂ (0,∞),
{tn}, {βn} and {δn} are sequences in (0,1) satisfying the following conditions:
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i. limn→∞ tn = 0 and
∑∞

n=0 tn =∞;

ii. 0 < k1 ≤ lim infn→∞ βn and 0 < k2 ≤ lim infn→∞ δn;

iii. 0 < λ < 2µ, 2ν;

iv. 0 < rn < 2αi, i = 1, 2.

If Γ :=
(
F (S1) ∩ EP (F, φ) ∩ I(f1, T1)

)
×
(
F (S2) ∩ EP (G,ψ) ∩ I(f2, T2)

)
6= ∅, then the

sequence
(
{xn}, {yn}

)
converges strongly to (x̄, ȳ) ∈ Γ.

Proof. Let (x∗, y∗) ∈ Γ, an = (1− tn)xn and bn = (1− tn)yn, then

||wn − x∗||2 = ||JT1λ (I − λf1)(an − γnA∗(Aan −Bbn)− x∗||2
≤ ||an − γnA∗(Aan −Bbn)− x∗||2
= ||an − x∗||2 + γ2

n||A∗(Aan −Bbn)||2 − 2γn〈an − x∗, A∗(Aan −Bbn)〉
= ||an − x∗||2 + γ2

n||A∗(Aan −Bbn)||2 − 2γn〈Aan − Ax∗, Aan −Bbn〉.

But

2〈Aan − Ax∗, Aan −Bbn〉 = ||Aan − Ax∗||2 + ||Aan −Bbn||2 − ||Bbn − Ax∗||2. (3.3.2)

Thus, we have

||wn − x∗||2 ≤ ||an − x∗||2 + γ2
n||A∗(Aan −Bbn)||2 − γn||Aan − Ax∗||2

− γn||Aan −Bbn||2 + γn||Bbn − Ax∗||2. (3.3.3)

Similarly, following the same steps as above, we obtain

||zn − y∗||2 ≤ ||bn − y∗||2 + γ2
n||B∗(Aan −Bbn)||2 + γn||Aan −By∗||2

− γn||Bbn −By∗||2 − γn||Aan −Bbn||2. (3.3.4)

Adding (3.3.3) and (3.3.4) and noting that Ax∗ = By∗, we have

||wn − x∗||2 + ||zn − y∗||2 ≤ ||an − x∗||2 + ||bn − y∗||2 − γn
(

2||Aan −Bbn||2

− γn(||A∗(Aan −Bbn)||2

+ ||B∗(Aan −Bbn)||2)
)
. (3.3.5)

Therefore,

||wn − x∗||2 + ||zn − y∗||2 ≤ ||an − x∗||2 + ||bn − y∗||2. (3.3.6)
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Also from (3.3.1), we can write un = T Frn(wn − rnφwn) and vn = TGrn(zn − rnψzn).
Thus, for all n ≥ 0, we have

||un − x∗||2 = ||T Frn(wn − rnφwn)− x∗||2
= ||T Frn(wn − rnφwn)− T Frn(x∗ − rnφx∗)||2
≤ ||(I − rnφ)wn − (I − rnφ)x∗||2
≤ ||(wn − x∗)− rn(φwn − φx∗)||2
= ||wn − x∗||2 − 2rn〈wn − x∗, φwn − φx∗〉+ r2

n||φwn − φx∗||2
≤ ||wn − x∗||2 − 2rnα1||φwn − φx∗||2 + r2

n||φwn − φx∗||2
= ||wn − x∗||2 − rn(2α1 − rn)||φwn − φx∗||2
≤ ||wn − x∗||2 (since 2α1 > rn). (3.3.7)

Following similar process as above, we have that

||vn − y∗||2 ≤ ||zn − y∗||2 − rn(2α2 − rn)||ψzn − ψy∗||2
≤ ||zn − y∗||2. (3.3.8)

Thus, from (3.3.6), (3.3.7) and (3.3.8), we have

||un − x∗||2 + ||vn − y∗||2 ≤ ||wn − x∗||2 + ||zn − y∗||2
≤ ||an − x∗||2 + ||bn − y∗||2. (3.3.9)

Further, from (3.3.1), we have

||xn+1 − x∗||2 = ||(1− βn)S1un + βnun − x∗||2
= ||(1− βn)(S1un − x∗) + βn(un − x∗)||2
= (1− βn)||S1un − x∗||2 + βn||un − x∗||2 − βn(1− βn)||S1un − un||2

≤ (1− βn)
(
||un − x∗||2 + k1||un − S1un||2

)
+ βn||un − x∗||2

− βn(1− βn)||S1un − un||2
= ||un − x∗||2 + (1− βn)(k1 − βn)||un − S1un||2
≤ ||un − x∗||2 (since 0 < k1 ≤ lim inf

n→∞
βn). (3.3.10)

Similarly as above, we obtain

||yn+1 − y∗||2 ≤ ||vn − y∗||2 + (1− δn)(k2 − δn)||S2vn − vn||2
≤ ||vn − y∗||2 (since 0 < k2 ≤ lim inf

n→∞
δn). (3.3.11)

Therefore, from (3.3.9), (3.3.10) and (3.3.11), we have

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ ||un − x∗||2 + ||vn − y∗||2
≤ ||an − x∗||2 + ||bn − y∗||2. (3.3.12)

But

||an − x∗||2 = ||(1− tn)xn − x∗||2
= ||(1− tn)(xn − x∗)− tnx∗||2
≤ (1− tn)||xn − x∗||2 + tn||x∗||2, (3.3.13)
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and

||bn − y∗||2 = ||(1− tn)yn − y∗||2
= ||(1− tn)(yn − y∗)− tny∗||2
≤ (1− tn)||yn − y∗||2 + tn||y∗||2. (3.3.14)

Thus, adding (3.3.13) and (3.3.14), we have

||an − x∗||2 + ||bn − y∗||2 ≤ (1− tn)
(
||xn − x∗||2 + ||yn − y∗||2

)
+ tn(||x∗||2 + ||y∗||2). (3.3.15)

Hence, it follows from (3.3.12) and (3.3.15) that

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ (1− tn)
(
||xn − x∗||2 + ||yn − y∗||2

)
+ tn(||x∗||2 + ||y∗||2)

≤ max
{
||xn − x∗||2 + ||yn − y∗||2, ||x∗||2 + ||y∗||2

}
...

≤ max
{
||x0 − x∗||2 + ||y0 − y∗||2, ||x∗||2 + ||y∗||2

}
.

This implies that {||xn − x∗||2 + ||yn − y∗||2} is bounded and consequently {xn}, {yn},
{Axn}, {Byn}, {un}, {vn}, {wn}, and {zn} are bounded. Also since A, A∗, B and B∗ are
linear mappings, we obtained from (3.3.5), (3.3.7) and (3.3.8) that

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ (1− tn)
(
||xn − x∗||2 + ||yn − y∗||2

)
+ tn(||x∗||2 + ||y∗||2)

− (1− tn)γn

(
2||Axn −Byn||2 − γn(||A∗(Axn −Byn)||2

+ ||B∗(Axn −Byn)||2)
)
− rn

(
(2α1 − rn)||φwn − φx∗||2

+ (2α2 − rn)||ψzn − ψy∗||2
)

− (1− βn)
(

(k1 − βn)||S1un − un||2

+ (k2 − βn)||S2vn − vn||2
)
. (3.3.16)

Now, we divide the rest of the prove into two cases.
Case A: Assuming {||xn − x∗||2 + ||yn − y∗||2} is monotonically decreasing, then

(||xn+1 − x∗||2 + ||yn+1 − y∗||2)− (||xn − x∗||2 + ||yn − y∗||2)→ 0, as n→∞. (3.3.17)

Putting ||xn − x∗||2 + ||yn − y∗||2 to be ρn(x∗, y∗), then it follows from (3.3.16) that

ρn+1(x∗, y∗) ≤ (1− tn)ρn(x∗, y∗) + tn(||x∗||2 + ||y∗||2)

− (1− tn)γn

(
2||Axn −Byn||2 − γn(||A∗(Axn −Byn)||2

+ ||B∗(Axn −Byn)||2)
)
.
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Putting Kn = ||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2, we have

γn

(
2||Axn −Byn||2 − γnKn

)
≤ ρn(x∗, y∗)− 1

1− tn
ρn+1(x∗, y∗) +

tn
1− tn

(||x∗||2 + ||y∗||2).

By the condition

γn ∈
(
ε,

2||Axn −Byn||2
||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2 − ε

)
, n ∈ Ω,

we have

lim
n→∞

Kn = lim
n→∞

(||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2) = 0, (3.3.18)

observe that Axn −Byn = 0, if n /∈ Ω, hence

lim
n→∞

||A∗(Axn −Byn)|| = 0, (3.3.19)

and

lim
n→∞

||B∗(Axn −Byn)|| = 0. (3.3.20)

Also from (3.3.16), we obtain

ρn+1(x∗, y∗) ≤ (1− tn)ρn(x∗, y∗) + tn(||x∗||2 + ||y∗||2)− (1− tn)γ2
n

(
||A∗(Axn −Byn)||2

+ ||B∗(Axn −Byn)||2)
)
− rn

(
(2α1 − rn)||φwn − φx∗||2

+ (2α2 − rn)||ψzn − ψy∗||2
)
.

Set Υn = (2α1 − rn)||φwn − φx∗||2 + (2α2 − rn)||ψzn − ψy∗||2, then we have from (3.3.18),

Υn ≤ (1− tn)ρn(x∗, y∗)− ρn+1(x∗, y∗) + tn(||x∗||2 + ||y∗||2)

− (1− tn)γ2
n

(
||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2

)
−→ 0,

as n→∞. (3.3.21)

Hence, from condition (iv), we obtain

lim
n→∞

||φwn − φx∗||2 = 0, (3.3.22)

and

lim
n→∞

||ψzn − ψy∗||2 = 0. (3.3.23)

Let Λn = (1− βn)
(

(k1 − βn)||S1un − un||2 + (k2 − βn)||S2vn − vn||2
)
.

Then from (3.3.16) and (3.3.18), we have

Λn ≤ (1− tn)ρn(x∗, y∗)− ρn+1(x∗, y∗) + tn(||x∗||2 + ||y∗||2)

− (1− tn)γ2
n

(
(||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2)

)
− rn

(
(2α1 − rn)||φwn − φx∗||2

+ (2α2 − rn)||ψzn − ψy∗||2
)
−→ 0, n→∞. (3.3.24)
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Thus by condition (ii), we obtain

lim
n→∞

||S1un − un|| = 0, (3.3.25)

and

lim
n→∞

||S2vn − vn|| = 0. (3.3.26)

Also from (3.3.1), recall that an = (1− tn)xn and bn = (1− tn)yn, then we have

||wn − x∗||2 = ||JT1λ (I − λf1)(an − γnA∗(Aan −Bbn)− x∗)||2
≤ 〈wn − x∗, an − γnA∗(Aan −Bbn)− x∗〉
=

1

2

(
||wn − x∗||2 + ||an − γnA∗(Aan −Bbn)− x∗||2 − ||wn − an

− γnA
∗(Aan −Bbn)||2

)
≤ 1

2

(
||wn − x∗||2 + ||an − x∗||2 + γ2

n||A∗(Aan −Bbn)||2

+ 2γn||an − x∗||||A∗(Aan −Bbn)|| − [||wn − an||2

+ γ2
n||A∗(Aan −Bbn)||2 − 2γn||wn − an||||A∗(Aan −Bbn)||]

)
=

1

2

(
||wn − x∗||2 + ||an − x∗||2 + 2γn||an − x∗||||A∗(Aan −Bbn)||

− ||wn − an||2 + 2γn||wn − an||||A∗(Aan −Bbn)||
)
.

Therefore,

||wn − an||2 ≤ ||an − x∗||2 − ||wn − x∗||2
+2γn||A∗(Aan −Bbn)||[||wn − an||+ ||an − x∗||]. (3.3.27)

In a similar way as (3.3.27), we obtain

||zn − bn||2 ≤ ||bn − y∗||2 − ||zn − y∗||2
+2γn||B∗(Aan −Bbn)||[||zn − bn||+ ||bn − y∗||]. (3.3.28)

Adding (3.3.27) and (3.3.28), we have

||wn − an||2 + ||zn − bn||2 ≤ (||an − x∗||2 + ||bn − y∗||2)− (||wn − x∗||2 + ||zn − y∗||2)

+ 2γn||A∗(Aan −Bbn)||[||wn − an||+ ||an − x∗||]
+ 2γn||B∗(Aan −Bbn)||[||zn − bn||+ ||bn − y∗||].

From (3.3.6), (3.3.19) and (3.3.20), we have

||wn − an||2 + ||zn − bn||2 ≤ (||an − x∗||2 + ||bn − y∗||2)− (||an − x∗||2 + ||bn − y∗||2)

+ 2γn||A∗(Aan −Bbn)||[||wn − an||+ ||an − x∗||]
+ 2γn||B∗(Aan −Bbn)||[||zn − bn||+ ||bn − y∗||]
−→ 0, as n→∞. (3.3.29)
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Hence,

lim
n→∞

||wn − an|| = 0, (3.3.30)

and

lim
n→∞

||zn − bn|| = 0. (3.3.31)

But

||an − xn|| = tn||xn|| → 0, n→∞, (3.3.32)

and

||bn − yn|| = tn||yn|| → 0, n→∞. (3.3.33)

Therefore from (3.3.30), (3.3.31), (3.3.32) and (3.3.33), we have

||wn − xn|| ≤ ||wn − an||+ ||an − xn|| → 0, n→∞, (3.3.34)

and

||zn − yn|| ≤ ||zn − bn||+ ||bn − yn|| → 0, n→∞. (3.3.35)

Also, from (3.3.1)

||un − x∗||2 = ||T Frn(wn − rnφwn)− x∗||2
≤ ||T Frn(wn − rnφwn)− T Frn(x∗ − rnφx∗)||2
≤ 〈un − x∗, (wn − rnφwn)− (x∗ − rnφx∗)〉
=

1

2

(
||un − x∗||2 + ||(wn − rnφwn)− (x∗ − rnφx∗)||2 − ||wn − rnφwn

− (x∗ − rnφx∗)− (un − x∗)||2
)

=
1

2

(
||un − x∗||2 + ||wn − x∗||2 − ||(wn − rnφwn)− (x∗ − rnφx∗)

− (un − x∗)||2
)

=
1

2

(
||un − x∗||2 + ||wn − x∗||2 − ||wn − un||2 + 2rn〈wn − un, φwn − φx∗〉

− r2
n||φwn − φx∗||2

)
≤ 1

2

(
||un − x∗||2 + ||wn − x∗||2 − ||wn − un||2

+2rn〈wn − un, φwn − φx∗〉
)
. (3.3.36)

Therefore,

||wn − un||2 ≤ ||wn − x∗||2 − ||un − x∗||2 + 2rn||wn − un||||φwn − φx∗||. (3.3.37)
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Following similar argument as above, we obtain

||zn − vn||2 ≤ ||zn − y∗||2 − ||vn − y∗||2 + 2rn||zn − vn||||ψzn − ψy∗||. (3.3.38)

Adding (3.3.37) and (3.3.38), we have

||wn − un||2 + ||zn − vn||2 ≤ (||wn − x∗||2 + ||zn − y∗||2)− (||un − x∗||2 + ||vn − y∗||2)

+ 2rn

(
||wn − un||||φwn − φx∗||

+ ||zn − vn||||ψzn − ψy∗||
)
. (3.3.39)

It follows from (3.3.7),(3.3.8), (3.3.16), (3.3.22) and (3.3.23) that

||wn − un||2 + ||zn − vn||2 ≤ (||wn − x∗||2 + ||zn − y∗||2)− (||wn − x∗||2 + ||zn − y∗||2)

+ 2rn

(
||wn − un||||φwn − φx∗||+ ||zn − vn||||ψzn − ψy∗||

)
−→ 0, as n→∞.

Hence,

lim
n→∞

||wn − un|| = 0, (3.3.40)

and

lim
n→∞

||zn − vn|| = 0. (3.3.41)

Again from (3.3.1), (3.3.25) and (3.3.26), we have

||xn+1 − un|| = ||(1− βn)S1un + βnun − un|| ≤ (1− βn)||S1un − un||
−→ 0, as n→∞ (3.3.42)

and

||yn+1 − vn|| = ||(1− δn)S1vn + δnvn − vn|| ≤ (1− δn)||S2vn − vn||
−→ 0, as n→∞, (3.3.43)

therefore from (3.3.34), (3.3.35), (3.3.40), (3.3.41), (3.3.42) and (3.3.43) we obtain

||xn+1 − xn|| ≤ ||xn+1 − un||+ ||un − wn||+ ||wn − xn|| → 0, as n→∞(3.3.44)

and

||yn+1 − yn|| ≤ ||yn+1 − vn||+ ||vn − zn||+ ||zn − yn|| → 0, as n→∞. (3.3.45)

Since
(
{xn}, {yn}

)
is bounded, there exists a subsequence

(
{xnj
}, {ynj

}
)

of
(
{xn}, {yn}

)
such that

(
{xnj
}, {ynj

}
)

converges weakly to (x̄, ȳ) ∈ C ×Q. From (3.3.34) and (3.3.35),

we have
(
{wnj
}, {znj

}
)

converges weakly to (x̄, ȳ). Also by (3.3.40) and (3.3.41), we
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have
(
{unj
}, {vnj

}
)

converges weakly to (x̄, ȳ). Furthermore, by (3.3.25), (3.3.26), the

demi-closedness of I − S1 at 0 and the demi-closedness of I − S2 at 0, we have (x̄, ȳ) ∈
F (S1)× F (S2).
Also since A : H1 → H3 and B : H2 → H3 are bounded linear mappings and {Axnj

}⇀ Ax̄
and {Bynj

}⇀ Bȳ and by the weakly lower semicontinuity of the squared norm, we have

||Ax̄−Bȳ||2 ≤ lim inf
n→∞

||Axnj
−Bynj

||2 = 0,

thus

Ax̄ = Bȳ. (3.3.46)

We now show that x̄ ∈ I(f1, T1) and ȳ ∈ I(f2, T2). Since T1 is
1

µ
Lipschitz monotone and

the domain of T1 is H1, we obtain from Lemma 3.2.4 that f1 + T1 is maximal monotone.
Let (u,w) ∈ G(T1, f1), i.e w − f1u ∈ T1(u).
Putting anj

= (1− tnj
)xnj

and cnj
= anj

− γnj
A∗(Aanj

−Bbnj
), then

wnj
= JT1λ (I − λf1)cnj

,

which implies that

(I − λf1)cnj
∈ (I + λT1)wnj

.

Applying the maximal monotonicity of (T1 + f1), we obtain

〈u− wnj
, w − f1u−

1

λ
(cnj
− λf1cnj

− wnj
)〉 ≥ 0,

and so

〈u− wnj
, w〉 ≥ 〈u− wnj

, f1u+
1

λ
(cnj

+ λf1cn − wnj
)〉

= 〈u− wnj
, f1u− f1wnj

+ f1wnj
− f1cnj

+
1

λ
(cnj
− wnj

)〉

≥ 0 + 〈u− wnj
, f1wnj

− f1cnj
〉+ 〈u− wnj

,
1

λ
(cnj
− wnj

)〉. (3.3.47)

Since

||cnj
− anj

|| = γnj
||A∗(Aanj

−Bbnj
)|| −→ 0, as j →∞

and by (3.3.30)

||wnj
− cnj

|| ≤ ||wnj
− anj

||+ ||anj
− cnj

|| −→ 0, as j →∞, (3.3.48)

it follows that

lim
j→∞
||f1wnj

− f1cnj
|| = 0, (3.3.49)
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and since wnj
⇀ x̄, therefore

lim
j→∞
〈u− wnj

, w〉 = 〈u− x̄, w〉 ≥ 0. (3.3.50)

Using the maximal monotonicity of f1 + T1, we obtain

0 ∈ (T1 + f1)x̄ (3.3.51)

which implies that x̄ ∈ I(f1, T1).
Following similar argument as above, we obtain that ȳ ∈ I(f2, T2).
Next, we show that x̄ ∈ EP (F, φ) and ȳ ∈ EP (G,ψ). Since un = T Frn(wn− rnφwn), n ≥ 0,
we have that for any p ∈ C,

F (un, p) + 〈φwn, p− un〉+
1

rn
〈p− un, un − wn〉 ≥ 0.

By replacing n by nj in the last inequality and using assumption L2, we obtain

〈φwnj
, p− unj

〉+
1

rnj

〈p− unj
, unj

− wnj
〉 ≥ F (p, unj

). (3.3.52)

Let zq = qp + (1 − q)x̄ for all q ∈ (0, 1] and p ∈ C. Since C is a convex set, thus zq ∈ C,
hence, by (3.3.52), we have

〈zq − unj
, φzq〉 ≥ 〈zq − unj

, φzq〉 − 〈zq − unj
, φwnj

〉 − 〈zq − unj
,
unj
− wnj

rnj

〉+ F (zq, unj
)

= 〈zq − unj
, φzq − φunj

〉+ 〈zq − unj
, φunj

− φwnj
〉 − 〈zq − unj

,
unj
− wnj

rnj

〉

+ F (zq, unj
).

From (3.3.40), we obtain that ||φunj
− φwnj

|| → 0, as j →∞ and by the monotonicity
of φ we obtain

〈zq − unj
, φzq − φuuj〉 ≥ 0,

then using assumption L4 in (3.3.52), we obtain (noting that unj
⇀ x̄)

〈zq − x̄, φzq〉 ≥ F (zq, x̄) j →∞,

hence, using assumption L1, we have

0 = F (zq, zq)

= F (zq, qp+ (1− q)x̄)

= qF (zq, p) + (1− q)F (zq, x̄)

≤ qF (zq, p) + (1− q)〈zq − x̄, φzq〉
= qF (zq, p) + (1− q)q〈p− x̄, φzq〉
= q

(
F (zq, p) + (1− q)〈p− x̄, φzq〉

)
. (3.3.53)
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Letting q → 0 and using assumption L3, we have that for each p ∈ C,

0 ≤ F (x̄, p) + 〈p− x̄, φx̄〉, (3.3.54)

which implies that x̄ ∈ EP (F, φ).

Following similar approach as above, we obtain that ȳ ∈ EP (G,ψ). Therefore, (x̄, ȳ) ∈ Γ.

We now show that
(
{xn}, {yn}

)
converges strongly to (x̄, ȳ). From (3.3.12), we obtain

||xn+1 − x̄||2 + ||yn+1 − ȳ||2 ≤ ||(1− tn)xn − x̄||2 + ||(1− tn)yn − ȳ||2

= (1− tn)2
(
||xn − x̄||2 + ||yn − ȳ||2

)
+ t2n(||x̄||2 + ||ȳ||2)

− 2tn(1− tn)
(
〈xn − x̄, x̄〉+ 〈yn − ȳ, ȳ〉

)
≤ (1− tn)

(
||xn − x̄||2 + ||yn − ȳ||2

)
+ tn

(
tn(||x̄||2 + ||ȳ||2)

− 2(1− tn)(〈xn − x̄, x̄〉+ 〈yn − ȳ, ȳ〉)
)
. (3.3.55)

Therefore by Lemma 2.5.6, we have

lim
n→∞

(||xn − x̄||2 + ||yn − ȳ||2) = 0. (3.3.56)

Hence

lim
n→∞

||xn − x̄||2 = lim
n→∞

||yn − ȳ||2 = 0, (3.3.57)

which implies that
(
{xn}, {yn}

)
−→ (x̄, ȳ), n→∞.

Case B: Assume that {||xn− x∗||2 + ||yn− y∗||2} is not monotonically decreasing. Set
ρn = ||xn − x∗||2 + ||yn − y∗||2 and let τ : N → N be a mapping for all n ≥ n0 (for some
large n0) by

τ(n) := max{k ∈ N : k ≤ n, ρk ≤ ρk+1}.

Obviously, τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and ρτ(n) ≤
ρτ(n)+1, ∀n ≥ n0.
Let Kτ(n) = ||A∗(Axτ(n)−Byτ(n))||2 + ||B∗(Axτ(n)−Byτ(n))||2 and τ(n) ∈ Ω, then it follows
from (3.3.16) that

γτ(n)

(
2||Axτ(n) −Byτ(n)||2 − γτ(n)Kτ(n)

)
≤ ρτ(n) −

1

(1− tτ(n))
ρτ(n)+1

+
tτ(n)

(1− tτ(n))
(||x∗||2 + ||y∗||2),

which implies that

εKτ(n) ≤ ρτ(n) −
1

(1− tτ(n))
ρτ(n)+1 +

tτ(n)

(1− tτ(n))
(||x∗||2 + ||y∗||2).

From the condition that
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γτ(n) ∈
(
ε,

2||Axτ(n) −Byτ(n)||2
||A∗(Axτ(n) −Byτ(n))||2 + ||B∗(Axτ(n) −Byτ(n))||2

− ε
)
, τ(n) ∈ Ω,

we have

lim
n→∞

Kτ(n) = lim
n→∞

||A∗(Axτ(n) −Byτ(n))||2 + ||B∗(Axτ(n) −Byτ(n))||2 = 0.(3.3.58)

Observe that Axτ(n) −Byτ(n) = 0, if τ(n) /∈ Ω.
Hence

lim
n→∞

||A∗(Axτ(n) −Byτ(n))||2 = 0, (3.3.59)

lim
n→∞

||B∗(Axτ(n) −Byτ(n))||2 = 0. (3.3.60)

Following the same argument as in Case A, we conclude that there exists a subsequence

of
(
{xτ(n)}, {yτ(n)}

)
denoted as

(
{xτ(n)}, {yτ(n)}

)
for ease of notation which converges

weakly to (x̄, ȳ) ∈ Γ.
Now for all n ≥ n0,

0 ≤ [||xτ(n)+1 − x̄||2 + ||yτ(n)+1 − ȳ||2]− [||xτ(n) − x̄||2 + ||yτ(n) − ȳ]

≤ (1− tτ(n))[||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2] + t2τ(n)(||x̄||2 + ||ȳ||2)

−2tτ(n)(1− tτ(n))[〈xτ(n) − x̄, x̄〉+ 〈yτ(n) − ȳ, ȳ〉]− [||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2],

which implies that

||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2 ≤ tτ(n)(||x̄||2 + ||ȳ||2)− 2(1− tτ(n))[〈xτ(n) − x̄, x̄〉
+ 〈yτ(n) − ȳ, ȳ] −→ 0,

hence,

lim
n→∞

(
||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2

)
= 0, (3.3.61)

therefore,

lim
n→∞

ρτ(n) = lim
n→∞

ρτ(n)+1 = 0. (3.3.62)

Moreover, for n ≥ n0, it is easily observed that ρτ(n) ≤ ρτ(n)+1 if n 6= τ(n) (that is
τ(n) < n) because ρj > ρj+1 for τ(n) + 1 ≤ j ≤ n.
Consequently, for all n ≥ n0,

0 ≤ ρn ≤ max{ρτ(n), ρτ(n)+1} = ρτ(n)+1. (3.3.63)

Thus, lim ρn = 0. That is
(
{xn}, {yn}

)
converges strongly to (x̄, ȳ).

The following consequences are obtained from Theorem 3.3.1.
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Corollary 3.3.2. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed
and convex subsets of H1 and H2 respectively, A : H1 → H3 and B : H2 → H3 be
two bounded linear operators. Assume that F : C × C → R and G : Q × Q → R
are bifunctions satisfying (L1)-(L4). Let φ : C → H1 be α1- inverse strongly monotone
mapping, ψ : Q → H2 be α2- inverse strongly monotone mapping, f1 : C → H1 be µ-
inverse strongly monotone mapping, f2 : C → H2 be ν-inverse strongly monotone mapping,
T1 : H1 → 2H1 and T2 : H2 → 2H2 be two multi-valued maximal monotone mappings. Let
S1 : H1 → H1 and S2 : H2 → H2 be nonexpansive mappings such that F (S1) 6= ∅,
F (S2) 6= ∅. Let

(
{xn}, {yn}

)
be the sequence generated for (x0, y0) ∈ C ×Q defined by

wn = JT1λ (I − λf1)((1− tn)xn − γnA∗(A(1− tn)xn −B(1− tn)yn)),

zn = JT2λ (I − λf2)((1− tn)yn + γnB
∗(A(1− tn)xn −B(1− tn)yn)),

F (un, u) + 〈φwn, u− un〉+
1

rn
〈u− un, un − wn〉 ≥ 0 ∀u ∈ C,

G(vn, v) + 〈ψzn, v − vn〉+
1

rn
〈v − vn, vn − zn〉 ≥ 0 ∀v ∈ Q,

xn+1 = (1− βn)S1un + βnun,
yn+1 = (1− δn)S2vn + δnvn, ∀n ≥ 0,

(3.3.64)

{γn} is a positive real sequence such that

γn ∈
(
ε,

2||Axn −Byn||2
||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2 − ε

)
, n ∈ Ω,

otherwise, γn = γ(γ being any nonnegative value), where the set of indexes Ω = {n :
Axn−Byn 6= 0}, A∗ and B∗ are adjoints of A and B respectively. Suppose {rn} ⊂ (0,∞),
{tn}, {βn} and {δn} are sequences in (0,1) satisfying the following conditions
(i) limn→∞ tn = 0 and

∑∞
n=0 tn =∞;

(ii) 0 < λ < 2µ, 2ν;
(iii) 0 < rn < 2αi, i = 1, 2.

If Γ :=
(
F (S1) ∩ EP (F, φ) ∩ I(f1, T1)

)
×
(
F (S2) ∩ EP (G,ψ) ∩ I(f2, T2)

)
6= ∅, then

the sequence
(
{xn}, {yn}

)
converges strongly to (x̄, ȳ) ∈ Γ.

Corollary 3.3.3. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed
and convex subsets of H1 and H2 respectively, A : H1 → H3 and B : H2 → H3 be
two bounded linear operators. Assume that F : C × C → R and G : Q × Q → R
are bifunctions satisfying (L1)-(L4). Let φ : C → H1 be α1-inverse strongly monotone
mapping, ψ : Q → H2 be α2-inverse strongly monotone mapping, T1 : H1 → 2H1 and
T2 : H2 → 2H2 be two multi-valued maximal monotone mappings. Let S1 : H1 → H1 and
S2 : H2 → H2 be demi-contractive mappings with constants k1 and k2 respectively where
k = max{k1, k2} such that I−S1 and I−S2 are demiclosed at 0 and F (S1) 6= ∅, F (S2) 6= ∅.
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Let
(
{xn}, {yn}

)
be the sequence generated for (x0, y0) ∈ C ×Q defined by

wn = JT1λ ((1− tn)xn − γnA∗(A(1− tn)xn −B(1− tn)yn)),

zn = JT2λ ((1− tn)yn + γnB
∗(A(1− tn)xn −B(1− tn)yn)),

F (un, u) + 〈φwn, u− un〉+
1

rn
〈u− un, un − wn〉 ≥ 0 ∀u ∈ C,

G(vn, v) + 〈ψzn, v − vn〉+
1

rn
〈v − vn, vn − zn〉 ≥ 0 ∀v ∈ Q,

xn+1 = (1− βn)S1un + βnun,
yn+1 = (1− δn)S2vn + δnvn, ∀n ≥ 0,

(3.3.65)

{γn} is a positive real sequence such that

γn ∈
(
ε,

2||Axn −Byn||2
||A∗(Axn −Byn)||2 + ||B∗(Axn −Byn)||2 − ε

)
, n ∈ Ω,

otherwise, γn = γ(γ being any nonnegative value), where the set of indexes Ω = {n :
Axn−Byn 6= 0}, A∗ and B∗ are adjoints of A and B respectively. Suppose {rn} ⊂ (0,∞),
{tn}, {βn} and {δn} are sequences in (0,1) satisfying the following conditions
(i) limn→∞ tn = 0 and

∑∞
n=0 tn =∞;

(ii) 0 < k1 ≤ lim infn→∞ βn and 0 < k2 ≤ lim infn→∞ δn;
(iii) 0 < rn < 2αi, i = 1, 2.

If Γ :=
(
F (S1) ∩ EP (F, φ) ∩ I(T1)

)
×
(
F (S2) ∩ EP (G,ψ) ∩ I(T2)

)
6= ∅, then

the sequence
(
{xn}, {yn}

)
converges strongly to (x̄, ȳ) ∈ Γ.
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3.4 Numerical Example

In this section, we give a numerical example of our Theorem 3.3.1. Using Matlab version
2014a, we show how the sequence values are affected by the number of iterations. This
is done in order to see how the initial values and tolerance levels affect the number of
iterations.

Let H1 = H2 = H3 = R2, together with the usual norm on R2. Let the inner product
〈·, ·〉 : R2 × R2 → R be defined by 〈x̂, ŷ〉 = x̂ · ŷ = x1y1 + x2y2, for all x̂ = (x1, x2)
and ŷ = (y1, y2). Let F : R2 × R2 → R2 and G : R2 × R2 → R2 be defined by F (x̂, ŷ) =
−3x̂2 + x̂ŷ+2ŷ2, G(x̂, ŷ) = −4x̂2 + x̂ŷ+3ŷ2 respectively. Let φ : R2 → R2 and ψ : R2 → R2

be defined by φ(x̂) = x̂ and ψ(x̂) = 2x̂ respectively. It is easy to check that F and G satisfy
condition L1 - L4. For each ŵn ∈ R2, r > 0, Lemma 3.2.3 ensures that there exists ûn ∈ R2

such that for any x̂ ∈ R2

F (ûn, x̂) + 〈φŵn, x̂− ûn〉+
1

rn
〈x̂− ûn, ûn − ŵn〉 ≥ 0. (3.4.1)

⇐⇒ (−3u2
n,1 + un,1x1 + 2x2

1,−3u2
n,2 + un,2x2 + 2x2

2) +
(

(wn,1, wn,2)(x1 − un,1, x2 − un,2)
)

+
1

rn

(
(x1 − un,1, x2 − un,2)(un,1 − wn,1, un,2 − wn,2)

)
≥ 0,

⇐⇒
(
− 3rnu

2
n,1 + rnx1un,1 + 2rnx

2
1 + rnx1wn,1 − rnwn,1un,1,−3rnu

2
n,2 + rnx2un,2

+ 2rnx
2
2 + rnx2wn,2 − rnwn,2un,2

)
+
(
x1un,1 − x1wn,1 − u2

n,1 + un,1wn,1,

x2un,2 − x2wn,2 − u2
n,2 + un,2wn,2

)
≥ 0,

⇐⇒
(
− 3rnu

2
n,1 + rnx1un,1 + 2rnx

2
1 + rnx1wn,1 − rnwn,1un,1 + x1un,1 − x1wn,1 − u2

n,1

+ un,1wn,1,−3rnu
2
n,2 + rnx2un,2 + 2rnx

2
2 + rnx2wn,2 − rnwn,2un,2 + x2un,2

− x2wn,2 − u2
n,2 + un,2wn,2

)
≥ 0,

⇐⇒
(

2rnx
2
1 + rnx1un,1 + x1un,1 + rnx1wn,1 − x1wn,1 − 3rnu

2
n,1 − rnwn,1un,1 − u2

n,1

+un,1wn,1, 2rnx
2
2 + rnx2un,2 + x2un,2 + rnx2wn,2 − x2wn,2 − 3rnu

2
n,2 − rnwn,2un,2

−u2
n,2 + un,2wn,2

)
≥ 0,

⇐⇒
(

2rnx
2
1 + ((rn + 1)un,1 + (rn − 1)wn,1)x1 − 3rnu

2
n,1 − rnwn,1un,1 − u2

n,1 + un,1wn,1,

2rnx
2
2 + ((rn + 1)un,2 + (rn − 1)wn,2)x2 − 3rnu

2
n,2 − rnwn,2un,2 − u2

n,2 + un,2wn,2

)
≥ 0.

Let G(x1) = 2rnx
2
1 + ((rn + 1)un,1 + (rn− 1)wn,1)x1− 3rnu

2
n,1− rnwn,1un,1−u2

n,1 +un,1wn,1,
and G(x2) = 2rnx

2
2 + ((rn + 1)un,2 + (rn−1)wn,2)x2−3rnu

2
n,2− rnwn,2un,2−u2

n,2 +un,2wn,2.
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Then G(x1) and G(x2) are quadratic functions of x1, x2 respectively with coefficients:
a1 = 2rn, b1 = (rn + 1)un,1 + (rn− 1)wn,1, c1 = −3rnu

2
n,1− rnwn,1un,1− u2

n,1 + un,1wn,1,
a2 = 2rn, b2 = (rn + 1)un,2 + (rn− 1)wn,1, c2 = −3rnu

2
n,2− rnwn,2un,2− u2

n,2 + un,2wn,2.
So the determinant ∆1 of G(x1) is obtained as follow

∆1 = b2
1 − 4a1c1

=
(

(rn + 1)un,1 + (rn − 1)wn,1

)2

+ 8rn(3rnu
2
n,1 + rnwn,1un,1 + u2

n,1 − un,1wn,1)

= w2
n,1(rn − 1)2 + 2un,1wn,w(r2

n − 1) + (rn + 1)2u2
n,1 + 24r2

nu
2
n,1 + 8r2

nwn,1un,1

+ 8rnu
2
n,1 − 8rnun,1wn,1

= w2
n,1(rn − 1)2 + r2

nu
2
n,1 + 2rnu

2
n,1 + u2

n,1 + 2r2
nun,1wn,1 − 2un,1wn,1 + 24r2

nu
2
n,1

+ 8r2
nwn,1uu,1 8rnu

2
n,1 − 8rnun,1wn,1

= w2
n,1(rn − 1)2 + 10r2

nun,1wn,1 − 8rnun,1wn,1 − 2un,1wn,1 + 25r2
nu

2
n,1 + 10rnu

2
n,1 + u2

n,1

= w2
n,1(rn − 1)2 + 2un,1wn,1(5r2

n − 4rn − 1) + u2
n,1(25r2

n + 10rn + 1)

= w2
n,1(rn − 1)2 + 2un,1wn,1(rn − 1)(5rn + 1) + u2

n,1(5rn + 1)2

=
(
wn,1(rn − 1) + un,1(5rn + 1)

)2

≥ 0.

Thus ∆1 ≥ 0 ∀x1 ∈ R and if (3.4.1) has at most one solution in R, then ∆1 ≤ 0, so we
obtain ∆1 = 0. Thus

un,1 =
(1− rn)

5rn + 1
wn,1. (3.4.2)

Following similar approach as above, we obtain

un,2 =
(1− rn)

5rn + 1
wn,2. (3.4.3)

Thus from (3.4.2) and (3.4.3), we have

ûn = (un,1, un,2) =
((1− rn)

5rn + 1
wn,1,

(1− rn)

5rn + 1
wn,2

)
=

(1− rn)ŵn
5rn + 1

. (3.4.4)

Similarly, we obtain that

v̂n = (vn,1, vn,2) =
((1− 2rn)

7rn + 1
zn,1,

(1− 2rn)

7rn + 1
zn,2

)
=

(1− 2rn)ẑn
7rn + 1

.

Now, let T1 : R2 → R2 and T2 : R2 → R2 be defined by T1(x̂) = (−2x1,−3x2),
T2(x̂) = (x2 − x1, x2) respectively. From (3.2.1), we obtain the resolvent mappings
associated with T1 and T2 as thus

JT1λ (x̂) = (I + λT1)−1(x̂)

=
[( 1 0

0 1

)
+

(
−2λ 0

0 −3λ

)]−1
(
x1

x2

)
=

(
1− 2λ 0

0 1− 3λ

)−1(
x1

x2

)
47



=
1

(1− 2λ)(1− 3λ)

(
1− 3λ 0

0 1− 2λ

)(
x1

x2

)

=

 1

1− 2λ
0

0
1

1− 3λ

( x1

x2

)
=

( x1

1− 2λ
,

x2

1− 3λ

)
. (3.4.5)

Similarly as (3.4.5), we also obtain

JT2λ (x̂) =
(x1(1 + λ)− λx2

1− λ2
,
x2

1 + λ

)
. (3.4.6)

Let f1 : R2 → R2 and f2 : R2 → R2 be defined by f1(x1, x2) = (2x1, 2x2) and
f2(x1, x2) = (−x1,−x2). Using (3.4.5) and (3.4.6), we obtain

JT1λ (I − λf1)x̂ =

 1 0

0
1− 2λ

1− 3λ

( x1

x2

)
=
(
x1,

(1− 2λ)x2

1− 3λ

)
and

JT2λ (I − λf2)x̂ =

 1 + λ

1− λ
−λ

1− λ
0 1

( x1

x2

)
=
((1 + λ)x1 − λx2

1− λ , x2

)
.

Also let A : R2 → R2 and B : R2 → R2 be defined by

A(x̂) =

(
4 −2
1 3

)(
x1

x2

)
and

B(x̂) =

(
5 6
7 4

)(
x1

x2

)
.

Furthermore, let S1 : R2 → R2 and S2 : R2 → R2 be defined by S1(x̂) = −2x̂ and

S2(x̂) =
−3

2
x̂. Indeed, S1p̂ = p̂ if and only p̂ = 0. It follows that

||S1x̂− S1p̂||2 = || − 2x̂− 0||2 = 4||x̂− 0||2

and

||x̂− S1x̂||2 = ||x̂− (−2x̂)||2 = ||3x̂||2 = 9||x̂− 0||2.

Hence,

||S1x̂− p̂||2 = 4||x̂− 0||2 = ||x̂− 0||2 + 3||x̂− 0||2

= ||x̂− p̂||2 +
1

3
||x̂− S1x̂||2.
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Thus, S1 is
1

3
demi-contractive mapping. Also, S2q̂ = q̂ if and only if q̂ = 0. Thus

||S2ŷ − S2q̂||2 = || − 3

2
ŷ − 0||2 =

9

4
||ŷ − 0||2

and

||ŷ − S2ŷ||2 = ||ŷ − (−3

2
ŷ)||2 = ||5

2
ŷ||2 =

25

4
||ŷ − 0||2 (3.4.7)

Hence

||S2ŷ − q̂||2 =
9

4
||ŷ − 0||2 = ||ŷ − 0||2 +

5

4
||ŷ − 0||2

= ||ŷ − q̂||2 +
1

5
||ŷ − S2ŷ||2.

Thus, S2 is
1

5
demi-contractive mapping.

By choosing tn =
1

n+ 1
, βn =

5n− 1

6(n+ 1)
and δn =

2

3(1 +
1

n
)
, rn =

n+ 1

5n+ 3
,

our iterative scheme (3.3.1) becomes: for x̂0 ∈ R2 and ŷ0 ∈ R2

ŵn =

 1 0

0
1− 2λ

1− 3λ

( n

n+ 1

)(
x̂n − γnAT (Ax̂n −Bŷn)

)
,

ẑn =

 1 + λ

1− λ
−λ

1− λ
0 1

( n

n+ 1

)(
ŷn + γnB

T (Ax̂n −Bŷn)
)
,

ûn =
(2n+ 1

5n+ 4

)
ŵn,

v̂n =
( 3n+ 1

12n+ 10

)
ẑn,

x̂n+1 =
( n+ 7

6(n+ 1)

)
S1ûn +

( 5n− 1

6(n+ 1)

)
ûn, ∀n ≥ 0,

ŷn+1 =
( n+ 3

3(n+ 1)

)
S2v̂n +

( 2n

3(n+ 1)

)
v̂n, ∀n ≥ 0,

(3.4.8)

where AT and BT are transposes of A and B respectively and

γn ∈
(
ε,

2||Ax̂n −Bŷn||2
||A∗(Ax̂n −Bŷn)||2 + ||B∗(Ax̂n −Bŷn)||2 − ε

)
, n ∈ Ω,

otherwise, γn = γ(γ being any nonnegative value), where the set of indexes
Ω = {n : Ax̂n −Bŷn 6= 0},
Case A
(i) Take x̂0 = (1, 0.5)T , ŷ0 = (−0.5, 2.2)T and λ = 0.002.
(ii) Take x̂0 = (10,−5.78)T , ŷ0 = (−0.278, 1)T and λ = 0.1.
Case B
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(i) Take x̂0 = (0.5, 0.003)T , ŷ0 = (0.3, 0.005)T and λ = 0.001.
(ii) Take x̂0 = (1.1, 0.2)T , ŷ0 = (1,−0.2)T and λ = 0.001.

The Mathlab version used is R2014a and the execution times with diffrent tolerance levels
are as follows:

1. (case A(i), ε = 10−4) and execution time is 0.044 sec.

2. (case A(i), ε = 10−6) and execution time is 0.045 sec.

3. (case A(i), ε = 10−12) and execution time is 0.047 sec.

4. (case A(ii), ε = 10−4) and execution time is 0.044 sec.

5. (case A(ii), ε = 10−6) and execution time is 0.046 sec.

6. (case A(ii), ε = 10−12) and execution time is 0.050 sec.

7. (case B(i), ε = 10−4) and execution time is 0.044 sec.

8. (case B(i), ε = 10−6) and execution time is 0.046 sec.

9. (case B(i), ε = 10−12) and execution time is 0.049 sec.

10. (case B(ii), ε = 10−4) and execution time is 0.004 sec.

11. (case B(ii), ε = 10−6) and execution time is 0.044 sec.

12. (case B(ii), ε = 10−12) and execution time is 0.047 sec.

See Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4 to see how the sequence values are
affected by the number of iteration.
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CHAPTER 4

Approximation of Common Solution of Split Equalities for

Generalized Mixed Equilibrium Problem and Fixed Point Problem

for Multi-Valued Mappings in Hilbert Spaces

In this chapter, we introduce an iterative algorithm for approximating a common element
of the set of solutions of split equalities for finite family of generalized mixed equilibrium
problem and the set of common fixed points of k-strictly pseudo-nonspreading multi-valued
mappings of type-one, without prior knowledge of the operator norm in real Hilbert space.
We state and prove a strong convergence theorem for the sequence generated by our
iterative algorithm and give numerical example of our main theorem.

4.1 Introduction

Let X be a normed space, C a nonempty closed subset of X and let CB(X) denote the
family of nonempty closed and bounded subsets of X. The Hausdorff metric on CB(X)
is defined by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y, A)},

for A,B ∈ CB(X), where d(x,B) = inf{||x− y|| : y ∈ B}.
Also, a subset C of X is called proximinal if for each x ∈ X, there exist y ∈ C such that

||x− y|| = inf{||x− u|| : u ∈ C} = d(x,C).

It is well known that every closed convex subset of a uniformly convex Banach space is
proximinal. A multi-valued mapping T : X → 2X is said to be of type-one if for any given
x, y ∈ X,

||u− v|| ≤ H(Tx, Ty), (4.1.1)
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for all u ∈ Tx and v ∈ Ty, [56].
Let T : C → CB(X) be a multi-valued mapping, T is called L-Lipschitzian if there exists
L ≥ 0 such that

H(Tx, Ty) ≤ L||x− y|| ∀x, y ∈ C. (4.1.2)

T is said to be nonexpansive if L = 1, while T is said to be a contraction if L ∈ [0, 1). If
F (T ) 6= ∅ and for all p ∈ F (T ), then T is said to be quasi-nonexpansive if

H(Tx, Tp) ≤ ||x− p|| ∀x ∈ C. (4.1.3)

Let E be a real smooth, strictly convex and reflexive Banach space, and let j denote the
duality mapping of E and C a nonempty, closed and convex subset of E. A single-valued
mapping T : C → C is said to be nonspreading if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x) ∀x, y ∈ C, (4.1.4)

where

φ(x, y) = ||x||2 − 2〈x, jy〉+ ||y||2 ∀x, y ∈ C.

This class of mappings is deduced from the class of single-valued firmly nonexpansive
mappings, see for example [53, 67]. Observe that if E is a real Hilbert space, then j is the
identity and

φ(x, y) = ||x||2 − 2〈x, y〉+ ||y||2 = ||x− y||2.

Thus (4.1.4) becomes

2||Tx− Ty||2 ≤ ||Tx− y||2 + ||Ty − x||2 ∀x, y ∈ C. (4.1.5)

It is shown in [70] that (4.1.5) is equivalent to

||Tx− Ty||2 ≤ ||x− y||2 + 2〈x− Tx, y − Ty〉 ∀x, y ∈ C. (4.1.6)

We observe that if T is a single-valued nonspreading mapping and F (T ) 6= ∅, then T is
quasi-nonexpansive.
A multi-valued mapping T : C → CB(X) is said to be nonspreading if 2||u − v||2 ≤
||u− y||2 + ||v− x||2 for u ∈ Tx and v ∈ Ty. Following the terminology used by Browder-
Petryshyn [25], we say a multi-valued mapping T : C → CB(X) is k-strictly pseudo-
nonspreading mapping of type-one if there exist k ∈ [0, 1) such that

||u− v||2 ≤ ||x− y||2 + k||x− u− (y − v)||2 + 2〈x− u, y − v〉, ∀x, y ∈ C, (4.1.7)

where u ∈ Tx with ||x− u|| = d(x, Tx) and v ∈ Ty with ||y − v|| = d(y, Ty).

Let H1, H2, H3 be real Hilbert spaces, C ⊆ H1 and Q ⊆ H2 be nonempty, closed convex
subsets of H1 and H2 respectively. Let F : C×C → R and G : Q×Q→ R be two nonlinear
bifunctions, T : C → C and P : Q→ Q be two nonlinear mappings and φ : C → R∪{+∞}
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and ϕ : Q→ R ∪ {+∞} be proper lower semicontinuous and convex mappings such that
C∩dom(φ) 6= ∅ and Q∩dom(ϕ) 6= ∅. Let A : H1 → H3 and B : H2 → H3 be bounded
linear mappings. The so-called Split Equality Generalized Mixed Equilibrium Problem
(SEGMEP) is to find x∗ ∈ C and y∗ ∈ Q such that:

F (x∗, x) + 〈T (x∗), x− x∗〉+ φ(x)− φ(x∗) ≥ 0 ∀ x ∈ C,
G(y∗, y) + 〈P (y∗), y − y∗〉+ ϕ(y)− ϕ(y∗) ≥ 0, ∀ y ∈ Q (4.1.8)

and

Ax∗ = By∗.

4.2 Preliminaries

In this section we shall state some well known results which will be used in the sequel to
obtain our result in this chapter.

Lemma 4.2.1. [73] Let C be a nonempty closed convex subset of a real Hilbert space and
S : C → CB(X) be a k strictly pseudo-nonspreading multi-valued mapping and F (S) 6= ∅
with Sp = {p} for p ∈ F (S), then F (S) is closed and convex.

Lemma 4.2.2. [73] Let C be a nonempty closed and convex subset of a real Hilbert space
H and S : C → CB(X) be a k strictly pseudo-nonspreading multi-valued mapping and
F (S) 6= ∅, then (I − S) is demiclosed at 0.

To solve the equilibrium problem, we assume that the bifunction F : C ×C → R satisfies
the conditions L1 - L4 in Section 2.4.1.

Lemma 4.2.3. [99] Let C be a nonempty closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E and let B : C → E∗ be a continuous and
monotone mapping, φ : C → R be a lower semicontinuous and convex function and
F : C × C → R be a bifunction which satisfies (L1)-(L4). Let r > 0 be any given number
and x ∈ E be any given point. Then the following holds:

1. there exist z ∈ C such that

F (z, y) + 〈Bz, y − z〉+ φ(y)− φ(z) +
1

r
〈y − z, jz − jx〉 ≥ 0 ∀y ∈ C, (4.2.1)

where j : E → 2E
∗

is the normalized duality mapping which is defined by

j(x) = {f ∈ E∗ : 〈x, f〉 = ||x||2, ||f || = ||x||} ∀x ∈ E.

2. If we define a resolvent mapping T Fr : H → C by

T Fr (x) = {z ∈ C : F (z, y) + 〈Tz, y − z〉+ φ(y)− φ(z) +
1

r
〈y − z, jz − jx〉 ≥ 0, ∀y ∈ C},

then the following results hold;
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i. for each x ∈ C, T Fr (x) 6= ∅,
ii. T Fr is singled-valued,

iii. T Fr is firmly nonexpansive, i.e for any x, y ∈ H
〈T Fr x− T Fr y, jT Fr x− jT Fr y〉 ≤ 〈T Fr x− T Fr y, jx− jy〉,

iv. F (T Fr ) = GMEP (F,B, φ) and

v. GMEP (F,B, φ) is closed and convex.

We note that if E is a real Hilbert space then j becomes the identity mapping and T Fr is
defined as:

T Fr (x) = {z ∈ C : F (z, y) + 〈Tz, y − z〉+ φ(y)− φ(z) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

Lemma 4.2.4. [117] Let C be a nonempty, closed and convex subset of H. Assume that
the F : C × C → R satisfies L1− L4 and r > 0. Then ∀x ∈ H and q ∈ F (T Fr ),

||T Fr x− x||2 ≤ ||x− q||2 − ||T Fr x− q||2.

4.3 Main Result

In this section, we state and prove our main result in this chapter.

Theorem 4.3.1. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty, closed
convex subsets of H1 and H2 respectively. Assume that for i = 1, 2, ...,m, l = 1, 2..., N ,
Fi : C × C → R and Gl : Q × Q → R are bifunctions which satisfy (L1) − (L4) and
the mappings Ti : C → C and Pl : Q → Q are continuous monotone mappings. Let
φi : C → R ∪ {+∞} and ϕl : Q→ R ∪ {+∞} be proper lower semicontinuous and convex
mappings such that C ∩ domφi 6= ∅ and Q ∩ domϕl 6= ∅ for i = 1, 2, ...,m, l = 1, 2, ...N .
Let CB(C) and CB(Q) be closed and bounded subsets of C and Q respectively and let
S1 : C → CB(C) and S2 : Q → CB(Q) be two k strictly pseudo-nonspreading multi-
valued mappings of type-one with constants k1 and k2 respectively, where k1, k2 ∈ [0, 1).
Assume F (S1) 6= ∅ with S1p = {p} for all p ∈ F (S1) and F (S2) 6= ∅ with S2q = {q}
for all q ∈ F (S2). Let A : H1 → H3 and B : H2 → H3 be two bounded linear operators
and Γ := (F (S1) ∩mi=1 GMEP (Fi, Ti, φi)) × (F (S2) ∩Nl=1 GMEP (Gl, Pl, ϕl)) 6= ∅. Let
(x0, y0) ∈ H1 ×H2 and the iterative scheme ({xn}, {yn}) be defined as follows:

wn = αnu+ (1− αn)xn;
zn = αnv + (1− αn)yn,
un = T Fm

rm,n
◦ T Fm−1

rm−1,n
◦ · · · ◦ T F1

r1,n
(wn − γnA∗(Awn −Bzn)) for ri,n > 0,

vn = TGN
rN,n
◦ TGN−1

rN−1,n ◦ · · · ◦ TG1
r1,n

(zn + γnB
∗(Awn −Bzn)) for rl,n > 0,

xn+1 = (1− βn)un + βndn,
yn+1 = (1− δn)vn + δncn,

(4.3.1)

for every u ∈ C, v ∈ Q, dn ∈ S1un, with ||un − dn|| = d(un, S1un), cn ∈ S2vn, with
||vn − cn|| = d(vn, S2vn), n > 0 and {γn} is a positive real sequence such that
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γn ∈
(
ε,

2||Awn −Bzn||2
||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2 − ε

)
, n ∈ Ω.

Otherwise, γn = γ(γ being any nonnegative value), where the set of indexes
Ω = {n : Awn −Bzn 6= 0}, and {αn}, {βn} and {δn} are sequence in (0,1) such that:

i. limn→∞ αn = 0,

ii.
∑∞

n=0 αn =∞,

iii. βn ∈ (a, 1− k1) ⊆ (0, 1) for some a > 0,

iv. δn ∈ (b, 1− k2) ⊆ (0, 1) for some b > 0.

Then the sequence ({xn}, {yn}) defined by the iterative scheme (4.3.1) converges strongly
to (x̄, ȳ) ∈ Γ.

Proof. : Let (x∗, y∗) ∈ Γ, Θm
n = T Fm

rn,m
T Fm−1
rn,m−1

. . . T F2
rn,2

T F1
rn,1

, where Θ0
n = I and

ψNn = TGN
rn,N

T
GN−1
rn,N−1 . . . T

G2
rn,2

TG1
rn,1

, where ψ0
n = I. Putting an = wn − γnA∗(Awn − Bzn) and

bn = zn + γnB
∗(Awn −Bzn). Then,

||un − x∗||2 = ||Θm
n an − x∗||2

= ||T Fm
rn,m

Θm−1
n an − x∗||2

≤ ||Θm−1
n an − x∗||2

...

≤ ||an − x∗||2
= ||wn − γnA∗(Awn −Bzn)− x∗||2
= ||wn − x∗ − γnA∗(Awn −Bzn)||2
≤ ||wn − x∗||2 + γ2

n||A∗(Awn −Bzn)||2 − 2γn〈wn − x∗, A∗(Awn −Bzn)〉
= ||wn − x∗||2 + γ2

n||A∗(Awn −Bzn)||2 − 2γn〈Awn − Ax∗, Awn −Bzn)〉
= ||wn − x∗||2 + γ2

n||A∗(Awn −Bzn)||2 − γn
(
||Awn − Ax∗||2 + ||Awn −Bzn||2

− ||Bzn − Ax∗||2
)

= ||wn − x∗||2 + γ2
n||A∗(Awn −Bzn)||2 − γn||Awn − Ax∗||2 − γn||Awn −Bzn||2

+ γn||Bzn − Ax∗||2. (4.3.2)

Similarly, we have ||vn − y∗||2 ≤ ||bn − y∗||2 and

||vn − y∗||2 ≤ ||zn − y∗||2 + γ2
n||B∗(Awn −Bzn)||2 + γn||Awn −By∗||2 − γn||Bzn −By∗||2

− γn||Awn −Bzn||2. (4.3.3)

Adding (4.3.2) and (4.3.3) and noting that Ax∗ = By∗, we have

||un − x∗||2 + ||vn − y∗||2 ≤ ||wn − x∗||2 + ||zn − y∗||2 − γn
(

2||Awn −Bzn||2

+γn(||A∗(Awn −Bzn)||2

+ ||B∗(Awn −Bzn)||2)
)
. (4.3.4)
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Therefore,

||un − x∗||2 + ||vn − y∗||2 ≤ ||wn − x∗||2 + ||zn − y∗||2.

Also,

||xn+1 − x∗||2 = ||(1− βn)un + βndn − x∗||2
= ||(1− βn)(un − x∗) + βn(dn − x∗)||2
= (1− βn)||un − x∗||2 + βn||dn − x∗||2 − βn(1− βn)||dn − un||2
≤ (1− βn)||un − x∗||2 + βnH

2(S1un, S1x
∗)− βn(1− βn)||dn − un||2

≤ (1− βn)||un − x∗||2 + βn

(
||un − x∗||2 + k1||un − dn − (x∗ − x∗)||2

+ 2〈un − dn, x∗ − x∗〉
)
− βn(1− βn)||dn − un||2

= (1− βn)||un − x∗||2 + βn||un − x∗||2 + βnk1||un − dn||2
−βn(1− βn)||dn − un||2

= ||un − x∗||2 − βn(1− βn − k1)||un − dn||2. (4.3.5)

Hence,

||xn+1 − x∗||2 ≤ ||un − x∗||2. (4.3.6)

Similarly as (4.3.5), we obtain

||yn+1 − y∗||2 ≤ ||vn − y∗||2 − δn(1− δn − k2)||vn − cn||2. (4.3.7)

Hence,

||yn+1 − y∗||2 ≤ ||vn − y∗||2. (4.3.8)

Thus,

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ ||un − x∗||2 + ||vn − y∗||2
≤ ||wn − x∗||2 + ||zn − y∗||2. (4.3.9)

But

||wn − x∗||2 = ||αnu+ (1− αn)xn − x∗||2
= ||αn(u− x∗) + (1− αn)(xn − x∗)||2
= αn||u− x∗||2 + (1− αn)||(xn − x∗)||2 − αn(1− αn)||xn − u||2
≤ αn||u− x∗||2 + (1− αn)||xn − x∗||2, (4.3.10)

and

||zn − y∗||2 = ||αnv + (1− αn)yn − y∗||2
= ||αn(v − y∗) + (1− αn)(yn − y∗)||2
= αn||v − y∗||2 + (1− αn)||yn − y∗||2 − αn(1− αn)||yn − v||2.
≤ αn||v − y∗||2 + (1− αn)||yn − y∗||2. (4.3.11)
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Therefore,

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ αn||u− x∗||2 + (1− αn)||xn − x∗||2 + αn||v − y∗||2
+ (1− αn)||yn − y∗||2

= αn(||u− x∗||2 + ||v − y∗||2) + (1− αn)(||xn − x∗||2
+||yn − y∗||2)

≤ max{||u− x∗||2 + ||v − y∗||2, ||xn − x∗||2 + ||yn − y∗||2}
≤ max{||u− x∗||2 + ||v − y∗||2, ||x0 − x∗||2 + ||y0 − y∗||2}.

Therefore, {||xn−x∗||2 + ||yn−y∗||2} and consequently {xn}, {yn}, {wn}, {zn}, {un}, {vn},
{Awn} and {Bzn} are bounded.
Also, from (4.3.4), (4.3.5),(4.3.7), (4.3.10) and (4.3.11), we obtain,

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ αn(||u− x∗||2 + ||v − y∗||2) + (1− αn)(||xn − x∗||2
+||yn − y∗||2)− αn(1− αn)(||xn − u||2 + ||yn − v||2)

−γn
(

2||Awn −Bzn||2 + γn(||A∗(Awn −Bzn)||2

+||B∗(Awn −Bzn)||2)
)
− βn(1− βn − k1)||un − dn||2

−δn(1− δn − k2)||vn − cn||2. (4.3.12)

We now divide the rest of the proof into two cases:
Case1: Assume that {||xn − x∗||2 + ||yn − y∗||2} is monotonically decreasing.
Putting ρn(x∗, y∗) := ||xn − x∗||2 + ||yn − y∗||2, we have:

ρn+1(x∗, y∗) ≤ ρn(x∗, y∗) + αn(||u− x∗||2 + ||v − y∗||2)− αn(||xn − x∗||2 + ||yn − y∗||2)

− αn(1− αn)(||xn − u||2 + ||yn − v||2)− γn
(

2||Awn −Bzn||2

+ γn(||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2)
)

−βn(1− βn − k1)||un − dn||2 − δn(1− k2 − δn)||vn − cn||2. (4.3.13)

Clearly, (||xn+1 − x∗||2 + ||yn+1 − y∗)− (||xn − x∗||2 + ||yn − y∗||2) −→ 0 as n→∞.
Putting Kn = ||A∗(Awn − Bzn)||2 + ||B∗(Awn − Bzn)||2 and n ∈ Ω, then it follows from
4.3.13 that

γn

(
2||Awn −Bzn||2 − γnKn

)
≤ αn(||u− x∗||2 + ||v − y∗||2)− αn(1− αn)(||xn − u||2

+ ||yn − v||2)− αn(||xn − x∗||2 + ||yn − y∗||2)

+ρn(x∗, y∗)− ρn+1(x∗, y∗),

which implies that

γnKn ≤ αn(||u− x∗||2 + ||v − y∗||2)− αn(1− αn)(||xn − u||2 + ||yn − v||2)

− αn(||xn − x∗||2 + ||yn − y∗||2) + ρn(x∗, y∗)− ρn+1(x∗, y∗)→ 0, as n→∞.

By the condion
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γn ∈
(
ε,

2||Awn −Bzn||2
||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2 − ε

)
, n ∈ Ω,

we have that,

lim
n→∞

Kn = lim
n→∞

(||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2) = 0. (4.3.14)

Note that Awn −Bzn = 0, if n /∈ Ω. Thus,

lim
n→∞

||A∗(Awn −Bzn)|| = lim
n→∞

||B∗(Awn −Bzn)|| = 0. (4.3.15)

Also from (4.3.12), we have

||xn+1 − x∗||2 + ||yn+1 − y∗||2 ≤ αn(||u− x∗||2 + ||v − y∗||2) + (1− αn)(||xn − x∗||2
+||yn − y∗||2)− αn(1− αn)(||xn − u||2 + ||yn − v||2)

−γ2
n

(
||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2

)
−βn(1− βn − k1)||un − dn||2
−δn(1− δn − k2)||vn − cn||2. (4.3.16)

Therefore from (4.3.15), (4.3.16) and since αn → 0 as n→∞, we have

βn(1− βn − k1)||un − dn||2 −→ 0, as n→∞ (4.3.17)

and

δn(1− δn − k2)||vn − cn||2 −→ 0, as n→∞. (4.3.18)

By conditions iii. and iv., we obtain

lim
n→∞

||un − dn|| = lim
n→∞

||vn − cn|| = 0. (4.3.19)

Also from (4.3.1), we have that

||wn − xn|| = ||αnu+ (1− αn)xn − xn|| = αn||u− xn|| −→ 0, as n→∞, (4.3.20)

and

||zn − yn|| = ||αnv + (1− αn)yn − yn|| = αn||v − yn|| −→ 0, as n→∞. (4.3.21)

Since,

||an − xn||2 = ||wn − γnA∗(Awn −Bzn)− xn||2
= ||wn − xn||2 + γ2

n||A∗(Awn −Bzn)||2 − 2γn〈wn − xn, A∗(Awn −Bzn)〉
≤ ||wn − xn||2 + γ2

n||A∗(Awn −Bzn)||2 + 2γn||wn − xn||||A∗(Awn −Bzn)||.

It follows from (4.3.15) and (4.3.20) that

||an − xn|| −→ 0, as n→∞. (4.3.22)
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Similarly,

||bn − yn||2 ≤ ||zn − yn||2 + γ2
n||A∗(Awn −Bzn)||2 + 2γn||zn − yn||||A∗(Awn −Bzn)||.

From (4.3.21), we obtain

||bn − yn|| → 0, as n→∞. (4.3.23)

By the nonexpansivity of T Fi
rn,m

, for i = 1, 2, ...,m, we know that

||Θm
n an − x∗||2 = ||T Fm

rn,m
Θm−1
n an − x∗||2 ≤ ||Θm−1

n an − x∗||2 ≤ · · · ≤ ||un − x∗||2.(4.3.24)

Also, by the nonexpansivity of TGl
rn,N

for l = 1, 2, ..., N , we know that

||ψNn bn − y∗||2 = ||TGN
rn,N

ψN−1
n bn − y∗||2 ≤ ||ψN−1

n bn − y∗||2 ≤ · · · ≤ ||vn − y∗||2. (4.3.25)

From Lemma 4.2.4, (4.3.6), (4.3.8),(4.3.22), (4.3.23), (4.3.24) and (4.3.25) we have that

||un −Θm−1
n an||2 + ||vn − ψN−1

n bn||2 = ||T Fm
rn,m

Θm−1
n an −Θm−1

n an||2

+||TGN
rn,N

ψN−1
n bn − ψN−1

n bn||2

≤ ||Θm−1
n an − x∗||2 − ||un − x∗||2 + ||ψN−1

n bn − y∗||2
− ||vn − y∗||2

≤ ||an − x∗||2 − ||un − x∗||2 + ||bn − y∗||2
−||vn − y∗||2

= ||an − x∗||2 + ||bn − y∗||2 − (||un − x∗||2
+||vn − y∗||2)

≤ ||an − x∗||2 + ||bn − y∗||2 − (||xn+1 − x∗||2
+||yn+1 − y∗||2)

= ||an − x∗||2 + ||bn − y∗||2 − (||xn − x∗||2
+||yn − y∗||2) + (||xn − x∗||2 + ||yn − y∗||2)

−(||xn+1 − x∗||2 + ||yn+1 − y∗||2) −→ 0,

as n→∞. (4.3.26)

Thus,
lim
n→∞

||un −Θm−1
n an|| = lim

n→∞
||vn − ψN−1

n bn|| = 0. (4.3.27)

Similarly, we have that

||Θm−1
n an −Θm−2

n an||2 + ||ψN−1
n bn − ψN−2

n bn||2 = ||T Fm−1
rn,m−1

Θm−2
n an −Θm−2

n an||2

+ ||TGN−1
rn,N−1

ψN−2
n bn − ψN−2

n bn||2

≤ ||Θm−2
n an − x∗||2 − ||Θm−1

n an − x∗||2
+ ||ψN−2

n bn − y∗||2 − ||ψN−1
n bn − y∗||2

≤ ||an − x∗||2 − ||un − x∗||2
+||bn − y∗||2 − ||vn − y∗||2

≤ ||an − x∗||2 + ||bn − y∗||2
−(||xn+1 − x∗||2 + ||yn+1 − y∗||2) −→ 0,

as n→∞. (4.3.28)
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Thus,
lim
n→∞

||Θm−1
n an −Θm−2

n an|| = lim
n→∞

||ψN−1
n bn − ψN−2

n bn||2 = 0. (4.3.29)

In a similar way, we can verify that

lim
n→∞

||Θm−2
n an −Θm−3

n || = · · · = lim
n→∞

||Θ2
nan −Θ1

nan|| = 0

and
lim
n→∞

||ψN−2
n bn − ψN−3

n bn||2 = · · · = lim
n→∞

||ψ2
nbn − ψ1

nbn||2 = 0. (4.3.30)

From (4.3.27), (4.3.29), (4.3.30), we can conclude that

lim
n→∞

||Θi
nan −Θi−1

n an|| = 0, i = 1, 2, 3, ..m, (4.3.31)

and

lim
n→∞

||ψlnan − ψl−1
n an|| = 0, l = 1, 2, ..., N. (4.3.32)

Thus,

||un − an|| ≤ ||un −Θm−1
n an||+ ||Θm−1

n an −Θm−2
n an||+ ||Θm−2

n an −Θm−3
n an||

+ · · ·+ ||Θ1
nan − an|| −→ 0, as n→∞, (4.3.33)

and

||vn − bn|| ≤ ||vn − ψN−1
n bn||+ ||ψN−1

n bn − ψN−2
n bn||+ ||ψN−2

n bn − ψN−3bn||
+ · · ·+ ||ψ1bn − bn|| −→ 0, as n→∞. (4.3.34)

Therefore, from (4.3.22) and (4.3.33) we obtain

||un − xn|| ≤ ||un − an||+ ||an − xn|| −→ 0, as n→∞. (4.3.35)

Similarly, from (4.3.23) and (4.3.34), we have

||vn − yn|| ≤ ||vn − bn||+ ||bn − yn|| −→ 0, as n→∞. (4.3.36)

Also,

||xn+1 − un|| = ||(1− βn)un + βndn − un|| = βn||(un − dn)||, (4.3.37)

and from (4.3.19), we have that

||xn+1 − un|| −→ 0, as n→∞. (4.3.38)

Therefore, from (4.3.35) and (4.3.38)

||xn+1 − xn|| ≤ ||xn+1 − un||+ ||un − xn|| −→ 0, as n→∞. (4.3.39)

Similarly, from (4.3.19) we have that

||yn+1 − vn|| = ||(1− δn)vn + δncn − vn|| = δn||vn − cn|| −→ 0, as n→∞. (4.3.40)
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Therefore, from (4.3.36) and (4.3.40), we have

||yn+1 − yn|| ≤ ||yn+1 − vn||+ ||vn − yn|| −→ 0 as n→∞. (4.3.41)

Since
(
{xn}, {yn}

)
are bounded, there exist subsequence

(
{xnj
}, {ynj

}
)

such that {xnj
}

converges weakly to x̄ ∈ C and {ynj
} converges weakly to ȳ ∈ Q. From (4.3.35), we have

{unj
} converges weakly to x̄ and by the demi-closedness of I − S1 at 0 and (4.3.19), we

have that x̄ ∈ F (S1). Similarly, {vnj
} converges weakly to ȳ and by the demi-closedness

of I − S2 at 0, we have that ȳ ∈ F (S2).
Also since A : H1 → H3 and B : H2 → H3 are bounded linear mapping and {Awnj

}⇀ Ax̄
and {Bznj

}⇀ Bȳ and by the weak lower semicontinuity of the squared norm, we have

||Ax̄−Bȳ||2 ≤ lim inf
n→∞

||Awnj
−Bznj

||2 = 0. (4.3.42)

Hence,
Ax̄ = Bȳ. (4.3.43)

We now prove that , x̄ ∈ ∩mi=1GMEP (Fi, Ti, φi) and ȳ ∈ ∩Nl=1GMEP (Gl, Pl, ϕl).
For each i = 1,2, ... m, from Lemma 4.2.3, we have that ∀u ∈ C

Fi(Θ
i
nan, u) + 〈TiΘi

nan, u−Θi
nan〉+ φi(u)− φi(Θi

nan) +
1

rn,i
〈u−Θi

nan,Θ
i
nan −Θi−1

n an〉 ≥ 0.

Replacing n by nj and using (L2) and by the monotonicity of Ti, we obtain

φ(u)− φ(Θi
nj
anj

) +
1

rnj ,i

〈u−Θi
nj
anj

,Θi
nj
anj
−Θi−1

nj
anj
〉 ≥ −Fi(Θi

nanj
, u)− 〈TiΘi

nj
anj

,

u−Θi
nj
anj
〉

= Fi(u,Θ
i
nj
anj

) + 〈Tiu,Θi
nj
anj
− u〉.

Thus, for each i = 1,2,..., m,

Fi(u,Θ
i
nj
anj

) + 〈Tiu,Θi
nanj

− u〉 − φi(u) + φi(Θ
i
nj
anj

)− 1

rnj ,i

〈u−Θi
nj
anj

,Θi
nj
anj
−Θi−1

nj
anj
〉 ≤ 0.

By L4,

Θi
nj
anj
−Θi−1

nj
anj

rnj ,i

−→ 0, for each i = 1,2,..., m,

and since
unj

= Θi
nj
anj
−→ x̄,

by the proper lower semicontinuity of φi, it follows that for each i = 1,2,...m,

Fi(u, x̄) + 〈Tiu, x̄− u〉+ φi(x̄)− φi(u) ≤ 0, ∀u ∈ C.
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Putting zt = tu+ (1− t)x̄ for all t ∈ (0, 1] and u ∈ C, since C is a convex set, thus zt ∈ C,
for each i = 1,2,...,m, hence

Fi(zt, x̄) + 〈Tizt, x̄− zt〉+ φi(x̄)− φi(zt) ≤ 0.

So, from (L1), we have for each i = 1,2,..., m,

0 = Fi(zt, zt) + 〈Tizt, zt − zt〉+ φi(zt)− φi(zt)
= Fi(zt, tu+ (1− t)x̄) + 〈Tizt, tu+ (1− t)x̄− zt〉+ φi(tu+ (1− t)x̄)− φi(zt)
= tFi(zt, u) + (1− t)Fi(zt, x̄) + t〈Tizt, u− zt〉+ (1− t)〈Tizt, x̄− zt〉+ tφ(u)

+ (1− t)φ(x̄)− (tφ(zt) + (1− t)φi(zt) )

= t
(
Fi(zt, u) + 〈Tizt, u− zt〉+ φi(u)− φi(zt)

)
+ (1− t)

(
Fi(zt, x̄) + 〈Tizt, x̄− zt〉

+ φi(x̄)− φi(zt)
)

≤ Fi(zt, u) + 〈Tizt, u− zt〉+ φi(u)− φi(zt). (4.3.44)

Hence, we have that for each i = 1,2, ...,m,

Fi(zt, u) + 〈Tizt, u− zt〉+ φi(u)− φi(zt) ≥ 0, ∀ u ∈ C. (4.3.45)

Letting t −→ 0 in (4.3.44), therefore zt ⇀ x̄. For each i=1,2,...m, using the condition (L4)
and the proper lower semi-continuity of φ, we have

Fi(x̄, u) + 〈Tix̄, u− x̄〉+ φi(u)− φi(x̄) ≥ 0, ∀ u ∈ C,

which shows that x̄ ∈ GMEP (Fi, Ti, φi), for each i = 1, 2, ...m. Hence,

x̄ ∈ ∩mi=1GMEP (Fi, Ti, φi).

Following similar argument as the proof above, we have that

ȳ ∈ ∩Nl=1GMEP (Gl, Pl, ϕl).

We now show that ({xn}, {yn}) strongly converges to (x̄, ȳ).
From (4.3.10) and (4.3.11), we have that

||xn+1 − x̄||2 + ||yn+1 − ȳ||2 ≤ ||wn − x̄||2 + ||zn − ȳ||2
= (1− αn)2(||xn − x̄||2 + ||yn − ȳ||2) + α2

n(||u− x̄||2
+||v − ȳ||2) + 2αn(1− αn)(〈u− x̄, xn+1 − x̄〉
+〈v − ȳ, yn+1 − ȳ〉)

≤ (1− αn)
(
||xn − x̄||2 + ||yn − ȳ||2

)
+ αn

(
2(1− αn)

(〈u− x̄, xn+1 − x̄〉+ 〈v − ȳ, yn+1 − ȳ〉) + αn(||u− x̄||2

+ ||v − ȳ||2)
)
. (4.3.46)
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It is clear that (〈u− x̄, xn+1 − x̄〉+ 〈v − ȳ, yn+1 − ȳ〉) −→ 0 and since limn→∞ αn = 0 and∑∞
n=1 αn =∞, it follows from Lemma 2.5.6 that

||xn − x̄||2 + ||yn − ȳ||2 −→ 0 as n→∞. (4.3.47)

Therefore

lim
n→∞

||xn − x̄|| = lim
n→∞

||yn − ȳ|| = 0.

Hence, ({xn}, {yn}) converges strongly to (x̄, ȳ).

Case 2: Assume that {||xn−x∗||2+||yn−y∗||2} is not a monotonically decreasing sequence.
Set ρn = ||xn − x∗||2 + ||yn − y∗||2 and let τ : N 7→ N be a mapping defined for all n ≥ n0

(for some large enough n0) by

τ(n) := max{k ∈ N : k ≤ n, ρk ≤ ρk+1}.

We see that {τ(n)} is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and
ρτ(n) ≤ ρτ(n)+1, for n ≥ n0.
It follows from (4.3.13) that

γ2
τ(n)(||A∗(Awτ(n) −Bzτ(n))||2 + ||B∗(Awτ(n) −Bzτ(n))||2) ≤ ατ(n)(||u− x∗||2 + ||v − y∗||2)

− ατ(n)(1− ατ(n))(||xτ(n) − u||2
+ ||yτ(n) − v||2) + (1− ατ(n))

ρτ(n)(x,
∗ , y∗)− ρτ(n)+1(x∗, y∗).

Using the fact that limn→∞ ατ(n) = 0, therefore,

γ2
τ(n)(||A∗(Awτ(n) −Bzτ(n))||2 + ||B∗(Awτ(n) −Bzτ(n))||2) −→ 0.

By the condition

γτ(n) ∈ (ε,
2||Awτ(n) −Bzτ(n)||2

||A∗(Awτ(n) −Bzτ(n))||2 + ||B∗(Awτ(n) −Bzτ(n))||2
− ε), τ(n) ∈ Ω,

we can conclude that

limn→∞[||A∗(Awτ(n) −Bzτ(n))||2 + ||B∗(Awτ(n) −Bzτ(n))||2] = 0.

Note that Awτ(n) −Bzτ(n) = 0 if τ(n) /∈ Ω. Thus,

limn→∞ ||A∗(Awτ(n) −Bzτ(n))|| = limn→∞ ||B∗(Awτ(n) −Bzτ(n))|| = 0.

By following the same argument as in Case 1, we see that

limn→∞ ||uτ(n) − dτ(n)uτ(n)|| = limn→∞ ||vτ(n) − cτ(n)vτ(n)|| = 0,
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and ({xτ(n)}, {yτ(n)}) converges weakly to (x̄, ȳ) ∈ Γ. Now for all n ≥ n0, we have from
(4.3.46),

0 ≤ ||xτ(n)+1 − x̄||2 + ||yτ(n)+1 − ȳ||2 − (||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2)

≤ (1− ατ(n))[||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2] + 2ατ(n)

(
〈u− x̄, xτ(n)+1 − x̄〉+ 〈v − ȳ,

yτ(n)+1 − ȳ〉
)
− (||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2)

= 2ατ(n)

(
〈u− x̄, xτ(n)+1 − x̄〉+ 〈v − ȳ, yτ(n)+1 − ȳ〉

)
− ατ(n)(||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2)

= ατ(n)

(
2[〈u− x̄, xτ(n)+1 − x̄〉+ 〈v − ȳ, yτ(n)+1 − ȳ〉]− ||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2

)
.

Therefore,

||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2 ≤ 2(〈u− x̄, xτ(n)+1 − x̄〉+ 〈v − ȳ, yτ(n)+1 − ȳ〉).

Thus,

limn→∞(||xτ(n) − x̄||2 + ||yτ(n) − ȳ||2) = 0.

Hence,

limn→∞ ||xτ(n) − x̄||2 = limn→∞ ||yτ(n) − ȳ||2 = 0.

Therefore,

limn→∞ ρτ(n) = limn→∞ ρτ(n)+1.

Futhermore, for n ≥ n0, it is easy to observed that ρτ(n) ≤ ρτ(n)+1 if n 6= τ(n), (that is
τ(n) < n) because ρj > ρj+1 for τ(n) + 1 ≤ j ≤ n. Consequently for all n ≥ n0,

0 ≤ ρn ≤ max{ρτ(n), ρτ(n)+1} = ρτ(n)+1.

So, lim ρn = 0. That is ({xn}, {yn}) converges strongly to (x̄, ȳ). This complete the proof.

We now give the following consequences obtained from Theorem 4.3.1.

Corollary 4.3.2. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty, closed
convex subsets of H1 and H2 respectively. Assume that for i = 1, 2, ...,m, l = 1, 2, ..., N,
Fi : C × C → R and Gl : Q × Q → R are bifunctions which satisfiy (L1) − (L4) and
the mappings Ti : C → C and Pl : Q → Q be continuous monotone mappings. Let
φi : C → R ∪ {+∞} and ϕl : Q→ R ∪ {+∞} be proper lower semicontinuous and convex
mappings such that C ∩ domφi 6= ∅ and Q ∩ domϕl 6= ∅ for i = 1, 2, ...,m, l = 1, 2, ..., N .
Let S1 : C → C and S2 : Q → Q be two k strictly pseudo-nonspreading, (single-valued)
mappings with constants k1 and k2 respectively, where k1, k2 ∈ [0, 1) and F (S1) 6= ∅,
F (S2) 6= ∅ . Suppose A : H1 → H3 and B : H2 → H3 are two bounded linear operators and
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Γ := (F (S1) ∩mi=1 GMEP (Fi, Tiφi)) × (F (S2) ∩Nl=1 GMEP (Gl, Pl, ϕl)) 6= ∅. Let (x0, y0) ∈
C ×Q and the iterative scheme ({xn}, {yn}) be defined as follows:

wn = αnu+ (1− αn)xn,
zn = αnv + (1− αn)yn,
un = T Fm

rm,n
◦ T Fm−1

rm−1,n
◦ · · · ◦ T F1

r1,n
(wn − γnA∗(Awn −Bzn)), for ri,n > 0,

vn = TGN
rN,n
◦ TGN−1

rN−1,n ◦ · · · ◦ TG1
r1,n

(zn + γnB
∗(Awn −Bzn)) for rl,n > 0,

xn+1 = (1− βn)un + βnS1un,
yn+1 = (1− δn)vn + δnS2vn,

(4.3.48)

for every u ∈ C, v ∈ Q,, n > 0, and {γn} is a positive real sequence such that

γn ∈
(
ε,

2||Awn −Bzn||2
||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2 − ε

)
, n ∈ Ω.

Otherwise, γn = γ(γ being any nonnegative value), where the set of indexes Ω = {n :
Awn −Bzn 6= 0} and {αn}, {βn} and {δn} are sequence in (0,1), such that:

i. limn→∞ αn = 0,

ii.
∑∞

n=0 αn =∞,

iii. βn ∈ (a, 1− k1) ⊆ (0, 1) for some a > 0,

iv. δn ∈ (b, 1− k2) ⊆ (0, 1) for some b > 0.

Then the sequence ({xn}, {yn}) defined by the iterative scheme (4.3.48) converges strongly
to {x̄, ȳ} ∈ Γ.

Corollary 4.3.3. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty, closed
convex subsets of H1 and H2 respectively. Assume that F : C×C → R and G : Q×Q→ R
are two bifunctions which satisfiy (L1)−(L4) and the mappings T : C → C and P : Q→ Q
be continuous monotone mappings. Let φ : C → R ∪ {+∞} and ϕ : Q → R ∪ {+∞} be
proper lower semicontinuous and convex mappings such that C∩domφ 6= ∅ and Q∩domϕ 6=
∅. Let CB(C) and CB(Q) be closed and bounded subsets of C and Q respectively and let
S1 : C → CB(C) and S2 : Q → CB(Q) be two k strictly pseudo-nonspreading multi-
valued mappings of type-one with constants k1 and k2 respectively, where k1, k2 ∈ [0, 1)
Assume F (S1) 6= ∅ with S1p = {p} for p ∈ F (S1) and F (S2) 6= ∅ with S2q = {q} for
q ∈ F (S2). Let A : H1 → H3 and B : H2 → H3 be two bounded linear operators and
Γ := (F (S1) ∩ GMEP (F, T, φ)) × (F (S2) ∩ GMEP (G,P, ϕ)) 6= ∅. Let (x0, y0) ∈ C × Q
and the iterative scheme ({xn}, {yn}) be defined as follows:

wn = αnu+ (1− αn)xn,
zn = αnv + (1− αn)yn,
un = T Frn(wn − γnA∗(Awn −Bzn)), for rn > 0,
vn = TGrn(zn + γnB

∗(Awn −Bzn)), for rn > 0,
xn+1 = (1− βn)un + βndn,
yn+1 = (1− δn)vn + δncn,

(4.3.49)

for every u ∈ C, v ∈ Q, dn ∈ S1un, with ||un − dn|| = d(un, S1un), cn ∈ S2vn, with
||vn − cn|| = d(vn, S2vn), n > 0, and {γn} is a positive real sequence such that
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γn ∈
(
ε,

2||Awn −Bzn||2
||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2 − ε

)
, n ∈ Ω.

Otherwise, γn = γ(γ being any nonnegative value), where the set of indexes Ω = {n :
Awn −Bzn 6= 0} and {αn}, {βn} and {δn} are sequence in (0,1) such that:

i. limn→∞ αn = 0,

ii.
∑∞

n=0 αn =∞,

iii. βn ∈ (a, 1− k1) ⊆ (0, 1) for some a > 0,

iv δn ∈ (b, 1− k2) ⊆ (0, 1) for some b > 0.

Then the sequence ({xn}, {yn}) defined by the iterative scheme (4.3.49) converges strongly
to {x̄, ȳ} ∈ Γ.

Remark 4.3.4.

1. If Fi = Gl = Ti = Pl = 0 in Theorem 4.3.1, we obtain a result for solving Split
Equality for system of Convex Minimization Problem SECMP (φi, ϕl) which is to
find x∗ ∈ C and y∗ ∈ Q such that

φi(x) ≥ φi(x
∗), ∀ x ∈ C,

ϕl(y) ≥ ϕl(y
∗), ∀y ∈ Q,

and

Ax∗ = By∗.

2. If Fi = Gl = φi = ϕl = 0 in Theorem 4.3.1, then we obtain a result for solving Split
Equality for system of Variational Inequality Problems SEV IP (Ti, Pl) which is to
find x∗ ∈ C and y∗ ∈ Q such that

〈Tix∗, x− x∗〉 ≥ 0, ∀ x ∈ C
〈Piy∗, y − y∗〉 ≥ 0, ∀ y ∈ Q,

and

Ax∗ = By∗.

3. If H2 = H3 and B = I in Theorem 4.3.1, we obtain a result for solving system of
Split Generalized Mixed Equilibrium Problem SGMEP (Fi, Gl, Ti, Pl, φi, ϕl) which
is to find x∗ ∈ C such that,

Fi(x
∗, x) + 〈Tix∗, x− x∗〉+ φi(x

∗)− φi(x) ≥ 0 ∀x ∈ C and

Ax∗ = y∗ ∈ Q solves Gl(y
∗, y) + 〈Ply∗, y − y∗〉+ ϕl(y

∗)− ϕl(y) ≥ 0 ∀y ∈ Q.
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4.4 Numerical Example

In this section, we give numerical example of Theorem 4.3.1. Using Matlab version 2014a,
we show how the sequence values are affected by the number of iterations.

Let H1 = H2 = H3 = R. Define Fi : R× R → R by Fi(z, y) = −1

2
iz2 +

1

2
iy2, T : R → R

by Ti(z) = iz and φi : R → R ∪ {+∞} by φi(z) =
1

2
iz2, i = 1, 2, ...,m. For each ri > 0

and x ∈ R, Lemma 4.2.3 ensures that there exist z ∈ R such that for any y ∈ R,

Fi(z, y) + 〈Ti, y − z〉+ φi(y)− φi(z) +
1

r
〈z − x, y − z〉 ≥ 0,

⇐⇒ −1

2
iz2 +

1

2
iy2 + iz(y − z) +

1

2
iy2 − 1

2
iz2 +

1

r
(z − x)(y − z) ≥ 0,

⇐⇒ −1

2
iz2 +

1

2
iy2 + izy − iz2 +

1

2
iy2 − 1

2
iz2 +

1

r
(zy − z2 − xy + xz) ≥ 0,

⇐⇒ −2iz2 + iy2 + iyz +
1

r
(zy − z2 − xy + xz) ≥ 0,

⇐⇒ −2irz2 + iry2 + iryz + yz − z2 − xy + xz ≥ 0,

⇐⇒ iry2 + iryz + yz − xy − 2irz2 − z2 + xz ≥ 0,

⇐⇒ iry2 + (irz + z − x)y − (2irz2 + z2 − xz) ≥ 0.

Putting

F (y) = iry2 + (irz + z − x)y − (2irz2 + z2 − xz),

then F (y) is a quadratic function of y with coefficients:

a = ir, b = irz + z − x, and c = (2irz2 + z2 − xz).

We then compute the discriminant ∆ of F as follows:

∆ = b2 − 4ac

= (irz + z − x)2 + 4 · ir(2irz2 + z2 − xz)

= i2r2z2 + irz2 − irzx+ irz2 + z2 − xz − irxz − xz + x2 + 8i2r2z2 + 4irz2

−4irxz

= 9i2r2z2 + 6irz2 − 6irxz − 2xz + z2 + x2

= x2 − 6irxz − 2xz + 9i2r2z2 + 6irz2 + z2

= x2 − 2(3irz + z)x+ (3irz + z)2

=
(
x− (3irz + z)

)2

. (4.4.1)

Thus, ∆ ≥ 0 for all y ∈ R. If it has atmost one solution in R, ∆ ≤ 0, therefore

∆ =
(
x− (3irz + z)

)2

= 0.
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Hence

z =
x

3ir + 1
.

We thus obtained the resolvent function for Fi as

T Fi
ri

=
x

3ir + 1
, for i = 1, 2, . . .m. (4.4.2)

Also, let Gl : R×R→ R by Gl(q, s) = −3lq2 + 2lqs+ ls2, Pl : R→ R by Pl(q) = 2lq and
ϕl : R→ R ∪ {+∞} by ϕi(q) = lq2, for l = 1, 2, ..., N. For each rl > 0 and x ∈ R, Lemma
4.2.3 ensures that there exist q ∈ R such that for any s ∈ R,

Gl(q, s) + 〈Plq, s− q〉+ ϕl(s)− ϕl(q) +
1

rl
〈s− q, q − x〉 ≥ 0,

⇐⇒ −3lq2 + 2lqs+ ls2 + 2lq(s− q) + ls2 − lq2 +
1

r
(s− q)(q − x) ≥ 0,

⇐⇒ −3lq2 + 2lqs+ ls2 + 2lqs− 2lq2 + ls2 − lq2 +
1

r
(sq − sx− q2 + qx) ≥ 0,

⇐⇒ −6lq2 + 2ls2 + 4lqs+
1

r
(sq − sx− q2 + qx) ≥ 0,

⇐⇒ −6lrq2 + 2lrs2 + 4lrqs+ sq − sx− q2 + qx ≥ 0,

⇐⇒ 2lrs2 + (4lrq + q − x)s− 6lrq2 − q2 + qx ≥ 0.

Putting

G(s) = 2lrs2 + (4lrq + q − x)s− 6lrq2 − q2 + qx,

then G(s) is a quadratic function with coefficients:

a = 2lr, b = 4lrq + q − x, c = −(6rlq2 + q2 − qx).

We then compute its discriminant ∆ as follows:

∆ = b2 − 4ac

= (4lrq + q − x)2 + 4 · 2lr(6rlq2 + q2 − qx)

= 16l2r2q2 + 4lrq2 − 4lrqx+ 4lrq2 + q2 − qx− 4lrqx− qx+ x2 + 48l2r2q2 + 8lrq2

−8lrqx

= 64l2r2q2 + 16lrq2 − 16lrqx− 2qx+ q2 + x2

= x2 − 16lrqx− 2qx+ 64l2r2q2 + 16lrq2 + q2

= x2 − 2(8lrq + q)x+ (8lrq + q)2

=
(
x− (8lrq + q)

)2

. (4.4.3)

Thus ∆ ≥ 0 for all s ∈ R and if it has atmost one solution in R, then ∆ ≤ 0.
So we obtain (

x− (8lrq + q)
)2

= 0.
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Hence

q =
x

8lr + 1

we thus obtained the resolvent function for Gl as

TGl
rl
x =

x

8lr + 1
, for l = 1, 2..., N. (4.4.4)

Let S1 : R→ CB(R) with the usual metric on R be defined by

S1x =


x, (−∞, 0),

[−2x, 0] [0,∞).
(4.4.5)

To see that S1 is k strictly pseudo-nonspreading multi-valued mapping of type-one, let
u ∈ S1x, v ∈ S1y. For x, y ∈ (−∞, 0), then u = x and v = y.
Thus

|u− v|2 = |x− y|2 + k|x− u− (y − v)|2 + 2〈x− u, y − v〉 ∀k ∈ [0, 1),

because |u− v|2 = |x− y|2 and k|x− u− (y − v)|2 = 2〈x− u, y − v〉 = 0.

For all x, y ∈ [0,∞), choose u = 0 and v = 0 since

d(x, S1x) = inf{|x+ 2x|, |x− 0|} = |x− 0|,

and

d(y, S1y) = inf{|y + 2y|, |y − 0|} = |y − 0|.

Clearly, S1 is k strictly pseudo-nonspreading multi-valued mapping of type-one.

For x ∈ (−∞, 0) and y ∈ [0,∞), then u = x and v = 0. Thus

|u− v|2 = |x− 0|2 = |x|2 = |x− y + y|2
= |x− y|2 + |y|2 + 2(x− y)(y)

= |x− y|2 +
1

2
|y|2 +

1

2
|y|2 + 2(x− y)(y)

= |x− y|2 +
1

2
|y|2 + (y)

(1

2
(y) + 2(x− y)

)
= |x− y|2 +

1

2
|y|2 + (y)

(
2x− 3y

2

)
≤ |x− y|2 +

1

2
|y|2 (since x ∈ (−∞, 0))

= |x− y|2 +
1

2
|x− x− (y − 0)|2 + 0

= |x− y|2 +
1

2
|x− u− (y − v)|2 + 2(x− u)(y − v).
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Thus, we obtain that S1 is
1

2
strictly pseudo-nonspreading multi-valued mapping of type-

one ∀x, y ∈ R.

Also, let S2 : R→ CB(R) with the usual metric on R be defined by

S2x =


[x , − 3x

2
] (0,∞),

[−3x

2
, 0] (−∞, 0].

(4.4.6)

For all x, y ∈ (0,∞), choose u = x and v = y since

d(x, S2x) = inf{|x− x|, |x+
3x

2
|} = |x− x|,

and

d(y, S2y) = inf{|y − y|, |y +
3y

2
|} = |y − y|.

Thus

|u− v|2 = |x− y|2 + k|x− u− (y − v)|2 + 2〈x− u, y − v〉 ∀k ∈ [0, 1),

since |u− v|2 = |x− y|2 and k|x− u− (y − v)|2 = 2〈x− u, y − v〉 = 0.
Thus S2 is k-strictly pseudo-nonspreading multi-valued mapping of type-one.

For all x, y ∈ (−∞, 0], choose u = 0 and y = 0 since

d(x, S2x) = inf{|x+
3x

2
|, |x− 0|} = |x− 0|,

and

d(y, S2y) = inf{|y +
3y

2
|, |y − 0|} = |y − 0|.

Clearly S2 is k-strictly pseudo-nonspreading multi-valued mapping of type-one.
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For x ∈ (0,∞) and y ∈ (−∞, 0], then u = x and v = 0. Thus

|u− v|2 = |x− 0|2 = |x|2 = |x− y + y|2
= |x− y|2 + |y|2 + 2(x− y)(y)

= |x− y|2 +
1

2
|y|2 +

1

2
|y|2 + 2(x− y)(y)

= |x− y|2 +
1

2
|y|2 + (y)

(1

2
(y) + 2(x− y)

)
= |x− y|2 +

1

2
|y|2 + (y)

(
2x− 3y

2

)
≤ |x− y|2 +

1

2
|y|2 (since y ∈ (−∞, 0])

= |x− y|2 +
1

2
|x− x− (y − 0)|2 + 0

= |x− y|2 +
1

2
|x− u− (y − v)|2 + 2(x− u)(y − v).

Thus, S2 is 1
2

strictly pseudo-nonspreading multi-valued mapping of type-one ∀x, y ∈ R.

Let A : R → R and B : R → R by A(x) =
x

2
and B(x) = 3x, then A and B

are bounded linear operators with adjoints A∗(x) =
x

2
and B∗(x) = 3x respectively.

Choosen αn =
1

n+ 1
, βn =

1− 1

n

5(1 +
1

n
)
, δn =

2

7(1 +
1

n
)
, ri,n = n

in+3
, i = 1, 2, ..., 5, and

rl,n = n
ln+3

, l = 1, 2, ..., 5, then our iterative scheme (4.3.1) becomes: for x0, y0, u and
v ∈ R, 

wn =
1

n+ 1
u+ (

n

n+ 1
)xn,

zn =
1

n+ 1
v + (

n

n+ 1
)yn,

un =
(

Π5
i=1

1

3iri,n + 1

)
(wn − γnA∗(Awn −Bzn)),

vn =
(

Π5
l=1

1

8lrl,n + 1

)
(zn + γnB

∗(Awn −Bzn)),

xn+1 =
4n+ 6

5(n+ 1)
un +

n− 1

5(n+ 1)
dn, ∀n ≥ 0,

yn+1 =
5n+ 7

7(n+ 1)
vn +

2n

7(n+ 1)
cn, ∀n ≥ 0,

(4.4.7)

where dn ∈ S1un such that dn = un if un < 0 and dn = 0 if un ≥ 0, also cn ∈ S2vn such
that cn = vn if vn < 0 and cn = 0 if vn ≥ 0, A∗ = A, B∗ = B and

γn ∈
(
ε,

2||Awn −Bzn||2
||A∗(Awn −Bzn)||2 + ||B∗(Awn −Bzn)||2 − ε

)
, n ∈ Ω.

Otherwise, γn = γ(γ being any nonnegative value), where the set of indexes Ω = {n :
Awn −Bzn 6= 0}.
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Case I.
(a) Take x0 = 1, y0 = −1, u = 0.5 and v = 1.
(b) Take x0 = 1, y0 = 1, u = 0.5 and v = 1.

Case II.
(a) Take x0 = 0.02, y0 = 0.3, u = 0.03 and v = 0.005.
(b) Take x0 = 0.1, y0 = 1, u = 0.2 and v = 0.2

The Matlab version used is R2014a and the execution times are as follows:

1. (case Ia, ε = 10−4) and execution time is 0.024 sec.

2. (case Ia, ε = 10−6) and execution time is 0.025 sec.

3. (case Ib, ε = 10−4) and execution time is 0.019 sec.

4. (case Ib, ε = 10−6) and execution time is 0.025 sec.

5. (case IIa, ε = 10−4) and execution time is 0.019 sec.

6. (case IIa, ε = 10−6) and execution time is 0.025 sec.

7. (case IIb, ε = 10−4) and execution time is 0.021 sec.

8. (case IIb, ε = 10−6) and execution time is 0.025 sec.

See Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 to see how the sequence values are
affected by the number of iterations.
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CHAPTER 5

Approximation of Common Fixed Points for Bregman Mappings

and Common solutions of Convex Minimization and Variational

Inequality Problems in Reflexive Banach Spaces

In this chapter, we propose an iterative algorithm for approximating a common fixed point
of an infinite family of quasi-Bregman nonexpansive mappings which is also a solution to
finite systems of convex minimization problems and variational inequality problems in
real reflexive Banach spaces. We obtain a strong convergence result and give applications
of our result to finding zeroes of infinite family of Bregman inverse strongly monotone
operators and finite system of equilibrium problems in real reflexive Banach spaces.

5.1 Introduction

Let A be a monotone mapping defined from C into E∗ and NC{q} be a normal cone to C
at q ∈ E, i.e NC{q} = {ξ ∈ E∗ : 〈ξ, q − u〉 ≥ 0, ∀u ∈ C}. Define a mapping M by

Mq =


Aq +NC{q}, q ∈ C

∅, q /∈ C.
(5.1.1)

Then M is maximal monotone and x∗ ∈M−1(0∗)⇐⇒ x∗ ∈ VI(C,A), (see, e.g [106]). The
resolvent of M is the operator ResfM : E → 2E defined as follow (see [10])

ResfM(x) = (∇f +M)−1 ◦ ∇f(x). (5.1.2)

It is well-known that ResfM is BFNE and single-valued on its domain if f |int(domf) is strictly
convex (see [10], Proposition 3.8(iv)).
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For any r > 0, the Yosida approximation of A is defined by

Mr(x) =
1

r

(
∇f(x)−∇f(ResfrM(x)

)
, (5.1.3)

(see [103]). From Proposition 2.7 in [103], we know that (ResfrM(x),Mr(x)) ∈ G(M) and
0∗ ∈ Mx if and only if 0∗ ∈ Mrx for all r > 0. Also, it is known that if F (Resfr,M) 6= ∅,
for all x ∈ E and q ∈ F (ResfrM), we have

Df (q, Res
f
rM(x)) +Df (Res

f
rM(x), x) ≤ Df (q, x), (5.1.4)

(see [103]).

Consider the following constrained convex minimization problem:

minimize{φ(x) : x ∈ C}, (5.1.5)

where φ : C → R ∪ +∞ is a real-valued convex function. We say that the minimization
problem is consistent if the minimization problem has a solution. The gradient projection
method for finding the approximate solutions of the constrained convex minimization
problem in Hilbert spaces is based on the behavior of the gradient of the objective function
∇φ such as strongly monotone and L- Lipschitzian (see, [30, 31, 113] and reference therein).
However, there are several difficulties on extending this method to Banach spaces, (see for
example [29]).
One way to overcome these difficulties is to use the proximal operator introduced by
Bauschke, Borwein and Combettes (see [10]). If f : E → R ∪ {+∞} is a Legendre and
convex function, then the operator proxφλ : E → 2E is given by

proxφλ =
(
∂(f + λφ)

)−1

◦ ∇f, λ > 0 (5.1.6)

and is well defined, where φ : E → R∪{+∞} is lower semicontinuous and convex function
such that dom(f)∩dom(φ) 6= ∅. The fixed point of proxφλ, F (proxφλ) is a solution of (5.1.5)
(see [10], Proposition 3.22).
In order to prove the convergence of the iterates of proxφλ, we need nonexpansivity proper-
ties of this resolvent operator. Bauschke, Borwein and Combettes [10] introduced the class
of Bregman firmly nonexpansive operators and proved that the resolvent proxφλ belongs

to this class under the range condition: ran(proxφλ) ⊂ int(domf) and proved many other
properties of this resolvent (see [10]).

5.2 Preliminaries

In this section, we shall state some known results that will be used in the sequel.

Definition 5.2.1. Let f : E → R∪{+∞} be a convex and Gâteaux differentiable function.
The Bregman projection of x ∈ int(domf) onto the nonempty, closed and convex subset
C ⊂ int(domf) is defined as the necessarily unique vector ProjfC(x) ∈ C satisfying

Df (Proj
f
C(x), x) = inf{Df (y, x) : y ∈ C}. (5.2.1)
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It is known from [29] that z = ProjfC(x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0 for all y ∈ C. (5.2.2)

We also have

Df (y, Proj
f
C(x)) +Df (Proj

f
C(x), x) ≤ Df (y, x) for all x ∈ E, y ∈ C. (5.2.3)

Lemma 5.2.1. [101] (Characterization of Bregman Projection): Let f be totally con-
vex on int(domf). Let C be a nonempty, closed and convex subset of int(domf) and
x ∈int(domf), if ω ∈ C, then the following conditions are equivalent:

i. the vector ω is the Bregman projection of x onto C, with respect to f ,

ii. the vector ω is the unique solution of the variational inequality

〈∇f(x)−∇f(z), z − y〉 ≥ 0 ∀y ∈ C,

iii. the vector ω is the unique solution of the inequality

Df (y, z) +Df (z, x) ≤ Df (y, x) ∀y ∈ C.

Lemma 5.2.2. [98] Let E be a real reflexive Banach space, let f : E → R ∪ {+∞} be
a proper semicontinuous function, then f ∗ : E∗ → R ∪ {+∞} is a proper weak∗ lower
semicontinuous and convex function. Thus for all z ∈ E one has

Df

(
z,∇f ∗(

N∑
i=1

ti∇f(xi))
)
≤

N∑
i=1

tiDf (z, xi). (5.2.4)

Lemma 5.2.3. [68] Let E be a reflexive Banach space, let f : E → R be a strong coercive
Bregman function and let Vf : E × E∗ → [0,+∞) be defined by

Vf (x, x
∗) = f(x)− 〈x, x∗〉+ f ∗(x∗), x ∈ E, x∗ ∈ E∗, (5.2.5)

then the following assertions hold:

i. Df (x,∇f(x∗)) = Vf (x, x
∗) for all x ∈ E and x∗ ∈ E∗,

ii. Vf (x, x
∗) + 〈∇f ∗(x∗)− x, y∗〉 ≤ Vf (x, x

∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 5.2.4. [29] Let f : E → R ∪ {+∞} be a convex function whose domain contains
at-least two points. Then the following statements holds:

i. f is sequentially consistent if and only if it is totally convex on bounded subsets.

ii. If f is lower semicontinuous, then f is sequential consistent if and only if it is uni-
formly convex on bounded subsets.
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iii. If f is uniformly strictly convex on bounded subsets, then it is sequentially consistent
and the converse implication holds when f is lower semicontinuous, Fréchet differ-
entiable on its domain, and the Fréchet derivative ∇f is uniformly continuous on
bounded subsets.

Lemma 5.2.5. [89] Let r > 0 be a constant and let f : E → R be a continuous uniformly
convex function on bounded subsets of E. Then

f
( ∞∑
k=0

αkxk

)
≤

∞∑
k=0

αkf(xk)− αiαjρr(||xi − xj||), (5.2.6)

for all i, j ∈ N ∪ 0, xk ∈ Br, αk ∈ (0, 1) and k ∈ N ∪ 0 with
∑∞

k=0 αk = 1, where ρr is the
guage of uniform convexity of f .

Lemma 5.2.6. [101] If f : E → R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from the
strong topology of E to the strong topology of E∗.

Lemma 5.2.7. [26] The function f : E → R is totally convex on bounded subsets if and
only if it is sequentially consistent.

Lemma 5.2.8. [103] Let f : E → R be a Gâteaux differentiable and totally convex func-
tion. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the sequence {xn} is also
bounded.

Lemma 5.2.9. [77] Let {an} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} such that ani

< ani+1 for all i ∈ N. Consider the integer {mk} defined
by

mk = max{j ≤ k : aj < aj+1}.
Then {mk} is a nondecreasing sequence verifying limn→∞mn =∞, and for all k ∈ N the
following estimate hold:

amk
≤ amk+1, and ak ≤ amk+1.

We prove the following lemma.

Lemma 5.2.10. Let f : E → R be a convex and Gáteaux differentiable function. Let φ :
E → R∪{+∞} be lower semi-continuous and convex function such that dom(f)∩dom(φ) 6=
∅ and ran(proxφλ) ⊂ int(domf). For all x ∈ E, u ∈ F (proxfλ) and λ > 0, then we have the
following

Df (u, prox
φ
λ(x)) +Df (prox

φ
λ(x), x) ≤ Df (u, x). (5.2.7)

Proof. Since proxfλ is a BFNE operator, it follows from (2.3.16) that for all x, y ∈ E,

Df (prox
φ
λ(x), proxφλ(y)) +Df (prox

φ
λ(y), proxφλ(x)) ≤ Df (prox

φ
λ(x), y)−Df (prox

φ
λ(x), x)

+ Df (prox
φ
λ(y), x)

−Df (prox
φ
λ(y), y).
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Letting y = u ∈ F (proxφλ), we have

Df (prox
φ
λ(x), u) +Df (u, prox

φ
λ(x)) ≤ Df (prox

φ
λ(x), u)−Df (prox

φ
λ(x), x) +Df (u, x)

−Df (u, u).

Thus

Df (u, prox
φ
λ(x)) +Df (prox

φ
λ(x), x) ≤ Df (u, x).

5.3 Main result

We are now in the position to state and prove the main result of this chapter.

Theorem 5.3.1. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. For each
l = 1, 2, ..., N , let φl : C → R∪ {+∞} be proper lower semicontinuous functions such that
domf∩domφl 6= ∅ and ran(proxφlλ ) ⊂ int(domf). For k = 1, 2, ...,m let Ak : C → E∗ be
continuous and monotone operators and let {Ti}∞i=1 be sequence of uniformly continuous
quasi-Bregman nonexpansive mappings from C into itself, such that F (Ti) = F̂ (Ti) for all

i ≥ 1. Suppose Γ :=
(
∩∞i=1 F (Ti)

)
∩
(
∩Nl=1 F (proxφlλn)

)
∩
(
∩mk=1 V I(C,Ak)

)
6= ∅. For

u, x0 ∈ C, let {xn} be iteratively generated by
un = proxφNλn ◦ prox

φN−1

λn
◦ ... ◦ proxφ1λn

(
∇f ∗(αn∇f(u) + (1− αn)∇f(xn))

)
,

yn = ResfrnBm
◦ResfrnBm−1

◦ ... ◦ResfrnB1
un,

xn+1 = ∇f ∗
(
β0,n∇f(yn) +

∑∞
i=1 βi,n∇f(Tiyn)

)
, n ≥ 0,

(5.3.1)

where

Bkx =


Akx+NC{x}, x ∈ C

∅, x /∈ C,
(5.3.2)

for k = 1, 2, . . . ,m and NC{x} is a normal cone to C at x ∈ E and λn, rn > 0, {αn} and
{βn} are two sequences in (0, 1) such that

i. limn→∞ αn = 0 and
∑∞

n=0 αn =∞,

ii. lim infn→∞ βi,n > 0 and
∑∞

i=0 βi,n = 1,

iii. lim infn→∞ rn ≥ 0.
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Then {xn} converges strongly to ProjfΓu, where ProjfΓ is the Bregman projection of C onto
Γ.

Proof. Let x∗ = ProjfΓu. Putting ΘN
n = proxφNλn prox

φN−1

λn
. . . proxφ1λn , where Θ0

n = I

and Ψmn = ResfrnBm
ResfrnBm−1

. . . ResfrnB1
, where Ψ 0

n = I. Let wn = ∇f ∗(αn∇f(u)
+ (1− αn)∇f(xn)), then

Df (x
∗, un) = Df (x

∗,ΘN
n wn)

≤ Df (x
∗,ΘN−1

n wn)
...

≤ Df (x
∗, wn)

= Df (x
∗,∇f ∗

(
αn∇f(u) + (1− αn)∇f(xn)

)
)

≤ αnDf (x
∗, u) + (1− αn)Df (x

∗, xn). (5.3.3)

Also,

Df (x
∗, xn+1) = Df

(
x∗,∇f ∗(β0,n∇f(yn) +

∞∑
i=1

βi,n∇f(Tiyn))
)

≤ β0,nDf (x
∗, yn) +

∞∑
i=1

βi,nDf (x
∗, Tiyn)

≤ β0,nDf (x
∗, yn) +

∞∑
i=1

βi,nDf (x
∗, yn)

= Df (x
∗, yn)

= Df (x
∗, Ψmn un)

≤ Df (x
∗, Ψm−1

n un)
...

≤ Df (x
∗, un). (5.3.4)

Therefore, it follows from (5.3.3) and (5.3.4) that

Df (x
∗, xn+1) ≤ αnDf (x

∗, u) + (1− αn)Df (x
∗, xn)

≤ max
{
Df (x

∗, u), Df (x
∗, xn)

}
...

≤ max
{
Df (x

∗, u), Df (x
∗, x0)

}
. (5.3.5)

Therefore {Df (x
∗, xn)} is bounded and by Lemma 5.2.8, we obtain that {xn} is bounded.

Furthermore, let s = sup{||∇f(yn)||, ||∇f(Tiyn)||} and ρ∗s : E∗ → R be the guage of
uniform convexity of the conjugate function f ∗. From Lemma 5.2.3, Lemma 5.2.5, (5.3.1)
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and (5.3.4), we have

Df (x
∗, xn+1) = Df

(
x∗,∇f ∗(β0,n∇f(yn) +

∞∑
i=1

βi,n∇f(Tiyn))
)

≤ Vf

(
x∗, β0,n∇f(yn) +

∞∑
i=1

βi,n∇f(Tiyn)
)

= f(x∗)− 〈x∗, β0,n∇f(yn) +
∞∑
i=1

βi,n∇f(Tiyn)〉+ f ∗
(
β0,n∇f(yn)

+
∞∑
i=1

βi,n∇f(Tiyn)
)

≤ β0,nf(x∗) +
∞∑
i=1

βi,nf(x∗)− β0,n〈x∗,∇f(yn)〉 −
∞∑
i=1

βi,n〈x∗,∇f(Tiyn)〉

+ β0,nf
∗(∇f(yn)) +

∞∑
i=1

βi,nf
∗(∇f(Tiyn))

−β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
= β0,n

[
f(x∗)− 〈x∗,∇f(yn)〉+ f ∗(∇f(yn))

]
+
∞∑
i=1

βi,n

[
f(x∗)− 〈x∗,∇f(Tiyn)〉

+ f ∗(∇f(Tiyn))
]
− β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
= β0,nDf (x

∗, yn) +
∞∑
i=1

βi,nDf (x
∗, Tiyn)− β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
≤ β0,nDf (x

∗, yn) +
∞∑
i=1

βi,nDf (x
∗, yn)− β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
.

= Df (x
∗, yn)− β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
.

Thus

Df (x
∗, xn+1) ≤ αnDf (x

∗, u) + (1− αn)Df (x
∗, xn)

−β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
. (5.3.6)

We now divide the rest of the proof into two cases.
Case I: Assume that {Df (x

∗, xn)} is monotonically decreasing. Then {Df (x
∗, xn)} con-

verges and Df (x
∗, xn+1) − Df (x

∗, xn) → 0 as n → ∞. Thus from (5.3.6), using the fact
that limn→∞ αn = 0, we obtain

lim
n→∞

β0,n

∞∑
i=1

βi,nρ
∗
s

(
||∇f(yn)−∇f(Tiyn)||

)
= 0. (5.3.7)
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Since lim infn→∞ βi,n > 0 and by the property of ρ∗s, we have

lim
n→∞

||∇f(yn)−∇f(Tiyn)|| = 0, ∀i = 1, 2, .... (5.3.8)

Since f is strongly coercive and uniformly convex on bounded susets of E, f ∗ is uniformly
Fréchet differentiable on bounded sets, then from (5.3.8), we obtain

lim
n→∞

||yn − Tiyn|| = 0, ∀i = 1, 2, .... (5.3.9)

We note that

lim
n→∞

Df (wn, xn) = lim
n→∞

[Df (∇f ∗(αn∇f(u) + (1− αn)∇f(xn), xn)]

≤ lim
n→∞

[αnDf (u, xn) + (1− αn)Df (xn, xn)]

= 0. (5.3.10)

By Lemma 5.2.7, we have

lim
n→∞

||wn − xn|| = 0. (5.3.11)

Since f is uniformly Fréchet differentiable on bounded subset of E, then by Lemma 5.2.4,
we have

lim
n→∞

||∇f(wn)−∇f(xn)|| = 0. (5.3.12)

Also, since f is uniformly Fréchet differentiable on bounded subset of E, then f is uniformly
continuous on bounded subset of E, thus we have

lim
n→∞

||f(wn)− f(xn)|| = 0. (5.3.13)

From the three-point identity property of the Bregman distance function (2.3.9), we know
that

Df (x
∗, wn)−Df (x

∗, xn) = 〈∇f(xn)−∇f(wn), x∗ − wn〉 −Df (wn, xn)

= 〈∇f(xn)−∇f(wn), x∗ − wn〉+ f(xn)− f(wn)

+〈∇f(xn), wn − xn〉. (5.3.14)

Thus, it follows from (5.3.11), (5.3.12), (5.3.13) and (5.3.14) that

lim
n→∞

[Df (x
∗, wn)−Df (x

∗, xn)] = 0. (5.3.15)

Since x∗ ∈ F (proxφNλn ) for all n ≥ 0, we observe that

Df (x
∗,ΘN

n wn) = Df (x
∗, proxφNλn ΘN−1

n wn) ≤ Df (x
∗,ΘN−1

n wn) ≤ ... ≤ Df (x
∗, wn).(5.3.16)

By Lemma 5.2.10, (5.3.4), (5.3.15) and (5.3.16), we obtain

Df (un,Θ
N−1
n wn) ≤ Df (x

∗,ΘN−1
n wn)−Df (x

∗, un)

≤ Df (x
∗, wn)−Df (x

∗, xn+1)

= Df (x
∗, wn)−Df (x

∗, xn) +Df (x
∗, xn)

−Df (x
∗, xn+1) −→ 0, as n→∞. (5.3.17)
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Thus

lim
n→∞

||un −ΘN−1
n wn|| = 0. (5.3.18)

Similarly, we have

Df (Θ
N−1
n wn,Θ

N−2
n wn) ≤ Df (x

∗,ΘN−2
n wn)−Df (x

∗,ΘN−1
n wn)

≤ Df (x
∗, wn)−Df (x

∗, xn+1)

= Df (x
∗, wn)−Df (x

∗, xn) +Df (x
∗, xn)

−Df (x
∗, xn+1) −→ 0, as n→∞,

and

lim
n→∞

||ΘN−1
n wn −ΘN−2

n wn|| = 0. (5.3.19)

In a similar way, we can verify that

lim
n→∞

||ΘN−2
n wn −ΘN−3

n wn|| = lim
n→∞

||ΘN−3
n wn −ΘN−4

n wn|| =
= · · · = lim

n→∞
||Θ1

nwn − wn|| = 0. (5.3.20)

Hence,

lim
n→∞

||un − wn|| ≤ lim
n→∞

||un −ΘN−1
n wn||+ lim

n→∞
||ΘN−1

n wn −ΘN−2
n wn||

+ · · ·+ lim
n→∞

||Θ1
nwn − wn|| = 0. (5.3.21)

Therefore, from (5.3.11) and (5.3.21), we have

lim
n→∞

||un − xn|| ≤ lim
n→∞

||un − wn||+ lim
n→∞

||wn − xn|| = 0. (5.3.22)

Furthermore, since f is uniformly Fréchet differentiable on bounded subset of E, then by
Lemma 5.2.4, we have

lim
n→∞

||∇f(un)−∇f(xn)|| = 0. (5.3.23)

Also, since f is uniformly Fréchet differentiable on bounded subset of E, then f is uniformly
continuous on bounded subset of E, thus we have

lim
n→∞

||f(un)− f(xn)|| = 0. (5.3.24)

Also, from the three-point identity of Bregman distance function, we obtain

Df (x
∗, xn)−Df (x

∗, un) = 〈∇f(un)−∇f(xn), x∗ − xn〉 −Df (xn, un)

= 〈∇f(un)− f(xn), x∗ − xn〉+ f(un)− f(xn)

+〈∇f(un), xn − un〉. (5.3.25)

It follows from (5.3.22), (5.3.23), (5.3.24) and (5.3.25) that

lim
n→∞

[
Df (x

∗, xn)−Df (x
∗, un)

]
= 0. (5.3.26)
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Also, since x∗ ∈ F (ResfrnBm
), we observe that

Df (x
∗, Ψmn un) = Df (x

∗, ResfrnBm
Ψm−1
n un) ≤ Df (x

∗, Ψm−1
n un) ≤ ... ≤ Df (x

∗, un).(5.3.27)

Hence, from (5.3.4), (5.3.26) and (5.3.27), we have

Df (yn, Ψ
m−1
n un) = Df (Res

f
rn,Bm

Ψm−1
n un, Ψ

m−1
n un)

≤ Df (x
∗, Ψm−1

n un)−Df (x
∗, yn)

≤ Df (x
∗, un)−Df (x

∗, xn+1)

= Df (x
∗, un)−Df (x

∗, xn) +Df (x
∗, xn)

−Df (x
∗, xn+1) −→ 0, as n→∞. (5.3.28)

By Lemma 5.2.7, we have

lim
n→∞

||yn − Ψm−1
n un|| = 0. (5.3.29)

Hence

lim
n→∞

||∇f(yn)−∇f(Ψm−1
n un)|| = 0. (5.3.30)

Similarly

Df (Ψ
m−1
n un, Ψ

m−2
n un) ≤ Df (x

∗, Ψm−2
n un)−Df (x

∗, Ψm−1
n un)

≤ Df (x
∗, un)−Df (x

∗, xn+1)

= Df (x
∗, un)−Df (x

∗, xn) +Df (x
∗, xn)

−Df (x
∗, xn+1) −→ 0, as n→∞. (5.3.31)

By Lemma 5.2.7, we have

lim
n→∞

||Ψm−1
n un − Ψm−2

n un|| = 0, (5.3.32)

and hence,

lim
n→∞

||∇f(Ψm−1
n un)−∇f(Ψm−2

n un)|| = 0. (5.3.33)

In a similar way, we can verify that

lim
n→∞

||Ψm−2
n un − Ψm−3

n un|| = lim
n→∞

||Ψm−3
n un − Ψm−4

n un|| =
... = lim

n→∞
||Ψ 1

nun − un|| = 0. (5.3.34)

Therefore, we conclude that

lim
n→∞

||Ψknun − Ψk−1
n un|| = 0, ∀ k = 1, 2, ...,m. (5.3.35)

Hence

lim
n→∞

||∇f(Ψknun)−∇f(Ψk−1
n un)|| = 0, ∀ k = 1, 2, ...,m. (5.3.36)
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From (5.3.29) - (5.3.36), we obtain

lim
n→∞

||yn − un|| ≤ lim
n→∞

||yn − Ψm−1
n un||+ lim

n→∞
||Ψm−1

n un − Ψm−2
n un||+

...+ lim
n→∞

||Ψ 1
nun − un|| = 0. (5.3.37)

Thus

lim
n→∞

||∇f(yn)−∇f(un)|| = 0. (5.3.38)

Therefore, from (5.3.22) and (5.3.37), we have

||yn − xn|| ≤ ||yn − un||+ ||un − xn|| −→ 0, n→∞. (5.3.39)

Since Ti is uniformly continuous for i = 1, 2, ..., it follows from (5.3.9) and (5.3.39) that

||xn − Tixn|| ≤ ||xn − yn||+ ||yn − Tiyn||+ ||Tiyn − Tixn|| −→ 0, n→∞,∀ i ≥ 1.

Since {xn} is bounded and E is reflexive, there exist subsequence {xnj
} of {xn} that con-

verges weakly to q ∈ C as n → ∞. Since F̂ (Ti) = F (Ti), then q ∈ F (Ti) for all i ≥ 1.
Hence, q ∈ ∩∞i=1F (Ti).

We now show that q ∈ ∩Nl=1F (proxφlλn). From (5.3.18), (5.3.19) and (5.3.20), we observe
that

lim
n→∞

||Θl
nwn −Θl−1

n wn|| = 0, for l = 1, 2, ...N. (5.3.40)

Thus, from (5.3.40), we have

||Θ1
nwn − wn|| = ||proxφ1λnwn − wn|| −→ 0, as n→∞.

||Θ2
nwn − wn|| ≤ ||Θ2

nwn −Θ1
nwn||+ ||Θ1

nwn − wn|| −→ 0, as n→∞.
...

||ΘN−1
n wn − wn|| ≤ ||ΘN−1

n wn −ΘN−2
n wn||+ ||ΘN−2

n wn −ΘN−3
n wn||+ . . .

+||Θ2
nwn −Θ1

nwn||+ ||Θ1
nwn − wn|| −→ 0, as n→∞.

||ΘN
n wn − wn|| ≤ ||ΘN

n −ΘN−1
n wn||+ ||ΘN−1

n wn −ΘN−2
n wn||+

· · ·+ ||Θ1
nwn − wn|| −→ 0, as n→∞.

Hence, it follows that

lim
n→∞

||Θl
nwn − wn|| = lim

n→∞
||proxφlλnΘl−1

n wn − wn|| = 0. for l = 1, 2, . . . , N. (5.3.41)

Without loss of generality, let {wnj
} be subsequence of {wn} such that wnj

⇀ q, for each

l = 1, 2, ..., N. From (5.3.41) and the nonexpansiveness of proxφlλn , for l = 1, 2, . . . , N , we
have

||proxφlλnj
wnj
− wnj

|| = ||proxφlλnj
wnj
− proxφlλnj

Θl−1
nj
wnj
||+ ||proxφlλnj

Θl−1
nj
wnj
− wnj

||
≤ ||Θl−1

nj
wnj
− wnj

||+ ||proxφlλnj
Θl−1
nj
wnj
− wnj

|| −→ 0, (5.3.42)
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as j → ∞, for each l = 1, 2, . . . , N. It follows that q ∈ F (proxlλn), for each l = 1, 2, ..., N.

Therefore, q ∈ ∩Nl=1F (proxφlλn).
Next we show that q ∈ ∩mk=1V I(C,Ak). By (5.1.1), we have that Bk is maximal monotone
for each k = 1, 2, ...,m. We note that Ψknun = ResfrnBk

Ψk−1
n un and so, by the Yosida

approximation (5.1.3), we have

||BrnΨ
k−1
n un|| =

1

rn
||∇f(Ψk−1

n un)−∇f(Ψknun)||. (5.3.43)

From (5.3.36), (5.3.43) and lim infn→∞ rn > 0, k = 1, 2, ...,m, we have

lim
n→∞

||BrnΨ
k−1
n un|| = 0. (5.3.44)

Let (w1, w2) ∈ G(Bk) for each k = 1, 2, ...,m, then it follows from the monotonicity of Bk,
k = 1, 2, ...,m that

〈w2 −BrnΨ
k−1
n un, w1 − Ψknun〉 ≥ 0. (5.3.45)

Since ||ynj
− xnj

|| −→ 0, j →∞, then ynj
= Ψknj

unj
⇀ q, thus from (5.3.44) and (5.3.45),

we obtain

〈w2, w1 − q〉 ≥ 0. (5.3.46)

Hence q ∈ B−1
k (0∗) for each k = 1, 2, ...,m. It follows that q ∈ V I(C,Ak) for each k =

1, 2, . . . ,m. Therefore, q ∈ ∩mk=1V I(C,Ak).
On the other hand, from (5.3.4), we obtain

Df (x
∗, xn+1) ≤ Df (x

∗, un)

= Df

(
x∗,ΘN

n (∇f ∗(αn∇f(u) + (1− αn)∇f(xn)))
)

≤ Df

(
x∗,ΘN−1

n (∇f ∗(αn∇f(u) + (1− αn)∇f(xn)))
)

...

= Df

(
x∗,∇f ∗(αn∇f(u) + (1− αn)∇f(xn))

)
≤ Vf

(
x∗, αn∇f(u) + (1− αn)∇f(xn)− αn(∇f(u)−∇f(x∗))

)
+ 〈αn(∇f(u)−∇f(x∗)), xn+1 − x∗〉

= Vf

(
x∗, αn∇f(x∗) + (1− αn)∇f(xn)

)
+ αn〈∇f(u)−∇f(x∗), xn+1 − x∗〉

≤ αnVf (x
∗,∇f(x∗)) + (1− αn)Vf (x

∗,∇f(xn)) + αn〈∇f(u)−∇f(x∗),

xn+1 − x∗〉
= (1− αn)Df (x

∗, xn) + αn〈∇f(u)−∇f(x∗), xn+1 − x∗〉.

It follows from the definition of Bregman projection (5.2.2) that

lim sup
n→∞

〈∇f(u)−∇f(x∗), xn+1 − x∗〉 = 〈∇f(u)−∇f(x∗), q − x∗〉 ≤ 0. (5.3.47)
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Therefore, using Lemma 2.5.6, (5.3.47) and (5.3.47), we obtain Df (x
∗, xn) → 0, n → ∞.

Thus xn → x∗, n→∞.
Case II: Suppose there exist a subsequence {ni} of {n} such that

Df (x
∗, xni

) < Df (x
∗, xni+1) (5.3.48)

for all k ∈ N. Then by Lemma 5.2.9, there exists a nondecreasing sequence {mk} ⊂ N
such that mk →∞,

Df (x
∗, xmk

) ≤ Df (x
∗, xmk+1) and Df (x

∗, xmk+1),

for all k ∈ N. Furthermore, we obtain

Df (x
∗, xmk

)−Df (x
∗, Tixmk

) = Df (x
∗, xmk

)−Df (x
∗, xmk+1) +Df (x

∗, xmk+1)

−Df (x
∗, Tixmk

)

≤ Df (x
∗, xmk

)−Df (x
∗, xmk+1) + αn(Df (x

∗, u)

−Df (x
∗, xmk

))→ 0, k →∞.

It then follows that

lim
k→∞

Df (Tixmk
, xmk

) = 0. (5.3.49)

Following the same argument as in Case I, we obtain

lim sup
k→∞

〈∇f(u)−∇f(x∗), xmk+1 − x∗〉 ≤ 0, (5.3.50)

and

Df (x
∗, xmk+1) ≤ (1− αmk

)Df (x
∗, xmk

) + αmk
〈∇f(u)−∇f(x∗), xmk

− x∗〉. (5.3.51)

Thus

αmk
Df (x

∗, xmk
) ≤ Df (x

∗, xmk
)−Df (x

∗, xmk+1) + αmk
〈∇f(u)−∇f(x∗), xmk

− x∗〉.

Since Df (x
∗, xmk

) ≤ Df (x
∗, xmk+1) and αmk

> 0, we get

Df (x
∗, xmk

) ≤ 〈∇f(u)−∇f(x∗), xmk
− x∗〉. (5.3.52)

It then follows from (5.3.50) that Df (x
∗, xmk

) → 0, k → ∞. From (5.3.51) and (5.3.52),
we have

Df (x
∗, xmk+1)→ 0, k →∞. (5.3.53)

Since Df (x
∗, xk) ≤ Df (x

∗, xmk+1) for all k ∈ N, we conclude that xk → x∗ as k → ∞.

Hence both cases imply that {xn} converges strongly to x∗ = projfΓu.

We now state the following consequences of Theorem 5.3.1.
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Corollary 5.3.2. Let E be a real reflexive Banach space and let C be a nonempty,
closed and convex subset of E. Let f : E → R be a coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let
φ : C → R ∪ {+∞} be proper lower semicontinuous function such that domf∩domφ 6= ∅
and ran(proxφλ) ⊂ int(domf). Let A : C → E∗ be continuous and monotone oper-
ator and let {Ti}∞i=1 be sequence of uniformly continuous quasi-Bregman nonexpansive
mappings from C into itself, such that F (Ti) = F̂ (Ti) for all i ≥ 1. Suppose Γ :=
(∩∞i=1F (Ti)) ∩ F (proxφλn) ∩ V I(C,A) 6= ∅. For u, x0 ∈ C, let {xn} be iteratively generated
by 

un = proxφλn

(
∇f ∗(αn∇f(u) + (1− αn)∇f(xn))

)
,

yn = ResfrnBun,

xn+1 = ∇f ∗
(
β0,n∇f(yn) +

∑∞
i=1 βi,n∇f(Tiyn)

)
, n ≥ 0,

(5.3.54)

where

Bx =


Ax+NC{x}, x ∈ C

∅, x /∈ C,
(5.3.55)

and NC{x} is a normal cone to C at x ∈ E and λn, rn > 0, {αn} and {βn} are two
sequences in (0, 1) such that:

i. limn→∞ αn = 0 and
∑∞

n=0 αn =∞,

ii. lim infn→∞ βn > 0 and
∑∞

i=0 βi,n = 1,

iii. lim infn→∞ rn ≥ 0.

Then {xn} converges strongly to ProjfΓu, where ProjfΓ is the Bregman projection of C onto
Γ.

Corollary 5.3.3. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. For each
l = 1, 2, ..., N , let φl : C → R∪ {+∞} be proper lower semicontinuous functions such that
domf∩domφl 6= ∅ and ran(proxφlλ ) ⊂ int(domf). For k = 1, 2, ...,m let Ak : C → E∗ be
continuous and monotone operators and let {Ti}∞i=1 be sequence of uniformly continuous
Bregman strongly nonexpansive mappings from C into itself, such that F (Ti) = F̂ (Ti) for

all i ≥ 1. Suppose Γ :=
(
∩∞i=1 F (Ti)

)
∩
(
∩Nl=1 F (proxφlλn)

)
∩
(
∩mk=1 V I(C,Ak)

)
6= ∅. For

u, x0 ∈ C, let {xn} be iteratively generated by
un = proxφNλn ◦ prox

φN−1

λn
◦ ... ◦ proxφ1λn

(
∇f ∗(αn∇f(u) + (1− αn)∇f(xn))

)
,

yn = ResfrnBm
◦ResfrnBm−1

◦ResfrnB1
un,

xn+1 = ∇f ∗
(
β0,n∇f(yn) +

∑∞
i=1 βi,n∇f(Tiyn)

)
, n ≥ 0,

(5.3.56)
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where

Bkx =


Akx+NC{x}, x ∈ C

∅, x /∈ C,
(5.3.57)

for k = 1, 2, . . . ,m and NC{x} is a normal cone to C at x ∈ E and λn, rn > 0, {αn} and
{βn} are two sequences in (0, 1) such that:

i. limn→∞ αn = 0 and
∑∞

n=0 αn =∞,

ii. lim infn→∞ βn > 0 and
∑∞

i=0 βi,n = 1,

iii. lim infn→∞ rn ≥ 0.

Then {xn} converges strongly to ProjfΓu, where ProjfΓ is the Bregman projection of C onto
Γ.

5.4 Applications

5.4.1 Zeroes of Bregman inversely strongly monotone operators

Let the Legendre function f be such that

ran(∇f − S) ⊆ ran(∇f), (5.4.1)

the operator S : E → 2E
∗

is called Bregman Inversely Strongly Monotone (BISM) if
(domS) ∩ (int(domf)) 6= ∅ and for any x, y ∈ int(domf) and each ξ ∈ Sx, η ∈ Sy, we
have

〈ξ − η, (∇f(x)− ξ)−∇f ∗(∇f(y)− η)〉 ≥ 0. (5.4.2)

This class of operators was introduced by Butnariu and Kassay (see [28]). For any operator
S : E → 2E

∗
, the anti-resolvent Sf : E → 2E of S is defined by

Sf := ∇f ∗ ◦ (∇f − S). (5.4.3)

Observe that domSf ⊆ (domS) ∩ (int(domf)) and ranSf ⊆ int(domf). The operator S
is BISM if and only if the anti-resolvent Sf is a single-valued BFNE operator (see [28]).
Some examples of BISM operators can be seen in [28]. From the definition of anti-resolvent
and ([28], Lemma 3.5), we obtain the following proposition.

Proposition 5.4.1. Let f : E → R ∪ {+∞} be a Legendre function and let S : E → 2E
∗

be a BISM operator such that S−1(0)∗ 6= ∅. Then the following statements hold:

i. S−1(0)∗ = F (Sf ),

ii. for any u ∈ S−1(0)∗ and x ∈ domSf , we have
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Df (u, S
fx) +Df (S

fx, x) ≤ Df (u, x).

So, if the Legendre function f is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then the anti-resolvent Sf of S is single-valued BSNE operator which satisfies

F (Sf ) = F̂ (Sf )

(see [102], Lemma 1.3.2).

In Theorem 5.3.1, if we let Ti = Sfi and let f be the Legendre function such that (5.4.1)
is satisfied, then we obtain the following result for approximating a common zeroes of an
infinite family of Bregman inversely strongly monotone operators which is also a solution
to the set of finite families of convex minimization problem and variational inequalities
problems.

Theorem 5.4.2. Let E be a real reflexive Banach space and let C be a nonempty, closed
and convex subset of E. Let f : E → R be a coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E satisfying
the range condition. For each l = 1, 2, ..., N , let φl : C → R ∪ {+∞} be proper lower
semicontinuous functions such that domf∩domφl 6= ∅ and ran(proxφlλ ) ⊂ int(domf).
For k = 1, 2, ...,m let Ak : C → E∗ be continuous and monotone operators and let

{Ti}∞i=1 = {Sfi }∞i=1 such that F (Ti) = F̂ (Ti) for all i ≥ 1. Suppose Γ :=
(
∩∞i=1 F (Ti)

)
∩(

∩Nl=1F (proxφlλn)
)
∩
(
∩mk=1V I(C,Ak)

)
6= ∅. For u, x0 ∈ C, let {xn} be iteratively generated

by
un = proxφNλn ◦ prox

φN−1

λn
◦ ... ◦ proxφ1λn

(
∇f ∗(αn∇f(u) + (1− αn)∇f(xn))

)
,

yn = ResfrnBm
◦ResfrnBm−1

◦ ... ◦ResfrnB1
un,

xn+1 = ∇f ∗
(
β0,n∇f(yn) +

∑∞
i=1 βi,n∇f(Tiyn)

)
, n ≥ 0,

(5.4.4)

where

Bkx =


Akx+NC{x}, x ∈ C

∅, x /∈ C,
(5.4.5)

for k = 1, 2, . . . ,m and NC{x} is a normal cone to C at x ∈ E and λn, rn > 0, {αn} and
{βn} are two sequences in (0, 1) such that:

i. limn→∞ αn = 0, and
∑∞

n=0 αn =∞,

ii. lim infn→∞ βn > 0 and
∑∞

i=0 βi,n = 1,

iii. lim infn→∞ rn ≥ 0.

Then {xn} converges strongly to ProjfΓu, where ProjfΓ is the Bregman projection of C onto
Γ.
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5.4.2 Equilibrium problem

Let C be a nonempty closed and convex subset of the Banach space E and g : C ×C → R
be a bifunction. We recall that the equilibrium problem (EP) is to find x ∈ C such that

g(x, y) ≥ 0 ∀y ∈ C. (5.4.6)

Let x̄ ∈ C, setting

g(x̄, ȳ) := φ(ȳ)− φ(x̄) ∀ȳ ∈ C,

the equilibrium problem (5.4.6) coincides with the convex minimization problem (5.1.5)
and the function g satisfy conditions L1 - L4 of Section 2.4.1 (see, [15]). The resolvent of
the bifunction g is the function Resfg : E → 2C defined by (see,[101])

Resfg (x) = {z ∈ C : g(z, y) + 〈∇f(z)−∇f(x), y − z〉 ≥ 0, ∀y ∈ C}. (5.4.7)

Proposition 5.4.3. (see [101]) Let f : E → R ∪ {+∞} be a coercive and Legendre
function. If the bifunction g : C × C → R satisfies conditions L1 - L4, then

1. Resfg is single-valued,

2. Resfg is BFNE,

3. F (Resfg ) = EP (g),

4. EP (g) is a closed and convex subset of C,

5. for all x ∈ E and q ∈ F (Resfg ),

Df (q, Res
f
g (x)) +Df (Res

f
g (x), x) ≤ Df (q, x).

Setting φl = gl, l = 1, 2, ..., N in Theorem 5.3.1, then, we have an iterative algorithm
for approximating a common solution of infinitely family of quasi-Bregman nonexpansive
mappings which is also a common solution of finite systems of equilibrium problems and
variational inequality problems in reflexive Banach spaces.
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CHAPTER 6

Conclusion, Contribution to Knowledge and Future Research

6.1 Conclusion

In this dissertation, we introduced some iterative schemes for approximating common ele-
ment of set of solutions of minimization problems, variational inequality problems, mono-
tone variational inclusion problems, generalized equilibrium problems, generalized mixed
equilibrium problems and fixed point problems. We obtained strong convergence results
of the sequences generated by our iterative schemes without compactness assumption. We
also gave numerical examples of our main results in Chapter 3 and Chapter 4 in real
Hilbert spaces and show how the sequence values are affected by the number of iterations.
We gave application of our result in Chapter 5 to finding zeroes of Bregman inversely
strongly monotone operators in real reflexive Banach space.

6.2 Contribution to Knowledge

The following are contribution to knowledge:

1. Our Theorem 3.3.1 improve the result of Shehu [108] from approximation of common
solution of generalized equilibrium problem, monotone variational inclusion problem
and fixed point problem to common solution of split equalities for generalized equi-
librium problem, monotone variational inclusion problem and fixed point problem in
Hilbert space. Also the class of k demi-contractive mapping considered in our work
is larger than the class of nonexpansive mapping consider in [108].

2. In [73], the authors obtained weak convergence result on approximation of com-
mon solution of equilibrium problem and fixed point problem of k-strictly pseudo-
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nonspreading multi-valued mapping in Hilbert space, while, our Theorem 4.3.1
present a strong convergence result. We also extend the work of [73] to split equali-
ties for generalized mixed equilibrium problem and fixed point problem of k-strictly
pseudo-nonspreading multi-valued mapping of type-one in Hilbert space.

3. Also, our iterative scheme (4.3.1) improved (1.2.5) presented by Ma et al. [75] in the
sense that (4.3.1) does not require a prior knowledge of the operator norm and the
condition of demi-compactness on the mappings.

4. Our Theorem 5.3.1 complements and extends many recent results in literature. For
example, the result of Kassay, Reich and Sabach [58] is extended to approximation of
common solution of finite systems of variational inequalities problems, convex min-
imization problems and common fixed point of infinite families of quasi-Bregman
nonexpansive mapping. Also, our Theorem 5.3.1 extend the results on convex min-
imization problem in Hilbert space (for instance, [113, 31, 30]) to reflexive Banach
space.

The following are submitted research articles based on our work for publication:

1. L.O. Jolaoso, F.U. Ogbuisi and O.T. Mewomo, Operator norm independent solu-
tion of split equality of systems of generalized mixed equilibrium problem and split
equality fixed point problem for certain multi-valued maps, submitted to Bolet́in de
la Sociedad Matemática Mexicana.

2. L.O. Jolaoso, F.U. Ogbuisi and O.T. Mewomo, On split equality for certain nonlinear
optimization and fixed point problems, submitted to Arkiv for Mathematik.

3. L.O. Jolaoso, F.U. Ogbuisi and O.T. Mewomo, An iterative method for solving
minimization, variational inequality and fixed point problems in reflexive Banach
spaces, submitted to Computation and Applied Mathematics.

6.3 Future research

In the future, we will like to extend our study of fixed point theorems for set-valued
mappings with weak contractions, generalized weak contractions, asymptotic contractions,
generalized asymptotic contractions and give numerical examples and applications of our
results in real Hilbert and reflexive Banach spaces.
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Figure 6.1: Errors: Case A(i), ε = 10−4 (left, 0.044sec), ε = 10−6 (right, 0.045sec),
ε = 10−12 (bottom, 0.047sec).
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Figure 6.2: Errors: Case A(ii), ε = 10−4 (left, 0.044sec), ε = 10−6 (right, 0.046sec),
ε = 10−12 (bottom, 0.051sec).
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Figure 6.3: Errors: Case B(i), ε = 10−4 (left, 0.044sec), ε = 10−6 (right, 0.046sec),
ε = 10−12 (bottom, 0.049sec).
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Figure 6.7: Errors: Case II(a), ε = 10−4 (left, 0.019sec) and ε = 10−6 (right, 0.025sec).
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