2,363 research outputs found

    Smart Sensor Webs For Environmental Monitoring Integrating Ogc Standards

    Get PDF
    Sensor webs are the most recent generation of data acquisition systems. The research presented looks at the concept of sensor webs from three perspectives: node, user, and data. These perspectives are different but are nicely complementary, and all extend an enhanced, usually wireless, sensor network. From the node perspective, sensor nodes collaborate in response to environmental phenomena in intelligent ways; this is referred to as the collaborative aspect. From the user perspective, a sensor web makes its sensor nodes and resources accessible via the WWW (World Wide Web); this is referred to as the accessible aspect. From the data perspective, sensor data is annotated with metadata to produce contextual information; this is referred to as the semantic aspect. A prototype that is a sensor web in all three senses has been developed. The prototype demonstrates theability of managing information in different knowledge domains. From the low-level weather data, information about higher-level weather concepts can be inferred and transferred to other knowledge domains, such as specific human activities. This produces an interesting viewpoint of situation awareness in the scope of traditional weather data

    Handling Live Sensor Data on the Semantic Web

    Get PDF
    The increased linking of objects in the Internet of Things and the ubiquitous flood of data and information require new technologies in data processing and data storage in particular in the Internet and the Semantic Web. Because of human limitations in data collection and analysis, more and more automatic methods are used. Above all, these sensors or similar data producers are very accurate, fast and versatile and can also provide continuous monitoring even places that are hard to reach by people. The traditional information processing, however, has focused on the processing of documents or document-related information, but they have different requirements compared to sensor data. The main focus is static information of a certain scope in contrast to large quantities of live data that is only meaningful when combined with other data and background information. The paper evaluates the current status quo in the processing of sensor and sensor-related data with the help of the promising approaches of the Semantic Web and Linked Data movement. This includes the use of the existing sensor standards such as the Sensor Web Enablement (SWE) as well as the utilization of various ontologies. Based on a proposed abstract approach for the development of a semantic application, covering the process from data collection to presentation, important points, such as modeling, deploying and evaluating semantic sensor data, are discussed. Besides the related work on current and future developments on known diffculties of RDF/OWL, such as the handling of time, space and physical units, a sample application demonstrates the key points. In addition, techniques for the spread of information, such as polling, notifying or streaming are handled to provide examples of data stream management systems (DSMS) for processing real-time data. Finally, the overview points out remaining weaknesses and therefore enables the improvement of existing solutions in order to easily develop semantic sensor applications in the future

    Semantic traffic sensor data: The TRAFAIR experience

    Get PDF
    Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city''s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective

    Enhancing Water Quality Data Service Discovery And Access Using Standard Vocabularies

    Full text link
    There is a growing need for consistency across the publishing, discovering, integrating and access to scientific datasets, such as water quality data. Such datasets may have varying formats and service interfaces. The Network Common Data Form (NetCDF) is both a software package and a data format for producing array-oriented scientific data, which is commonly used to exchange data, including water quality data. NetCDF datasets are also published through service interfaces using the THREDDS data server. Alternatively water quality datasets can be encoded with standard XML formats such as WaterML 2.0, which can be published with services such as the Open Geospatial Consortium (OGC) community\u27s Web Feature Service interface standard (WFS). However, appropriate interpretation of the content, discovery and interoperability of data depends on common models, schemas and vocabularies, though these may not always be available. Using the water quality vocabulary we have developed, formalized using the Resource Description Framework (RDF) language, and published as Linked Data, we demonstrate the use of such standard vocabularies in existing data services for providing service capability metadata. We also present methods for augmenting existing metadata fields for water quality data specifically in formats such as NetCDF, WaterML 2.0 using standard vocabularies. We show how using standard vocabularies that are encoded and published using semantic technologies can enhance discovery, integration and access to existing data services delivering water quality datasets

    SIGHTED: A Framework for Semantic Integration of Heterogeneous Sensor Data on the Internet of Things

    Get PDF
    AbstractSensors are embedded nowadays in a growing number of everyday life objects. Smartphones, wearables, and sensor networks together play an important role in bridging the gap between physical and cyber worlds, a fundamental aspect of the Internet of Things vision. The ability to reuse sensor data integrated from multiple heterogeneous sources is a step towards building innovative applications and services. In this paper SIGHTED, a sensor data integration framework, is proposed exploiting semantic web technologies and linked data principles. It provides a layered structure as a guideline for integrating sensor data from various sources supporting accessibility and usability. DotThing, a demo platform, is implemented as an instantiation of SIGHTED framework and evaluated. Smartphones and sensor nodes are connected to DotThing showing the ability to query and reuse integrated sensor data from multiple sources to create more flexible horizontal applications. DotThing implementation also demonstrates the need for adding a semantic layer to existing IoT cloud-based platforms, like Xively, that generally lack such layer resulting in proprietary vertical solutions with limited data integration and discovery capabilities. DotThing makes use of vocabularies from existing ontologies on the linked data cloud providing a unified model to annotate data and link it to existing resources on the web

    Semantic Traffic Sensor Data: The TRAFAIR Experience

    Get PDF
    Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective

    Mobile computing and sensor Web services for coastal buoys

    Get PDF
    Mobile device technology with the influence of the Internet is creating a lot of Webbased services so that people can have easy and 24-hour access to the services. Recently, the Google’s Android has revolutionized applications development for the mobile platform. As there is an increasing number of companies exposing their services as Web services, enabling flexible mobile access to distributed Web resources is a relevant challenge. However, the current Web is a collection of human readable pages that are unintelligible to computer programs. Semantic Web and Web services have the potential of overcoming this limitation. For this, a standard ontology called Ontology Web Language for Services (OWL-S) is employed. The vision is to automatically discover services like Sensor Web services from mobile. In this thesis, a mobile framework is developed for the automatic discovery of services. The application is implemented for the Coastal Sensor Web and the Semantic Web service

    Community modelling, and data - model interoperability

    Get PDF

    Semantic technologies for supporting KDD processes

    Get PDF
    209 p.Achieving a comfortable thermal situation within buildings with an efficient use of energy remains still an open challenge for most buildings. In this regard, IoT (Internet of Things) and KDD (Knowledge Discovery in Databases) processes may be combined to solve these problems, even though data analysts may feel overwhelmed by heterogeneity and volume of the data to be considered. Data analysts could benefit from an application assistant that supports them throughout the KDD process. This research work aims at supporting data analysts through the different KDD phases towards the achievement of energy efficiency and thermal comfort in tertiary buildings. To do so, the EEPSA (Energy Efficiency Prediction Semantic Assistant) is proposed, which aids data analysts discovering the most relevant variables for the matter at hand, and informs them about relationships among relevant data. This assistant leverages Semantic Technologies such as ontologies, ontology-driven rules and ontology-driven data access. More specifically, the EEPSA ontology is the cornerstone of the assistant. This ontology is developed on top of three ODPs (Ontology Design Patterns) and it is designed so that its customization to address similar problems in different types of buildings can be approached methodically
    • …
    corecore