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Abstract 

Sensor webs are the most recent generation of data acquisition systems. The research presented 

looks at the concept of sensor webs from three perspectives: node, user, and data. These 

perspectives are different but are nicely complementary, and all extend an enhanced, usually 

wireless, sensor network. From the node perspective, sensor nodes collaborate in response to 

environmental phenomena in intelligent ways; this is referred to as the collaborative aspect. 

From the user perspective, a sensor web makes its sensor nodes and resources accessible via the 

WWW (World Wide Web); this is referred to as the accessible aspect. From the data perspective, 

sensor data is annotated with metadata to produce contextual information; this is referred to as 

the semantic aspect. A prototype that is a sensor web in all three senses has been developed.  The 

prototype demonstrates theability of managing information in different knowledge domains. 

From the low-level weather data, information about higher-level weather concepts can be 

inferred and transferred to other knowledge domains, such as specific human activities. This 

produces an interesting viewpoint of situation awareness in the scope of traditional weather data.
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CHAPTER 1 

Introduction 

Data and information have become the primary currency of today’s technology age. 

Today’s applications connect clients to almost any stream of information. Until recently, most 

streams of information, or data sources, were human generated, but through some of today’s 

most advanced technologies, such as wireless sensor nodes, humans have been extracted from 

the process of information generation. This leads to streams of information generated by 

environments and objects so that clients can get suitable information “from the horse’s mouth”, 

in other words, they get the most reliable information directly from the source. 

Environments provide many dynamic components that could be monitored or possibly 

controlled. They present vast amounts of varying, but interesting, data for collection and 

analysis. Interesting real-world objects, such as mechanical structures, also present vast amounts 

of useful data through their complex, dynamic interactions of their components. Two principle 

areas of data collection and analysis include structural health monitoring and environmental 

monitoring. This research focuses on environmental monitoring, but most of the same concepts 

directly apply to structural health monitoring.  

Most environments involve multiple systems that interact along with thousands of 

smaller components. For an example, consider a rain forest. The process of collecting and 

analyzing data manually in such an environment is an overwhelming task; with the assistance of 

multiple sensors networked together; the task is not as daunting. Although sensor networks have 

only been around for several years, there have been a number of advances in this area, and 

current directions largely point to sensor webs. The research reported here developed a sensor 

web inspired in part by UAS’s (University of Alaska Southeast) experience with their 
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implementation of their SEAMONSTER (SouthEast Alaska MOnitoring Network for Science 

Technology Education and Research) sensor web (Heavner et al., 2007).  

Throughout the comprehensive literature review, the term “sensor web” has been used in 

three different but related senses that always refer to an enhanced, usually wireless, sensor 

network. In the accessible sense, a sensor web makes resources accessible via the World Wide 

Web, and, in the collaborative sense, nodes collaborate in response to environmental 

observations. The semantic sense makes use of metadata that adds context to the environmental 

observations; this context provides awareness of the overall situation. The research developed a 

prototype that incorporates all three senses into a sensor web. The prototype also exhibits 

techniques of data fusion and situation awareness. Data fusion is a method of generating 

additional information and data from integrating multiple data sets. The generated data is usually 

more useful and accurate than the initial data sets. The introduction of more useful and accurate 

data leads to situation awareness. Situation awareness displays a certain level of understanding of 

an environment or object and its behaviors. With this understanding, reasonable assumptions 

about the future state of the environment can be made. 

This dissertation presents the concept of a sensor web along with the accessible, 

collaborative, and semantic senses. These senses are developed through the discussion of their 

components. The following is a brief summary of the dissertation. 

After the Introduction, the chapters that follow are the Background, Literature Review, 

Specific Aims & Objectives, Architecture, Results, Discussion, and the Conclusion. The 

Background and Literature Review chapters present the foundational body of knowledge behind 

the research. The Background chapter discusses the technologies used by the research while the 

Literature Review chapter discusses the techniques reported in the literature that utilize the 



5 
 

technologies presented in the Background chapter. The Literature Review chapter also presents 

what others have done in related areas. The Specific Aims & Objectives chapter presents the 

primary research goals to be achieved through the research. The Architecture chapter describes 

the architecture of the prototype. The Results chapter outlines the outcome of the developed 

prototype. The Discussion chapter presents the concepts along with their relevance and 

importance to the research community. The Conclusion chapter summarizes the topics discussed 

throughout the dissertation and presents possible future directions for the research. 
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CHAPTER 2 

Background 

The following sections discuss the concepts and technologies used to facilitate the 

prototype sensor web. The prototype realizes the overall concepts discussed in the research. This 

chapter starts by discussing the overarching concepts of data fusion and situation awareness. 

Data fusion integrates multiple sources of data to form a high level context of the situation. Then 

the multiagent system framework is discussed to get a foundation for agents, intelligent computer 

systems with reactive, proactive, autonomous, and social properties. JADE is a Java-based 

framework for developing agents that adhere to FIPA standards. Next, the Web service standards 

and technologies are discussed. Web services are self-contained procedures on the Web that 

allow for machine-to-machine interaction. SOAP facilitates communication between Web 

services and clients, while WSDL is needed for describing how to connect and communicate 

with Web services. REST is the latest Web service methodology and focuses on resources. 

WSIG is the JADE component that allows the agents to interact with Web services, while the 

Semantic Web adds meaning to data giving a context of the situation.  

2.1 Sensor Networks & Sensor Nodes 

A sensor network is a collection of spatially distributed sensor nodes that monitor certain 

aspects of an environment. The general purpose of a sensor network is to collect information 

pertaining to the environment. In addition, “[e]ach sensor node is capable of only a limited 

amount of processing. But when coordinated with the information from a large number of other 

nodes, they have the ability to measure a given physical environment in great detail” 

(Bharathidasan and Ponduru, 2002). Basically, individual sensor nodes provide limited 

capabilities, but when situated with a group, they provide amplified capabilities.  
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The sensor nodes, or motes, are the integral components of the sensor web. They are the 

perceptors through which the sensor web interacts with the environment. They also serve as the 

backbone of the infrastructure; through the integrated wireless capabilities the sensor nodes 

control the communication of the system. The latest technology of smart sensors adds new 

functionality to sensor node technology. Smart sensors introduce dynamic processing capabilities 

to the traditional sensor nodes. One of the most significant smart sensor capabilities involves the 

conversion of the signal to its human readable form before it is transmitted through the network. 

The sensor nodes used in the prototype of this dissertation are categorized as smart sensors since 

they all possess the signal conversion capability. The sensor nodes discussed here include the 

Berkeley Imote2s and Sun SPOTs. They will be briefly discussed in the following sections, but, 

beforehand, we will discuss the major components of sensor nodes along with the advantages 

and disadvantages of sensor nodes. 

Most sensor nodes contain a common set of components: processor, transceiver, memory, 

power supply, and sensors. The processor handles the processing tasks of the nodes and controls 

the functionality of the other components. Several kinds of processors are used within sensor 

nodes, including common workstation processors, digital signal processors, and microprocessors. 

Workstation processors typically require more power than other processors, while digital signal 

processors perform more advanced signal processing than is generally needed for sensor webs. 

Microprocessors are the ideal compromise for the processing unit of sensor nodes. The 

transceiver is a device that has signal receiving and transmitting capabilities. Sensor node 

transceivers generally take advantage of radio frequency and infrared technologies for wireless 

communication. Sensor nodes also take advantage of memory storage units. For efficiency 

reasons, memory capacities are limited to a few megabytes. Sensor node memory combines 
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memory on the microprocessor chip and flash memory for program data. The power supply is 

needed to provide power to all the sensor node components. Most sensor nodes use standard 

AAA or AA batteries. The sensors are the devices that measure the phenomenon of interest, such 

as temperature, pressure, or radiance. Table 1 presents a summary of these technical 

specifications of the sensor nodes used in this research. 

Table 1 Summary of Sensor Node Specifications. 

 Imote2 Sun SPOT 
Processor Marvell PXA271 (13MHz-

416MHz) 
ARM 926ej-S (400MHz) 

Radio Chipcon CC2420 (2.4GHz) Chipcon CC2420 (2.4GHz) 
Memory 32M Flash, 32M SDRAM 8M Flash, 1M SRAM  
Power Supply 3 ‘AAA’ batteries or 

rechargeable Li-Ion battery 
Li-Ion Rechargeable Battery 

Sensors 3-axis Accelerometer, 
Temperature, Humidity, and 
Light 

3-axis Accelerometer, Temperature, 
and Light 

Programming NesC (TinyOS) Java 
Input/Output USB, 3xUART, 2xSPI, I2C, 

SDIO, GPIOs, I2S, AC97, and 
1 LED 

8 LEDs, 6 analog inputs, 2 momentary 
switches, and 5 general purpose I/O 
pins 

There are several advantages of sensor nodes, along with some disadvantages. One 

advantage is the cost. In particular, off-the-shelf components are fairly inexpensive, especially 

for kits that contain multiple sensor nodes. Another advantage pertains to the sensor node’s size. 

Most of the latest sensor nodes are about the size of two decks of cards or smaller. Also, every 

new generation of sensor nodes is smaller than the previous generation. The latest generations of 

sensor nodes use wireless technology; this adds to the benefits of sensor nodes the advantages of 

flexibility of location and ease of deployment. Wireless sensor nodes have a distinct advantage 

over wired sensor nodes due to the elimination of restrictions from attached wires. The sensor 

nodes may thus be positioned in a wider range of locations. There is also the advantage of ease 

of deployment as the sensor nodes can be positioned and deployed in flexible locations. Most 
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sensor nodes are housed inside of pods, or casings, to protect the vulnerable circuitry of the 

device. The housing for the sensor nodes adds durability to the list of advantages. It allows the 

sensor nodes to function properly given the harsh elements of most environments.  

Along with the advantages of sensor nodes, there are a few disadvantages. One 

disadvantage pertains to the cost of sensor nodes. The cost of sensor nodes usually range from 

inexpensive to fairly expensive, but this is dependent on a number of factors such as the 

manufacturer or type of integrated sensors. Custom built sensor nodes are usually more 

expensive, resulting from the expenses of developing and manufacturing the hardware. Power is 

also another disadvantage of sensor nodes; just as with all mobile devices, power is a limiting 

resource. Sensor nodes are involved in a wide range of tasks, including wireless communication, 

which is a large consumer of the sensor node’s power.  

2.1.1 Berkeley Imote2. The Imote2 is a collaboration effort of Crossbow and Memsic, 

two state-of-the-art smart sensor companies (Imote2). The Imote2 is the latest generation mote 

used for adding wireless and low-power options to sensor networks. It is an advanced node 

platform that incorporates sensing and networking technologies. It incorporates a processor, 

external/internal memory, a radio transceiver, an antenna, and expansion connectors. There are a 

number of improvements to this sensor mote over the previous generations, such as the Mica, 

Mica2, and iMote motes. 

The Imote2 was designed around the XScale Processor, PXA271, which operates 

between the frequencies of 13MHz and 416 MHz. With a 13 MHz low frequency, which requires 

low voltage, the Imote2 can achieve low power operation. The Imote2 also incorporates a MMX 

coprocessor for multimedia operations. The radio transceiver conforms to the 802.15.4 IEEE 

standard for wireless personal area networks. This is ideal for the low power requirements for 
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sensor nodes. The radio range is augmented by a 2.4 GHz surface mount antenna that achieves a 

range of nearly 30 meters. The Imote2 enables hardware expansion through a basic and advanced 

set of connectors. The basic set is meant for common, low cost sensor boards, while the 

advanced set is meant for accessing the advanced features of the Imote2’s processor, such as the 

camera or audio interfaces. Figure 1 presents the Imote2 board in isolation as well as the Imote2 

board integrated with the sensor board and the battery board beside a quarter for size 

comparison. 

 

Figure 1 Imote2 Sensor Node.1,2 

2.1.2 TinyOS. TinyOS is an operating system designed specifically for resource 

constrained devices (Levis and Gay, 2009). TinyOS is used in a variety of applications from 

personal area networks to ubiquitous computing but is excellent for sensor nodes and sensor 

networks. It is open source so it allows for modification and extension for applications. 

Developers can take advantage of the software abstractions provided by TinyOS to access low 

level hardware components of devices.  

                                                 
1 The first figure was referenced from http://cwnlab.ece.okstate.edu/images/facilitiesimg/imote2_4.jpg 
2 The second figure was referenced from 
http://imcl.comp.polyu.edu.hk/wiki/wsn/lib/exe/fetch.php?w=300&media=research:imote2_1.jpg 



11 
 

TinyOS is best suited for resource constrained devices that are controlled by 

microcontrollers. These types of devices are designed for very low power consumption and are 

intended to be integrated with sensor and networking hardware. These three features are also 

supported through TinyOS. TinyOS supports wireless networking through the 802.15.4 IEEE 

standard (Part 15.4), which is very common among wireless sensor nodes. 

There are two main disadvantages of TinyOS, which relate to its programming model. 

The first disadvantage is that it is more difficult to learn than most other environments. TinyOS 

was specifically designed for devices with little memory, so it does not support process blocking. 

Without the capability to block processes, any process, or piece of code, should not run for long 

periods of time because other processes cannot run their code. Although this is necessary, most 

developers are accustomed to a programming style with blocking. The second disadvantage 

involves the difficulty of developing applications that are computationally intensive. Because 

TinyOS does not support process blocking, long computationally-intensive processes must be 

broken down into smaller chunks. 

2.1.3 NesC. NesC is a programming language for networked embedded systems (Gay et 

al., 2009). It is ideal for sensor nodes and sensor networks that contain multiple low power 

devices. NesC provides a programming model that supports event-driven execution and 

component oriented design. NesC is the language used to develop TinyOS as well as with other 

sensor node and sensor network applications. Because of their wide use and popularity, TinyOS 

and NesC have become staples of most sensor network research.  

The primary concept behind NesC is its system design, where the applications developed 

in NesC are closely tied to the device hardware. This presents three properties that developers 

must keep in mind. The first property is that the device resources are known to be constant. The 
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second property is that NesC applications are developed with reusable system components that 

integrate application-specific components. The third property relates to the importance of a 

flexible design because of the wide variety of supported hardware. 

Regarding NesC’s use in sensor nodes and sensor networks, there are a few challenges 

that it addresses. Sensor nodes collect data and control the environment, so the sensor nodes 

interact with the environment through events. NesC approaches this with its event-driven 

execution. NesC approaches the challenge of the limited resources of sensor nodes with its small 

footprint. NesC also attempts to mollify the challenge of reliability. Individual sensor nodes fail 

due to hardware failure; although this cannot be avoided, NesC reduces run-time errors to add a 

layer of reliability. 

2.1.4 Sun SPOT. Sun SPOTs (Small Programmable Object Technology) are state-of-the-

art sensing devices (sunspotworld.com). They are an experimental platform for accessing sensor 

hardware on a wireless device. The SPOT kit includes two wireless SPOT devices, a SPOT 

basestation and an environment for developing applications and deploying them to the SPOTs. 

The hardware of the Sun SPOT devices includes a 180 megahertz processor, 512 kilobytes of 

RAM, and four megabytes of flash memory. The device also has a 2.4 gigahertz radio with an 

integrated antenna. The hardware of the SPOT includes a three-axis accelerometer, a temperature 

sensor, a light sensor, eight LEDs, six analog inputs, two switches, and five input/output pins. 

The inputs and pins allow the SPOT hardware to be extended with additional sensors, actuators, 

or other technology, such as a GPS unit, humidity sensor, or solar cell. Figure 2 shows a Sun 

SPOT sensor node that has been disassembled for a clear view of its sensor board, processor 

board, and its battery. It also shows (with a quarter for reference) the SPOT’s small size and 

compact design for its intricate hardware. 
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Unlike the previously discussed Imote2 sensor node, the SPOTs do not run on an 

operating system, such as TinyOS, but run on a special Java virtual machine (JVM), called the 

Squawk JVM. This JVM is an implementation of the Java MicroEdition of virtual machines. The 

Squawk JVM supports pJava and MIDP, both of which implement LEAP, the JADE framework 

for sensor nodes. 

 

Figure 2 Overview and Disassembled View of Sun SPOT. (sunspotworld.com, 2008) 

2.1.5 Davis VantagePro2. The Davis Vantage Pro2 is a wireless weather station 

(VantagePro2). It incorporates the Integrated Sensor Suite (ISS) that includes a rain collector, 

temperature and humidity sensors, and anemometer. The weather station communicates 

wirelessly to a console connected to a workstation. Figure 3 shows the Davis Vantage Pro2 

weather station on top of McNair Hall at North Carolina A&T State University. 
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Figure 3 Davis VantagePro2 weather station on McNair Hall. 

2.1.6 Miscellaneous Sensors. There is a variety of other sensor nodes that would provide 

useful functionality. Generic sensor nodes provide a standardized platform at an affordable cost, 

while custom sensor nodes provide the exact functionality needed by the client. 

IRIS, Micaz, and TelosB are a few generic sensor nodes that could easily be interchanged 

with the Imote2 sensor nodes. The IRIS sensor nodes were designed for industrial, structural, and 

energy monitoring (IRIS). The Micaz sensor nodes were meant for indoor building monitoring 

(MICAz). The TelosB sensor nodes were designed for research development and wireless sensor 

network experimentation (TELOSB). These sensor nodes depend on the same hardware stack of 
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TinyOS and nesC, so they are highly interoperable. They also serve as some of the standard 

sensor nodes for educational and industrial use. 

2.2 Multiagent Systems 

An agent is an intelligent computer system able to act autonomously and to interact with 

other agents. A multiagent system is composed of multiple agents typically interacting by 

exchanging messages through some computer network infrastructure and acting on behalf of 

users with different goals and motivations (Wooldridge, 2002).  

The field of multiagent systems is relatively new in computer science. It is influenced and 

inspired by multiple fields, including economics, philosophy, game theory, logic, ecology, and 

the social sciences. Intelligent agents in particular have three important characteristics: they are 

reactive, are proactive, and have social ability.  An agent is reactive if it can perceive its 

environment and respond rapidly.  It is proactive if it exhibits goal-driven behavior by taking the 

initiative. Lastly, an agent has social ability so that it can interact with other agents and humans.  

Agents interact with each other to create a multiagent system. In a multiagent system, agents 

may have different roles, yet typically all collaborate to maintain or to achieve the goals of the 

system. The interaction of agents allows a multiagent system to exhibit complex behaviors. The 

field of multiagent system also introduces interesting paradigms, such as Gaia and the Contract 

Net Protocol, for development and problem solving. Gaia (Wooldridge et al.2000) presents a 

methodology for designing multiagent systems, while the Contract Net Protocol (Alibhai, 2003) 

allows agents to incorporate problem solving capabilities through agent collaboration. 

The following sections discuss the technologies and methodologies needed to build and 

extend multiagent systems. JADE and LEAP allow the development of multiagent systems, 

while Jess incorporates intelligence into multiagent systems through rules. Agent communication 
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languages facilitate communication within and among multiagent systems. FIPA defines 

standards for multiagent systems to facilitate interoperability among them. 

2.2.1 ACL. Several agent communication languages (ACLs) have been defined to allow 

agents to communicate to perform complex tasks. An ACL is typically grounded in speech-act 

theory, which analyzes language use as consisting of acts, such as asserting, requesting, or 

commanding (Bellifemine et al., 2007). Certain verbs, such as “assert”, “request”, and 

“command” explicitly represent actions done with words; such verbs are called performatives. 

An older ACL for multiagent systems is KQML (Knowledge Query and Manipulation 

Language), which was developed as part of the ARPA Knowledge Sharing Initiative (Draft 

Specification). KQML defines various performatives and is intended for large-scale knowledge 

bases that are shareable and reusable (Java Agent Development). The content of a message is in 

KIF (Knowledge Interchange Format), essentially first-order logic in a LISP-like syntax. KIF is 

used to express properties of things in a domain and relationships between them as well as 

general properties of a domain.  

In order for agents to communicate, they must agree on a common set of terms. An 

ontology is a conceptualization of a domain and provides the semantics for the terms in the 

domain, thus, allowing agents that share the ontology to communicate about the domain. An 

ontology typically describes relations among classes and the properties of elements of classes. In 

the Knowledge Sharing Initiative, Ontolingua was developed as a language for expressing 

ontologies.  

A more recent ACL, FIPA-ACL, has been developed by the Foundation of Intelligent, Physical 

Agents (FIPA). FIPA is an organization that publishes standards for heterogeneous and 

interacting agents and agent based systems. Its purpose is to promote the success of emerging 



17 
 

agent-based applications, services, and equipment. FIPA-ACL is a proposed IEEE standard for 

agent communication. FIPA-ACL handles message exchange interaction protocols, speech act 

theory-based communicative acts, and content language representations. FIPA-ACL does not 

mandate the use of any particular language for expressing content. 

2.2.2 JADE. JADE (Java Agent DEvelopment framework) is an open-source Java 

package for developing FIPA-compliant agents and multiagent systems (Java Agent 

Development). The JADE framework provides basic middleware functionalities that are 

independent of the specific application and that simplify the realization of distributed multiagent 

systems (Bellifemine et al., 2007). JADE provides a runtime environment for agents, a Java 

library that provides ready-made pieces of functionality, abstract interfaces for application-

dependent tasks, and graphical tools for administration and monitoring of agents (Bellifemine et 

al., 2007).  

JADE’s design is simple and influenced by the agent abstraction, which presents three 

properties. The first property is that the agent is autonomous and proactive. Thus, an agent 

cannot provide call-backs. Also, an agent must have its own thread of execution, using it to 

control its lifecycle and to decide autonomously when to perform which actions. This property 

aligns with the characteristics of an intelligent agent. The second property is that agents have the 

right to say ‘No’ and they are loosely coupled. Thus, a message is sent to a destination identified 

only by a name, which the message transport system resolves into a transport address. This 

allows multi-cast communication to be implemented as an atomic operation, and a message can 

be sent to a group identified by a description or (using a proxy agent) by a domain. Also, the 

receiver decides which messages to ignore and which to process with what priorities. Finally, 

communication is asynchronous; there is no temporal dependence between sender and receiver, 
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and the sender does not block until the receiver processes the message. The third property is that 

the system is peer to peer (P2P). Each agent is identified by a globally unique name. It can join 

and leave a host platform at any time and can discover other agents through both white-page 

services, which allow agents to search for other agents by name, and yellow-page services, used 

by an agent to register its services or to search for services. An agent can initiate communication 

with any other agent anytime and can equally be the object of an incoming communication 

anytime. 

A JADE platform consists of agent containers that can be distributed over the network. 

Agents live in containers, which are the Java processes that provide the JADE run-time 

environment and all the services needed for hosting and executing agents. The main container, 

called “Main Container,” is the bootstrap point of a platform and is the first container that is 

launched.  All other containers must join to the main container by registering with it. By default, 

these are named “Container-1,” “Container-2,” and so on, where the numbers increase in the 

order in which the containers thereby named are created. Figure 4 depicts the relationship 

between the main architectural elements: the Directory Facilitator (DF), the Agent Management 

System (AMS), Main Container, Container-1, Container-2, and several JADE agents. The DF, 

which by default is in the main container, is the agent providing the yellow-page service. It also 

accepts subscriptions from agents that wish to be notified whenever a service registration or 

modification is made that matches some specified criterion. The AMS, which is always in the 

main container, is the agent that supervises the entire platform, manages the life-cycles of all 

agents, and provides the white-page service. JADE has every agent register with the AMS to 

obtain an AID (Agent IDentifier).   
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Figure 4 Architecture of JADE agent platform. (Bellifemine et al., 2007) 

According to the FIPA specifications, a MTS (Message Transport Service) is one of the three 

most important services (besides those provided by the DF and the AMS) an agent platform is 

required to provide. It manages all message exchange within and between platforms. Any 

number of MTPs can be activated on a given JADE container. The GADT (Global Agent 

Descriptor Table) in the main container is the registry of all agents in the platform. To prevent 

the main container from becoming a bottle neck, JADE provides a cache of the GADT in each 

container. When a container looks for the location of a recipient of a message, it consults its 

LADT (Local Agent Descriptor Table); if this fails, it consults the main container and updates its 

cache of the GADT with the remote reference. The CT (Container Table) is the registry of the 

object references and transport addresses of all container nodes in the agent platform. 
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2.2.3 LEAP. LEAP (Light Extensible Agent Platform) (Bellifemine et al., 2007) is a 

modified version of the JADE framework that allows development of FIPA-compliant agents on 

resource constrained devices such as Java-enabled cell phones and personal digital assistants 

(PDAs). The primary motivation behind the development of LEAP has been to take advantage of 

the advances in hardware technology, particularly in the area of mobile devices. Although there 

have been many advances in hardware for mobile devices, there are a few limitations that LEAP 

addresses to allow JADE agents to function properly on such devices. These limitations of 

mobile devices, including hardware limitations, the amount of hardware resources required by 

the Java virtual machine, and network limitations, prevent the normal JADE framework from 

being deployed on mobile devices. The hardware limitations on mobile devices involve reduced 

processing power, limited memory capacities, and battery life. Mobile devices usually do not 

support 32-bit or 64-bit microprocessors, massive gigabytes of storage, and unlimited power 

from a wall outlet. These devices usually support 16-bit microprocessors, 640 megabytes to 2 or 

4 gigabytes of storage, and a few active hours of battery life. The advances in mobile technology 

are closing the gap between the components supported in mobile devices and the components 

supported in desktops or laptops, but mobile devices will always continue to support components 

whose resources are limited compared to those of other devices.  

The limitations on the hardware bring inherit limitations on the Java virtual machine 

(JVM), which is the software that interprets the Java bytecode, or intermediate computer 

language (Liang, 2005). Most desktop hardware configurations support J2SE (Java 2 Standard 

Edition), but the hardware limitations on mobile devices do not allow full-featured versions of 

Java to execute properly on these devices. Through the introduction of JME (Java Platform, 

Micro Edition), previously known as J2ME (Java 2 Micro Edition), a subset of the full 
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functionality offered by Java, mobile devices are able to execute Java applications more 

efficiently with their hardware limitations. There are also network or connectivity limitations 

with mobile devices. The JADE containers require constant connectivity, but mobile devices do 

not guarantee this type of connectivity.  

LEAP supports mobile devices by addressing these limitations. LEAP supports four main 

Java configurations for mobile devices, namely, pJava (PersonalJava), MIDP (Mobile 

Information Device Profile), Microsoft.Net, and Android. The J2SE configuration is useful for 

desktops and servers that use a standard Java Development Kit (JDK) to execute LEAP. The 

pJava configuration is obsolete and was the predecessor of J2ME. MIDP is a profile of JME, 

more specifically, JME’s configuration of Connected Limited Device Configuration (CLDC) 

thatis popular for mobile devices. The Microsoft .Net configuration is needed for interacting with 

the .Net infrastructure and Microsoft supported applications. The Android configuration allows 

deployment and interaction with devices that support the Android operating system. 

LEAP provides the split execution mode to address the connectivity issues of mobile 

devices (Bellifemine et al., 2007). Remember that JADE is implemented with containers, which 

are not appropriate for mobile devices and their connectivity issues. Split execution mode divides 

a container into a front-end and back-end. The front-end provides a subset of a normal 

container’s features and resides on the mobile device, while the back-end provides the rest of the 

features and resides with the main container’s dedicated machine. The combination of the front-

end and the back-end through the communication of a dedicated connection create the same 

functionality of a normal JADE container. The split execution mode provides a number of 

advantages that are beneficial to the connectivity issues. The front-end has a smaller footprint 

than a normal container and has a faster boot time. The IP address of the mobile device is not 
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used, so its change does not affect operation. The wireless link is also a dedicated connection 

between the front-end and the back-end, so it is optimized.  

2.2.4 Jess. Jess (Java Expert System Shell) (Friedman-Hill, 2003) is a rule engine for the 

Java language that provides rule-based programming suitable for automating an expert system. 

Jess maintains a working memory where facts are stored. A rule is structured as an if-then 

statement. The if portion of the rule (the “left-hand side”) contains the condition that must be 

matched against facts in working memory for the rule to fire. The then portion (the “right-hand 

side”) specifies the actions that may be performed when the rule fires; these actions typically add 

or retract facts to or from working memory. When the left-hand sides of several rules match, they 

are placed on the agenda, and Jess uses a conflict strategy to prioritize the rules and to determine 

which fires. The conflict strategy takes into account the complexity and specificity of the rule for 

prioritization; also, the programmer can explicitly specify the priority of a rule. The Jess rule 

engine uses the Rete algorithm, which efficiently matches the left-hand sides of rules against 

facts in working memory. To use this algorithm, Jess builds a network of nodes, where each 

node corresponds to a pattern occurring in a rule. The Rete algorithm sacrifices some memory 

for a vast increase in speed.   

It is reasonable to use Jess to endow JADE agents with intelligence. Policies can often be 

encoded as Jess rules, and Jess provides a natural way to enforce policies within a JADE-based 

multiagent system. The main difficulty with integrating Jess with JADE is that a JADE agent 

runs on a single thread, and the rule engine may require so much time as to prevent the agent 

from performing its normal behavior, such as communicating with other agents. The solution is 

to time-limit the execution of the rule engine. 
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2.3 Web Services 

A Web service is a software system designed to support interoperable machine-to-

machine interaction over the Web (Web Services). Web services expose and access interfaces 

described in the format of WSDL (Web Service Descriptor Language). A Web service interacts 

with other software systems according to the relevant WSDL’s descriptions, and it 

communicates with SOAP (Simple Object Access Protocol) messages. Figure 5 presents the 

three primary parties of Web service implementations: the service providers, the service 

consumers, and the discovery agency. Service providers develop Web services and expose the 

Web service interfaces to service requesters via the Web. Additionally, they may register their 

services with a discovery agency so that requesters that do not know of a service may find it. The 

process of registering a Web service with a discovery agency is also known as publishing. The 

discovery agency, or service broker, maintains a registry of published Web services used to 

mediate the connection of service providers and service consumers. The discovery agency is also 

known as the yellow pages for its function of listing services. Service consumers find suitable 

service providers in the discovery agency and then contact a service provider to use its service, 

unless the consumer already knows of the service, in which case it can access it directly. 
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Figure 5 Service-Oriented Architecture of Web services.3 

Web services are based on an architecture established by standards that enable 

connection, communication, description, and discovery. The W3C (World-Wide Web 

Consortium) (w3.org) and OASIS (Organization for the Advancement of Structured Information 

Standards) (oasis-open.org) are the primary organizations that promote standards and protocols 

for Web technologies, in particular, Web services. 

The following sections discuss the underlying technologies needed for implementing 

Web services. The discussion begins with XML (eXtensible Markup Language), the backbone of 

communication for the Web. Then JAXB (Java Architecture for XML Binding) is discussed for 

an efficient method of binding XML content with Java objects. SOAP is a protocol for Web 

service communication between clients and providers thatis based in XML. WSDL is a 

specification language for describing how clients access and utilize the Web service. REST 

(Representational State Transfer) is a resource-oriented alternative to the standard service-

                                                 
3 This figure was referenced from http://www.flickr.com/photos/dullhunk/415645479/#/ 
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oriented approach to Web services. WSIG (Web Services Integration Gateway) allows JADE 

agents to interact with Web services. 

2.3.1 XML. XML (eXtensible Markup Language) is a W3C standard that facilitates the 

sharing of structured data across the Web (XML Schema). The ability to allow users to define 

elements and attributes leads to the extensible nature of XML. For an XML document to be 

useful, it must be not only correct but also valid. An XML document is said to be correct if it is 

well-formed, that is, if it respects the basic syntactic rules (such as that elements must be 

properly nested and may not overlap).   

The principle components of an XML document include elements, attributes, data types, 

and namespaces. Elements consist of start and end tags (<element></element>) along with the 

enclosed data content. Element tags create a hierarchy that preserves a structure presented by the 

data, or content. Attributes present additional information about the elements they are embedded 

within (<element attribute=”…”></element>). Data types restrict the particular data content held 

by the element’s start and end tags, which can includemany types such as integers, strings, and 

even, dates. Namespaces provide a mechanism for distinguishing between identical names, as it 

is not unusual for different vocabularies to address an element or attribute with the same name. 

An XML document is said to be valid if it conforms to a specified XML schema, which 

may be a DTD (Document Type Definition) or a document written in the XML Schema 

Definition Language. DTDs are an older standard and are written in an extended BNF notation.  

The XML Schema language (XML Schema) is more powerful than the DTD notation in part 

because it allows new data types to be defined and multiple namespaces to be handled easily.  A 

document in the XML Schema language must be a correct XML document and, in fact, must be 

valid (in relation to the schema for the XML Schema language).   
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2.3.2 JAXB. XML is one of the backbone technologies of the Web. The ability to capture 

structure along with data content is a huge benefit of XML. Because of the specialized structure, 

XML content must be accessed in a specific way to preserve the data hierarchy or relationships 

between data elements.  

XML parsing is required for accessing XML data content. DOM (Document Object 

Model) and SAX (Simple API for XML) are two methods of XML parsing. DOM accesses the 

XML data content using a tree-based method (DOM). SAX is a stream-based method that saves 

memory (Simple API for XML). SAX and DOM both require knowledge of XML and the 

specific documents being accessed.  

JAXB (Java Architecture for XML Binding) (Laun) is a Java package for accessing XML 

content similar to SAX and DOM. JAXB makes it easy to access XML documents as Java data 

structures where classes correspond to element definitions in the corresponding XML schema. 

JAXB allows Java developers to access and process XML data without having to know XML 

structure or XML processing. It is also a two way process, so content can go from XML to Java 

objects and vice versa. 

2.3.3 SOAP. SOAP is an XML-based messaging framework for the exchange of 

information over networked environments (Web Services). SOAP is the primary communication 

mechanism of Web services, where it serves as the foundational technology for development of 

Web services. SOAP is the successor of XML-RPC (Remote Procedure Call) (St. Laurent et al., 

2001), which naturally used XML to encode calls to remote procedures over networks. The 

framework defines four specifications:  

(1) the SOAP processing model defines the rules for processing a SOAP message,  

(2) the SOAP extensibility model defines the SOAP modules and features,  
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(3) the SOAP underlying protocol binding framework specifies how to bind to an 

underlying protocol for exchanging SOAP messages, and  

(4) the SOAP message construct defines the structure of a SOAP message. 

2.3.4 WSDL. WSDL is an XML-based standard for describing how to interface with a 

Web service (Christensen et al., 2001). A WSDL specification includes the definitions of data 

types, input and output message formats, the operations provided by the service, network 

addresses, and protocol bindings. In particular, WSDL describes services as collections of ports, 

or service endpoints. A WSDL document contains abstract and concrete descriptions. The 

abstract descriptions define the datatypes referenced and the collection of the operations exposed 

by the Web service. The concrete descriptions define how the inputs and outputs of each 

operation map to the appropriate communication protocol and the collection of endpoints, or 

addresses of the bindings, that represent the overall Web service. 

2.3.5 REST. In terms of Web services, Service-Oriented Architecture (SOA) has been 

the de facto approach for the past years, but Resource-Oriented Architecture (ROA) is quickly 

becoming a worthy competitor. ROA focuses on treating every web site and web application as a 

service that can be accessed through standard web technologies of HTTP, URIs, and XML 

(Richardson and Ruby, 2007). ROA is a fresh approach to distributed systems as well as a 

different approach to distributed programming. ROA introduces a set of principles for taking 

advantage of a simpler approach to the Web, which is referred to as REST (Representational 

State Transfer). Web services that conform to this set of principles are known as RESTful Web 

services.  

REST revolves around the concepts of resources, connectors, representations, 

components, and URIs. Resources are accessible sources of information located on the Web, 



28 
 

such as HTML documents, XML documents, and search engines. Connectors are media that 

serve the request for these resources. Connectors include servers, caches, or even other clients. 

Representations are the returned data formats of the requested resources, such as HTML, XML, 

and plain text. Components are defined as the objects that communicate via a specific protocol, 

usually HTTP, to exchange a representation of a resource. URIs (Universal Resource Identifiers) 

are global identifiers for the resources located on the web. As a general note, when speaking of 

the Web, one usually refers to URLs (Universal Resource Locators). But URLs are a specific 

class of URIs, and “URI” is used to refer to a more generic case. In general, components request 

resources by their URIs on connectors. The responding component returns a representation of the 

resource to the requesting component. 

Roy Fielding’s dissertation (Fielding, 2000) draws on REST principles to identify 

drawbacks of SOA and possible solutions. REST defines the set of principles that try to address 

several issues including complexity, scalability, and interoperability. With the growing number 

of independent components, interoperability is becoming a more pressing issue. As the number 

of independent components grows, the number of interactions between them grows at an even 

greater rate, so scalability concerns must take into account interactions between components. In 

addition to the increasing number of components and component interactions, the number of 

component interfaces also adds to the complexity of the architecture. Referring to manageable 

complexity, scalability, and interoperability, Richardson and Ruby state:  

“Simplicity—that despised virtue of HTTP 0.9—is a prerequisite for all 
three. The more complex the system, the more difficult it is to fix when something 
goes wrong.” (Richardson and Ruby, 2007) 

REST simply defines a set of architectural principles for developing Web services. These 

principles include a client-server architectural style, stateless communication, cacheable 

communication, uniform interface, layered systems, and code-on-demand. The client-server 
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architectural style is the fundamental model of the World Wide Web. This style separates the 

client user interface from the server data storage, which introduces portability and scalability to 

the Web.  

The stateless communication principle pertains to the absence of state information stored 

on the server, although it does allow for state information to be stored on the client, through such 

mechanisms as session cookies. The REST stateless communication principle encourages 

sending a request with all necessary information to service it properly. The cacheable 

communication principle states that data can be cached and reused if labeled as cacheable. The 

uniform interface principle specifies certain guidelines to which all interfaces must conform and 

requires that all components share a uniform interface.  

The layered system principle refers to the hierarchical layers of a system; this restricts the 

layer’s behavior to focus on its interactions with the next layer. The code-on-demand principle 

involves downloading and executing code that allows clients to extend their functionality. 

2.3.6 UDDI. UDDI (Universal Description, Discovery and Integration) is an OASIS 

standard that defines the method for publishing and discovering Web services and their related 

information (uddi.org). UDDI implementations provide APIs (Application Programmer 

Interfaces) and Web services endpoints for publishing information and inquiring for information 

from a UDDI registry. To properly access a UDDI registry, a username and password are 

required, along with the appropriate UDDI URL for publish or inquiry actions. Information 

published to a UDDI registry is accessible by all users of the registry while inquiring allows 

users to learn about businesses, their Web services, and how to access any Web services of 

interest.  
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UDDI has three components (“pages”) for the classification of information: the white, 

yellow, and green pages. The white pages provide information about the businesses that provide 

Web services, the yellow pages provide information about the classification of Web services 

based on the services they provide, and the green pages provide information about the bindings 

of the Web service, in particular, WSDL information. Thus, a business with several Web services 

has several yellow page entries, one for each Web service, while there is only one white page 

UDDI entry for the business itself. Also, the Web service may have multiple green page entries 

for multiple interfaces, each corresponding to an interface of the Web service. 

2.3.7 WSIG. As Web services are passive (they can only provide new information when 

invoked) while agents are autonomous and proactive, integrating agents and Web services would 

be the logical progression. WSIG (Web Services Integration Gateway) is a JADE add-on that 

allows integration between the Web services framework and the multiagent systems framework, 

in particular, the JADE platform (JADE Board, 2011). WSIG offers bidirectional discovery and 

remote invocation of Web services by JADE agents and of JADE agent services by Web 

services.  

The WSIG architecture presented in Figure 6 contains the WSIG Servlet and WSIG 

Gateway Agent. The WSIG Servlet connects the WSIG system to the Web acting as a front-end 

that services requests from the Web and responses to Web clients, while the WSIG Gateway 

Agent connects the WSIG system to the multiagent system framework, acting as a back-end that 

fulfills the requests. The WSIG Gateway Agent manages the entire WSIG system.  

The WSIG system includes four important functionalities. It receives agent service 

registrations from the JADE DF and translates them into the corresponding WSDL descriptions, 

which are registered with the UDDI yellow-pages. The system also receives Web service 
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registrations from the UDDI repository and registers them with the DF as agent services. The 

WSIG system receives a Web service invocation request from a JADE agent, finds the service in 

the DF, translates the request into SOAP, and sends it to the Web service; a service response is 

translated into ACL and sent to the requesting JADE agent. Lastly, the WSIG system receives an 

agent service request from a Web service client, finds the service in the UDDI repository, 

translates the request into ACL, and sends it to the requested agent, without interaction with the 

DF; an agent response is translated into SOAP and sent to the requesting Web service. Although 

the functionality of agents discovering Web services as agent services is a documented feature of 

WSIG, it is not fully implemented. A simple alternative would involve the agent directly 

invoking the Web service via Axis calls or SOAP messages. 

 

Figure 6 WSIG Architecture. (JADE Board, 2011) 
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2.4 Semantic Web 

“Tim Berners-Lee has a two-part vision for the future of the Web. The first part is to 

make the Web a more collaborative medium. The second part is to make the Web 

understandable, and thus processable, by machines.” (Daconta, 2003) 

The Semantic Web is the next evolutionary step to the Web. The principal concept of the 

Semantic Web revolves around the word “semantic,” which relates to meaning. The Web allows 

large volumes of data to be accessible to everyone. The Semantic Web allows a more efficient 

use of that data through the addition of meaning (Daconta, 2003). With the absence of meaning, 

users or programs must interpret this data to make meaningful decisions. With the advent of the 

Semantic Web, focus on the Web is shifting from application-centric to data-centric. The key 

goal of the Semantic Web is to create “smart data.” 

The Semantic Web offers technologies and concepts that resolve issues of information 

technology, such as information overload and poor content aggregation. Information overload 

occurs when one is presented with so much data as to impair decision making. Content 

aggregation refers to combining data from separate sources. The Web primarily consists of 

unstructured content often consumed by human users, while the Semantic Web focuses on 

structured, formal statements to be consumed by machines. Web content also contains formatting 

instructions to structure information in a nice presentation, while Semantic Web content contains 

information for meaning and logic. 

Figure 7 shows the Semantic Web Stack, the hierarchy of Semantic Web standards and 

concepts. The foundation consists of Unicode (What is Unicode, 2010), a standard for encoding 

and representation of text, and the URI (Universal Resource Identifier) (Connolly, 2006) 

standard for uniquely naming networked resources. The next layer incorporates the self-
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descriptive standards of XML (eXtensible Markup Language), XML Schema, and namespaces. 

The next two layers, with RDF, RDF Schema, and ontology vocabulary, take advantage of 

XML’s descriptive capabilities to describe resources and concepts. The logic layer presents a 

framework for writing rules. The proof layer evaluates the Logic layer’s rules based on the RDF 

and ontology data. The trust layer adds a decision making mechanism from the basis of the proof 

layer. 

 

Figure 7 The Semantic Web Stack. (Daconta, 2003) 

Through a brief explanation of RDF, ontologies, the Jena Semantic Web framework, and the 

Pellet reasoner, the concept of the Semantic Web and its use in this research can be understood. 

2.4.1 RDF. Resource Description Framework (RDF) is a language used to describe 

resources and the relationships between other resources (Hebeler et al., 2009). The definition of a 

resource is quite broad, but it includes anything accessible via the Web, A resource could be 

anything available on the Web including HTML documents, audio or video files, data files, or 

persons. The resource can be accessed by its Uniform Resource Locator (URL), or more 

specifically its Uniform Resource Identifier (URI). All URLs are URIs because a URL is a 

portion of a URI but not all URIs are URLs. RDF captures metadata about resources. For 
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instance, RDF metadata on a document could include the information on the author, the creation 

date, and the type. The metadata is expressed with statements called triples. A triple is a three-

part statement that consists of a subject, a predicate, and an object. This structure allows triples 

to clearly model English language and syntax. The subject is what the metadata is describing. 

The predicate is the relationship between the subject and the object. The object could be anything 

including another resource that describes the subject or has a particular relationship with the 

subject. An RDF document represents a labeled directed graph, which is the actual data model 

from the point of view of the Semantic Web. A triple represents a labeled edge in the graph: the 

subject is the source node, the predicate is the label on the edge, and the object is the destination 

node. 

RDF is used in a variety of serializations, or formats, four of which are widely used, 

namely, RDF/XML (Hebeler et al., 2009), N3 (Notation 3) (Berners-Lee and Connolly, 2008), 

Turtle (Terse RDF Triple Language) (Beckett and Berners-Lee, 2008), and N-Triples (N-

Triples). RDF/XML is an XML-based RDF serialization and is the only standard syntax for RDF 

serialization, so all “true” Semantic Web applications must support it. Since an RDF/XML 

serialization of an RDF graph is generally not unique, different tools can produce different 

serializations of the same graph. Unlike RDF/XML, the other serializations are not based in 

XML. N3 was designed to be more concise and human-readable than RDF/XML. Turtle is 

another RDF serialization that is a subset of N3. The primary difference between Turtle and N3 

is that Turtle does not go beyond the RDF graph model class. N-Triples is another RDF 

serialization that is a subset of Turtle and uses the same syntax as Turtle but incorporates some 

restrictions such as not supporting certain directives, like @prefix, or shorthand statements. N-
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Triples’ simplicity is useful for streaming data and serializing RDF because of its single line 

format.  

Resource Description Framework in attributes (RDFa) allows RDF statements to be included in 

ordinary HTML/XHTML/XML files using formally defined attributes (Hebeler et al., 2009). The 

essence of RDFa is to provide a set of attributes that can be used to carry metadata in an XML 

language. Two common attributes include about and property. The about attribute specifies 

the resource the metadata describes while the property attribute specifies the RDF property of 

the content. 

2.4.2 Ontologies and OWL. An ontology is a formal representation, or specification, of 

knowledge through the definition of specific concepts (Hebeler et al., 2009). It uses a predefined 

set of terms, or reserved keywords, to define a set of concepts of a domain, along with the 

relationships between the concepts. Generally, an ontology is a logic-based model for describing 

knowledge or, in a more restricted sense, a vocabulary or a taxonomy. A vocabulary is simply a 

listing of defined concepts, or terms, while a taxonomy is a classification of concepts. Ontologies 

allow the semantics behind terms and relationships to be expressed, along with the context of 

their usage. 

OWL (Ontology Web Language) (McGuinness and Harmelen, 2004) allows ontologies to 

be defined. It builds additional resources onto the RDFS vocabulary to allow more detailed 

ontologies for the Web. OWL also incorporates RDF and XML Schema datatypes.  

The namespace URL for OWL is http://www.w3.org/2002/07/owl#, which is 

conventionally associated with the owl prefix. OWL2 (OWL 2, 2009) is the latest version of the 

OWL vocabulary, which extends the original OWL vocabulary. The owl namespace prefix is 

also conventionally used with OWL2. The namespace URL for OWL2 is 
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http://www.w3.org/ns/owl2-xml, while the owl namespace prefix is also conventionally 

used. 

The OWL specification includes three sub-languages of OWL. They include OWL Lite, 

OWL DL, and OWL Full, which increase in expressiveness. OWL Lite provides the basic 

functionalities of the OWL language for classification hierarchies and simple constraints. OWL 

DL (Description Logic) provides all the constructs of the OWL language. It was designed to 

provide a level of complete expressiveness. OWL DL guarantees computational completeness so 

all relations are guaranteed to be computed. OWL Full provides all the constructs of the OWL 

language, like OWL DL, but with the compatibility of RDF. It also provides a level of complete 

expressiveness, but unlike OWL DL, it does not guarantee computational completeness. 

Ontologies are the core of the Semantic Web, where ontologies include far more than the 

structure of an RDF graph or a list of defined concepts. The resources constituting the traditional 

Web and the resource descriptions constituting the Semantic Web are both inherently distributed. 

Since OWL extends RDF, OWL directly supports this distributed nature, because RDF allows 

the descriptions of resources that may be local or remote. OWL also allows an ontology to 

import other ontologies, which is another aspect of the distributed nature of the Semantic Web.  

The Semantic Web attempts to make valid inferences on this distributed knowledge, but, 

to accomplish this, two important assumptions must be met: the open world assumption and the 

no unique names assumption. The open world assumption states that not knowing a statement is 

true does not justify taking it to be false. In contrast, the closed world assumption states that what 

is not known to be true is false. The open world assumption assumes that information is 

incomplete and forces information to be additive (or “monotonic”): if something follows from 

what was previously known, it still follows when something is added to what is known.   
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The no unique names assumption states that, unless explicitly stated otherwise, one 

cannot assume that resources identified by different URIs are distinct. In the distributed 

environment of the Web, it is unreasonable to assume that everyone uses the same URI to 

identify the same resource. It is common for resources on the Web to have multiple URIs. The 

open world assumption and the no unique names assumption impact inference capabilities 

relating to the completeness of information and the uniqueness of resources. 

Suggested Upper Merged Ontology (SUMO) is one of the largest formal ontologies 

publicly available to the research community (SUMO). SUMO is an upper ontology, where 

ontology focuses on a set of concepts and relationships in a particular domain; an upper ontology 

focuses on concepts that are more general and abstract. Upper ontologies include broad concepts 

that could be extended into more specific domain areas, so other ontologies can be built from 

upper ontologies. SUMO is ideal for ontological concept re-use where SUMO includes over 

1000 concepts, 4000 axioms, and 750 rules. It is maintained by the IEEE and a candidate for the 

standard upper ontology. 

The NASA Jet Propulsion Laboratory (JPL) has developed a set of upper ontologies for 

the Earth system domain. These ontologies are NASA/JPL’s Semantic Web for Earth and 

Environmental Terminology (SWEET) ontologies (SWEET). The ontologies include several 

thousand concepts from several domains such as the Earth realm, substances, etc. The Earth 

realm ontology includes Earth-related concepts such as atmosphere or ocean. The substances 

ontology includes concepts for the basic components of nature such as particles or chemical 

compounds. Figure 8 shows the high-level SWEET ontologies and some of the major lower-level 

ontologies. The SWEET ontologies are highly modularized for reusability so the high-level 

ontologies are easily composed of the lower-level ontologies. 



38 
 

 

Figure 8 Overview of SWEET Ontologies. (SWEET) 

2.4.3 Protégé. Protégé (Getting Started with Protégé, 2011) is an open-source software 

package for creating and editing ontologies and knowledge bases. It is independent of platform 

and domain, where it has proved useful from the biomedical field to pure computer science. 

Protégé’s primary tool is the ontology editor, but it also integrates reasoners, which will be 

discussed in a later section. Protégé also has a very active user community which includes the 

open-source development of Protégé, online documentation, and forums for additional 

assistance. 

Protégé provides a simple user interface for its ontology editor. The ontology editor 

provides separate tab views for the major component of the ontology that include entities, 

classes, object properties, data properties, and individuals. An entity is a component of the 

ontology, which includes the classes, object properties, data properties, and individuals. A class 

is an abstract concept that describes a level in a hierarchy. An object property relates an 

individual to another individual while a data property relates an individual to a data value. An 
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individual is a member, or an instance, of a class. Each tab view displays the corresponding 

hierarchy of entities, the corresponding properties, and their relations. 

2.4.4 Jena. Jena is an open-source framework for the development of Semantic Web 

applications (McBride, 2010). It is a Java-based software package that directly supports RDF, 

RDFS, OWL, and SPARQL (“SPARQL Protocol and RDF Query Language”) (Prud'hommeaux 

and Seaborne, 2008). It also supports the ability to read and write RDF/XML, N3, and Turtle 

serializations. Jena uses an abstract model to represent an RDF graph. The abstract model 

methods that allow models to be added, removed, and queried using its methods. This allows 

RDF graphs to be created with Jena and RDF files.  

SPARQL is a query language for RDF that allows for patterns, conjunctions, and 

disjunctions. A SPARQL endpoint serves as a service for SPARQL queries to interact with the 

knowledge base. SPARQL contains four query constructs that interact with a SPARQL endpoint. 

The SELECT query returns raw values in a table format. The CONSTRUCT query returns valid 

RDF. The ASK query returns a True or false result. The DESCRIBE query returns an RDF 

graph. SPARQL only supports querying RDF triples, not non-RDF storage constructs such as 

relational databases. There are alternatives that allow SPARQL querying outside of RDF, like 

the D2RQ platform (D2RQ). The D2RQ platform is a system for accessing relational databases 

as virtual RDF graphs. It offers RDF-based access to the content of relational databases. D2RQ 

allows querying a relational database using SPARQL. 

2.4.5 SWRL. SWRL (Semantic Web Rule Language) (Horrocks, 2004) is a rule-based 

language for ontologies and knowledge bases. A rule is a statement that determines a 

consequence based on a current state. Rules take the form of “If …, Then …” statements. The 

“If” portion is the antecedent that matches the rule, while the “Then” portion is the consequent 
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that determines the outcome of the rule. SWRL integrates the OWL Lite and OWL DL along 

with a sub-set of RuleML. RuleML (Boley and Tabet) is an XML-based markup language for 

defining forward and backward rules. 

SWRL provides an abstract and two concrete syntaxes. The abstract syntax is basically a 

sub-set of Extended Backus-Naur Form. The XML Concrete syntax combines the XML syntax 

of RuleML with the OWL XML Presentation syntax. The RDF Concrete syntax duplicates the 

XML Concrete syntax but with RDF/XML. 

2.4.6 OWL Reasoners. An OWL reasoner, or a semantic reasoner, is a software package 

that uses asserted facts to make inferences (W3C: Reasoners). It formulates new facts from what 

it infers from the OWL ontology. First-order predicate logic is the primary means of a reasoner’s 

inference, although probabilistic logic reasoners are fairly common. OWL reasoners support 

forward-chaining and backward-chaining inferences. Forward-chaining involves progressing 

from the facts to a consequence, or end goal, while backward-chaining involves starting from the 

end goal. 

Pellet is an OWL reasoner available as an open-source, Java package (Sirin et al., 2007). 

It can be easily integrated into the Jena Semantic Web framework and will be used in this 

research. Pellet offers better performance than the pre-packaged reasoners included with Jena. It 

also offers an added benefit over Jena’s reasoners, which is the support of OWL DL (OWL 

Description Logic). Pellet also includes a consistency checker and syntax checker for OWL. It 

also supports SWRL. Pellet provides three different interfaces, which include an interface for an 

RDF parser, a SPARQL parser, and an interface that supports three input formats from Jena, 

OWL, or DIG (Decentralized Information Group), an interface for access to Description Logic 

Reasoners. 
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2.4.7 Data Fusion & Situation Awareness. Data fusion combines data from multiple sources to 

infer more detailed data and information (Liggins et al., 2008). Data fusion provides a distinct 

advantage over single data sources and improves the accuracy and quality of the integrated 

applications. These applications range from medical diagnosis to battlefield enemy tracking. 

The Joint Directors of Laboratories developed one of the most popular data fusion models. The 

JDL model categorizes data fusion processes into five separate levels based on their 

functionality. The levels include signal refinement, object refinement, situation refinement, threat 

refinement, and process refinement. Signal refinement preprocesses the signal for further work; 

this is called level 0. Object refinement estimates an object’s position, identity, and 

characteristics; this is level 1. Situation refinement determines relationships between multiple 

objects and events in the environment; this is level 2. Threat Refinement involves future 

projection of the objects and the state of the environment; this is level 3. Process Refinement 

involves improving the entire data fusion process by monitoring the previous levels; this is level 

4. Figure 9 shows the JDL model and the connections between the five levels. 
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Figure 9 JDL Data Fusion Model. 4 

Situation awareness is the fundamental understanding of an environment and its 

interacting elements. Situation awareness plays a vital role in decision making where sensor 

networks and sensor webs have become a significant proponent. In any of these scenarios, fully 

understanding the current state of the environment significantly improves decision making and 

increases the possibility of achieving future goals in that environment. Endsley (2004) states that 

situation awareness provides “the primary basis for subsequent decision making and 

performance in the operation of complex, dynamic systems...(Endsley)”. Endsley presents a three 

level model of situation awareness. Level 1 involves perception of interacting elements and 

components of the environment. Level 2 pertains to comprehending the environment while level 

3 involves projection of the environment into the future. Data fusion and situation awareness are 

significant areas that while they directly support one another, they also overlap.  	

                                                 
4 This figure was referenced from http://www-
dsp.elet.polimi.it/ispg/ASTUTE/wiki/lib/exe/detail.php?id=d22%3Ainformation_retrieval_and_fusion%3Amultimo
dal_information_fusion&media=d22:information_retrieval_and_fusion:jdl-process-model.png 
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CHAPTER 3 

Literature Review 

The following sections present a concise literature review on the advancements in the 

area of sensor webs. The discussion begins with sensor networks and their fundamental 

elements, sensor nodes. Sensor networks are then extended into sensor webs where the 

collaborative, accessible, and semantic senses are explored. 

3.1 Sensor Networks 

Archana Bharathidasan and Vijay Ponduru present the idea that sensor nodes are “small, 

inexpensive, low-power, distributed devices, which are capable of local processing and wireless 

communication” (Bharathidasan and Ponduru, 2002). The addition of wireless technology has 

introduced wireless sensor networks. Wireless sensor networks integrate wireless sensors and 

components that incorporate radios for communication without the hassle of wires. Sensor 

networks generally integrate sensors directly wired, or tethered, to workstations, hubs, or routers 

for connectivity. Bharathidasan and Ponduru add that “… nowadays, the focus is more on 

wireless, distributed, sensing nodes. But, why distributed, wireless sensing? When the exact 

location of a particular phenomenon is unknown, distributed sensing allows for closer placement 

to the phenomenon than a single sensor would permit” (Bharathidasan and Ponduru, 2002). 

Wireless sensors add greater flexibility through less restricted sensor placement (Lewis, 2004). 

Wireless sensor networks benefit from using radio waves as a communication medium, which 

are less susceptible to disruption by animals, nature, and other environmental factors than are 

cables and wires.  

Research on sensor networks integrates concepts from several research areas (Chong and 

Kumar, 2003). Sensing research focuses on the component of sensor networks that transforms a 
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physical attribute into an electrical signal. A sensor node incorporates sensors for monitoring 

aspects of the environment, such as temperature, pressure, or humidity, along with additional 

hardware such as memory and microprocessors. Communication research focuses on efficient 

and timely data transfer among nodes. Communication in sensor networks has a major impact on 

energy consumption, so efficiency in this area is significant. Bharathidasan and Ponduru state 

that “[i]n most cases, the environment to be monitored does not have an existing infrastructure 

for either energy or communication. It becomes imperative for sensor nodes to survive on small, 

finite sources of energy and communicate through a wireless communication channel” 

(Bharathidasan and Ponduru, 2002). General computing research integrates a variety of concepts 

from hardware, software, and algorithms.  

There is a variety of attributes of a sensor network that impact its development and 

efficiency (Chong and Kumar, 2003). The architecture of sensor networks can be centralized, 

distributed, or a hybrid, along with wired or wireless communication of a wide range of choices 

of sensor nodes.  

3.2 Sensor Webs 

The term “sensor web” is used in three different but related senses. In one sense, it refers 

to a sensor network where the nodes are not simply passive but also collaborate to respond in 

intelligent ways to events in the environment. In another sense, “sensor web” refers to a sensor 

network that produces and consumes Web services. Then, in a third sense, “sensor web” refers to 

a sensor web that generates contextual information by the addition of metadata. Sensor webs in 

the first sense are being actively pursued by the Advanced Information Systems Technology 

(AIST) Program (Suri et al., 2007) of NASA’s Earth Science Technology Office (ESTO). Sensor 

webs in the second sense are being standardized by the Open Geospatial Consortium (OGC) 
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(opengeospatial.org). Sensor webs in the third sense are primarily being researched by Wright 

State University (Sheth et al., 2008). We shall refer to a sensor web in the first sense as a 

collaborative sensor web, a sensor web in the second sense as an accessible sensor web, and a 

sensor web in the third sense as a semantic sensor web. Clearly, these three senses are 

compatible and complementary. Some research integrates at most two senses, mostly the 

collaborative and accessible senses. The AIST Program incorporates aspects of sensor webs in 

the second sense, as is natural, given that it involves satellite-based sensors among other kinds of 

sensors. This research presents a prototype integrating all three senses. 

3.2.1 Collaborative Sensor Webs. A sensor network that incorporates components that 

collaborate in collecting data and adapting in response to certain environmental observations will 

be referred to as a collaborative sensor web. Collaborative sensor webs offer autonomous 

operation through reconfiguration by the adaptive and reactive components. The advancements 

in wireless capabilities make collaborative sensor webs an ideal platform for wireless sensor 

nodes.  

Certain issues must be addressed with the collaborative sensor web concept, including ad 

hoc deployment of sensor nodes, autonomous operation of the sensor web, sensor node 

reconfiguration and mobility, and limitations imposed by power sources and the communication 

infrastructure (Bharathidasan and Ponduru, 2002). No overall configuration is imposed by the 

deployment of the sensor nodes, so the location and connectivity of sensor nodes is ad hoc, left 

to the individual nodes and their operators. The operation of the sensor web must be 

autonomous, functioning properly without human intervention. In particular, sensor nodes must 

reconfigure themselves in response to changes in the environment. One way for nodes to 
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reconfigure themselves is by migrating. Finally, the sensor nodes must not be restricted by power 

sources or communication links.  

NASA’s AIST program has funded numerous projects with research interests in this area 

of collaborative sensor webs. According to Karen Moe of NASA’s Earth Science Technology 

Office, “[o]ne of the most promising aspects of this family of networks is their ability to 

reassemble themselves to fit changing environments – this is the Sensor Web” (Moe, 2007).  The 

AIST program has emphasized several concepts, including ad hoc integration, self-organizing 

nodes, distributed control, and embedded intelligence, which contribute to the overall goal and 

vision of the sensor web (Moe, 2007). These concepts meld into a network that is decentralized 

and non-orchestrated, where node failure does not catastrophically affect the overall sensor web 

performance (Suri et al., 2007).   

SEAMONSTER (SouthEast Alaska MOnitoring Network for Science Technology 

Education and Research) (Heavner et al., 2007) is a sensor web developed by the University of 

Alaska Southeast in collaboration with Microsoft as part of NASA’s AIST Program; it is also 

associated with the NOAA Interdisciplinary Scientific Environmental Technology 

(ISET)Cooperative Science Center. SEAMONSTER is a test platform for the newest sensor 

technology. The initial implementation of the SEAMONSTER sensor web focused on the Lemon 

Creek watershed, near Juneau, Alaska. In this area, lakes form behind ice dams on top of the 

glaciers. When an ice dam breaks, the lake floods into the area downstream. A pressure 

transducer placed in the lake behind the dam detects the sudden drop in pressure associated with 

the lake drainage, which serves as an alert for a flood in the watershed. When the pressure 

transducer detects the event, it sends messages to other sensors, which are appropriately 

reconfigured. Figure 10 shows a collaborative sensor web where its nodes are smaller sensor 
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webs and sensor networks. The nodes collaborate via message passing to respond to certain 

events in the environment, for example, the firetowers sensor web (also a node of the ecosystem 

monitoring sensor web) communicates with another node to allow emergency services to 

respond to the wild fire. 

 

Figure 10 Collaborative Sensor Web.5 

Recall that a multiagent system allows multiple agents to interact and collaborate. They 

are ideal for the collaborative aspect of sensor webs. The agents communicate via an efficient 

mechanism of message passing that directly results in collaboration. Several wireless sensor 

network implementations have incorporated a multiagent system for different functionalities. 

Several of these implementations are briefly discussed. 

Network management in wireless sensor networks and sensor webs has recently become 

a popular task for multiagent systems. Today’s networks have rapidly expanded into massive 

                                                 
5 This figure was referenced from http://cert.ics.uci.edu/sesa2011/images/SensorWebImageForEnewsJuly2.jpg 
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entities. These networks require additional resources for the sole purpose of management to keep 

the network’s nodes connected. Network management pertains to the monitoring and 

administration of a network so that it can perform optimally for its users. As networks grow, 

more resources must be allocated to monitor and optimize them. Multiagent systems have proven 

to be an ideal candidate for the management of networks due to their characteristics of 

autonomicity, proactivity, reactivity, and socialability. Bieszczad, Pagurek, and White (1998) 

present an OSI (Open Systems Interconnection) (Tanenbaum, 2002) network management model 

as the generalization of applications that are ideal for multiagent systems (Bieszczad, 1998). 

Their management model categorizes the major areas of network management into the 

management areas of faults, accounting, configuration, performance, and security. Wang and 

Tianfield (2005) of Glasgow Caledonian University integrate the SNMP (Simple Network 

Management Protocol) (Tanenbaum, 2002) with MAS research through to develop the OAA 

(Open Agent Architecture) (Wang and Tianfield, 2005). The OAA organization directly 

positions agents in a network to control communication and monitor network resources. Along 

with the tasks of the collaborative aspect, the multiagent system in this research should perform 

similar tasks. 

Herbert, O’Donoghue, Ling, Fei, and Fok have integrated wireless sensor technology 

with the multiagent system approach for a medical application called the Wireless Patient Sensor 

Network (WPSN) (Herbert et al., 2006). The WPSN allows patient vital information to be 

collected and processed remotely. This research is of particular importance to the research 

reported here. The multiagent system approach of the WPSN attempts to combine the same agent 

technology used here.  
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3.2.2 Accessible Sensor Webs. Recall that, in a second sense, “sensor web” refers to a 

sensor network that produces and consumes Web services. This is the more common sense of 

“sensor web,” which centers on having the functionality provided by the sensor network and its 

components available as resources on the World Wide Web. According to the OGC, “A Sensor 

Web refers to web accessible sensor networks and archived sensor data that can be discovered 

and accessed using standard protocols and application program interfaces (APIs)” (Botts, 2007). 

Again, according to Chu and Buyya, “The Sensor Web is an emerging trend which makes 

various types of web-resident sensors, instruments, image devices, and repositories of sensor 

data discoverable, accessible, and controllable via the World Wide Web” (Chu and Buyya, 

2007).  

Figure 11 depicts a sensor web as accessible via the Web. The sensor web client can 

access the sensors, cameras, and other resources remotely over the Web. This would be 

accomplished through Web services that exploit the sensor web resources and expose their 

methods. Clients can directly access the resources by consuming the Web services.  
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Figure 11 Sensor Web accessible from the WWW. (Botts, 2007) 

This sense of sensor web essentially conforms to the OGC’s (Open Geospatial 

Consortium) standards, known as the SWE (Sensor Web Enablement) standards (Reichardt, 

2005). The OGC is a standards organization that defines geospatial standards and specifications. 

It is a voluntary organization that includes over 300 organizations worldwide. The SWE 

standards are a set of specifications for a framework of Web services offered by (accessible) 

sensor webs and XML encodings for information communicated by these services. The OGC 

intends the services to provide a certain set of sensor web functionalities. These functionalities 

provide a means for the user to discover useful sensors that meet his or her specific needs, a 

standard interface for data access, a standard interface for assigning tasks to resources, and a way 

for users to subscribe to alerts published from specific sensors when certain events occur. The 

following discussion first describes the encodings and then summarizes the Web services.   
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3.2.2.1 OGC Information Models. The OGC defines three information models, or 

encodings, within its Sensor Web Enablement initiative. The information models are the 

Observations & Measurements Schema (O&M), the Sensor Model Language (SensorML), and 

the Transducer Markup Language (TransducerML). XML Schema is the principal standard used 

to define the structure and content of the information models (XML Schema).  

The O&M Schema (Cox, 2007) is the information model for representing observations, 

measurements, procedures, and metadata of sensor systems. An observation is a process of 

associating a value or a sequence of values with a given phenomenon. A measurement is the 

result, usually a numerical value, obtained from an observation. The procedure is the process 

used to generate the result, while the metadata is the information associated with the observation, 

so it is the data about the data. The O&M Schema is required for the Sensor Observation Service 

because it structures the information exchanged between clients and the service.   

SensorML is the information model and XML encoding for presenting important 

information for discovering sensors and assigning sensors tasks. It is also used for describing 

sensor processes as well as observation locations of interest to the clients (Chu, 2005). SensorML 

allows a standard view, or model, of the overall sensor system for the clients. 

3.2.2.2 OGC Web Services. The OGC is exploring the development and uses of standard 

Web services that allow clients to have easy access to sensor web resources and functionality 

(Botts, 2007). These Web services follow the previously mentioned information models for 

describing and exchanging data between clients and Web services. Several Web services assist a 

client in obtaining sensor data, namely, the Sensor Observation Service (formerly known as the 

Sensor Collection Service) (opengeospatial.org). The Sensor Observation Service provides an 

interface for clients to request observations and sensor data.  It provides a standard access 
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mechanism for clients to interface with fixed, remote, and mobile sensors. This Web service is an 

intermediary between the clients and the sensors. The core profile includes three operations: 

GetCapabilites, DescribeSensor and GetObservation. The GetCapabilites operation provides the 

means to request a description of the service. DescribeSensor allows the client to request 

information about a sensor. The GetObservation operation is the heart of the SOS, allowing the 

client to request observation data generated by a sensor or sensor system contained in a specified 

observation offering. An observation offering is a logical collection of sensors located in 

proximity to one another. 

The Sensor Repository Service provides storage for useful observations and 

measurements that have been requested by clients (Chu, 2005). There is also a Sensor Data Grid 

Service, which provides a means for maintaining large amounts of sensor data (Chu and Buyya, 

2007). 

The Sensor Registry Service (Chu, 2005) allows a client to discover sensors and services. 

The Sensor Registry Service catalogs the information about the sensors and the services such as 

their WSDL addresses. The Sensor Registry Service works in conjunction with the Sensor 

Observation Service (or, previously, the Sensor Collection Service) and the Sensor Planning 

Service to satisfy client requests. The Sensor Registry Service finds suitable sensors and services 

that satisfy the client’s search criteria while the Sensor Observation Service process the client’s 

request for data. 

There are several Web services that assist in the use of other Web services and sensors, 

including the Sensor Alert Service, the Sensor Planning Service, and the Web Notification 

Service.  The Sensor Alert Service allows clients to publish and subscribe to alerts from sensors 

(Botts, 2007). The Sensor Planning Service supports the planning of requests that primarily 
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involve observation data from the Sensor Collection Service (Chu, 2005). The Web Notification 

Service delivers asynchronous messages for the Sensor Alert Service and the Sensor Planning 

Service (Botts, 2007).  

Figure 12 depicts the layered architecture of the sensor web. The sensor web’s overall 

architecture includes the application layer, application development layer, application services 

layer, and the sensor environment layer. The application layer applies to the applications that the 

user interacts with to access the sensor web and its features. The application development layer 

applies to the APIs (Application Programming Interfaces) used for creating applications that 

access the services of the sensor web. The application services layer applies to the OGC services 

discussed above. The sensor environment layer applies to the hardware setup of sensors, 

actuators, and other resources. 

 

Figure 12 Sensor Web Architecture. (Chu, 2005) 

Again according to Chu and Buyya, “Bringing the idea of SOA to sensors and sensor 

networks is a very important step forward to presenting the sensors as reusable resources which 



54 
 

can be discoverable, accessible and where applicable, controllable via the World Wide Web” 

(Chu and Buyya, 2007). The popularity of the OGC’s Sensor Web Enablement has steadily 

increased over the past few years. The attraction of the Sensor Web Enablement lies in the 

standardization of sensor web resources and services, so a user can access different resources or 

services on different sensor webs in the same manner. The growing number of sensor webs 

indicates the importance of the Sensor Web Enablement that has been an excellent resolution to 

the pressing need presented by this growth. Numerous implementations incorporate components 

of the Sensor Web Enablement in a similar manner used by this research.  

3.2.3 Semantic Sensor Webs. The primary function of the sensor web is data collection, 

which produces vast amounts of data. The Semantic Sensor Web attempts to cultivate the data 

into more useful information. The developers who take advantage of the Semantic Sensor Web 

framework can make logical inferences from the relationships between sensors and resources to 

determine what the data really means. 

“Having greater numbers of accurate, real-time data from sensors of all types will 
enable people to make better informed decisions about things in the world around them.” 
(Sheth et al., 2008) 

The Semantic Sensor Web extends the primary goal of the Semantic Web, where it tries 

to make data into more useful information. Computers do not really understand anything, so they 

cannot make sense of anything. So, to achieve this ability to make sense of data, additional data, 

or metadata, can annotate the data to help create logical connections of the data and infer useful 

information. 

Extending the concept of the sensor web with the semantic sense seems to be a natural fit. 

This is clearly shown by comparing the semantic connections possible among the thousands of 

types of available sensors and their limited number of readings the sensors could measure against 

the endless number of semantic connections for associating the information of the WWW.  
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Figure 13 depicts what the Semantic Sensor Web tries to accomplish using the 

progression from natural phenomena to raw sensor data to semantic annotation of Sensor Web 

Enablement to ontological knowledge of space, time, and theme. 

 

Figure 13 Semantic Sensor Web. (Sheth et al., 2008) 

The Semantic Sensor Web extends the OGC’s Sensor Web Enablement initiative with the 

Semantic Web’s knowledge modeling abilities of RDF and OWL. Essentially, sensor web data is 

enhanced with spatial, temporal, and thematic metadata. Spatial metadata incorporates location 

information, temporal incorporates time, while thematic incorporates descriptions of real-world 

events.  

Wright State University has been the primary research force in the area of the Semantic 

Sensor Web. Sheth, Henson, and Sahoo of Wright State University have effectively integrated 

the Semantic Web into the OGC’s Sensor Observation Service to create the Semantic Sensor 

Observation Service (Semantic SOS) (Sheth et al., 2008). Semantic SOS allows users to create 
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complex queries that are executed over weather readings from the sensors of Ohio’s Department 

of Transportation traffic monitoring system. The general example presented of the Semantic SOS 

employs a query of freezing or blizzard conditions. The freezing condition would involve only a 

temperature sensor with a threshold rule specifying freezing temperature but the blizzard 

condition would involve temperature, wind, and precipitation sensors. The situational awareness 

presented by the inferences over the semantic metadata and sensor data would allow such 

complex queries.  

“In the same way that the Semantic Web offers to make internet searches and web 

content more intelligent, the Semantic Sensor Web will be the backbone of establishing semantic 

relationships across sensors and data around the world.” (Dickinson, 2010) 
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CHAPTER 4 

Specific Aims 

Remember that the primary objectives of sensor networks and sensor webs involve the 

collection of data from its environment. With more advanced sensor networks and sensor webs, 

data collection has become easier and more efficient, while the data is being collected in higher 

volumes and has become more accurate. Higher volumes of data do not lead to better end results 

or even more informed decisions from the end users. This issue is the primary challenge of this 

research. This research seeks to cultivate high-level, useful information from the low-level data 

that would be of more importance to an end-user for decision making.  

The overall goal of this research is to improve end-user decision making by improving 

the presentation of sensor web data. This improved presentation involves presenting higher-level, 

easier to understand concepts to the end-user, along with the detailed data captured in the 

environment. The end-user can easily align their knowledge with the presented high-level 

concepts of the sensor web to improve decision making. 

This research has several specific aims that support the goal and challenge just presented. 

They also relate the significance of the research to the user as well as to the research community 

in a way that expands the potential of these technologies. These specific aims are briefly listed 

then described in more detail below.  

• Develop a sensor web system that collects observational data. 

• Deliver useful information along with observational data to make results more 

meaningful. 

• Connect specific, low level details to higher level concepts of interest to the user.  

• Develop a deeper understanding of the context of the observational data. 
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• Integrate a user-friendly approach to minimize complexity to the user.  

• Develop a modularized sensor web implementation to support reusability. 

Specific Aim: Develop a sensor web system that collects observational data. 

Hypothesis: The primary motivation behind sensor web research for environmental monitoring 

focuses on collecting useful data. By reliably getting useful data to the user, the system will be 

formally classified as a sensor web. 

Specific Aim: Deliver useful information along with observational data to make results more 

meaningful. 

Hypothesis: Besides the observational data, the sensor web should also deliver information that 

is more useful to the user. This information should aid the user in decision making in their 

current situation. 

Specific Aim: Connect specific, low level details to higher level concepts of interest to the user.  

Hypothesis: Through the inclusion of a multiagent system framework, the collaborative aspect of 

sensor web can be realized. The agents will provide the logical capability to connect separate 

bodies of knowledge and connect similar concepts in different domains. 

Specific Aim: Develop a deeper understanding of the context of the observational data. 

Hypothesis: Through the inclusion of data fusion and semantic web techniques, the user can have 

a deeper understanding of the overall situation given the low level details. The cultivated data 

and information adds context to the observational data which improves decision making for the 

user. 

Specific Aim: Integrate a user-friendly approach to minimize complexity to the user. 
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Hypothesis: To alleviate needless complexity to the user, custom graphical user interfaces should 

allow the users to quickly and easily access the resources of the sensor web. Along with the 

custom user interfaces, the integrated user processes will create a more fluid user experience. 

Specific Aim: Develop a modularized sensor web implementation to support reusability. 

Hypothesis: Separate components from the sensor web implementation may be of interest to 

separate users. Most importantly, the software would be common, open-source modules that can 

be easily acquired. The modules could be of interest to users such as the National Climatic Data 

Center (NCDC), the Earth Systems Research Laboratory (ESRL), or UAS’s SEAMONSTER. 

  



60 
 

CHAPTER 5 

Architecture & Implementation 

The prototype of the sensor web is used to realize the goal of presenting the end-user with 

useful information and improving decision making. The general understanding of the 

architecture and operation of the prototype leads to a better understanding of the primary goal 

and objectives of this research. The following sections include detailed discussions about the 

materials and methodology needed to realize the prototype. The materials section presents the 

software and hardware components utilized for the prototype. The methodology section 

discusses how the components fit together into one coherent system and how the components 

interact to accomplish tasks. The design of the prototype is described in separate layers. The 

operation of the prototype is detailed along with the conceptual and real-world situations where 

the prototype would apply. 

5.1 Materials 

The prototype incorporates a variety of software and hardware components. The 

following descriptions briefly detail the necessary components and their purpose for inclusion in 

the prototype. 

General workstations: Three workstations (two desktops and one laptop) were utilized for 

the prototype. The specifications of the workstations were all comparable. One of the desktop 

workstations and the laptop workstation contained almost identical specifications with an Intel i5 

processor, 4 gigabytes of RAM, 240-480 gigabytes of data storage, and the Windows 7 operating 

system. The other desktop workstation contained an Intel Core2 processor, 2 gigabytes of RAM, 

80 gigabytes of data storage, and the Ubuntu 12.04 operating system. Although the specifications 

of the i5 processor workstations and the Core2 processor workstation significantly vary, they are 
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still comparable performance-wise. Note that we are not exactly performing CPU-intensive 

computations but serving Web requests and storing data. The operating system differences 

account for software needs, in particular, Wview and Postgresql 8.3, which will be discussed 

later.  

Apache Tomcat is a web server package that supports web servlets and web applications. 

Apache Tomcat (or a similar web server) is required to expose WSIG and the semantic version 

of the Sensor Observation Service (Semantic SOS) to the web. 

Apache Axis2 (Apache eXtensible Interaction System) is an open-source SOAP engine 

(Web Services – Axis). It is a framework for constructing Web service providers and consumers. 

Axis2 runs as a servlet that processes the incoming SOAP message and extracts information 

from the message headers and payloads. Apache Axis2 is incorporated into the Semantic SOS 

service to facilitate communication through SOAP messages. 

SQLite is a minimal SQL database engine. It comes preconfigured with the Wview 

software. An instance of a SQLite database is connected to the local weather station for data 

persistence. 

PostgreSQL is a full-featured SQL database engine. It provides a graphical interface, 

administrative services, a SQL editor, and other tools for managing databases. An instance of the 

PostgreSQL database is used for persistence of the observations from all sensor nodes. 

JADE is the framework for developing agents and multiagent systems. It provides a 

runtime environment for the agents, applications for administering and monitoring the agents, 

and other useful tools and libraries. The JADE framework is used here to develop the variety of 

agents that interact with the users. 
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LEAP is an extension to the JADE framework which allows the development of agents 

for resource constrained devices. LEAP is used here to develop JADE agents that are deployed to 

the Sun SPOT sensor nodes. 

WSIG is an extension to the JADE framework that allows the development of agents that 

expose their operations as agent Web services. Web service clients can interact with WSIG 

agents through traditional SOAP communication. The prototype incorporates WSIG agents to 

further interact with Semantic SOS results. 

The OGC is an international committee for geospatial standards. The OGC develops 

standards for encoding geospatial data and services for accessing geospatial data. The prototype 

focuses on several OGC standards which include Observations & Measurements, SensorML, and 

the Sensor Observation Service. 

Protégé is a package for creating and editing ontologies and knowledge bases. Protégé 

provides an ontology editor for easy creation and development of ontologies. Here, Protégé is 

used to develop several ontologies that are integrated into the Semantic SOS service and 

multiagent system. 

Jena is a framework for the developing Semantic Web applications that support RDF, 

RDFS, and OWL. It also supports the ability to query and infer over RDF triples. Jena is 

incorporated into the 52 North Sensor Observation Service to develop the semantic version of the 

service (Semantic SOS). 

D2RQ is a software package for accessing relational databases as RDF graphs. With 

D2RQ, data in relational databases do not have to be duplicated with an RDF triple store. The 

prototype incorporates D2RQ to map SPARQL queries to the PostgreSQL relational database. 
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The Davis weather station is a device that collects observational data from the 

environment. It is a professional-grade sensor system that wirelessly communicates its observed 

data to a remote console connected to a basestation that stores the data for other purposes such as 

displaying current data on the web for users. The Davis weather station is used here to retrieve 

the current environmental observations of temperature, pressure, relative humidity, precipitation, 

wind speed, and wind direction. 

Wview is a software package that interacts with a variety of weather stations. Wview 

includes a collection of processes that include collecting weather station data, configuring the 

weather station, exposing the weather station data to the web, and other tasks. It coordinates the 

collection of data from the weather station with other tasks that involve the data. Wview is used 

here to consistently store the weather station observational data into the SQLite database and 

properly configure the weather station. 

Imote2s are smart sensor nodes that support the TinyOS operating system and the NesC 

programming language. Imote2s were initially designed for structural health monitoring 

applications but they are equally effective for environmental monitoring applications. Here the 

Imote2 sensor nodes collect temperature and humidity observations 

Sun SPOTs are smart sensor nodes that support the Squawk JVM. These sensor nodes are 

compatible with LEAP, which allows JADE agents to be deployed onto resource-constrained 

devices. The Sun SPOTs serve as connections to data storage for the Imote2 sensor nodes and 

they take temperature observations. 
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5.2 Methodology 

The prototype integrates a variety of software and hardware components. This section 

presents the design of the prototype and how the components fit together into one functional 

system. Figure 14 presents a layered architecture of the prototype. 

 

Figure 14 Layered Architecture of the Prototype. 

The following presents the high-level layers of the prototype along with their 

functionality and integration into the overall system. Referring to the above figure, the high-level 

layers include the sensor network layer, the service layer, and the client layer.  

5.2.1 Sensor Network Layer. The sensor network layer integrates the sensor nodes with 

the sensor network, so this layer is purely responsible for data acquisition. Here our sensor nodes 

serve as the perceptors to the environment, so they represent our fingers that provide useful 

information about the environment of interest. The sensor nodes include the previously discussed 

Sun SPOT and Imote2 smart sensor nodes along with the Davis Vantage Pro2 weather station for 
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observational data collection. The sensor network layer includes a database for storage of sensed 

data.  

The first component of the sensor network layer involves several Davis weather stations. 

As previously mentioned, the Davis weather station provides observational data on temperature, 

relative humidity, pressure, precipitation, wind speed, and wind direction. The Greensboro area 

hosts several Davis weather stations along with the primary Davis weather station mounted on 

McNair Hall of North Carolina A&T State University’s campus. Figure 15 shows the distribution 

of Davis weather stations around the Greensboro area that publish observational data to 

wunderground.com (Wunderground, 2013).  

 

Figure 15 Accessible Davis weather stations of Greensboro, NC. (Wunderground, 2013) 

Data from five of the above weather stations (at locations 1, 3, 4, 6, and 9) are used in the 

prototype. Weather station 1 (station ID KNCGREEN30) is the Westerwood neighborhood of 

central Greensboro, station 3 (ID KNCGREEN39) is the Pinecroft neighborhood of southern 

Greensboro, station 4 (ID KNCGREEN49) is a neighborhood of northern Greensboro, station 6 

(ID KNCGREEN22) is the Meadowood neighborhood of western Greensboro, station 9 (ID 

KNCGREEN25) is the Jamestown neighborhood of southwestern Greensboro. From the 

Wunderground site, data from the five weather stations are updated at slightly different intervals, 
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but the average interval is five minutes. The McNair weather station was also configured for five 

minute updates. The Wunderground site provides API access to each weather station through its 

station ID. So a service call to 

http://api.wunderground.com/weatherstation/WXCurrentObXML.asp?ID=KNCGREEN30 

would result in observational data from that particular weather station in XML format. Figure 16 

shows a sample query of the Westerwood weather station with the station ID of KNCGREEN30. 

The sample XML result contains all weather station information and available 

observational data, along with observational data in different formats such as temperature in 

degrees Celsius or Fahrenheit. To obtain the observational data from the weather stations 

available on Wunderground, a Java application was developed that, given a station ID such as 

KNCGREEN30, queried the Wunderground API for that weather station’s latest observational 

data. The XML result was then parsed and each separate observational value of temperature, 

relative humidity, pressure, precipitation, wind speed, and wind direction was inserted into the 

PostgreSQL database, which will be discussed later. The local McNair weather station is not 

accessible through Wunderground, so another approach was taken to obtain data from the 

weather station. To obtain the observational data from the McNair weather station, a Java 

application was developed that queried the SQLite database used by Wview. The query returned 

the latest observational data inserted, then the temperature, relative humidity, pressure, 

precipitation, wind speed, and wind direction observational values were inserted into the 

PostgreSQL database. To synchronize and simplify all weather station data insertions into the 

PostgreSQL database a cron job was scheduled to run the Java application for the McNair 

weather station and the Java application for Wunderground five separate times with the above 

station IDs. 

  



67 
 

 
<current_observation> 
 <credit>Weather Underground Personal Weather Station</credit> 
 <credit_URL>http://wunderground.com/weatherstation/</credit_URL> 
 <image> … </image> 
 <location> 
  <full>Westerwood, Greensboro, NC</full> 
  <neighborhood>Westerwood</neighborhood> 
  <city>Greensboro</city> 
  <state>NC</state> 
  … 
 </location> 
 <station_id>KNCGREEN30</station_id> 
 <observation_time>Last Updated on May 11, 5:43 PM EDT</observation_time> 
 <observation_time_rfc822>Sat, 11 May 2013 21:43:11 GMT</observation_time_rfc822> 
 <temperature_string>85.1 F (29.5 C)</temperature_string> 
 <temp_f>85.1</temp_f> 
 <temp_c>29.5</temp_c> 
 <relative_humidity>56</relative_humidity> 
 <wind_string>Calm</wind_string> 
 <wind_dir>SW</wind_dir> 
 <wind_degrees>221</wind_degrees> 
 <wind_mph>0.0</wind_mph> 
 <wind_gust_mph>5.0</wind_gust_mph> 
 <pressure_string>29.93" (1013.4 mb)</pressure_string> 
 <pressure_mb>1013.4</pressure_mb> 
 <pressure_in>29.93</pressure_in> 
 <dewpoint_string>67.7 F (19.8 C)</dewpoint_string> 
 <dewpoint_f>67.7</dewpoint_f> 
 <dewpoint_c>19.8</dewpoint_c> 
 <heat_index_string>88 F (31 C)</heat_index_string> 
 <heat_index_f>88</heat_index_f> 
 <heat_index_c>31</heat_index_c> 
 <windchill_string/><windchill_f/> 
 … 
 <precip_1hr_string>0.00 in (0.0 mm)</precip_1hr_string> 
 <precip_1hr_in>0.00</precip_1hr_in> 
 <precip_1hr_metric>0.0</precip_1hr_metric> 
 <precip_today_string>0.61 in (1.5 cm)</precip_today_string> 
 <precip_today_in>0.61</precip_today_in> 
 <precip_today_metric>1.5 cm</precip_today_metric> 
 … 
</current_observation> 

 
Figure 16 Sample Wunderground API query of Westerwood weather station. 
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The second local component of the sensor network layer involved the deployment of the 

Sun SPOT and Imote2 sensor nodes. The sensor nodes were deployed on the front lawn of North 

Carolina A&T State University’s Edward Fort Interdisciplinary Research Center (IRC) building. 

Figure 17 shows a front view of the IRC building with deployed sensor nodes, while Figure 18 

shows a side view of the same layout with deployed sensor nodes. Figure 19 depicts the overall 

layout with sensor node locations. 

 

Figure 17 Sensor Layout in front of IRC building. 

 

Figure 18 Sensor Layout from side view. 
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Figure 19 Sensor Layout with distances. 

The sensor node layout consisted of two free-range Sun SPOT sensor nodes, one base 

station Sun SPOT sensor node, and four Imote2 sensor nodes. With the approximate radio ranges 

of the Sun SPOT and Imote2 sensor nodes being 100 meters and 30 meters, respectively, the 

sensor node layout was designed for a location near the McNair weather station. From Figure 19, 

the four Imote2 sensor nodes served as the outer leaf nodes. These sensor nodes take temperature 

and humidity observations at five minute intervals. The free-range Sun SPOT sensor nodes have 

LEAP agents deployed onto them. The LEAP agents take temperature observations at five 

minute intervals and send the observational data to a JADE agent on the workstation, which is 

the machine connected to the base station Sun SPOT sensor node. This JADE agent inserts the 

observational data from all incoming messages into the PostgreSQL database. The LEAP agents 

also continuously listen for incoming messages from the Imote2 sensor nodes and forward the 

data to the workstation JADE agent.  

The final component of the sensor network layout is the PostgreSQL database. The 

database design is modified from 52 North’s Sensor Observation Service package. Figure 20 

shows the database schema of the PostgreSQL database.  
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Figure 20 Database schema for Semantic Sensor Observation Service. 

This design includes tables that correspond to the important OGC concepts of feature of interest, 

procedure, offering, phenomenon, and observation. The feature of interest table stores the data 

relating to the geographical locations of the sensor nodes and weather stations that take 

observational data. The procedure table stores data about the sensor nodes and weather stations. 

The offering tables stores data about the observational data that is offered through the sensor 

nodes and weather stations. The offerings include the temperature, relative humidity, pressure, 
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precipitation, wind speed, wind direction-in general, any observational data that could be 

observed through any sensor node or weather station in the sensor network. The phenomenon 

table stores data about the physical phenomena observed in the environment. The observations 

table stores the actual observational data. The feature-of-interest, procedure, offering, and 

phenomenon tables are pre-loaded with descriptive data about the environment and sensor nodes. 

This data is primarily used as IDs for the observational data stored in the observation table. 

Every observational value is stored with corresponding IDs for its feature of interest, procedure, 

offering, and phenomenon. 

5.2.2 Services Layer. The services layer is the intermediary between the client and 

sensor network layers. The services layer allows simple access to sensor nodes and observational 

data through the structured implementation of the service of interest. The service layer consists 

of the Semantic SOS service and the multiagent system. The following describes the Semantic 

SOS service and the multiagent system developed for this prototype. 

This implementation of the Semantic SOS was based from 52 North’s standard 

implementation of the Sensor Observation Service. Figure 21 shows the design of 52 North’s 

SOS service. 
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Figure 21 52 North’s Semantic Sensor Observation Service. 

52 North’s SOS service is composed of three main components, the presentation layer, 

the business logic layer, and the data layer. The presentation layer is responsible for the handling 

the incoming requests from clients and sending back the appropriate response. The business logic 

layer forwards requests from the presentation layer to the appropriate operation listener. 

Listeners perform the requested operation. The data layer encapsulates access to the database for 

the requested operation.  

The prototype extends the 52 North’s SOS service to create the Semantic Sensor 

Observation Service (Semantic SOS). The Semantic SOS service adds the Semantic Web 

capabilities of querying over the structured data of RDF triples. The Semantic SOS service also 

preserves this query’s results by annotating the results with metadata. The primary operations of 

the SOS service are the GetObservation, GetCapabilities, and DescribeSensor operations. The 

Semantic SOS service modifies the GetObservation operation. This operation is of most 

importance because it returns the observational data. Because of the extensive work needed to 

modify one operation, the GetObservation operation was the only operation modified to contain 
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Semantic Web capabilities. The semantic additions to the SOS service involved modifying the 

listener and data access object of the GetObservation operation.  

The listener for the GetObservation operation receives incoming O&M queries. The 

O&M query specifies the parameter of interest to the user, such as features of interest and 

procedures. From the O&M query, the SOS service constructs a SQL query for the data access 

object to retrieve relevant data. The Semantic SOS service constructs a SPARQL query for the 

data access object. Since the focus is on the benefits of the Semantic Web, we use RDF triples to 

convey information. SQL does not have the capability to query over these constructs but 

SPARQL can perform queries over RDF triples. 

The semantic component of the Semantic SOS service depends on concepts defined in 

the O&M schema. Here, the ontology plays a vital role of formalizing concepts and their 

relations for semantic purposes. The O&M schema defines several concepts for an observation, 

such as feature of interest and observed property. An ontology version of the O&M schema is 

fundamental to the Semantic SOS service where the standard SOS service requires the O&M 

schema, the semantic version of the SOS service requires the O&M concepts defined in an 

ontology.  

The University of Muenster’s Institute for Geoinformatics has developed the first O&M 

ontology. Wright State University has made a more recent attempt at developing an O&M 

ontology. Figure 22 shows the structure of the major concepts and their relationships. 
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Figure 22 Structure of concepts used in O&M ontology. (Probst, 2006) 

For this research, a simplified O&M ontology was developed based on the above 

structure. Figure 23 shows the general SPARQL query generated from an O&M query.  
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PREFIX om: <./observationsMeasurements.owl#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT ?offering ?offeringID ?proc ?obs ?foi ?foiName ?foiDesc ?foiGeom  
?foiType ?foiSchemaLink ?instant ?phen ?phenUnit ?valuetype ?result ?loc ?lat ?long  
WHERE {  
  ?offering rdf:type om:System .  
  ?offering om:offID ?offeringID .  
  ?offering om:systemComponentProcedure ?proc .  
  ?proc om:generatedObservation ?obs .  
  ?obs om:featureOfInterest ?foi .  
  ?foi om:foiName ?foiName .  
  ?foi om:foiDesc ?foiDesc .  
  ?foi om:observationLocation ?foiGeom .  
  ?foi om:foiType ?foiType .  
  ?foi om:foiLink ?foiSchemaLink .  
  ?obs om:samplingTime ?instant .  
  ?obs om:observedProperty ?phen .  
  ?phen om:phenUnit ?phenUnit .  
  ?phen om:phenValue ?valuetype .  
  ?obs om:floatValue ?result .  
  ?foi om:observationLocation ?loc .  
  ?foi om:lat ?lat .  
  ?foi om:long ?long .   
  FILTER ( ?offering=<TEMPERATURE>) .   
  FILTER ( ?phen=<./urn:ogc:def:phenomenon:OGC:1.0.30:AirTemperature>) .   
} 

Figure 23 SPARQL query Generated from O&M Query. 

All SPARQL queries generated from O&M queries are roughly the same; the only 

difference involves the FILTER statements at the end. The SPARQL query returns the 

parameters in the SELECT clause that match the corresponding triples in the WHERE clause. 

The FILTER statements limit the results to values that match the given parameters. Given a 

different O&M query, only the FILTER statements of the SPARQL query would change. All 

generated SPARQL queries are sent to the data access object. 

The data access object receives and executes the SPARQL query. The data access object 

of the SOS service expects SQL queries, so the data access object for the Semantic SOS service 

must be modified for SPARQL queries. The Semantic SOS service incorporates a PostgreSQL 
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relational database which is incompatible with Semantic Web querying technology. To use a 

relational database with RDF querying capabilities, a mapping is needed. D2RQ provides a 

mapping between SPARQL queries and relational databases. D2RQ produces a default mapper 

that translates the database tables to RDFS (RDF Schema) classes. The default mapper is 

customized with concepts from the ontology. Figure 24 shows the customized D2RQ mapping of 

the offering table. This mapping was customized by replacing default values with ontology 

concepts. In the offering table, the class map of map:offering was modified to om:System, which 

is defined in the ontology. The property bridge of map:offering_offering_id was modified to 

om:offID, also defined in the ontology. 

# Table offering 
map:offering a d2rq:ClassMap; 
 d2rq:dataStorage map:database; 
 d2rq:uriPattern "@@offering.offering_id@@"; 
 d2rq:class om:System; 
 d2rq:classDefinitionLabel "offering"; 
 . 
map:offering__label a d2rq:PropertyBridge; 
 d2rq:belongsToClassMap map:offering; 
 d2rq:property rdfs:label; 
 d2rq:pattern "offering #@@offering.offering_id@@"; 
 . 
map:offering_offering_id a d2rq:PropertyBridge; 
 d2rq:belongsToClassMap map:offering; 
 d2rq:property om:offID; 
 d2rq:propertyDefinitionLabel "offering offering_id"; 
 d2rq:column "offering.offering_id"; 
 . 
map:offering_offering_name a d2rq:PropertyBridge; 
 d2rq:belongsToClassMap map:offering; 
 d2rq:property vocab:offering_offering_name; 
 d2rq:propertyDefinitionLabel "offering offering_name"; 
 d2rq:column "offering.offering_name"; 
 . 

Figure 24 D2RQ mapping of the offering table. 
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This customized D2RQ mapping links the concepts of the ontology to the relational 

database. Now the SPARQL query can be executed against the database. The query results are 

loaded into an SOS observation object and transformed into an O&M response. The O&M 

response is annotated with RDFa attributes. This is returned to the listener and then to the client. 

The agent component of the services layer includes the multiagent system. This is 

included in the services layer because a few agents are exposed as agent Web services so the 

client layer can access the agents for additional Web service-like functionality. Figure 25 shows 

the overview architecture of the multiagent system. 

 

Figure 25 Multiagent Architecture of the Prototype. 

The agents are divided into three categories based on their functionality: WSIG agents, 

SWRL agents, and LEAP agents. WSIG agents are JADE agents that expose their operations as 

Web services, SWRL agent uses the Jess rule engine to execute SWRL rules, and LEAP agents 

communicate over mobile, resource constrained devices.  
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The WSIG agents of the prototype include a RDF-Extractor, Operationalize, Running 

Ontology, Inference, and Realize agents. The RDF-Extractor agent takes an RDFa-annotated 

O&M response and extracts the RDF triples, which are returned to the client. Figure 26 shows a 

portion of the O&M response annotated with RDFa attributes while Figure 27 shows the 

extracted triples from the RDF-Extractor agent. Several concepts from the O&M ontology are 

integrated into this O&M response. In the XML segment, the typeof attribute of the 

SamplingPoint element has a value of w:Feature and the property attribute of the 

gml:name element has a value of w:foiName. Through java-rdfa api, triples are extracted based 

on certain properties associated with elements (RDFa). Figure 27 shows the resulting triples from 

the RDFa embedded in Figure 26’s XML segment.  

<om:featureOfInterest property="w:featureOfInterest" content="…/sosMap.ttl#foi_103"> 
 <sa:SamplingPoint gml:id="…/sosMap.ttl#foi_103" about="…/sosMap.ttl#foi_103" typeof="w:Feature"> 
  <gml:description property="w:foiDesc">Pinecroft</gml:description> 
  <gml:name property="w:foiName">KNCGREEN39</gml:name> 
  <sa:sampledFeature/> 
  <sa:position> 
  <gml:Point gml:id="point_sf_0"> 
   <gml:pos srsName="…:EPSG::4326" property="w:location">-79.844 36.02</gml:pos> 
  </gml:Point> 
  </sa:position> 
 </sa:SamplingPoint> 
</om:featureOfInterest> 
 
Figure 26 RDFa-annotated O&M response. 

 
<…/sosMap.ttl#foi_103>      a       w:Feature ; 
       w:foiDesc "Pinecroft" ; 
       w:foiName "KNCGREEN39" ; 
       w:location "-79.844 36.02" . 

Figure 27 Extracted RDF Triples. 

 The Running Ontology agent accepts a set of RDF triples and returns a new set of RDF 

triples, given the new ontology it incorporates. The Running Ontology agent aligns the Running 

ontology with the ontology of the given RDF triples. Figure 28 shows a simplified version of 
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Running Ontology in Protégé with its major concepts. This local ontology shares identical 

concepts with the global weather ontology. The alignment of identical concepts allows 

translation between the two ontologies. The yellow circles represent classes and the blue 

rectangles represent properties of certain classes. This ontology’s concepts of Measurement and 

Phenomena are identical to the weather ontology’s Result and Observation concepts. RDF triples 

can now be expressed in terms of the new ontology’s concepts. The Running ontology was based 

from a similar ontology from the University of Maryland’s Human-Computer Interaction Lab. 

The Running ontology used in this research incorporated the same concepts with integration of 

concepts from the SWEET ontologies. 

 

Figure 28 Simplified Running ontology in Protege. 

Ontology alignment allows a concept in one ontology to become equated to a concept in 

another ontology. This leads to inferences within the new ontology between related concepts. 

Figure 29 shows the alignment between concepts of the O&M ontology and the Running 
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ontology. The ontology alignment is accomplished by adding additional triples to the working 

model that expressed the equivalent concepts. Here, we equate the Feature class from the 

O&M ontology to the FeatureEntity class from the Running ontology. We also equate the 

hasAvgTemp and hasAvgPrec properties of the O&M ontology with the raceTemp and 

racePrec properties, respectively, from the Running ontology.  

String rNS = "./running.owl#"; 
schema.setNsPrefix( "r", rNS ); 
Resource resource = 
schema.createResource("./observationsMeasurements.owl#Feature"); 
Property prop = 
schema.createProperty("http://www.w3.org/2002/07/owl#equivalentClass"); 
Resource obj = schema.createResource("r:FeatureEntity"); 
schema.add(resource,prop,obj); 
resource = schema.createResource("w:hasAvgTemp"); 
prop = 
schema.createProperty("http://www.w3.org/2002/07/owl#equivalentProperty"); 
obj = schema.createResource("r:raceTemp"); 
schema.add(resource,prop,obj); 
resource = schema.createResource("w:hasAvgPrec"); 
prop = 
schema.createProperty("http://www.w3.org/2002/07/owl#equivalentProperty"); 
obj = schema.createResource("r:racePrec"); 
schema.add(resource,prop,obj); 

Figure 29 Ontology Alignment using Jena. 

The SWRL agents of the prototype include an Inference agent. Given the RDF triples 

aligned with a local ontology, the Inference agent can infer new RDF triples. For example, given 

a certain set of RDF triples, one or more triples could be inferred to generate new RDF triples. 

Figure 30 shows a sample SWRL rule. The rule infers that a variable is a w:Freezing type if it 

is a w:Temperature type with a value of its result less than 32. 

[FreezingRule: 
(?temp rdf:type w:Temperature) 
(?temp om:result ?result) 
(?result om:value ?value) 
lessThan(?value 32) 
→ (?temp rdf:type w:Freezing)] 

Figure 30 Sample SWRL Rule. 
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The LEAP agents include two Sun SPOT agents and a Base station agent. As previously 

mentioned the Sun SPOT agents receive observational data from the Imote2 sensor nodes and 

forwards this data to the Base station agent. The Sun SPOT agents also forward their own 

observational data to the Base station agent. The Base station agent receives observational data 

from the Sun SPOT agent and inserts the data into the PostgreSQL database. 

5.2.3 Client Layer. The client layer is a layer of applications that take advantage of the 

other layers. This layer provides client applications that primarily access the exposed services of 

the prototype, which services encapsulate the other functionality of the system. Through the 

modularity of the system, the prototype’s client user interface, or any user interface, has easy 

access to the Semantic SOS service provided and essentially to the sensor network’s 

observational data.  

Here, the current client is a simple web page developed with HTML and JavaServer 

Pages (JSP). JSP is a web technology that allows for creating dynamically generated HTML web 

pages (JSP). The prototype’s test client allows the user to select their options of interest and then 

the client generates the appropriate O&M request for access to the service. Screenshots of the 

test client’s user interface can be seen in the next chapter. 

The client could easily be extended and other clients could be developed to access the 

service. A few interesting client user interface options would include desktop applications, 

mobile device applications, or other Web services that take advantage of the Semantic SOS. The 

standardized interface of the Web service would allow easy integration of the service’s 

functionality into other applications. 
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5.3 Implementation 

The implementation section generally describes how the previous architectural 

components fit together to perform a comprehensive operation. The overall system includes 

many components and services that provide separate functionalities that depend on each other. 

Although, the overall system is comprised of many separate components, there are specific 

components that stand out in the overall operation of the system. These components include the 

O&M ontology, the Running ontology, the ontology alignment, and the inference rules. The 

O&M ontology defines the low-level concepts of the environment. The Running ontology 

defines the high-level concepts of an activity in terms of its own set of low-level concepts. The 

ontology alignment equates concepts between the O&M ontology and the Running ontology. 

The inference rules determine new information based on current statements that match defined 

patterns of statements. We’ll describe these components in more detail, along with how they 

relate to each other.  

The O&M schema defines the principle concepts used within the environmental domain. 

Here, the primary focus is the measurement of environmental phenomena that includes 

temperature, atmospheric pressure, relative humidity, precipitation, wind speed, and wind 

direction. Additionally, the O&M schema defines generalized, higher level concepts that abstract 

away low-level details and can be reused within most environmental domains. These concepts 

include the observation, feature of interest, and observed property. The observation is a 

measurement, or series of measurements, the feature of interest is a particular location of interest 

that provides observations, and the observed property is a particular phenomenon that can be 

measured as an observation. The O&M ontology is a simplified, direct translation of the O&M 

schema so the major concepts and relations are preserved from the O&M schema. Figure 31 
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displays the O&M ontology in Protégé. The classes are shown in the orange section while the 

properties are shown in the blue. The important classes and properties used here are circled. 

 

Figure 31 Class and Property Concepts of the O&M Ontology. 

The O&M ontology is the cornerstone of the semantic capabilities of the Semantic SOS 

service. The inclusion of the ontology allows the data to be transformed into a format usable by 

semantic processes. The O&M ontology in the Semantic SOS service allows the RDFa attributes 

to be embedded into the XML-based O&M response. With the embedded RDFa attributes, 

extracted RDF triples will preserve the integrity of the observations while using a more readable 

format that can be used for semantic purposes. 

The Running ontology defines specialized, high-level concepts for a specific activity 

while also including low-level details. This ontology focuses on concepts related to running, 
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which include features of interest, running conditions, and warnings. The feature of interest is a 

particular location of interest; a running condition describes an environmental state that is 

conducive to running, and a warning pertains to a dangerous environmental state. Figure 32 

displays the Running ontology in Protégé while highlighting important concepts. 

 

Figure 32 Class and Property Concepts of the Running Ontology. 

The ontology alignment equates concepts between the O&M ontology and the Running 

ontology. The O&M ontology focuses on generalized environmental concepts for a variety of 
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environmental domains while the Running ontology focuses on specialized concepts for a 

particular activity domain. Although these ontologies focus on separate domains the specialized 

Running ontology has underlying concepts that equate to the generalized O&M ontology. The 

ontology alignment here focuses on a common set of concepts that are shown in Table 2. Figure 

33 shows how ontology alignment is accomplished in the Jena framework. The Feature class 

of the O&M ontology and FeatureEntity class of the Running ontology both refer to a 

location of interest. The hasAvgTemp property of the O&M ontology and raceTemp property 

of the Running ontology both refer to the temperature measurement of a feature. The 

hasAvgPrec property of the O&M ontology and racePrec property of the Running ontology 

both refer to the precipitation measurement of a feature. The hasAvgPress property of the 

O&M ontology and racePress property of the Running ontology both refer to the atmospheric 

pressure measurement of a feature. The hasAvgRelHum property of the O&M ontology and 

raceHumid property of the Running ontology both refer to the relative humidity measurement 

of a feature. The hasAvgWSpeed property of the O&M ontology and raceWSpeed property of 

the Running ontology both refer to the wind speed measurement of a feature. The hasAvgWDir 

property of the O&M ontology and raceWDir property of the Running ontology both refer to 

the wind direction measurement of a feature. 

Table 2 Comparison of equivalent O&M and Running ontology concepts. 

O&M ontology Running ontology 
w:Feature r:FeatureEntity
w:hasAvgTemp r:raceTemp 
w:hasAvgPrec r:racePrec 
w:hasAvgWSpeed r:raceWSpeed 
w:hasAvgWDir r:raceWDir 
w:hasAvgPress r:racePress 
w:hasAvgRelHum r:raceHumid 
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Figure 33 Ontology Alignment between O&M and Running ontology concepts. 

 

The inference rules expand the knowledgebase by adding new inferred information. With 

the general if-then format, when a set of triples are matched, new statements can be added to the 

knowledgebase. The new statements generally connect concepts to higher-level concepts. Figure 

34 shows the rules used with the Running ontology. 
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[rule1: 
 (?feat <rdf:type><r:FeatureEntity>), (?feat <r:raceTemp> ?temp),greaterThan(?temp,105.0) 
 -> 
 (?feat<rdf:type><.../running.owl#ExcessiveHeatWarning>)]  
    
[rule2: 
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp),lessThan(?temp,32.0), 
 (?feat<r:raceWSpeed> ?wspeed),greaterThan(?wspeed,35.0) 
 -> 
 (?feat<rdf:type><.../running.owl#WindChillWarning>)]  
 
[rule3: 
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp),lessThan(?temp,32.0), 
 (?feat<r:racePrec> ?prec),greaterThan(?prec,2.0) 
 -> 
 (?feat<rdf:type><.../running.owl#FreezingRainWarning>)] 
 
[rule4:  
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp),lessThan(?temp,32.0), 
 (?feat<r:racePrec> ?prec),greaterThan(?prec,2.0), 
 (?feat<r:raceWSpeed> ?wspeed),greaterThan(?wspeed,35.0) 
 -> 
 (?feat<rdf:type><.../running.owl#BlizzardWarning>)] 
 
[rule5:  
 (?feat<rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp), 
 lessThan(?temp,65.0),greaterThan(?temp,45.0), 
 (?feat<r:racePrec> ?prec),equal(?prec,0.0), 
 (?feat<r:raceWSpeed> ?wspeed),lessThan(?wspeed,5.0) 
 -> 
 (?feat<rdf:type><.../running.owl#IdealRunningCondition>)] 
 
[rule6:  
 (?feat<rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp), 
 lessThan(?temp,100.0),greaterThan(?temp,35.0), 
 (?feat<r:racePrec> ?prec),lessThan(?prec,1.0), 
 (?feat<r:raceWSpeed> ?wspeed),lessThan(?wspeed,15.0) 
 -> 
 (?feat<rdf:type><.../running.owl#FairRunningCondition>)] 
 
[rule7:  
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp),lessThan(?temp,32.0) 
 -> 
 (?feat<rdf:type><.../running.owl#PoorRunningCondition>)] 
 
[rule8:  
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:raceTemp> ?temp),greaterThan(?temp,100.0) 
 -> 
 (?feat<rdf:type><.../running.owl#PoorRunningCondition>)] 
 
[rule9: 
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:racePrec> ?prec),greaterThan(?prec,1.0) 
 -> 
 (?feat<rdf:type><.../running.owl#PoorRunningCondition>)] 
 
[rule10: 
 (?feat <rdf:type><r:FeatureEntity>),(?feat <r:raceWSpeed> ?wspeed),greaterThan(?wspeed,15.0) 
 -> 
 (?feat<rdf:type><.../running.owl#PoorRunningCondition>)] 

Figure 34 SWRL Rules for Inference. 
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The low-level details are used to determine higher-level concepts about the environment. 

The rules combine details to distinguish cases of interest to a particular type of user. Here, our 

users show interest in the domain of running, which is why we align our general environmental 

ontology to our specialized activity ontology about running. Inference over the specialized 

running ontology allows running-oriented users to determine specific information based on their 

concerns, not just additional environmental information. 
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CHAPTER 6 

Results 

This chapter views several sample data instances within two runs of the prototype system. The 

architecture, described above, was tested and shown to explore the presented specific aims. The 

test client was used to display the output results. Table 3 shows the sample data used in Run 1. 

Table 3 Sample Data for Run 1. 

Feature of Interest Observed Property Value 
foi_101 Temperature 29.6 
foi_101 Relative Humidity 50.0 
foi_101 Atmospheric Pressure 30.12 
foi_101 Precipitation 0.0 
foi_101 Wind Speed 42.0 
foi_101 Wind Direction 45.0 
foi_102 Temperature 25.8 
foi_102 Relative Humidity 55.0 
foi_102 Atmospheric Pressure 29.45 
foi_102 Precipitation 3.25 
foi_102 Wind Speed 0.0 
foi_102 Wind Direction 45.0 
foi_103 Temperature 18.5 
foi_103 Relative Humidity 87.0 
foi_103 Atmospheric Pressure 30.2 
foi_103 Precipitation 0.0 
foi_103 Wind Speed 45.0 
foi_103 Wind Direction 45.0 
foi_104 Temperature 42.6 
foi_104 Relative Humidity 87.0 
foi_104 Atmospheric Pressure 30.17 
foi_104 Precipitation 0.0 
foi_104 Wind Speed 25.0 
foi_104 Wind Direction 45.0 
foi_105 Temperature 37.8 
foi_105 Relative Humidity 82.0 
foi_105 Atmospheric Pressure 30.17 
foi_105 Precipitation 0.0 
foi_105 Wind Speed 0.0 
foi_105 Wind Direction 45.0 
foi_106 Temperature 44.3 
foi_106 Relative Humidity 88.0 
foi_106 Atmospheric Pressure 30.17 
foi_106 Precipitation 0.0 
foi_106 Wind Speed 10.0 
foi_106 Wind Direction 45.0 
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Figure 35 shows the initial O&M query submitted to the Semantic SOS service. This query refers 

to an offering of observation data labeled “ALL” that included all the observed properties of 

temperature, relative humidity, pressure, precipitation, wind speed, and wind direction. This 

query is submitted to the Semantic SOS service and handled by the “GetObservation” operation 

of the service. 

 

Figure 35 O&M Query to Semantic SOS service. 

Figure 36 shows the resulting O&M response from the Semantic SOS service. The XML 

response conforms to the O&M Schema and also annotated with RDFa attributes that can be 

extracted later. Figure 37 shows a portion of the actual output from Figure 36. 

 

Figure 36 Screenshot of O&M Response from Semantic SOS service (Run 1). 
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<om:ObservationCollection … xmlns:w="./observationsMeasurements.owl#"> 
<gml:boundedBy> 
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326"> 
<gml:lowerCorner>-79.896 36.02</gml:lowerCorner> 
<gml:upperCorner>-79.776 36.151</gml:upperCorner> 
</gml:Envelope> 
</gml:boundedBy> 
<om:member> 
<om:Observation gml:id="go_1381712321610" about="obs_1381712322565" typeof="w:Observation"> 
<om:samplingTime> 
<gml:TimeInstant xsi:type="gml:TimeInstantType"> 
<gml:timePosition>2013-10-13T20:57:21.666-04:00</gml:timePosition> 
</gml:TimeInstant> 
</om:samplingTime> 
<om:procedure rel="w:procedure" resource="…:feature:Station:IFGI:at-davis-weatherstation-3"/> 
<om:observedProperty> 
<swe:CompositePhenomenon gml:id="…:feature:Station:IFGI:at-davis-weatherstation-3" dimension="7"> 
<gml:name>…:feature:Station:IFGI:at-davis-weatherstation-3</gml:name> 
<swe:component xlink:href="http://www.opengis.net/def/property/OGC/0/SamplingTime"/> 
<swe:component xlink:href="…/sosMap.ttl#urn:ogc:def:phenomenon:OGC:1.0.30:Precipitation"/> 
<swe:component xlink:href="…/sosMap.ttl#urn:ogc:def:phenomenon:OGC:1.0.30:RelativeHumidity"/> 
<swe:component xlink:href="…/sosMap.ttl#urn:ogc:def:phenomenon:OGC:1.0.30:WindDirection"/> 
<swe:component xlink:href="…/sosMap.ttl#urn:ogc:def:phenomenon:OGC:1.0.30:AtmosphericPressure"/> 
<swe:component xlink:href="…/sosMap.ttl#urn:ogc:def:phenomenon:OGC:1.0.30:AirTemperature"/> 
<swe:component xlink:href="…/sosMap.ttl#urn:ogc:def:phenomenon:OGC:1.0.30:WindSpeed"/> 
</swe:CompositePhenomenon> 
</om:observedProperty> 
<om:featureOfInterest property="w:featureOfInterest" content="…/sosMap.ttl#foi_103"> 
<sa:SamplingPoint gml:id="…/sosMap.ttl#foi_103" about="…/sosMap.ttl#foi_103" typeof="w:Feature"> 
<gml:description property="w:foiDesc">Pinecroft</gml:description> 
<gml:name property="w:foiName">KNCGREEN39</gml:name> 
<sa:sampledFeature/> 
<sa:position> 
<gml:Point gml:id="point_sf_0"> 
<gml:pos srsName="urn:ogc:def:crs:EPSG::4326" property="w:location">-79.844 36.02</gml:pos> 
</gml:Point> 
</sa:position> 
</sa:SamplingPoint> 
</om:featureOfInterest> 
<om:result> 
<swe:DataArray> 
<swe:encoding> 
<swe:TextBlock decimalSeparator="." tokenSeparator="," blockSeparator=";"/> 
</swe:encoding> 
<swe:values property="w:result">2013-10-13T20:57:21.666-04:00,0.0,87.0,45.0,30.2,18.5,45.0;</swe:values> 
</swe:DataArray> 
</om:result> 
</om:Observation> 
</om:ObservationCollection> 

Figure 37 Partial Output of O&M Response (Run 1). 

Figure 38 shows the extracted RDF triples from the previous O&M XML-based response. Using 

the RDFa attributes embedded into the O&M response, RDF triples could be formed that 

preserved the useful data of the response but in a more user-friendly vocabulary. Figure 39 

shows some of the triples from the output shown in Figure 38. 
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Figure 38 Screenshot of Extracted RDF Triples (Run 1). 

<...#foi_104>      a       w:Feature ; 
 w:foiDesc "Greensboro" ; 
 w:foiName "KNCGREEN49" ; 
 w:location "-79.789 36.151" . 
<.../obs_1381712322634>      a       w:Observation ; 
 w:featureOfInterest "...#foi_104" ; 
 w:procedure <...#urn:ogc:object:feature:Station:IFGI:at-davis-weatherstation-4> ; 
       w:result "2013-10-13T20:57:21.666-04:00,42.6,87.0,45.0,30.17,25.0,0.0;" . 
<.../obs_1381712322565>      a       w:Observation ; 
 w:featureOfInterest "...#foi_103" ; 
 w:procedure <...#urn:ogc:object:feature:Station:IFGI:at-davis-weatherstation-3> ; 
       w:result "2013-10-13T20:57:21.666-04:00,0.0,87.0,45.0,30.2,18.5,45.0;" . 
<...#foi_103>      a       w:Feature ; 
 w:foiDesc "Pinecroft" ; 
 w:foiName "KNCGREEN39" ; 

  w:location "-79.844 36.02" . 

Figure 39 Partial Output of Extracted RDF Triples (Run 1). 

Figure 40 shows the operationalized form of the above RDF triples. Triples were added 

and modified, or operationalized, to allow for easier access and use of the values. Figure 41 

shows some of the operationalized RDF triples from Figure 40. 
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Figure 40 Screenshot of Operationalized RDF Triples (Run 1). 

<...#foi_104>      a       w:Feature ; 
 w:foiDesc "Greensboro" ; 
 w:foiName "KNCGREEN49" ; 
 w:location "-79.789 36.151" ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.17"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "42.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "25.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.151" ; 
 <w:long> "-79.789" . 
<.../obs_1381712322634>      a       w:Observation ; 
 w:featureOfInterest "...#foi_104" ; 
 w:procedure <...#urn:ogc:object:feature:Station:IFGI:at-davis-weatherstation-4> ; 
       w:result "2013-10-13T20:57:21.666-04:00,42.6,87.0,45.0,30.17,25.0,0.0;" . 
<.../obs_1381712322565>      a       w:Observation ; 
 w:featureOfInterest "...#foi_103" ; 
 w:procedure <...#urn:ogc:object:feature:Station:IFGI:at-davis-weatherstation-3> ; 
       w:result "2013-10-13T20:57:21.666-04:00,0.0,87.0,45.0,30.2,18.5,45.0;" . 
<...#foi_103>      a       w:Feature ; 
 w:foiDesc "Pinecroft" ; 
 w:foiName "KNCGREEN39" ; 
 w:location "-79.844 36.02" ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.2"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "18.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.02" ; 
 <w:long> "-79.844" . 

Figure 41 Partial Output of Operationalized RDF Triples (Run 1). 



94 
 

Figure 42 shows the aligned RDF triples. These triples were aligned with the Running 

ontology. Figure 43 shows some of the aligned RDF triples from Figure 42. 

 

Figure 42 Screenshot of Aligned RDF Triples (Run 1). 

<file:///C:/apache-tomcat-7.0.42/bin/sosMap.ttl#foi_103>      a       <r:FeatureEntity> , w:Feature ; 
 w:foiDesc "Pinecroft" ; 
 w:foiName "KNCGREEN39" ; 
 <r:raceHumid> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "30.2"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "18.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.2"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "18.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
<file:///C:/apache-tomcat-7.0.42/bin/sosMap.ttl#foi_104>      a       <r:FeatureEntity> , w:Feature ; 
 w:foiDesc "Greensboro" ; 
 w:foiName "KNCGREEN49" ; 
 <r:raceHumid> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "30.17"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "42.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "25.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.17"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "42.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "25.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 

Figure 43 Partial Output of Aligned RDF Triples (Run 1). 
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Figure 44 shows all of the RDF triples including the inferred triples. Figure 45 shows 

some of the inferred RDF triples from Figure 44. Figure 46 shows the realized information from 

the inferred RDF triples. The realized information is the inferred information in simplified form. 

 

Figure 44 Screenshot of Inferred RDF Triples (Run 1). 
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<…#foi_103>      a       <r:FeatureEntity> , w:Feature , r:PoorRunningCondition , r:WindChillWarning ; 
 w:foiDesc "Pinecroft" ; 
 w:foiName "KNCGREEN39" ; 
 w:location "-79.844 36.02" ; 
 <r:raceHumid> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "30.2"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "18.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.2"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "18.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.02" ; 
 <w:long> "-79.844" . 
<…#foi_104>      a       <r:FeatureEntity> , w:Feature , r:PoorRunningCondition ; 
 w:foiDesc "Greensboro" ; 
 w:foiName "KNCGREEN49" ; 
 w:location "-79.789 36.151" ; 
 <r:raceHumid> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "30.17"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "42.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "25.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.17"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "87.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "42.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "25.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.151" ; 
 <w:long> "-79.789" . 

Figure 45 Partial Output of Inferred RDF Triples (Run 1). 

 

Figure 46 Screenshot of Final Information (Run 1). 

The following presents the second sample run of the system with the data from Table 4. Figures 

47 through 56 show the screenshots and partial outputs of Run 2. 
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Table 4 Sample Data for Run 2. 

Feature of Interest Observed Property Value 
foi_101 Temperature 40.6 
foi_101 Relative Humidity 50.0 
foi_101 Atmospheric Pressure 30.12 
foi_101 Precipitation 0.5 
foi_101 Wind Speed 3.0 
foi_101 Wind Direction 45.0 
foi_102 Temperature 49.8 
foi_102 Relative Humidity 55.0 
foi_102 Atmospheric Pressure 29.45 
foi_102 Precipitation 0.0 
foi_102 Wind Speed 0.0 
foi_102 Wind Direction 45.0 
foi_103 Temperature 61.5 
foi_103 Relative Humidity 87.0 
foi_103 Atmospheric Pressure 30.2 
foi_103 Precipitation 0.0 
foi_103 Wind Speed 45.0 
foi_103 Wind Direction 45.0 
foi_104 Temperature 108.6 
foi_104 Relative Humidity 87.0 
foi_104 Atmospheric Pressure 30.17 
foi_104 Precipitation 0.0 
foi_104 Wind Speed 25.0 
foi_104 Wind Direction 45.0 
foi_105 Temperature 37.8 
foi_105 Relative Humidity 82.0 
foi_105 Atmospheric Pressure 30.17 
foi_105 Precipitation 0.0 
foi_105 Wind Speed 0.0 
foi_105 Wind Direction 45.0 
foi_106 Temperature 44.3 
foi_106 Relative Humidity 88.0 
foi_106 Atmospheric Pressure 30.17 
foi_106 Precipitation 0.0 
foi_106 Wind Speed 0.0 
foi_106 Wind Direction 45.0 
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Figure 47 Screenshot of O&M Response from Semantic SOS service (Run 2). 

 

Figure 48 Screenshot of Extracted RDF Triples (Run 2). 
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<…/obs_1381714247643>      a       w:Observation ; 
 w:featureOfInterest "…#foi_102" ; 
 w:procedure <…#urn:ogc:object:feature:Station:IFGI:at-davis-weatherstation-2> ; 
       w:result "2013-10-13T21:28:54.937-04:00,45.0,29.45,49.8,55.0,0.0,0.0;" . 
<…#foi_101>      a       w:Feature ; 
 w:foiDesc "McNair NCATSU" ; 
 w:foiName "MCNAIR" ; 
 w:location "-79.776 36.072" . 
<…#foi_102>      a       w:Feature ; 
 w:foiDesc "Westerwood" ; 
 w:foiName "KNCGREEN30" ; 
 w:location "-79.812 36.077" . 
<…/obs_1381714247574>      a       w:Observation ; 
 w:featureOfInterest "…#foi_101" ; 
 w:procedure <…#urn:ogc:object:feature:Station:IFGI:at-davis-weatherstation-1> ; 
       w:result "2013-10-13T21:28:54.937-04:00,3.0,0.5,30.12,50.0,40.6,45.0;" . 

Figure 49 Partial Output of Extracted RDF Triples (Run 2). 

 

Figure 50 Screenshot of Operationalized RDF Triples (Run 2). 
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<…#foi_101>      a       w:Feature ; 
 w:foiDesc "McNair NCATSU" ; 
 w:foiName "MCNAIR" ; 
 w:location "-79.776 36.072" ; 
 <w:hasAvgPrec> "0.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.12"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "50.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "40.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "3.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.072" ; 
 <w:long> "-79.776" . 
<…#foi_102>      a       w:Feature ; 
 w:foiDesc "Westerwood" ; 
 w:foiName "KNCGREEN30" ; 
 w:location "-79.812 36.077" ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "29.45"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "55.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "49.8"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.077" ; 

  <w:long> "-79.812" . 

Figure 51 Partial Output of Operationalized RDF Triples (Run 2). 

 

Figure 52 Screenshot of Aligned RDF Triples (Run 2). 
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<…#foi_101>      a       <r:FeatureEntity> , w:Feature ; 
 w:foiDesc "McNair NCATSU" ; 
 w:foiName "MCNAIR" ; 
 w:location "-79.776 36.072" ; 
 <r:raceHumid> "50.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "30.12"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "40.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "3.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.12"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "50.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "40.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "3.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.072" ; 
 <w:long> "-79.776" . 
<…#foi_102>      a       <r:FeatureEntity> , w:Feature ; 
 w:foiDesc "Westerwood" ; 
 w:foiName "KNCGREEN30" ; 
 w:location "-79.812 36.077" ; 
 <r:raceHumid> "55.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "29.45"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "49.8"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "29.45"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "55.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "49.8"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.077" ; 
 <w:long> "-79.812" . 

Figure 53 Partial Output of Aligned RDF Triples (Run 2). 
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Figure 54 Screenshot of Inferred RDF Triples (Run 2). 
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<…#foi_101>      a       <r:FeatureEntity> , w:Feature , r:FairRunningCondition ; 
 w:foiDesc "McNair NCATSU" ; 
 w:foiName "MCNAIR" ; 
 w:location "-79.776 36.072" ; 
 <r:raceHumid> "50.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "30.12"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "40.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "3.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.5"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "30.12"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "50.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "40.6"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "3.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.072" ; 
 <w:long> "-79.776" . 
<…#foi_102>      a       <r:FeatureEntity> , w:Feature , r:IdealRunningCondition , r:FairRunningCondition ; 
 w:foiDesc "Westerwood" ; 
 w:foiName "KNCGREEN30" ; 
 w:location "-79.812 36.077" ; 
 <r:raceHumid> "55.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:racePress> "29.45"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceTemp> "49.8"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <r:raceWSpeed> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPrec> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgPress> "29.45"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgRelHum> "55.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgTemp> "49.8"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWDir> "45.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:hasAvgWSpeed> "0.0"^^<http://www.w3.org/2001/XMLSchema#double> ; 
 <w:lat> "36.077" ; 
 <w:long> "-79.812" . 

Figure 55 Partial Output of Inferred RDF Triples (Run 2). 

 

Figure 56 Screenshot of Final Information (Run 2). 
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CHAPTER 7 

Discussion 

The prototype serves as a means to test the specific aims of this research. The first 

specific aim was to develop a sensor web system that collects observational data. The prototype 

directly addresses this specific aim by acquiring observational data and accurately servicing the 

client. The second specific aim focuses on delivering useful information along with 

observational data to make results more meaningful. The prototype addresses this by annotating 

the observational data with metadata. The use of RDFa allows the O&M response to be 

annotated with simple attributes such as “about”, “property”, and “typeof”. The third specific 

aim connects the specific, low level details to higher level concepts of interest to the user. This 

specific aim is addressed through the alignment of ontologies. The global ontology defines 

specific, low level details that are used throughout many domains, while the local ontologies 

define higher level concepts with some low level details that are identical to their global 

ontology counterparts. The fourth specific aim involves developing a deeper understanding of 

the context of the observational data. The multiagent system framework provides additional 

functionality that directly handles and manipulates the data and information. Observational data 

is fused into more accurate, useful information. This information allows the user to better 

understand the context of the situation and environment. The fifth specific aim integrates a user-

friendly approach to minimize complexity to the user. An integrated user interface relieves the 

user of needless complexity, which increases time and resources for other areas such as decision 

making. The final specific aim focuses on developing a modularized sensor web implementation 

to support reusability. The development of the prototype resulted in separate components that 

could easily be integrated into other applications and domains. The components range from the 
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database schema and ontologies to collaborative agents and OGC service. The specific aims 

focus on creating a user experience that generates situation awareness.  

This research explores sensor web technology by exploiting the technologies of 

distributed architectures. Most sensor webs focus on a particular sensor web concept, generally 

accessibility via OGC standards or sensor node collaboration. The sensor web here focuses on 

the three previously addressed senses of accessible, collaborative, and semantic sensor webs.  

This research aligns well with the research of the sensor web community by seeking to 

improve data acquisition in dynamic environments as well as to provide accurate data to clients 

in a convenient, user-friendly manner. The research also adds value to the individual components 

needed to realize the sensor web vision, which includes multiagent systems, Web services, and 

the Semantic Web. Multiagent systems present an interesting approach to communication which 

leads naturally to collaboration. The primary advantage of machine-to-machine interaction via 

Web services extends the usability of sensor webs to another level while the search and inference 

capabilities of the Semantic Web makes sensor web more useful. This research develops a 

unique application of exciting technologies in the area of environmental monitoring. 
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CHAPTER 8 

Conclusion 

The primary goal of this research was to implement a prototype sensor web integrating 

the three aspects identified for a sensor web. Recall that a collaborative sensor web has nodes 

that collaborate in response to interesting environmental observations. An accessible sensor 

provides Web services that allow clients access to the sensor web resources and consumes Web 

services remotely. A Semantic Sensor Web adds contextual information to create a better 

understanding of the situation. The prototype displayed all three aspects.  

The prototype sensor web and its products pose significance to agencies such as NOAA 

and NASA, as well as other organizations for environmental and structural health monitoring. 

This research contributes to the individual research communities of the major components 

needed to realize the prototype sensor web. The sensor web encourages an architecture for 

heterogeneous sensor nodes that can be used in “plug and play” and so could serve as a testbed 

for sensor node research. Multiagent systems exhibit efficient communication and problem-

solving capabilities. The inference and query capabilities of the Semantic Web exploit another 

dynamic of intelligence, especially when paired with the intelligent agents of the multiagent 

systems. The OGC’s Sensor Web Enablement (SWE) integrates standardization and 

interoperability between sensor web implementations, resources, and data. Along with providing 

additional resources for SWE-compliant clients, the prototype sensor web allows reuse through 

its modular design.  

The prototype sensor web could be easily extended for future work with a variety of 

possible directions. Interesting future work would incorporate additional OGC Web services or 

knowledge alignment in different domains. OGC Web services such as the Sensor Alert Service 
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or Sensor Registry Service would greatly benefit from the addition of semantic capabilities. 

Users can discover potentially useful sensors and resources through possible semantic additions. 
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