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APPROXIMATION SOLVABILITY OF NONLINEAR EQUATIONS 

J.R.L. Webb 

Glasgow, U.K. 

L. Introduction 

One approach to the study of equations in infinite dimensional spaces 

is to try to obtain a solution as a limit of solutions of related problems 

which can be solved. We shall be concerned with two types of "approximation 

solvability". The first will be when we approximate the problem by related 

finite dimensional problems, the Galerkin method being typical. Here the 

theory of Approximation proper (A-proper for short) mappings is important. 

The second will involve the study of various iterative processes, a typical 

situation being that of obtaining a fixed point of a nonexpansive map as 

the strong limit of the fixed points of contraction mappings. 

A unifying feature of our results is the frequent use, in various 

circumstances, of the notion of the asymptotic centre of a given sequence. 

Apart from obtaining new results we are able to considerably simplify proofs 

of some known results. The notion of asymptotic centre is related to the 

ball measure of noncompactness $ and we make some observations on this. One 

such is that if {x } is a sequence in a Hilbert space with ||x || = 1 and 

which converges weakly to 0, then 3(* } = 1. 

Our work is divided into several parts. We begin with some preliminary 

remarks concerning results about the asymptotic centre. We then prove that 

accretive type and contractive type mappings are A-proper. Apart from our 

use of the asymptotic centre our results are new in that we prove the 

A-properness of contractive type mappings under a weak boundary condition, 

known as weakly inward. In the final section we prove various strong con

vergence theorems. These involve iterates of pseudocontractive and 
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nonexpansive maps. 

Many of the results here are new or are improvements of known results, 

while others have been published or are to be published elsewhere. 

2- Preliminary notions 

Let X be a real Banach space with dual space X and let (x,f) denote 

the value of f£X* at x€X. The (normalized) duality map J : X + X* is 

defined by J(x) = {f€X* : (x,f) = ||x||2 , ||f|| = ||x|| }, or, equivalently, 

J(x) is the subdifferential of the convex function i ||x||2 (e.g. [22], p.H-O. 

The set J(x) is nonempty in any Banach space and is a singleton when X is 

strictly convex. If X* is uniformly convex, then J is uniformly continuous 

on bounded subsets of X(Kato [l6]). If the norm of X is uniformly Gateaux 

differentiable, and we write X is (UG), J is uniformly demicontinuous on 

bounded sets, that is uniformly continuous from X with its norm topology 

to X* with the weak* topology (e.g. Lemma 2.2 of [32]). 

The notion of the asymptotic centre [lu] of a bounded sequence {x } 

will feature in many of our arguments. For z in X let $(z) = lira sup ||x -z||. 
n -»• co 

Then, as is easily verified, <J> is a continuous, convex function and 

$(z) -• «» as ||z||-*w. Therefore, when X is reflexive, $ attains its infimum 

over every closed, convex set C Let K = {v€C : <J>(v) = inf 4»(z), z in C}. 

Then K is called the asymptotic centre of {x } relative to C Clearly K 

is a closed, bounded, convex set. It is known (Lim [2l] ) that K consists 

of a single point if and only if X is uniformly convex in every direction 

(U.CE.D.) in the sense of Day, James and Swaminathan [7]. X is U.CE.D. 

if, for every nonzero z in X and e > 0, there exists 6 > 0 such that 

||x|| = ||y|| = 1, x - y = Xz and ||J(x+y)|| > 1 - 6 

imply that |X| < e. 
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We have observed [37] that the functional $ is related to the ball 

measure of noncorapactness (3) of the sequence {x }. Recall that, given a 

bounded set D, 3(D) is defined by 

3(D) = inf{r > 0 : D can be covered by finitely many balls 

of radius r}. 

If we insist that the centres of these balls lie in some prescribed set E, 

we write 3£(D). . 

Now let {x } be a bounded sequence and suppose that ||x - z|| has a 

limit $(z) for every z in X, For example, if X is separable, there is 

always a subsequence for which this holds. This follows by a diagonalization 

argument and is proved in Lemma 1.1 of Reich [30]. Then, if v is in K, the 

asymptotic centre of {x } relative to X, 

*(v) = 3({xn}). 

Indeed, it is clear that 3({x }) < 4>(v). If 3({x }) = 3 and 3<$(v), given 

e > 0 so that 3 + e < $(v), there would exist finitely many balls of radius 

3 + e containing {x }. One of these would contain infinitely many points 

of the sequence, say 

||x - w|| < 3 + e. 
nk 

As the limit of a subsequence is the limit of the sequence this would give 

4>(w) < 3 + e < $(v), a contradiction. 

Let B denote the unit ball in X. Given a sequence {x } C B an interesting 

question is whether 3vCx } = $D{x }. If X is Hilbert space the answer is yes. 
A n D n 

P 
In general the answer is no, for example, it is no in every L space. 

Nussbaum [2-l] studied this problem and said a space had the Ball Intersection 

Property (B.I.P) if equality held. His results show that the asymptotic centre 

of such a sequence {x } relative to X need not lie in B. Also, as Lim [2l] 

has shown, if X is not a Hilbert space, there is always a sequence {x } such 
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that the asymptotic centre does not intersect co{x }, the closed convex 

hull of {x }. 
n 

Remark 1. If X has a weakly sequentially continuous duality map, then 

X has the B.I.P. for every weakly convergent sequence. 

For, let x—-»- x ("—-»" denotes weak convergence). Then for any w in X, 

limsup ||x - x||2 = limsup (x - x, J(x - x)) 

n •¥ * n •* °° 

= lim sup (x - w, J(x - x)) , 

since J(x - x)—-»0. Therefore, 

<Kx) $ 4>(w). 

It follows that if $v{x } = 0 and if ||x - w|| ^ 3 + e, then also 
x n m 

||x - x|| jj B + e; hence &-Ax } j: Bv{x }. ' m D n A n 

Another simple observation is 

Remark 2. Let X be a Banach space (or a dual space) and let (x } be a 

sequence with ||x || = 1 and with X—-* 0 (or weak ). Suppose there is a point 

v in the asymptotic centre of {x } relative to X. Then v£B and 

J S $(v) $ 1. The constants are best possible. If X is a Hilbert space, the 

asymptotic centre consists of the unique point 0 and ${x } = 1. 

Indeed $(v) $ <fr(0) = 1. Also, since x—=*0, || -v|| $ lim inf ||x - v|| $ $(v); 

in particular ||v|| $ 1. Therefore we have, 

11**11 * Hx n - v|| + ||v|| , 

S° t h a t' •(0) $ •(v) + ||v|| ^ 2*(v) 

and this proves the first part. 

Two examples show that the constants are best possible. First take X = (cn), 

the space of sequences that converge to zero with the supremum norm. Let x 
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be the sequence with 1 in the nth place and zeros elsewhere. Then, as is 

readily shown, <Kv) = 1. Next take X = Jt , the space of all bounded 

sequences with the same norm and let {x } be the same sequence. This time 

•(v) = i since v = (i,i,J, ...) lies in I (but not in (<0). In a Hilbert 

space H, we have, for any y in H, 

IK - yll2 = Hx
nll

2 - ( v y ) - ( y ' V + Hyl l 2 

so lim ||x - y||2 exists and equals 1 + ||y||2 • Thus inf $(y) = <f>(0) = 1 
n -»• » n 

(and 0 is the unique point). By our earlier comments, 8(-0 = !• 

3. A-properness of accretive and contractive type operators 

The class of Approximation-proper (A-proper) [27] mappings arises in a 

natural way when one tries to determine when solutions of equations in 

infinite dimensional spaces can be obtained as the limit of solutions of 

related finite dimensional problems. The A-proper maps are defined in terms 

of projection schemes. For our purposes we shall be interested in mappings 

A : X + X and we shall suppose that X is a 00-, space. This means that 

there is a sequence {P } of linear projection operators, each of norm 1, with 

finite dimensional range X where X O X ^., and such that P x -»• x as n ->• ». 
n n n+l n 

Every separable space with a monotone Schauder basis is a (ir)n space. A map 

A : X -*• X is said to be A-proper if P A : X ->• X is continuous for each n — * - — c — n n n 

and whenever {x } is a bounded sequence, x (X , such that P Ax has a 

subsequence convergent to a point f, there is a further subsequence x (say) 
nk 

that converges to a point x and Ax = f. A weaker notion is that of A being 

pseudo-A-proper: under the same hypotheses the weaker conclusion is that 

there exists x with Ax = f. 

We shall begin by proving that strongly accretive operators are A-proper. 

Two types of argument have been employed previously, the direct one, essentially 
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due to Browder and De Figueiredo [u] who required that X have a weakly 

continuous duality map, which hypothesis is known to be too restrictive out

side of Hilbert space. The second method used the fact that strongly 

accretive operators can be shown to be surjective by using the connection 

with differential equations and semigroups, see Theorem 3.1 G of [27]. 

Our proof is direct and relies on the following property of duality 

mappings. 

Proposition 3.1. Let X be a (UG) Banach space and let {x } be a bounded 

sequence. Let K be the asymptotic centre of {x } (relative to X). Then 

for each v in K, 

liminf (w,J(x - v)) $ 0 for every w£X. 

n + » n 

Proof. As J(x) i s the subdifferential of J | |x | | 2 we have 

(z - v, J(xn - z)) * i | |xn - v | | 2 - i | |xn - z | | 2 , for a l l z € X. 

For t > 0 and w€X l e t z = v + tw. Then 

l iminf (tw, J(xn - z t ) ) * i l iminf | |xn - v | | 2 - J limsup | |xn - z±\\2 

n -*• w 

* 0 , for vCK. 

Cancel t > 0 and let t -*- 0. As J is uniformly demicontinuous on bounded 

sets, the conclusion follows. 

Remark. This is a continuation of some interesting results of 

Reich ([30], [33]). In particular, he proves that LIM(w,J(x - v)) = 0, 

where LIM is a Banach limit. Proposition 3.1 is a consequence of this but 

our direct proof is simpler. 

Corollary [36]. If X is separable, there is a subsequence {x. } such 

that J(xJ< - v)-->0. 

Proof. As noted previously, a result of Reich [30] shows that there is 
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a subsequence ( x . ) such that $(z) = lim ||x. - z|| for all z in X. In the 
K V ^ oo X 

above proof we can then obtain lim sup (w,J(x, - v)) $ 0 and replacing w by 

-w gives the result. 

We now come to the A-properness of accretive operators. A map 

A : D(A)C X-» X is called accretive if for each x,ygD(A) there exists 

f € J(x - y) such that (Ax - Ay,f) >. 0, or equivalently (e.g. [l6]), 

11-K - y | | s? ||x - y + o(Ax - Ay)]} , for a l l o > 0. 

Thus (I + oA) is nonexpansive on R(I + oA), the range of I + aA. An 

accretive map A is called m-accretive if R(I + oA) = X for some (equivalently 

all) o > 0 and is called strongly accretive (with constant c) if A - cl is 

accretive. 

Theorem 3.1. Let X be a (wL space with X* uniformly convex. Let 

A : X •*- X be accretive. Then XI + A is A-proper for all X > o if and only if 

A is demicontinuous. 

Remark. The "if" part was proved in [36] ; the "only if" part has been 

given in various lectures of the author but appears here for the first time. 

We only sketch the proof of the "if" part. 

Proof. Write Ax for XI + A and suppose that P.Axx. -*• f. Since P*Jx = Jx 

for x€X. (see, for example [ft]), for all y€X. we have 

( P J ^ - Axy , J( X j - y)) >, X||Xj - y||
2 . 

Then, for all y € U * » 

(1) lim sup (f - Axy , J(x. - y)) >• lim sup X||x - y||2. 

If we could set y = v, the left hand side of (1) would be zero and the result 

would follow. Given e > 0 we take y = P v for m large and show that 

4(P v) < e. The uniform continuity of J and the demicontinuity of A are used 
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here. Hence $(v) = 0 and x. -»• v with A.v = f. For the converse, if XI + A 
3 * 

is A-proper for all X > 0, then R(XI + A) = X since we can solve all the 

finite dimensional problems by continuity of P A and coercivity of A. 

(implied by accretivity of A). Thus A is m-accretive. Now suppose x «•• x; 

we wish to show that Ax -* Ax. By a result of Fitzpatrick, Hess, and 

Kato [l2], A is locally bounded at each interior point of its domain. Thus, 

we can suppose, for a subsequence, that A 

(Ax^ - Az, J(x - z)) * 0 , for all z€X, 

Ax is bounded so we can suppose, for a subsequence, that Ax —-» f- Now 

so that 

(f - Az, J(x - z)) * 0. 

Thus ||x - z|| $ ||x - z + (f - Az)|| . 

As I + A is surjective, there exists z such that 

z + Az = x + f and so x = z and Ax = f. 

As this argument applies to any subsequence the demicontinuity is proven. 

We can also prove the A-properness of more general mappings. 

Definition 1. A map T is called semiaccretive if there exists a map 

S : X x X -*• X, such that Tx = S(x,x), with the properties 

(i) for each fixed x€X, y»-»- S(y,x) is a demicontinuous accretive map; 

(ii) for each y€X, x»~>- S(y,x) is completely continuous, that is, 

x ^ x implies S(y,xn) -*• S(y,x). 

T is called strongly semiaccretive (with constant C) if in (i), S(«,x) 

is strongly accretive with uniform constant C. 

The simplest examples of semiaccretive maps are sums of accretive and 

completely continuous maps. 

Definition 2. A continuous map T is called a k-ball contraction if, for 

every bounded set D, 0(T(D)) $ k.3(D). T is called condensing if 
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$(T(D)) < $(D) whenever »(D) f 0. 

Clearly a map is compact if and only if it is a 0-ball contraction. 

There are other measures of noncompactness, for example the Kuratowski 

measure defined in terms of coverings by sets of a given diameter, and a 

corresponding class of k-set contractions. We refer to [22] and [35] for 

more information. 

The following theorem proves that the two types of mappings defined 

above can be related using the theory of A-proper maps. It extends a result 

of [37] in which an hypothesis stronger than (ii) of Definition 1 was used. 

That result was extensions of earlier results of Toland [3-*], Webb ([3-i], 

appendix), Petryshyn [26] and Milojevic" [23] which dealt with continuous 

accretive maps. We can deal with demicontinuous maps provided we assume X 

is uniformly convex. 

Theorem 3.2. Let X be a (IT ). space in which the projections are com

patible, that is P.PV = P. for k > j, and with X* uniformly convex and let 

3 K 3 

T : X ->• X be demicontinuous and strongly semiaccretive with constant c. 

Let B : X + X be a k-ball contraction and let F : X •*• X be condensing. Then 

(i) T + B is A-proper if k < c j 

(ii) T + B + F is A-proper if 1 + k * c. 

The proof of Theorem 2 relies on the following fact. 

Proposition 3.2. Under the hypotheses of Theorem 2 let {x } be a bounded 

sequence. Then there exists a subsequence such that 0 ( P . T x A * cBlx.K 

Assuming, temporarily, that this has been shown we give the proof of 

the theorem. 

Proof of Theorem 3.2. 

(i) Let x £ X be a bounded sequence with 
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P Tx + P Bx -*• f. 
n n n n 

Then for a suitable subsequence, 

c3{xj} $ ftfPjTx..} = aCPjBXj} 

* 3{Bx.} (e.g. Lemma 1 of [35]) 

J? k<3{x.} . 

As k < c this implies that ${x.} = 0, so (for a further subsequence) 

x. -#• x. Then Bx. •*- Bx and P.Bx. -*• Bx. Also Tx.-* Tx. Since, for every f 
3 3 3 3 3 

in the dense set U x , 

lim (P.Tx.,f) = lim (Tx.,f) = (Tx,f) 
j -*-» J J j -*09 

it follows that P.Tx.-^Tx and so Tx + Bx = f. 
3 3 

(ii) The proof is exactly similar. 

Proof of Proposition 3.2. We can obviously suppose that { P Tx } is 

bounded. As X is separable, there is a subsequence x, such that 

^»(w) = lim ||PvTx, - w|| is well defined for all w£X. Let w be such that 

i|»(w) = 3{P,Tx.}. For simplicity of notation we can suppose that the same 

subsequence is weakly convergent, say x, -* x. As PjS(# ,x) is strongly 

accretive and continuous, there exists --i£ X, with P,S(z, ,x) = P.w. 

Moreover {z,} is bounded. By Theorem 3.1, S(«,x) is A-proper so there 

is a subsequence, again denoted by z, , with z, •*• z and S(z,x) = w. For 

each fixed j,S(z.,x, ) -> S(z.,x) as k -»- °°, so we can find a subsequence x. 

such that S(z. ,x. ) - S(z.,x) •*• 0. Hence P.S(z.,x. ) + w as j 4 *. 
3 x. 3 j j K. 

Using the fact that P*Jy = Jy for y€X. [-i], for each j we have 

Thus 

( P j s ( V v > - pjs<-3.v>. a ( v - z j ) } * c IK. - zji 
J 3 D 3 3 

o|Қ.-- З i l < Ц P . S Í ^ , ^ ) - P.SÍZ..^)!! . 

2 
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As z. •+ z and P.S(z.,x. ) •> w, given e > 0, there exists N such that 
3 3 3 *. 

c l l v " ZH * HPjSCx^ ,xk > - w|| + e , for j * N. 

Using the compatibility of the projections and the facts that ||P.|| £ 1 

and P.x -*• x, we obtain 
3 

c ||x, - z|| $ 4>(w) + 2e , for j sufficiently large. 

As e is arbitrary the proof is complete. 

Remark. If we do not assume compatibility of the projections we seem 

to need a strengthening of (ii) of Definition 1, as was done in [37]. 

These theorems can be used in the study of the fixed point of pseudo-

contractive mappings (e.g. [20]), where U is pseudocontractive if and only 

if I-U is accretive. We shall mention some strong convergence results for 

these later. We now consider contractive type mappings where one cani prove 

A-properness results directly without recourse to any connection with accretive 

operators. 

Definition 3. A map T : D + X is called a generalized' contraction (Kirk JJL8J , 

Q.9] ) if, for each xf D there is a(x) < 1 such that ||Tx-Ty|| $ a(x) ||x-y|| 

for all y in D. T is nonexpansive if a(x) .5 1, and a strict contraction if 

a(x) = k < 1. 

An interesting result of Kirk's [l9] is that, if T is continuously 

Frechet differentiable on an open, bounded, convex set D then T is a generalized 

contraction if and only if || T^ || < 1 for all x in D. 

If T : X + X is a generalized contraction, it was shown by Wong {40J 

that I - T is A-proper. This was generalized by Fitzpatrick [ll| to the case 

when T map a closed, convex set D into itself. However, he was only able to 

prove a weaker version of A-properness, namely that I - T be A-proper at 0. 
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This means that if x - P Tx •*• 0 for a bounded sequence x £ X , there is n n n xr" n 

a convergent subsequence x, •*• x with x - Tx = 0. (We define pseudo-A-proper 

at 0 similarly.) Both of these results used ideas similar to Kirk1 s Q.8] . 

We can give a simple proof which has the merit of allowing greater generality. 

Given a closed convex set C and x £ C we define the inward set Ic(x) to be 

the set {z : z = (1 - a)x + ay for some y £ C and a > 1}. A map T : C -»• X is 

called inward if Tx^I_(x) and weakly inward if Tx£ I_(x). Since Ic(x) = X 

if x is an interior point of C, these conditions are boundary conditions. 

Such maps have been studied by Halpern - Bergman [l5], Reich [28] , Caristi [6], 

and others. Caristi [6] proved the interesting fact that T is weakly inward 

if and only if lim h d((l-h)x + hTx, C) = 0 for all x£C, where d(y,C) 
h ->• 0 

denotes the distance from the point y to the convex set C. 

This condition had been used by Martin [see e.g. [22] j and others in 

the study of differential equations in Banach spaces, which can be used to 

prove fixed point theorems. 

Our result is as follows [39]. 

Theorem 3.3. Let C be a closed, convex subset of a reflexive (ir) space 

X. Let T : C -*• X be a weakly inward generalized contraction. Then I - T 

is A-proper at 0. Moreover, each map P T has a fixed point x in C = P C 

and x ->• x the unique fixed point of T. 

Proof. Suppose x £ X is a bounded sequence with x - P T(x ) ̂  0. Let 

v be in the asymptotic centre of {x } relative to C. Then, 

||xn - T(v)|j * ||xn - PnT(xn)|| + IIPnT(xn) - PnT(v)ll + llPnT(v) - T(v)ll . 

Since ||P || = 1 and PRy •*• y as n •* °% this yields 

4>(T(v)) S a(v)<Kv). 

We claim that <Kv) = inf(<t>(z) : z£Ic(v)>. 
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For, noting that C C 1CM9 as ̂  is continuous, if this were false there 

would be w£ Ic(v) with 4(w) < $(v). Thus w = (1 - a)v + ay for some y€C 

and a > 1. Convexity of $ yields <J>(y) <, —(j>(w) + (1 )$(v) < $(v), and this 

contradicts the definition of v. 

Now, since T(v)£ Ip(v) and a(v) < 1 we must have <J>(v) = 0 so that 

x •* v = T(v). 

For the last part we observe that P T is weakly inward on C so by the 

theorem of Halpern and Bergman [15] for compact weakly inward maps, each P T 

has a fixed point x . The earlier argument completes the proof. 

That <J>(v) = inf(<Kz) : z ^ O v J } was used by Lim [2l] . However, he 

worked in uniformly convex spaces so that the asymptotic centre was a unique 

point and proved a fixed point theorem for nonexpansive mappings. 

The same ideas as used in the proof of Theorem 3.3 give the following 

result for nonexpansive mappings. We shall say that X has the f.p.p. if for 

every closed, bounded, convex set K in X, every nonexpansive self map on K 

has a fixed point. It is known that X uniformly convex (\s] , (jL-TJ) or X* 

uniformly convex [l], or normal structure [if] or even asymptotic normal 

structure [2], imply X has the f.p.p. 

Theorem 3.-K Let C be a closed, convex, set in a reflexive (if), space X 

with the f.p.p. Let T : C ->• X be nonexpansive and weakly inward. Then I - T 

is pseudo-A-proper at 0. 

Proof. Let x , v be as in Theorem 3.3. Then, exactly as there shows 

that $(T(v)) £ <f>(v) so T maps the asymptotic centre of {x } relative to C 

into itself and thus has a fixed point. 
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Theorem 3 .5* Let C and X be as in Theorem 3 . 4 . Suppose 

T : C •+ X i s nonexpansive and inward on C . Then I -T i s pseudo-

A-proper at 0 . If a l s o C i s bounded the same holds i f T i s 

weakly inward on C . 

Proof. Let T be inward on C ; we prove that T i s inward on K 

where K i s as in the proof of Theorem 3 . 4 . Indeed, for v in K, 

Tv • ( l - a ) v + ay for some y € C and a > 1, and 

<j>(Tv) <. <J>(v) as e a r l i e r . By convex i ty of <(> , 

<Ky) .1 <f>(v) so that y e K. A s p e c i a l case of Theorem 2.6 

of C a r i s t i [V| proves that f has a f i x e d po int in K . Whetf f 

i s weakly inward and C i s bounded, the same r e s u l t of C a r i s t i 

shows that f has a f i x e d po int in C . 

**' Strong Convergence of Approximants 

We intend to prove in this section some theorems on the convergence of 

approximants to fixed points. A typical result i s that i f T i s a nonexpansive 

se l f map of a closed, bounded, convex set C with X uniformly convex, and i f 

for 0 < k < l and x £ C we l e t x, be the unique fixed point of the s tr ic t 

contraction T̂  defined by T. x = kTx + (1 - k)x , then x, converges to a fixed 

point of T as k •*• 1. 

We need the following property of m-accretive mappings. 

Proposition -f.l. Let X be reflexive with the f .p .p. and l e t C be a closed, 

convex subset of X and l e t A : C + X be accretive and such that 

(I +<*A)(C)!1->C for some a > 0. Suppose (x } i s a bounded subset of C and 

Ax •> 0. Then there exis ts x€C with Ax = 0. Moreover x belongs to K, the 

asymptotic centre of {x } relative to C. 

Proof. As A i s accretive, (I + aA) i s nonexpansive on i t s domain. We 

prove that (I + aA) maps K into K. Indeed, l e t y = (I + aA) v so 
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v = y + a Ay, y£C. By accretivity of A we have 

Hxn " y " * l | x n " y + o(Axi> " A y ) | 1 

< | |xn - v|| + 0 | |AxJ| . 

Thus <Ky) £ $(v) so y£K. This proves that (I + aA) has a fixed point x in 

K, so Ax - 0. 

Corollary. Under the same hypotheses let A be m-accretive and suppose 

{x} is bounded with Ax ->• f. Then there exists x in K with Ax = f. 
n' n 

Proof. Define Af by AJC = Ax - f. As A. is m-accretive and A^x ->• 0 the 

Proposition applies. 

Remark. Proposition -i.l and its Corollary are valid for multivalued 

mappings; an obvious modification of the given proofs. Proposition 4.1 is 

known at least in the version given in the Corollary. It is given by 

Reich [29] and essentially by Kirk, Schoneberg [20] . Webb [38] gave a simple 

proof which assumed X separable and X,X* uniformly convex. These hypotheses 

could be weakened: separability is not needed, X(UG) and (UCED) suffice. 

Another method of proof is given in Calvert - Gupta [5] by using the connection 

between accretive operators and semigroups of nonexpansive mappings. That 

proof uses a common fixed point theorem for a family of commuting nonexpansive 

maps so conceivably the hypotheses on X might need to be stronger than the 

f.p.p. 

Webb*s proof was modified to prove that accretive, demicontinuous 

operators are pseudo-A-proper [38] . In fact we can weaken the hypotheses 

used there to prove the following new version. 

Theorem H-..1. Let X be a (TT), space with X*4 uniformly convex and let 

A : X ->- X be accretive and demi continuous. Then A is pseudo-A-proper. 

Proof. Suppose (x } is bounded, x £ X , and P Ax -> f. By replacing Ax 
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by Ax - f we can suppose f = 0. Let K be the asymptotic centre of {x } 

relative to X and let v € K. For every z € X we have 

(p Ax - PAz , J(x„ - z)) * 0. 
v n n n n ' 

By standard finite-dimensional results (for example [V]), there ex i s t s 

Zv €X with z + P Az = P v. Moreover {z } i s bounded. By Theorem 3 . 1 . n n n n n n n J 

I + A i s A-proper, so there i s a subsequence z, •+• z with z + Az = v. Thus 

z = ( I + A ) v. Setting z = zk in the above inequality gives 

(pktak - v + \ »J(xk - -k» * ° 

so that 

H ^ - zk | | * j|xk - zk + PkAxk - Pkv + zk | | 

* | |xk - v|| + ||v - Pkv|| + ||PkAxk|| . 

Since z, + z , i t follows that 

Hz) S * (v) . 

This proves that (I + A) maps K into K and so has a fixed point x (since X 

uniformly convex implies X has the.f.p.p. |Y]) that is, Ax = 0. 

Our result on strong convergence is a consequence of combining 

Proposition 4.1 with Proposition 3.1. 

Theorem h.2. Let X be reflexive with the f.p.p. and (UG). Let C be a 

closed, convex set and A : C •* X be accretive and such that (I + aA)(C)^-* C 

for some a > 0. Let {x }C C be bounded and suppose 

A x + A x = A g _ . n n n n*n * 

where A > 0 and A -*- o , a •*• g. 

Then x -»• v and Av = 0. n 

Proof. Since A •*• 0, Ax + 0 so there exists v£ K with Av = 0 by 
'" •• • •— n ' n J 
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Proposition 4 . 1 . We have 

X „ I K - V » 2 - \K - v'• J(xn " v )) 

' (XA - **„ - V • J(\ - v» 
< (X

n
(8n " v) - Av , J(xn - v ) ) , 

by accretivity of A. 

Since Av = 0, cancelling X gives , 

Hxn " VH2 * K - v • J ( x n - v ) ) 

« (g - v , J(xn - v)) + (gn - g , J(xn - v ) ) . 

Applying Proposition 3.1 we see that 

liminf ||xn - v||
2 $ 0. 

Thus x -*• v. This shows that, for any v € K with Av = 0 there is a subsequence 
n k 

x. •*• v (say). Now suppose x, -> v and x •> w where w € K and Aw = 0. 

We observe that, for v(and for w) 

(x n - g^ , J(x R - v)} $ 0 for all n. 

Thus, (xj^ - g k , J(x k - w)} * 0 and (xm - gjn , J(x m - v)} * 0. 

Passing to the limits and adding gives 

12 (v - w , J(v - w)) * 0 and IIv " wl! = l v ~ w > J' v " W'J * ° a n d so v = w. 

Thus A (0) H K consists of a single point v and x -*- v. 

Remark. Theorem ~k2 is similar to Theorem 1 of Reich [3l] (see his remarks 

following that theorem); his theorem essentially deals with the case e = g. 

The proofs are somewhat different but our idea is similar to his. 

Corollary. If A is m-accretive and 

X x + Ax^ = f + X e 
n n n n̂ ti 
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then x -+ x with Ax = f. 

n 

The Corollary extends a result of [38] where c was taken to be constant 

and more restrictions were imposed on the space. 

We apply this theorem to prove a strong convergence theorem for 

pseudocontractive maps. Recall that U : C -• X is said to be pseudocontractive 

if A = I - U is accretive. 

Theorem U.3. Let X be reflexive, (UG) and with the f.p.p. Let C be a 

closed, bounded, convex subset of X and U 3 C ->• X pseudocontractive. Suppose 

that U is Lipschitz continuous with constant L and suppose that 

(i1. U is weakly inward on C. 

Let a > 0 be such that aL/(l + a) < 1. Then, for 0 < k < 1, and xQ£ C, 

there exists yk in C with 

(1 - k + a)yk = aU(yk) + (1 - k)xQ 

and yk converges to a fixed point of U as k •*• 1. 

Proof. Let A = I - U so that A is accretive. For y £ C , the equation 

x + aAx = y is equivalent to x = (aU(x) + y)/(l + a). The map 

x»-* (aU(x) + y)/l + a is a strict contraction and satisfies either (i) or (ii) 

so has a fixed point (|jQ, Q-3]). Thus, F = ( I + aA) is a nonexpansive 

self map on C. For x £ C and 0 < k < 1, there exists a unique fixed point 

xk of the strict contraction kF + (1 - k)x . Let y^ = Fxk. Then 

(1 - k)yk + ctAŷ  = (1 - ^)x an<- aPP--ying Theorem -K2 proves the result. 

Remarks. The existence part of this theorem is contained in results of 

Caristi [6] and a combination of Gatica & Kirk [l£] and Kirk and Schoneberg 

([20], Theorem 4). If F = (I + aA) is known, then x, (and hence yk) can 
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be obtained by iteration. 

Although nonexpansive maps can be regarded as a special case of the 

above result the following theorem concerns more familiar approximants. 

Theorem 4.4. Let X,C be as in Theorem 4.3 and let T : C ->• X be non-

expansive and satisfy (i). Then, for 0 < k < 1, and xQ€ C 

there exists x,6C with x. = kTx,+ (1 - k)xQ and x. converges to a fixed 

point of T as k •* 1. 

Proof. As in Theorem 4.3, if we set A = I - T, A is accretive and 

(I + A)(C)PC, The fact that x, exists is a consequence of a theorem of 

Caristi [6], Since then, 

(1 - k)x. + kAx. = (1 - k)xQ, the result follows from Theorem 4.2. 

This result extends Corollary 1 of Reich [3l] who assumes that T map 

C into itself. 

We shall conclude with a convergence theorem for a general iterative 

process studied by Dotson and Mann [9] . They proved that a nonexpansive 

mapping has a fixed point if a certain sequence of iterates is bounded. 

Their proof uses uniform convexity of the space. We give a simpler proof 

which does not require uniform convexity: the f.p.p. suffices. Moreover, 

a stronger result is given for generalized contractions; the iterates con

verge to the fixed point. 

Let A = (a J) be an infinite real matrix satisfying 
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( i ) a . >. 0 and a . = 0 for k > n; 

n 
( i i ) [ a , = 1 for each n; 

k=l n k 

( i i i ) lim a , = 0 for each k. nk 
n •*• » 

The i t e r a t i ve process studied by Dotson-Mann i s as follows. Let C be a 

closed, convex se t in X and f : C -*• C. Given x. £ C l e t 

*n = J^nlA ' xn+l = f ( V ' n = X'2'3  

This includes the Picard iterates and other schemes as special cases, see 

e.g. [9]. 

THEOREM ,4.5. Let X be reflexive with the f.p.p. Let f : C •> C be nonexpansive 

and let the iterates y , x be as above. If there exists x n£ C such that Jn' n l w 

either of the sequences {x }, {y } is bounded, then f has a fixed point. If 

f is a generalized contraction then these sequences converge to the fixed 

point of f. 

Proof. It is easy to see that if one of the sequences is bounded so is 

the other, so we suppose both are bounded. Given z in X let <f>(z) = 

limsup||x - z|| and let ij>(z) = limsup||y - z|| . As $ and ij> are continuous, 
n -»• « n -> » 
convex functions and <)>(z) -»• *> as ||z|| -*•« (same for i|))» each attains its 

infimum over the closed convex set C. Let K = {v£C : <|>(v) = inf <}>(z) ' z£C}; 

K is called the asymptotic centre of {x } relative to C (e.g. |Io] ) and is a 

closed, bounded, convex subset of X. We shall show that f maps K into itself. 

We begin by showing that, for any w, \{>(w) $ <)>(w). Indeed, let c > 0 and let 

N be chosen sc that ||x, - w|| $ <J>(w) + e, for k % N. Then, for n > N, 

l|yn - «IU jUnk IK - w|| . J L ^ - w l l . 

Since a . ->• 0 as n •> « for each k, there exists N, > N such that the first 
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term is less than e for n * N,. Thus, for n > N-, 

n 
||y - w|| $ e + I a ,(<Kw) + e) 

n K=N+1 n K 

* 4>(w) + 2e. 

As e is arbitary, this proves $(w) $ $(w)» Next, we prove that 

$(f(w)) $ a(w)^>(w) (where a(w) = 1 if f is nonexpansive). 

Indeed, since 

IK+l - f(w)H = H«-V " f(w)H * a(w) \K - "'I ' 
the result is immediate. 

Now let v£K. As we obviously have $(v) $ $(f(v)) we obtain 

4>(v) S <f>(f(v)) * a(v)ijKv) « a(v)<(>(v). 

When f is a generalized contraction, a(v) < 1 and this implies $(v) = 0 so 

x «•• v = f(v). When f is nonexpansive we have f(f(v)) = $(v) so f maps K 

into K and so has a fixed point. 

Remark. As shown in [9], if f is nonexpansive and has a fixed point then 

the iterates defined above are bounded. More recently we discovered that 

Professor S. Reich has proved this result (Pacific J. Math. 60 (1975), 195-

198), using essentially the same idea. 
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