200 research outputs found

    Identificación de intención de movimiento de marcha sobre diferentes terrenos -una aproximación bioinspirada-

    Get PDF
    En este documento se propone una aproximación al entendimiento del lenguaje neuromotor de una persona con una amputación por encima de rodilla, mediante la identificación de su intención de movimiento a partir de la percepción de las manifestaciones tanto internas como externas de los Patrones de Acción Fija (PAF) mediante el uso de una propiocepción artificial y la exterocepción de su prótesis durante el desarrollo de diferentes gestos (marcha, subir y bajar escaleras y subir y bajar rampas). Se presentan la formalización de una expresión General del Gesto Rítmico, los procedimientos para la generación de PAF artificiales y un Algoritmo de Respuesta ante el Desarrollo de Gestos. Mediante la identificación de la intención del usuario a través de la información propioceptiva y exteroceptiva, la prótesis discrimina entre un repertorio de PAF artificiales y selecciona el más adecuado para satisfacer las necesidades de movimiento del usuario. Los datos experimentales de las pruebas desarrolladas en individuos sanos y amputados mostraron un alto desempeño en la identificación de la intención del usuario (97.06% de identificaciones correctas) y un buen seguimiento de los gestos de movimiento independientemente de la velocidad con que fueron ejecutadosIn this paper we propose an approach to the neuromotor language of the transfemoral amputee user. We do this by identifying the user’s intention from the perception of both internal and external manifestations (to be explained into a next section) of Fixed Action Patterns (FAPs, by making use of artificial proprioception and exteroception of the prosthesis. The formalization of a General Expression of the Rhythmic Gesture, generation procedures for artificial FAPs, and a Response Algorithm for Gestures Development are presented. By identifying the user’s intention through proprioceptive and exteroceptive information, the prosthesis discriminates between repertories of artificial FAPs and chooses the most suitable one to meet the users’s requirements. Experimental data of tests carried out in healthy and amputee individuals showed high performance on identification (97.06 % of true identifications) of the user’s intention and good tracking of gestures such as gait, walking up stairs, down stairs, up hill and down hill, independently of the speed of execution of the gestur

    Simultaneous Bayesian recognition of locomotion and gait phases with wearable sensors

    Get PDF
    Recognition of movement is a crucial process to assist humans in activities of daily living, such as walking. In this work, a high-level method for the simultaneous recognition of locomotion and gait phases using wearable sensors is presented. A Bayesian formulation is employed to iteratively accumulate evidence to reduce uncertainty, and to improve the recognition accuracy. This process uses a sequential analysis method to autonomously make decisions, whenever the recognition system perceives that there is enough evidence accumulated. We use data from three wearable sensors, attached to the thigh, shank, and foot of healthy humans. Level-ground walking, ramp ascent and descent activities are used for data collection and recognition. In addition, an approach for segmentation of the gait cycle for recognition of stance and swing phases is presented. Validation results show that the simultaneous Bayesian recognition method is capable to recognize walking activities and gait phases with mean accuracies of 99.87% and 99.20%. This process requires a mean of 25 and 13 sensor samples to make a decision for locomotion mode and gait phases, respectively. The recognition process is analyzed using different levels of confidence to show that our method is highly accurate, fast, and adaptable to specific requirements of accuracy and speed. Overall, the simultaneous Bayesian recognition method demonstrates its benefits for recognition using wearable sensors, which can be employed to provide reliable assistance to humans in their walking activities

    Sensor-Based Adaptive Control and Optimization of Lower-Limb Prosthesis.

    Get PDF
    Recent developments in prosthetics have enabled the development of powered prosthetic ankles (PPA). The advent of such technologies drastically improved impaired gait by increasing balance and reducing metabolic energy consumption by providing net positive power. However, control challenges limit performance and feasibility of today’s devices. With addition of sensors and motors, PPA systems should continuously make control decisions and adapt the system by manipulating control parameters of the prostheses. There are multiple challenges in optimization and control of PPAs. A prominent challenge is the objective setup of the system and calibration parameters to fit each subject. Another is whether it is possible to detect changes in intention and terrain before prosthetic use and how the system should react and adapt to it. In the first part of this study, a model for energy expenditure was proposed using electromyogram (EMG) signals from the residual lower-limbs PPA users. The proposed model was optimized to minimize energy expenditure. Optimization was performed using a modified Nelder-Mead approach with a Latin Hypercube sampling. Results of the proposed method were compared to expert values and it was shown to be a feasible alternative for tuning in a shorter time. In the second part of the study, the control challenges regarding lack of adaptivity for PPAs was investigated. The current PPA system used is enhanced with impedance-controlled parameters that allow the system to provide different assistance. However, current systems are set to a fixed value and fail to acknowledge various terrain and intentions throughout the day. In this study, a pseudo-real-time adaptive control system was proposed to predict the changes in the gait and provide a smoother gait. The proposed control system used physiological, kinetic, and kinematic data and fused them to predict the change. The prediction was done using machine learning-based methods. Results of the study showed an accuracy of up to 89.7 percent for prediction of change for four different cases

    Learning architecture for the recognition of walking and prediction of gait period using wearable sensors

    Get PDF
    This work presents a novel learning architecture for the recognition and prediction of walking activity and gait period, respectively, using wearable sensors. This approach is composed of a Convolutional Neural Network (CNN), a Predicted Information Gain (PIG) module and an adaptive combination of information sources. The CNN provides the recognition of walking and gait periods. This information is used by the proposed PIG method to estimate the next most probable gait period along the gait cycle. The outputs from the CNN and PIG modules are combined by a proposed adaptive process, which relies on data from the source that shows to be more reliable. This adaptive combination ensures that the learning architecture provides accurate recognition and prediction of walking activity and gait periods over time. The learning architecture uses data from an array of three inertial measurement units attached to the lower limbs of individuals. The validation of this work is performed by the recognition of level-ground walking, ramp ascent and ramp descent, and the prediction of gait periods. The recognition of walking activity and gait period is 100% and 98.63%, respectively, when the CNN model is employed alone. The recognition of gait periods achieves a 99.9% accuracy, when the PIG method and adaptive combination are also used. These results demonstrate the benefit of having a system capable of predicting or anticipating the next information or event over time. Overall, the learning architecture offers an alternative approach for accurate activity recognition, which is essential for the development of wearable robots capable of reliably and safely assisting humans in activities of daily living

    Analysis of Human Gait Cycle with Body Equilibrium based on leg Orientation

    Get PDF
    Gait analysis identifies the posture during movement in order to provide the correct actions for a normal gait. A person\u27s gait may differ from others and can be recognized by specific patterns. Healthy individuals exhibit normal gait patterns, while lower limb amputees exhibit abnormal gait patterns. To better understand the pitfalls of gait, it is imperative to develop systems capable of capturing the gait patterns of healthy individuals. The main objective of this research was to introduce a new concept in gait analysis by computing the static and dynamic equilibrium in a real-world environment. A relationship was also presented among the parameters stated as static \& dynamic equilibrium, speed, and body states. A sensing unit was installed on the designed metal-based leg mounting assembly on the lateral side of the leg. An algorithm was proposed based on two variables: the position of the leg in space and the angle of the knee joint measured by an IMU sensor and a rotary encoder. It was acceptable to satisfy the static conditions when the body was in a fixed position and orientation, whether lying down or standing. While walking and running, the orientation is determined by the position and knee angle variables, which fulfill the dynamic condition. High speed reveals a rapid change in orientation, while slow speed reveals a slow change in orientation. The proposed encoder-based feedback system successfully determined the flexion at 47^\circ, extension at 153^\circ, and all seven gait cycle phases were recognized within this range of motion. Body equilibrium facilitates individuals when they are at risk of falling or slipping

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Biomedical Sensing and Imaging

    Get PDF
    This book mainly deals with recent advances in biomedical sensing and imaging. More recently, wearable/smart biosensors and devices, which facilitate diagnostics in a non-clinical setting, have become a hot topic. Combined with machine learning and artificial intelligence, they could revolutionize the biomedical diagnostic field. The aim of this book is to provide a research forum in biomedical sensing and imaging and extend the scientific frontier of this very important and significant biomedical endeavor
    corecore