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Abstract - English

The increased linking of objects in the Internet of Things and the ubiquitous flood of data
and information require new technologies in data processing and data storage in particular
in the Internet and the Semantic Web.

Because of human limitations in data collection and analysis, more and more automatic
methods are used. Above all, these sensors or similar data producers are very accurate,
fast and versatile and can also provide continuous monitoring even places that are hard to
reach by people.

The traditional information processing, however, has focused on the processing of docu-
ments or document-related information, but they have different requirements compared
to sensor data. The main focus is static information of a certain scope in contrast to
large quantities of live data that is only meaningful when combined with other data and
background information.

The paper evaluates the current status quo in the processing of sensor and sensor-related
data with the help of the promising approaches of the Semantic Web and Linked Data
movement. This includes the use of the existing sensor standards such as the Sensor Web
Enablement (SWE) as well as the utilization of various ontologies.

Based on a proposed abstract approach for the development of a semantic application, cov-
ering the process from data collection to presentation, important points, such as modeling,
deploying and evaluating semantic sensor data, are discussed.

Besides the related work on current and future developments on known difficulties of
RDF/OWL, such as the handling of time, space and physical units, a sample application
demonstrates the key points.

In addition, techniques for the spread of information, such as polling, notifying or stream-
ing are handled to provide examples of data stream management systems (DSMS) for
processing real-time data.

Finally, the overview points out remaining weaknesses and therefore enables the improve-
ment of existing solutions in order to easily develop semantic sensor applications in the
future.
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Abstract - Deutsch

Die zunehmende Vernetzung von Objekten zum Internet der Dinge und die ubiquitäre
Flut von Daten und Informationen erfordern neue Technologien in der Datenverarbeitung
und Datenhaltung unter insbesondere auch im Internet und dem semantischen Web.

Aufgrund der menschlichen Grenzen in Datenerfassung und -auswertung werden immer
mehr automatische Verfahren verwendet. Vor allem sind diese Sensoren im weiteren
Sinne sehr genau, schnell und vielfältig einsetzbar und können zudem eine kontinuierliche
Überwachung auch an für Menschen schwer zugänglichen Stellen ermöglichen.

Die traditionelle Informationsverarbeitung hat sich allerdings auf die Verarbeitung von
Dokumenten oder dokumentenähnlichen Informationen konzentriert, die jedoch andere
Anforderungen als Sensordaten besitzen. Im Vordergrund steht hier vor allem die statische
und abgegrenzte Information im Gegensatz zu großen Mengen von live Daten, die nur durch
die Verbindung mit anderen Daten und bestehendem Wissen Aussagekraft erlangen.

Die Arbeit evaluiert den aktuellen Status Quo bei der Verarbeitung von Sensor- und sen-
sorähnlichen Daten durch die vielversprechenden Ansätze des semantischen Web und der
Linked Data-Bewegung. Dies beinhaltet den Umgang mit den bisherigen Sensor-Standards
wie dem Sensor Web Enablement (SWE) oder der Nutzung verschiedener Ontologien.

Anhand einer vorgeschlagenen abstrakten Vorgehensweise zur Entwicklung einer seman-
tischen Anwendung, von der Datensammlung zur Präsentation, werden wichtige Punkte
wie die Modellierung, die Bereitstellung und das Auswerten semantischer Sensordaten
diskutiert.

Begleitend zu der Zusammenstellung von wichtigen Arbeiten zu aktuellen und zukünfti-
gen Entwicklungen in Bezug auf bekannte Schwierigkeiten von RDF/OWL, wie der Hand-
habung von Zeit und Raum oder physikalischen Einheiten, veranschaulicht eine Beispielan-
wendung die wichtigsten Punkte.

Darüber hinaus werden Techniken zur Verbreitung der Daten wie Polling, Notifying oder
Streaming diskutiert, um schließlich auf Beispiele von Data Stream Management Systems
(DSMS) zur Verarbeitung von Echtzeitdaten einzugehen.

Letztendlich zeigt der umfassende Überblick dieser Arbeit verbliebene Schwächen auf und
ermöglicht somit die Verbesserung existierender Lösungen, um in Zukunft einfach funk-
tionale semantische Sensoranwendungen entwerfen zu können.
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Preface

This document is part of the bachelor thesis of Thomas Hummel at the Karlsruhe In-
stitute of Technology1. Additionally a demo implementation2 for research purposes was
implemented and a presentation for the members of the Institute of Applied Informat-
ics and Formal Description Methods (AIFB)3 of the Faculty of Economics and Business
Engineering4 is obligatory for the final assignment.

Thomas Hummel attended courses in the field of Business Engineering5 at the Karlsruhe
Institute of Technology. These contained amongst others: Knowledge Management, Se-
mantic Web Technologies I&II and Service Analytics. Furthermore he worked as a student
assistant at the Research Center for Information Technology (FZI)6 in the Information Pro-
cess Engineering Division7, covering topics such as the Semantic MediaWiki8 or Business
Wikis.

The advisor of the work is Dr. Andreas Harth9 and the reviewing professor is Prof. Dr.
Rudi Studer10, both active researchers in the Semantic Web context. More information
on their publications and projects can be found on the referenced websites.

1Karlsruhe Institute of Technology (KIT): http://www.kit.edu/
2Demo implementation: http://projects.hummel-universe.net/semanticsensorwerb
3Institute of Applied Informatics and Formal Description Methods (AIFB):http://www.aifb.kit.edu/
4Faculty of Economics and Business Engineering: http://www.wiwi.kit.edu
5Business Engineering: http://www.wiwi.kit.edu/english/studienProgWiing.php
6Research Center for Information Technology (FZI): http://fzi.de/index.php/en
7Information Process Engineering Division: http://fzi.de/index.php/en/research/

research-divisions/information-process-engineering-ipe
8Semantic MediaWiki: http://semantic-mediawiki.org/
9Dr. Andreas Harth: http://www.aifb.kit.edu/web/Andreas_Harth/en

10Prof. Dr. Rudi Studer: http://www.aifb.kit.edu/web/Rudi_Studer/en
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1. Introduction

1.1. About the topic

We all live in a highly development world with uncountable numbers of information and
communication technology. At the moment there does not seem to be an end in sight.
Moreover, the spread of mobile computers like smartphones and tablets is increasing. With
those devices not only the processing power comes to the daily lives but sensors as well.
People are able to track their life and organizations tend to collect loads of data in their
warehouses.

In 1999 the Businessweek published an article with the title: The earth will don an elec-
tronic skin [Gro99]. They say that the skin “processes immense amounts of data on
temperature, pressure, humidity, and texture. It registers movement in the air, gauges
the size of objects by the distance between points of contact, alerts us to danger, and
prepares us for pleasure.” Furthermore they predict that the 21th century will bring an
electronic skin to the world that “consists of millions of embedded electronic measuring
devices: thermostats, pressure gauges, pollution detectors, cameras, microphones, glucose
sensors, EKGs, electroencephalographs. These will probe and monitor cities and endan-
gered species, the atmosphere, our ships, highways and fleets of trucks, our conversations,
our bodies–even our dreams.”

According to them, there will be a change in life for each human being that nobody can
really think of today. The system will not be replace the people, but it will consist of
some necessary intelligence, that is able to filter relevant information and to adapt new
situations automatically.

One important step is that the information in the world wide web will be processable by
machines, that they can communicate with each other and that they can detect connect
different sources automatically. There are efforts in reasoning, data mining and data
analysis. Even though these parties share a common vision, the short term goals are very
different but the each party might benefit of the other approaches.

The traditional objectives in programming and data management primarily handle in-
formation that has been created by people. It may be texts, tables or pictures. That
information is useful only for humans on the other side, because it is extremely compli-
cated for machines to retrieve information from unstructured data.

At this point the Semantic Technologies try to fill the gap. Enriching the existing data
with semantic metadata enables machines to detect relations between resources and can

1



2 1. Introduction

infer implicit knowledge out of it. Data Mining techniques might enable machines to access
even some form of unstructured data and they get even better if they have a good base of
existing knowledge to detect parallels and related information.

Thinking of automated systems autonomous actions can be processed in various ways.
Data can be aggregated, examined and evaluated and might much more valuable in the
future. People can be informed about abnormal events or they can get a better overview
than before.

According to Kevin Ashton, called the inventor of the term Internet of Things, people
concentrated on writing ideas into the web up to now. [Ash09] These thoughts and in-
formation are supposed to be less important for our daily lives compared to things. We
cannot eat bits and they do not give heat in the winter. People gather information about
things but unfortunately they have limited time and may not be accurate enough to track
everything.

Therefore the scope of the existing technologies has to be extended. Sensors can monitor
objects instead of humans, they can produce data more accurate, faster, always and nearly
everywhere. That means that there are amounts of data that top everything that is existing
at the moment and the data will be produced live and has to be handled in (nearly) real-
time. Furthermore the description of the data producers should be good enough to evaluate
the value of data or to find related sensors that produce similar data. In the vision of the
electronic skin sensors might even form dynamic autonomous networks and can react on
environmental changes.

As Research in the field of the Semantic Web treats in large parts the handling of infor-
mation that is produced by humans, the existing technologies do not always match with
the requirements for machine data processing. For example, regarding the position of an
information in space and time, there are many problems to handle that in owl. Triples
do exist or do not exist, but they have no timestamp. Sensor data is relevant for specific
locations or regions and the new triples can refer to another location each instant of time.
Furthermore query languages like SPARQL do not support time or location parameters.

Additionally, even if a Linked Data stream would exist, what is not really supported by
traditional architectures like REST, many Linked Data parsers and reasoners are not able
to process the data, not even talking about steaming that processed data again.

But the first step is to provide the data in formats that can be used for information retrieval
systems: Developing sensor ontologies and spread their use is a major task. Secondly
existing non-semantic data has to be converted or annotated to extend the global data
basis. This data has to be transferred throughout the web and most probably be stored
for future access. Finally there have to be applications that create value out of the data
and produce new knowledge or help humans with that task. And the machines should be
able to assist humans in the real world with knowledge they retrieve from the world wide
web.

As there is no overview about what is relevant for handling sensor data in the Semantic
Web and many projects are currently active, this thesis gives an overview on the the latest
approaches in research about semantifying the world wide web. Therefore the traditional
sensor data published by organizations all over the world will be connected with the new
technologies even though many approaches fit for the traditional information handling as
well.

In the end the state of the art will have been evaluated in the sense of current possibil-
ities because it is common sense that the vision of the electronic skin with its artificial
intelligence is far away from reality at the moment - and maybe even in the future.

2



1.2. Research Questions 3

A position paper covering many of the relevant Linked Data parts but not the sensor data
is Linked Stream Data: A Position Paper [SC09]. They list some other related articles.

1.2. Research Questions

Referring to the title Handling Live Sensor Data on the Semantic Web that includes
publishing, integrating and visualizing of sensor data in combination with Linked Data,
there are at least three important aspects to cover:
How to handle ...

• ... sensor data. What types of (traditional) sensors can be identified? What do they
have in common? Can they be classified somehow? What future development can
be forecasted?

• ... the Semantic Web. What kinds of representation do we need? How can you link
the sensor data? Are there sensor ontologies and how expressive are they?

• ... live data. How to handle live data in the Semantic Web? What solutions exist?
Can one reach nearly real-time?

• ... the combination of all? What is important in the development process? Which
parts should be focused on?

Because of the focus on the combination of all elements, this document will provide a
sample proceeding on developing a semantic web application that handles sensor data.

However, the live data plays an essential role because of the lack of research in that area.
Furthermore there are other important aspects such as spatial or temporal data that are
closely related to the common use cases of sensor data.

Nonetheless this work cannot cover the basics of semantic web technologies such as RDF
or OWL. Some references for important basic knowledge will be provided but the readers
should be familiar with some of the fundamentals.

For practical studies and a demo project, data of the NOAA’s Aviation Weather Center11

is utilized.

1.3. Structure of the document

This document starts with an introduction that points out the significance of providing
sensor data in the web. This topic is treated mainly in the first two chapters:

Chapter 2: Sensors, Sensor Data and the World Wide Web gives a simple overview over
sensors that could be possibly linked now or in the future and in what field of usage
the data would be useful. This will include also some concrete examples as well.

Chapter 3: Sensor Data in the Semantic Web and Linked (Open) Data presents a look
into the existing Semantic Web. What (public) data is there already present and
what ontologies have been developed already to describe sensors and sensor data.

After that a sample application will be developed alongside the general theoretical research
results to give a glance at what can be realized in reality and to give a little motivation to
future semantic content providers.

11NOAA’s Aviation Weather Center: http://www.aviationweather.gov/

3
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4 1. Introduction

Chapter 4: Example – Aviation Weather Data provides a short introduction to the demo
application. Furthermore the tools used are presented in a short overview.

The following chapters will contain the theoretical findings alongside to the main develop-
ment steps of our example.

Chapter 5: General approach and structure of code treats the proposed basic approach
and explains the general modular structure of a semantic web application handling
sensor data.

Chapter 6: Collecting and Modeling Sensor Data starts with identifying and analyzing
sensor data and the conversion to an appropriate RDF output. Difficulties in the
several steps will be adressed and solutions will be provided.

Chapter 7: Accessing the Data goes on with one of the main challenges of this work: the
data access. How do you provide live data in the semantic web? Do you want to use
Polling, Notifications or Streams? Which approach is best for which solution?

Chapter 8: Querying and Visualizing should bring down the whole example to a round
figure. For that reason a small example of how to use the new data was developed –
data will be queried and some visuals will be created out of it.

In the end the results will be examined and an evaluation on some important points as
well as an outlook will be given.

Chapter 9: Evaluation reflects the main results of the whole process, in particular on how
good sensors and measurements can be described in RDF/XML, the complexity of
development in general and the different stakeholder benefits. Furthermore some
lessons learned will be pointed out.

Chapter 10: Conclusion is meant to be a summary of the state of the art and gives a
prognosis of the trend.

4



2. Sensors, Sensor Data and the World
Wide Web

2.1. Definition

There are several definitions for sensors; most often they describe the observation of “a
physical quality (temperature, depth, etc) of a feature (a lake) and report observations”[CHN+09]
but in a looser way one could also refer to “a data source which produces a sequence of
data items over time”[LPH09]. In [HPST09] a sensor is only seen as a certain procedure
to produce data.

Those loose definitions, however, do not focus on the ’classical’ view of a sensor as a
physical device that measures a single physical quantity. In fact, there may be several use
cases where the measured data is already aggregated in a virtual sensor like a platform
or digital mashup with several physical sensors that act as a single sensor. Furthermore
non-physical measurements like CPU load, GPS or even camera pictures can be addressed
with the latter definition.

This allows the utilization of many sensors with similar features and characteristics.
Nonetheless, the main focus in this work will be on the observations of physical devices
that measure physical quantities. It is is easier to concentrate on a restricted set of items,
even if most of the characteristics equal the nature of the extended second sensor definition.

2.2. Main Characteristics of a Sensor

Overall there are two main elements a sensor consists of: First there is the sensing device or
platform and its specification and secondly there are the measurements and observations
of this sensor basis, both often referred to as sensor data.

See for example the specifications for a temperature sensor by AADI in figure 2.1 for
measuring the water temperature. If someone is searching for a sensor that can be used
in a specific environment the operating temperature, operating depth or the dimensions
may be important. For someone who deals with the measured data it may be more useful
to use information about the resolution or accuracy of the generated data.

In general the information relevant for future utilization of the generated observation data
is the location of the sensor. Even if the location in restricted environments can be very
detailed and complex, this thesis will concentrate on the geo-referenced information only.

5



6 2. Sensors, Sensor Data and the World Wide Web

Figure 2.1.: AADI Temperature Sensor 4880/4880R

However, it is be possible that the location is changing over time, for example when the
sensor is attached to a car. Then the positions can be seen as an additional measurement
and must be observed.

Very important for analyzing the data beyond that are the instants of time when the
observation was made, since time is used most often as a dimension for evaluating or
visualizing data.

Furthermore, most measured values, especially physical, are useless without the corre-
sponding units (unless one is in a separated environment).

These three main attributes should be kept in mind when working with sensor measure-
ments and observations. In some cases the influence of accuracy is very important, too; in
particular when there are scientific evaluations. Here considering a possible change of the
accuracy under certain circumstances is important.

If one assumes the correct implementation and use of the sensor, most of the other technical
details tend to be redundant. It may be useful to keep operating ranges or response times
in mind.

2.3. Short Classification of Sensors

The classification of sensors in a holistic way is cumbersome and will not lead to a huge
improvement in handling sensor data. Nonetheless, there are some points that might be
good to know.

6
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First of all there is the accessibility of the data: Are specifications and measurements
publicly available or is there restricted access because of privacy, security or commercial
purpose?

Directly connected to that question is the second point: Which role plays the sensor owner?
Is it a scientific organization, a company or even a private person? This gets even more
complicated if one goes into usage rights an licenses.This often depends from the field
of application like described in a classification scheme derived from a Hitachi Research
Laboratory communication[Whi87]. Automotive, Energy, Health or Transportation are
mentioned, for example.

Weather measurements are an example for globally publicly available data whereas posi-
tions of mobile phones may be difficult to collect.

In this thesis there are two additional characteristics that play a significant role, as men-
tioned in the previous section: Does the sensor move or is it geographically fixed? And
how important are fast update rates or is it a real-time sensor?

2.4. Use Cases for Sensors on the Web

Publishing sensor data in digital formats for further processing with Information and
Communication Technology is a common use case. Therefore an easy way is using the
world wide web that allows remote control of sensors as well as an automated aggregation
of measurement data. Automated actions on behalf of specific events are far from vision.

Some people tend to speak of the Internet of Things (see 1.1 About the topic) that tracks
products with RFID codes and sensor data. If we had some automatism, things could be
identified by machines and collect data about them with sensors, technology would be able
to notify us about necessary repair or help us to use resources more effective and efficient.

And the global trend is following these ideas: On this years CeBIT trade show, one
of the largest computer expos in the world, one main topic has been the smart home.
The five subtopics are Home Automation, Home Networks, Home Entertainment, Smart
Grid/Energy Management and Home Appliances/Design12. Especially the influences of
the Smart Grid will be interesting in the future, because machines will be able to use
energy when its cheapest or when regenerative energy can be used. Another use case of
the ambient assistant living solutions would be the automatic opening of the windows for
air refreshment and closing them when it begins to rain. Moreover, a third example is the
opening of the garage when one comes home by car and after that the front door unlocks
automatically as well.

Automated systems in cars are another recent topic in the news in Europe. From 2015
onwards every new car should contain an automated emergency call system, named eCall.
In the case of an accident, the system will automatically send necessary information via
internet to the ambulance13. And this is only a start: The car 2 car communication
consortium14 is trying to achieve standards in inter-vehicle communication systems for
safety, ecological and efficiency reasons.

Regardless of these interesting designs and developments much data is generated already.
Navigation systems collect data of velocities or routes and share them amongst each other,

12CeBIT Smart Home http://www.cebit.de/en/about-the-trade-show/programme/cebit-life/

smart-home
13heise.de: eCall http://www.heise.de/newsticker/meldung/eCall-Auto-Notruf-soll-ab-2015-fuer-Pkw-

verbindlich-werden-1631991.html
14car 2 car communication consortium http://www.car-to-car.org/
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to avoid traffic jams or inform the driver about security risks. Indeed, traffic jams are
sometimes detected due to mobile phone devices and their movements in certain regions15.

The last example topic will be the private use of sensor data. People are able to track their
sports activities with their smartphones16, share their weight/muscle amount on fitness
networks17 or let their apps automatically post music, pictures, activities or locations to
the world wide web1819.

There are many more samples, but these show several aspects of sensor categories, data
that may never be published for free or data that might become very important in the
future. What semantifying of the data can achieve, will be discussed in the later.

2.5. Existing Sensor Standards

Concerning the combination of sensors and their integration into the web, there is mainly
one standard used: The Sensor Web Enablement (SWE)20 by created by the Open Geospa-
tial Consortium (OGC), a member of the w3c.

They define five main fields developed relying on standards of the IEEE or other organi-
zations to enhance the creation of reusable technologies.

Observations & Measurements (O&M) - “The general models and XML encodings for
observations and measurements.”

Sensor Model Language (SensorML) - “standard models and XML Schema for describ-
ing the processes within sensor and observation processing systems.”

PUCK - “Defines a protocol to retrieve a SensorML description, sensor ’driver’ code, and
other information from the device itself, thus enabling automatic sensor installation,
configuration and operation.”

Sensor Observation Service (SOS) - “Open interface for a web service to obtain obser-
vations and sensor and platform descriptions from one or more sensors.”

Sensor Planning Service (SPS) - “An open interface for a web service by which a client
can 1) determine the feasibility of collecting data from one or more sensors or models
and 2) submit collection requests.“

Descriptions taken from http://www.opengeospatial.org/ogc/markets-technologies/swe

Concerning the topic of existing live data systems, the inproceeding Providing near Real-
time Traffic Information within Spatial Data Infrastructures [MSZ09] seems to be interest-
ing. They state that “Service Oriented Architectures (SOA) constitute the main paradigm
for developing GI21 applications nowadays”. In this case the SOS is used.

15Bild der Wissenschaft - Mit Handys gegen den Stau http://www.bild-der-wissenschaft.de/bdw/

bdwlive/heftarchiv/index2.php?object_id=31994303
16Android App Sports Tracker http://www.androidpit.de/de/android/market/apps/app/com.

sportstracklive.android.ui.activity.lite/SportsTracker-by-STL
17Health Graph API http://blog.runkeeper.com/new-feature/health-graph
18Google+ Party Mode http://support.google.com/plus/bin/answer.py?hl=en&answer=2618786
19Pearson: Using Facebook and Spotify togetherhttp://www.quepublishing.com/articles/article.

aspx?p=1833572&seqNum=2
20OGC - Sensor Web Enablement http://www.opengeospatial.org/ogc/markets-technologies/swe
21Editors Note: GI = Geographic Information
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3. Sensor Data in the Semantic Web and
Linked (Open) Data

First of all semantic technologies are just another kind of handling data and their suc-
cess depends on how widely they are used. Nonetheless, there are some difficulties with
traditional file or data formats and content handling that are addressed with semantics.
This chapter will also give a short introduction on the technologies and will then focus on
existing sensor ontologies.

3.1. Target

Without describing semantic technologies in detail this section treats some basics, since
they are relevant for the whole work and addresses the question whether we actually need
semantics or not. According to [Pil10] “the main limitation for a concrete realization of
Sensor Web appears the lack of standardization that make the interoperability among
systems a hard challenge also considering the functional interoperability environment pro-
vided by last generation web services”.

Traditionally the structure of a file (binary or csv) or its syntax (xml) is used to access
the contents and extract or transform the data. The description of the data can be found
in specification documents that have to be written and maintained for every data format
and the tools have to be customized for exactly that formats.

With the use of some standardized xml-documents data exchange in selected fields is
becoming easier. Nonetheless, it even may be very complicated to merge two standards.

The semantic technologies try to add a meaning to every resource, regardless on the
position in a hierarchy or structure of a file. One often talks about Linked Data, because
the main idea is to describe data with the help of other data that is described already.

This avoids redundancy and leads to more efficient ways of working. On the one hand, a
data provider can concentrate on the core data and on the other hand a data consumer
does not need to handle several different data formats.

Additionally the semantics can be processed by machines, in comparison to specifications in
pdf format, and the use of crawlers provides the opportunity of collecting more informative
or additional data.

9
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Even if machines are not able to understand the data they can detect correlations and
infer hidden knowledge. With the help of some custom algorithms they sometimes even
seem to understand the data and can perform useful actions.

Besides wonders in artificial intelligence, one can imagine many ways of data selection,
data preparation or data presentation, ranging from dynamically faceted searches to the
analysis of complex, previously unknown, connections in the data.

3.2. Semantic Technologies

In this thesis the selected semantic web technologies defined by the w3c are RDF and
OWL.It is assumed that the reader has some basic knowledge of them, otherwise more
detailed information can be found in [HKR09] or [HFBPL09], for example.

RDF and OWL share many common characteristics so that this thesis tries to handle
them as one technology whenever possible. Concerning a special use case one might need
the expressivity of OWL Full or the clarity of RDF combined with the different inference
possibilities.

Some difficulties in relation to the usage with sensor data come up when trying to model
events in time and space, two of the important values describing a measurement. The
traditional handling of the data works well when describing single facts. One example
might be something like

ex:AngelaMerkel rdf:type ex:Bundeskanzler

Here the problem is that Angela Merkel is only Bundeskanzlerin (federal chancellor) of a
certain country (Germany) and for a certain time interval (since 2005 until now). Bun-
deskanzler could fit as well to the head of states of Austria or Switzerland or historic
German federations and is not intended to describe only the current persons in charge
but also the former people in charge. This however can not easily be modeled in a simple
triple. There are several possible solutions, some described in chapter 6 (Collecting and
Modeling Sensor Data). If one would just collect data for a certain field one could work
with that, for example with some more detailed properties like ex:presidentOfTheUS,
but if it comes to data in motion like you have with sensor data, every new statement is
only usable with the related observation time and sometimes location. Hence a solution
has to be found.

Unit handling is another difficult aspect of current standards. At the moment there is
official support for xml-schema datatypes but it lacks physical units. Some solutions will
be presented as well in chapter 7 (Accessing the Data).

One additional fact that every developer or modeler should bear in mind is the open
world assumption and the non-unique name assumption, maybe in combination with blank
nodes. This is important for modeling and even more necessary to consider when debugging
unexpected behavior when reasoning.

Especially blank nodes can be problematic in inference whereas one should keep in mind
that URIs describing a resource are only allowed to describe a single resource whereas two
different URIs do not necessarily refer to distinct resources.

Thus using resolvable URIs as recommended there might be the necessity to distinguish
the URIs somehow, for example by the use of OWL2 keys.

10
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3.3. Existing Approaches and Ontologies

Since the years around 2005 experts have tried to develop approaches to semantify the
sensor data. In the state of the art two main approaches are used to describe sensor data:
Annotating existing formats or converting to raw RDF/OWL triples.

Most often the annotation is used when working with already standardized conventional
formats, especially the Sensor Web Enablement (SWE) xml-files. Languages used for that
are for example XLink or RDFa that can link to semantic web ontologies and therefore
enable the Linked Data functionality. A short example of annotation is provided in the
following code-example of [SHS08].

Listing 3.1: Example for Annotating SWE-XML with RDFa

<swe:component rdfa:about=”time 1” rdfa:instanceof=”time:Instant”>
<swe:Time rdfa:property=”xs:date−time”>2008−03−08T05:00:00</swe:Time>

</swe:component>

3.3.1. Sensor Ontologies

Of course one needs a sensor ontology as well and the expressivity depends on it mainly.
Nonetheless there are some difficulties when describing more complex data in comparison
to a total conversion that does not require a predefined structure and can also use other
source formats.

Concerning the existing ontologies there are many different targets as well. The main
difference seems to be the description of sensors and networks in contrast to observations
and measurements.

Pileggi is proposing A Noval Domain Ontology for Sensor Networks [Pil10] that provides
the ability of describing detailed sensor characteristics like the location of a sensor host,
the sensor in relation to the host and the possible change of these positions over time.
Additionally one could define communication modes or energy supply as well as the nature
of the sensors itself (multisensors). This could be used when searching for sensors for a
certain purpose.

A outstanding approach in describing the structure of sensor networks is done with the
SWAMO Ontology that is intended to create intelligent agents “for collaboration between
multiple sensor systems”[UPWS11]. Observations and Measurements as defined in the
SOS are implemented very minimalistic “for minimal compliance with the standard”.

Eleven sensor ontologies from 2009 or older have been evaluated by Compton et al.
[CHN+09] in range and expressivity as well as reasoning and search technology. According
to them “the state of the art is some way from the the vision for semantic networks”. This
is reasoned especially because of the lack of ontologies that cover most aspects of sensor
data including measurement data. The most advanced ontologies in that category seem to
be CSIRO [CNTT09, NC09] and OntoSensor with a slightly different focus. A combination
of them is said to represent the current level of expressive capability for semantic sensors.
Most evaluated ontologies used a sensors perspective and are missing observation models.
Besides OntoSensor the ontologies Avancha [APJ04] seems to provide a useful base of
observation handling including data/observation features, accuracy and support for units.
They also propose the results of Florian Probst who concentrated on semantifying the
observation and measurement standards of the OGC. [Pro06, Pro08]

Many of the authors of the existing ontologies formed an Incubator group at the w3c to
develop a new ontology, the SSN-XG[CBB+12] ontology that is used nowadays by many
new projects and might be the future de-facto standard ontology for sensor networks,

11
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because of their spread and closeness to the SWE standards. A sample definition of an
accelerator device is shown in the following code listing:

Listing 3.2: Example of a SSN-XG device description (RDF/OWL)

<owl:Class rdf:about=”#Accelerometer”>
<rdfs:subClassOf rdf:resource=”http://purl.oclc.org/NET/ssnx/ssn#SensingDevice”/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=”http://purl.oclc.org/NET/ssnx/ssn#observes”/>
<owl:hasValue rdf:resource=”http://purl.oclc.org/NET/muo/ucum/physical−quality/

acceleration”/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:comment>Accelerometer is a subclass of sensing devices which measures acceleration.
The individual describing a physical quality ”acceleration” is defined in the imported

MyMobileWeb
ontology of measurement units. To align the MyMobileWeb ontology with the SSN ontology,

the class
muo:PhysicalQuality from the MyMobileWeb ontology is defined as a subclass of the class ssn:

Property.</rdfs:comment>
</owl:Class>

According to [TCL11] the SSN-XG ontology design offers four identfiable perspectives:

• “Sensors, with a focus on what senses, how it senses, and what is sensed;”

• “Data, with a focus on observations and metadata;”

• “Systems, with a focus on systems of sensors; and”

• “Features, with a focus on physical features, properties of them, what can sense them,
and what observations of them are made.”

3.3.2. APIs

Finally there is still the question of how to access the data in the ontologies.

SemSOS [HPST09] is following the existing standards and tries to combine the existing ser-
vice API with a semantic backend. This means that traditional queries like “DescribeSen-
sor”, “GetObservation” and “GetCapabilities” are transformed into SPARQL queries to
retrieve the information out of the knowledgebase. The response is using the standard
xml-schema for observations and measurements and is semantically annotated with XLink,
using a self-developed O&M-OWL-Ontology.

In 2011 Page et al. [PFN+11] proposed a prototype of a Web API relying on REST and
Linked Data principles in combination with the SSN-Ontology. The High-Level API for
Observations (HLAPI)-platform allows to provide several representations and serializa-
tions of the data, including non-semantic formats, and supports several additional URIs
like /latest or /summary for special requests.

3.3.3. Summary

Summarized the way of annotating existing structures like SWE might lead to fast results.
Using traditional semantic web methods, however, might keep the interoperability between
different fields better what is very important in that environment.

Some important aspects on the modeling will be discussed in chapter 6 (Collecting and
Modeling Sensor Data) whereas the discussion about accessing is dealt with in chapter 7
(Accessing the Data). In particular there will be the question on how to implement live
transfer of data.

12
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Example

The focus of this chapter lies on the demo web application that contains some example
implementations of the topics covered in this thesis. In detail the decision for the sensor
data of NOAA’s aviationweather.gov will be provided combined with a description of the
data sources.

Concrete implementations will be presented in the following chapters that discuss the
theoretical solutions first and an applied solution afterwards.

4.1. Data set

4.1.1. Requirements

For most developers the following requirements will be obsolete, because they will use a
predefined data set. However, for demonstration purposes some characteristics of the data
are important:

Use publicly available data Everybody should have the opportunity to follow the steps
throughout the whole application. Especially the processed data should be accessible,
for example reuse of code for training purposes is facilitated.

Use simple data Easy understandable data reduces unnecessary complicated code struc-
tures in the example code and the reader can focus on the important points. More-
over, if the data is self-explanatory, one does not need much effort to understand the
examples.

Use data that is expandable Since this is a semantic web topic, most data will be linked
and enriched with other data sources. Demo data should provide the ability to create
easy usage scenarios and mashups.

In case of the sensor data one could determine some additional statements:

Use sensor data with at least one measurement unit The purpose of sensors is to pro-
vide measurements. Even in a sample application the handling of the different for-
mats and units should be mentioned.

Use frequently updated data An additional characteristic of sensor-measurements is that
they happen several times and the observation time matters most often. Therefore a
timestamp would be useful and, furthermore, the performance topics can be treated.
This also leads to thoughts about the necessity of live or even real-time usage of the
data.

13
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Use geo-located sensors or data The location of the measurement is important in many
cases. Geo-location will suit for many scenarios in an open system. Moreover the
usage of moving sensors adds another interesting fact to be concerned.

4.1.2. NOAA and the Aviation Weather Center

The National Oceanic and Atmospheric Administration (NOAA)22 of the United States
Department of Commerce does research in many fields of oceans, atmosphere and the
climate.

One department called the National Weather Service (NWS)23 operates the Aviation
Weather Center24. This center provides forecasts and warnings for the global aviation and
publishes several measurements that focus on temperature, wind speeds, icing, visibility
and many more. Furthermore the data is used by pilots for their pre-flight briefings.[U.S12]

Since the weather is probably one of the most topics spoken of, it is predestined for demo
data. Furthermore one can think of a huge amount of usage scenarios. Therefore two
datasets have been chosen: the METAR data and the aircraft reports. Each of the data
sets will be described more detailed in the following sections.

Both data sets have in common that they contain time stamps as well as geo-coordinates
for each measurement. Even if the observation intervals can be irregular the latest data
is updated every five minutes and can be accessed as csv- or xml-file. The dataserver 25

contains descriptions about all offered data sets and queries for historic data as well as
current data files26.

For further reference, the Aironautical Information Manual covers huge parts of the data
pilots use and create [U.S12].

4.1.3. Meteorological Airfield Report

The Meteorological Airfield Report (METAR) is a standardized format for local reports or
local special reports (SPECI) of weather observations and forecasts. Standards and regula-
tions necessary for global aviation are set by the International Civil Aviation Organization
(ICAO)27, an agency of the United Nations (UN).

A METAR report represents an hourly observation of a specific site regarding several cli-
matic conditions manually or automated. Most often the location is an airport, represented
by its ICAO-Code. the measurements are published as custom string that contains further
information about location, observation time, temperature, wind speed and many more.
However, in this example a preprocessed csv-file is used - the detailed field description can
be found in the Appendix (Table A.1). (See also [U.S05] and [U.S12])

Important aspects for utilization of this data source in the example are:

• ICAO airport codes are widely used, so further information about airports like de-
parture times or encyclopedic facts could be aggregated.

• The sensors are not moving but are fixed to a certain location. This allows the easy
monitoring of a specific place over time. Furthermore it might facilitate geographic
searches in the data.

22NOAA:http://www.noaa.gov/
23NWS: http://weather.gov/
24Aviation Weather Center: http://aviationweather.gov/
25Dataserver: http://www.aviationweather.gov/adds/dataserver
26Current data files: http://www.aviationweather.gov/adds/dataserver/current
27ICAO: http://www.icao.int/
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• Many applications can be found that allow analysis of METAR data and can serve
as model for useful semantic mashups. See NOAA’s Java Tool or Meterradar.com

The current data set, with observations of the past hour, contains relative constantly more
than 4000 measurements of different airports with 44 possible single data values. Hence
around 350 new measurements are added in every update interval.

4.1.4. Aircraft reports

The second data source for the demo application are the aircraft reports that contain either
Pilot Weather Reports (PIREPs) or Aircraft Reports (AIREPs).

The data of these reports must only be published if there are special conditions like thun-
derstorms, turbulences, bad visibility or dramatic changes in weather conditions.

The reported string fields differ slightly from the METAR fields and more details on the
preprocessed format structure can be found in the Appendix (Table B.2). (See also [U.S98]
and [U.S12])

Important aspects for utilization of this data source are:

• Aircrafts are moving objects (with an additional altitude) that make great demands
on the processing application. Maybe even the tracking of a specific aircraft would
be possible.

• The data is as easy to interpret as the METAR data. However, a real-life task would
be the automatic generation of warnings for aviation.

• Many observations are sent in the region between Canada and Greenland over the
North Atlantic Ocean. Here the use of spatial queries could be interesting.

The current data set, with observations of the past ninety minutes, contains highly fluc-
tuating numbers of measurements but during the last analyses always significantly below
1000, because they are requested or transmitted most often only in special situations. Thus
one can state that there will be less than 100 new measurements on average every update
interval. In contrast to the METAR data the appearance of the same sensor/aircraft
multiple times has a higher probability.

4.2. Other Data Sources

Another marine example is provided with the data of http://www.marinetraffic.com:
”‘The system is based on AIS (Automatic Identification System). As from December 2004,
the International Maritime Organization (IMO) requires all vessels over 299GT to carry
an AIS transponder on board, which transmits their position, speed and course, among
some other static information, such as vessel’s name, dimensions and voyage details.”’ One
is allowed to query every two minutes while the received data is updated in their system
in real time.
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5. General approach and structure of
code

In this chapter some fundamental procedures on how to develop a semantic web application
will be presented. Firstly there will be a short explanation of the proposed structure of
implementations and secondly there will be listed some possible stakeholders. After that
some fundamental questions for preparing a semantic web project and finally the decisions
in our sample program are mentioned.

5.1. Modular structure of code

Semantic web technologies with their standardized exchange formats make it easy to work
with modular software. On the one hand this enables software developers to use several
distinct programming languages as well as platforms that fit best for the particular task.
For example one could use Python to process text sources and use Java for the RDF
handling, as in the tutorial by Bob DuCharme[DuC10].

On the other hand the development process can focus on single modules. Therefore agile
software development practices suit very good and can provide quick results as well as
constantly expendable fragments of the application.

The proposal of a theoretical structure of a sensor data processing semantic web application
is shown in the following schema.

Thus three main modules can be identified in figure 5.1: data collection, data access and
further processing of the data. Data storage may be seen as module number four but it is
not necessary in all cases. Every module will be discussed in detail in the corresponding
chapter.

Literature researches propose very similar structures: Hebeler et al. propose an architec-
ture diagram for aggregating disparate data sources with the layers “Data sources”, “RDF
Interfaces”, “Domain Translation”and“Knowledgebase” [HFBPL09, p. 468]. This model is
a subset of the newly proposed modules “Collecting” and “Storing” and may be convenient
for some use cases. Additionally the focus on aggregating different sources in one model
and would perfectly fit in the new modules of the further processing.

An additional architecture is proposed for the Linked Sensor Middleware by Le Phouc et
al. [LPNMQXH11]
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Figure 5.1.: Proposed modular structure for a semantic sensor data web application

5.2. Stakeholders

This abstract architecture proposal is very flexible and is good for a step-by-step or par-
tially implementation of the modules. There are many different stakeholders that might
not be interested in implementing a holistic application.

Case 0: Sensor Data Provider A data provider maintains sensors and owns the data
sources. Most often the data is used for internal use and therefore prepared for
that purpose. Existing data formats tend to not containing semantics or semantic
annotations.
Sensor Data Provider are typically scientific or governmental organizations, because
they publish their data to the web. (e.g. NOAA28 Dealing with all possible sensor
owners these might as well be organizations or even private persons.

Case 1: Semantic (Sensor) Data Provider Adding semantics to the sensor data is the
task of a semantic data provider. The better they work together with the sensor
owners, the more accurate the results will be. Most sensor data provider fear the
complexity of annotating or converting their data, because effort increases with com-
plexer sensor structures and dependencies.
Modeling depends not only on the input data, possible use cases have to be sorted
out to find appropriate ontologies and other Linked Data to map with. Designing
models that fit to the data and choosing the correct ontologies is one of the most
time consuming tasks. However, the interlinked data serves as basis for further pro-
cessing. The better the data is presented, the more valuable it will be.
Nowadays many conversions are done by the semantic web community and corre-
sponding research institutes. Nonetheless, in the future sensor owners might publish
their data as RDF/OWL right away.

Case 3: Data Manager Working with the data requires storage and access strategies in
order to facilitate to generate knowledge out of several sources. Data Manager try to
collect data from several sources, create mappings between ontologies and resources
and store the data in customized databases for quick access. Different accessing
and querying possibilities enable programmers to use the best way to get the data,
without the need of searching for data that matches the existing one.
Dbpedia29 could be seen as data manager, since it collects data from the various
Wikipedias and links different topics. Most often famous content provider serve as
starting points for crawls since many ontologies try to reuse the terms and models. A

28NOAA http://noaa.gov.us
29Dbpedia http://dbpedia.org
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data manager could also aggregate thematic data to reduce the effort for individuals
to crawl the web on specific topics.

Case 4: Data Analyst Many developers use existing data and, except for quality and
trust, they do not care about the sources and the steps done before. They rely
on the division of labor and their task is to create results from the data. Thus they
would like to choose their querying method and process, enrich or evaluate the re-
ceived data. This group of the stakeholders generates new knowledge and is therefore
very important. They sometimes use complex data mining and knowledge retrieval
methods and should generate additional value. Therefore the data basis must be
good enough.

These examples of stakeholders are stereotypes and make discussions about the importance
of different modules easier - they are most often not distinct actors. Even though, this
example shows the common ground each stakeholder works with: Ontologies and data
exchange formats as well as the APIs to access data.

This means that the modeling of the data is one of the most important steps in the whole
process. Bad models will lead to bad results. Reusing popular ontologies will facilitate the
reuse of the data by others.

Of quite similar importance are the exchange formats. Since there are many standardized
formats like RDF/XML or query-languages like SPARQL, a stakeholder should not have
problems handling it.

Nonetheless, the data access can be more complex. Using RESTful web applications is an
easy step whereas the use of services, especially to handle live data, can be an intricate
structure. Especially for sensor data scenarios the live aspect is very important and the
presence of new data must be communicated fast enough. At the moment there exist no
de-facto standards in the semantic web environment. Some possible solutions are discussed
in the chapter 7 (Accessing the Data), but they often do require a customized interface.

5.3. Defining targets

In the following chapters several implementation-approaches of each modul will be dis-
cussed. Depending on the goals there are different ways that seem useful.

However, there are some very important questions one should bear in mind before im-
plementing an application in addition to the stereotypes defined in the section before.
Despite of the general discussion for and against semantic technologies, one could mention
the following categories of questions:

• Scope of the data

– How many measurements will be generated?

– How often are there new measurements?

– Is it useful to enrich data with important information at the beginning?

• Usage of the data

– Will the data be used in a whole most probably
or will there be many customized queries on parts of the data?

– Will a client access the data once or is continuous access important?

– Is it important to keep a history of the data or is there a high significance of
the latest measurements only?

19



20 5. General approach and structure of code

• Time, effort and expenses

– How detailed and accurate should the data be mapped? (Units, Accuracies,
Dependencies, ...)

– How much manual interaction should be needed for reasoning and inferring?

– How much load does the content providing architecture stand?

5.4. ExampleExample

A short overview about the general tools used for developing will be shown here. Specific
libraries or tools will be mentioned in the corresponding chapter. Credits go to all the
developers and supporters of the various utilities, even those not mentioned here.

Java is used in throughout the whole application. A mixture of programming languages
in reality is possible and might be useful to use the different strengths.
https://www.java.com/

Eclipse is the main IDE for developing the application.
http://www.eclipse.org/

Notepad++ suits perfectly for smaller tasks.
http://notepad-plus-plus.org/

GIT/TortoiseGit is used for version control. Hosted on bitbucket.
http://git-scm.com/

https://code.google.com/p/tortoisegit/

https://bitbucket.org/

Dropbox helps for files not under version control.
https://www.dropbox.com/

Google App Engine with the local Jetty server serves as gate to the web. Eclipse inte-
gration is available beside loads of documentation.
https://developers.google.com/appengine/

TEXnicCenter and  LYX are used for the thesis.
http://www.texniccenter.org/

http://www.lyx.org/

JabRef collects all the useful references to literature.
http://jabref.sourceforge.net/

Not to forget all the boards, tutorials and examples in the web. One important destination
probably is stackoverflow.com.
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6. Collecting and Modeling Sensor Data

Whether or not there is a physical sensor it is assured that there is already some sensor
data existent in a proprietary format. This chapter deals with the handling of the data
source as well as the modeling of the data for the following conversion.

Figure 6.1.: Schematic view of the module Collecting and Modeling

6.1. Collecting

In the first step of a semantic sensor web application the data has to be collected. There
are basically three different types of sources that one could have to handle: Files, databases
and (web) services, either with semantics or without and either static or live.

It is assumed for this section that there is not RDF/OWL source data. The question about
the semantics gets relevant in the Querying and Visualizing chapter, even though it might
already be relevant at this point in reality.

6.1.1. File

A file source is most often updated in a certain interval and has to be polled each time.
Sometimes a modified-since header or an expiration-header can reduce traffic as well as
the use of a notification-service could do. More about that can be found in the following
chapter. Another characteristic of files is that always the whole file has to be transmitted
and most often even the new (live) data is appended to the existing file.
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6.1.2. Database

Databases provide the possibility to filter for useful data and reduce load with customized
queries. Most often a result can be provided in various formats, sometimes there is even
the possibility to avoid converting the whole data and use a connector that allows SPARQL
queries on the relational database (see section 6.3 Conversion). Apart from that the most
effort is the database query with SPAQRL, SQL or another query language.

6.1.3. Web Service

The handling of web services depends on their architecture and API. Sometimes it is
possible to request a response-format that can be converted easily later on. Very interesting
is the possibility of streaming even though this requires a more complex structure. It even
might be one of the fundamental sensor data processing requirements.

6.1.4. Other Services

Depending on how the data of the sensors is distributed one might need special protocols or
architectures. Especially when there is no sensor middleware and the devices are sending
their data on a low-level basis.

In all cases it is good to avoid too much load on the source servers. Sometimes they have to
block clients for that. Giving the application a meaningful identifier and providing contact
information would be a nice touch.

6.2. Modeling

In the second step the measurements are modeled. Depending on the sensor ontology
that has been chosen for modeling the sensor features there are many preferred modeling
techniques for the measurements as well. Sometimes sensor ontologies provide support
for modeling observations, but depending on the topic one might want to link as well to
existing ontologies, like weather or even dbpedia.

Some ontologies address important aspects and difficulties of the modeling in a certain
way. Here some solutions are presented in a detached form that cover the basic problems
of the expressivity in RDF/OWL as determined in chapter 3 (Sensor Data in the Semantic
Web and Linked (Open) Data).

6.2.1. Adressing the Limitations of RDF/OWL

In general the problems of time and space and units have have to be covered, because each
new measurement will be done in a new environment. However, handling those issues can
be complicated.

6.2.1.1. N-ary Properties

A heavily discussed solution in many other use cases, as well, is the use of n-ary predicates
that can contain more information than a regular triple. For example one could define
with some sort of annotations or a special syntax:

ex:sensor ex:hasTemperature "10"^^xsd:Double @unit(ex:celsius)

@time(2012-01-01) @latlong(10,51)

that – for example there were some approaches in the Semantic Desktop community30.
See also 31

30Semantic Desktop Nepomuk http://www.semanticdesktop.org/ontologies/
31Defining N-ary Relations on the Semantic Web http://www.w3.org/TR/swbp-n-aryRelations/
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6.2.1.2. Blank Nodes

A solution that definitely works is the use of blank nodes for a measurement. A benefit is
indeed that blank nodes are seen as distinct resources. Unfortunately adding information
to that node later is difficult and so is reasoning and querying. If the structure is known,
however, most actions are possible. A code example could look like this:

Listing 6.1: Example measurement using blank nodes (Turtle)

ex:sensor
ex:hasMeasured [

ex:hasTime ”2012−01−01”̂ ˆxsd:datetime;
geo:lat ”55”;
geo:long ”55”;
ex:hasTemperatureCelcius ”105”;

]

6.2.1.3. EventWeb

Not significantly different is the idea of the EventWeb. Here the measurement event
itself is in the focus of the design and brings some benefits. The Eventweb[Jai08, SP08]
focuses primarily on a happening at a certain time or time frame and location. The
view on the data is more in the way people’s mind works and less object orientated.
Assuming that a single measurement is seen as an event, because of the “eventdriven
nature of sensor readings”[PFN+11], there is no problem with adding relevant data to that
event. Exchanging the blank node with a unique URI, one could model something like the
following:

Listing 6.2: Example measurement using EventWeb-desgin (Turtle)

ex:measurementEvent12345
ex:hasTime ”2012−11−10T090807”̂ ˆxsd:datetime;
geo:lat ”55”;
geo:long ”55”;
ex:hasTemperatureCelcius ”105”;
ex:hasWindSpeedMph ”22”;
ex:wasPerformedBy ex:sensorXxX;

The URI for that event allows automatic reasoning as well as the possibility to resolve that
URI to receive all existing information. Depending on the generation of the URI (random
or semantic), it would be possible to add data parallel or in distributed architectures,
although the further processing should not rely on the name of the URI, since URIs
should not contain information read by machines. Future additions are also possible,
for example quality control remarks or inferring results. A human-friendly URI could
be something like http://example.org/id/measurements/2012/01/01_15h34m12s, but
this should only simplify life for the developers.

Quite often the measurement data is the most used data and therefore the nature of
the sensors are not relevant. This design integrates good into the existing structures and
technologies. Depending on the scenarios one might want to define that each measurement
is different from the others, referring to the non-existing Unique Name Assumption.

A great amount of observation and measurement ontologies use the Eventweb style but
restrict every event to a single physical measurement. Then one could avoid properties
with the unit encoded in the name and add something like ex:measurementEvent12345

ex:hasUnit ex:Celcius.
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24 6. Collecting and Modeling Sensor Data

6.2.2. Location

Regardless to where location information is written, however, there are some additional
aspects that are important.

Not all measurements refer to one point. Think of a basin with a temperature that is
identical in the whole basin. One might want to describe this with the help of a geometric
form, e.g. a polygon, then a more detailed model might be useful. Thinking of future
queries it might even be useful to use a descriptive format even for points (e.g. geo:Point).
If furthermore, by accident, two or more Points are added to a measurement resource, the
allocation of the corresponding latitude and longitude is impossible.

See also the w3c basic wgs84 geo vocabulary32, NEOGEO 33 or GeoRSS34. Especially
when handling with altitudes there are loads of different standards that might to lead to
problems when using a different standard, like the wgs84.

6.2.3. Time

The time information focuses very similar problems. Here the time can be an instant, point
or an interval, for example. Two different time properties can lead to confusion as well if
they do not describe different events like “observation time” and “local observation time”.
Here the w3c provides a good solution with the use of OWL-Time35. A good solution
would be to use a custom URI like “ex:hasObservationTime” that is described in detail
when getting resolved, to avoid bloating up the data.

6.2.4. Units

Finally the handling of units can be a problem as well, since there is no standard existing
at the moment. Many ontologies try to define units in their measurement events, as
described above. At the moment this seems to be the best solution, because there is
no other widely used approach. The SSN ontology, for example, ”‘does not contain its
own model for these concepts and does not restrict the user in the choice of an ontology
to model them.”’ They propose36 the MyMobileWeb Measurement Units Ontology37, the
QUDV ontology38 or the QUDT ontology39. This usage of ”‘value containers”’ is described
in Semantic Web Programming [HFBPL09, p. 483ff] as ”‘one of the most flexible, explicit
and correct approaches to associating units of measurements with literals values”’. Two
other possibilites are the use of unit-specific properties and datatypes or the reification of
statements (RDF) respectively annotation properties (OWL).

6.2.5. Document Information

A little note on annotating the data with document information will close this section. Here
one could use the VoiD-Vocabulary40 that is “intended as a bridge between the publishers
and users of RDF data, with applications ranging from data discovery to cataloging and
archiving of datasets.” This might be interesting in order to provide information about
authors, publishers or subjects of the dataset.

32W3C Basic Geo Vocabulary http://www.w3.org/2003/01/geo/
33NEOGEO http://geovocab.org/doc/neogeo.html
34GeoRSS http://www.georss.org/simple
35OWL-Time www.w3.org/TR/owl-time
36Report Work on the SSN ontology http://www.w3.org/2005/Incubator/ssn/wiki/Report_Work_on_

the_SSN_ontology
37MyMobileWeb Measurement Units Ontology http://purl.oclc.org/NET/muo/muo
38QUDV ontology http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:quantities_units_

dimensions_values_qudv
39QUDT ontology http://qudt.org/
40VoiD http://vocab.deri.ie/void/
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6.2.6. Multidimensional Data and Statistics

Regarding sensor data, the RDF Data Cube Vocabulary41 could fit even more since it builds
on the VoiD-Vocabulary and others. Indeed it is intended to describe multidimensional
data like statistics to allow further processing in spreadsheets or OLAP, what is a common
use case for sensor data.

6.2.7. Ontology Engineering

When developing a new ontology no one should forget to get some knowledge in ontology
engineering before and to prove the validity of the results afterwards. For example aligning
the ontology to an upper ontology would be a good factor for reuse.

6.3. Conversion

Given the case that the source on hand has no semantics there are three possibilities to
enrich the data: Annotation, Conversion in Triple-Format or Storage of the data in a
relational database and convert on request.

6.3.1. Annotation of existing Data

Annotating the data works best when they are in a standardized format, because then the
annotation process gets easier. Like described in [CHN+09] or [HPST09] RDFa or XLink
are good choices for annotating XML. They used it in combination with SWE XMLs
(SensorML and O&M - see section 2.5 Existing Sensor Standards). Using the Linked
Sensor Middleware [LPNMQXH11] one can annotate XMLs even in the user interface.

6.3.2. Conversion into Triple Format

Converting data into a triple-format tends to be the common use case. However, the
great variety of different files and files structures does not allow to use generic approaches.
However, in some restricted use cases this might be possible - see for example the generic
CSV-conversion in the demo example (6.4.3). Indeed many standard formats can be
converted with open-source implementations. See for example the RDF file converter
overview42 or the RDF importers and adapters43.

6.3.3. Database Mapping

The third option is generating an RDF vocabulary directly out of a database schema or
to map it manually is very useful for existing data. According to [LPNMQXH11] “existing
triple stores can not efficiently handle high update rates”. Therefore relational databases
have been used with the purpose to avoid a time-consuming complete conversion and store
the data directly. The provided mapping allows running SPARQL queries on the database
similar to the usage in [PFN+11]. Likewise other implementations for SPARQL or RDF
exist and are listed in the w3c-wiki.44

6.4. Example Example

6.4.1. Data Source Analysis

Basic descriptions of the data sources can be found in chapter 4 (Example – Aviation
Weather Data): A five minutes update interval of each csv-file source has been mentioned,
so we could poll the updated files in that intervals.

41RDF Data Cube Vocabulary http://www.w3.org/TR/vocab-data-cube/
42RDF file converter overview http://www.w3.org/wiki/ConverterToRdf
43RDF importers and adapters http://www.w3.org/wiki/RDFImportersAndAdapters
44RDF and SQL http://www.w3.org/wiki/RdfAndSql
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The new files contain all the data of the past hour (METAR) or one-and-a-half (aircraft
reports) and only the latest ones should be processed. In the csv-files the measurements are
sorted descending by observation time, so the most recent updates will be at the beginning
of the file. In order to stay flexible the top n lines are read while another possibility would
be to detect which observations are really new. This allows us to reuse the query classes
easily for testing whether there is new data or not. In production use it might be efficient
to select the new measurements at the beginning or to remove them when they already
exist in the database, for example.

Both example observation files contain timestamps as well as geo-located points of the
measurements taken, so that the most important data is on hand. The aircraft reports
have their altitude as special information, because there are several practices on how to
measure altitudes.

To keep the example simple, only temperature data will be converted and the rest is
ignored, even if it would be not much effort to convert the other data additionally.

6.4.2. Modeling

Since the demo application is intended to show the whole process and point out some
important points and not to act as a full-featured data provider, the time consuming
process of modeling was reduced significantly. The only consumer of the data is the
corresponding visualization, so that no additional linking is necessary.

The quick and dirty approach assigns all the data values to a measurement event defined
by latitude, longitude and time. Unit handling is furthermore intended to be treated with
property name (hasTemperatureC).

Listing 6.3: A sample output of a METAR measurement (Turtle)

@prefix hup: <http://projects.hummel−universe.net/semanticsensorweb/property/> .
@prefix hupm: <http://projects.hummel−universe.net/semanticsensorweb/property/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84 pos#> .
@prefix hu: <http://projects.hummel−universe.net/semanticsensorweb/resource/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

hupm:measurement cc3707d5−cc54−4805−b15a−c06dc27f508c>
a

hu:measurement ;
hup:hasObservationTime

”2012−05−18T01:25:00Z”̂ ˆxsd:dateTime ;
hup:hasStationID

”KSTK” ;
hup:hasTemperature c

”25.0”̂ ˆxsd:double ;
geo:lat

”40.62”̂ ˆxsd:double ;
geo:long

”−103.27”̂ ˆxsd:double .

Besides the quick and dirty approach the custom properties could be properly defined and
interlinked with other ontologies in their description-files that can be retrieved by resolving
their URL or using external mappings. Depending on the use case some SWRL rules might
have to be used.

6.4.3. Conversion Method

A direct conversion to RDF/XML can be done very generic, so that the properties for
each field in the csv are defined in a configuration file. (see Appendix -> RDF-Conversion
Properties Sample File)
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Furthermore rad RDF/XML is produced besides the formats supported by the Jena Frame-
work like Turtle or N3. So far no storage solution is needed and the decision on that can
be made according to the access requirements in the next chapter.

The concrete process, implemented in Java, reads the source file, crops some information
at the beginning and converts the csv to a String-array Java-list with the help of the
openCSV-framework45.

After that the list will be parsed and each data value with its corresponding property
will be added to a Jena Model. There might be the option to add some more complex
structures, but this has to implemented hard-coded at the moment. It might be useful for
basic definition of time and space, for example.

45openCSV http://opencsv.sourceforge.net/
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7. Accessing the Data

Accessing the previously converted data is one of the main targets a semantic sensor data
application should be focused on.

Three common access methods can be determined: Polling, Notifying and Streaming.

Figure 7.1.: Schematic view of the module Accessing

7.1. APIs

First the developer has to decide which fundamental principles to use for data access.

As described in chapter 2 (Sensors, Sensor Data and the World Wide Web) existing sensor
networks are based on service architectures like the SOS of the SWE. This architecture
provides specific functions for a certain environment. Especially communication between
sensor networks could be improved using technologies like SOAP. Developments like Sem-
SOS extend existing service structures and provide backwards compatibility as well as the
option to use Linked Data.

Alternatively there is the REST architecture with prominent use in combination with the
semantic web. The focus on well-described stateless methods and the resource orientation
fits well with the Linked Data Principles46. RESTful architectures are lightweight and
easy reusable. The resources can be identified and linked with their corresponding URIs
and are therefore a good choice to manage information.

7.2. Static Data Access

7.2.1. Polling

Polling is the standard action used to obtain resources in the web. Talking in REST terms,
a client sends a GET message to the server. Using specific headers one can request special

46Linked Data Principles http://www.w3.org/DesignIssues/LinkedData.html
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response formats and the server can deliver meta information about the response (e.g.
expiration times or sizes). Standard implementations are redirects or other status codes
for communication over http with a standardized vocabulary. In particular, the client can
request a certain resource multiple times without side-effects like state changes.[Til09].
An architecture based on polling lacks informing the client on changes even if there are
possibilities save resources on polling requests when nothing has changed. The implemen-
tation is straight forward because of the presence in every framework or tool. Developing
a RESTful application needs some additional effort but is not complicated.

Since the proceeding of live data is one of the scenarios sensors are in, it is important to
provide support for that in the web architecture. Polling in fixed intervals is useful if those
intervals are known before and the data that has to be fetched is not too much. Handling
customized requests asking for modified data only are difficult but could be achieved with
a service structure that filters data according its data, for example. A possible solution
would be an Atom/RSS-Feed that informs about new data and saves traffic due to its size.

7.3. Live Data Access

Polling however does not allow the server to open up a connection. According to a blog
post47 of Phil Leggetter, a developer focused on real-time applications, there are three
ways of publishing live-data in the web:

• ”If you want your data in real-time you should use a persistent connection between
the publisher and subscriber.”

• ”If you are making a server to server subscription to data that does not update all
that often and instant real-time doesn’t matter then PubSubHubbub is fine.”

• ”If you are making a server to server subscription to data that updates very frequently
then you need to use a persistent connection and XMPP PubSub is a must.”

7.3.1. Notifying

In that sense a good extension to polling is to enable communication between server and
client, especially when the update interval is asynchronous. That way traffic is reduced
and the load on the server is minimized.The idea is to use a notification service that sends
out messages from the server to the registered clients and triggers a polling mechanism.
thus existing technology with all its benefits can be kept and only has to be extended
by a service on the client side. However, that form of a listener must be a server that
is active the whole time and servers behind firewalls can lead to problems. Furthermore
the communication messages are not standardized, even if the protocol is. Additionally
new data could also be sent over the new push-communication. Furthermore a notification
architecture is very scalable when new hubs are added.

7.3.1.1. XMPP

One solution would be the instant messaging protocol XMPP. Besides other features the
XMPP Standards Foundation proposes their Publish-Subscribe draft48 because of the clas-
sic observer pattern that allows the server to send one message to multiple subscribers.
Since “XMPP is a fairly complex standard, which is often too heavy for the limited re-
sources of embedded devices used in sensor networks.”[GTMW11] there is a similar pubsub
protocol that tends to get into the focus of developers: Pubsubhubbub.

47XMPP PubSub or Pubsubhubbub for real-time server push? http://www.leggetter.co.uk/2010/09/

17/xmpp-pubsub-or-pubsubhubbub-for-real-time-server-push.html
48XEP-0060: Publish-Subscribe http://xmpp.org/extensions/xep-0060.html

30

http://www.leggetter.co.uk/2010/09/17/xmpp-pubsub-or-pubsubhubbub-for-real-time-server-push.html
http://www.leggetter.co.uk/2010/09/17/xmpp-pubsub-or-pubsubhubbub-for-real-time-server-push.html
http://xmpp.org/extensions/xep-0060.html


7.4. Storage 31

7.3.1.2. Pubsubhubbub

The Pubsubhubbub protocol49 allows publishers to notify a hub about new content and
directs the spread including subscription handling to the hub. Moreover different categories
are supported and clients can register for specific ones. In the context of the semantic sensor
web architecture is used for example in the Linked Sensor Middleware[LPNMQXH11].
Pubsubhubbub uses the idea of WebHooks. That means HTTP posting data to an HTTP
endpoint’s callback URL.50 51

7.3.2. Streaming

Streaming data is the closest option to real-time data handling. Existing Linked Data
technologies have to be extended to be able to process live data. Besides using non-
standards technologies like the WebHooks there are some ideas on how to stream linked
data. See for example the blog post by Greg Brail in retrospect to the ReadWriteWeb
real-time summit.52

There are many ways to stream data. Most probably one will produce RDF/XML and is
therefore able to use XML streaming solutions like the Streaming API for XML (StAX)53.

Furthermore there are the new HTML5 WebSockets5455 or, as Google provides on App
Engine, the Channel API 56 with Comet-style that might be replaced with WebSockets
later on. Sometimes even an HTTP-connection is left open and the server continues to
send new data.

However, the most complicated part is to parse streaming data. Some examples of Data
Stream Management Systems (DSMS) are provided in section 8.1 (Handling Semantic
Sources) in the following chapter. They most often can create streams on their own to
create stream networks.

7.4. Storage

Depending on the application’s objectives and the chosen access method one or more of
the three options might fit for the storage solution. For the sake of completeness some
short discussion is provided here.

7.4.1. Direct Conversion

First of all no storage solution is required at all. This might be preferred when only live
data is required and the amount of queries is limited. With the help of caching techniques
the load could be managed efficiently. Restrictions are primarily that due to the need
for caching only uncustomized access is possible if there are many requests. Additional
post-processing possible so that specific data access can be implemented in a later stage.
This would also be a good solution for streaming when only a limited number of clients
receives the data and provide their access methods.

49Pubsubhubbub https://code.google.com/p/pubsubhubbub/
50What WebHooks are and why you should care http://timothyfitz.wordpress.com/2009/02/09/

what-webhooks-are-and-why-you-should-care/
51What are WebHooks and How Do They Enable a Real-time Web? http://blog.programmableweb.com/

2012/01/30/webhooks-realtime-web/
52Greg Brail - Hooks, Sockets and Firehoses: Streaming API Technologies Getting Us to REALLY Real-

Time http://blog.apigee.com/taglist/Webhooks
53Streaming API for XML http://stax.codehaus.org/Home
54websocket.org http://www.websocket.org
55w3c websocket draft http://dev.w3.org/html5/websockets/
56GAE Channel API https://developers.google.com/appengine/docs/java/channel/overview
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Figure 7.2.: Schematic view of the module Storing

7.4.2. File

Secondly saving the converted data as file enables the clients to save the URL for later
reference. Overview pages enable access to historic files and could facilitate access to
parts of the data, depending on the file structures. Notifying solutions fit perfectly but
customized queries are inefficient because the whole file has to be parsed first. Besides of
that, a storage mirror or an archive could be set up easily.

7.4.3. Database/Tripe Store

A database or triple store would be the third option and can provide many benefits. With
the matching structure it may be as fast as files and supports customized queries on top
while frequent ones could be cached as well. If loads of customized data is generated it
even might reduce traffic when only relevant triples are queried and sent instead of whole
files. Compared to the previous options the effort for choosing the perfect data server
can be very high, not only because of additional functions like SPARQL support but also
because of distinct optimizations. On the one hand may be useful to use a write-optimized
datastore because of the huge amounts of data generated by the sensors and the live
aspect and on the other hand a good query performance seems to be necessary. Sometimes
integrated inference methods can speed up the following process when detecting critical
measurements or related data. Automatically added statements can simultaneously lead
to problems when removing data from the store if they are nested too deep. One could
use 4 store57, cumulusrdf58 or some large triple store that can be found at the w3c wiki59.

7.5. Example
Example

The first decision fell on a REST-Style API that should fit best with existing Linked Data
technologies. In Java one could use some existing frameworks like Restlet60 or the reference
implementation for JAX-RS61 Jersey62. In combination with Google App Engine there are
some little challenges even if Restlet should work quite well for the basic features, so that
some basic implementation like content-negotiation has been implemented with the use of
mimeparse63 to handle the accept headers. Resolvable property-URIs allow interlinking
with other ontologies. Resolvable measurements are not fully implemented, because live
data is not saved at the moment.

574store http://4store.org/
58cumulusrdf http://code.google.com/p/cumulusrdf/
59Large Tripe Stores http://www.w3.org/wiki/LargeTripleStores
60Restlet http://www.restlet.org/
61JAX-RS http://download.oracle.com/otndocs/jcp/jaxrs-1.0-fr-oth-JSpec/
62Jersey http://jersey.java.net/
63mimeparse http://code.google.com/p/mimeparse/
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Since the update interval is known to be five minute there is no need to stream data and
notifying services would be preferred. “Additionally Google App Engine does not support
sending data to the client, performing more calculations in the application, then sending
more data. In other words, App Engine does not support ’streaming’ data in response to a
single request”64. Google proposes and supports the use of the XMPP protocol65 whereas
the Pubsubhubbub-protocol might have its benefits as well. A high-performance and real-
time live streaming, however, would be possible with jWebSocket66 that does not work on
App Engine because of the socket restrictions but you can use Tomcat, for example.6768

64GAE Java Servlet Environment https://developers.google.com/appengine/docs/java/runtime
65GAE Using the XMPP Service https://developers.google.com/appengine/articles/using_xmpp
66jWebSocket http://jwebsocket.org/
67jWebSocket in Webapps http://jwebsocket.org/howto/ht_webapp.htm
68jWebSocket Server on Application Servers http://jwebsocket.org/quickguide/qg_appserver.htm
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8. Querying and Visualizing

This chapter gives a short glance at what can be done with the previously prepared sensor
data. Since this is the filed where the strength of the Linked Data plays an important role
many different applications can be designed and developed.

The creativity and realization of future projects in this area will leverage the role of the
semantic web.

Concerning this, there are many possibilities on what to do with the data and it is only a
side topic of this thesis. Nonetheless, it is important for a holistic view on semantic sensor
data processing.

Figure 8.1.: Schematic view of the module Further Processing

8.1. Handling Semantic Sources

8.1.1. Data at Rest

If one gathers sources like RDF/OWL, some basic semantic technologies like mapping
URIs or using a rule language like SWRL69 should be the normal proceeding. The main

69SWRL: A Semantic Web Rule Language Combining OWL and RuleML http://www.w3.org/

Submission/SWRL/
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challenge is in the connection of different ontologies or maybe also a new one. Furthermore
there are many tools like reasoners for static context that can be used so that this should
not be a huge problem for anybody with some knowledge in semantic technologies.

8.1.2. Data in Motion

But there is a different situation with data in motion: “Data streams differ from conven-
tional stored relational models in several aspects. The data streams not only have data
elements arriving continuously but also potentially have unbounded size. Additionally,
the order of data elements arriving within a data stream or across multiple data streams
is unpredictable and not necessarily arranged. Furthermore, as soon as an element in a
data stream has been processed it can be discarded or archived, thus it cannot be no
longer easily retrieved, unless it is explicitly stored in memory, which typically is small
relative to the size of the data streams. To deal with these characteristics, data stream
management systems (DSMS) are designed for monitoring, combining and analyzing and
correlating streams of data rather than following the design of traditional data manage-
ment systems.”[LPH09]

In 2011 Le-Phuoc and Hauswirth propose an own query engine for live data: The Con-
tinuous Query Evaluation over Linked Streams (CQELS).[LPDTPH11]. In both papers of
Le-Phuoc et al. references to more DSMSs can be found, but they seem not to be able
to process stream data directly in comparison to CQELS. More information can also be
found in a tech report by Le-Phuoc et al. called Unifying Stream Data and Linked Open
Data [LPPHH10]

Most often streaming, parsing and querying techniques depend on the used DSMS.

Usually time windows are used to manage blocks and parse them in a more static context.
The smaller the intervals of the time windows are the more real-time proceeding can be
achieved. An example is shown in the following listing, that processes the data of the past
hour with a sliding interval of 10 minutes with a SPARQL-style query language.

Listing 8.1: Example for a C-SPARQL query in [BD10]

REGISTER STREAM TotalAmountPerBroker COMPUTE EVERY 10m AS
PREFIX ex: <http :// example />
CONSTRUCT {? broker ex: hasTotalAmount ? total .}
FROM <http :// brokerscentral . org / brokers .rdf >
FROM STREAM <http :// stockex .org/ market .trdf >
[ RANGE 1h STEP 10m]

WHERE {
? broker ex: from ? country .
? broker ex: does ?tx .
?tx ex: with ? amount .

FILTER (? country = ”CH” )
}
AGGREGATE { (? total , SUM (? amount ), ? broker ) }

Barbieri et al. use named graphs for handling the time aspect and handle various other
methods in their papers [BBC+09, BD10, BBCG10, BBC+10]

Another Approach for Sensor Data Fusion is provided by [ZKA+08].

8.2. Elementary Applications

Before some concrete examples of mashups will be shown, there will be a discussion about
the basic further processing.
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Three different types can be determined: First there might be the human friendly prepa-
ration of the data. Probably there will be most often a sort of graphical representation or
visualization to provide a meaningful insight into the measurements. There could be live
reports or charts about specific intervals.

The second use case is the filtering for important values. This could be the measurements
of a certain time in history to explain a happening or the monitoring of live data to extract
unexpected changes or predict future trends. This could be used for warning systems or
to help scientists with searching for important data.

Eventually, the third elementary application follows some of the features the semantic
web is famous for: Enrichment of the data with other linked sources. This facilitates the
step-by-step integration of sensors, since every new sensor improves the overall results.
Furthermore, many applications might exist or data is already modeled. Providing infor-
mation on how to read the data or compare to existing evaluations can be facilitated and
facts about the location, environment or related research can be provided. See for example
[LPH09].

These basic activities will lead to a huge number of applications when combined and
extended. In some cases the results will be stored and distributed in RDF or OWL again
and the proposed module structure and thoughts about how to handle the data can be used
again. In the sense of backwards compatibility another scenario could produce traditional
data formats.

8.3. Preferable Mashups for (moving) Sensors

On the contrary to the examples in chapter 2 (Sensors, Sensor Data and the World Wide
Web), where many possible scenarios are mentioned, some additional examples for sensors
in particular will be handled in the following paragraphs.

Referring to the common features like space and time, many easy but useful presentations
come to mind.

Regarding to the spatial features, a huge amount of sensors can be shown on a map, so
that a user can switch to a place of interest and can gather information with the help of
facilitated searches rather quick. One could think of interactive graphics with heat maps
or charts for some regions.

Without the use of visualization there are many uses cases as well: Filtering the data
for several regions for comparison purposes or personalized information on location-based
devices.

Some examples could be:

• Weather warnings like used in aviation already. The Fraunhofer Institute wanted to
proved a location-bases SMS service some years ago7071 and tend to be involved in
a disaster warning system recently72

• Traffic jams can be detected and distributed regardless of the systems in a country.
Combined with event databases, for example, one could even predict some high traffic
times. (something like Google provides with their traffic-data73 see for example the
RDF data access use cases by the w3c74

70WIND - Weather Information on Demand http://www.fokus.fraunhofer.de/de/espri/anwendung/

wind/index.html
71WINDmobile http://www.fokus.fraunhofer.de/de/espri/anwendung/wind-mobile/index.html
72Disaster Warning http://www.cio.de/public-ict/communication/2885624/
73Google Maps Traffic http://phys.org/news/2011-03-google-users-traffic.html
74Data Access use cases (w3c) http://www.w3.org/TR/2004/WD-rdf-dawg-uc-20040602/
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Notes on Implementation: There might be some unforeseen problems when matching
locations and coordinates. For example, most people will search for specific names like a
city, country or region. The extends of this area might be described in Linked Data as well
and they are most often polygons, sometimes even with ’holes’ in their area. One should
keep in mind that some applications can become very complex.

Additionally there are many maps services with good APIs but most require a proprietary
format for displaying the data. One approach of a generic RDF mapping tool is map4rdf75

The time aspect on the other hand will most often result in charts similar to those used for
website statistics or corporate reports. Here the aspect of live data comes to mind again
and should be addressed primarily if needed.

Some ideas for mashups are

• surveillance with server maintenance software as example could lead to information
systems for sensor measurements that can identify temporary fluctuation.

• digital homes with electricity monitoring and energy control could be used to start
machines automatically when good conditions dominate.

Eventually the most appropriate mashup will strongly depend on the data itself. Especially
for scientific purposes there are special methods or techniques on how to work with the
data. Statistical methods to handle the big data cloud may offer new possibilities and
results.

8.4. ExampleExample

As in the chapters before, Java is used as programming language. Nonetheless the basic
ideas can be easily achieved with any other language as well.

The target of the implementation is: Providing an RDF data set of measurements, the
data values will be displayed in Google Earth. Since the independence of the modules
should be kept, the source RDF-files are polled from the previously developed web service,
as if it was a external service.

The relevant configuration paths and setups are kept in a properties file as in the code-
example in the Appendix (KML-Output Properties Sample File).

After filtering the relevant measurement nodes, they are converted into a KML-file. This
file can be used in different mapping services and the decision fell on Google Earth, because
it provides the possibility to use kml-networklinks that are able to dynamically reload the
raw kml-files. This allows us to present the latest data every five minutes automatically.
Other refresh options like following the http-expire header are possible as well.

Additionally there is a simple data aggregation implemented to demonstrate that as well.
For enrichment of the METAR data dbpedia is queried for the names of the airports
represented by the ICAO code.

The live demo can be found under http://projects.hummel-universe.net/semanticsensorweb
/basickml. Alternatively some screenshots in combination with a short instruction can be
found in the Appendix.

Note on implementation: As already mentioned, Java has been used for implementation
and as before Jena framework processed the RDF-files. Reading the provided RDF as file
and converting to a Jena model again is a critical performance issue whereas filtering and
further processing is quite fast. There has to be used a better solution.

75map4rdf http://oegdev.dia.fi.upm.es/map4rdf/
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The creation of the kml-output can easily be done with the Java Kml Framework76, al-
though it does not work on the Google App Engine due to some dependencies on libraries
that are not supported. A quick workaround with creating the kml-xml as a string is
implemented and might lead to performance issues with larger data sets.

Additionally, as described in the modeling chapter 6 (Collecting and Modeling Sensor
Data), the geo-location values are linked in the example directly as lat/long triples with
the measurement event.

76Java Kml Framework http://code.google.com/p/javaapiforkml/
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9. Evaluation

In every single step of this thesis there difficult questions on how to bring sensor data
into the semantic web have been addressed already. The following sections rate the whole
situation of semantic sensor data and the proposed development process under different
angles.

9.1. Describing sensors in RDF/XML

There are many approaches of describing sensor types, some as mighty and complex on-
tologies. Thus most of the common sensors and there data can be described. These
descriptions are useful to categorize sensors and to find the appropriate sensors automat-
ically or manually. This facilitates the growth of sensor networks and the crawling of
various sensor data.

Nonetheless complex influences of sensors on each other or relationships among them are
complicated to handle. Automatic reasoning might be hard or impossible when compli-
cated ontologies have to be used.

A similar issue comes with some characteristics like accuracy and (allowed) ranges of sen-
sors. These two attributes are often important for scientific research, but they are hard to
implement. Customized modeling and processing might be possible in either way whereas
automated and independent handling of the data becomes impossible. Moreover, when
probabilities come into consideration the use of current tools and models is a challenging
endeavor. (see for example [CMP10])

9.2. Describing measurements in RDF/XML

Handling the different measurements of sensors strongly depends on the existing ontologies
in the corresponding field, even if there are some sensor ontologies that cover measurements
and observations as well [Section 3.3 (Existing Approaches and Ontologies)]. Are they well-
modeled and easy to understand or to extend, then they will facilitate extending the data
amount in the semantic web.

If the focus is on the measurements, the idea of the Eventweb provides a good solution of
handling time and space in easy models. It might even allow many forms of reasoning and
inferring on the data. Nonetheless complex structures stay complicated and the future
development of n-ary predicates might be necessary - not only in the sensor context.
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Unit handling leads to another problem, if not addressed in the used ontologies. If modeled
with custom properties, reasoning and processing would be kept easy but the combination
of different sources or the automatic conversion of units is not practical at the moment.

9.3. Live data handling

There seem to exist many projects that try to facilitate streaming of Linked Data. It might
not take a long time until there will be solutions that work pretty well, as there are existing
solutions in traditional web services already. The difficulty is the interchangeability of the
different approaches, one of the former targets of SOA77. Some standardized interfaces
or service descriptions are needed to allow spiders or query processors to use different
methods without the need of customized code for each solution. This might as well be an
important w3c standard.

9.4. Developer benefits

As described in this work, the modular structure of semantic web applications allows devel-
opers to concentrate on parts of the software. If they use some different core applications,
programming languages or even generic software, they should be very fast and flexible in
common use cases. The trending agile development philosophy fits perfectly well the idea
of the semantic web.

The modeling of ontologies is, however, very time consuming and may be complicated.
Some problems mentioned in the first two sections play important roles and there are
many others that can be found in literature. Even so, the Linked Open Data community
and much of the Web 2.0 enthusiasm as well as the Open Source movement refrains from
the ’not invented here’ attitude and reduces the overall effort of modeling ontologies. Using
existing ontologies should be capable as well for developers who are not deeply involved
in ontology engineering.

9.5. Stakeholder benefits

Coming from the developers to the more abstract stakeholders such as data providers,
managers or analysts with a special focus on the people or companies that own or maintain
the physical sensors.

A lot of sensors and sensing devices that could be connected are property of people or
companies that might not be willing to share their data for several reasons, especially
privacy or money.

In case anything else than a scientific or governmental organization should take part in a
sensor network they most often don’t want to put much effort or even money in publishing
their data, especially if they do not generate any return on invest. This may be the reason
for some sensor data publishers to use proprietary formats like a custom csv. The effort is
very low and by chance they might be able to sell some specifications on that by chance
whereas they do not benefit from putting more effort in publishing Linked Data. The
only stakeholders that tend to benefit directly from well-prepared data seem to be the
analysts that can generate results with low effort and can present their results on sites
with advertisements or can even sell them.

Furthermore private data should only be shared in between selected parties, for example
business partners, friends or medical institutions. Like with the OAuth used in the pub-
subhubbub, there are some existing concepts, but unless they are becoming standard, safe
and easy to use, many potential sensor data providers will most probably not participate.

77SOA - Service Oriented Architecture
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Another important part for managing quality and trust is the use of cryptography or digital
signatures. Especially if automatic crawling replaces manual sorting of sources someday,
it should be at least traceable who created and altered information, that automatic rating
of relevance becomes possible. This would additionally give at least some credits to the
stakeholders. See for example [TH10, ANR08] or tRDF78.

9.6. Example evaluation/Lessons learned
Example

When creating the different modules the architecture proposed in chapter 5 (General ap-
proach and structure of code) was very helpful due to the abstract structure for different
systems.

However, Google App Engine restricted work in some ways, because it did not support
all frameworks that would have been useful. A Jetty or Tomcat deployment could have
been better. Nonetheless, developing demos on App Engine is comfortable, amongst other
things because of the good Eclipse integration and their development framework.

When referring to the performance of the demo system some lessons learned can be pre-
sented. The complete time measurements can be found in the Appendix F (Time Mea-
surements of Example Application). The most important result is that the generated RDF
should be saved or cached on the system somehow. The creation of the web-output takes
more than half of the total conversion time. Triggering the conversion with a cronjob and
caching the result for real requests should be okay. Saving the results in a file or in a triple
store could avoid caching problems and should be fast enough as well. Besides of that it
may also be useful to cache source files either for the csv2rdf conversion or in the further
process (here the kml-creation).

Concerning real-time data the best option might be streaming. In the example generating
2.100 triples out of a local csv-source took about 1 second. Real sensors might produce a
multiple of that amount and if one aggregates several resources it gets even more important.

Regarding the KML-creation the time killer is the creation of the Jena model out of the
existing RDF-data since it takes about half of the total creation time. Maybe another
framework like the NxParser79 would be better as it supposedly “ate 2 mil. quads ( 4GB,
( 240MB GZIPped)) on a T60p (Win7, 2.16 GHz) in 1 min 35 s (1:18min).”

Above all, the integration with dbpedia’s SPARQL-endpoint worked quite well and can
be recommended. However, in the data for the sample query might not change that often
and therefore the data should be stored locally to avoid unnecessary requests.

78tRDF http://trdf.sourceforge.net/
79NxParser http://code.google.com/p/nxparser/
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10. Conclusion

In a summary, it seems that the semantic technologies are ready to set up a net of linked
sensors and sensor data, even if some specific use cases might be difficult to handle right
now.

So, for example, the technologies for live data exist to a certain extend, but there is no
global accepted standard that would be necessary for productive use.

Additionally the unit-handling is a complex and chaotic barrier that probably prevents
some people from using semantic technologies as preferred way of data publication.

As long as there will not be easy-to-use frameworks or modeling kits that support less
Semantic Web or even programming affine data providers, this field might be limited to
science or governmental institutions.

A holistic automatic inferring seems to be unlikely for several years and the best way for
aggregation and analysis will be the use of custom knowledge bases or data warehouses.
The more (de-facto) standards will exist, the better the technology will develop. However,
this might be a task for organizations like the w3c.

Even if it might be possible to enhance some widely used sensor types with semantics, the
vision of an electronic skin could evolve without semantics in great parts at first. See for
example, in another context, the mainly syntax-based reasoning of the IBM Watson80.

Reasons for that are certainly the extremely fast development and spread of everyday sen-
sors or sensing devices for cars, households and humans that most probably will produce
more data soon compared to existing scientific networks. The community and standard-
ization processes needed for a well-performing Linked Data network will take some time.

Furthermore, leveraging the power of the crowd tends to rely on a general focus on quality
and trust as an essential factor for the spread of semantic technologies, not to forget
copyrights or licensing. Nonetheless, private networks might not be that beneficial for the
open data movement at first but, hopefully, as there will be a critical mass of users positive
development will result in the commonly accepted use of semantic technologies.

Eventually, one should not forget that the communication between sensors or machines
is neither the target of the semantic web at this stage nor is it necessary or feasible that
all the data is semantified. Anyhow, every additional machine readable content that is

80http://www-03.ibm.com/innovation/us/watson/index.html
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properly semantified will most probably help to manage the torrent of data better and the
artificial intelligence might benefit to a high degree as well.
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Appendix

A. METAR Field Description

The following table A.1 describes the structure of the csv-file for the METAR measure-
ments of the NOAA. The source can be found on the NOAA METAR Field Description
Page 81.

Table A.1.: METAR Field Descriptions

Field Field Name Description Field Type Units

1 raw text The raw METAR string

2 station id Station identifier; Always a four
character alphanumeric (A-Z, 0-9)

string

3 observation time Time (in ISO8601 date/time for-
mat) this METAR was observed.

string ISO 8601
date/time

4 latitude The latitude (in decimal degrees)
of the station that reported this
METAR

float decimal
degrees

5 longitude The longitude (in decimal degrees)
of the station that reported this
METAR

float decimal
degrees

6 temp c Air temperature float C

7 dewpoint c Dewpoint temperature float C

8 wind dir degrees Direction from which the wind is
blowing. 0 degrees=variable wind
direction.

integer degrees

9 wind speed kt Wind speed; 0 degree wdir and 0
wspd = calm winds

integer kts

10 wind gust kt Wind gust integer kts

11 visibility statute mi Horizontal visibility float statute
miles

12 altim in hg Altimeter float inches of
Hg

13 sea level pressure mb Sea-level pressure float mb

14 quality control flags Quality control flags82 provide use-
ful information about the METAR
station(s) that provide the data.

string

81NOAA METAR Field Description http://aviationweather.gov/adds/dataserver/metars/

MetarFieldDescription.php
82Quality control flags http://aviationweather.gov/adds/dataserver/metars/

QualityControlDescription.php
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15 wx string wx string descriptions83 string

16 sky cover Sky cover, up to four levels of sky
cover can be reported; OVX present
when vert vis ft is reported.
Allowed values:
SKC|CLR|CAVOK|FEW|SCT
BKN|OVC|OVX

string

17 cloud base ft agl Height of cloud base in feet AGL.
Up to four levels can be reported.
A value exists when the correspond-
ing skyCover=’FEW’,’SCT’,’BKN’,
’OVC’

integer ft (AGL)

18 flight category Flight category of this METAR.
Values: VFR|MVFR|IFR|LIFR
See 84

string

19 three hr pressure tendency mb Pressure change in the past 3 hours float mb

20 maxT c Maximum air temperature from the
past 6 hours

float C

21 minT c Minimum air temperature from the
past 6 hours

float C

22 maxT24hr c Maximum air temperature from the
past 24 hours

float C

23 minT24hr c Minimum air temperature from the
past 24 hours

float C

24 precip in Liquid precipitation since the last
regular METAR

float in

25 pcp3hr in Liquid precipitation from the past 3
hours. 0.0005 in = trace precipita-
tion

float in

26 pcp6hr in Liquid precipitation from the past 6
hours. 0.0005 in = trace precipita-
tion

float in

27 pcp24hr in Liquid precipitation from the past
24 hours. 0.0005 in = trace precipi-
tation

float in

28 snow in Snow depth on the ground float in

29 vert vis ft Vertical Visibility integer ft

30 metar type METAR or SPECI string

31 elevation m The elevation of the station that re-
ported this METAR

float meters

83wx string descriptions http://aviationweather.gov/metars/wxSymbols_anno2.pdf
84METAR ifr description http://adds.aviationweather.noaa.gov/metars/description_ifr.php
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B. PIREP Field Description

The following table B.2 describes the structure of the csv-file for the PIREP measurements
of the NOAA. The source can be found on the NOAA PIREP Field Description Page 85.
Furthermore the more detailled description of the quality control flags is shown in table
B.3 or can be found on the corresponding NOAA website86.

Table B.2.: PIREP Field Descriptions

Field Field Name Description Field Type Units

1 receipt time Time (ISO8601 date/time format)
when the report was received

string ISO8601
date/time

2 observation time Time (ISO8601 date/time) when
the weather/condition was experi-
enced

string ISO8601
date/time

3 quality control flags Quality control flags that indicate
any assumption(s) made on the
PIREP data. Please refer to the
Quality Control Flags.

string

4 aircraft ref Reference to the aircraft. Aircraft
type, flight number, or other aircraft
information

string

5 latitude Latitude float decimal
degrees

6 longitude Longitude float decimal
degrees

7 altitude ft msl altitude in ft MSL (mean sea-level) integer ft above
MSL
(mean
sea-level)

8 sky condition Sky cover - up to two levels of cloud
types can be reported. Allowed val-
ues: VMC|VFR|SKC|CLEAR
CAVOC|FEW|SCT|BKN|OVC
OVX|IFR|IMC

string

9 cloud base ft msl Height of cloud base- up to two lev-
els can be reported

integer ft MSL
(mean
sea-level)

10 cloud top ft msl Height of cloud top - up to two levels
can be reported

integer ft MSL
(mean
sea-level)

11 turbulence type Turbulence type. Up to two lev-
els of turbulence data can be re-
ported. The allowed values are:
CAT|CHOP|LLWS|MWAVE

string

85NOAA PIREP Field Description http://www.aviationweather.gov/adds/dataserver/pireps/

PirepFieldDescription.php
86NOAA PIREP Quality Control Flags http://www.aviationweather.gov/adds/dataserver/pireps/

QualityControlFlags.php
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12 turbulence intensity Turbulence intensity. Up to two
levels of turbulence data can be
reported. The allowed values
are: NEG|SMTH-LGT|LGT|LGT-
MOD|MOD|MOD-SEV|SEV|SEV-
EXTM|EXTM

string

13 turbulence base ft msl Height of turbulence base. Up to
two levels of turbulence data can be
reported.

integer ft MSL
(mean
sea-level)

14 turbulence top ft msl Height of turbulence top. Up to two
levels of turbulence data can be re-
ported.

integer ft MSL
(mean
sea-level)

15 turbulence freq Turbulence frequency. Up to two
levels of turbulence data can be
reported. Allowed values are:
ISOL|OCNL|CONT

string

16 icing type Icing type. Up to two levels of ic-
ing data can be reported. Allowed
values: RIME|CLEAR|MIXED

string

17 icing intensity Icing intensity. Up to two levels of
icing data can be reported. Allowed
values: NEG|NEGclr|TRC|TRC-
LGT|LGT|LGT-MOD|MOD|MOD-
SEV|HVY|SEV

string

18 icing base ft msl Icing base. Up to two levels of icing
data can be reported.

integer ft MSL
(mean
sea-level)

19 icing top ft msl Icing top. Up to two levels of icing
data can be reported.

integer ft MSL
(mean
sea-level)

20 visibility statute mi Visibility intger statute mi

21 wx string Weather string

22 temp c Temperature float C

23 wind dir degrees Wind direction, the direction from
where the wind is blowing.

integer degrees

24 wind speed kt Wind speed integer kts

25 vert gust kt Vertical gust integer m/s

26 pirep type PIREP or AIREP string

27 raw text Raw PIREP in text string

Table B.3.: PIREP Quality Control Flags

Value Corresponding description

mid point assumed Midpoint- if the exact location of the PIREP is not provided, the
midpoint between two locations is assumed.

no time stamp No time stamp - if a time stamp is wrong or not provided.

flt lvl range Flight level range - if a range instead of a specific altitude is given
for flight level information.
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above ground level indicated Above ground level (AGL)- if the flight level is expressed as AGL as
opposed to mean sea level (MSL). Or if the flight level is recorded
as ”during descent” (DURD), in which case the surface elevation
plus 100 ft. is used from the closest identifier.

no flt lvl No flight level - if no flight level information can be deciphered
from the raw PIREP. The decoder fills in the flight level with the
altitude of the cloud observation. If this information is unavailable,
then the altitude of icing is used. If icing information is absent,
then the altitude of turbulence is used.

bad location Bad location - if the location from the ”/OV” group is greater than
500 km from the leading identifier, or if the location identifier is
not available. In this situation, the lat and lon from the leading
identifier is used.
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C. RDF-Conversion Properties Sample File

Listing 10.1: A Java-properties configuration file for the conversion parameters.

1 #Precheck
2 configFileValid = true
3 configFileActive = true
4
5 # Config File for the csv−Source of the Metar−Data from metar.noaa.gov
6 nameOfSource = noaa metar
7 descriptionOfSource = METAR Data published by the NOAA
8 localFile = false
9 pathToSource = http://www.aviationweather.gov/adds/dataserver current/current/metars.cache

.csv.gz
10 pathToLocalTestFile = files/test/metars.cache.csv.gz
11
12 # file structure
13 separator = ,
14 quotechar = ”
15 startLine = 6
16 readMaxEntries = 350
17
18 # data description
19 arrayDescriptions = \
20 Ignore,Ignore,Ignore;\
21 http://projects.hummel−universe.net/semanticsensorweb/property/hasStationID,Literal,plain;\
22 http://projects.hummel−universe.net/semanticsensorweb/property/hasObservationTime,Literal,

dateTime;\
23 http://www.w3.org/2003/01/geo/wgs84 pos#lat,Literal,Double;\
24 http://www.w3.org/2003/01/geo/wgs84 pos#long,Literal,Double;\
25 http://projects.hummel−universe.net/semanticsensorweb/property/hasTemperature c,Literal,

Double;
26
27 # additional processing information
28 namespaceDefinitions = \
29 hup,http://projects.hummel−universe.net/semanticsensorweb/property/;\
30 hu,http://projects.hummel−universe.net/semanticsensorweb/resource/;\
31 geo,http://www.w3.org/2003/01/geo/wgs84 pos#;\
32 xsd,http://www.w3.org/2001/XMLSchema#
33
34 attachAdditionalStatements = true;
35 pathToAdditionalStatements = files/config/noaa metar additionalStatements.turtle
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D. KML-Output Properties Sample File

Listing 10.2: Configuration of the kml-output of the PIREP-data.

1 # Config File for the KML output of PIREP data
2 nameOfSource = noaa pirep
3 descriptionOfSource = PIREP Data published by the NOAA
4
5 iconPath = http://projects.hummel−universe.net/semanticsensorweb/img/airplane 32x32.png
6
7 folderName = Aircraft Measurements
8 folderId = Aircrafts
9 folderDescription = \

10 <b>Measurements of Aircrafts:</b>\n \
11 <ul>\n \
12 <li>PIREP−data, provided by http://www.aviationweather.gov/, NOAA’s National Weather

Service</li>\n \
13 </ul>\n \
14 <small><p>Data collected and processed by a service of http://projects.hummel−universe.net/

semanticsensorweb</p>\n \
15 <p>Icons used from http://www.icons−land.com</p></small>\n
16
17 urlToSource = http://projects.hummel−universe.net/semanticsensorweb/basicquery?config=noaa

pirep
18 sourceFormat = RDF/XML
19
20 urlToTestSource = files/test/aircraftreports.cache.short.rdf
21 testSourceFormat = RDF/XML
22
23 placementCreationMethod = Standard
24 relevantPropertyOfType = http://projects.hummel−universe.net/semanticsensorweb/resource/

measurement
25
26 # necessary for Standard
27 titleProperty = http://projects.hummel−universe.net/semanticsensorweb/property/

hasAircraftRef
28 observationTimeProperty = http://projects.hummel−universe.net/semanticsensorweb/property/

hasObservationTime
29 latitudeProperty = http://www.w3.org/2003/01/geo/wgs84 pos#lat
30 longitudeProperty = http://www.w3.org/2003/01/geo/wgs84 pos#long
31
32 #Altitude not set is seen as clampToGround, absolute is relative to sea level, Unit is important,

because Google Earth uses metres
33 altitudeProperty = http://projects.hummel−universe.net/semanticsensorweb/property/

hasAltitude ft msl
34 altitudeMode = absolute
35 altitudeUnit = feet
36
37 measurementProperties = \
38 Temperature (◦C), http://projects.hummel−universe.net/semanticsensorweb/property/

hasTemperature c;
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E. Instructions for Generation of Kml files

If you want to display the measurement data on Google Earth, there are just some easy
steps to follow:

1. Download and install Google Earth from http://earth.google.com.

2. Visit the demo page (http://projects.hummel-universe.net/semanticsensorweb)
and choose the “Visualization -> Form for quick query” link. (Alternatively you can
use one of the quick links or create a manual request) [Figure E.1]

3. Choose your preferred output in the form on the left. [Figure E.2]

a) Create a networklink. Choose “open with” Google Earth or save it to your disk
and open it afterwards.
In Google Earth you can find the data under temporary places on the left hand
side. By expanding that folder you see the networklink, with the remote-kml-
files in it. Each kml-file (if more than one) consists of the placemarks for each
measurement location. Maybe you will have to check the boxes to display the
placemarks on the earth. Feel free to zoom into whatever region you want to
and see if you can find a measurement. [Figure E.3]

The networklink will reload the data for you and you will receive the latest data
every five minutes (METAR and PIREP). You can, of course, force a manual
refresh with right-clicking on the networklink and choosing update.

b) Alternatively you can create and download the data-kml file. This is the same
file as Google Earth will download automatically. The only benefit of using the
networklink is the refresh-option.

4. Details of each measurement are presented in the tooltip. Just click on an airport or
airplane in the map and see the results. [Figure E.4]
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Figure E.1.: Landing page of the demo project with the different access methods

Figure E.2.: Form for the generation of networklinks and kml-files.
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Figure E.3.: Screenshot of the Google Earth GUI with METAR and PIREP data.

Figure E.4.: Tooltips with details of two measurements in Google Earth (METAR and
PIREP)
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F. Time Measurements of Example Application Example

F.1. Conversion of CSV to RDF

Figure F.5.: Time Measurement CSV2RDF Local Files

Figure F.6.: Time Measurement CSV2RDF Remote Files
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F.1.1. Notes on Measurements

1. Triples in brackets are the hu:measurementXYZ rdf:type hu:measurement relation.
Triples outside the brackets represent one data value.

2. Reading the properties file is transforming it completely to java objects.

3. Create list includes the file collection and the conversion from csv to a list.

F.1.2. Evaluation

• Generating the output RDF-File takes about half the time of the complete process.
→ Possible solutions: Write data to triple store directly.

• Expected amounts of changed data (every 5 minutes) convert in <2 seconds.
→ This should be good enough for most use cases. Real-time should be done with
streams.

• Conversion gets faster when done multiple times.
→ It is possible that there are some caches. Nonetheless, conversion is intended to
be done once every interval. Measurements fluctuate. They seem to depend much
on the system and server load.

• Conversion of remote files takes 1-2 seconds longer than with local files.
→ Transferring only parts (beginning) of remote files would be good. Otherwise
stream parsing would be useful.
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F.2. Generation of KML files

Figure F.7.: Time Measurement KML Local Files

Figure F.8.: Time Measurement CSV2RDF Local Files

F.2.1. Evaluation

• KML-Creation takes way too much time. Google Maps API, for example allows 1s
until it is seen as a timeout.
→ Taking the csv2rdf conversion time into account it takes even longer.

• Most time is used for Jena Model creation of input source
→ Since source is already RDF it should be faster. Probably using JSON would be
a solution.

• Model creation seems to start when source server begins its output to web. Reading
the source from web service is faster than reading from file when not taking csv2rdf
time into account.
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• Producing the Placemarks is slow as well.
→ Just a Quick-and-dirty approach. Maybe there is a faster framework.

• Filtering the RDF-Model is very fast, as is the web output.
→ Jena may be focused on further processing than on fast model creation.
→ Web output is fast, because the Placemark creation produces a String already.
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