
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-11-2009

Mobile computing and sensor Web services for coastal buoys Mobile computing and sensor Web services for coastal buoys

Santhosh Kumar Amanchi Rajender

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Rajender, Santhosh Kumar Amanchi, "Mobile computing and sensor Web services for coastal buoys"
(2009). Theses and Dissertations. 3124.
https://scholarsjunction.msstate.edu/td/3124

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3124?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

MOBILE COMPUTING AND SENSOR WEB SERVICES FOR COASTAL BUOYS

By

Santhosh Kumar Amanchi Rajender

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of Requirements
for the Degree of Master of Science

in Electrical Engineering
in the Department of Electrical And Computer Engineering

Mississippi State, Mississippi

December 2009

MOBILE COMPUTING AND SENSOR WEB SERVICES FOR COASTAL BUOYS

By

Santhosh Kumar Amanchi Rajender

Approved

_________________________________ _________________________________
Nicolas H. Younan Surya S. Durbha
Professor and Department Head Assistant Research Professor
Department of Electrical and Computer Center for Advanced Vehicular Systems
Engineering (Major Advisor) (Co-Major Advisor)

_________________________________ _________________________________
Roger L. King James E. Fowler
Giles Distinguished Professor and Director Professor and Graduate Program Director
Center for Advanced Vehicular Systems Department of Electrical and Computer
(Committee Member) Engineering

Sarah A. Rajala
Dean of the Bagley College of Engineering

Name: Santhosh Kumar Amanchi Rajender

Date of Degree: December 12th, 2009

Institution: Mississippi State University

Major Field: Electrical Engineering

Major Advisor: Dr. Nicolas H. Younan

Title of Study: MOBILE COMPUTING AND SENSOR WEB SERVICES FOR
 COASTAL BUOYS

Pages in Study: 91

Candidate for Degree of Master of Science

Mobile device technology with the influence of the Internet is creating a lot of

Web-based services so that people can have easy and 24-hour access to the services.

Recently, the Google’s Android has revolutionized applications development for the

mobile platform. As there is an increasing number of companies exposing their services

as Web services, enabling flexible mobile access to distributed Web resources is a

relevant challenge. However, the current Web is a collection of human readable pages

that are unintelligible to computer programs. Semantic Web and Web services have the

potential of overcoming this limitation. For this, a standard ontology called Ontology

Web Language for Services (OWL-S) is employed. The vision is to automatically

discover services like Sensor Web services from mobile. In this thesis, a mobile

framework is developed for the automatic discovery of services. The application is

implemented for the Coastal Sensor Web and the Semantic Web service.

ii

DEDICATION

I would like to dedicate this thesis to my parents, brothers, sisters, and friends who have

been my continual support.

iii

ACKNOWLEDGMENTS

I would like to thank my major advisor Dr. Nicolas H. Younan for his advice and

support while working on this research. I would like also to thank my co-major advisor

Dr. Surya S. Durbha for his supervision, trust, support and guidance from the early stages

of this research. Finally, I would like to acknowledge my committee member, Dr. Roger

L. King for his support throughout the research.

I gratefully acknowledge the financial support provided by the Geosystems

Research Institute (GRI) at MSU for this research. I would like to thank fellow graduate

students and faculties of the Geosystems Research Institute and Department of Electrical

and Computer Engineering for their support and advices. I would like to thank the

Northern Gulf Institute, a NOAA cooperative institute for funding this project. I would

like to thank my parents, brothers, sisters, and friends for their continuous love and

support.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... vi

CHAPTER

 I. INTRODUCTION .. 1

Background .. 1
Motivation and Objectives ... 7
Thesis Organization .. 8

 II. LITERATURE REVIEW .. 9

Adding Semantics to UDDI ... 9
Matchmaking .. 11
Mobile Computing ... 14
Summary .. 16

 III. METHEDOLOGY .. 18

Semantic Web ... 18
OWL ... 19
OWL-S ... 20

Service Profile .. 22
Service Model ... 23
Service Grounding .. 24

OWL-S/UDDI Architecture ... 26
Matching Algorithm ... 31
Coastal Sensor Web Service ... 34

SensorML ... 35
Sensor Observation Service .. 36

 IV. DEVELOPMENT TOOLS ... 40

v

Android ... 40
Apache Tomcat ... 42
OWL-S/UDDI Matchmaker ... 43
Sensor Observation Service .. 45
SPARQL ... 45

 V. RESULTS ... 49

OWL-S Matchmaker .. 49
Coastal Sensor Web .. 55

Temporal Query ... 58
Duration Query ... 60
Comparison Query ... 62
Describe Sensor .. 64
GetCapabilities ... 66

Semantic Web ... 68
Web Map Service ... 72
Web Based SOS Client ... 73

 VI. CONCLUSION AND FUTURE WORK ... 80

Future Works .. 81

REFERENCES ... 82

 APPENDIX

A. OWL-S PROFILE ...85

B. QUERIES ... 89

vi

LIST OF FIGURES

1 Overview of research .. 8

2 Screenshots of ‘Compare Everywhere’ application [27] 15

3 Screenshots of ‘Biowallet’ application [28] ... 16

4 OWL-S: Top level of service ontology [11] ... 22

5 Service-Profile [11] ... 23

6 Mobile OWL-S/UDDI architecture .. 27

7 Mapping between OWL-S and UDDI [19] ... 28

8 Mapping OWLS-Profile contact information to UDDI .. 29

9 Mapping OWLS-Profile inputs to UDDI as TModels .. 30

10 Mapping OWLS-Profile outputs to UDDI as TModels .. 31

11 Ontology for sensor concepts .. 33

12 Advertisement propagation ... 33

13 SOS consumer sequence diagram “adapted from [15]” 38

14 Flowchart showing the lifecycle of an activity [36] ... 42

15 Matchamker client Web interfaces ... 44

16 SOS Web client [39] ... 46

17 General purpose SPARQL processor [42] .. 47

18 Android emulator and the matchmaker client ... 50

19 Matchmaker client for registering a Sensor Observation Service 51

vii

20 Web based registration results of SOS service ... 52

21 Matchmaker client for discovering services based on output-input concepts 53

22 Web based matchmaker results ... 54

23 Results of discovered services and selection of a service 54

24 Sensor Web querying client .. 55

25 Operators/variables in Sensor Web client ... 57

26 Temporal query and its XML results: Flow of operation 58

27 Temporal query results: text and map ... 59

28 Duration query and its XML results: Flow of operation 60

29 Duration query results: text and map .. 61

30 Comparison query and its XML results: Flow of operation 62

31 Comparison query results: text and map ... 63

32 Information about marker on map: SensorML and results of station 64

33 DescribeSensor query and its result as SensorML: Flow of operation 65

34 DescribeSensor query results: text and map ... 66

35 GetCapabilities query and its XML result: Flow of operation 67

36 GetCapabilities query results: text and map ... 68

37 Semantic Web client with the canned queries .. 69

38 Semantic Web SPARQL query and its XML results: Flow of operation 70

39 Semantic Web SPARQL query results: text and map .. 71

40 Information about marker: SensorML and results of station (Semantic Web) 72

41 WMS client and its results .. 73

42 Temporal query ... 74

viii

43 Duration query .. 75

44 Comparison query ... 75

45 Spatial query ... 76

46 GetObservation query ... 77

47 XML and tabular results for GetObservation query ... 78

48 Results for GetObservation query marked on map ... 78

49 Visualization of results ... 79

1

CHAPTER I

INTRODUCTION

Background

Most of the services available on the Web are designed to be accessible from

desktops and PCs. Accessing services anywhere and anytime, irrespective of the network

is imperative to meet users’ requirements. Two challenges arise as mobile devices

become increasingly widespread and as more companies expose their services as a Web

service:

• Enabling flexible mobile access to distributed Web resources for advanced

 personalization and localization features.

• Automatic discovery and invocation of Web services.

Mobile device technology with the influence of the Internet is creating a lot of

Web-based services so that people can have easy and 24-hour access from any location.

The mobile users can explore the mobile Internet with its new features, services, and

applications. Recently, an application platform, like the Google’s Android mobile

platform [1], which incorporates the recommendations of the mobile middleware

research, has revolutionized open applications development for the mobile platform. The

four main features of Android are; open nature, application hierarchy, ability to combine

information from the Web with data on the phone, and Software Development Kit. In this

2

work, we adopt the Android SDK, which is a set of tools developed by Google to

facilitate the development of mobile applications using Java. Interesting possibilities for

mobile applications can be developed with the evolution of the Web into machine-

readable and usable format offers. As mobile devices have limited facilities for user

interaction, service oriented architecture with common standards for service description,

discovery, and execution help to improve diversity in mobile platforms. The current Web,

however, is a collection of human readable pages that are unintelligible to computer

programs. In recent years, an effort to overcome this limitation is the development of

Web services which are self contained programs that by becoming the producers and

consumers of information facilitate the automation of business transactions.

Web services are modular, self-describing, and self-contained applications that

not only provide static information but allow the users to effect some action or change in

the World [2]. In the recent years, Web service technologies have considerably grown in

their application on e-business world. The widespread adoption of Web services by an

increasing number of companies is mainly due to its simplicity and the data

interoperability provided by Web services components namely XML [3], SOAP [4], and

WSDL (Web Services Description language) [5]. SOAP is the standard messaging

protocol for Web services. SOAP messages consist of three parts: a framework for

describing what is in a message and how to process it, a set of encoding rules for

expressing instances, and a convention for representing remote procedure calls and

responses. WSDL is an XML format to describe Web services as collections of

communication endpoints that can exchange certain messages.

3

The current Web service discovery mechanism is based on the industry standard

named Universal description, discovery, and integration (UDDI) [6]. UDDI provides a

means of publishing and organizing information about resources and subsequently

querying that information to discover resources based on client-specified information.

The client can search by name, description, business, location, bindings, or TModels. In

keyword based search mechanism the client has to use the exact words that are included

in the services provided when they described their services. This mechanism will discard

many results useful for the client because the UDDI is not capable of making use of the

semantic information to derive relationships during a search. The search mechanism also

produces a lot of results which may be of no interest because the search is based on

category information. Because of the keyword based search mechanism performed by

UDDI and because of the usage of XML for data description in Web service

infrastructures, the automatic discovery of service that satisfies the user’s requirements is

becoming difficult. UDDI guarantees syntactic interoperability, but does not provide a

semantic description of its content. It does not provide support for search by service

capabilities. Hence, two syntactically identical XML descriptions may have very different

meaning and vice versa. As a result, Web services can identify the pieces of information

that they exchange, but they do not know how to interpret them.

Semantic interoperability is crucial for Web services. The Semantic Web [7] has

the potential to provide the Web services infrastructure with the semantic information

that it needs. It augments the Web pages with semantic information so that they can be

easily understood and interpreted by machine applications. The Semantic Web is based

on a set of languages such as RDF [8] and OWL [9] that can be used to markup the

4

content of Web pages. The Resource Description Framework (RDF) is a language for

representing information about resources in the World Wide Web in the form of subject-

predicate-object expressions. It is particularly intended for representing metadata about

Web resources. The OWL Web Ontology Language is intended to be used when the

information contained in documents needs to be processed by applications as opposed to

situations where the content only needs to be presented to humans [9]. OWL can be used

to explicitly represent the meaning of terms in vocabularies and the relationships between

those terms. OWL builds on RDF and RDF Schema and adds more vocabulary for

describing properties and classes. OWL has more facilities for expressing meaning and

semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these languages in

its ability to represent machine interpretable content on the Web. Thus, the Semantic

Web is a set of ontologies providing a model to interpret information. It also contains

information on the relation between the different terms.

The vision of the Semantic Web is the transformation of the Web into an Internet

wide knowledge representation system, in which Web pages provide information and

ontologies provide the conceptual framework needed to interpret that information.

Integration of semantic metadata, ontologies, and the Web services infrastructure results

in a service named Semantic Web Service (SWS) [10]. SWS is a Web service whose

description is in a language that has well-defined semantics. It is computer interpretable

and facilitates maximal automation and dynamism in Web service discovery, selection,

composition, negotiation, invocation, monitoring, management, recovery, and

compensation. This is possible with the use of ontologies, which facilitate knowledge

sharing among heterogeneous systems. A standard ontology called Ontology Web

5

Language for Services (OWL-S) [11] is used for describing the Web services. It attempts

to close the gap between the Semantic Web and the Web services infrastructure. OWL-S

can be used to describe the capabilities of Web services.

OWL-S is based on OWL to define the concept of Web services within the

Semantic Web. In addition, it provides a language to describe actual Web services that

can be discovered and then invoked using standards such as WSDL and SOAP. OWL-S

uses the semantic annotations and ontologies of the Semantic Web to relate the

description of a Web service, with descriptions of its domain of operation. The

interaction of OWL-S Web services requires three main operations: discovery of the

providers, management of the interaction, and transformation of the abstract information

exchanges into message passing. OWL-S, therefore, requires that Web services be

represented by a specification of their capabilities. More precisely, an OWL-S Web

service is defined as OWL class with three properties which relate the Web service to the

Service Profile, the Process Model, and the Service Grounding. The Service Profile

provides a representation of the capabilities of the Web service in terms of the

input/output transformation that it produces and of a set of non-functional parameters that

specify availability, quality, and other properties of the service. The Process Model

provides a detailed view of the process of the Web service from which the requester can

derive the interaction protocol with the provider. Finally, the Grounding maps the process

model into a WSDL specification of how to interact with the Web service. OWL-S

reliance on WSDL provides the bridge between the Semantic Web and the Web services

infrastructure.

6

The significance of disaster management and environmental monitoring leads to

the interest in services like Coastal Sensor Web Service, Geospatial Information Service,

etc. The Sensor Web refers to Web accessible sensor networks and archived sensor data

that links a remote end user's awareness with the observed environment [12]. A protocol

named Sensor Web Enablement (SWE) [12] enables developers to make all types of

sensors, transducers and sensor data repositories discoverable, accessible, and useable via

the Web. The SWE enables the use of real or near real time data derived from coastal

sensor networks and enables dynamic selection and aggregation of multiple sensor

systems, meteorological and oceanographic simulations, and other decision support

systems in a Web services-based environment [13]. The coastal buoys collecting

information are described using an interoperable framework OpenGIS Sensor Model

Language (SensorML) [14]. The OGC SensorML provides standard information models

and an XML encoding for describing any process, including the process of measurement

by sensors and instructions for deriving higher-level information from observations. The

information collected from the buoys can be queried by the user using OpenGIS Sensor

Observation Services (SOS). The OpenGIS SOS Standard [15] defines an API for

managing deployed sensors and retrieving sensor observation data. The goal of SOS is to

provide access to observations from sensors and sensor systems in a standard way that is

consistent for all sensor systems including remote, in-situ, fixed, and mobile sensors. The

SOS is the intermediary between a client and an observation repository or near real-time

sensor channel. The clients can access SOS to obtain metadata information that describes

the associated sensors, platforms, procedures, and other metadata associated with

observations. Thus, SOS is a critical element of the SWE architecture.

7

Motivation and Objectives

In this research, we present an architecture for registration and discovery of

Semantic Web services based on a matching algorithm by enhancing the traditional Web

services registry. The registration and discovery process is based on the semantic

matching instead of keyword searching as used in the traditional UDDI discovery

mechanism. The vision is to develop an application framework using Android mobile

platform to interact with the Web services using the OWL-S/UDDI matchmaker. The

framework is used as a client for registering, discovering, and executing services like

Sensor Web Service, Geospatial Information Service, etc., from mobile. The framework

implements the above proposed architecture using SensorWeb as the application area to

illustrate the registration, discovery, and execution of desired Web services. A service

description for Coastal Sensor Web is created and is published in an OWL-S enhanced

UDDI registry to facilitate the discovery process. It provides functionality for the user to

place a request and a response based on OWL-S descriptions of the appropriate service

satisfying the user’s requirements is returned by matching the query with the registered

Web services using the OWL-S/UDDI matchmaker. Finally, the execution of the

discovered Web service is done. The overview of the research is shown in Figure 1.

Once the Sensor Web service is discovered, the mobile user can query on the

information collected from the coastal buoys stored in the database using SOS. This type

of query is XML-based or keyword-based search. The integration of heterogeneous

coastal sensor data sets through ontology-based approaches and intelligent reasoning over

the acquired knowledgebase enables users to access content instead of just keyword

8

based searches. Thus, a Semantic Web framework has been developed using ontologies

for enhanced query and reasoning within the sensor domain. The existing standard sensor

languages are enhanced by adding semantic annotations using OWL. The user can make

a detailed query using SPARQL on the developed ontology from the mobile device.

Figure 1 Overview of research

Thesis Organization

This thesis has been organized as follows. Chapter 2 presents the literature review

and summarizes the work that has been done in the field of Semantic Web services,

registry architecture, matchmaking algorithm, and Android mobile platform. Chapter 3

gives the details of the OWL-S/UDDI registration and discovery architecture and

provides a detailed discussion of the matching algorithm and other main components of

the architecture. Chapter 4 shows the development tools used for this work. Chapter 5

presents the results for service discovery, Web and mobile based SOS querying, and

mobile based semantic querying. Chapter 6 concludes with some recommendations for

future work.

9

CHAPTER II

LITERATURE REVIEW

In the last few years, Semantic Web services discovery has been a very active

field of research. In order to facilitate automatic discovery, invocation, and composition

of Web services, the current trend is to add semantic information to the Web services

framework. The discovery process relies on the matching algorithm and thus, designing

different matching algorithms is important. Another research field gaining momentum is

the development of application using Android mobile platform. In this section, a review

of the work in these fields is presented.

Adding Semantics to UDDI

One approach that adds the semantic information to both WSDL and UDDI and

makes use of the semantic discovery algorithm for the discovery of services is suggested

in [16]. This approach uses the extensibility feature of WSDL and uses the UDDI data

structure to represent grouping of operations with their inputs and outputs. The WSDL

description of Web services has different functional operations. To add semantics to the

WSDL, these operations are mapped to concepts in appropriate DAML+OIL [17]

ontology. Thus, the users can search for services based on the concepts

10

defined in ontology. The semantic information to the UDDI is added by using the

TModels. A TModel describes services and supplies technical details for the

implementation. In this case, four different TModels are created and registered [16]; the

first one represents the ontology of concepts representing the functionality of operations,

like contact information; the second TModel represents the ontology of input concepts;

the third TModel represents the ontology of output concepts; the fourth TModel

represents the grouping of each operation with its inputs and outputs. The concepts

represented by these TModels along with the concepts in WSDL can be used by the

matching algorithm for discovering appropriate service.

A framework for adding semantics directly to existing Web services standards,

like WSDL and UDDI, is proposed in [18]. The DAML is used for adding semantic

information to the WSDL and UDDI descriptions of Web services and allows users to

publish these descriptions in the enhanced UDDI registry.

An approach in which only the UDDI is enhanced with semantic information is

described in [19] and [20]. The proposed architecture augments UDDI registry with

semantic information. A new layer is added to the UDDI architecture to perform the

semantic matching between the service components. Add-on modules are placed on the

registry side, which creates special interfaces for processing semantic publications and

queries that are separated from UDDI interface. The UDDI registry is enhanced with an

OWL-S matchmaker module which can process the OWL-S descriptions. The services

are described using the OWL-S, and the OWL-S service profile is used to perform the

discovery process. In order to combine the OWL-S and UDDI, a one-to-one mapping is

used if the information contained in the OWL-S profile has an equivalent in the UDDI

11

registry. The TModel based mapping is adopted for OWL-S elements that do not have a

corresponding element in the UDDI registry. This mapping mechanism is used by the

matching algorithm for Web service registration and discovery.

Another approach, similar to the solution presented in [21], but based on a

filtering mechanism on namespace, text, domain, input, and output, has been developed

in [7]. Here the important part of the work is the voice of the customer (VOC) analysis of

the requirements of the users of UDDI, which shows that interoperability with UDDI API

and system maintenance is the main concern of the users. This mechanism progressively

reduces the set of registered services being matched to improve the matching algorithm.

The filtering mechanism used is similar to that developed in [22], where the matching

process uses five different filters. Here the representation of the Web services relies on

the semantic extension of WSDL.

The work in [23] shows another approach related to the combination of UDDI and

the Semantic Web. The work presents a flexible mechanism to enhance the UDDI search

mechanism by proposing a new design and implementation which allows multiple

external matching services to be integrated with a UDDI registry. The direction of the

work is towards the development of a mechanism to facilitate integration and co-

ordination of multiple matching engines with UDDI.

Matchmaking

The discovery of Semantic Web services depends on the semantic match between

the descriptions of the service. This section presents a brief review of some of the efforts

related to matching algorithms.

12

The work in [16] presents a three-phase matching algorithm for the Semantic Web

service discovery based on service requirements constructed using ontological concepts.

Initially, the algorithm matches the Web services based on the functionality they provide,

and in the second phase, the result set formed in the first phase is ranked on the basis of

semantic similarity between the input and output concepts of the requested service and

that of the advertisement. The final phase involves the ranking based on the semantic

similarity between the precondition and effect concepts of the requested service and that

of the advertisement.

Another approach for the matching algorithm is presented in [19] and [20]. This

matching algorithm is an evolution of the algorithm presented in [24]. In this work, the

service capabilities are described using OWL-S upper ontology, and the semantic

matching is performed between the advertisements and the requests. The algorithm states

that an advertisement matches a request when the service provided by the advertiser

meets the requirements of the requester. Here, an advertisement matches a request when

all the outputs of the requests are matched by the outputs of the advertisement, and all the

inputs of the advertisement are matched by the inputs of the request. For the result of the

discovery process, four degrees of match are defined: exact, plug-in, subsume, and fail,

ordered from the best to worst result. The matching algorithm contains some

optimizations such as the indexation of the registered services to improve the discovery

process. The main advantage of this algorithm is its simplicity and ease of

implementation.

Another matching algorithm is proposed in [18] by extending the work presented

in [24]. The algorithm extends the subsumption (relate concepts in conceptual

13

taxonomies) based matching mechanism of [24] by adding information retrieval

techniques to find similarity between the concepts when it is not explicitly stated in the

ontologies, also adds a mechanism to match on the preconditions and effects of service

descriptions.

A syntactic and semantic based matching algorithm is presented in [22], which

allows the specification of concepts using a specific concept language. The matching

process uses five different filters: profile comparison, context, similarity, signature, and

constraint matching. The algorithm makes use of different combinations of filters

resulting in different degrees of partial matching. The algorithm works by comparing the

request with all advertisements in the database, determines the advertisements whose

capabilities match best with the request and then enables the processing of the pair of

requests and advertisements through several different filters. This filter mechanism

progressively reduces the set of registered services being matched, thus improving the

matching algorithm.

An algorithm for more grained ranking of results for the semantic matching is

proposed in [25]. It has the advantage of yielding more relevant results than those that

can be obtained performing only a subsume matching. The proposed algorithm performs

a matching of the service profile as a whole taking into account the service classes in

addition to the inputs and outputs of the service.

The discovery of Semantic Web services can be done using any of the above

mentioned architectures and matching algorithms, but the challenge is doing it from a

mobile device and hence a review of the work done in the field of mobile computing is

important.

14

Mobile Computing

In the current market, a lot of mobile application platforms are available. The

popular one among them is the Java Platform, Micro Edition (Java ME) [26]. It is a

specification of a subset of the Java platform aimed at providing a certified collection of

Java APIs for the development of software for small resources constrained devices. It

provides a robust, flexible environment for applications running on mobile and other

embedded devices like mobile phones, personal digital assistants (PDAs), and printers.

Java ME includes flexible user interfaces, robust security, built-in network protocols, and

support for networked and offline applications that can be downloaded dynamically. The

main disadvantages of Java ME are a slower application development and performance.

They do not have an access to most of the low-level features like call API, external

connectivity, and others. There is no way to replace or extend built-in phone apps like

contacts, calendars, and calls. With Java ME, the middleware is strictly layered shielding

the applications from events concerning the lower level of the stack.

The Google’s Android mobile platform [1] overcomes these limitations by

providing APIs to build richer applications. Android applications are supported by Dalvik

Virtual Machine (DVM), which has been written so that a device can run multiple VMs

efficiently. The DVM is a fast and efficient JVM work-alike that enables java-coded

applications to work on Android cell phones. The main feature of Android is the Android

SDK, which is a set of tools provided to facilitate development of Android applications

using Java. The most important of these tools are the Eclipse Development Tools plug-in

and the Android emulator. The plug-in automates the project creation process by creating

necessary project files and populates them with enough content to start a simple

15

application. The emulator is especially important for testing. A developer can interact

with the emulator with a mouse and keyboard as if it were an actual physical device.

Many applications are being developed using Android and the popular ones among them

are “Compare Everywhere” and “Biowallet”.

The Compare Everywhere makes the user to shop with a great degree of

flexibility. The application allows users to find local pricing on products by simply

scanning the items barcode with the mobile device, as shown in Figure 2 [27]. The

Biowallet is a biometric authentication system that performs the identification of a user

based on iris or handwritten signature, as shown in Figure 3 [28]. It stores the sensitive

information using strong biometric encryption techniques and allows the user to recover

them without remembering any password.

Figure 2 Screenshots of ‘Compare Everywhere’ application [27]

16

Figure 3 Screenshots of ‘Biowallet’ application [28]

Summary

From the brief literature review above, it can be concluded that the current Web

services standards especially the UDDI registry is not powerful enough to support

dynamic discovery of desired Web services. The solution to this is to add semantics to the

descriptions of the given Web services. That is to change the traditional Web services

into Semantic Web services. Thus, a new architecture is required for UDDI registry. For

the discovery of Semantic Web services, different matching algorithms are proposed.

In this research, an architecture is proposed that combines three different fields:

the UDDI, the Semantic Web, and the mobile platform. The architecture proposed in this

research is the same as the one presented in [19] but the difference is the addition of a

mobile device. An application framework is developed using the Android SDK which

implements the OWL-S/UDDI registry for registration and automatic discovery of

Semantic Web services. The matchmaking algorithm presented in [19] is the algorithm

adopted in this work for registering and discovering services in the coastal domain. To

17

illustrate this proposed architecture and the matching algorithm, an example in the field

of Coastal Sensor Web is implemented. The framework developed also executes the

discovered coastal domain services like the Sensor Web and Semantic Web.

18

CHAPTER III

METHEDOLOGY

Semantic Web

The current Web is a collection of human readable pages that are virtually

unintelligible to computer programs. In recent years, an effort that has the potential to

overcome this limitation is the Semantic Web. It offers a new approach to manage

information and processes by the creation and use of semantic metadata. The metadata

for information exists at two levels [29]. One way is providing the tools for the explicit

markup of the content of Web pages. Its objective is to provide languages to express the

content of Web pages and to make accessible to agents and computer programs the

information that those pages contain.

The Semantic Web is based on a set of languages such as RDF and OWL that can

be used to markup the content of Web pages. These languages have well-defined

semantics which enable to draw inferences over the statements of the language. The

second element of the Semantic Web is a set of ontologies, which provide a conceptual

model to interpret the information provided. It contains information on the relation

between the different terms.

19

The vision of the Semantic Web is the transformation of the Web into an Internet

wide knowledge representation system, in which Web pages provide information and

ontologies provide the conceptual framework needed to interpret that information [29].

However, while the Semantic Web provides meaning to the data represented on the Web,

it still relies on static Web pages, or ontologies, that always report the same information.

Web services provide a way to disseminate information dynamically and on demand.

Despite the broad coverage of the Web services infrastructure and the amount of

proposed interoperability standards, the emerging Web services infrastructure suffers

from its dependence on pure XML for interoperation. XML guarantees syntactic

interoperability, but it is not enough for semantic understanding of the message content.

Semantic interoperability is crucial for Web services. It allows Web services to explicitly

express and reason about business relations and rules, about message ordering, and about

preconditions that are required to use the service and effects of having invoked the

service. The Semantic Web has the potential to provide the Web services infrastructure

with the semantic information that it needs. It provides formal languages and ontologies

to reason about service descriptions, message content, business rules, and relations

between these ontologies. The Semantic Web transforms the Web into a repository of

computer readable data, and the Web services provide the tools for the automatic use of

that data.

OWL

The Semantic Web is based on the use of ontologies. An ontology is an explicit

and formal specification of a conceptualization of a domain of interest. Ontologies make

20

available a knowledge representation language and a dictionary of classes and relations

that Web services can use to describe content and reason about it. However, the lack of a

standardized ontology language has made it difficult to share and reuse ontological

information across interrelated systems. The Semantic Web provides such a standard –

the Web Ontology Language (OWL), which can be used to overcome the semantic

interoperability problem supporting a wide variety of intelligent Web-based applications.

OWL is built on top of the Resource Description Framework (RDF), which is itself built

upon the XML syntax. The RDF provides an ideal encoding standard to make available

ontologies to Semantic Web applications. It is a language for representing information

about resources in the World Wide Web in the form of subject-predicate-object

expressions. It is particularly intended for representing metadata about Web resources.

RDF and OWL provide the capability of creating classes, properties, and instances.

Classes (or concepts) define a group of individuals that are together because they share

some properties. Instances (or individuals) are specific objects and the type of the object

is defined by a class. Properties are used in instances to either specify data values or link

to other instances. OWL is used to explicitly represent the meaning of terms in

vocabularies and the relationships between those terms.

OWL-S

The integration of semantic metadata, ontologies, and the Web services

infrastructure results in a service named Semantic Web Service (SWS). SWS rely on the

Semantic Web to describe the content and order of the messages that they exchange. The

result of using the Semantic Web is an unambiguous description of the interface of the

21

Web service which is machine understandable and provides the basis for a seamless

interoperation among different services. The ontology for describing Web services

capabilities is OWL-S. It attempts to close the gap between the Semantic Web and the

Web services infrastructure. OWL-S is an OWL-based Web service ontology, which

provides developers to describe the properties and capabilities of their Web services in

such a way that the descriptions can be interpreted by a computer system in an automated

manner. OWL-S markup of Web services facilitates the automation of Web service tasks,

including automated Web service discovery, execution, composition, and interoperation.

The OWL-S ontology consists of three interrelated sub-ontologies, known as the

profile, process model, and grounding [11]. The service profile describes what the service

does, for purposes of advertising, constructing service requests, and matchmaking. It

describes the functional information such as inputs, outputs, and other non-functional

information (category, classification, etc). The process model describes how it works, to

enable invocation, enactment, composition, monitoring and recovery. It describes the

processes that it undertakes. Finally, the service grounding tells how to access the service.

It maps the constructs of the process model onto detailed specifications of message

formats and protocols expressed in WSDL. All these sub-ontologies are linked to the top-

level concept Service which serves as an organizational point of reference for declaring

Web services. As shown in Figure 4, the properties presents, describedBy, and supports

are properties of the service. The classes ServiceProfile (profile sub-ontology),

ServiceModel (process model sub-ontology), and ServiceGrounding (grounding sub-

ontology) are the respective ranges of those properties. Each instance of Service will

22

present a ServiceProfile, be describedBy a ServiceModel description, and support a

ServiceGrounding description.

Figure 4 OWL-S: Top level of service ontology [11]

Service Profile

The Service Profile module of OWL-S, as shown in Figure 5, provides means to

describe the services offered by the providers and the services needed by the requestors.

It provides a view of the Web service as a process which requires inputs and some

preconditions to be valid, and it results in outputs and some effects to become true.

OWL-S provides a schema by which Service Profiles can be sub-classed to describe a

specific class of capabilities. A service defined through the OWL-S profile contains the

information about the organization that provides the service, about the function the

service computes, and about the features that specify characteristics of the service. It

contains the contact information that refers to the entity that provides the service and

contains functional and non-functional descriptions. The functional description includes

the inputs required by the service and the outputs generated; the preconditions required

23

by the service and the expected effects that result from the execution of the service. The

non-functional description includes the category of a given service, quality rating of the

service, and an unbounded list of service parameters. The most important information

presented in the profile that plays a key role during the discovery of the service is the

specification of what functionality the service provides.

Figure 5 Service-Profile [11]

Service Model

 The service model describes what happens when the service is executed. The

description can be used by a requestor to check whether the service meets its needs; to

24

create service descriptions from multiple services; to coordinate the activities of the

different participants; and to monitor the execution of the service. The interaction of the

service can be understood by viewing the service as a process. The ServiceModel

provides the means to define processes. A process gives a specification of the ways a

client may interact with a service. The OWL-S process ontology is subdivided into three

process types: atomic, simple, and composite processes. An atomic process is a

description of a service that can be called by sending an invocation message to the

process and that can receive results in a response message. Atomic processes can be

directly invoked and executed in a single step. Simple processes are similar to atomic

processes having single-step executions but they cannot be invoked. Composite processes

are constructed from sub-processes which can be atomic, simple, or composite. Processes

in the workflow are related to each other by data flow and control flow. Control flow

allows the specification of the temporal relation between processes. Control constructs

are used to describe the control flow. The constructs such as sequence and if-then-else are

used to specify the structure of a composite process. Any process can have any number of

inputs representing the information required for starting a process. Processes can have

any number of outputs to be provided to the requestor. A process produces a data

transformation from a set of inputs to a set of outputs. It produces a transition in from one

state to another described by the preconditions and effects of the process.

Service Grounding

 The service grounding specifies the details of how the user can access a service. It

specifies a communication protocol, message formats, and other service-specific details

25

such as port numbers used in contacting the service. The grounding maps the OWL-S

atomic processes to WSDL operations. The mapping is done in such a way that an atomic

process with both inputs and outputs corresponds to a WSDL request-response operation;

an atomic process with inputs, but no outputs corresponds to a WSDL one-way operation;

an atomic process with outputs, but no inputs corresponds to a WSDL notification

operation; and a composite process with both outputs and inputs corresponds to WSDL's

solicit-response operation. The grounding maps the set of inputs and outputs of an atomic

process to WSDL message.

The service profile, process model, and grounding are created using various

development tools like Protege-OWL editor [30] and OWLS-IDE [31]. Protégé is a free,

open source ontology editor and knowledge-base framework. The Protégé-OWL editor

enables users to build ontologies for the Semantic Web. Protégé ontologies can be

exported into a variety of formats including RDF(S), OWL, and XML Schema. The

Protégé-OWL editor enables users to load and save OWL and RDF ontologies, to edit

and visualize classes and properties, to define logical class characteristics as OWL

expressions, to execute reasoners such as description logic classifiers, and to edit OWL

individuals for Semantic Web markup. OWL-S Integrated Development Environment

(OWL-S IDE) [31] is an eclipse-based development environment that provides the

complete development and execution environment for OWL-S. It supports the complete

lifecycle of Semantic Web services, development of OWL-S descriptions, advertisement

of OWL-S Web services, discovery of OWL-S Web services, and execution of OWL-S

Web services. The service profile forms the crucial component in web service discovery

process.

26

OWL-S/UDDI Architecture

The traditional Web service registry UDDI that allows a wide range of searches

by category information is limited keyword matches and thus produces a lot of results

which are of no interest. In order to produce more precise results, the search mechanism

should not only take the taxonomy information into account, but also the inputs and

outputs of the Web services. This capability of the search mechanism along with the

semantic base matching evolves into an effective search mechanism. OWL-S provides

both semantic matching and capability based searching, hence a perfect candidate for

using with UDDI registry. In order to combine OWL-S and UDDI, there is a need to

embed an OWL-S profile description in a UDDI data structure. There is a need to

augment the UDDI registry with an OWL-S matchmaking component for processing

OWL-S profile information. The architecture of the combined OWL-S/UDDI registry

proposed in this research is the same as the one presented in [19], but the difference is the

addition of a mobile device, as shown in Figure 6.

The matchmaking component relies on publish and inquiry ports of the registry

for its operation, i.e., the UDDI component on receiving an advertisement through the

publish port processes it like any other advertisement. If the advertisement contains

OWL-S Profile information, it forwards the advertisement to the matchmaking

component which classifies the advertisement based on the semantic information it

contains. The UDDI’s inquiry port can be used to access the searching functionality

provided by the registry; however, these searches neither consider the semantic

information present in the advertisement nor the capability description provided by the

27

OWL-S Profile information. A capability port is added to the UDDI registry to solve this

problem. Using the capability port, the user can search for services based on the

capability descriptions like inputs, outputs, pre-conditions, and effects (IOPEs) of a

service. The queries received through the capability port are processed by the

matchmaker component. The query response contains list of service keys of the

advertisements that match the client’s query. It also contains useful information like

matching level and mapping about each matched advertisement. The matching level

signifies the level of match between the client’s request and the matched advertisement.

The mapping contains information about the semantic mapping between the request’s and

advertisement’s inputs-outputs. The selection and invocation of an appropriate service

can be done considering this information.

Figure 6 Mobile OWL-S/UDDI architecture

28

In order to combine OWL-S and UDDI, the OWL-S/UDDI mapping mechanism

described in [20] is adopted, as shown in Figure 7. The mechanism uses a one-to-one

mapping if an OWL-S profile element has a corresponding UDDI element such as the

contact information in the OWL-S profile, as shown in Figure 8. For OWL-S profile

elements like OWL-S input, output, and service parameter which have no corresponding

UDDI elements, it uses a TModel based mapping which is based on the WSDL-to-UDDI

mapping proposed in [32], as shown in Figures 9 and 10.

Figure 7 Mapping between OWL-S and UDDI [19]

contactInformation
name
title
phone
fax
email
physicalAddress
webURL

serviceName

textDescription

hasProcess

serviceCategory

serviceParameter

qualityRating

input

output

precondition

effects

businessKey
name
description
categoryBag

hasProcess_TModel
serviceCategory _TModel
serviceParameter _TModel
qualityRating_TModel
input_TModel
output_TModel
precondition_TModel
effect_TModel

bindingTemplates

Business Entity

Name
Contact

person name
phone
email
address
discovery URLs

business Key

Business ServiceOWL-S Profile

29

Figure 8 Mapping OWLS-Profile contact information to UDDI

A TModel describes services and supplies technical details for the implementation

and is used for labeling taxonomies. TModels are used to represent technical

specifications such as service types, bindings, and wire protocols. TModels are used to

implement category systems that are used to categorize technical specifications and

services. When a particular specification is registered in the UDDI registry as a TModel,

it is assigned a unique key, called a tModelKey. This key is used by other UDDI entities

to reference the TModel. Additional metadata can be associated with a specification

TModel using any number of identifier and category systems. Identifiers are grouped in a

construct called an identifier Bag, and categories are grouped in a construct called a

category Bag. These bags contain a set of keyed Reference elements.

30

Figure 9 Mapping OWLS-Profile inputs to UDDI as TModels

Each keyed reference specifies the TModelKey of the category system TModel

and a name/value pair that specifies the metadata, as shown in Figure 9. The metadata

values specified in keyedReference elements can be used as selection criteria when

searching the registry.

The architecture also includes the mobile device. The mobile users can interact

with the matchmaker for registering and discovering a service. A mobile framework has

been developed using the Android SDK to perform such operations. The mobile user

gives the OWL-S service profile as input for both registration and discovery of Web

services. The mobile user can directly connect to the publish, inquiry, and capability ports

of the matchmaking component.

31

Figure 10 Mapping OWLS-Profile outputs to UDDI as TModels

Matching Algorithm

A primitive method of implementing the matching algorithm is to match the

inputs and outputs of the request against the inputs and outputs of all the advertisements

in the matchmaker. The matching algorithm used in the matchmaker is based on the

algorithm presented in [19]. The algorithm defines a more flexible matching mechanism

based on the OWL’s subsumption mechanism. The subsumption relation can be

understood as a relation of implication which relates more specific to more general

concepts in conceptual taxonomies. On receiving a request, the algorithm finds an

appropriate service by first matching the outputs of the request against the outputs of the

32

published advertisements. Then the inputs of the request are matched against the inputs of

the advertisements matched during the output phase.

In the matching algorithm, the degree of the match between two outputs or inputs

depends on the match between the concepts represented by the service. The matching

between the concepts is not syntactic, but it is based on the relation between these

concepts in their ontologies. For the ontology shown in Figure 11, if the request output is

water-temperature, then the matching algorithm recognizes a match based on the

advertisement propagation, as shown in Figure 12. The matching algorithm describes

four degrees of match between two concepts. If Reqout and Advout represent the concepts

of an output of a request and output of an advertisement, then the degree of match

between Reqout and Advout [19] is as follows:

• Exact: If Reqout and Advout are the same. That is, if Reqout and Advout both point to

the same concept say WaterTemperature of the ontology (Figure 11).

• Plug-in: If Advout subsumes Reqout, then Advout can be plugged instead of Reqout.

That is, if Advout points to SensorParameters and Reqout points to

WaterTemperature of the ontology (Figure 11).

• Subsume: If Reqout subsumes Advout, then the provider may or may not

completely satisfy the requester. That is, if Reqout points to SensorParameters and

Advout points to WaterTemperature or Windgust of the ontology (Figure 11).

• Fail: If there is no subsumption relation between Advout and Reqout.

The degree of matching is exact > plug-in > subsume > fail.

33

Figure 11 Ontology for sensor concepts

Figure 12 Advertisement propagation

A user gives an OWL-S profile as input to the matchmaker for both publishing

and querying. The matchmaker maps all the functions of the profile to the enhanced

UDDI registry and registers the service assigning a service key to it. The advertisements

may have different inputs and outputs, but they are present in one ontology file loaded in

the registry. The matchmaker performs the search and produces the most appropriate

service that match the user’s requirement.

34

For matchmaking, a reasoner is used during all activities providing the reasoning

support for interpreting the semantic descriptions and queries. The Pellet reasoner is used

in this work [33]. Pellet is an open-source Java based OWL DL reasoner. Pellet is

implemented using Java to maximize portability, and it also provides support for the DIG

[33] interface. Pellet provides support for the OWL syntax. It can be used in conjunction

with both Jena [34] and OWL API libraries. Pellet provides functionalities for checking

consistency of ontologies, classifying the taxonomy, and answering queries among other

features. Pellet is an OWL DL reasoner based on the tableaux algorithms developed for

expressive Description Logics. It represents and reasons about information using OWL. It

supports the full expressivity of OWL DL including reasoning about nominals

(enumerated classes).

Coastal Sensor Web Service

The above mentioned architecture and mathcing algorithm are used for registering

and discovering services like the Coastal Sensor Web services. A Sensor Web refers to

Web accessible sensor networks and archived sensor data that can be discovered and

accessed using standard protocols and APIs. A Sensor Web links a remote end user's

awareness with the observed environment. The Open Geospatial Consortium (OGC) has

developed a unique and revolutionary framework of open standards for using Web–

connected sensors and sensor systems of all types called Sensor Web Enablement (SWE).

It adds real-time sensor dimension to the Internet and the Web. It is focused towards the

development of standards to enable discovery, exchange, and processing of sensor

observation. The functionality of the SWE includes [12]:

35

• Discovery of sensor systems, observations, and observation process that meet an

application’s or user’s immediate needs;

• Determination of a sensor’s capabilities and quality of measurements;

• Access to sensor parameters that automatically allow software to process and geo-

locate observations; and

• Retrieval of real-time or time-series observations and coverages in standard

encodings

The goal of SWE is to enable all types of sensors accessible and controllable via

the Web. It facilitates the description of information collected from the coastal buoys

using an interoperable framework OGC SensorML, which provides standard models and

an XML encoding for describing any process, including the process of measurement by

sensors and instructions for deriving higher-level information from observations. It

enables the use of real or near real time data derived from sensors through Sensor

Observation Service (SOS). It facilitates dynamic selection and aggregation of multiple

sensor systems in a Web services based environment.

SensorML

SensorML is the standard markup language developed by the OGC providing a

common framework for describing the characteristics of the sensors. It provides a

standard schema for metadata that describes sensors and sensor system capabilities.

SensorML treats sensor systems and a system’s components (e.g. sensors, actuators,

platforms, filters, etc.) as processes, thus providing a process for deriving higher-level

information. In SensorML, all processes including the sensors and sensor systems have

36

input, output, parameters, and methods that can be utilized by applications for extracting

observations from any sensor system. It provides additional metadata that are useful for

enabling discovery, identifying system constraints, and providing contacts and references.

Sensor Observation Service

Sensor Observation service is a standard Web service interface for requesting,

filtering, and retrieving observations and sensor system information. It provides an API

for managing deployed sensors and retrieving sensor data, specifically observation data.

The SOS is the intermediary between a client and an observation repository or near real-

time sensor channel. The clients can also access SOS to obtain metadata information that

describes the associated sensors, platforms, procedures, and other metadata associated

with observations. The SOS handles three core operations which provide its basic

functionality:

• GetCapabilities: The GetCapabilities operation returns a service description

containing information about the service interface like sensor operations and

version. The description also contains information about the sensor data like the

list of sensors, the time period for which observations are available, the spatial

information of the sensors, etc.

• DescribeSensor: The DescribeSensor operation returns a description of one

specific sensor, sensor system or data producing procedure containing information

like position, inputs-outputs, etc. Metadata can be retrieved for any sensor that is

advertised in an observation offering using this operation. Each of the sensor

characteristics is described by the sensor deployer in the form of SensorML.

37

• GetObservation: The GetObservation operation provides access to sensor

observation data via a spatio-temporal query that can be filtered by phenomena

and value constraints. This operation provides a query mechanism that supports

sub-setting the observations returned from a call to GetObservation. The

operation allows the client to filter a large dataset to get only observations of

specific interest. The filters used are temporal, duration, comparison, and spatial.

The usage of SOS is depicted in the sequence diagram shown in Figure 13. It

shows a sensor data consumer discovering two SOS instances from a CS-W catalog by

using the GetRecords operation [15]. The consumer then performs service-level

discovery on each service instance by requesting the capabilities document and

inspecting the observation offerings. The consumer invokes the DescribeSensor operation

to retrieve detailed sensor metadata in SensorML for sensors advertised in the

observation offerings of the two services. Finally, the consumer calls the GetObservation

operation to actually retrieve the observations from both service instances.

The SOS maintains a spatial database which can perform queries based on

geographic latitude and longitude. The database acts as a repository of the data from

different sensors. The database contains near real time sensor data which is externally

updated regularly. The sensor data consumer queries the SOS database using

GetObservation service by sending XML request. The SOS handles this query by

accessing the database and produces a XML response.

38

Figure 13 SOS consumer sequence diagram “adapted from [15]”

The database used in this work is the PostgreSQL [35]. PostgreSQL is an object-

relational database system that has the features of traditional commercial database

systems with enhancements to be found in next-generation DBMS systems. It supports a

large part of the SQL standard and offers many modern features like complex queries,

foreign keys, views, transactional integrity, etc. Also, PostgreSQL can be extended by the

user in many ways, for example by adding new data types, functions, operators, index

methods, and procedural languages. PostgreSQL uses a client/server model for the

39

purpose of database. A PostgreSQL session consists of a server process and user’s client.

The server process manages the database files, accepts connections to the database from

client applications, and performs database actions on behalf of the clients. The database

server program is called postgres. The user's client (frontend) application performs

database operations. Client applications can be very diverse in nature: a client could be a

text-oriented tool, a graphical application, a Web server that accesses the database to

display Web pages, a mobile device, or a specialized database maintenance tool.

40

CHAPTER IV

DEVELOPMENT TOOLS

In this work, several software tools have been used for the application

development. This section gives an overview of these development tools used for the

implementation.

Android

A mobile framework for implementing the architecture of registering,

discovering, and executing is developed using the mobile platform Android. Android

includes a Software Development Kit in order to facilitate application design and

implementation. The Android SDK is a set of tools provided so that the developer can

write Android applications in the Java programming language. The most important tools

are the Eclipse Development Tools plug-in and the Android emulator. The plug-in

automates the project creation process by creating necessary project files and populates

them with enough content to start a simple application. The emulator is especially

important for testing. With Android, a developer can decompose the prospective

application into components supported by the platform. The major building blocks are

activity, intent receiver, service, and content provider. Activity is a user interface

component, which corresponds to one screen at a time. It means that the developer should

41

have one activity for displaying content and another activity for displaying more detailed

information about it. Intent Receiver wakes up a predefined action through the external

event. Service is a task, which is done in the background. It means that the user can start

an application from the activity window and keep the service work while browsing other

applications. Content Provider is a component, which allows sharing some of the data

with other processes and applications.

A developer should predefine and list all components which are to be used in the

specific AndroidManifest.xml file. It is a required file for all the applications and is

located in the root folder. It is possible to specify all global values for the package, all the

components and its classes used, intent filters, which describe where and when a certain

activity should start, describe permissions and instrumentation like security control and

testing.

In Android, every application runs in its own process, which gives better

performance in security, protected memory, and other benefits. Android is responsible to

run and shut down correctly these processes when it is needed. The flowchart showing

the lifecycle of an activity is shown in Figure 14. The process types in Android are: a

foreground process; a visible process; a service process, a background process; and an

empty process. A foreground process is one that is required for what the user is currently

doing. A visible process is one holding an activity that is visible to the user on-screen but

not in the foreground. A service process is one holding a service that has been started

with the startService() method. A background process is one holding an activity that is

not currently visible to the user. An empty process is one that does not hold any active

42

application components. The only reason to keep such a process around is as a cache to

improve startup time the next time a component of its application needs to run.

Figure 14 Flowchart showing the lifecycle of an activity [36]

Apache Tomcat

Apache Tomcat is a servlet container developed by the Apache Software

Foundation (ASF) [37]. Tomcat implements the Java Servlet and the JavaServer Pages

(JSP) technologies. It provides a pure Java HTTP Web server environment for Java code

43

to run. The Tomcat is used as the container for almost all the blocks of the architecture.

The major blocks that are deployed in the Tomcat are: OWL-S/UDDI matchmaker,

matchmaker client servlet, and Sensor Observation service servlet. The matchmaker

client and the SOS client is deployed in Tomcat as a Web archive (WAR) file. The

Tomcat is responsible for serving the request/response from the client. The mobile user

connects to the Tomcat through the Java HTTP Web server environment. The mobile

user connects to the matchmaker client for registering and discovering services. The

mobile user also connects to the SOS servlet to retrieve sensor data.

OWL-S/UDDI Matchmaker

The OWL-S/UDDI matchmaker [38] is implemented as an extension of the

jUDDI, which is an open source Java implementation of the UDDI specification for Web

Services. Before installing the matchmaker, a database for storing the matchmaker data

needs to be set up. The database system particularly stores the jUDDI data. The MySQL

database server is installed for this purpose. To install the matchmaker, the database must

be running. The matchmaker is then deployed in the application servlet container. In

order to test the matchmaker installed into the Tomcat container, the matchmaker client

must be used. Matchmaker client provides a convenient API that can be used from within

other applications to communicate with the matchmaker. OWLSMatchmakerClient class

of the client provides methods to interact with the OWL-S/UDDI Matchmaker. It

internally uses UDDI API's UDDIProxy class to interact with UDDI registry. OWL-S

Profiles can be registered using the OWLSMatchmakerClient's publish method. The

method takes an OWL-S Profile URL as input and give BusinessDetail as output, similar

44

to the UDDI publish method. The queries in OWLSMatchmakerClient API are

represented using capability search class. It is possible to query the OWLS/UDDI

matchmaker by either directly using the capability search object or by using an OWL-S

Profile URL. When queried using a URL, the client API maps OWL-S Profile to

capability search based on a mapping similar to the OWL-S/UDDI mapping. The

Matchmaker client servlet provides the Web interface for OWL-S/UDDI matchmaker

using the OWLS matchmaker client, as shown in Figure 15.

Figure 15 Matchamker client Web interfaces

45

The Web interface provides an intuitive interface for users to interact with the

OWL-S/UDDI matchmaker. The interface allows users to build OWL-S descriptions

which can be submitted as advertisement or query. The mapping between OWL-S to

UDDI is performed at the user’s browser. The resulting UDDI are then submitted to the

OWL-S/UDDI registry using the servlet equipped with the matchmaker client API. The

matchmaker client servlet is deployed in the Tomcat container. In this work, the user

interacts with this Web interface from the mobile device using the Java HTTP Web

service environment for performing operations like registering, publishing, accessing, and

removing a Web service.

Sensor Observation Service

The SOS servlet resides in the Tomcat container. The user can send a XML

request to the client which accesses the database and fetches the results in XML, as

shown in Figure 16. The user connects from the mobile device to the SOS client using the

Java HTTP Request/Response environment. The mobile user can query for

GetCapabilities, DescribeSensor and GetObservation. The mobile user can access and use

the sensor data obtained with the XML response for the GetObservation XML query.

SPARQL

The problem with query languages used in SOS is that they are limited to a single

value, format, and type of information. Thus, it is difficult to enable data sharing,

merging, and reusing globally. This can be overcome by adding semantic annotations to

existing standard SensorWeb languages providing semantic descriptions and enhanced

46

access to sensor data. This allows the sensor data to be understood and processed in a

meaningful way by a variety of applications with different purposes. The ontologies are

developed for sensor data, and the Jena API is used for processing. This includes

querying and inference over sensor data. Simple Protocol and RDF Query Language

(SPARQL) is a key standard for querying the Semantic Web data [40].

Figure 16 SOS Web client [39]

SPARQL can query on the RDF document similar to SQL querying on a database.

SPARQL facilitates users to query variant data sources with different data formats with

same queries. SPARQL is data-oriented; it only queries the information held in the

47

models. SPARQL does not do anything other than taking the description of what the

application wants in the form of a query and returns that information in the form of a set

of bindings or an RDF graph. For querying a SPARQL querying server needs to be

configured. JOSEKI [41] is a HTTP engine that supports the SPARQL Protocol and the

SPARQL RDF Query language. The user sends the SPARQL request from the mobile

device to the JOSEKI which queries on the OWL and returns the result in the form of an

XML document. The general SPARQL processor is shown in Figure 17.

Figure 17 General purpose SPARQL processor [42]

The SPARQL query contains a set of triple patterns similar to RDF triples except

that each of the subject, predicate, and object may be variable. The mobile user interacts

48

with the JOSEKI server for request and response using the HTTP GET/POST operations.

Several usecases for SPARQL querying have been developed for different situations.

49

CHAPTER V

RESULTS

An application framework is developed using an Android mobile platform to

interact with the Web services using the OWL-S/UDDI matchmaker. The framework is

used as a client for registering, discovering, and executing services like Sensor Web

Service, Geospatial Information Service, etc., from mobile. The framework is

implemented with Coastal Sensor Web service as the major application. Another

framework for the Semantic Web is developed for enhanced query and reasoning within

the sensor domain from the mobile device. The mobile client interactions and operations

are tested using the Android Emulator shown in Figure 18 (a). A middleware application

called Coastal Sensors Semantic Metadata Standard (COSEMWARE) is developed using

Google Web Toolkit for combining the Sensor Web and the Semantic Web.

OWL-S Matchmaker

The framework for OWL-S matchmaker is developed using Android, as shown in

Figure 18 (b). The mobile user can perform two main operations with the matchmaker:

register a service and query for a service. For all the above operations, the user must give

an OWL-S profile of the service developed using OWL-S IDE or Protégé.

50

(a) (b)

Figure 18 Android emulator and the matchmaker client

The OWL-S profile is created and stored in the database or deployed in tomcat.

For registering a service, the user has to follow the following steps:

1. In the OWL-S matchmaker client the user has to select the register tab and then

give an OWL-S profile (SOS-Profile.owl) as input, as shown in Figure 19 (a).

2. Once the user submits a request to register a service, the framework interacts with

the matchmaker servlet and returns a response containing the details of the

51

service, as shown in Figure 19 (b). The Web interface results are shown in Figure

20.

(a) (b)

Figure 19 Matchmaker client for registering a Sensor Observation Service

The same process is used for creating and registering SOS services for different

organizations such as NDBC, OPENIOOS, and MapServer. The services like Sensor

Alert Service and Web Map Service are also created and registered.

For discovering a service the mobile user has to follow the following steps:

52

1. In the OWL-S matchmaker client, the user has to select the query tab and then

give an OWL-S profile as input, as shown in Figure 21 (a).

2. If the user submits a request to query, as shown in Figure 21 (a), then a list of

concepts which define the inputs and outputs of the Web service pops up. The

user has to select the concepts to be considered for matchmaking, as shown in

Figure 21 (b).

Figure 20 Web based registration results of SOS service

53

3. Once the user selects the concepts, the matchmaker returns the appropriate

services satisfying the user’s requirements with a certain degree of match, as

shown in Figure 23 (a). The Web interface results are shown in Figure 22.

4. Now based on the degree of match, the user can select a service for execution, as

shown in Figure 23 (b).

 (a) (b)

Figure 21 Matchmaker client for discovering services based on output-input concepts

54

Figure 22 Web based matchmaker results

(a) (b)

Figure 23 Results of discovered services and selection of a service

55

Coastal Sensor Web

The framework for interacting with the SOS client deployed in Tomcat is

developed using Android. This is executed on the selection of the SOS-Service

discovered by the matchmaker. The mobile user can directly interact with the SOS client

for getting the information about all the sensors, the senor system, and the sensor. The

framework allows users to query the database for GetCapabilities, DescribeSensor, and

GetObservation. The user interface of the Sensor Web client is shown in Figure 24.

Figure 24 Sensor Web querying client

56

The interface contains variables like offering, stations, temporal, duration,

comparison, date, and time, as shown in Figure 24. The Offering box is for the users to

select parameters like wind speed, water temperature, atmospheric pressure, wind gust,

and so on, as shown in Figure 25. The Stations box is for the users to select the station Id.

The sensors data can be retrieved by using GetObservation query. This operation allows

the client to filter a large dataset to get only observations of specific interest. The filters

used are temporal, duration, and comparison for the mobile client. These filters are

implemented in the following sections.

(a) Offering (b) Station List

Figure 25 Operators/variables in Sensor Web client

57

 (c) Temporal operator (d) Duration operator

(e) Comparison operator (f) Date and time operator

Figure 25 (continued)

58

Temporal Query

This query allows the user to query on the sensor data with respect to a time

instant such as after a time instant, before a time instant, during a time instant, and at a

time instant. For implementing such query, the user has to follow the steps shown in

Figure 26 (a). Figure 26 shows the flow of operations for the temporal query. The user

has to select the variables offering and stations indicated as 1 and 2 respectively.

(a) (b)

Figure 26 Temporal query and its XML results: Flow of operation

59

Then, the user has to choose a temporal operator (after) indicated as 3. The next

step is to specify a date and time by using GetDate and GetTime operators indicated as 4.

Finally, the user can form a query by using the ‘Obs query’ button and submit it to the

SOS servlet indicated as 5 and 6. Once the user submits the query, the XML response is

obtained, as shown in Figure 26 (b) indicated as 7. The XML results are parsed to text, as

shown in Figure 27 (a). The results are marked on the map, as shown in Figure 27 (b).

(a) (b)

Figure 27 Temporal query results: text and map

60

Duration Query

The duration query also allows the user to query using a time instant, but it gives

the historic sensor data like data for past five days, past one month from a specific time.

For implementing such query, the user has to follow the steps shown in Figure 28 (a).

Figure 28 shows the flow of operations for the duration query.

(a) (b)

Figure 28 Duration query and its XML results: Flow of operation

The user has to select the variables offering and stations indicated as 1 and 2,

respectively. Then, the user has to choose a duration operator (past 5 days) indicated as 3.

61

The next step is to specify a date and time by using GetDate and GetTime operators

indicated as 4. Finally, the user can form a query by using the ‘Obs query’ button and

submit it to the SOS servlet indicated as 5 and 6. Once the user submits the query, the

XML response is obtained, as shown in Figure 28 (b) indicated as 7. The text results and

map results are shown in Figure 29 (a) and (b).

(a) (b)

Figure 29 Duration query results: text and map

62

Comparison Query

The comparison query allows the user to query on the sensor data with respect to

a value like equal to, greater than, less than a certain value. To do this query, the user has

to follow the steps shown in Figure 30 (a). Figure 30 shows the flow of operations for the

comparison query.

(a) (b)

Figure 30 Comparison query and its XML results: Flow of operation

63

The user has to select the variables offering and stations indicated as 1 and 2

respectively. Then, the user has to choose a comparison operator (EqualTo) indicated as

3. The user has to specify a value and units of the offering selected indicated as 4 and 5

respectively. Finally, the user can form a query by using the ‘Obs query’ button and

submit it to the SOS servlet indicated as 6 and 7. As the user submits the query, the XML

response is obtained, as shown in Figure 30 (b) indicated as 7. The text results and map

results are shown in Figure 31 (a) and (b).

(a) (b)

Figure 31 Comparison query results: text and map

64

Once the results are marked on the Google map, the user can click on the marker

to get more information about station represented by the marker, as shown in Figure 32.

Figure 32 (a) gives the SensorML of the marked station describing the functionalities.

Figure 32 (b) gives the results associated with the station marked on the map.

(a) (b)

Figure 32 Information about marker on map: SensorML and results of station

65

Describe Sensor

The DescribeSensor operation returns a description of a specific sensor containing

information like position, inputs-outputs, etc. Figure 33 shows the flow of operations for

this query. For this query the parameter required is the station id, so the user has to select

a particular station form the stations operator indicated as 1. The user needs to click on

the Des-sen button to form the query and submit it indicated as 2 and 3. Once the user

submits the query, a SensorML response is obtained, as shown in Figure 33 (b).

(a) (b)

Figure 33 DescribeSensor query and its result as SensorML: Flow of operation

66

The text and map results of the query are shown in Figure 34.

(a) (b)

Figure 34 DescribeSensor query results: text and map

GetCapabilities

The GetCapabilities operation returns a service description containing information

about all the sensors describing the inputs, outputs, offerings, and functionalities of a

sensor. To implement this query, the user has to form a query by selecting the Get-Cap

67

button shown in Figure 35 (a) and submit it. The XML response is obtained upon

submitting the query, as shown in Figure 35 (b).

(a) (b)

Figure 35 GetCapabilities query and its XML result: Flow of operation

The XML results are parsed and the text and map results are shown in Figure 36

(a) and (b). Figure 36 (b) shows all the stations having the sensor data. The user can click

on the marker to get the SensorML document as explained previously.

68

(a) (b)

Figure 36 GetCapabilities query results: text and map

Semantic Web

A framework for the Semantic Web is developed, which is used for performing

enhanced query and reasoning using SPARQL within the sensor domain from the mobile

device. For this, few usecases are developed and implemented. The Semantic Web client

and the canned queries are shown in Figure 37. The query selected in Figure 37 (b) is

“Discover current data (instances) from common sensor types”, which means accessing

69

real time sensor data of a station based on parameters like atmospheric pressure. The

SPARQL query for this is shown in the Appendix.

(a) (b)

Figure 37 Semantic Web client with the canned queries

The flow of operations for implementing a SPARQL query is shown in Figure 38.

To perform a SPARQL query, the user has to follow the steps shown in Figure 38. The

user has to select a query from the list of canned queries, indicated as 1. Then, the user

70

has to form the selected query by clicking on the Get Query button and submit it,

indicated as 2 and 3, respectively.

(a) (b)

Figure 38 Semantic Web SPARQL query and its XML results: Flow of operation

As the user submits the query, the XML response is obtained, indicated as 4. The

response contains all information like id, latitude, longitude of the station, and queried

parameter value, date, and time for the station. The text and map results are shown in

Figure 39.

71

(a) (b)

Figure 39 Semantic Web SPARQL query results: text and map

The user can click on the markers mapped on the Google map to get more

information, as shown in Figure 40. As the users selects a particular station marked on

the map, the SensorML description is obtained, as shown in Figure 40 (a). Figure 40 (b)

shows the results that are available for the selected station.

72

(a) (b)

Figure 40 Information about marker: SensorML and results of station (Semantic Web)

Web Map Service

The Web Map service is also registered and discovered using the OWL-S

matchmaker. It provides a simple HTTP interface for requesting geo-registered map

images from one or more distributed geospatial databases. A WMS request defines the

geographic layers and area of interest to be processed. The response to the request is a

map image that can be displayed in a browser application. A framework for the WMS

client is developed, as shown in Figure 41 (a). It allows the user to select any layer or

73

layers for placing a map layer on the Google maps. The layers are obtained from the

SEACOOS RS WMS. Figure 41 (b) shows the results of the combination of modis_sst

and oi_sst layers.

(a) (b)

Figure 41 WMS client and its results

Web Based SOS Client

The Web based SOS client prototype is developed in the Google Web Toolkit

(GWT). The interaction of the user with the Web client is the same as the interaction with

74

the mobile client. The user can query for sensor data using GetObservation query in the

Web client with four types of operations: temporal, duration, comparison, and spatial.

The flow of operations for the temporal query is shown in Figure 42. The user has

to select the offerings, indicated as 1. Then, the user needs to select the sensor ID from

the list of sensors, indicated as 2. Then, the user can select a temporal constraint such as

after a time instant, before a time instant, etc., indicated as 3. The last step before creating

a query is selecting the time instant, indicated as 4.

Figure 42 Temporal query

The flow of operations for the duration query is shown in Figure 43. The user has

to select the offerings, indicated as 1. Then, the user needs to select the sensor ID from

the list of sensors, indicated as 2. The next step is the selection of a duration constraint

such as 5 days, 1 month historic data before a time instant, etc., indicated as 3. The last

step before creating a query is selecting the time instant, indicated as 4.

75

Figure 43 Duration query

Figure 44 Comparison query

The flow of operations for the comparison query is shown in Figure 44. The user

has to select the offerings, indicated as 1. Then, the user needs to select the sensor ID

76

from the list of sensors, indicated as 2. The next step is the selection of a comparison

operator with respect to observation value such as equal to, greater than, less than a

certain value, indicated as 3. The user has to input a value and the units of the offering

selected to be used for comparison, indicated as 4, before creating a query.

The flow of operations for the spatial query is shown in Figure 45. The user has to

select the offerings, indicated as 1. Then, the user needs to select the sensor ID from the

list of sensors, indicated as 2. The next step is the selection of a spatial operator with such

as BBOX, Intersects, etc., indicated as 3.

Figure 45 Spatial query

The BBOX operation involves creating a bounding box on the Google map and

retrieving the latitude and longitude of the corners of the box, indicated as 4. To create

this query, the user has to draw a bounding box and click on the Loc button to get the

coordinates.

77

The GetObservation query is then created by clicking the search button, as shown

in Figure 46. This action also submits the query to the SOS servlet, which in turn queries

the database and gives the response as XML, as shown in Figure 47 (a). The XML results

can be parsed in to a table, as shown in Figure 47 (b).

Figure 46 GetObservation query

The XML results tab shown in Figure 47 contains a ‘Map it’ button which can be

used to mark all the resulting station on a Google map, as shown in Figure 48. Figure 48

also shows a marker information tab which contains the SensorML describing the sensor

and the observation results of the marked station. The results for a particular station, year,

month, and date can be plotted using the Google Charts API, as shown in Figure 49.

78

(a) (b)

Figure 47 XML and tabular results for GetObservation query

(a) (b)

Figure 48 Results for GetObservation query marked on map

79

Figure 49 Visualization of results

80

CHAPTER VI

CONCLUSION AND FUTURE WORK

As a large number of companies exposes their services as Web services, it is

crucial for the service consumers to discover and select the desired services efficiently

and automatically. The automatic discovery of service is difficult with the current Web

standards like the UDDI registry, which uses a keyword based search mechanism. For

this, the solution adapted is the enhancement of the UDDI registry by combining it with

the OWL-S to perform semantic search of Web services. The resulting search mechanism

is capability based and uses semantic matching. Another relevant challenge is enabling

flexible mobile access to distributed Web resources. Thus, an architecture is developed

for combining the two fields. A generic matching algorithm is implemented that allows

the discovery of the registered entities to be made. The algorithm makes a comparison

between all the concepts that appear in the user’s request, allowing a greater flexibility in

the searches. An application framework is developed using Android to implement the

above proposed architecture for interacting with the Web services using the OWL-

S/UDDI matchmaker. The framework is used as a client for registering, discovering, and

executing services like Sensor Web Service, Geospatial Information Service, etc., from

81

mobile. The framework implements the above proposed architecture using Coastal

Sensor Web as the application area to illustrate the registration, discovery, and execution

of desired Web services. The interest in SensorWeb services is due to the significance of

disaster management and environmental monitoring. This service has been successfully

registered and discovered using the matchmaker from the mobile device. A framework

for the Semantic Web is also developed for enhanced and for intelligent reasoning over

the knowledge from the mobile device.

Future Works

 Currently, the matching algorithm used by the OWL-S matchmaker considers

only the inputs and outputs of the service description. In the future, a more sophisticated

matching algorithm can be designed by taking into consideration the preconditions and

effects. The matching algorithm can be improved further by considering other parts of the

OWL-S ontology like the ServiceModel sub-ontology, which contains useful information

for service composition tasks. The matching can be made on the service parameters and

service categories. The Sensor Web service is discovered but only the Sensor

Observation Service model is implemented. In the future, other service models like

Sensor Alert service and Web Notification service can be implemented.

82

REFERENCES

[1]. Chris Baker and Danny Noler, “Using Android in Education for Mobile Device
Development”, NSF-REU 2008.

[2]. F. Curbera, W. Nagy, S. Weerawarana, “Web services: Why and how”, Workshop
on Object-Oriented Web Services – OOPSLA 2001, Tampa, FL, 2001.

[3]. W3C: Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/2000/REC-xml-20001006, 2000.

[4]. W3C, “SOAP Version 1.2, W3C Working Draft December2000”,
http://www.w3.org/TR/2001/WD-soap12-part0-20011217/, 2001.

[5]. E. Christensen et al, “WSDL1.1”, 2001, http://www.w3.org/TR/2001/NOTE-
wsdl-20010315.

[6]. UDDI: The UDDI Technical White Paper, http://www.uddi.org, 2000.

[7]. Berners-Lee T, Hendler J and Lassila O, “The Semantic Web”, Scientific
American, vol 284, no.5, 2001.

[8]. Resource Description Framework, “RDF Primer”, http://www.w3.org/TR/REC-
rdf-syntax/

[9]. OWL Web Ontology Language, http://www.w3.org/TR/owl-guide/

[10]. Sheila A. McIlraith and David L. Martin. “Bringing semantics to web services”,
IEEE Intelligent Systems, 18:90–93, January/February 2003.

[11]. W3C Member Submission 22 November 2004, OWL-S: Semantic Markup for
Web Services, http://www.w3.org/Submission/OWL-S/

[12]. M. Botts, G. Percivall, C. Reed, and J. Davidson, "OGC Sensor Web Enablement:
Overview and high level architecture." OGC, Tech. Rep., December 2007.

83

[13]. Surya S. Durbha, Roger L. King, Nicolas H. Younan, Santosh K. Akamanchi, and
Shruthi Bheemireddy, “Information Semantic Tools for Knowledge Discovery in
Integrated Ocean Observing System”, IGARSS Symposium, July 2008.

[14]. OGC® SensorML, http://www.opengeospatial.org/standards/sensorml/

[15]. Sensor Observation Service, http://www.ogcnetwork.net/SOS_Intro

[16]. K. Sivashanmugam, K. Verma, A. Sheth and J. Miller, “Adding Semantics to
Web Services Standards”, International Conference on Web Services (ICWS’03),
pp. 395-401, 2003.

[17]. Ankolenkar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McDermott,
D., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne T.R., and Sycara, K. The
DAML Services Coalition, "DAML-S: Web Service Description for the Semantic
Web", The First International Semantic Web Conference (ISWC),Sardinia (Italy),
June, 2002.

[18]. Verma, K., Sivashanmugam K., Sheth A., Patil A., “METEOR-S WSDL: A
scalable P2P infrastructure of registries for semantic publication and discovery of
Web services”, Journal of Information Technology and Management, in print.

[19]. Srinivasan, N, Paolucci, M and Sycara, K, “Adding OWL-S to UDDI,
implementation and throughput”, First Intl Workshop on SWS, Web Process
Composition, 2004.

[20]. M. Paolucci, T. Kaeamura, T. Payne, and K. Sycara, “Importing the Semantic
Web in UDDI”, In Proceedings of the Workshop of WS, E-Business, and SW,
2002.

[21]. T. Kawamura, J.D. Blasio, T. Hasegawa, M. Paolocci, K. Sycara, “Public
Deployment of Semantic Matchmaker with UDDI Registry”, Proceedings of 3rd
Intl SW Conference(ISWC 2004), 2004.

[22]. Sycara, K, Widoff, S, Klusch, M and Lu, J, "LARKS: Dynamic Matchmaking
among Heterogeneous Software Agents in Cyberspace," In Autonomous Agents
and Multi-Agent Systems, 5, 173–203, 2002.

[23]. Colgrave, J, Akkiraju, R and Goodwin, R, “External Matching in UDDI”, In
Proceedings of the International Conference on Web Services ICWS 2004.

[24]. Paolucci, M, Kawamura, T, Payne, T. R, and Sycara, K, “Semantic Matching of
Web Services Capabilities”, In Proceedings of the 1st International Semantic Web
Conference (ISWC2002).

84

[25]. Yonglei Yao, Sen Su, Fangchun Yang. “Service Matching Based on Semantic
Descriptions”, Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT-
ICIW'06), February 2006, pp. 126.758 Authorized licensed

[26]. Introduction to the Java ME Platform,
http://java.sun.com/javame/technology/index.jsp

[27]. Android Application, “Compare Everywhere”,
http://www.talkandroid.com/applications/compare-everywhere/

[28]. Android Application, “Biowallet”, http://www.biowallet.net/

[29]. John Davies, Rudi Studer, and Paul Warren, “Semantic Web Technologies:
Trends and Research in Ontology-based Systems”.

[30]. Protégé-OWL, http://protege.stanford.edu/

[31]. Srinivasan, N, Paolucci, M and Sycara, K, “CODE: A Development Environment
for OWL-S Web services”, Demo paper in 3rd International Semantic Web
Conference, 2004.

[32]. Colgrave et al : Using WSDL in a UDDI Registry, Version 2.0., UDDI TC Note,
2003.

[33]. Pellet OWL-DL Reasoner, http://clarkparsia.com/pellet.

[34]. Jena, http://jena.sourceforge.net/

[35]. PostgreSQL, http://www.postgresql.org/

[36]. Android Activity,
http://developer.android.com/reference/android/app/Activity.html

[37]. Apache Tomcat, http://tomcat.apache.org

[38]. OWL-S/UDDI Matchmaker Web Interface,
http://www.daml.ri.cmu.edu/matchmaker/

[39]. Sensor Observation Service,
https://52north.org/twiki/bin/view/Sensornet/SensorObservationService

[40]. SPARQL Query, http://www.w3.org/TR/rdf-sparql-query

[41]. Joseki, http://www.joseki.org

[42]. General purpose SPARQL processor , http://www.sparql.org/query.html

85

APPENDIX A

OWL-S PROFILE

85

APPENDIX A

SOS-PROFILE

<?xml version="1.0"?>
<rdf:RDF
 xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"
 xmlns:actor="http://www.daml.org/services/owl-s/1.1/ActorDefault.owl#"
 xmlns:vcard="http://www.w3.org/2001/vcard-rdf/3.0#"
 xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"
 xmlns:rss="http://purl.org/rss/1.0/"
 xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
 xmlns="http://localhost:8080/owlfiles/SOS-Profile.owl#"
 xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
 xmlns:expr="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:swrlx="http://www.daml.org/services/owl-s/1.1/generic/swrlx.owl#"
 xmlns:shadow_list="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"
 xmlns:param="http://www.daml.org/services/owl-
s/1.1/ProfileAdditionalParameters.owl#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:jms="http://jena.hpl.hp.com/2003/08/jms#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:swrl="http://www.w3.org/2003/11/swrl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://localhost:8080/owlfiles/SOS-Profile.owl">

 <owl:Ontology rdf:about="">
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/ProfileAdditionalParameters.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-
s/1.1/ActorDefault.owl"/>
 <owl:imports rdf:resource="http://localhost:8080/owlfiles/SensorConcepts.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl"/>
 <owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Profile.owl"/>
 </owl:Ontology>

86

<profile:Profile rdf:ID="SOS-Profile">
 <profile:serviceName>SOS-Service</profile:serviceName>
 <profile:textDescription> Sensor Observation Service</profile:textDescription>
 <profile:contactInformation>
 <actor:Actor rdf:ID="SOS">
 <actor:name>Santhosh</actor:name>
 <actor:title>Sensor Observation Service</actor:title>
<actor:phone>6628890142</actor:phone>
 <actor:fax>SOS-Fax </actor:fax>
<actor:email>santosh@gri.msstate.edu</actor:email>
 <actor:physicalAddress>Starkville</actor:physicalAddress>
 <actor:webURL>SOS url</actor:webURL>
 </actor:Actor>
 </profile:contactInformation>
<!-- Descriptions of the parameters that will be used by IOPEs -->

<profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorId">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorID</process:parameterType>

</process:Input>
 </profile:hasInput>

 <profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorNetworkList_In">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorList</process:parameterType>

</process:Input>
 </profile:hasInput>

 <profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorDataFormat_In">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorFormat</process:parameterType>

</process:Input>
 </profile:hasInput>

 <profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#Parameters">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorParameters</process:parameterType>

 </process:Input>

87

 </profile:hasInput>

 <profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorType">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorType</process:parameterType>

</process:Input>
 </profile:hasInput>

 <profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#DateTime">

<process:parameterType>http://www.w3.org/2001/XMLSchema#string</
process:parameterType>
</process:Input>

</profile:hasInput>

 <profile:hasInput>

<process:Input rdf:ID="http://localhost:8080/owlfiles/SOS-Profile.owl#LatLon">
<process:parameterType>http://www.w3.org/2001/XMLSchema#string</

process:parameterType>
</process:Input>

 </profile:hasInput>

 <profile:hasOutput>

<process:UnConditionalOutput rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorNetworkList_Out">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorList</process:parameterType>

</process:UnConditionalOutput>
 </profile:hasOutput>

 <profile:hasOutput>

<process:UnConditionalOutput rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorSpecification">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorID</process:parameterType>

</process:UnConditionalOutput>
 </profile:hasOutput>

 <profile:hasOutput>

<process:UnConditionalOutput rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#SensorDataFormat_Out">

<process:parameterType>http://localhost:8080/owlfiles/SensorConcepts.o
wl#SensorFormat</process:parameterType>

88

</process:UnConditionalOutput>
 </profile:hasOutput>

 <profile:hasOutput>

<process:UnConditionalOutput rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#NearbySensorObs">

<process:parameterType>http://www.w3.org/2001/XMLSchema#string</
process:parameterType>
</process:UnConditionalOutput>

 </profile:hasOutput>

 <profile:hasOutput>

<process:UnConditionalOutput rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#DataAccess">

<process:parameterType>http://www.w3.org/2001/XMLSchema#string</
process:parameterType>
</process:UnConditionalOutput>

 </profile:hasOutput>

 <profile:hasOutput>

<process:UnConditionalOutput rdf:ID="http://localhost:8080/owlfiles/SOS-
Profile.owl#ReservationId">

<process:parameterType>http://www.w3.org/2001/XMLSchema#string</
process:parameterType>
</process:UnConditionalOutput>

 </profile:hasOutput>

</profile:Profile>
</rdf:RDF>

89

APPENDIX B

QUERIES

89

APPENDIX B

QUERIES

GetObservation Query
Temporal
<?xml version="1.0" encoding="UTF-8"?>
<GetObservation xmlns="http://www.opengeospatial.net/sos"
xmlns:gml="http://www.opengis.net/gml"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/sos http://mars.uni-
 muenster.de/swerep/trunk/sos/0.0.31/sosGetObservation.xsd"
 service="SOS" version="0.0.31">
 <offering>GST</offering>
 <eventTime>
 <ogc:After>

<gml:TimeInstant>
 <gml:timePosition>2007-08-25T00:00:00</gml:timePosition>
</gml:TimeInstant>

 </ogc:After>
 </eventTime>
 <procedure>urn:ogc:def:procedure:DACT-42007</procedure>
<!-- observedProperty accords to PhenomenonID in our data model -->
 <observedProperty>urn:ogc:def:phenomenon:windGust</observedProperty>
 <resultFormat>text/xml;subtype="OM"</resultFormat>
</GetObservation>

Duration
<?xml version="1.0" encoding="UTF-8"?>
<GetObservation xmlns="http://www.opengeospatial.net/sos"
xmlns:gml="http://www.opengis.net/gml"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/sos http://mars.uni-
 muenster.de/swerep/trunk/sos/0.0.31/sosGetObservation.xsd"
 service="SOS" version="0.0.31">

90

 <offering>WDIR</offering>
 <eventTime>
 <ogc:During>

<gml:TimePeriod>
 <gml:beginPosition indeterminatePosition="unknown"></gml:beginPosition>

 <gml:endPosition>2008-05-01T00:00:00</gml:endPosition>
 <gml:duration>P1D</gml:duration>

</gml:TimePeriod>
 </ogc:During>
 </eventTime>
 <procedure>urn:ogc:def:procedure:null-null</procedure>
<!-- observedProperty accords to PhenomenonID in our data model -->
 <observedProperty>urn:ogc:def:phenomenon:windDirection</observedProperty>

<resultFormat>text/xml;subtype="OM"</resultFormat>
</GetObservation>

Comparison
<?xml version="1.0" encoding="UTF-8"?>
<GetObservation xmlns="http://www.opengeospatial.net/sos"
xmlns:gml="http://www.opengis.net/gml"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/sos http://mars.uni-
 muenster.de/swerep/trunk/sos/0.0.31/sosGetObservation.xsd"
 service="SOS" version="0.0.31">
 <offering>GST</offering>
 <observedProperty>urn:ogc:def:phenomenon:windGust</observedProperty>
 <Result>
 <ogc:PropertyIsEqualTo><ogc:Literal>

<ogc:Measure uom="knots">2</ogc:Measure></ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </Result><resultFormat>text/xml;subtype="OM"</resultFormat>
</GetObservation>

GetCapanlities Query
<GetCapabilities xmlns="http://www.opengeospatial.net/sos"
xmlns:ows="http://www.opengeospatial.net/ows"
 xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/sos
 http://mars.uni-muenster.de/swerep/trunk/sos/0.0.31/sosGetCapabilities.xsd"
service="SOS" updateSequence="">
 <ows:AcceptVersions>

91

<ows:Version>0.0.31</ows:Version>
 <ows:Version>1.0.0</ows:Version>
 </ows:AcceptVersions>
 <ows:Sections>
 <ows:Section>OperationsMetadata</ows:Section>
 <ows:Section>ServiceIdentification</ows:Section>
 <ows:Section>Contents</ows:Section>
 </ows:Sections>

<ows:AcceptFormats><ows:OutputFormat>text/xml</ows:OutputFormat></ows:Accept
Formats>
</GetCapabilities>

DescribeSensor Query
<DescribeSensor version="0.0.31" service="SOS"
xmlns="http://www.opengeospatial.net/sos"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengeospatial.net/sos http://mars.uni-
 muenster.de/swerep/trunk/sos/0.0.31/sosDescribeSensor.xsd"
 outputFormat="text/xml;subtype="sensorML/1.0.0"">
 <SensorId>urn:ogc:def:procedure:DACT-42007</SensorId>
</DescribeSensor>

SPARQL Query
PREFIX : <http://cosem.erc.msstate.edu/ontologies/cosem.owl#>
SELECT ?hasStationID ?latitude ?longitude ?date ?time ?atmospress ?location
FROM <http://cosem/cosem/Cosemont.owl>
WHERE{
?x :hasstationid ?hasStationID .
?x :latitude ?latitude;
:longitude ?longitude;
:date ?date;:time ?time;
:buoylocation ?location.
?x :atmospheric_pressure ?atmospress.}

	Mobile computing and sensor Web services for coastal buoys
	Recommended Citation

	Microsoft Word - Thesis-Mobile Computing and Sensor Web Services for Coastal Buoys

